Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

http://www.abb.com/substationautomation
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network. It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of anti virus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series.
Safety information

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Non-observance can result in death, personal injury or substantial property damage.

Only a competent electrician is allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed.

The frame of the IED has to be carefully earthed.

The IED contains components which are sensitive to electrostatic discharge. Unnecessary touching of electronic components must therefore be avoided.

Whenever changes are made in the IED, measures should be taken to avoid inadvertent tripping.
Table of contents

Section 1 Introduction

- This manual
- Intended audience
- Product documentation
 - Product documentation set
 - Document revision history
 - Related documentation
- Symbols and conventions
 - Symbols
 - Document conventions
 - Functions, codes and symbols

Section 2 Environmental aspects

- Sustainable development
- Disposing of the IED

Section 3 630 series overview

- Overview
- Local HMI
 - Display
 - LEDs
 - Keypad
 - Local HMI functionality
 - Protection and alarm indication
 - Parameter management
 - Front communication
 - Single-line diagram
- Web HMI
 - Command buttons
 - Authorization
 - Communication
- PCM600 tool
 - Connectivity packages
 - PCM600 and IED connectivity package version

Section 4 Using the HMI

- Using the local HMI
 - Logging on
 - Logging off
 - Turning the display backlight on
<table>
<thead>
<tr>
<th>Section</th>
<th>IED operation</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Normal operation</td>
<td>59</td>
</tr>
<tr>
<td>Section</td>
<td>Disturbance identification</td>
<td>59</td>
</tr>
<tr>
<td>Section</td>
<td>Disturbance recording triggering</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>Disturbance record analysis</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>Disturbance reports</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>IED self-supervision</td>
<td>60</td>
</tr>
<tr>
<td>Section</td>
<td>IED parametrization</td>
<td>61</td>
</tr>
</tbody>
</table>
Section 6 Operating procedures ...63
 Monitoring...63
 Indications..63
 Using auto-indication messages...63
 Monitoring alarm data...64
 Monitoring an internal IED fault...66
 Monitoring condition monitoring data...66
 Measured and calculated values..66
 Using the local HMI or Web HMI for monitoring.........................67
 Using PCM600 for monitoring...67
 Recorded data..67
 Creating disturbance recordings..68
 Monitoring disturbance recorder data..68
 Controlling and reading of disturbance recorder data..................69
 Monitoring recorded data...70
 Monitoring events..71
 Remote monitoring...71
 Monitoring the IED remotely..71
 Controlling..72
 Controlling circuit breakers and disconnectors............................72
 Resetting the IED..73
 Clearing and acknowledging via the local HMI..............................73
 Changing the IED functionality...74
 Defining the setting group..74
 Activating a setting group...74
 Browsing and editing setting group values..................................76
 Activating LEDs...78

Section 7 Troubleshooting ..81
 Fault tracing...81
 Identifying hardware errors..81
 Identifying runtime errors..81
 Identifying communication errors...81
 Checking the communication link operation...............................82
 Checking the time synchronization...82
 Running the display test...83
 Indication messages..83
 Internal faults..83
 Warnings...84
 Additional indications..84
 Correction procedures...85
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory settings restoration</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Changing and setting the password</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Identifying IED application problems</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Inspecting the wiring</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Inspecting the RTD wiring</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Section 8 Glossary</td>
<td>95</td>
</tr>
</tbody>
</table>
Section 1 Introduction

1.1 This manual

The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for monitoring, controlling and setting the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

1.2 Intended audience

This manual addresses the operator, who operates the IED on a daily basis.

The operator must be trained in and have a basic knowledge of how to operate protection equipment. The manual contains terms and expressions commonly used to describe this kind of equipment.
1.3 Product documentation

1.3.1 Product documentation set

Quick start guide
Quick installation guide
Brochure
Product guide
Operation manual
Installation manual
Engineering manual
Technical manual
Application manual
Communication protocol manual
Point list manual
Commissioning manual

Figure 1: The intended use of documents during the product life cycle

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision/date</th>
<th>Product series version</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/2009-09-15</td>
<td>1.0</td>
<td>First release</td>
</tr>
<tr>
<td>B/2011-02-23</td>
<td>1.1</td>
<td>Content updated to correspond to the product series version</td>
</tr>
<tr>
<td>C/2012-08-29</td>
<td>1.2</td>
<td>Content updated to correspond to the product series version</td>
</tr>
<tr>
<td>D/2014-11-28</td>
<td>1.3</td>
<td>Content updated to correspond to the product series version</td>
</tr>
</tbody>
</table>

1.3.3 Related documentation

1.4 Symbols and conventions

1.4.1 Symbols

The electrical warning icon indicates the presence of a hazard which could result in electrical shock.

The warning icon indicates the presence of a hazard which could result in personal injury.

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Document conventions

A particular convention may not be used in this manual.

- Abbreviations and acronyms are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push button navigation in the LHMI menu structure is presented by using the push button icons.
To navigate between the options, use ↑ and ↓.

- Menu paths are presented in bold.
- Select Main menu/Settings.
- WHMI menu names are presented in bold.
 Click Information in the WHMI menu structure.
- LHMI messages are shown in Courier font.
 To save the changes in non-volatile memory, select Yes and press ↵.
- Parameter names are shown in italics.
 The function can be enabled and disabled with the Operation setting.
- The ^ character in front of an input or output signal name in the function block symbol given for a function, indicates that the user can set an own signal name in PCM600.
- The * character after an input or output signal name in the function block symbol given for a function, indicates that the signal must be connected to another function block in the application configuration to achieve a valid application configuration.

1.4.3 Functions, codes and symbols

Table 1: Functions included in the IEDs

<table>
<thead>
<tr>
<th>Description</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, low stage</td>
<td>PHLPTOC</td>
<td>3I></td>
<td>51P-1</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage</td>
<td>PHHPTOC</td>
<td>3I>></td>
<td>51P-2</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, instantaneous stage</td>
<td>PHIPTOC</td>
<td>3I>>></td>
<td>50P/51P</td>
</tr>
<tr>
<td>Voltage dependent overcurrent protection</td>
<td>PHPVOC</td>
<td>I(U)></td>
<td>51V</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, low stage</td>
<td>DPHLPDOC</td>
<td>3I> -></td>
<td>67-1</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, high stage</td>
<td>DPHHPDOC</td>
<td>3I>> -></td>
<td>67-2</td>
</tr>
<tr>
<td>Distance protection</td>
<td>DSTPDIS</td>
<td>Z<</td>
<td>21, 21P, 21N</td>
</tr>
<tr>
<td>Automatic switch-onto-fault logic</td>
<td>CVRSOF</td>
<td>SOTF</td>
<td>SOTF</td>
</tr>
<tr>
<td>Fault locator</td>
<td>SCEFRFLO</td>
<td>FLOC</td>
<td>21FL</td>
</tr>
<tr>
<td>Autoreclosing</td>
<td>DARREC</td>
<td>O -> I</td>
<td>79</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage</td>
<td>EFLPTOC</td>
<td>I0></td>
<td>51N-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage</td>
<td>EFHPTOC</td>
<td>I0>></td>
<td>51N-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, instantaneous stage</td>
<td>EFIPTOC</td>
<td>I0>>></td>
<td>50N/51N</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Description</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional earth-fault protection, low stage</td>
<td>DEFLPDEF</td>
<td>I0> -></td>
<td>67N-1</td>
</tr>
<tr>
<td>Directional earth-fault protection, high stage</td>
<td>DEFH4PDEF</td>
<td>I0>> -></td>
<td>67N-2</td>
</tr>
<tr>
<td>Harmonics based earth-fault protection</td>
<td>HAEFPPTOC</td>
<td>Io>HA</td>
<td>51NHA</td>
</tr>
<tr>
<td>Transient/intermittent earth-fault protection</td>
<td>INTRPTEF</td>
<td>I0> -> IEF</td>
<td>67NIEF</td>
</tr>
<tr>
<td>Admittance-based earth-fault protection</td>
<td>EFPADM</td>
<td>Yo> -></td>
<td>21YN</td>
</tr>
<tr>
<td>Multi-frequency admittance-based earth-fault protection</td>
<td>MFADPSDE</td>
<td>I0> -> Y</td>
<td>67YN</td>
</tr>
<tr>
<td>Wattmetric earth-fault protection</td>
<td>WPWDE</td>
<td>Po> -></td>
<td>32N</td>
</tr>
<tr>
<td>Stabilised restricted earth-fault protection</td>
<td>LREFPNDF</td>
<td>dI0Lo></td>
<td>87NL</td>
</tr>
<tr>
<td>Third harmonic based stator earth fault protection</td>
<td>H3EFPSEF</td>
<td>dUo(3H)>/Uo(3H)<</td>
<td>27/59THD</td>
</tr>
<tr>
<td>High-impedance based restricted earth-fault protection</td>
<td>HREFPDIF</td>
<td>dI0Hi></td>
<td>87NH</td>
</tr>
<tr>
<td>Rotor earth-fault protection</td>
<td>MREFPTOC</td>
<td>Io>R</td>
<td>64R</td>
</tr>
<tr>
<td>Phase discontinuity protection</td>
<td>PDNSPTOC</td>
<td>I2/I1></td>
<td>46PD</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection</td>
<td>NSPTOC</td>
<td>I2></td>
<td>46</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection for machines</td>
<td>MNSPTOC</td>
<td>I2>G/M</td>
<td>46G/46M</td>
</tr>
<tr>
<td>Phase-reversal protection</td>
<td>PREVPTOC</td>
<td>I2>></td>
<td>46R</td>
</tr>
<tr>
<td>Three-phase thermal overload protection for feeder</td>
<td>T1PTTR</td>
<td>3Ith>F</td>
<td>49F</td>
</tr>
<tr>
<td>Three-phase thermal overload protection, two time constants</td>
<td>T2PTTR</td>
<td>3Ith>T/G</td>
<td>49T/G</td>
</tr>
<tr>
<td>Three-phase thermal overload protection for motors</td>
<td>MPTTR</td>
<td>3Ith>M</td>
<td>49M</td>
</tr>
<tr>
<td>Motor startup supervision</td>
<td>STTPMSU</td>
<td>Is2t n<</td>
<td>48,66,14,51LR</td>
</tr>
<tr>
<td>Motor load jam protection</td>
<td>JAMPTOC</td>
<td>Ist></td>
<td>51LR</td>
</tr>
<tr>
<td>Emergency start</td>
<td>ESMGAPC</td>
<td>ESTART</td>
<td>ESTART</td>
</tr>
<tr>
<td>Loss of load supervision</td>
<td>LOFLPTUC</td>
<td>3I<</td>
<td>37</td>
</tr>
<tr>
<td>Three-phase current inrush detection</td>
<td>INRPHAR</td>
<td>3I2f></td>
<td>68</td>
</tr>
<tr>
<td>Transformer differential protection for two-winding transformers</td>
<td>TR2PTDF</td>
<td>3dI>T</td>
<td>87T</td>
</tr>
<tr>
<td>High-impedance or flux-balance based differential protection for machines</td>
<td>MHZPDIF</td>
<td>3dIHi>G/M</td>
<td>87GH/87MH</td>
</tr>
<tr>
<td>Stabilized differential protection for machines</td>
<td>MPDIF</td>
<td>3dI>G/M</td>
<td>87G/87M</td>
</tr>
<tr>
<td>Three-phase overvoltage protection</td>
<td>PHPTOVC</td>
<td>3U></td>
<td>59</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Description</th>
<th>IEC 61850</th>
<th>IEC 80617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-phase undervoltage protection</td>
<td>PHPTUV</td>
<td>3U<</td>
<td>27</td>
</tr>
<tr>
<td>Positive-sequence overvoltage protection</td>
<td>PSPTOV</td>
<td>U1></td>
<td>470+</td>
</tr>
<tr>
<td>Positive-sequence undervoltage protection</td>
<td>PSPTUV</td>
<td>U1<</td>
<td>47U+</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection</td>
<td>NSPTOV</td>
<td>U2></td>
<td>470-</td>
</tr>
<tr>
<td>Residual overvoltage protection</td>
<td>ROVPTOV</td>
<td>U0></td>
<td>59G</td>
</tr>
<tr>
<td>Directional reactive power undervoltage protection</td>
<td>DQPTUV</td>
<td>Q-->3U<</td>
<td>32Q,27</td>
</tr>
<tr>
<td>Reverse power/directional overpower protection</td>
<td>DOPPDPDR</td>
<td>P></td>
<td>32R/32O</td>
</tr>
<tr>
<td>Underpower protection</td>
<td>DUPPDPDR</td>
<td>P<</td>
<td>32U</td>
</tr>
<tr>
<td>Frequency gradient protection</td>
<td>DAPFRC</td>
<td>df/dt></td>
<td>81R</td>
</tr>
<tr>
<td>Overfrequency protection</td>
<td>DAPTOF</td>
<td>f></td>
<td>81O</td>
</tr>
<tr>
<td>Underfrequency protection</td>
<td>DAPTUF</td>
<td>f<</td>
<td>81U</td>
</tr>
<tr>
<td>Load shedding</td>
<td>LSHDPFRQ</td>
<td>UFLS/R</td>
<td>81LSH</td>
</tr>
<tr>
<td>Low voltage ride through protection function</td>
<td>LVRTPTUV</td>
<td>U<RT</td>
<td>27RT</td>
</tr>
<tr>
<td>Overexcitation protection</td>
<td>OEPVPH</td>
<td>U/f></td>
<td>24</td>
</tr>
<tr>
<td>Voltage vector shift protection</td>
<td>VVSPPH</td>
<td>VS</td>
<td>78V</td>
</tr>
<tr>
<td>Three-phase underexcitation protection</td>
<td>UEXPDIS</td>
<td>X<</td>
<td>40</td>
</tr>
<tr>
<td>Three-phase underimpedance protection</td>
<td>UZPDIS</td>
<td>Z< GT</td>
<td>21GT</td>
</tr>
<tr>
<td>Circuit breaker failure protection</td>
<td>CCBRBRF</td>
<td>3I/0BF</td>
<td>51BF/51NBF</td>
</tr>
<tr>
<td>Tripping logic</td>
<td>TRPPTRC</td>
<td>I -> O</td>
<td>94</td>
</tr>
<tr>
<td>Multi-purpose analog protection</td>
<td>MAPGAPC</td>
<td>MAP</td>
<td>MAP</td>
</tr>
</tbody>
</table>

Protection-related functions

<table>
<thead>
<tr>
<th>Local acceleration logic</th>
<th>DSTPLAL</th>
<th>CLA</th>
<th>CLA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication logic for residual overcurrent</td>
<td>RESCPSCH</td>
<td>CLN</td>
<td>85N</td>
</tr>
<tr>
<td>Scheme communication logic</td>
<td>DSOCPSCH</td>
<td>CL</td>
<td>85</td>
</tr>
<tr>
<td>Current reversal and WEI logic</td>
<td>CRWPSCH</td>
<td>CLCRW</td>
<td>85CRW</td>
</tr>
<tr>
<td>Current reversal and WEI logic for residual overcurrent</td>
<td>RCRWPSCH</td>
<td>CLCRWN</td>
<td>85NCRW</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Bay control</th>
<th>QCCBAY</th>
<th>CBAY</th>
<th>CBAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlocking interface</td>
<td>SCIO</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Circuit breaker/disconnector control</td>
<td>GNRLCSWI</td>
<td>I <> O CB/DC</td>
<td>I <> O CB/DC</td>
</tr>
<tr>
<td>Circuit breaker</td>
<td>DAXCBR</td>
<td>I <> O CB</td>
<td>I <> O CB</td>
</tr>
<tr>
<td>Disconnector</td>
<td>DAXSWI</td>
<td>I <> O DC</td>
<td>I <> O DC</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Description</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local/remote switch interface</td>
<td>LOCREM</td>
<td>R/L</td>
<td>R/L</td>
</tr>
<tr>
<td>Synchrocheck</td>
<td>SYNCRSYN</td>
<td>SYNC</td>
<td>25</td>
</tr>
<tr>
<td>Tap changer control with voltage regulator</td>
<td>OLATCC</td>
<td>COLTC</td>
<td>90V</td>
</tr>
<tr>
<td>Generic process I/O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single point control (8 signals)</td>
<td>SPC8GGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Double point indication</td>
<td>DPGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Single point indication</td>
<td>SPGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Generic measured value</td>
<td>MVGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Logic Rotating Switch for function selection and LHMI presentation</td>
<td>SLGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selector mini switch</td>
<td>VSGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pulse counter for energy metering</td>
<td>PCGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Event counter</td>
<td>CNTGGIO</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supervision and monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runtime counter for machines and devices</td>
<td>MDSOPT</td>
<td>OPTS</td>
<td>OPTM</td>
</tr>
<tr>
<td>Circuit breaker condition monitoring</td>
<td>SSCBR</td>
<td>CBCM</td>
<td>CBCM</td>
</tr>
<tr>
<td>Fuse failure supervision</td>
<td>SEQRFUF</td>
<td>FUSEF</td>
<td>60</td>
</tr>
<tr>
<td>Current circuit supervision</td>
<td>CCRDIF</td>
<td>MCS 3I</td>
<td>MCS 3I</td>
</tr>
<tr>
<td>Trip-circuit supervision</td>
<td>TCSSCBR</td>
<td>TCS</td>
<td>TCM</td>
</tr>
<tr>
<td>Station battery supervision</td>
<td>SPVNZBAT</td>
<td>U<></td>
<td>U<></td>
</tr>
<tr>
<td>Energy monitoring</td>
<td>EPDMMTR</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Measured value limit supervision</td>
<td>MVEXP</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hot-spot and insulation ageing rate monitoring for transformers</td>
<td>HSARSPTR</td>
<td>3Ihp>T</td>
<td>26/49HS</td>
</tr>
<tr>
<td>Tap position indication</td>
<td>TPOSSLTC</td>
<td>TPOSM</td>
<td>84M</td>
</tr>
<tr>
<td>Power quality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage variation</td>
<td>PHQVVR</td>
<td>PQMU</td>
<td>PQMV</td>
</tr>
<tr>
<td>Voltage unbalance</td>
<td>VSQVUB</td>
<td>POMUBU</td>
<td>POMUBV</td>
</tr>
<tr>
<td>Current harmonics</td>
<td>CMHAI</td>
<td>PQM3I</td>
<td>PQM3I</td>
</tr>
<tr>
<td>Voltage harmonics (phase-to-phase)</td>
<td>VPPMHAI</td>
<td>PQM3Upp</td>
<td>PQM3Vpp</td>
</tr>
<tr>
<td>Voltage harmonics (phase-to-earth)</td>
<td>VPHMHAI</td>
<td>PQM3Upe</td>
<td>PQM3Vpg</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase current measurement</td>
<td>CMMXU</td>
<td>3I</td>
<td>3I</td>
</tr>
<tr>
<td>Three-phase voltage measurement (phase-to-earth)</td>
<td>VPHMMXU</td>
<td>3Upe</td>
<td>3Upe</td>
</tr>
<tr>
<td>Three-phase voltage measurement (phase-to-phase)</td>
<td>VPPMMXU</td>
<td>3Upp</td>
<td>3Upp</td>
</tr>
<tr>
<td>Residual current measurement</td>
<td>RESCMXXU</td>
<td>I0</td>
<td>I0</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Description</th>
<th>IEC 61850</th>
<th>IEC 80617</th>
<th>ANSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual voltage measurement</td>
<td>RESVMMXU</td>
<td>U0</td>
<td>U0</td>
</tr>
<tr>
<td>Power monitoring with P, Q, S, power factor, frequency</td>
<td>PWRMMXU</td>
<td>PQf</td>
<td>PQf</td>
</tr>
<tr>
<td>Sequence current measurement</td>
<td>CSMSQI</td>
<td>I1, I2</td>
<td>I1, I2</td>
</tr>
<tr>
<td>Sequence voltage measurement</td>
<td>VSMSQI</td>
<td>U1, U2</td>
<td>V1, V2</td>
</tr>
<tr>
<td>Analog channels 1-10 (samples)</td>
<td>A1RADR</td>
<td>ACH1</td>
<td>ACH1</td>
</tr>
<tr>
<td>Analog channels 11-20 (samples)</td>
<td>A2RADR</td>
<td>ACH2</td>
<td>ACH2</td>
</tr>
<tr>
<td>Analog channels 21-30 (calc. val.)</td>
<td>A3RADR</td>
<td>ACH3</td>
<td>ACH3</td>
</tr>
<tr>
<td>Analog channels 31-40 (calc. val.)</td>
<td>A4RADR</td>
<td>ACH4</td>
<td>ACH4</td>
</tr>
<tr>
<td>Binary channels 1-16</td>
<td>B1RBDR</td>
<td>BCH1</td>
<td>BCH1</td>
</tr>
<tr>
<td>Binary channels 17-32</td>
<td>B2RBDR</td>
<td>BCH2</td>
<td>BCH2</td>
</tr>
<tr>
<td>Binary channels 33-48</td>
<td>B3RBDR</td>
<td>BCH3</td>
<td>BCH3</td>
</tr>
<tr>
<td>Binary channels 49-64</td>
<td>B4RBDR</td>
<td>BCH4</td>
<td>BCH4</td>
</tr>
<tr>
<td>Station communication (GOOSE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary receive</td>
<td>GOOSEBINRCV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Double point receive</td>
<td>GOOSEDPRCV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interlock receive</td>
<td>GOOSEINTLKRCV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Integer receive</td>
<td>GOOSEINTRCV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Measured value receive</td>
<td>GOOSEMVRCV</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Single point receive</td>
<td>GOOSESPPRCV</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Section 2 Environmental aspects

2.1 Sustainable development

Sustainability has been taken into account from the beginning of the product design including the pro-environmental manufacturing process, long life time, operation reliability and disposing of the IED.

The choice of materials and the suppliers have been made according to the EU RoHS directive (2002/95/EC). This directive limits the use of hazardous substances which are the following:

Table 2: Maximum concentration values by weight per homogeneous material

<table>
<thead>
<tr>
<th>Substance</th>
<th>Proposed maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead - Pb</td>
<td>0.1%</td>
</tr>
<tr>
<td>Mercury - Hg</td>
<td>0.1%</td>
</tr>
<tr>
<td>Cadmium - Cd</td>
<td>0.01%</td>
</tr>
<tr>
<td>Hexavalent Chromium Cr (VI)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Polybrominated biphenyls - PBB</td>
<td>0.1%</td>
</tr>
<tr>
<td>Polybrominated diphenyl ethers - PBDE</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

Operational reliability and long life time have been assured with extensive testing during the design and manufacturing processes. Moreover, long life time is supported by maintenance and repair services as well as by the availability of spare parts.

Design and manufacturing have been done under a certified environmental system. The effectiveness of the environmental system is constantly evaluated by an external auditing body. We follow environmental rules and regulations systematically to evaluate their effect on our products and processes.

2.2 Disposing of the IED

Definitions and regulations of hazardous materials are country-specific and change when the knowledge of materials increases. The materials used in this product are typical for electric and electronic devices.

All parts used in this product are recyclable. When disposing of an IED or its parts contact a local waste handler who is authorized and specialized in disposing
electronic waste. These handlers can sort the material by using dedicated sorting processes and dispose of the product according to the local requirements.

Table 3: Materials of the IED parts

<table>
<thead>
<tr>
<th>IED</th>
<th>Parts</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Metallic plates, parts and screws</td>
<td>Steel</td>
</tr>
<tr>
<td></td>
<td>Plastic parts</td>
<td>PC(^1), LCP(^2)</td>
</tr>
<tr>
<td></td>
<td>LHMI display module</td>
<td>Various</td>
</tr>
<tr>
<td>Package</td>
<td>Box</td>
<td>Cardboard</td>
</tr>
<tr>
<td>Attached material</td>
<td>Manuals</td>
<td>Paper</td>
</tr>
</tbody>
</table>

1) Polycarbonate
2) Liquid crystal polymer
Section 3 630 series overview

3.1 Overview

630 series consists of IEDs for protection, control, measurement and supervision of utility and industrial distribution substations, medium and large asynchronous motors in industrial power systems, and transformers in utility and industry power distribution networks.

630 series is a part of ABB’s Relion® product family. The 630 protection and control product series is characterized by functional scalability and flexible configurability. It also features necessary control functions for bay control in different applications.

The supported communication protocols including IEC 61850 offer seamless connectivity to various station automation and SCADA systems.

3.2 Local HMI

The LHMI is used for setting, monitoring and controlling the IED. The LHMI comprises the display, buttons, LED indicators and communication port.
3.2.1 Display

The LHMI includes a graphical monochrome display with a resolution of 320 x 240 pixels. The character size can vary. The amount of characters and rows fitting the view depends on the character size and the view that is shown.

The display view is divided into four basic areas.
The path shows the current location in the menu structure. If the path is too long to be shown, it is truncated from the beginning, and the truncation is indicated with three dots.

The content area shows the menu content.

The status area shows the current IED time, the user that is currently logged in and the object identification string which is settable via the LHMI or with PCM600.

If text, pictures or other items do not fit in the display, a vertical scroll bar appears on the right. The text in content area is truncated from the beginning if it does not fit in the display horizontally. Truncation is indicated with three dots.
The function button panel shows on request what actions are possible with the function buttons. Each function button has a LED indication that can be used as a feedback signal for the function button control action. The LED is connected to the required signal with PCM600.

Figure 4: **Truncated path**

The alarm LED panel shows on request the alarm text labels for the alarm LEDs.

Figure 5: **Function button panel**

The alarm LED panel shows on request the alarm text labels for the alarm LEDs.
Figure 6: Alarm LED panel

The function button and alarm LED panels are not visible at the same time. Each panel is shown by pressing one of the function buttons or the Multipage button. Pressing the ESC button clears the panel from the display. Both the panels have dynamic width that depends on the label string length that the panel contains.

3.2.2 LEDs

The LHMI includes three protection status LEDs above the display: Ready, Start and Trip.

There are 15 programmable alarm LEDs on the front of the LHMI. Each LED can indicate three states with the colors: green, yellow and red. The alarm texts related to each three-color LED are divided into three pages. The pages can be browsed with the Multipage button. Altogether, the 15 physical three-color LEDs can indicate 45 different alarms. The LEDs can be configured with PCM600 and the operation mode can be selected with the LHMI, WHMI or PCM600.

3.2.3 Keypad

The LHMI keypad contains push-buttons which are used to navigate in different views or menus. With the push-buttons you can control objects in the single-line diagram, for example, circuit breakers or disconnectors. The push-buttons are also used to acknowledge alarms, reset indications, provide help and switch between local and remote control mode.

The keypad also contains programmable push-buttons that can be configured either as menu shortcut or control buttons.
Figure 7: LHMI keypad with object control, navigation and command push-buttons and RJ-45 communication port

1...5 Function button
6 Close
7 Open
8 Escape
9 Left
10 Down
11 Up
12 Right
13 Key
14 Enter
15 Remote/Local
16 Uplink LED
17 Not in use
18 Multipage
19 Menu
20 Clear
21 Help
22 Communication port
Object control

If the control position of the IED is set to local with the R/L button, the IED can be controlled using the object control buttons.

Object to be controlled is selected from the single line diagram.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close</td>
<td>Closing the object.</td>
</tr>
<tr>
<td>Open</td>
<td>Opening the object.</td>
</tr>
</tbody>
</table>

Navigation

The arrow buttons are used for navigation. To scroll information, press the arrow button several times or simply keep it pressed down.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| ESC | • Leaving setting mode without saving the values.
 • Cancelling certain actions.
 • Adjusting the display contrast in combination with or .
 • Changing the language in combination with or .
 • Running the display test in combination with .
 • Deleting a character in combination with when editing a string.
 • Inserting a space in combination with when editing a string.
| Enter | • Entering parameter setting mode.
 • Confirming a new value of a setting parameter.
 • Confirming selection in dialogs and alarm panel.
| Up | • Moving up and down in menus.
 • Selecting objects in the SLD.
 • Moving selection in dialogs and alarm panel.
 • Scrolling active digits of a parameter when entering a new setting value.
| Down | • Moving left and right in menus.
 • Selecting pages in the SLD.
 • Changing the active digit of a parameter when entering a new setting value.
| Left | • Activating the authorization procedure, when the user is not logged in.
 • Logging out, when the user is currently logged in.
| Right | |
| Key | |
Commands

Table 6: Command push-buttons

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Menu | • Moving directly to Main menu, if currently in any other menu or view.
 | • Moving to the default view, if currently in Main menu. |
| R/L | Changing the control position (remote or local) of the device.
 | • When the R LED is lit, remote control is enabled and local control disabled.
 | • When the L LED is lit, local control is enabled and remote control disabled.
 | • When none of the LEDs are lit, both control positions are disabled. |
| Clear | Activating the Clear/Reset view. |
| Help | Showing the help menu. |
| Multipage | Opening alarm panel and selecting alarm page from the view. |

Function buttons

Table 7: Function buttons

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function button</td>
<td>Executing the defined function: OFF, menu short cut or binary control.</td>
</tr>
</tbody>
</table>

3.2.4 Local HMI functionality

3.2.4.1 Protection and alarm indication

Protection indicators

The protection indicator LEDs are Ready, Start and Trip.

The start and trip LEDs are configured via the disturbance recorder. See the technical manual for more information on how to configure and set the binary signals of the disturbance recorder.
Table 8: Ready LED

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Auxiliary supply voltage is disconnected</td>
</tr>
<tr>
<td>On</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Flashing</td>
<td>Internal fault has occurred</td>
</tr>
</tbody>
</table>

Table 9: Start LED

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>On</td>
<td>A protection function has started and an indication message is displayed.</td>
</tr>
<tr>
<td></td>
<td>• The start indication is latching and must be reset via communication</td>
</tr>
<tr>
<td></td>
<td>or by pressing [button].</td>
</tr>
<tr>
<td>Flashing</td>
<td>The IED is in test mode and protection functions are blocked.</td>
</tr>
<tr>
<td></td>
<td>• The indication disappears when the IED is no longer in test mode and</td>
</tr>
<tr>
<td></td>
<td>blocking is removed.</td>
</tr>
</tbody>
</table>

Table 10: Trip LED

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation.</td>
</tr>
<tr>
<td>On</td>
<td>A protection function has tripped and an indication message is displayed.</td>
</tr>
<tr>
<td></td>
<td>• The trip indication is latching and must be reset via communication</td>
</tr>
<tr>
<td></td>
<td>or by pressing [button].</td>
</tr>
</tbody>
</table>

Alarm indicators

The 15 programmable three-color LEDs are used for alarm indication. The colors of the LEDs are defined by the configuration and they are independent of the LEDs' states.
Table 11: Alarm indications

<table>
<thead>
<tr>
<th>LED state</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>Normal operation. All activation signals are off.</td>
</tr>
</tbody>
</table>
| On | - Follow-S sequence: The activation signal is on.
 | - LatchedColl-S sequence: The activation signal is on, or it is off but the indication has not been acknowledged.
 | - LatchedAck-F-S sequence: The indication has been acknowledged, but the activation signal is still on.
 | - LatchedAck-S-F sequence: The activation signal is on, or it is off but the indication has not been acknowledged.
 | - LatchedReset-S sequence: The activation signal is on, or it is off but the indication has not been acknowledged. |
| Flashing | - Follow-F sequence: The activation signal is on.
 | - LatchedAck-F-S sequence: The activation signal is on, or it is off but the indication has not been acknowledged.
 | - LatchedAck-S-F sequence: The indication has been acknowledged, but the activation signal is still on. |

3.2.4.2 Parameter management

The LHMI is used to access the IED parameters. Three types of parameters can be read and written.

- Numerical values
- String values
- Enumerated values

Numerical values are presented either in integer or in decimal format with minimum and maximum values. Character strings can be edited character by character. Enumerated values have a predefined set of selectable values.

3.2.4.3 Front communication

The RJ-45 port in the LHMI enables front communication.

- The green uplink LED on the left is lit when the cable is successfully connected to the port.
When a computer is connected to the IED front port, the IED’s DHCP server for the front interface assigns an IP address to the computer. The default IP address for the front port is 192.168.0.254.

If the IED is ordered without an LHMI, the LAN1 port has to be used for configuration and setting purposes. The default IP address for the LAN1 port is 192.168.2.10. DHCP is not available from the LAN1 port.

3.2.4.4 Single-line diagram

Single-line diagram is used for bay control operations. It shows a graphical presentation of the bay which is configured with PCM600.
3.3 Web HMI

The WHMI enables the user to access the IED via a web browser. The supported Web browser versions are Internet Explorer 8.0, 9.0 and 10.0.

WHMI is disabled by default. To enable the WHMI, select **Main menu/Configuration/HMI/Web HMI/Operation** via the LHMI.

WHMI offers several functions.

- Alarm indications and event lists
- System supervision
- Parameter settings
- Measurement display
- Disturbance records
- Phasor diagram

Viewing phasor diagram with WHMI requires downloading a SVG Viewer plugin.

The menu tree structure on the WHMI is almost identical to the one on the LHMI.
The WHMI can be accessed locally and remotely.

- Locally by connecting the user's computer to the IED via the front communication port.
- Remotely over LAN/WAN.

3.3.1 Command buttons

Command buttons can be used to edit parameters and control information via the WHMI.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabling parameter editing.</td>
</tr>
<tr>
<td></td>
<td>Disabling parameter editing.</td>
</tr>
<tr>
<td></td>
<td>Writing parameters to the IED.</td>
</tr>
<tr>
<td></td>
<td>Refreshing parameter values.</td>
</tr>
<tr>
<td></td>
<td>Committing changes to IED’s non-volatile flash memory.</td>
</tr>
<tr>
<td></td>
<td>Rejecting changes.</td>
</tr>
</tbody>
</table>

Table continues on next page
3.4 Authorization

At delivery, logging on to the IED is not required to be able to use the LHMI. The IED user has full access to the IED as a SuperUser until users and passwords are created with PCM600 and written into the IED.

The available user categories are predefined for LHMI and WHMI, each with different rights.

<table>
<thead>
<tr>
<th>User category</th>
<th>User rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>SystemOperator</td>
<td>Control from LHMI, no bypass</td>
</tr>
<tr>
<td>ProtectionEngineer</td>
<td>All settings</td>
</tr>
<tr>
<td>DesignEngineer</td>
<td>Application configuration</td>
</tr>
<tr>
<td>UserAdministrator</td>
<td>User and password administration</td>
</tr>
</tbody>
</table>

All changes in user management settings cause the IED to reboot.

3.5 Communication

The IED supports communication protocols IEC 61850-8-1, IEC 60870-5-103 and DNP3 over TCP/IP.

All operational information and controls are available through these protocols. However, some communication functionality, for example, horizontal...
Communication (GOOSE) between the IEDs, is only enabled by the IEC 61850-8-1 communication protocol.

Disturbance files are accessed using the IEC 61850 or IEC 60870-5-103 protocols. Disturbance files are also available to any Ethernet based application in the standard COMTRADE format. The IED can send binary signals to other IEDs (so called horizontal communication) using the IEC 61850-8-1 GOOSE (Generic Object Oriented Substation Event) profile. Binary GOOSE messaging can, for example, be employed for protection and interlocking-based protection schemes. The IED meets the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard. Further, the IED supports the sending and receiving of analog values using GOOSE messaging. Analog GOOSE messaging enables fast transfer of analog measurement values over the station bus, thus facilitating for example sharing of RTD input values, such as surrounding temperature values, to other IED applications. The IED interoperates with other IEC 61850 compliant IEDs, tools and systems and simultaneously reports events to five different clients on the IEC 61850 station bus. For a system using DNP3 over TCP/IP, events can be sent to four different masters. For systems using IEC 60870-5-103 IED can be connected to one master in a station bus with star-topology.

All communication connectors, except for the front port connector, are placed on integrated communication modules. The IED is connected to Ethernet-based communication systems via the RJ-45 connector (10/100BASE-TX) or the fibre-optic multimode LC connector (100BASE-FX).

IEC 60870-5-103 is available from optical serial port where it is possible to use serial glass fibre (ST connector) or serial plastic fibre (snap-in connector).

The IED supports the following time synchronization methods with a timestamping resolution of 1 ms.

Ethernet communication based

- SNTP (simple network time protocol)
- DNP3

With special time synchronization wiring

- IRIG-B

IEC 60870-5-103 serial communication has a time-stamping resolution of 10 ms.

3.6 PCM600 tool

Protection and Control IED Manager PCM600 offers all the necessary functionality to work throughout all stages of the IED life cycle.
The whole substation can be controlled and different tasks and functions can be performed with the individual tool components. PCM600 can operate with many different topologies, depending on the customer needs.

For more information, see PCM600 documentation.

3.6.1 Connectivity packages

A connectivity package is a software component that consists of executable code and data which enables system tools to communicate with an IED. Connectivity packages are used to create configuration structures in PCM600. The latest PCM600 and connectivity packages are backward compatible with older IED versions.

A connectivity package includes all of the data which is used to describe the IED, for example, it contains a list of the existing parameters, data format used, units, setting range, access rights and visibility of the parameter. In addition, it contains code which allows software packages that consume the connectivity package to properly communicate with the IED. It also allows for localization of text even when its read from the IED in a standard format such as COMTRADE.

Update Manager is a tool that helps in defining the right connectivity package versions for different system products and tools. Update Manager is included with products that use connectivity packages.

3.6.2 PCM600 and IED connectivity package version

- Protection and Control IED Manager PCM600 Ver. 2.5 or later
- ABB REF630 Connectivity Package Ver. 1.3 or later
- ABB REG630 Connectivity Package Ver. 1.3 or later
- ABB REM630 Connectivity Package Ver. 1.3 or later
- ABB RET630 Connectivity Package Ver. 1.3 or later

Download connectivity packages from the ABB Website http://www.abb.com/substationautomation or directly with the Update Manager in PCM600.
Section 4 Using the HMI

4.1 Using the local HMI

At delivery, logging on is not required and the user has full access until users and passwords are created with PCM600 and written into the IED.

Commands, changing parameter values and resetting indications, for example, are actions requiring password when the password protection is activated. Reading information on the LHMI is always allowed without password.

HMI operations are possible only for authorized users.

Do not switch off the auxiliary power supply to the IED before changes, for example, setting parameter or local/remote control state changes are saved.

A mechanism for limiting the number of writings per time period is included in the IED to prevent the flash memory from wearing out due to too many writings caused by the application configuration. As a consequence, saving application function states may take up to an hour. If the auxiliary power is interrupted before the states are saved, that change is lost. Settings and configuration parameters are saved without delay.

4.1.1 Logging on

1. Press \[\text{Log on}\] to activate the logon procedure. The logon is also activated when attempting a password-protected operation.
2. Select the user name from the list.
3. Enter the password when prompted digit by digit and select OK.

Figure 11: Selecting the user name
• Activate the digit to be entered with ← and →.
• Enter the character with ↑ and ↓.

Upper and lower case letters are also found by scrolling with the vertical arrows.

![Image](image_url)

Figure 12: Entering the password

Passwords are case sensitive.

![Image](image_url)

Figure 13: Error message indicating an incorrect password

The logon dialog will open if the attempted operation requires another level of user rights.

![Image](image_url)

Figure 14: No user defined

Once a user is created and written into the IED, logon is possible with the password assigned in the tool. If there is no user created, an attempt to log on causes the display to show a corresponding message.
4.1.2 Logging off

The user is automatically logged off after the display timeout. The IED returns to a state where only reading is enabled. Manual logoff is also possible.

1. Press ➔.
2. To confirm logoff, select Yes and press ➔.

![Log off](image)

Figure 15: Logging off

- To cancel logoff, press ➔.

4.1.3 Turning the display backlight on

The display backlight is normally off. It turns on at power up.

- To turn on the backlight manually, press any LHMI push button. The backlight turns on and the panel is ready for further operations.

If the panel has not been used for a predefined timeout period, the backlight is switched off. The user is logged out from the current user level after the display backlight has turned off. The factory default for display timeout is 60 minutes.

The display returns to the default view and all unconfirmed operations, for example parameter editing and breaker selection are cancelled.

💡 Change the backlight timeout period in **Main menu/Configuration/HMI/LHMI/DisplayTimeout**.

4.1.4 Selecting local or remote use

The control position of the IED can be changed with the R/L button. In local position primary equipment, such as circuit breakers or disconnectors, can be controlled via the LHMI. In remote position, control operations are possible only from a higher level, that is from a control center.

- Press ➔.
 - When the L LED is lit, local control is enabled and remote control disabled.
 - When the R LED is lit, remote control is enabled and local control disabled.
 - When neither of the LEDs is lit, both control positions are disabled.
The control position cannot be simultaneously local and remote but it can be disabled when neither of the positions is active.

To control the IED, log in with the appropriate user rights.

4.1.5 Identifying the device

The IED information includes detailed information about the device, such as revision and serial number.

1. Select **Main menu/Information/Product identifiers**.
2. Select a submenu with ↑ and ↓.

<table>
<thead>
<tr>
<th>/Main menu/Information</th>
<th>Installed HW</th>
<th>Product identifiers</th>
<th>Software options</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-05-07 22:39:05</td>
<td>Guest Feeder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 16: Selecting a submenu

3. Enter the submenu with →.
4. Browse the information with ↑ and ↓.
4.1.6 Adjusting the display contrast

Adjust the display contrast anywhere in the menu structure to obtain optimal readability.

- To increase the contrast, press simultaneously Esc and ↑.
- To decrease the contrast, press simultaneously Esc and ↓.

To store a selected contrast, change the *ContrastLevel* parameter via Main menu/Configuration/HMI/LHMI.

4.1.7 Changing the local HMI language

1. Select Main menu/Language and press ←.
2. Change the language using ↑ or ↓.
3. Press → to confirm the selection.
4. Commit the changes.
4.1.8 Navigating in the menu

Navigate the menus and change the display views on the screen with the keypad.

- To move to the Main menu or default view, press \[1\].
- To move up or down in a menu, press \[\uparrow\] or \[\downarrow\].
- To move downwards in the menu tree, press \[\rightarrow\].
- To move upwards in the menu tree, press \[\leftarrow\].
- To enter setting mode, press \[\rightarrow\].
- To leave setting mode without saving, press \[esc\].

4.1.8.1 Menu structure

The Main menu contains main groups which are divided further into more detailed submenus.

- Control
- Events
- Measurements
- Disturbance records
- Settings
- Configuration
- Monitoring
- Test
- Information
- Clear
- Language
4.1.8.2 Scrolling the display

If a menu contains more rows than the display can show at a time, a scroll bar is displayed on the right.

![Figure 19: Scroll bar on the right](image)

- To scroll the view upwards, press ▲.
- To scroll the view downwards, press ▼.
- To jump from the last row to the first row, press ▲ again.
 - Press ▼ to jump from the first row to the last row.

4.1.8.3 Changing the default view

The default view of the display is **Main menu** unless set otherwise.

1. Select **Main menu/Configuration/HMI/LHMI/DefaultScreen** and press .
2. Change the default view with ▲ or ▼.
3. Press ▼ to confirm the selection.

4.1.9 Using function buttons

The function buttons can be configured either as menu shortcuts or control buttons. The buttons are functional only when the function button panel is visible.

1. Press any function button to open the function button panel.
 - On the first press of a button, the panel opens but no other action is taken.
2. Press the wanted function button.
 - Press the wanted function button to jump to a certain menu item. The menu opens immediately upon pressing the button.
 - Press the wanted function button for at least 0.5 s to initiate a control signal. The action is taken once. To repeat the action, press the button again. If the button is pressed less that 0.5 s, no action is taken.

3. Press \(\text{func} \) to close the function button panel. The panel is also closed after pressing a function button configured for a menu shortcut.

The function buttons are configured with PCM600.

4.1.10 Using the single-line diagram

The single-line diagram is created with PCM600.

1. Select \textbf{Main menu}/\textbf{Control}.
 The single-line diagram view is displayed.
2. Make sure that the R/L button is in local position.
3. Select an object with \[\text{□} \] or \[\text{□} \].
 Selection of an object is indicated with a square border that moves when \[\text{□} \] and \[\text{□} \] are used.
 Switch objects can have additional icons that present the switch object states.
 • \[\text{□} \] = Switch object is in substituted state.
 • \[\text{□} \] = Switch object is interlocked.
4. Press \[\text{□} \] to open or \[\text{□} \] to close the object.
5. Confirm the control operation in the dialog that opens.
6. To move between the single-line diagram pages, press \[\text{□} \] or \[\text{□} \].

Figure 21: Example of a single-line diagram

Select the single-line diagram for the default view in Main menu/Configuration/HMI/LHMI/DefaultScreen.

4.1.11 Browsing setting values

1. Select Main menu/Settings/Settings and press \[\text{□} \].
2. Press \[\text{□} \] and then \[\text{□} \] to activate the setting group number selection.

The IED contains only one setting group by default. The number of setting groups can be selected from 1 to 4.
3. Press ↑ or ↓ to select the setting group number.
4. Press ← to confirm the setting group selection and ↓ to return to the Edit setting group dialog.
5. Press ← to select Yes and to view the setting group values.
 • Press ← or → to select No and ← to exit.

6. To browse the settings, scroll the list with ↑ and ↓ and to select a setting press ←. To move back to the list, press ←.

The content of the list depends on the pre-configuration or on the functions configured with PCM600.

4.1.12 Editing values

• To edit values, log in with the appropriate user rights.
 If the user rights are not sufficient for editing values, the log on dialog opens.
Parallel editing is not possible. For example, if a value is edited via WHMI or PCM600, the same value cannot be edited via LHMI at the same time.

4.1.12.1 Editing numerical values

1. Select **Main menu/Settings** and then a setting.

 The # character on the right indicates that the parameter belongs to a setting group.

 The last digit of the value is active.
 - When the symbol in front of the value is ↑, the active value can only be increased.
 - When the symbol is ↓, the active value can only be decreased.
 - When the symbol in front of the value is ↕, the active value can either be increased or decreased.

 ![Image of parameter settings](image)

 Figure 25: Last digit is active and it can be increased or decreased

2. Press [acter] to increase or [acter] to decrease the value of an active digit.

 One press increases or decreases the value by a certain step. For integer values, the change is 1, 10, 100 or 1000 (...) depending on the active digit. For decimal values, the change can be fractions 0.1, 0.01, 0.001 (...) depending on the active digit.
For parameters with defined steps, digits smaller than the step value cannot be edited.

3. Press ← or → to move the cursor to another digit.
4. To select the minimum or maximum value, select the arrow symbol in front of the value.
 • To set the value to the maximum, press ↑.
 • To set the value to the minimum, press ↓.

After pressing ↑, the previous value can be restored by pressing ↓ once, and vice versa. Another press of ↓ or ↑ sets the value to the lower or higher limit. The symbol in front of the value is ↕, when the previous value is shown.

Table 1: Current protection

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTNAME</td>
<td>PHHPTOC</td>
</tr>
<tr>
<td>Operation</td>
<td>On</td>
</tr>
<tr>
<td>Base value Sel phase</td>
<td>Phase Grp 1</td>
</tr>
<tr>
<td>Measurement mode</td>
<td>DFT</td>
</tr>
<tr>
<td>Num of start phases</td>
<td>1 out of 3</td>
</tr>
<tr>
<td>Curve parameter A</td>
<td>28.2000</td>
</tr>
<tr>
<td>Curve parameter B</td>
<td>0.1217</td>
</tr>
<tr>
<td>Curve parameter C</td>
<td>2.00</td>
</tr>
<tr>
<td>Curve parameter D</td>
<td>29.10</td>
</tr>
<tr>
<td>Curve parameter E</td>
<td>1.0</td>
</tr>
<tr>
<td>Reset delay time</td>
<td>0.020 s</td>
</tr>
<tr>
<td>Minimum operate time</td>
<td>0.020 s</td>
</tr>
<tr>
<td>Start value</td>
<td>0.10 pu</td>
</tr>
<tr>
<td>Start value Multi</td>
<td>1.0</td>
</tr>
</tbody>
</table>

![Figure 26: Restoring the previous value](image)

4.1.12.2 Editing string values

1. Activate the setting mode and select a setting.
 When editing string values, the cursor moves to the first character.
2. Press ↑ or ↓ to change the value of an active character.
 One press changes the value by one step.
3. Press ← or → to move the cursor to another character.
 • To insert characters or space, press simultaneously ESC and ←.
 • To delete characters, press simultaneously ESC and →.
4.1.12.3 Editing enumerated values

1. Activate the setting mode and select a setting. When editing an enumerated value, the selected value is shown inverted.
2. Press \(\uparrow \) or \(\downarrow \) to change the value of an active enumerated value. One press changes the enumerated value by one step in the parameter specific order.

4.1.12.4 Changing the time settings in LHMI

1. Select **Main menu/Configuration/Time/System time**. The change takes effect immediately.
2. Press \(\leftarrow \) to confirm the selection.
 - Press \(\leftarrow \) to remove the changes.

4.1.13 Saving settings

Editable values are stored in the non-volatile flash memory. Most of the parameter changes take effect immediately after storing, but some parameter changes require application restart. Values stored in the flash memory remain in effect after reboot as well.

1. Press \(\leftarrow \) to confirm any changes.
2. Press \(\leftarrow \) to move upwards in the menu tree or \(\leftarrow \) to enter the Main Menu.
3. To save the changes in non-volatile memory, select **Yes** and press \(\leftarrow \).

![Save changes?](image)

Figure 27: Confirming settings

- To exit without saving changes, select **No** and press \(\leftarrow \).
- To cancel saving settings, select **Cancel** and press \(\leftarrow \).

Pressing **Cancel** in the Save changes dialog closes only the Save changes dialog box, but the IED remains in editing mode. All the changes applied to any setting are not lost and the user can continue to change settings. To leave the change setting mode, select **No** or **Yes** in the Save changes dialog.
After changing the parameters marked with !, the IED restarts automatically for the changes to take effect.

4.1.14 Clearing and acknowledging

The Clear button is used to reset, acknowledge or clear all messages and indications, including LEDs and latched outputs as well as registers and recordings. Press the Clear button to activate a selection menu, and select the wanted clearance or reset function. Events and alarms assigned to alarm LEDs are cleared with the Clear button as well.

1. Press \(\text{Clear view} \) to activate the Clear view.

<table>
<thead>
<tr>
<th>Main menu/Clear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear accum. currents power</td>
</tr>
<tr>
<td>Clear accum. energy</td>
</tr>
<tr>
<td>Clear C8 wear values</td>
</tr>
<tr>
<td>Clear counters</td>
</tr>
<tr>
<td>Clear disturbances</td>
</tr>
<tr>
<td>Clear internal event list</td>
</tr>
<tr>
<td>Clear LEDs</td>
</tr>
<tr>
<td>Clear lockouts</td>
</tr>
<tr>
<td>Clear max demand</td>
</tr>
<tr>
<td>Clear process event list</td>
</tr>
<tr>
<td>Clear spring charge time</td>
</tr>
<tr>
<td>Clear temperature constant</td>
</tr>
<tr>
<td>Clear travel time</td>
</tr>
</tbody>
</table>

2009-05-08 00:05:57 Guest Feeder

Figure 28: Clear view

The content of the Clear menu depends on the pre-configuration or on the functions configured with PCM600.

2. Select the item to be cleared with \(\uparrow \) or \(\downarrow \).
3. Press \(\text{OK} \), select OK to confirm the selection or Cancel to cancel the selection, and press \(\text{Clear} \).
4. Repeat steps 2 and 3 to clear other items.

4.1.15 Using the local HMI help

1. Press \(\text{help} \) to open the help view.
2. Scroll the text with \(\uparrow \) or \(\downarrow \) if the help text exceeds the display area.
3. To close the help, press \(\text{Esc} \).

The help dialog is also closed when the display timeout expires.
4.2 Using the Web HMI

WHMI is disabled by default.

1. To enable the WHMI, select Main menu/Configuration/HMI/Web HMI/Operation via the LHMI.
2. To enable writing through the WHMI, select Main menu/Configuration/HMI/Web HMI/Write mode via the LHMI.
3. To open the WHMI, write the IED IP address to the address bar of the browser.

Do not use favorites in the web browser. If the user is unauthorized and selects a favorite pointing to a WHMI page, the action can redirect the user to the log in page. With authorization the user is redirected to the startup page.

4.2.1 Logging in

If no users have been created with PCM600, both the default user ID and password is SuperUser.

1. Enter the username.
2. Enter the password.
3. Click OK.

Figure 29: Entering username and password to use the WHMI
4.2.2 Logging out

The user is logged out after a session time-out.

Figure 30: Session time-out

• To log out manually, click **Logout** on the menu bar.

Figure 31: WHMI logout
If the WHMI is closed without properly logging out, the WHMI does not reconnect until the set session time-out.

4.2.3 Identifying the device

The IED information includes detailed information about the device, for example, revision and serial number.

1. Click **Information** in the WHMI menu structure.
2. Click a submenu to see the data.

![Device information](image)

Figure 32: Device information

4.2.4 Navigating in the menu

The menu tree structure on the WHMI is almost identical to the one on the LHMI. Use the menu bar to access different views.

- The **General** view shows the IED version and status.
- The **Events** view contains a list of events produced by the application configuration.
- **Logout** ends the session.
4.2.4.1 Menu structure

The Main menu contains main groups which are divided further into more detailed submenus.

- Events
- Measurements
- Disturbance records
- Settings
- Configuration
- Monitoring
- Test
- Information
- Clear
- Language

4.2.5 Showing all parameters

1. Click Parameter list in the main menu.
2. Click Print to print out all parameters on paper.
3. Click Save to save all parameters in CSV file format.
4.2.6 Editing values

1. Click the menu in the WHMI tree.
2. Click the submenu to see function blocks.
3. Click a function block to see the setting values.
4. Click **Enable Write**.

Some parameters, for example, the IED test mode, cannot be set via the WHMI.

![Figure 34: Enable writing to edit a value](image)

The selected setting group is shown in the Setting Group drop-down list. The active setting group is indicated with an asterisk *.

5. Edit the value.
 - The minimum, maximum and step values for a parameter are shown in the Min., Max. and Step columns.
 - Setting group values are indicated with 🔑.
Figure 35: Editing a value

- If the entered value is within the accepted value range, the selection is highlighted in green. If the value is out of range, the row is highlighted in red and a warning dialog box is displayed.

Figure 36: Warning indicating that the entered value is incorrect

- If writing values fails, a warning dialog box is displayed.

Figure 37: Warning indicating that the values were not written to the IED
If writing is enabled accidentally, click **Disable Write**. **Disable Write** cannot be selected, when a value has already been written to the IED. After clicking **Write to IED**, click either **Commit** or **Reject**.

4.2.7 Committing settings

Editable values are stored in the non-volatile flash memory. Values stored in the flash memory are in effect also after reboot.

1. Edit setting values.
2. Click **Write to IED**.
 The values are written into the IED, but not taken into use.

3. Commit or reject new values.
 - Click **Commit** to save the values.
 The new values are saved in the non-volatile memory and taken into use.
 - Click **Reject** to cancel saving the settings.

![Figure 38: Writing values to the IED](image-url)
Figure 39: Committing changes

Committing values takes a few seconds.

If the values are not committed, they are not taken into use and they are lost after a reboot. However, in case of changing the time settings in WHMI, the change takes effect immediately without committing the changes.

4.2.8 Clearing and acknowledging

Reset, acknowledge or clear all messages and indications, including LEDs and latched outputs as well as registers and recordings, in the Clear menu.

1. Click the Clear menu.
2. In the New Value box, click Clear to select the item to be cleared.
3. Click Write to IED.

4.2.9 Selecting the event view

The event view contains a list of events produced by the application configuration. The default view shows the latest events. The event list is updated if the event
count changes while the user is viewing the latest events. If the user is viewing older events while the event count changes, only the drop-down list is updated.

1. Click **Events** on the menu bar.
 Each event view page shows 100 events.

2. To view older events, select the event range from the drop-down menu on the toolbar.

4.2.10 Selecting the disturbance record view

Disturbance records are listed in the disturbance records view.

- Select **Disturbance records/Recordings**.
4.2.10.1 Reading disturbance records

1. Select Disturbance records/Recordings.
2. Click the icon in the Download column of the record to read a disturbance record.
3. Save the zip file on your computer.
4. Extract the files in the same folder on your computer.
5. Open the disturbance record files with a suitable program.
Files are in standard COMTRADE format.

4.2.10.2 Triggering the disturbance recorder manually

1. Select **Disturbance records/Recordings**.
2. Click **Manual trigger**.

Figure 42: Reading a disturbance record
4.2.10.3 Deleting disturbance records

1. Select Disturbance records/Recordings.
2. Select one or more recordings and click Delete to delete selected records. To delete all records, select Clear disturbances in the Clear menu.
3. Click **OK** to confirm or **Cancel** to cancel the deletion.

4.2.11 Selecting phasor diagrams

Install or enable the SVG plugin to view the phasor diagrams, if needed.

1. Click **Phasor diagrams**.
Figure 45: Selecting phasor diagrams

2. Toggle the diagram visibility by selecting the diagram from the drop-down menu. Visible diagrams are indicated with an asterisk *.
3. Change the size of the diagram by changing the zoom value.
4. Click Freeze to stop updating the phasor diagram.
 No updates are displayed in the diagram.
Section 5 IED operation

5.1 Normal operation

In a normal IED use situation, the basic operation includes monitoring and checking procedures.

- Monitoring measured values
- Checking object states
- Checking function setting parameters
- Checking events and alarms

All basic operations can be performed via the LHMI, WHMI or with PCM600.

For more information, see PCM600 documentation.

5.2 Disturbance identification

Disturbances and their causes can be identified by indicator LEDs: Ready, Start and Trip. During normal operation, the Ready LED is steady green.

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start LED</td>
<td>Yellow, steady</td>
<td>Protection started</td>
</tr>
<tr>
<td>Trip LED</td>
<td>Red, steady</td>
<td>Protection operated</td>
</tr>
</tbody>
</table>

Further actions to be taken to identify the disturbance:

- Checking programmable LEDs
- Reading event history
- Checking fault records
- Analyzing disturbance recordings

Document the disturbance before clearing the information from the IED.
Only authorized and skilled personnel should analyze possible errors and decide on further actions. Otherwise, stored disturbance data can be lost.

5.2.1 Disturbance recording triggering

Disturbance recordings are normally triggered by IED applications when they detect fault events. Disturbance recordings can also be triggered manually or periodically. The manual trigger generates an instant disturbance report. Use this function to get a snapshot of the monitored signals.

5.2.2 Disturbance record analysis

The IED collects disturbance records of fault events which are set to trigger the disturbance recorder. Disturbance data is collected and stored for later viewing and analysis. The disturbance recorder data can be read and analyzed with PCM600.

For more information, see PCM600 documentation.

5.2.3 Disturbance reports

PCM600 can be used for creating reports of disturbance recorder data.

For more information, see PCM600 documentation.

5.2.4 IED self-supervision

The IED self-supervision handles internal run-time fault situations. The main indication of an internal fault is a flashing green Ready LED.

More detailed information can be found from Main menu/Monitoring/IED status or Main menu/Monitoring/Internal events.

Internal faults can be divided to hardware errors, run-time errors in the application or operating system and communication errors. Further actions always depend on the cause of the error.

Only authorized and skilled personnel should analyze the errors and decide on further actions.
The IED records IED status data and events.

Document all the recorded data from the IED before resetting the tripping and IED lockout functions.

5.3 IED parametrization

IED parameters are set via the LHMI, WHMI or PCM600.

Setting parameters need to be calculated according to the electrical network conditions and the electrical characteristics of the protected equipment. The IED's settings need to be verified before the IED is connected to a system.

Document all changes to parameter settings.

For more information, see PCM600 documentation.

Do not switch off the auxiliary power supply to the IED before changes, for example, setting parameter or local/remote control state changes are saved.

A mechanism for limiting the number of writings per time period is included in the IED to prevent the flash memory from wearing out due to too many writings caused by the application configuration. As a consequence, saving application function states may take up to an hour. If the auxiliary power is interrupted before the states are saved, that change is lost. Settings and configuration parameters are saved without delay.

5.3.1 IED settings for IED functionality

Function settings can be edited one by one by navigating to the individual setting values, for example via the LHMI. The values in other setting groups should be known before editing a certain setting value.

After completing the editing of setting group values, the new values are activated. The user can either commit the edited values or discard them.
5.3.2 IED settings for different operating conditions

IED settings can be designed for various operation conditions by defining different setting values to different setting groups. The active setting group can be changed by the IED application or manually via the LHMI, WHMI or PCM600.

The IED contains only one setting group by default. The number of setting groups can be selected from 1 to 4.
Section 6 Operating procedures

6.1 Monitoring

6.1.1 Indications

The operation of the IED can be monitored via three different indications on the LHMI.

- Three indicator LEDs with fixed functionality: Ready, Start and Trip
- 15 programmable three-color alarm LEDs which can present 45 virtual LED states
 - Texts which are shown on the alarm view can be programmed for each LED colour and off state. Programming can be done with PCM600, via WHMI and LHMI. These texts are displayed on the LHMI.
- An auto-indicating message on the display.

6.1.1.1 Using auto-indication messages

Auto-indication messages are shown in a dialog box that is displayed when the disturbance recorder is triggered. The indication dialog box shows a list of current disturbance recordings one by one. To scroll the dialog, use ▼ and ▲.

To activate the auto-indication message function, the disturbance recorder function has to be activated and properly configured. Check also that the setting Main menu/Configuration/HMI/LHMI/AutoIndicationDRP is set to “On”.

1. Read the auto-indication message in the dialog box. The message contains the same information that is available for disturbance recordings.
2. Press ▼ to see more detailed information.
3. Press ▲ to close the auto-indication message without clearing it or press ▲ to activate the Clear view and to clear messages.
6.1.1.2 Monitoring alarm data

Active alarms are indicated by the alarm LEDs and the LED in the Multipage button. The alarms are configured with PCM600. The alarm type and information depend on the application configuration.

1. Press \(\text{Button} \) to open the alarm view.
2. Press \(\uparrow \) or \(\downarrow \) to move between active alarms in the page, or press \(\text{Button} \) to switch between the three alarm pages.
3. Press \(\text{Button} \) to open a dialog box that shows more detailed information about the selected alarm.

Figure 46: Auto-indication message
Figure 47: Alarm details

Press or ESC to close the dialog box.

4. Press ESC to close the alarm view.

5. Press and ESC to activate the Clear view and to clear alarms.

Figure 48: Alarm data
6.1.3 Monitoring an internal IED fault

The flashing green LED indicates an internal IED fault. The fault messages are found in the LHMI menu.

1. Select **Main menu/Monitoring/Internal events** or **Main menu/Monitoring/IED status** to monitor the latest fault indication.
2. Press ‹ or › to scroll the view.

<table>
<thead>
<tr>
<th>Item</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal fail</td>
<td>Off</td>
</tr>
<tr>
<td>Internal warning</td>
<td>Off</td>
</tr>
<tr>
<td>Time synch</td>
<td>Ready</td>
</tr>
<tr>
<td>Real time clock</td>
<td>Ready</td>
</tr>
<tr>
<td>Application</td>
<td>Ready</td>
</tr>
<tr>
<td>Runtime execution</td>
<td>Ready</td>
</tr>
<tr>
<td>IEC61850</td>
<td>Ready</td>
</tr>
<tr>
<td>DNP3</td>
<td>Ready</td>
</tr>
<tr>
<td>COM1</td>
<td>Ready</td>
</tr>
<tr>
<td>FSM1</td>
<td>Ready</td>
</tr>
<tr>
<td>TRM2</td>
<td>Ready</td>
</tr>
<tr>
<td>RTD3</td>
<td>Ready</td>
</tr>
<tr>
<td>BTO4</td>
<td>Ready</td>
</tr>
<tr>
<td>Battery 1</td>
<td>Ready</td>
</tr>
</tbody>
</table>

Figure 49: Fault indication

The internal event list is not updated dynamically. To update the list, leave the **Internal events** menu and then select it again.

6.1.4 Monitoring condition monitoring data

1. Select **Main menu/Monitoring/I/O status/Monitoring**
2. Press ‹ or › to scroll the view.

With PCM600 the user can map output signals from condition monitoring related function blocks to the appropriate destinations.

6.1.2 Measured and calculated values

All values show the momentary measurement value and some include demand values calculated from a set period.

Measured and calculated values can be accessed through the LHMI, WHMI and PCM600. Measured and calculated values are based on the RMS mode. These
values are also available through the station communication protocols. On LHMI also the fundamental frequency based values (DFT) are available.

Invalid or questionable measurement values are presented in parentheses.

6.1.2.1 Using the local HMI or Web HMI for monitoring

- Select Main menu/Measurements to monitor measured and calculated values.
 Fundamental frequency based values submenu shows values in the DFT mode.
 Available measured and calculated values depend on measurement functions which are included in the application configuration.

On the LHMI, the selected submenu can be scrolled with ↑ and ↓.

WHMI supports the phasor diagrams that can be found under the measurement node in the navigation tree. Phasor diagrams are based on values that can be found under Fundamental frequency based values.

6.1.2.2 Using PCM600 for monitoring

1. Start Signal Monitoring tool when connected to the IED.
2. Select the measuring function to be monitored.

Monitored values can also be exported as an Excel worksheet.

See PCM600 documentation for more details about Signal Monitoring.

6.1.3 Recorded data

The IED is provided with intelligent and flexible functionality that collects different kinds of data. The recorded data gives substantial information for post fault analysis.

- Disturbance records
- Events
6.1.3.1 Creating disturbance recordings

Normally disturbance recordings are triggered by the IED applications but the recording can also be triggered manually.

Set the DRRDRE \textit{Operation} to “On” via the LHMI or PCM600. At least one channel has to be connected.

1. Select \textbf{Main menu/Disturbance records}.
2. Select \textbf{Manual Trig} with \(\uparrow \) or \(\downarrow \).
3. Press \(\leftrightarrow \) to execute manual triggering.

![Figure 50: Manual triggering](image)

The disturbance recorder is now triggered.

6.1.3.2 Monitoring disturbance recorder data

Read individual disturbance recordings from the IED with the PCM600 software to monitor disturbance recorder data.

1. Select \textbf{Main menu/Disturbance records}.
 All disturbance records are listed.
2. Scroll the view with \(\uparrow \) or \(\downarrow \).
To view a specific disturbance record, press \(\rightarrow \). A list of detail categories is displayed.

Record 65	2009-05-08 00:17:44 SPR_CHR_FLM
Record 64	2009-05-07 23:56:02 TC_ALARM_3
Record 63	2009-05-07 23:55:59 SPR_CHR_FLM
Record 62	2009-05-07 22:29:14 TC_ALARM_1
Record 61	2009-05-07 22:29:11 SPR_CHR_FLM
Record 60	2009-05-07 22:23:43 TC_ALARM_1
Record 59	2009-05-07 22:23:40 SPR_CHR_FLM
Record 58	2009-05-07 21:57:04 TC_ALARM_1
Record 57	2009-05-07 21:57:01 SPR_CHR_FLM
Record 56	2009-05-07 21:54:34 TC_ALARM_1
Record 55	2009-05-07 21:54:31 SPR_CHR_FLM
Record 54	2009-05-07 21:50:51 TC_ALARM_1
Record 53	2009-05-07 21:50:48 SPR_CHR_FLM

To select a category and view the items under it, press \(\uparrow \) or \(\downarrow \) and then \(\rightarrow \).

6.1.3.3 Controlling and reading of disturbance recorder data

Disturbance recorder data can be controlled and read with PCM600. It can also be read via WHMI.

For more information, see PCM600 documentation.
6.1.3.4 Monitoring recorded data

Some functions, for example, distance protection and fault locator, include data recording functionality. All the information required for later fault analysis is recorded when the function is triggered either internally or externally.

One or three sets of recorded data are available saved in data banks 1-3. The data bank 1 always holds the most recent recorded data. When a new triggering occurs, older data is moved into the next banks (from 1 to 2, and from 2 to 3). When all three banks already contain data, and a new triggering occurs, the data in bank 3 is overwritten.

For some functions, only one set of recorded data is available. In this case, the recorded data always overwrites the older data in data bank 1.

1. Select Main menu/Monitoring/IO status/Protection/[Protection type]/[Function]/Recorded data.
2. To navigate between the fault records, press ↑ and ↓.
3. To enter or exit a submenu, press → or ←.

![Figure 53: Monitoring fault records](image)

Monitoring fault locator data

When the fault locator function is triggered, fault location data is output. The data is kept unchanged until the next triggering or reset.

- To monitor fault locator data, select Main menu/Monitoring/IO status/Protection/Current protection/SCERFLO/Recorded data. There are three data banks for the recorded data. The most recent information is always found in the first data bank.
6.1.3.5 Monitoring events

The event view contains a list of events produced by the application configuration. The events are grouped by day, and each event takes one line. Select the order of events with the setting Main menu/Configuration/HMI/LHMI/EvListSrtOrder.

1. Select Main menu/Events.
2. Press ⏯️ to open the event list.
 Events are shown grouped by date.
 Time, channel, signal name and value of the event are shown.
3. Press ⬇️ or ⬆️ to scroll the view.

![Figure 54: Monitoring events]

The event list is not updated dynamically. To update the list, leave the Events menu and then select it again.

6.1.4 Remote monitoring

The IED supports comprehensive remote monitoring.

6.1.4.1 Monitoring the IED remotely

Use the PCM600 tool and WHMI to operate the IED remotely.

- Analyze disturbance record data.
- Create disturbance records.
- Monitor IED values.
- Read events.
6.2 Controlling

6.2.1 Controlling circuit breakers and disconnectors

Before the control via LHMI is possible, the R/L button has to be in local position.

The primary equipment can be controlled via the LHMI with the Open and Close buttons when the IED is set to local control mode and the user is authorized to access control operations.

1. Select **Main menu/Control**.
 The SLD displays all controllable objects.
2. Select an object with ▲ or ▼.
 Selection of object is indicated with a square border that moves when ▲ and ▼ are used.
 Switch objects can have additional icons that present the switch object states.
 - Switch object is in substituted state.
 - Switch object is interlocked.
3. Press ▲ to open or ▼ to close the object.

 ![Diagram](image)

 Figure 55: Selecting an object

4. Press ☑ to confirm the operation.
Figure 56: Closing a circuit breaker

- Press \textit{ESC} to cancel the operation.

5. Press \textit{←} or \textit{→} to move between single-line diagram pages.

The time between selecting the object and giving a control command is restricted by an adjustable timeout. When an object is selected, the control command has to be given within this time.

6.3 Resetting the IED

6.3.1 Clearing and acknowledging via the local HMI

Use the Clear button to reset, acknowledge or clear all messages and indications, including LEDs and latched outputs as well as registers and recordings. Pressing the Clear button activates a view for selecting the reset function. Events and alarms assigned to alarm LEDs can also be cleared with the Clear button.

1. Press \textit{Clear} to activate the Clear view.
 All the items that can be cleared are shown.
The content of the Clear menu depends on the pre-configuration or on the functions configured with PCM600.

2. Select the item to be cleared with ↑ or ↓.
3. Press → select OK to confirm the selection or Cancel to cancel the selection.
4. To clear other items, repeat the steps.

6.4 Changing the IED functionality

6.4.1 Defining the setting group

Do not switch off the auxiliary power supply to the IED before the changes, for example, setting parameter or local/remote control state changes are saved.

A mechanism for limiting the number of writings per time period is included in the IED to prevent the flash memory from wearing out due to too many writings caused by the application configuration. As a consequence, saving application function states may take up to an hour. If the auxiliary power is interrupted before the states are saved, that change is lost. Settings and configuration parameters are saved without delay.

6.4.1.1 Activating a setting group

IED settings are planned in advance for different operation conditions by calculating setting values to different setting groups. The active setting group can be changed by the IED application or manually from the menu.
1. Select **Main menu/Settings/Activate setting group/ActiveSetGrp** and press .

![Figure 58: Active setting group](image)

2. Select the setting group with ↑ or ↓.
3. Press OK to confirm the selection or ESC to cancel.

![Figure 59: Selecting the active setting group](image)

4. Commit the settings.

Remember to document the changes you make.
6.4.1.2 Browsing and editing setting group values

1. Select Main menu/Settings/Settings and press . Setting group 1 is the default setting group to be edited.

![Edit setting group dialog](image)

Figure 60: Selecting a setting group for editing

2. Press ← on the Setting group line in the dialog box to activate selection mode.

3. Select the wanted setting group with ↑ or ↓ and press ←.

![Edit setting group dialog](image)

Figure 61: Changing the setting group

4. Select Yes in the dialog, and press ← to continue. The current setting group is displayed on the left in the header.

5. Select the application function category in the list with ↑ or ↓, and press ← to see the function blocks in that category. Categories available in the list depend on the pre-configuration or on the functions configured with PCM600.
6. To browse the function blocks, scroll the list with ↑ and ↓. Function blocks available depend on the application configuration. To move back to the list, press ←.

7. To select a function block, press →.

Figure 62: Selecting the function category

6. To browse the function blocks, scroll the list with ↑ and ↓. Function blocks available depend on the application configuration. To move back to the list, press ←.

7. To select a function block, press →.

Figure 63: Function block settings

The # character on the right indicates that the parameter belongs to a setting group.

8. To edit the selected setting, press →.
 - In case of a parameter that is not part of a setting group, the parameter is activated for editing.
 - In case of a setting group parameter, the editing dialog shows the value of the setting in all available setting groups, but the user can edit only
the value in the selected setting group. The active setting group is marked with an asterisk *.

![Image](image.png)

Figure 64: Changing the setting value

9. Press ↑ or ↓ to change the value.
10. Confirm the change with →.

6.4.2 Activating LEDs

To activate the LEDs, they must be configured with PCM600.

1. Select **Main menu/Configuration/Alarm LEDs** and press →.

![Image](image.png)

Figure 65: Alarm groups
The list can contain three alarm groups at the maximum. The amount of groups depends on the amount of LEDs taken into use.

2. Select an alarm group with ↑ or ↓ and press ➡️
3. Select an Alarm LED with ↑ or ↓.
4. Press ➡️ to confirm the selection and to change the Alarm LED mode.
5. Press ↑ or ↓ to change the value and ➡️ to confirm the selection.

For more information, see PCM600 documentation.
Section 7 Troubleshooting

7.1 Fault tracing

7.1.1 Identifying hardware errors

1. Check the module with an error.
 • Check the general IED status in Main menu/Monitoring/IED status for a faulty hardware module.
 • Check the history of changes in internal event list in Main menu/Monitoring/Internal events.
2. Inspect the IED visually.
 • Inspect the IED visually to find any physical error causes.
 • If you can find some obvious physical damage, contact ABB for repair or replacement actions.
3. Check whether the error is external or internal.
 • Check that the error is not caused by external origins.
 • Remove the wiring from the IED and test the input and output operation with an external test device.
 • If the problem remains, contact ABB for repair or replacement actions.

7.1.2 Identifying runtime errors

1. Check the error origin from IED's internal event list Main menu/Monitoring/Internal events.
2. Reboot the IED and recheck the supervision events to see if the fault has cleared.
3. In case of persistent faults, contact ABB for corrective actions.

7.1.3 Identifying communication errors

Communication errors are normally communication interruptions or synchronization message errors due to communication link breakdown.

• Check the communication status in the internal event list in Main menu/Monitoring/IED status.
• In case of persistent faults originating from IED's internal faults such as component breakdown, contact ABB for repair or replacement actions.
7.1.3.1 Checking the communication link operation

There are several different communication links on the product. First check that all communication ports that are used for communication are turned on.

To check that optical serial port hardware is working, check the optical fibres for light. Do not look directly into the transmitter since the direct light can be harmful for the eyes. Point the fibre or transmitter towards a surface where it is possible to observe when the light is on. To turn on the transmitter although there is no actual communication, set revPolarity in Main menu/Configuration/Communication/IEC60870-5-103/General to "On".

1. Check the front communication port RJ-45.
 1.1. Check that the uplink LED is lit with a steady green light.
 The uplink LED is located on the LHMI above the RJ-45 communication port on the left. The port is used for direct electrical communication to a PC connected via a crossed-over Ethernet cable.
 1.2. Check the communication status of the front port via the LHMI in Main menu/Monitoring/Ethernet/Front port.
 Check that the LINKUP value is 1, that is, the communication is working. When the value is 0, there is no communication link.

2. Check the communication status of the rear port X0 via the LHMI in Main menu/Monitoring/Ethernet/LAN1.
 The X0 communication port on the rear side of the IED is for electrical communication to a PC connected via a crossed-over Ethernet cable. This communication port is an alternative to the front communication port.
 • Check that the LINKUP value is 1, that is, the communication is working. When the value is 0, there is no communication link.

3. Check the communication status of the rear port X1 via the LHMI in Main menu/Monitoring/Ethernet/LAN1.
 The X1 communication port on the rear side of the IED is for optical Ethernet via LC connector or electrical via RJ-45 connector of the IEC 61850-8-1 station bus communication.
 • Check that the LINKUP value is 1, that is, the communication is working. When the value is 0, there is no communication link.

7.1.3.2 Checking the time synchronization

• Select Main menu/Monitoring/IED status and check the status of the time synchronization on Time Synch.
 The Time synch value is Ready when the synchronization is in order.
Activate the time synchronization source. Otherwise, the value is always Ready.

7.1.4 Running the display test

To run the display test, either use the push buttons or start the test via the menu.

- Select Main menu/Test/LED test.
- Press \(\text{	extasciitilde} \) or simultaneously \(\text{ESC} \) and \(\text{F} \).

All the LEDs are tested by turning them on simultaneously. The display shows a set of patterns so that all the pixels are activated. After the test, the display returns to normal state.

7.2 Indication messages

7.2.1 Internal faults

When the Ready LED indicates an internal fault by flashing, the message associated with the fault is found in the internal event list in the LHMI menu Main menu/Monitoring/Internal events. The message includes the date, time, description and signal state for the fault. The internal event list is not updated dynamically. The list is updated by leaving the Internal events menu and then selecting it again. The current status of the internal fault signals can also be checked via the LHMI in Main menu/Monitoring/IED status.

The ABB logo together with the IED FAILURE message appear on the screen after a five minutes' communication break between the LHMI and the IED. The LHMI panel displays the message due to a communication failure or a severe functional error in the IED. The protection functionality of the device can be ensured by testing the IRF contact status.

Different actions are taken depending on the severity of the fault. If the fault is found to be permanent, the IED stays in internal fault mode. The IED continues to perform internal tests during the fault situation.

When a fault appears, the fault indication message is to be recorded and stated when requesting support or service.
Table 15: Internal fault indications

<table>
<thead>
<tr>
<th>Fault indication</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Fault Real Time Clock Error</td>
<td>Hardware error with the real time clock.</td>
</tr>
<tr>
<td>Internal Fault Runtime Exec. Error</td>
<td>One or more of the application threads are not working properly.</td>
</tr>
<tr>
<td>Internal Fault SW Watchdog Error</td>
<td>This signal will be activated when the terminal has been under too heavy load for at least 5 minutes.</td>
</tr>
<tr>
<td>Internal Fault Runtime App Error</td>
<td>One or more of the application threads are not in an expected state.</td>
</tr>
<tr>
<td>Internal Fault File System Error</td>
<td>A file system error has occurred.</td>
</tr>
<tr>
<td>Internal Fault TRM-Error</td>
<td>A TRM card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
<tr>
<td>Internal Fault COM-Error</td>
<td>A COM card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
<tr>
<td>Internal Fault PSM-Error</td>
<td>A PSM card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
<tr>
<td>Internal Fault RTD Error</td>
<td>An RTD card error has occurred. The instance number is displayed at the end of the fault indication.</td>
</tr>
</tbody>
</table>

7.2.2 Warnings

The warning message associated with the fault is found in the internal event list in the LHMI menu Main menu/Monitoring/Internal events. The message includes the date, time, description and signal state for the fault. The current status of the internal fault signals can also be checked via the LHMI in Main menu/Monitoring/IED status.

When a fault appears, record the fault indication message and state it when ordering service.

Table 16: Warning indications

<table>
<thead>
<tr>
<th>Warning indication</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning IEC 61850 Error</td>
<td>IEC 61850 has not succeeded in some actions such as reading the configuration file or startup.</td>
</tr>
<tr>
<td>Warning DNP3 Error</td>
<td>Error in DNP3 communication</td>
</tr>
</tbody>
</table>

7.2.3 Additional indications

The additional indication messages do not activate internal fault or warning.
The messages are listed in the LHMI menu under the event list. The signal status data is found under the IED status and in the internal event list.

<table>
<thead>
<tr>
<th>Warning indication</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Synch Error</td>
<td>Source of the time synchronization is lost or time system has made a time reset.</td>
</tr>
<tr>
<td>BATTERY1 Error</td>
<td>Auxiliary power is disconnected.</td>
</tr>
<tr>
<td>Settings Changed</td>
<td>Settings have been changed.</td>
</tr>
<tr>
<td>Setting Groups Changed</td>
<td>Setting group has been changed.</td>
</tr>
</tbody>
</table>

7.3 Correction procedures

7.3.1 Factory settings restoration

In case of configuration data loss or error that prevents the IED from working properly, the configuration can be restored to the original factory state. All default settings and configuration files stored in the factory are restored.

For further information on restoring factory settings, contact customer support.

7.3.2 Changing and setting the password

The password can only be set with PCM600.

For more information, see PCM600 documentation.

7.3.3 Identifying IED application problems

Navigate to the appropriate menu in the LHMI to identify possible problems.

• Check that the function is on.
• Check that the correct setting group (1 to 4) is activated.
• Check the blocking.
• Check the mode.
• Check the measurement value.
• Check the connection to trip and disturbance recorder functions.
• Check the channel settings.
7.3.3.1 Inspecting the wiring

The physical inspection of wiring connections often reveals the wrong connection for phase currents or voltages. Even when the phase current or voltage connections to IED terminals are correct, wrong polarity of one or more measurement transformers can cause problems.

- Check the current or voltage measurements and their phase information from **Main menu/Measurements**.
- Check that the phase information and phase shift between phases is correct.
- Correct the wiring if needed.
 - Change the parameter *ReversePolarity* in **Configuration/I/O modules/AIM2** for the channel n (n= the number of the channel that has wrong polarity).
 - Change the parameter in PCM600. See PCM600 documentation for more information.
- Check the actual state of the connected binary inputs.
 - In LHMI, select **Main menu/Monitoring/I/O status/Binary input modules**. Then navigate to the board with the actual binary input to be checked.
 - Check the actual state of the connected binary inputs through PCM600. See PCM600 documentation for more information.
- Measure output contacts using the voltage drop method of applying at least the minimum contact load given for the output relays in the technical data, for example, 100 mA at 24 V AC/DC.

Output relays, especially power output relays, are designed for breaking high currents. Due to this, layers of high resistance may appear on the surface of the contacts. Do not determine proper functionality of connectivity or contact resistance by measuring with a regular hand-held ohm meter.
Figure 66: Testing output contacts using the voltage drop method

1 Contact current
2 Contact voltage drop
3 Load
4 Supply voltage
To check the status of the output circuits driving the output relay via the LHMI, select Main menu/Monitoring/I/O status/Binary output modules and then navigate to the board with the actual binary output to be checked.

- To test and change the relay state manually:
 1. To set the IED to test mode, select Main menu/Test/IED test mode/TestMode and set the parameter to "On".
 2. To operate or force the output relay to operate, select Main menu/Test/Forcing/Binary output values and then navigate to the board with the actual binary output relay to be operated/forced.
 3. Select the BOn_PO to be operated or forced and press and or to operate the actual output relay.

Each BOn_PO is represented by two signals. The first signal in LHMI is the actual value “1” or “0” of the output, and in PCM600 a lit or dimmed...
The diode. The second signal is the status Normal or Forced. Forced status is only achieved when the BO is set to “Forced” or operated on the LHMI.

Set the parameter TestMode to “Off” after completing these tests. The Start LED stops flashing when the relay is no longer in test mode.

An initially high contact resistance does not cause problems as it is reduced quickly by the electrical cleaning effect of fritting and thermal destruction of layers, bringing the contact resistance back to the mOhm range. As a result, practically the full voltage is available at the load.

7.3.3.2 Inspecting the RTD wiring

- Verify the sensor measuring mode by using a suitable resistor instead of a real sensor.
 - PT100 80...170 Ω
 - PT250 220...430 Ω
 - NI100 80...240 Ω
 - NI120 100...280 Ω
 - CU10 8...16 Ω

Resistance measuring mode can be verified with a resistance from 0...10 KΩ.

Table 18: Examples of temperature and resistance

<table>
<thead>
<tr>
<th>R</th>
<th>PT 100 °C</th>
<th>PT 250 °C</th>
<th>NI 100 °C</th>
<th>NI 120 °C</th>
<th>CU 10 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-39.8</td>
</tr>
<tr>
<td>8.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-21.6</td>
</tr>
<tr>
<td>9.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.7</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>50.9</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76.9</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>102.8</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>154.6</td>
</tr>
<tr>
<td>82</td>
<td>-45.8</td>
<td>-</td>
<td>-34.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>91</td>
<td>-23</td>
<td>-</td>
<td>-16.5</td>
<td>-46.7</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-31.5</td>
<td>-</td>
</tr>
<tr>
<td>110</td>
<td>25.7</td>
<td>-</td>
<td>18</td>
<td>-15.5</td>
<td>-</td>
</tr>
<tr>
<td>120</td>
<td>51.6</td>
<td>-</td>
<td>35</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>130.5</td>
<td>-</td>
<td>82.6</td>
<td>43.3</td>
<td>-</td>
</tr>
<tr>
<td>160</td>
<td>157.2</td>
<td>-</td>
<td>97.5</td>
<td>56.8</td>
<td>-</td>
</tr>
<tr>
<td>180</td>
<td>-</td>
<td>-</td>
<td>125.5</td>
<td>84</td>
<td>-</td>
</tr>
</tbody>
</table>

Table continues on next page
Table 1: RTD Connector Numbers

<table>
<thead>
<tr>
<th>R</th>
<th>°C</th>
<th>°C</th>
<th>°C</th>
<th>°C</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>-</td>
<td>-50.8</td>
<td>151.8</td>
<td>107</td>
<td>-</td>
</tr>
<tr>
<td>220</td>
<td>-</td>
<td>-30.6</td>
<td>176.3</td>
<td>130</td>
<td>-</td>
</tr>
<tr>
<td>240</td>
<td>-</td>
<td>-10.2</td>
<td>199.3</td>
<td>151.8</td>
<td>-</td>
</tr>
<tr>
<td>270</td>
<td>-</td>
<td>20.5</td>
<td>-</td>
<td>182.2</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>-</td>
<td>51.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>330</td>
<td>-</td>
<td>82.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>360</td>
<td>-</td>
<td>114.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>390</td>
<td>-</td>
<td>146.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>430</td>
<td>-</td>
<td>189.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

RTD connector numbering is an example of a 4U case. See the technical manual for complete terminal diagrams.

![RTD Connector Diagram](image)

Figure 68: Testing sensor/resistance input by connecting resistor directly to connector

Voltage type measurement mode can be verified by connecting a voltage source on the input and measure input voltage at the same time by multimeter, for example, 5 VDC voltage.
Current type measurement mode can be verified by connecting a voltage source on the input, for example, 1 V DC.

- Verify milliampere outputs by connecting a multimeter to mA output.
Figure 71: Testing mA output by connecting multimeter directly to connector and measuring output current by multimeter

- Check the status of the output circuits driving the mA outputs via the LHMI. Select Main menu/Monitoring/I/O status/mA output modules/RTD3 and check the output status and value for the channel under inspection.
- Test and change the output manually.
 1. Select Main menu/Test/IED test mode/TestMode and set the parameter to “On”.
 2. Select Main menu/Tests/Forcing/Analog output values/RTD3.
 3. Select the AOn to be forced.
 4. Force the actual output using ← and ↑ or ↓.

Each AOn is represented by two signals. The first signal in LHMI is the actual primary value of the output. The second signal is the status Normal or Forced. Forced status is only achieved when the AO is set to “Forced” on the LHMI.

When forcing analog output signals the scaling defined by analog output channel configuration is not used. Fixed scaling factor 1000:1 is used instead. This means that forcing value 5.000 A is seen as 5 mA when measured from output.

Do not force or send values to disconnected channels. This results in an out-of-range error.

Forcing feature can be tested only for configured output channels. When mA current values are forced to non-configured output channels, values are not passed to mA output channel HW circuitry.
Set the parameter TestMode to "Off" after completing the tests. The Start LED stops flashing when the relay is no longer in test mode.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>100BASE-FX</td>
<td>A physical medium defined in the IEEE 802.3 Ethernet standard for local area networks (LANs) that uses fibre-optic cabling</td>
</tr>
<tr>
<td>COMTRADE</td>
<td>Common format for transient data exchange for power systems. Defined by the IEEE Standard.</td>
</tr>
<tr>
<td>CSV</td>
<td>Comma-separated values</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier transform</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DNP3</td>
<td>A distributed network protocol originally developed by Westronic. The DNP3 Users Group has the ownership of the protocol and assumes responsibility for its evolution.</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>Ethernet</td>
<td>A standard for connecting a family of frame-based computer networking technologies into a LAN</td>
</tr>
<tr>
<td>GOOSE</td>
<td>Generic Object-Oriented Substation Event</td>
</tr>
<tr>
<td>HMI</td>
<td>Human-machine interface</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
</tbody>
</table>
| IEC 60870-5-103 | 1. Communication standard for protective equipment
| | 2. A serial master/slave protocol for point-to-point communication |
| IEC 61850 | International standard for substation communication and modeling |
| IEC 61850-8-1 | A communication protocol based on the IEC 61850 standard series |
| IED | Intelligent electronic device |
| IP | Internet protocol |
| IP address | A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a unique IP address that specifies the location for the TCP/IP protocol. |
| IRF | 1. Internal fault
<p>| | 2. Internal relay fault |
| LAN | Local area network |</p>
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC</td>
<td>Connector type for glass fibre cable</td>
</tr>
<tr>
<td>LCP</td>
<td>Liquid crystal polymer</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>LHMI</td>
<td>Local human-machine interface</td>
</tr>
</tbody>
</table>
| PC | 1. Personal computer
 2. Polycarbonate |
| PCM600 | Protection and Control IED Manager |
| R/L | Remote/Local |
| REF630 | Feeder protection and control IED |
| REG630 | Generator protection and control IED |
| REM630 | Motor protection and control IED |
| RET630 | Transformer protection and control IED |
| RJ-45 | Galvanic connector type |
| RMS | Root-mean-square (value) |
| RoHS | Restriction of the use of certain hazardous substances in electrical and electronic equipment |
| RTD | Resistance temperature detector |
| SLD | Single-line diagram |
| SVG | Scalable vector graphics |
| TCP/IP | Transmission Control Protocol/Internet Protocol |
| WAN | Wide area network |
| WHMI | Web human-machine interface |