Dati tecnici del prodotto

IRB 1100
Dati tecnici del prodotto

IRB 1100-4/0.475
IRB 1100-4/0.58

OmniCore

ID documento: 3HAC064993-007
Revisione: B

©Copyright 2019 ABB All rights reserved - Tutti i diritti riservati.
Le specifiche sono soggette a modifiche senza preavviso.
Le informazioni contenute nel presente manuale sono soggette a modifiche senza preavviso e non devono essere considerate vincolanti per ABB. ABB non si assume alcuna responsabilità per eventuali errori nel presente manuale.
Salvo quanto espressamente indicato nel presente manuale, ABB non concede alcuna altra garanzia in relazione al Prodotto in merito a eventuali perdite, danni a persone o beni, idoneità per uno scopo specifico o altro.
In nessun caso ABB potrà essere ritenuta responsabile per eventuali danni accidentali o consequenziali dovuti all'utilizzo del presente manuale e dei prodotti in esso descritti.
Né questo Manuale, né alcuna sua parte possono essere riprodotti o ricopiati senza il consenso scritto da parte di ABB.
Conservare per consultazioni successive.
Delle copie supplementari di questo Manuale possono essere ottenute da ABB.
Traduzione delle istruzioni originali.
Sommario

Panoramica di questo Manuale .. 7

1 Descrizione 9

1.1 Struttura 9
 1.1.1 Introduzione 9
 1.1.2 Differenti versioni del robot 11
 1.1.3 Definizione della designazione della versione 12
 1.1.3.1 Dati tecnici 12

1.2 Norme 18
 1.2.1 Standard applicabili 18

1.3 Installazione 20
 1.3.1 Introduzione all’installazione 20
 1.3.2 Assemblare il manipolatore 21

1.4 Calibratura e riferimenti 22
 1.4.1 Metodi di calibratura 22
 1.4.2 Calibratura fine 24
 1.4.3 calibratura Absolute Accuracy 25

1.5 Diagrammi di carico 27
 1.5.1 Introduzione 27
 1.5.2 Diagrammi 28
 1.5.3 Carico massimo e momento di inerzia per il movimento completo e limitato dell’asse 5 (linea centrale verso il basso) 32
 1.5.4 Coppia del polso 34
 1.5.5 Accelerazione TCP massima 35

1.6 Montaggio dell’apparecchiatura sul robot 36

1.7 Manutenzione e risoluzione dei problemi 39

1.8 Movimento del robot 40
 1.8.1 Portata operativa 40
 1.8.2 Prestazioni conformi alle norme ISO 9283 43
 1.8.3 Velocità 44
 1.8.4 Distanze e tempi di arresto del robot 45

1.9 Collegamenti utente 46

2 Dati tecnici delle varianti e delle opzioni 49

2.1 Introduzione alle varianti e opzioni 49

2.2 Manipolatore 50

2.3 Cavi di collegamento sul pavimento 54

3 Accessori 55

3.1 Introduzione agli accessori 55

Index .. 57

Dati tecnici del prodotto - IRB 1100
3HAC064993-007 Revisione: B
©Copyright 2019 ABB All rights reserved - Tutti i diritti riservati.
Questa pagina è stata intenzionalmente lasciata bianca
Panoramica di questo Manuale

Informazioni sul manuale
In questo manuale sono incluse istruzioni per:
• l'installazione meccanica ed elettrica del robot
• la manutenzione del robot
• la riparazione meccanica ed elettrica del robot.

Utilizzo
Questo manuale deve essere utilizzato durante:
• l'installazione, dall'operazione di sollevamento del robot sul sito di lavoro e al relativo fissaggio sulla fondazione alla sua messa in opera
• gli interventi di manutenzione
• gli interventi di riparazione e la calibrazione.

Chi deve leggere il manuale?
Il presente manuale è destinato a:
• personale addetto all'installazione
• personale di assistenza
• personale addetto alla riparazione.

Prerequisiti
Un tecnico specializzato nella manutenzione/riparazione/installazione di un robot ABB deve:
• essere formato da ABB e disporre delle conoscenze necessarie per gli interventi di installazione, riparazione e manutenzione, meccaniche ed elettriche.

Riferimenti
La documentazione a cui viene fatto riferimento nel manuale è elencata nella tabella di seguito.

<table>
<thead>
<tr>
<th>Titolo documento</th>
<th>Documento ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuale del prodotto - IRB 1100</td>
<td>3HAC064992-007</td>
</tr>
<tr>
<td>Manuale del prodotto, ricambi - IRB 1100</td>
<td>3HAC064994-007</td>
</tr>
<tr>
<td>Circuit diagram - IRB 1100</td>
<td>3HAC066314-009</td>
</tr>
<tr>
<td>Manuale dell'operatore - Informazioni generali di sicurezza</td>
<td>3HAC031045-007</td>
</tr>
<tr>
<td>Manuale del prodotto - OmniCore C30</td>
<td>3HAC060860-007</td>
</tr>
<tr>
<td>Operating manual - OmniCore</td>
<td>3HAC065036--001</td>
</tr>
<tr>
<td>Application manual - Controller software OmniCore</td>
<td>3HAC066554--001</td>
</tr>
<tr>
<td>Application manual - CalibWare Field</td>
<td>3HAC030421-001</td>
</tr>
<tr>
<td>Manuale tecnico di riferimento - Event logs for RobotWare 7</td>
<td>3HAC066553-007</td>
</tr>
<tr>
<td>Technical reference manual - Lubrication in gearboxes</td>
<td>3HAC042927--001</td>
</tr>
</tbody>
</table>

Continua nella pagina successiva

Dati tecnici del prodotto - IRB 1100
3HAC064993-007 Revisione: B
©Copyright 2019 ABB All rights reserved - Tutti i diritti riservati.
Panoramica di questo Manuale

Continua

<table>
<thead>
<tr>
<th>Titolo documento</th>
<th>Documento ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuale tecnico di riferimento - Parametri di sistema</td>
<td>3HAC065041-007</td>
</tr>
</tbody>
</table>

Questo Manuale contiene tutte le istruzioni di sicurezza presenti nei manuali del prodotto, per i manipolatori ed i controller.

Revisioni

<table>
<thead>
<tr>
<th>Revisione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Prima edizione.</td>
</tr>
</tbody>
</table>
| B | Pubblicato nella versione 19D. A questa revisione vengono apportati i seguenti aggiornamenti:
- Modifiche minori.
- Modifiche alla descrizione di 3308-1 e 3350-400. |
1 Descrizione

1.1 Struttura

1.1.1 Introduzione

Informazioni generali

Il IRB 1100 fa parte dell’ultima generazione di robot industriali a 6 assi di ABB Robotics, con un carico al polso di 4 kg, progettato appositamente per le industrie manifatturiere che utilizzano l’automazione robotizzata flessibile, come per es. il settore 3C. Il robot è dotato di una struttura aperta particolarmente adatta per utilizzi flessibili ed è in grado di comunicare ampiamente con sistemi esterni.

Gamma di prodotti software

È stata aggiunta una gamma di prodotti software, tutti compresi sotto la denominazione di Sicurezza Attiva, per proteggere non solo il personale nell’evento improbabile di un incidente, ma anche gli utensili del robot, l’attrezzatura periferica e il robot stesso.

Sistema operativo

Il robot è provvisto di unità di controllo OmniCore C30 e software di controllo robot, RobotWare. RobotWare supporta tutti gli aspetti del sistema robotico, quali il controllo del movimento, lo sviluppo e l’esecuzione di programmi applicativi, le comunicazioni, ecc. Vedere Operating manual - OmniCore.

Sicurezza

Norme di sicurezza valide per robot, manipolatore e controller completi.

Funzionalità aggiuntive

Per una funzionalità supplementare, il robot può essere dotato di software opzionale per supporto applicativo, come per esempio funzioni di comunicazione, comunicazione in rete e funzioni avanzate come multitasking, controllo tramite sensori ecc. Per una descrizione completa del software opzionale, vedere Dati tecnici del prodotto - Linea OmniCore C.
1 Descrizione

1.1.1 Introduzione

Continua

Assi del robot

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asse 1</td>
<td>2</td>
<td>Asse 2</td>
</tr>
<tr>
<td>3</td>
<td>Asse 3</td>
<td>4</td>
<td>Asse 4</td>
</tr>
<tr>
<td>5</td>
<td>Asse 5</td>
<td>6</td>
<td>Asse 6</td>
</tr>
</tbody>
</table>
1.1.2 Differenti versioni del robot

Informazioni generali
Il IRB 1100 è disponibile in due versioni.

Tipi di robot
Sono disponibili le versioni di robot seguenti.

<table>
<thead>
<tr>
<th>Tipo di robot</th>
<th>Capacità di movimentazione (kg)</th>
<th>Portata (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 1100-4/0.475</td>
<td>4 kg</td>
<td>0.475 m</td>
</tr>
<tr>
<td>IRB 1100-4/0.58</td>
<td>4 kg</td>
<td>0.58 m</td>
</tr>
</tbody>
</table>
1 Descrizione

1.1.3 Definizione della designazione della versione

1.1.3.1 Dati tecnici

Peso, robot

Nella tavola seguente è illustrato il peso del robot in funzione del modello.

<table>
<thead>
<tr>
<th>Modello del robot</th>
<th>Peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 1100</td>
<td>21,1 kg</td>
</tr>
</tbody>
</table>

Nota

I pesi indicati non comprendono gli utensili o gli altri apparati installati sui robot.

Carichi sulla fondazione, robot

La figura che segue illustra le direzioni delle forze di sollecitazione di robot.
Le direzioni sono valide per tutti i robot con montaggio a pavimento, in sospensione e invertito.

<table>
<thead>
<tr>
<th>(F_{xy})</th>
<th>Forza in qualsiasi direzione nel piano XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_z)</td>
<td>Forza nel piano Z</td>
</tr>
<tr>
<td>(T_{xy})</td>
<td>Coppia di flessione in qualsiasi direzione nel piano XY</td>
</tr>
<tr>
<td>(T_z)</td>
<td>Coppia di flessione nel piano Z</td>
</tr>
</tbody>
</table>
Nella tabella seguente sono riportate le varie forze e le coppie che agiscono sul robot durante i diversi tipi di operazioni.

Nota
Queste forze e coppie indicano valori estremi, che difficilmente vengono riscontrati durante il funzionamento. Inoltre, i singoli valori non raggiungono mai il proprio massimo contemporaneamente agli altri.

AVVERTENZA
L'installazione del robot è limitata alle opzioni di montaggio fornite nella tabella sotto.

A pavimento

<table>
<thead>
<tr>
<th>Forza</th>
<th>Carico di fatica (in funzione)</th>
<th>Carico massimo (arresto di emergenza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza xy</td>
<td>±420 N</td>
<td>±710 N</td>
</tr>
<tr>
<td>Forza z</td>
<td>+210 ±380 N</td>
<td>+210 ±510 N</td>
</tr>
<tr>
<td>Coppia xy</td>
<td>±180 Nm</td>
<td>±330 Nm</td>
</tr>
<tr>
<td>Coppia z</td>
<td>±90 Nm</td>
<td>±140 Nm</td>
</tr>
</tbody>
</table>

Montato a muro

<table>
<thead>
<tr>
<th>Forza</th>
<th>Carico di fatica (in funzione)</th>
<th>Carico massimo (arresto di emergenza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza xy</td>
<td>+210 ±370 N</td>
<td>+210 ±660 N</td>
</tr>
<tr>
<td>Forza z</td>
<td>±370 N</td>
<td>±540 Nm</td>
</tr>
<tr>
<td>Coppia xy</td>
<td>±200 Nm</td>
<td>±370 Nm</td>
</tr>
<tr>
<td>Coppia z</td>
<td>±90 Nm</td>
<td>±140 Nm</td>
</tr>
</tbody>
</table>

Sospeso

<table>
<thead>
<tr>
<th>Forza</th>
<th>Carico di fatica (in funzione)</th>
<th>Carico massimo (arresto di emergenza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza xy</td>
<td>±420 N</td>
<td>±710 N</td>
</tr>
<tr>
<td>Forza z</td>
<td>-210 ±380 N</td>
<td>-210 ±510 N</td>
</tr>
<tr>
<td>Coppia xy</td>
<td>±180 Nm</td>
<td>±330 Nm</td>
</tr>
<tr>
<td>Coppia z</td>
<td>±90 Nm</td>
<td>±140 Nm</td>
</tr>
</tbody>
</table>

Montato su tavolo

<table>
<thead>
<tr>
<th>Forza</th>
<th>Carico di fatica (in funzione)</th>
<th>Carico massimo (arresto di emergenza)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forza xy</td>
<td>±420 N</td>
<td>±710 N</td>
</tr>
<tr>
<td>Forza z</td>
<td>+210 ±380 N</td>
<td>+210 ±510 N</td>
</tr>
<tr>
<td>Coppia xy</td>
<td>±180 Nm</td>
<td>±330 Nm</td>
</tr>
<tr>
<td>Coppia z</td>
<td>±90 Nm</td>
<td>±140 Nm</td>
</tr>
</tbody>
</table>

* Continua nella pagina successiva*
Requisiti della fondazione

Nella tabella sono riportati i requisiti per la fondazione, tenendo conto del peso del robot installato:

<table>
<thead>
<tr>
<th>Requisito</th>
<th>Valore</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planarità della superficie della fondazione</td>
<td>0.1/500 mm</td>
<td>Le basi piatte hanno come risultato una migliore ripetibilità della calibratura del resolver rispetto alle impostazioni originali impostate al momento della consegna di ABB. Il valore della planarità si basa sulla condizione dei punti di ancoraggio nella base del robot. Per poter compensare il fatto di trovarsi su una superficie non uniforme, il robot può essere ricalibrato durante l'installazione. Se la calibratura del resolver/encoder viene modificata, questo influirà sulla absolute accuracy.</td>
</tr>
</tbody>
</table>

Inclinazione massima | 5° |

Frequenza di risonanza minima | 22 Hz | Il valore è raccomandato per garantire prestazioni ottimali. A causa della rigidità della fondazione, prendere in considerazione la massa del robot, compresa l'attrezzatura. Per informazioni relative alla compensazione di una fondazione flessibile, vedere Application manual - Controller software OmniCore, sezione Motion Process Mode. |

Nota
Una frequenza di risonanza inferiore rispetto a quella raccomandata potrebbe influire sulla durata del manipolatore.

La frequenza di risonanza minima indicata deve essere interpretata come la frequenza della massa/inerzia del robot, robot ipotizzato rigido, quando si aggiunge elasticità torsionale/traslazionale della fondazione, ossia la rigidità del piedistallo dove è montato il robot. La frequenza di risonanza minima deve essere interpretata come la frequenza di risonanza dell'edificio, del pavimento ecc. Per esempio, se la massa equivalente del pavimento è molto elevata, non influenzerà il movimento del robot, anche se la frequenza è decisamente inferiore alla frequenza indicata. Il robot deve essere montato il più rigidamente possibile al pavimento. Le interferenze dalle altre macchine pregiudicano l'accuratezza del robot e degli utensili. Il robot presenta una frequenza di risonanza nella regione compresa tra 10 e 20 Hz, quindi le interferenze in questa regione saranno amplificate, sebbene a volte ammortizzati dal servocontrollo. Ciò potrebbe rappresentare un problema, a seconda dei requisiti relativi alle applicazioni; in tal caso il robot deve essere isolato dall'ambiente circostante.

Condizioni di immagazzinaggio, robot

Nella tabella sono riportate le condizioni di immagazzinaggio consentite per il robot:

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambiente minima</td>
<td>-25 °C (-13°F)</td>
</tr>
<tr>
<td>Temperatura ambiente massima</td>
<td>+55 °C (+131°F)</td>
</tr>
<tr>
<td>Temperatura ambiente massima (per meno di 24 ore)</td>
<td>+70 °C (+158°F)</td>
</tr>
<tr>
<td>Umidità ambiente massima</td>
<td>95% a temperatura costante (solo stato gassoso)</td>
</tr>
</tbody>
</table>
Condizioni operative, robot

Nella tabella sono riportate le condizioni operative consentite per il robot:

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura ambientale minima</td>
<td>+5 °C (41 °F)</td>
</tr>
<tr>
<td>Temperatura ambientale massima</td>
<td>+45°C (113°F)</td>
</tr>
<tr>
<td>Umidità ambientale massima</td>
<td>95% a temperatura costante</td>
</tr>
</tbody>
</table>

1 A bassa temperatura (inferiore a 10 °C) è consigliata una fase di riscaldamento per il funzionamento del robot, dato che si incorre altrimenti nel rischio che il robot si arresti o funzioni con prestazioni ridotte, a causa delle viscosità dell'olio e del grasso, dovute alla temperatura.

Classi di protezione, robot

Nella tabella sono riportati i tipi di protezione disponibili per il robot, con la classe di protezione corrispondente.

<table>
<thead>
<tr>
<th>Classe di protezione</th>
<th>Classe di protezione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipolatore, protezione tipo Standard</td>
<td>IP40</td>
</tr>
<tr>
<td></td>
<td>IP67 (option 3350-670)</td>
</tr>
</tbody>
</table>

Altri dati tecnici

<table>
<thead>
<tr>
<th>Dati</th>
<th>Descrizione</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello di rumorosità aerea</td>
<td>Il livello di pressione acustica all'esterno dell'area di lavoro.</td>
<td>< 65 dB(A) Leq (secondo la Direttiva macchine 2006/42/CE)</td>
</tr>
</tbody>
</table>

Assorbimento a carico massimo

<table>
<thead>
<tr>
<th>Tipo di movimento</th>
<th>4/0.475</th>
<th>4/0.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO Cube</td>
<td>282</td>
<td>275</td>
</tr>
<tr>
<td>Max. velocità (W)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Robot in posizione di calibratura.</th>
<th>4/0.475</th>
<th>4/0.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freni inseriti (W)</td>
<td>70</td>
<td>79</td>
</tr>
<tr>
<td>Freni disinseriti (W)</td>
<td>154</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>250 mm</td>
</tr>
</tbody>
</table>
1 Descrizione

1.1.3.1 Dati tecnici

Continua

Dimensioni principali di IRB 1100-4/0.475

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Raggio di curvatura: R85</td>
</tr>
<tr>
<td>B</td>
<td>Raggio di curvatura: R109</td>
</tr>
<tr>
<td>C</td>
<td>Raggio di curvatura: R61</td>
</tr>
</tbody>
</table>
Dimensioni principali di IRB 1100-4/0.58

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Raggio di curvatura: R85</td>
</tr>
<tr>
<td>B</td>
<td>Raggio di curvatura: R109</td>
</tr>
<tr>
<td>C</td>
<td>Raggio di curvatura: R61</td>
</tr>
</tbody>
</table>
1 Descrizione

1.2 Norme

1.2.1 Standard applicabili

Norme, EN ISO

Il prodotto è progettato in conformità con i seguenti requisiti:

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 12100:2010</td>
<td>Safety of machinery - General principles for design - Risk assessment and risk reduction</td>
</tr>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery, safety related parts of control systems - Part 1: General principles for design</td>
</tr>
<tr>
<td>EN ISO 13850:2015</td>
<td>Safety of machinery - Emergency stop - Principles for design</td>
</tr>
<tr>
<td>EN ISO 10218-1:2011</td>
<td>Robots for industrial environments - Safety requirements - Part 1 Robot</td>
</tr>
<tr>
<td>ISO 9787:2013</td>
<td>Robots and robotic devices -- Coordinate systems and motion nomenclatures</td>
</tr>
<tr>
<td>EN ISO 14644-1:2015(^i)</td>
<td>Classification of air cleanliness</td>
</tr>
<tr>
<td>EN ISO 13732-1:2008</td>
<td>Ergonomics of the thermal environment - Part 1</td>
</tr>
<tr>
<td>EN 61000-6-4:2007 + A1:2011</td>
<td>EMC, Generic emission</td>
</tr>
<tr>
<td>IEC 61000-6-4:2006 + A1:2010 (opzione 129-1)</td>
<td>EMC, Generic immunity</td>
</tr>
<tr>
<td>EN 61000-6-2:2005</td>
<td>EMC, Generic immunity</td>
</tr>
<tr>
<td>IEC 61000-6-2:2005</td>
<td>EMC, Generic immunity</td>
</tr>
<tr>
<td>EN IEC 60974-1:2012(^ii)</td>
<td>Arc welding equipment - Part 1: Welding power sources</td>
</tr>
<tr>
<td>EN IEC 60974-10:2014(^ii)</td>
<td>Arc welding equipment - Part 10: EMC requirements</td>
</tr>
<tr>
<td>EN IEC 60204-1:2016</td>
<td>Safety of machinery - Electrical equipment of machines - Part 1 General requirements</td>
</tr>
<tr>
<td>IEC 60529:1989 + A2:2013</td>
<td>Degrees of protection provided by enclosures (IP code)</td>
</tr>
</tbody>
</table>

\(^i\) Soltanto robot con la classe di protezione Clean Room.
\(^ii\) Valido soltanto per robot per saldatura ad arco. Sostituisce EN IEC 61000-6-4 per robot per saldatura ad arco.

Norme europee

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descrizione</th>
</tr>
</thead>
</table>
1 Descrizione

1.2.1 Standard applicabili

Continua

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descrizione</th>
</tr>
</thead>
</table>

Altre norme

<table>
<thead>
<tr>
<th>Norma</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/RIA R15.06</td>
<td>Safety requirements for industrial robots and robot systems</td>
</tr>
<tr>
<td>ANSI/UL 1740</td>
<td>Safety standard for robots and robotic equipment</td>
</tr>
<tr>
<td>CAN/CSA Z 434-14</td>
<td>Industrial robots and robot Systems - General safety requirements</td>
</tr>
</tbody>
</table>
1 Descrizione

1.3 Installazione

1.3.1 Introduzione all’installazione

Informazioni generali
IRB 1100 è adatto al normale ambiente industriale. A seconda della versione del robot, è possibile montare sulla flangia dell’utensile (asse 6) un terminale di peso massimo di 4 kg compreso il carico al polso. Vedere Diagrammi di carico a pagina 27.

Carichi supplementari
Il braccio superiore può gestire un carico aggiuntivo di 0,5 kg.
Vedere Montaggio dell’apparecchiatura sul robot a pagina 36.

Limitazioni della portata operativa
Come opzione, è possibile limitare il campo di lavoro degli assi 1 tramite arresti meccanici. Vedere Portata operativa a pagina 42.
1.3.2 Assemblare il manipolatore

Viti di fissaggio

Nella tabella seguente è specificato il tipo di viti di fissaggio e di rondelle che dovrà essere utilizzato per fissare il robot alla piastra base/fondazione.

<table>
<thead>
<tr>
<th>Viti idonee</th>
<th>M12x25 (installazione del robot direttamente sulla fondazione)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantità</td>
<td>4 pz.</td>
</tr>
<tr>
<td>Qualità</td>
<td>8.8</td>
</tr>
<tr>
<td>Rondella idonea</td>
<td>24 x 13 x 2.5, classe durezza acciaio 300HV</td>
</tr>
<tr>
<td>Perni guida</td>
<td>2 pz., D6x20, ISO 2338 - 6m6x20 - A1</td>
</tr>
<tr>
<td>Coppia di serraggio</td>
<td>50 Nm±5 Nm</td>
</tr>
</tbody>
</table>

Requisiti della superficie piana

Disposizione dei fori, base

Nella figura seguente è illustrata la disposizione dei fori utilizzati per il fissaggio del robot.
1 Descrizione

1.4 Calibratura e riferimenti

1.4.1 Metodi di calibratura

Panoramica

Questo paragrafo definisce i diversi tipi di calibratura e i metodi di calibratura che vengono forniti da ABB.

I dati di calibratura originali in dotazione con il robot vengono generati quando il robot è montato a pavimento. Se il robot non è montato a pavimento, la sua precisione potrebbe essere pregiudicata. Il robot deve essere calibrato, una volta montato.

Nel manuale del prodotto sono disponibili informazioni aggiuntive.

Tipi di calibrazione

<table>
<thead>
<tr>
<th>Tipo di calibrazione</th>
<th>Descrizione</th>
<th>Metodo di calibrazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrazione standard</td>
<td>Il robot calibrato viene posizionato per la calibrazione.</td>
<td>Axis Calibration</td>
</tr>
<tr>
<td></td>
<td>I dati della normale calibrazione si trovano nella SMB o EIB del robot.</td>
<td></td>
</tr>
<tr>
<td>Absolute accuracy (facoltativa)</td>
<td>È basata sulla calibrazione standard e, oltre a collocare il robot nella</td>
<td>CalibWare</td>
</tr>
<tr>
<td></td>
<td>posizione di sincronizzazione, la calibrazione Absolute accuracy compensa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>anche:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• le tolleranze meccaniche nella struttura del robot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• la flessione causata dal carico</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La calibrazione Absolute accuracy si concentra sulla precisione di posizionamento nel sistema di coordinate cartesiane del robot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I dati della calibrazione Absolute accuracy si trovano nella SMB del</td>
<td></td>
</tr>
<tr>
<td></td>
<td>manipolatore.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un robot calibrato con Absolute accuracy ha le informazioni sull’opzione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stampate sulla piastrina di identificazione.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Per rientrare nuovamente prestazioni Absolute accuracy, il robot deve essere</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ricalibrato per la funzionalità di precisione assoluta dopo una riparazione</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o una manutenzione che interessa la struttura meccanica.</td>
<td></td>
</tr>
</tbody>
</table>

Breve descrizioni dei metodi di calibrazione

Metodo Axis Calibration

Axis Calibration è un metodo di calibrazione standard per la calibrazione di IRB 1100 ed è il metodo standard più accurato, consigliato per ottenere prestazioni adeguate.

Per il metodo Axis Calibration sono disponibili le seguenti routine:

• Calibrazione fine
• Aggiornamento dei contagiri
• Reference Calibration
L’attrezzatura per Axis Calibration viene fornita come kit di utensili.
Le vere e proprie istruzioni per eseguire la procedura di calibratura vengono fornite nel FlexPendant. Si è guidati passo dopo passo nell’esecuzione della procedura.

calibrazione CalibWare - Absolute Accuracy
L’utensile CalibWare guida attraverso il processo di calibratura e calcola i nuovi parametri di compensazione. Questa operazione è ulteriormente descritta nel Application manual - CalibWare Field.
Se viene effettuato un intervento di assistenza su un robot che dispone dell’opzione Absolute Accuracy, per ristabilire le prestazioni complete è necessaria una nuova calibratura con la funzionalità di precisione assoluta. Nella maggior parte dei casi, dopo sostituzioni che non comprendano lo smontaggio della struttura del robot, la calibratura standard è sufficiente.
L’opzione Absolute Accuracy varia a seconda della posizione di montaggio del robot. È stampata sulla piastrina di identificazione di ogni robot. Quando viene ricalibrato per la precisione assoluta, il robot deve trovarsi nella posizione di montaggio corretta.
1 Descrizione

1.4.2 Calibratura fine

Informazioni generali

La calibrazione fine viene effettuata con il metodo di calibrazione dell’asse.

ATTENZIONE

Per calibrare l’asse 6, la tacca sul polso deve essere allineata al foro del perno contrassegnato sulla flangia dell’utensile. Prima di installare un utensile sulla flangia relativa, accertarsi che sia stato effettuato un segno visibile sull’utensile nella posizione corrispondente.

Assi

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asse 1</td>
<td>2</td>
<td>Asse 2</td>
</tr>
<tr>
<td>3</td>
<td>Asse 3</td>
<td>4</td>
<td>Asse 4</td>
</tr>
<tr>
<td>5</td>
<td>Asse 5</td>
<td>6</td>
<td>Asse 6</td>
</tr>
</tbody>
</table>
1.4.3 calibratura Absolute Accuracy

Scopo

Absolute Accuracy sottintende un concetto di calibrazione che migliora la precisione del TCP. La differenza tra un robot ideale e un robot reale può essere di diversi millimetri, a causa delle tolleranze meccaniche e della flessione della struttura del robot. *Absolute Accuracy* compensa queste differenze.

Esempi di quando questa precisione è importante:

- Intercambiabilità dei robot
- Programmazione fuori linea con intervento minimo o nullo
- Programmazione in linea con movimento preciso e riorientamento dell'utensile
- Allineamento preciso della cella per movimento coordinato MultiMove
- Programmazione con movimento preciso dell'offset in relazione, ad esempio, al sistema di visione o alla programmazione dell'offset
- Riutilizzo dei programmi in applicazioni diverse

L'opzione *Absolute Accuracy* è integrata negli algoritmi del controller e non richiede apparecchiature esterne o calcoli.

Nota

I dati sulle prestazioni sono applicabili alla versione RobotWare corrispondente del singolo robot.

Che cosa è incluso

Ogni robot *Absolute Accuracy* viene consegnato con:

- parametri di compensazione salvati nella scheda di misurazione seriale del robot
- un "certificato di nascita" che rappresenta il protocollo di misurazione *Absolute Accuracy* per la sequenza di calibrazione e verifica.

Continua nella pagina successiva
1 Descrizione

1.4.3 calibratura Absolute Accuracy

Continua

Un robot con calibrazione **Absolute Accuracy** è contrassegnato sul manipolatore. **Absolute Accuracy** supporta installazioni sia montate a pavimento che invertite. I parametri di compensazione cambiano a seconda del tipo di installazione, a pavimento o invertita.

Quando è utilizzata Absolute Accuracy

Absolute Accuracy funziona su una destinazione del robot in coordinate cartesiane, non sui singoli giunti. Pertanto, i movimenti basati sui giunti (ad es. MoveAbsJ) non saranno interessati.

Se il robot viene invertito, la calibratura Absolute Accuracy deve essere eseguita quando il robot è invertito.

Absolute Accuracy attiva

Absolute Accuracy sarà attiva nei seguenti casi:

- Qualsiasi funzione di movimento basata su robtarget (ad es. MoveL) e ModPos su robtarget
- Movimento di riorientamento
- Movimento manuale lineare
- Definizione dell'utensile (definizione dei punti 4, 5, 6 dell'utensile, TCP fisso rispetto alla sala, utensile fisso)
- Definizione dell'oggetto di lavoro

Absolute Accuracy non è attiva

Di seguito sono riportati esempi di quando Absolute Accuracy non è attiva:

- Qualsiasi funzione di movimento basata su jointtarget (MoveAbsJ)
- Giunto indipendente
- Movimento basato sul giunto

Istruzioni RAPID

Non vi sono istruzioni RAPID incluse in questa opzione.

Dati di produzione

I dati di produzione tipici riguardanti la calibratura sono:

<table>
<thead>
<tr>
<th>Robot</th>
<th>Precisione del posizionamento (mm)</th>
<th>Media</th>
<th>Max</th>
<th>% entro 1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 1100-4/0.475</td>
<td>0,35</td>
<td>0,75</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>IRB 1100-4/0.58</td>
<td>0,35</td>
<td>0,75</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1.5 Diagrammi di carico

1.5.1 Introduzione

AVVERTENZA
È estremamente importante definire sempre i dati attuali di carico corretti e il carico utile corretto del robot. Definizioni non corrette dei dati di carico possono sovraccaricare il robot.
Se si utilizzano dei dati di carico non corretti e/o carichi fuori dagli schemi, le seguenti parti potrebbero danneggiarsi a seguito di sovraccarico:
- motori
- riduttori
- struttura meccanica

AVVERTENZA
Nel sistema robotico è disponibile la routine di servizio LoadIdentify, che consente all’utente di preparare una definizione automatica dell’utensile e del carico, al fine di determinare i corretti parametri di carico.
Per ulteriori informazioni, vedere *Operating manual - OmniCore*.

AVVERTENZA
I robot azionati con dati di carico non corretti e/o carichi fuori dal diagramma non sono coperti dalla garanzia del robot.

Informazioni generali
I diagrammi di carico comprendono un’inzerzia del carico al polso nominale, J_0 di 0,012 kgm2, e un carico extra di 0,5 kg sull’alloggiamento del braccio superiore.
Al variare del momento di inerzia, varia anche lo schema di carico. Per i robot che possono essere inclinati, montati a parete o invertiti, i diagrammi di carico illustrati sono validi, pertanto è possibile utilizzare anche RobotLoad nell’ambito di tali limiti di inclinazione e asse.

Controllo del caso di carico tramite “RobotLoad”.
Per controllare con facilità uno specifico caso di carico, utilizzare il programma di calcolo ABB RobotLoad. Per maggiori informazioni, contattare la struttura ABB locale.
Il risultato derivante da RobotLoad è valido solo entro i carichi e gli angoli di inclinazione massimi. Non si hanno segnalazioni qualora si superi il massimo carico del braccio consentito. Per i casi di sovraccarico e applicazioni speciali, contattare ABB per ulteriori analisi.
1.5.2 Diagrammi

IRB 1100-4/0.475

Continua nella pagina successiva
IRB 1100-4/0.475 “Polso verticale” (±10°)

Per polso rivolto verso il basso (deviazione di 0° dall’asse verticale).

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carico max</td>
<td>4,2 kg</td>
</tr>
<tr>
<td>Z(_{\text{max}})</td>
<td>0,13 m</td>
</tr>
<tr>
<td>L(_{\text{max}})</td>
<td>0,09 m</td>
</tr>
</tbody>
</table>
1 Descrizione

1.5.2 Diagrammi

Continua
IRB 1100-4/0.58 “Polso verticale” (±10°)

Per polso rivolto verso il basso (deviazione di 0° dall’asse verticale).

<table>
<thead>
<tr>
<th>Descrizione</th>
<th>Carico max</th>
<th>(Z_{\text{max}})</th>
<th>(L_{\text{max}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,2 kg</td>
<td>0,133 m</td>
<td>0,85 m</td>
</tr>
</tbody>
</table>

xx1800002636

Dati tecnici del prodotto - IRB 1100
3HAC064993-007 Revisione: B

©Copyright 2019 ABB All rights reserved - Tutti i diritti riservati.
1.5.3 Carico massimo e momento di inerzia per il movimento completo e limitato dell’asse 5 (linea centrale verso il basso)

Nota

Carico totale espresso in: massa in kg, baricentro (Z e L) in metri e momento di inerzia \((J_{ox}, J_{oy}, J_{oz})\) in kgm\(^2\). \(L=sqr(X^2 + Y^2)\), vedere figura di seguito.

Movimento completo dell’asse 5 (-125°/+120°)

<table>
<thead>
<tr>
<th>Asse</th>
<th>Tipo di robot</th>
<th>Momento di inerzia massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>IRB 1100-4/0.475 IRB 1100-4/0.58</td>
<td>(J_{a5} = Load \times (((Z + 0.064)^2 + L^2) + \max(J_{ox}, J_{oy}) \leq 0.175 \text{ kgm}^2))</td>
</tr>
<tr>
<td>6</td>
<td>IRB 1100-4/0.475 IRB 1100-4/0.58</td>
<td>(J_{a6} = Load \times L^2 + J_{oz} \leq 0.085 \text{ kgm}^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Baricentro</td>
</tr>
</tbody>
</table>

Descrizione

\(J_{ox}, J_{oy}, J_{oz}\) Momento di inerzia massimo intorno agli assi X, Y e Z sul centro di gravità.

Continua nella pagina successiva
1.5.3 Carico massimo e momento di inerzia per il movimento completo e limitato dell’asse 5 (linea centrale verso il basso)

Continua

Movimento limitato dell’asse 5, linea centrale verso il basso

<table>
<thead>
<tr>
<th>Asse</th>
<th>Tipo di robot</th>
<th>Momento di inerzia massimo</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>IRB 1100-4/0.475 IRB 1100-4/0.58</td>
<td>$J_{a5} = \text{Load} \times ((Z + 0.064)^2 + L^2) + \max (J_{0x}, J_{0y}) \leq 0.175 \text{ kgm}^2$</td>
</tr>
<tr>
<td>6</td>
<td>IRB 1100-4/0.475 IRB 1100-4/0.58</td>
<td>$J_{a6} = \text{Load} \times L^2 + J_{0z} \leq 0.085 \text{ kgm}^2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Baricentro</td>
</tr>
</tbody>
</table>

xx1400002029

J_{ox}, J_{oy}, J_{oz} Modalità di inerzia massimo intorno agli assi X, Y e Z sul centro di gravità.
1.5.4 Coppia del polso

Nota

I valori indicati sono soltanto a scopo di riferimento, e non devono essere utilizzati per il calcolo della deriva di carico consentita (posizione del baricentro) nell’ambito dello schema di carico, dato che tali elementi sono anch’essi limitati dalle coppie degli assi principali, nonché dai carichi dinamici. Anche i carichi sul braccio influiranno sullo schema del carico consentito. Per ritrovare i limiti assoluti dello schema del carico, utilizzare ABB RobotLoad. Mettersi per questo in contatto con la struttura locale ABB.

Coppia

La tavola sottostante illustra la coppia massima consentita, a causa del carico utile.

<table>
<thead>
<tr>
<th>Tipo di robot</th>
<th>Coppia massima del polso, assi 4 e 5</th>
<th>Coppia massima del polso, asse 6</th>
<th>Coppia massima valida per il carico</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 1100-4/0.475</td>
<td>5,0 Nm</td>
<td>2,9 Nm</td>
<td>4 kg</td>
</tr>
<tr>
<td>IRB 1100-4/0.58</td>
<td>5,0 Nm</td>
<td>2,9 Nm</td>
<td>4 kg</td>
</tr>
</tbody>
</table>
1.5.5 Accelerazione TCP massima

Informazioni generali

I valori più alti possono essere raggiunti con carichi inferiori rispetto a quelli nominali, grazie al controllo del movimento dinamico QuickMove2. Per i valori specifici nel ciclo esclusivo del cliente o per i robot non indicati nella tabella seguente, si consiglia di utilizzare RobotStudio.
Fori di fissaggio e dimensioni
Sul robot è possibile montare carichi aggiuntivi. La definizione di dimensioni e masse è riportata nelle figure seguenti. Il robot è dotato di fori per il montaggio di attrezzature supplementari.
Il carico massimo ammissibile del braccio dipende dal baricentro del carico del braccio e dal carico utile del robot.

Fori per il montaggio di attrezzatura supplementare

<table>
<thead>
<tr>
<th>Pos</th>
<th>IRB 1100-4/0.475</th>
<th>IRB 1100-4/0.58</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>248</td>
<td>303</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>
1.6 Montaggio dell’apparecchiatura sul robot

Continua
ATTENZIONE

Per calibrare l’asse 6, la tacca sul polso deve essere allineata al foro del perno contrassegnato sulla flangia dell’utensile. Prima di installare un utensile sulla flangia relativa, accertarsi che sia stato effettuato un segno visibile sull’utensile nella posizione corrispondente.

Per i dettagli del segno di sincronizzazione, vedere Manuale del prodotto - IRB 1100.

Qualità dei dispositivi di fissaggio

Utilizzare viti e coppia di serraggio appropriate. Si consiglia di utilizzare viti con classe di qualità 12,9.
1.7 Manutenzione e risoluzione dei problemi

Informazioni generali
In fase di funzionamento, il robot richiede solo un livello minimo di manutenzione. È stato progettato appositamente per semplificare al massimo eventuali interventi:
• I motori CA utilizzati non richiedono manutenzione.
• Si utilizza grasso per i riduttori.
• Il cablaggio è stato disposto in modo da assicurarne la durata nel tempo; nell'improbabile eventualità di un guasto, il design modulare semplifica le operazioni di sostituzione.

Manutenzione
1 Descrizione

1.8 Movimento del robot

1.8.1 Portata operativa

Illustrazione, portata operativa IRB 1100-4/0.475

Questa illustrazione mostra la portata operativa, non limitata, del robot.

<table>
<thead>
<tr>
<th>Posizione nella figura</th>
<th>Posizioni al centro del polso (mm)</th>
<th>Angolo (gradi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Z</td>
<td>asse 2 asse 3</td>
</tr>
<tr>
<td>pos0</td>
<td>314 562</td>
<td>0° 0°</td>
</tr>
<tr>
<td>pos1</td>
<td>0 802</td>
<td>0° -87.7°</td>
</tr>
<tr>
<td>pos2</td>
<td>53.8 327</td>
<td>9.7° 55°</td>
</tr>
<tr>
<td>pos3</td>
<td>475 327</td>
<td>90° -87.7°</td>
</tr>
<tr>
<td>pos4</td>
<td>437.4 141.3</td>
<td>113° -87.7°</td>
</tr>
<tr>
<td>pos5</td>
<td>-248.2 327</td>
<td>-26.4° -205°</td>
</tr>
<tr>
<td>pos6</td>
<td>-87.6 453.4</td>
<td>-115° 55°</td>
</tr>
<tr>
<td>pos7</td>
<td>-475 327</td>
<td>-90° -87.7°</td>
</tr>
<tr>
<td>pos8</td>
<td>-430.7 126.2</td>
<td>-115° -87.7°</td>
</tr>
<tr>
<td>pos9</td>
<td>188.4 488.6</td>
<td>113° -205°</td>
</tr>
</tbody>
</table>

xx1800002437

Posizioni al centro del polso ed angolo degli assi 2 e 3

Continua nella pagina successiva
Illustrazione, portata operativa IRB 1100-4/0.58

Questa illustrazione mostra la portata operativa, non limitata, del robot.

<table>
<thead>
<tr>
<th>Posizione nella figura</th>
<th>Posizioni al centro del polso (mm)</th>
<th>Angolo (gradi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>Z</td>
</tr>
<tr>
<td>pos0</td>
<td>364</td>
<td>617</td>
</tr>
<tr>
<td>pos1</td>
<td>0</td>
<td>907.2</td>
</tr>
<tr>
<td>pos2</td>
<td>184.6</td>
<td>327</td>
</tr>
<tr>
<td>pos3</td>
<td>580</td>
<td>327</td>
</tr>
<tr>
<td>pos4</td>
<td>534</td>
<td>100.3</td>
</tr>
<tr>
<td>pos5</td>
<td>-304</td>
<td>327</td>
</tr>
<tr>
<td>pos6</td>
<td>-112.4</td>
<td>473.5</td>
</tr>
<tr>
<td>pos7</td>
<td>-580</td>
<td>327</td>
</tr>
<tr>
<td>pos8</td>
<td>-525.8</td>
<td>81.8</td>
</tr>
<tr>
<td>pos9</td>
<td>237.3</td>
<td>517.1</td>
</tr>
</tbody>
</table>
Portata operativa

<table>
<thead>
<tr>
<th>Asse</th>
<th>Range di lavoro</th>
<th>Nota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asse 1</td>
<td>±230°</td>
<td>Il robot montato a parete ha una superficie di lavoro per asse 1 che dipende dal carico al polso e dalle posizioni di altri assi; si consiglia una simulazione in RobotStudio per individuare le diverse possibilità.</td>
</tr>
<tr>
<td>Asse 2</td>
<td>-115°/+113°</td>
<td></td>
</tr>
<tr>
<td>Asse 3</td>
<td>-205°/+55°</td>
<td>Valore per portata operativa limitata.</td>
</tr>
<tr>
<td>Asse 4</td>
<td>±230°</td>
<td>Valore predefinito</td>
</tr>
<tr>
<td>Asse 5</td>
<td>-125°/+120°</td>
<td></td>
</tr>
<tr>
<td>Asse 6</td>
<td>±400°</td>
<td>Valore predefinito</td>
</tr>
<tr>
<td></td>
<td>±242</td>
<td>Valore massimo del giro. Il range di lavoro predefinito per l’asse 6 può essere esteso modificando i valori dei parametri nel software.</td>
</tr>
</tbody>
</table>
1.8.2 Prestazioni conformi alle norme ISO 9283

Informazioni generali

Al carico massimo nominale, con offset massimo e alla velocità di 1,6 m/s sul piano di test ISO inclinato, con tutti i sei assi in movimento. I valori riportati nella tabella sottostante rappresentano i risultati medi dei test effettuati su un numero limitato di robot. Essi possono variare a seconda di dove il robot è posizionato all’interno del suo range di lavoro, della velocità, della configurazione del braccio, della direzione dalla quale avviene il posizionamento e dal senso di carico del sistema del braccio. Anche il gioco dei riduttori influenza il risultato.

Le illustrazioni per AP, RP, AT e RT sono misurate secondo l’illustrazione sottostante.

<table>
<thead>
<tr>
<th>Pos</th>
<th>Descrizione</th>
<th>Pos</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Posizione programmata</td>
<td>E</td>
<td>Percorso programmato</td>
</tr>
<tr>
<td>B</td>
<td>Posizione mediana all’esecuzione del programma</td>
<td>D</td>
<td>Percorso effettivo all’esecuzione del programma</td>
</tr>
<tr>
<td>AP</td>
<td>Distanza media dalla posizione programmata</td>
<td>AT</td>
<td>Deviazione massima da E al percorso medio</td>
</tr>
<tr>
<td>RP</td>
<td>Tolleranza per la posizione B ad un posizionamento ripetuto</td>
<td>RT</td>
<td>Tolleranza del percorso all’esecuzione ripetuta del programma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IRB 1100</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4/0.475</td>
<td>4/0.58</td>
</tr>
<tr>
<td>Ripetibilità della posizione, RP (mm)</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Tempo di posizionamento minimo, PST (s), entro 0,1 mm dalla posizione</td>
<td>0,08</td>
<td>0,19</td>
</tr>
<tr>
<td>Ripetibilità del percorso, RT (mm)</td>
<td>0,05</td>
<td>0,05</td>
</tr>
</tbody>
</table>
1 Descrizione

1.8.3 Velocità

Una funzione di supervisione previene fenomeni di surriscaldamento nelle applicazioni che prevedono movimenti intensi e frequenti (ciclo intensivo).

Risoluzione dell'asse
da 0.001° a 0.005°.

Velocità massime degli assi

<table>
<thead>
<tr>
<th>Tipo di robot</th>
<th>Asse 1</th>
<th>Asse 2</th>
<th>Asse 3</th>
<th>Asse 4</th>
<th>Asse 5</th>
<th>Asse 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB 1100-4/0.475</td>
<td>460 °/s</td>
<td>380 °/s</td>
<td>280 °/s</td>
<td>560 °/s</td>
<td>420 °/s</td>
<td>750 °/s</td>
</tr>
<tr>
<td>IRB 1100-4/0.58</td>
<td>460 °/s</td>
<td>360 °/s</td>
<td>280 °/s</td>
<td>560 °/s</td>
<td>420 °/s</td>
<td>750 °/s</td>
</tr>
</tbody>
</table>
1.8.4 Distanze e tempi di arresto del robot

Introduzione

Le distanze e i tempi di arresto per gli arresti di categoria 0 e 1, come richiesto dalla normativa EN ISO 10218-1 Annex B, sono elencati in Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645--001).
1 Descrizione

1.9 Collegamenti utente

Introduzione alle connessioni del cliente

Ci sono anche connessioni per Ethernet, un connettore R2.C2 sul polso e il connettore corrispondente R1.C2 ubicato alla base.

Anche il tubo flessibile per l’aria compressa è integrato nel manipolatore. Ci sono 4 ingressi alla base (R1/8") e 4 uscite (M5) sul polso.

<table>
<thead>
<tr>
<th>Posizione</th>
<th>Collegamento</th>
<th>Descrizione</th>
<th>Number</th>
<th>Valore</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(R1)R2.C1</td>
<td>Segnale/alimentazione utente</td>
<td>8 fili</td>
<td>30 V, 1.5 A</td>
</tr>
<tr>
<td>B</td>
<td>(R1)R2.C2</td>
<td>Corrente/segnale del cliente o Ethernet</td>
<td>8 fili</td>
<td>30 V, 1 A o 1 Gbits/s</td>
</tr>
<tr>
<td>C</td>
<td>Aria</td>
<td>6 bar max</td>
<td>4</td>
<td>Diametro interno del tubo: 4 mm</td>
</tr>
</tbody>
</table>

i Il connettore ha 12 pin. Solo i pin da 1 a 8 sono utilizzabili.

Continua nella pagina successiva
Kit connettori (optional)

La tabella descrive i kit di CP/CS e Ethernet (eventuale) per il polso.

Kit connettori, polso

<table>
<thead>
<tr>
<th>Posizione</th>
<th>Descrizione</th>
<th>Codice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit di connettori</td>
<td>CP/CS</td>
<td>M12 Kit connettori maschio diritti CPCS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M12 Kit connettori maschio angolati CPCS</td>
</tr>
<tr>
<td>Ethernet</td>
<td></td>
<td>M12 Kit connettori maschio diritti Ethernet Cat5e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M12 Kit connettori maschi angolati Ethernet Cat5e</td>
</tr>
</tbody>
</table>

Coperture di protezione

Coperture di protezione per impermeabilizzazione da acqua e polvere

Insieme al robot vengono consegnate coperture di protezione che devono essere ben montate sui connettori in qualsiasi applicazione che richieda impermeabilizzazione da acqua e polvere.

Ricordare sempre di rimontare le coperture di protezione dopo averle rimosse.

xx1900000132

A Coperture protettive connettori CP/CS o Ethernet
B Coperture protettive connettore SMB
C Coperture di protezione dei connettori dei tubi dell'aria
Questa pagina è stata intenzionalmente lasciata bianca
Informazioni generali

Nei paragrafi seguenti vengono descritte le diverse varianti e opzioni per IRB 1100. Vengono utilizzati gli stessi numeri delle opzioni del modulo dei dati tecnici.

Le varianti e le opzioni relative al controller del robot sono descritte nelle specifiche del prodotto per il controller.
2 Dati tecnici delle varianti e delle opzioni

2.2 Manipolatore

Varianti

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Tipo IRB</th>
<th>Capacità di movimentazione (kg)</th>
<th>Portata (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3300-1</td>
<td>1100</td>
<td>4</td>
<td>0.475</td>
</tr>
<tr>
<td>3300-2</td>
<td>1100</td>
<td>4</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Colore manipolatore

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>209-2</td>
<td>Grafite bianco standard ABB</td>
</tr>
</tbody>
</table>

Nota

Da notare che il tempo di consegna per ricambi verniciati non sarà aumentato per alcun colore standard.

Protezione

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3350-400</td>
<td>Base 40,IP40</td>
</tr>
<tr>
<td>3350-540</td>
<td>Base 54,IP54</td>
</tr>
</tbody>
</table>

Media & Comunicazione

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3303-1</td>
<td>Parallela & Aria</td>
<td>Include l'alimentazione cliente CP e i segnali cliente CS + aria.</td>
</tr>
<tr>
<td>3303-2</td>
<td>Ethernet, parallela, aria</td>
<td>Include CP, CS e PROFINET oppure Ethernet + aria.</td>
</tr>
</tbody>
</table>

Kit di connettori

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>3304-1</td>
<td>Kit di connettori diritti maschio</td>
</tr>
<tr>
<td>3305-1</td>
<td>Kit di connettori angolari maschio</td>
</tr>
<tr>
<td>3306-1</td>
<td>Kit di connettori diritti maschio Ethernet</td>
</tr>
<tr>
<td>3307-1</td>
<td>Kit di connettori angolari maschio Ethernet</td>
</tr>
</tbody>
</table>
2 Dati tecnici delle varianti e delle opzioni

2.2 Manipolatore

Continua nella pagina successiva
Garanzia

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>438-1</td>
<td>Garanzia normale</td>
<td>La garanzia standard ha una durata di 12 mesi, a partire dalla data di consegna al cliente o, al massimo, 18 mesi a partire dalla data di spedizione dalla fabbrica, a seconda della scadenza che si verifica per prima. Si applicano i termini e le condizioni della garanzia.</td>
</tr>
<tr>
<td>438-2</td>
<td>Garanzia normale + 12 mesi</td>
<td>Garanzia normale estesa per altri 12 mesi, a partire dalla data di scadenza della garanzia normale. Si applicano i termini e le condizioni della garanzia. Mettersi in contatto con il Servizio assistenza clienti in caso di altri requisiti.</td>
</tr>
<tr>
<td>438-4</td>
<td>Garanzia normale + 18 mesi</td>
<td>Garanzia normale estesa per altri 18 mesi, a partire dalla data di scadenza della garanzia normale. Si applicano i termini e le condizioni della garanzia. Mettersi in contatto con il Servizio assistenza clienti in caso di altri requisiti.</td>
</tr>
<tr>
<td>438-5</td>
<td>Garanzia normale + 24 mesi</td>
<td>Garanzia normale estesa per altri 24 mesi, a partire dalla data di scadenza della garanzia normale. Si applicano i termini e le condizioni della garanzia. Mettersi in contatto con il Servizio assistenza clienti in caso di altri requisiti.</td>
</tr>
<tr>
<td>438-6</td>
<td>Garanzia normale + 6 mesi</td>
<td>Garanzia normale estesa per altri 6 mesi, a partire dalla data di scadenza della garanzia normale. Si applicano i termini e le condizioni della garanzia.</td>
</tr>
<tr>
<td>438-7</td>
<td>Garanzia normale + 30 mesi</td>
<td>Garanzia normale estesa per altri 30 mesi, a partire dalla data di scadenza della garanzia normale. Si applicano i termini e le condizioni della garanzia.</td>
</tr>
</tbody>
</table>
È consentito un periodo massimo di 6 mesi per procrastinare l’avvio della Garanzia normale, a partire dalla data di spedizione dalla fabbrica. Da notare che non verranno accettati reclami per garanzie che siano entrate in vigore prima della fine della Garanzia di magazzino. La Garanzia normale prende inizio automaticamente, dopo 6 mesi o a partire dalla data di spedizione dalla fabbrica o a partire dalla data di attivazione della garanzia normale in WebConfig.

Nota

Si applicano condizioni speciali; vedere le Direttive delle Garanzie Robotics.

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Tipo</th>
<th>Descrizione</th>
</tr>
</thead>
<tbody>
<tr>
<td>438-8</td>
<td>Garanzia di magazzino</td>
<td>È consentito un periodo massimo di 6 mesi per procrastinare l’avvio della Garanzia normale, a partire dalla data di spedizione dalla fabbrica. Da notare che non verranno accettati reclami per garanzie che siano entrate in vigore prima della fine della Garanzia di magazzino. La Garanzia normale prende inizio automaticamente, dopo 6 mesi o a partire dalla data di spedizione dalla fabbrica o a partire dalla data di attivazione della garanzia normale in WebConfig.</td>
</tr>
</tbody>
</table>

©Copyright 2019 ABB All rights reserved - Tutti i diritti riservati.
2 Dati tecnici delle varianti e delle opzioni

2.3 Cavi di collegamento sul pavimento

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Lunghezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>3200-1</td>
<td>3 m</td>
</tr>
<tr>
<td>3200-2</td>
<td>7 m</td>
</tr>
<tr>
<td>3200-3</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Connessione della comunicazione parallela

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Lunghezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>3201-1</td>
<td>3 m</td>
</tr>
<tr>
<td>3201-2</td>
<td>7 m</td>
</tr>
<tr>
<td>3201-3</td>
<td>15 m</td>
</tr>
</tbody>
</table>

Connessione di Ethernet

<table>
<thead>
<tr>
<th>Opzione</th>
<th>Lunghezza</th>
</tr>
</thead>
<tbody>
<tr>
<td>3202-2</td>
<td>7 m</td>
</tr>
<tr>
<td>3202-3</td>
<td>15 m</td>
</tr>
</tbody>
</table>
3 Accessori

3.1 Introduzione agli accessori

Informazioni generali
È disponibile un’ampia gamma di strumenti e attrezzature.

Software di base e opzioni software per robot e PC
Per maggiori informazioni vedere Dati tecnici del prodotto - Linea OmniCore C e Application manual - Controller software OmniCore.

Periferiche del robot
- Unità motrici
Questa pagina è stata intenzionalmente lasciata bianca
Index

A
- Absolute Accuracy, 25
- Absolute Accuracy, calibrazione, 23
- accessori, 55
- arresto di categoria 0, 45
- arresto di categoria 1, 45

C
- calibrazione
 - tipo Absolute Accuracy, 22
- calibrazione CalibWare, 22

D
- dati tecnici
 - robot, 12
 - distanze di arresto, 45

F
- fissaggio del robot alla fondazione, viti di fissaggio, 21
- fondazione
 - requisiti, 14

G
- garanzia, 52
- garanzia di magazzino, 52
- garanzia normale, 52

N
- norme
 - ANSI, 19
 - CAN, 19
 - EN, 18
 - EN IEC, 18

O
- opzioni, 49

P
- parametri di compensazione, 25
- peso, 12
- portata operativa, 42
- robot, 40

R
- raggio di curvatura, 42
- requisiti della fondazione, 14
- robot
 - classe di protezione, 15
 - dati tecnici, 12
 - tipi di protezione, 15

S
- standard, 18
- standard sulla sicurezza, 18
- standard sul prodotto, 18

T
- temperatura ambiente
 - funzionamento, 15
 - immagazzinaggio, 14
- temperature
 - funzionamento, 15
 - immagazzinaggio, 14
- tempi di arresto, 45
- tipo di protezione, 15

U
- umidità
 - funzionamento, 15
 - immagazzinaggio, 14
- umidità ambiente
 - funzionamento, 15
 - immagazzinaggio, 14

V
- varianti, 49