ACS 160 Engineering Guide

Positioning Macro
(sw –version: V1.4.0.3.)
TABLE OF CONTENTS

1 INTRODUCTION TO POSITIONING MACRO ... 4

1.1 BASIC POSITIONING MODES .. 5
 1.1.1 RELATIVE POSITIONING ... 5
 1.1.2 ABSOLUTE POSITIONING .. 5

2 HOMING .. 6

2.1 MANUAL HOMING (JOGGING) ... 8
2.2 AUTOMATIC HOMING .. 9

3 START UP PROCEDURES ... 10

3.1 ENCODER INSTALLATION ... 10
3.2 ENCODER CONNECTION ... 10
 3.2.1 ENCODER ... 10
 3.2.2 CHOOSING ENCODER CONNECTION MODE 11

4 POSITIONING MODES ... 14

4.1 RELATIVE MOVE WITH POSITION CORRECTION 14
4.2 ABSOLUTE MOVE ... 15
4.3 ABSOLUTE MOVE WITH CYCLIC CORRECTION 1 16
4.4 ABSOLUTE MOVE WITH CYCLIC CORRECTION 2 17
4.5 RELATIVE MOVE WITHOUT POSITION CORRECTION 17
4.6 CONTINUOUS MOVE .. 18

5 POSITIONING RELATED PARAMETERS ... 19

5.1 GROUP 99: START UP DATA .. 19
5.2 GROUP 10: COMMAND INPUTS .. 19
5.3 GROUP 11: REFERENCE SELECT .. 19
5.4 GROUP 12: CONSTANT SPEEDS .. 20
5.5 GROUP 14: RELAY OUTPUT .. 20
5.6 GROUP 20: LIMITS ... 21
5.7 GROUP 21: START/STOP ... 21
5.8 GROUP 22: ACCEL/DECEL .. 21
5.9 GROUP 54: BRAKING .. 22
5.10 GROUP 82: POSITIONING ... 23
6. POSITIONING APPLICATION EXAMPLES

6.1 Differences of ACS 160 SW 1.0.0.E. Compared to Later Versions

6.2 Example 1: Homing Mode = 4 and Positioning Mode = 8

6.3 Example 2: Homing Mode = 4 and Positioning Mode = 5

6.4 Example 3: Detailed Description of Load Movement Between Two Targets

6.4.1 Description

6.4.2 Parameter Setting

6.4.3 Homing

6.4.4 Positioning Move from Target 1 (Home Position) to Target 2

6.4.5 Positioning Move from Target 2 to Target 1 (Home Position)

6.4.6 Exceptional Occasions

6.5 Example 4: Relative Continuous Move of Load

6.5.1 Description

6.5.2 Parameter Setting

6.5.3 Features

6.6 Example 5: Jogging with Direction Setting via Digital Input

6.6.1 Description

6.6.2 Parameter Settings

6.6.3 New Functions

6.7 Example 6: Continuous Move of the Load Between Two Targets

6.7.1 Description

6.7.2 Parameter Settings

6.8 Example 7: Operation When Gear Is Used

6.8.1 Encoder Is on the Side of the Load

6.8.2 Encoder on the Motor Shaft

7. Appendix A: Complete Parameter Settings Table
1 INTRODUCTION TO POSITIONING MACRO

The advantage of the Positioning Macro is the possibility to achieve very fast and accurate movement from one certain point to the other without any external logic devices. Typical applications are for example conveyors with fixed interval feeding, and packaging machines etc.

An encoder is required to give feedback to the drive, so that the exact location (rotational angle) of the shaft is known. Hereby it is possible to adjust the amount of rotations (and also the angle of the shaft). Positioning can be done for maximum two different positions at a constant or variable speed. Constant speeds are mostly used. An external reference point can be inserted (Home position), but it can NOT be used as a third selectable target. When the distance, which needs to be moved, and the momentary location is known, fast movement can be achieved. A motion profile in Figure 1 represents the velocity of the motor during a period of time in which the motor moves an object to certain positions.

![Figure 1. Motion profile](image)

With the ACS 160, two target positions and two motion profiles can be selected. **Target speed** is selected with parameter group 12 (Constant Speeds) parameters. **Acceleration** and **deceleration times** are selected with parameter group 22 (Accel/Decel) parameters. **Target** is selected with group 82 (Positioning) parameters. The acceleration/deceleration rate must be limited to account for the inertia of the load plus friction, to allow operation within the torque limits of the motor and ACS160.

When positioning is started, the target speed is used as frequency reference. The motor accelerates with the selected acceleration time to the target speed. ACS 160 counts the position where deceleration starts, from the target speed and deceleration time parameter values. Linear ramp is assumed during deceleration. If S-curve is used, SLOPE GAIN 1 (parameter 8218) needs to be adjusted to compensate the longer actual deceleration time.

Position is given as **motor shaft revolutions**. Normally the encoder should be mounted on the motor shaft. If not so, then the target reference and the encoder pulse number scaling must be changed as explained later in this engineering guide. Figure 2 shows the load and ACS160 related directions.

![Figure 2. Load and ACS 160 directions](image)
1.1 Basic positioning modes

The ACS 160 has two basic positioning modes, relative and absolute positioning. Relative moves allow to position the motor in relation to the motor's previous stopped position. With absolute positioning, moves are referenced to a predefined zero (Home) position, established by homing operation. Homing means that a load is driven at a moderate speed to a known position (Home position or “zero position”). The Positioning mode is selected with parameter 8215 (POS MODE).

1.1.1 Relative positioning

Relative move is used in systems, where items are repetitively moved over a certain distance. The principle of the operation is shown in Figure 3. When start command is given, the load moves from the current position to the next position. The distance between the positions is defined with a target parameter. The position counter starts counting from a defined initial value (usually zero). When the target distance is counted, ACS 160 output frequency is set to zero. The position counter is reset, when the next start command is given.

![Figure 3. Relative positioning](image)

1.1.2 Absolute positioning

Absolute move is used typically in systems, where a load is moved between two positions, which are defined in relation to zero (Home) position. The principle of the operation is shown in Figure 4. The position counter is not reset with start/stop-commands. Resetting is done only if a new target is selected.

As start command is given, the load moves to the selected position. The position counter starts counting from the value of the current position. When the selected target position is reached, ACS 160 output frequency is set to zero. The new move is possible only when the other target is selected.

![Figure 4. Absolute positioning](image)
2 HOMING

Homing means that a load is driven at a slow speed to a known position (Home position). There are two homing possibilities available, Jogging and Automatic homing. A manually made homing is called Jogging. Automatic homing mode is selected with parameter 8216 (HOMING MODE).

Homing happens only once, and that is when the drive’s power is switched on. The load is driven to Home position, which can be Target 1, Target 2 or a third position. The use of just one target position selection is also possible. When the load reaches Home position, the position counter is reset to zero, and the drive is ready for operation (positioning). The homing operation is illustrated in Figure 5a.

The direction for the homing is set with parameter 1003 DIRECTION. In general this parameter should be set to 3 (REQUEST). If jogging is used, the load is driven to only one direction, but with a joystick or fieldbus it is possible to change the direction.

An example of homing with parameter 8216 = 5 (HOMING 2) is given in Figure 5b.

The load is moved between two targets. Proximity switch is used for homing and it is connected to digital input DI3. The homing switch is placed in Target 1 position. When ACS 160 is powered up, and start command is given, the homing direction is always the same.

Parameter settings:

- P8215 (POS MODE) = 5 (ABS MOVE 1)
- P8216 (HOMING MODE) = 5 (HOMING 2)

The homing direction is always reverse (DI3 input is inactive). When Home position is reached, the proximity switch is activated (DI3 activates) and the ACS 160 output frequency changes to 0 Hz.
Example of homing

Mechanical limit
Proximity switch (DI3)
Load
Target 1
Home position
Target 2
Mechanical limit

DI1 Start/Stop
Positioning mode starts

DI3 Proximity switch
Home position reached
min. 10 ms

Position counter

ACS 160 output frequency
P1207 CONST SPEED 6

Figure 5b. Example of homing operation when homing mode = 5 (HOMING 2)
2.1 Manual homing (jogging)

Jogging is possible when the external control place EXT1 has been selected. Control place selection is made with parameter 1102 (EXT1/EXT2 SEL). As default EXT1/EXT2 selection is made with digital input DI2. Jogging speed is set with analogue input AI1. Jogging direction is defined with the direction lock parameter 1003 (DIRECTION).

Special cases

If the frequency reference and commands are given with a keypad, through a serial communication, or with a joystick to AI1 or AI2, the motor rotation can be set to both directions. In this case parameter 1003 must be set to 3 (=REQUEST).

When a load has moved to Home position, stop command must be given. After that the control place is changed from EXT1 to EXT2 with DI2. This change from EXT1 to EXT2 sets the P8225 and P8226 (HOME POS LO, HI) values to the position counter. The relay (AT TARGET) is activated. The operation is illustrated in Figure 5c.

![Figure 5c. Manual homing / jogging](image-url)
2.2 Automatic homing

This homing (with a limit switch) is possible only when the external control place EXT2 has been selected. In this mode a load is moved at moderate speed into a limit switch. The limit switch must be connected to digital input DI3. Homing can be made only once after the supply voltage has been switched on to ACS 160.

Homing starts when start command is given. The homing speed is defined with constant speed parameter 1207 (CONST SPEED 6). The homing direction is defined with parameter 8216 (HOMING MODE) and the input value of digital input DI3. Home position is reached when the limit switch is activated and DI3 input changes state.

In Home position, the ACS 160 frequency reference is internally set to zero and the relay (AT TARGET) is activated. Output frequency goes to zero with the selected ramp time. Homing is finished when stop command is given. The next start command activates the positioning mode. An example of operation is given in Figure 6.

![Figure 6. Automatic homing](image-url)
3 START UP PROCEDURES

An ACS 160 drive with an incremental encoder connection can be used for simple positioning applications. The encoder connection is enabled by choosing Application macro 14, Positioning. The analogue output does not function after this selection. It is assumed by positioning logic that the encoder is installed to the motor shaft.

3.1 Encoder installation

Connect encoder to ACS 160
- Connect encoder output pulses (phase shift between pulse channels: 90 electrical degrees) to digital inputs DI4 and DI5.
- Connect 24 V supply voltage to encoder. Supply voltage can be taken from ACS 160 or from an external power supply.

Activate encoder pulse counting
- Set parameter 9902 value to 14 (POSITIONING), turn ACS 160 power off and then on again. (Necessary for activating the pulse counting.) Set all other group 99 (APPLIC MACRO) parameters.

Check that the encoder pulses are connected to digital inputs DI4 and DI5
- Rotate the motor shaft slowly and observe that DI4 and DI5 status is changing between 1 and 0 in parameters 0117 (DI1-DI4 STATUS) and 0121 (DI5 & RELAYS)

Check that encoder direction matches to ACS 160 direction
- Rotate the motor and encoder at slow speed and observe that the position counter is counting up (to more positive direction) when ACS 160 direction is forward, and down when ACS 160 direction is reverse. If the directions do not match, switch over the DI4/DI5 connections. The pulse counter value can be read from parameters 8227 and 8228 (POS ACT LO, HI). ACS 160 direction can be read from the control panel display. If the pulse counter is not counting up or down, check that the encoder pulses have a 90-degree phase shift.

Set positioning related parameters
- Positioning mode parameters are in parameter group 82.
- Positioning and homing frequency references are set with group 12, the Constant Speeds parameters.
 It is recommended to use low frequency references at the beginning of commissioning, and set them to optimal values later, when proper operation of positioning has been ensured.

Use a brake chopper if short deceleration times and/or high inertia load is used
- Usage without a brake chopper overvoltage controller can effect to actual deceleration times and cause momentary overshoot when reaching the target. Brake chopper operation is enabled with parameter 2005 (OVERVOLT CTRL).

3.2 Encoder connection

3.2.1 Encoder
A two-channel single ended incremental encoder must be used. Encoder outputs are connected to digital inputs DI4 and DI5. Phase shift between encoder channel A and channel B signals must be 90 degrees.

Encoder pulses/rev: 1 – 8192 (1024 recommended).
Max. pulse frequency: 200 kHz.
Encoder supply voltage: 24 Vdc
Encoder cable length: 3 m max. is recommended. See the encoder’s datasheet.
Minimum input voltage to digital inputs DI4 and DI5: 12 V.

The pulse counter is programmed to up/down –counter, calculating both rising and falling edges of channel A and B encoder pulses. The pulse count is read from this 16 bit counter at 4 ms time level.
Example
If the encoder pulse count is 1024 pulses/rev => the pulse counter counts $4 \times 1024 = 4096$ pulses/rev.
See Figure 7.

![Diagram of encoder pulses](image)

3.2.2 Choosing encoder connection mode
(Application macro Positioning)
- Set parameter 9902 (APPLIC MACRO) value to 14 (POSITIONING)
- Turn the ACS 160 supply voltage off and then on again. (Necessary for activating the pulse counting.)
- Set the other group 99 parameters.

Checking encoder connection to ACS 160 I/O –terminal
The wiring between encoder and ACS 160 can be checked from parameters 0117 (DI1-DI4 STATUS) and 0121 (DI5 & RELAYS):
Rotating encoder shaft slowly and check that DI4 and DI5 status change between 0 and 1.
DI4 status: fourth digit from right in parameter 0117.
DI5 status: third digit from right in parameter 0121.

Matching the encoder direction of rotation and the ACS 160 direction
The pulse counter must count up (to more positive direction), when the ACS 160 direction of rotation is forward, and down, when the ACS 160 direction is reverse. If the directions do not match, the encoder output channels must be changed. The pulse counter value can be read from parameters 8227 and 8228 (POS ACT LO, HI).

The safest way to check this is in the Jogging mode. External control place EXT1 is used. If the application macro 14 default settings are used, the digital input DI2 must be inactive and the frequency reference is given with analogue input AI1. The direction is given with parameter 1003 (DIRECTION). External control place EXT1 can also be selected when setting the parameter 1102 (EXT1/EXT2 SEL) value to 6 (EXT1). The frequency reference can also be given with the control panel, setting the parameter 1103 value to 0 (KEYPAD). Start/stop and direction commands can be given with the panel, setting the parameter 1001 (EXT1 COMMANDS) value to 8 (KEYPAD). Local control mode can be used with panel also to give start/stop and direction commands.
Encoder connection example 1

In Figure 8, the ACS 160 digital inputs are configured as NPN-connected. The encoder supply voltage is taken from the ACS 160 24 V auxiliary voltage output. A shielded cable is recommended.
Encoder connection example 2

Figure 9. Encoder connection example 2

In Figure 9, the ACS 160 digital inputs are configured as PNP-connected. An external power supply is used for the digital inputs and encoder.
4 POSITIONING MODES

With the parameter 8215 (POS MODE), it is possible to select the positioning mode. The Positioning mode defines the way in which the positioning is done. Depending on the application the selection between relative and absolute positioning is done with this parameter.

Six different positioning modes can be selected: Relative move with position correction, Absolute move, Absolute move with cyclic correction, Absolute move with cyclic correction 2, Relative move without position correction and Continuous move 1.

A detailed description of each of the different positioning modes is given on the following pages.

The table below presents the positioning modes used for certain type of application characteristics.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Application characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative move with position correction</td>
<td>Repetitive move in one direction. Conveyor moves to one direction, with position correction properties.</td>
</tr>
<tr>
<td>Absolute move</td>
<td>Load needs to be moved between two positions.</td>
</tr>
<tr>
<td>Absolute move with cyclic correction 1</td>
<td>Load needs to be moved between two positions, but taking drift error in account.</td>
</tr>
<tr>
<td>Absolute move with cyclic correction 2</td>
<td>Load is moved between two positions, but considering drift error. (Other configuration as Absolute move cc1)</td>
</tr>
<tr>
<td>Relative move without position correction</td>
<td>Repetitive move in one direction. Conveyor moves in one direction, without position correction properties.</td>
</tr>
<tr>
<td>Continuous move</td>
<td>Continuous movement between two positions, with possibility for delay time at turning points.</td>
</tr>
</tbody>
</table>

4.1 Relative move with position correction

(4 = RELAT MOVE 1)

Selected target position is relative to previous target position. When start command is given, the position counter is first reset to zero and then corrected with the distance between the actual and desired stopping position. The purpose of this is to prevent the axis to “creep” from its original zero position. Correction is made only in cases, when the previous move has reached the target window area.

Without this corrective action, in applications where the same incremental move should be done time after time, the position counter would be zeroed at the actual (stopping) positions, not at the desired (stopping) positions. Because of this, the actual stopping position becomes the new zero position. Without a corrective action the zero position would “creep” either forward or reverse the direction from the desired position. See Figure 10.

If there is a need to do a positioning application, where a load must be moved to the opposite direction, a negative value can be set as the target position. By doing so the rotation of the shaft will be reversed when this particular target is selected.
4.2 Absolute move

(5 = ABS MOVE 1)

The selected target position is absolute. The position counter is not reset, when start command is given. This mode is used especially, when the load is moved between two positions as shown in Figure 11.
4.3 Absolute move with cyclic correction 1

(6 = ABS MOVE CC 1)

Basic operation as in mode 5, but cyclic correction added. The positioning counter is set to the value of Home position parameters 8225 and 8226 (HOME POS LO, HI), when digital input 3 (DI3) state changes from inactive to active. This mode should be used, where there is a possibility that some drift errors may appear due to mechanical parts of the machinery.

Example:
Figure 12 presents an application where a load is moved between two targets. A proximity switch is installed to the same position as Target 1, which is chosen also as Home position. This means that parameters 8207 and 8208 (TARGET 1 LO, HI) and 8225 and 8226 (HOME POS LO, HI) must have the same values. The proximity switch is connected to digital input DI3. This example assumes that homing has been done earlier.

Figure 12. Absolute position mode and cyclic correction
4.4 Absolute move with cyclic correction 2

(7 = ABS MOVE CC 2)

Basic operation as in mode 5 but, cyclic correction added. Positioning counter is set to the value of Home position parameters 8225 and 8226 (HOME POS LO, HI), when digital input 3 (DI3) state changes from active to inactive. Operation same as in mode 6, except for the effect of digital input DI3.

4.5 Relative move without position correction

(8 = RELAT MOVE 2)

The selected target position is relative to previous target position. When start command is given, the position counter is set to the value of Home position parameters 8225 and 8226 (HOME POS LO, HI). There are no position correction properties in this mode. Figure 13 presents the operation.

Figure 13. Relative move 2 mode
4.6 Continuous move

(9 = CONT MOVE 1)

(CONTINUOUS MOVE, for software V1402 and later. Changes in functionality are possible in later software versions.)

Selected target is absolute. Continuous move is made between positions Home and Target 1, and for example used with wobbling wires. Target 1 is defined by parameters 8207 and 8208 (TARGET 1 LO, HI). A position time delay parameter 8213 (POS DEALY) and external frequency reference parameter 8217 (AUX POS CMD) can be defined.

![Diagram of wobble function of the load](image)

Figure 14. Wobble function of the load

Figure 14 presents the wobble function. Homing is done only once when the ACS 160 is switched on. The direction is defined with the output signal level of the limit switch, which is connected to DI3. When Home position is reached, the position counter is reset to zero and the drive is ready for normal positioning operation.

The object moves straight from home position towards the target position (only Target 1 can be used). When the position counter’s actual value equals the target position value, the direction of movement is changed (the object returns to Home position). When the limit switch signal changes (Home position reached), the position counter is reset to zero and the direction is changed again causing the load to move towards the target position.

Dual feature of DI3

Feature 1
DI3 is continuously low when going to Target 1. The load moves relatively from the previous turning point. Movement between Home and Target 1 is done by the parameter value in Target 1 position.

Feature 2
DI3 changes from low to high when going to Target 1. The load moves back to home position after turning in Target 1 position until DI3 changes state from high to low. Cyclic correction is made.

A position time delay at the turning points (target and home position) can be integrated by inserting a value into the parameter 8213 (POS DEALY). By default this value is zero. The formula for calculating the actual delay is in ms:

\[
\text{Delay [ms]} = \frac{\text{POS DEALY} \times 40}{\text{Positioning frequency reference [Hz]}}
\]
5 POSITIONING RELATED PARAMETERS

5.1 Group 99: Start up data

P9902 APPLIC MACRO
Value 14 selected for Positioning application macro. Turn the ACS 160 power off and then on again to activate the encoder pulse counter. The analogue output does not function after this selection.

5.2 Group 10: Command inputs

P1001 EXT1 COMMANDS
Defines the connections and the source of Start/Stop/Direction commands for External control location 1 (EXT1). This control place is used as default when ACS 160 is operating at Jogging (manual homing) mode. All selections are possible except those where digital inputs DI4, DI5 are used. DI4 and DI5 are used for encoder connections only.

P1002 EXT2 COMMANDS
Defines the connections and the source of Start/Stop/Direction commands for External control location 2 (EXT2). This control place is used when ACS 160 is operating at Positioning mode. These selections are possible, where digital inputs DI1, DI2 and DI3 are not used for other purposes (DI4 and DI5 are reserved for encoder connections). Selections for direction commands are not relevant, because positioning logic uses internal direction commands.

P1003 DIRECTION
Rotation direction lock. In Jogging mode the motor rotation direction is given with this parameter, if the frequency reference does not define the direction. In Positioning mode this is not relevant. If Jogging mode is not used, selection 3 (REQUEST) is recommended.

5.3 Group 11: Reference select

P1101 KEYPAD REF SEL
Selection of active control panel reference in local control mode. Relevant only in Jogging mode if local control has been selected.

P1102 EXT1/EXT2 SEL
External control place selection. Used for Jogging/Positioning mode selection. Default value = 2 (DI2): EXT1/EXT2 selection with digital input DI2. Set this parameter value to 7 (EXT2) if Jogging mode (manual homing) is not used.

P1103 EXT REF1 SELECT
Selects the signal source for External reference 1, when Jogging mode (EXT1 control place) is active. Default value: 1 (AI1). All alternatives are possible except those, which use digital inputs DI4 and DI5 (reserved for encoder pulses).

P1106 EXT REF2 SELECT
Selects the signal source for External reference 2. This parameter is relevant where speed is given by analogue input. In other cases positioning speeds are given with parameter group 12: constant speed parameters.
5.4 Group 12: Constant speeds

P1201 CONST SPEED SEL
Selects which digital inputs are used to select Constant speeds. This parameter can be used with Jogging mode, but not with Positioning mode. Default value: 0 (NOT SEL). In Positioning mode Constant speeds are selected internally and not with digital inputs.

P1202 CONST SPEED 1
Defines positioning frequency reference for Target 1 (= target speed in Figure 1). The target is selected with parameter 8206 (POS TABLE SEL).

P1203 CONST SPEED 2
Defines positioning frequency reference for Target 2.

P1204 CONST SPEED 3
Defines the maximum internal frequency reference near and inside the target window. The purpose of this frequency reference is to ensure that the target is reached with different loads. This value should be as low as possible in order to avoid oscillation around the target with a light load. On the other hand the frequency reference should be high enough to ensure that the motor torque is sufficient for the load to reach the target. See Figure 15 and related parameters: 8220 (SPEED GAIN 1) and 8229 (DELTA DISTANCE).

![Frequency reference](image)

Figure 15. Effect of parameters 1204, 8220 and 8229

P1207 CONST SPEED 6
This parameter defines the frequency reference during homing when external control place EXT2 has been selected.

Parameters 1205,1206 and 1208 are not used with the Positioning mode. For proper operation of positioning, constant speeds must be equal or lower than the maximum frequency parameter 2008 (MAXIMUM FREQ).

5.5 Group 14: Relay output

P1401 RELAY OUTPUT 1

P1402 RELAY OUTPUT 2
Relay output content, value 34 = AT TARGET. Relay is activated when the position counter has reached the target window area. See related parameters 8221 and 8222 (T WINDOW LO, HI).
5.6 Group 20: Limits

P2005 OVERVOLT CTRL
DC overvoltage enable.
Default value = 1 (ENABLE).
During decelerations the overvoltage controller is activated, if short deceleration times and/or high inertia loads are used. The active overvoltage controller increases deceleration time and positioning will not be optimal. In these cases it is recommended to use a brake chopper and a brake resistor. The brake chopper is enabled and the overvoltage controller is disabled when setting this parameter to value 0 (DISABLE).

P2008 MAXIMUM OUTPUT FREQUENCY
Operating range maximum frequency. The value of this parameter must always be higher or equal to the positioning speeds.

5.7 Group 21: Start/Stop

P2101 START FUNCTION
With positioning only ramp-start or torque boost-start can be used.
1 = RAMP
3 = TORQUE BOOST

P2102 STOP FUNCTION
Both stop functions can be used with positioning. It is recommended to use ramp stop.

5.8 Group 22: Accel/Decel

P2220 ACC/DEC 1/2 SEL
Set this value to 0 (NOT SEL) with positioning. (Default value=0.)

P2202 ACCELER TIME 1
Defines the acceleration time of Target 1 speed profile.

P2203 DECELER TIME 1
Defines the deceleration time of Target 1 speed profile.

P2204 ACCELER TIME 2
Defines the acceleration time of Target 2 speed profile.

P2205 DECELER TIME 2
Defines the deceleration time of Target 2 speed profile.

P2206 RAMP SHAPE
Defines acceleration/deceleration ramp shape. Default value = 0 (LINEAR). Linear deceleration ramps are assumed, where deceleration starting position is calculated. The S-Curve increases the acceleration and deceleration times. This can cause that the actual position overshoots momentarily the target position. This overshooting can be compensated with deceleration slope gain parameter 8218 (SLOPE GAIN 1). If there is overshooting, lower parameter 8218 from default value 980 to 950 or even lower if necessary. The S-Curve velocity profiles are often used for gentle acceleration of liquid or fragile loads.
5.9 Group 54: Braking

ACS 160 can also be used in positioning applications, where an electromechanical brake is used. Relay output 1 or 2 is used to control the brake coil. Electromechanical brake control is enabled setting parameter 1401 (RELAY OUTPUT 1) or 1402 (RELAY OUTPUT 2) to value 32 (MEC BR CNTRL). When approaching the target, the brake is switched on when the output frequency is below the frequency limit set 6 with parameter 5403 (MBRK FREQ LVL) and the actual position is inside the target window area.

P5401 MBRK OPEN DLY
Releases delay for external electromechanical brake.

P5402 MBRK FREQ LVL
The level of output frequency below which the external brake operation is applied. When co-operating with positioning, the brake locking control is given after ACS 160 output frequency is below this limit and the actual position is within the target window. After this the frequency reference is forced to 0 Hz. See Figure 16.

![Diagram of electromechanical brake control with positioning](image)

Figure 16. Operation of electromechanical brake control with positioning.
5.10 Group 82: Positioning

Position related parameters are given as motor shaft revolutions. Each position parameter needs two parameter locations. The most significant part of the position (referred as HI) is given as full revolutions of the shaft and the least significant part (referred as LO) is given as multiples of 1/65536 of one shaft revolution.

Example:
Target 1 is at the distance of 170 full shaft revolutions plus 1/10 of a revolution. In this case Target 1 is stored as:

Parameter 8207 TARGET 1 LO = 1/10 * 65536 = 6553 (least significant part)
Parameter 8208 TARGET 1 HI = 170 (most significant part)

The significant part of the target parameters 8208 (TARGET 1 HI) and 8210 (TARGET 2 HI) and home position parameter 8226 (HOME POS HI) are given as signed values. Allowed target and home position are presented in Figure 17.

P8201 ENC PULSE NUM
Encoder pulse number/revolution (line count/revolution) is entered into this parameter. Default value is 1024.

P8202 ENC ERROR
Defines the action of ACS 160 in encoder error situations: 0 = NO ACTION
Encoder error supervision disabled: 1 = FAULT
The drive is stopped with coast stop and fault indication 31 is given, when the following conditions are fulfilled:
- the drive is running and output frequency is over 4.5 Hz,
- no encoder pulses are detected for the time defined with parameter 8203 (ENC DELAY).

P8203 ENC DELAY
Delay before the encoder fault is given. See parameter 8202 (ENC ERROR).

P8204 ENC SCALING
0 and positive values = DIRECTION 1 (default value).
Negative values = DIRECTION 2.
The purpose of this parameter is to set the position counter’s counting direction to match the direction of rotation of the motor. When ACS 160 direction is forward, the position counter must count to a positive direction.

Example:
If the motor is rotating forward and the position counter value is counting to a positive direction (see parameters 8227 and 8228, POS ACT LO, HI) DIRECTION 1 is selected. Otherwise DIRECTION 2 must be selected. It is recommended that direction matching is made with encoder pulse wiring, and not with this parameter, as explained in paragraph 3.1.
P8206 POS TABLE SEL

Position reference set selection. This parameter sets the input used for selecting the reference set or fixes it to REF SET 1 or REF SET 2.

1 = REF SET 1 Reference set 1 used.
2 = REF SET 2 Reference set 2 used.
3 = AI2 Reference set is selected with analogue input 2 (AI2):
 AI2 = 0 … 4V (0 … 8 mA): Reference set 1 is selected.
 AI2 = 6V … 10V (12 mA … 20 mA): Reference set 2 is selected.
4 = DI2 Reference set is selected with digital input 2 (DI2):
 DI2 is inactive: Reference set 1 is selected.
 DI2 is active: Reference set 2 is selected.
5 = DI3 Reference set is selected with digital input 3 (DI3):
 DI3 is inactive: Reference set 1 is selected.
 DI3 is active: Reference set 2 is selected.

Table 1: Reference sets, when P8206 = 1-5

<table>
<thead>
<tr>
<th>Reference Set 1</th>
<th>Reference Set 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target position, low-part</td>
<td>8207 TARGET 1 LO</td>
</tr>
<tr>
<td>Target position, high-part</td>
<td>8208 TARGET 1 HI</td>
</tr>
<tr>
<td>Positioning frequency reference</td>
<td>1202 CONST SPEED 1</td>
</tr>
<tr>
<td>Target window freq. reference</td>
<td>1204 CONST SPEED 3</td>
</tr>
<tr>
<td>Homing frequency reference</td>
<td>1207 CONST SPEED 6</td>
</tr>
<tr>
<td>Acceleration time</td>
<td>2202 ACCELER TIME 1</td>
</tr>
<tr>
<td>Deceleration time</td>
<td>2203 DECELER TIME 1</td>
</tr>
</tbody>
</table>

6 = SET 1 + EXT F Reference set 1 is used except when the positioning frequency reference is selected with parameter 1106 (EXT REF2 SELECT).

7 = SET 2 + EXT F Reference set 2 is used except when the positioning frequency reference is selected with parameter 1106 (EXT REF2 SELECT).

Table 2: Reference sets, when P8206 = 6, 7

<table>
<thead>
<tr>
<th>Reference Set 1</th>
<th>Reference Set 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target position, low-part</td>
<td>8207 TARGET 1 LO</td>
</tr>
<tr>
<td>Target position, high-part</td>
<td>8208 TARGET 1 HI</td>
</tr>
<tr>
<td>Positioning frequency reference</td>
<td>1106 EXT REF2 SELECT</td>
</tr>
<tr>
<td>Target window freq. reference</td>
<td>1204 CONST SPEED 3</td>
</tr>
<tr>
<td>Homing frequency reference</td>
<td>1207 CONST SPEED 6</td>
</tr>
<tr>
<td>Acceleration time</td>
<td>2202 ACCELER TIME 1</td>
</tr>
<tr>
<td>Deceleration time</td>
<td>2203 DECELER TIME 1</td>
</tr>
</tbody>
</table>
Timing requirements of reference sets
Reference set selection is recommended to be made when ACS 160 is at stop state. The target reference must be selected 200 ms before the next start command. The target reference is sampled at the time instant when start command is activated (stop -> start instant). See Figure 18.

Note
- Frequency reference, acceleration and deceleration times become effective 0 … 200 ms after reference set selection instant. They are not synchronised with the start command.
- Only selection P1106 = 0, 1 and 2 are allowed.

![Timing Diagram](image)

Figure 18. Timing of target reference selection.

P8207 TARGET 1 LO

P8208 TARGET 1 HI
Target 1 position reference values. TARGET 1 LO is the least significant part (partial revolution) and TARGET 1 HI is most significant part (full revolution) of the parameter.

P8209 TARGET 2 LO

P8210 TARGET 2 HI
Target 2 position reference values.

P8213 POS DELAY
Stop delay scaling factor at positioning mode 9 (CONT MOVE 1). Stopping time at turning points can be scaled with this parameter. If value is zero, the delay is always zero.

\[\text{Delay [ms]} = \text{POS DELAY} \times \frac{40}{\text{Positioning frequency reference [Hz]}} \]

P8215 POS MODE
Positioning mode selection. The principle of operation and modes are presented in chapter 4. In ACS 160 there are two Relative move modes, one Absolute move mode, and one Continuous move mode. With Absolute move mode it is also possible to select from two cyclic correction mode.
4 = RELAT MOVE 1
Selected target position is relative to previous target position. When start command is given, the position counter is first reset to zero and then corrected with the distance between actual and desired stopping position. The purpose of this is to prevent the axis to “creep” from its original zero position. Correction is made only in cases, where the previous move has reached the target window area.

See Figure 10. Without this corrective action, in applications where the same incremental move is done time after time, the position counter will be zeroed at the actual (stopping) positions, not at the desired (stopping) positions.

The actual stopping position becomes the new zero position. Without corrective action the zero position would “creep” either forward or to the reverse direction from the desired position.

5 = ABS MOVE 1
Selected target position is absolute. The position counter is not reset when start command is given. This mode is typically used, when the load is moved between two positions as shown in Figure 11.

6 = ABS MOVE CC 1
Basic operation as in mode 5, but cyclic correction added. Positioning counter is set to the value of home position parameters 8225 and 8226 (HOME POS LO,HI), when digital input 3 (DI3) state changes from inactive to active.

This mode should be used, when there is a possibility that some drift errors may appear due to mechanical parts of the machinery.

7 = ABS MOVE CC 2
Basic operation as in mode 5, but cyclic correction added. Positioning counter is set to the value of home position parameters 8225 and 8226 (HOME POS LO,HI), when digital input 3 (DI3) state changes from active to inactive. Operation same as in mode 6, except the effect of digital input DI3.

8 = RELAT MOVE 2
Selected target position is relative to previous target position. When start command is given, the position counter is set to the value of home position parameters 8225 and 8226 (HOME POS LO,HI). There are no position correction properties in this mode.

9 = CONT MOVE 1
Continuous move between positions Home and Target 1. (Changes in functionality are possible in later software versions.)

P8216 HOMING MODE
Homing means that the load is driven at a slow speed to a known position (Home position). The principles of homing are presented in chapter 2.

0 = NO HOMING
No homing is made, when ACS 160 supply voltage is switched on. Positioning mode is enabled.

1 = Reserved for future use. Do not use.

2 = Reserved for future use. Do not use.

3 = Reserved for future use. Do not use.
4 = HOMING 1
Homing with limit switch. Homing frequency reference is set with parameter 1207
(CONST SPEED 6). Homing direction is defined with digital input 3 (DI3):
- direction is forward, when DI3 is inactive,
- direction is reverse, when DI3 is active.

The Home position is set to the position counter, when DI3 state changes. After this the homing speed reference is internally forced to zero. The load decelerates from homing frequency to zero. It usually means that the load is not stopped exactly to home position!

Positioning mode is enabled, when stop command is given.

ACS 160 will perform homing operation when it is powered up and it receives the first start command.

External control place EXT2 must be selected. After the homing operation is completed, the drive will go to Position mode as set by parameter 8215 (POS MODE). See Figure 5a, 5b, and 5c.

5 = HOMING 2
Same as mode 4, except digital input DI3 has a different effect:
- direction is reverse, when DI3 is inactive,
- direction is forward, when DI3 is active.

6 = HOMING 3
Like HOMING 1 and HOMING 2 with the following differences. Homing direction is defined with analogue input AI1:
- direction is forward, when AI1 = 0..4 V (0…8 mA),
- direction is reverse, when AI1 = 6..10 V (12…20 mA).

P8217 AUX POS CMD
Auxiliary positioning mode commands selection

0 = NOT SELECTED

1 = DI2
Digital input 2 (DI2) is used to give auxiliary positioning start/stop commands. This command does not start or stop the ACS 160 modulation. During homing this command acts only as start enable. Positioning mode is enabled when the actual start/stop command goes to stop state and then to start state. See Figure 19.
NOTE! If DI2 is selected it is not allowed to select P1102 (EXT1/EXT2 SEL) = 2 (DI2).
NOTE! If DI2 is selected it is not allowed to select P8206 (POS TABLE SEL) = 4 (DI2).

2 = STOP 0 Hz
Positioning frequency is set to 0 Hz, when positioning target window has been reached.

3 = STOP MODUL
Modulation is stopped, when the target window has been reached.

4 = EXT FREQ
Enables external frequency reference use at positioning mode 9:
Frequency reference is selected with parameter 1106 (EXT REF2 SELECT). Allowed selections are 0 (KEY PAD), 1(AI1) or 2 (AI2).
External frequency reference update can be controlled with digital input DI2:
- DI2 is inactive: frequency reference is sampled at turning point,
- DI2 is active: frequency reference is sampled continuously.
This is needed to start positioning

DI1 Start/Stop

DI2 Aux. Start/Stop

Position counter

Homing with limit switch

Figure 19. Auxiliary position start/stop

P8218 SLOPE GAIN 1

Frequency reference deceleration slope control. Values above 1000 delay the beginning of the deceleration ramp and make the target position approach faster. Values below 1000 increase the effective deceleration time and make the target position approach slower. See the effect of slope gain 1 parameter in Figure 20.

Figure 20. The effect of Slope gain 1 parameter
P8220 SPEED GAIN 1

Gain factor of positioning speed control during deceleration. Higher value means higher speed change. Related parameter 8229 (DELTA DISTANCE). See also parameter 1204 (CONST SPEED 3) and Figure 15 where the effects of parameters 8220 and 8229 are shown. Figure 21 shows the effects of the parameters in more detail. Scaling: 1 = 0.01 Hz/4ms.

Figure 21. The effect of parameters 8220 and 8229.
P8221 T WINDOW LO

P8222 T WINDOW HI
Defines a target position window area. This parameter is common to Target 1 and Target 2.
Scaling: See the example prior to Figure 17.

Operation: When position actual value (position counter) is inside the target area (target ref. ± target window), the relay output is activated, if parameter 1401 or 1402 has value 34 (AT TARGET). The relay is deactivated when the next position start command is given. See Figure 22.

DI1 Start/Stop

Position Counter

P8221, P8222 Target window

P8223 MAX TARGET LO

P8224 MAX TARGET HI
Target position maximum limit. (“SW limit”).
Scaling: See the example prior to Figure 17.
This limit value gives the positive and negative limit of the maximum target.

Operation: When the absolute value of the position actual value (position counter) goes above this limit, the ACS 160 frequency reference is forced to 0 Hz. No alarm or fault indication is given.

P8225 HOME POS LO

P8226 HOME POS HI
Home position.
Scaling: See the example prior to Figure 17.
This value is set to the position counter in situations defined by parameters 8216 (HOMING MODE) and 8215 (POS MODE), and also when the external control position is changed from EXT1 to EXT2. See Figures 5, 6, 12 and 16.
P8227 POS ACT LO

P8228 POS ACT HI
Position actual value/position counter value. Read only parameter.
Scaling: See the example prior to Figure 17.

P8229 DELTA DISTANCE
This positioning speed tuning parameter represents the position change during a 4ms time period.
Scaling: 1 = 1 position counter increment/4ms.
See related parameter 8220 (SPEED GAIN 1) and Figure 21.
If the position difference between two consecutive 4ms time instances is smaller than this parameter value, the positioning speed is increased with the amount of the parameter 8820 value.
If the difference is greater, the positioning speed is decreased.

The purpose of parameters 8220 and 8229 is to make the actual positioning speed near the target depended on the load and to ensure that the target is reached.
6 POSITIONING APPLICATION EXAMPLES

The following examples are meant as illustrations of possibilities of the Positioning macro, and not as answers to specific problems.

6.1 Differences of ACS 160 SW 1.0.0.E. compared to later versions

- Some default settings have been changed.
- Version 1.0.0.E: Positioning and homing are active at both external control places EXT1 and EXT2.
- Later versions: Positioning and limit switch homing are active only at external control place EXT2.
- Version 1.0.0.E: No jogging (manual homing) possibility with control place EXT1.
- Version 1.0.0.E: Digital input DI3 cannot be used for reference set select. See parameter 8206.
- Version 1.0.0.E: Selected target reference becomes active during the next 200 ms after selection has been made => Target reference selection must be made at stop state and at the latest 200 ms before start command.
- Version 1.0.0.E: Relay output (AT TARGET) is updated only during Positioning mode and it is not updated during Homing mode.
6.2 Example 1: Homing mode = 4 and Positioning mode = 8

The following example in Figure 23 is applicable for situations where items are moved repeatedly over a certain distance. When the drive is powered up, homing is done. After homing the drive is ready for positioning control.

Homing is done only once after ACS 160 is powered up. With Homing mode 4, the homing direction is forward, because the homing switch input DI3 is inactive. When DI3 state changes from inactive to active, the position actual value is set to the value of parameter Home position. Frequency reference is set to zero. Relay output (when programmed to value 34) is activated. Positioning is enabled only after sop command is given.

The next start command after homing starts the positioning. Load is moved towards the target position with acceleration and deceleration times. The constant frequency reference is defined with parameter 8206 (POS TABLE SEL). When the target window is reached, relay output is activated. Relay output stays activated until a new start command is given.
6.3 Example 2: Homing mode = 4 and Positioning mode = 5

The following example in Figure 24 is applicable for situations where the load is moved between position points. When the drive is powered up, homing is done (in this case the Home position is located between the two target positions). After homing the drive is ready for positioning control. Two targets, acceleration, and deceleration times, and frequency reference sets are used. The actual value is not reset during start/stop sequence.

Figure 24. Homing and absolute positioning
6.4 Example 3: Detailed description of load movement between two targets

6.4.1 Description
One section of a pulp bale conveyor is moved between two places as shown in Figure 25. The conveyor is loaded with pulp bales at Target 1 and moved to Target 2 where the bales are unloaded. ACS 160 and the motor are installed to this conveyor section. The incremental encoder (1024 pulses/rev) is connected to the motor axis. ACS 160 is controlled by a PLC. Connections between ACS 160 and the PLC can be made as shown in Figure 8.

![Diagram](image)

Figure 25. Targets, home position and directions

6.4.2 Parameter Setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1102</td>
<td>EXT1/EXT2 SEL</td>
<td>7 External control place EXT2 is selected. Enables positioning.</td>
</tr>
<tr>
<td>P1202</td>
<td>CONST SPEED 1</td>
<td>60 Hz Target 1 frequency reference</td>
</tr>
<tr>
<td>P1203</td>
<td>CONST SPEED 2</td>
<td>60 Hz Target 2 frequency reference</td>
</tr>
<tr>
<td>P1204</td>
<td>CONST SPEED 3</td>
<td>4.5 Hz Target window frequency reference</td>
</tr>
<tr>
<td>P1207</td>
<td>CONST SPEED 6</td>
<td>5 Hz Homing frequency reference</td>
</tr>
<tr>
<td>P2005</td>
<td>OVERVOLT CTRL</td>
<td>0 Overvoltage controller disabled and brake chopper enabled</td>
</tr>
<tr>
<td>P2008</td>
<td>MAXIMUM FREQ</td>
<td>60 Hz Maximum allowed frequency</td>
</tr>
<tr>
<td>P2102</td>
<td>STOP FUNCTION</td>
<td>2 Ramp stop is used</td>
</tr>
<tr>
<td>P2202</td>
<td>ACCELER TIME</td>
<td>1 5 s Acceleration time to Target 1</td>
</tr>
<tr>
<td>P2203</td>
<td>DECELER TIME</td>
<td>1 3 s Deceleration time to Target 1</td>
</tr>
<tr>
<td>P2204</td>
<td>ACCELER TIME</td>
<td>2 5 s Acceleration time to Target 2</td>
</tr>
<tr>
<td>P2205</td>
<td>DECELER TIME</td>
<td>2 3 s Deceleration time to Target 2</td>
</tr>
<tr>
<td>P8206</td>
<td>POS TABLE SEL</td>
<td>4 Target 1/Target 2 selection with DI2</td>
</tr>
<tr>
<td>P8207</td>
<td>TARGET 1 LO</td>
<td>0</td>
</tr>
<tr>
<td>P8208</td>
<td>TARGET 1 HI</td>
<td>0 revs Target 1 is 0 revs position (same as Home)</td>
</tr>
<tr>
<td>P8209</td>
<td>TARGET 2 LO</td>
<td>0</td>
</tr>
<tr>
<td>P8210</td>
<td>TARGET 2 HI</td>
<td>180 revs Target 2 is 180 revs position</td>
</tr>
<tr>
<td>P8215</td>
<td>POS MODE</td>
<td>6 Absolute move and cyclic correction with DI3</td>
</tr>
<tr>
<td>P8216</td>
<td>HOMING MODE</td>
<td>4 Homing direction is forward when DI3 is inactive, and direction is reverse when DI3 is active</td>
</tr>
<tr>
<td>P8221</td>
<td>T WINDOW LO</td>
<td>0</td>
</tr>
<tr>
<td>P8222</td>
<td>T WINDOW HI</td>
<td>1 rev Relay output AT TARGET is activated one motor axis rev before Target 1/Target 2 is reached</td>
</tr>
<tr>
<td>P8223</td>
<td>MAX TARGET LO</td>
<td>0</td>
</tr>
<tr>
<td>P8224</td>
<td>MAX TARGET HI</td>
<td>200 revs Acts as software limit switch. Position counter should never reach this limit.</td>
</tr>
<tr>
<td>P8225</td>
<td>HOME POS LO</td>
<td>0</td>
</tr>
<tr>
<td>P8226</td>
<td>HOME POS HI</td>
<td>0 revs Home set at 0 revs position (same as Target 1)</td>
</tr>
</tbody>
</table>

Other parameters have their own default values.
Controls to digital inputs DI1...DI3 come from PLC:

DI1: Start/Stop
DI2: Target 1/2 selection
DI3: Limit switch status. Defines homing direction.
6.4.3 Homing

Homing is made only once after ACS 160 is powered up. Home position is set to same position as Target 1. This ensures that homing can always be done to the reverse direction (DI3 is active). The limit switch is used for homing and also for cyclic correction operation during positioning. Digital input DI2 chooses ramp times 1 or 2. If new homing is necessary, ACS 160 supply voltage is switched off and then on again.

![Homing Timing Diagram](image)

Figure 26. Homing timing diagram

Homing is finished when DI3 state changes from active to inactive and start command is active, see Figure 26. Positioning is enabled, when stop command is given (DI1 state becomes inactive).
6.4.4 Positioning move from Target 1 (Home position) to Target 2
DI2 is activated to choose Target 2 at least 200 ms before the start command is given with DI1 as shown in Figure 27. During positioning DI3 is used for cyclic correction of the position counter.

Figure 27. Positioning move from Target 1 to Target 2
6.4.5 Positioning move from Target 2 to Target 1 (Home position)
DI2 is checked to be inactive for choosing Target 1 at least 200 ms before the start command is given with DI1. During positioning, DI3 is used for cyclic correction of the position counter when Target 1 is reached. See Figure 28.

Figure 28. Positioning move from Target 2 to Target 1

6.4.6 Exceptional occasions
1. A conveyer section is stopped between Target 1 and Target 2 positions because of an ACS 160 fault:
 - If relay output (FAULT(-1)) indicates fault, the reason must be solved. Switching the ACS 160 supply voltage off and then on again does new homing.
 Note: If resetting is possible and it is not Fault 31 (ENCODER FAULT), the positioning move could be continued by giving stop and then start command.

2. A conveyer section is stopped between Target 1 and Target 2 positions because ACS 160 is overloaded and no fault indication is shown:
 - New homing is made after the ACS 160 supply voltage has been switched off, and the cause for overload has been removed.

3. There is a short ACS 160 supply voltage break:
 - Voltage break is indicated with voltage relay. New homing is made.
6.5 Example 4: Relative continuous move of load

6.5.1 Description
This application could be for example a conveyor system, where items are repeatedly moved a certain distance in the same direction. With digital input DI3 two distances can be selected (Target 1 or Target 2). Start/Stop command is connected to digital input DI1.

Initial item positioning (manual homing) can be made in jogging mode:
- digital input DI2 is inactive,
- jogging speed is controlled with the potentiometer voltage connected to analogue input AI1,
- jogging direction is controlled with parameter 1003 (DIRECTION).

Positioning mode is activated, when DI2 input is active. Positioning mode 4 (Relative move 1) has been selected. The position counter is reset every time when start command is given. After each counter reset, the actual stopping position is checked and the position counter value is corrected with the error value of the actual and desired stopping position. See Figure 29.

![Diagram of Desired Stopping Positions](image-url)

Figure 29. Application example 4, corrective action of position mode 4
6.5.2 Parameter Setting

Default values except:

- **P1002 DIRECTION**: Set forward or reverse for jogging direction
- **P1202 CONST SPEED 1 acc. to process**: Target 1 frequency reference
- **P1203 CONST SPEED 2 acc. to process**: Target 2 frequency reference
- **P1204 CONST SPEED 3 acc. to process**: Target window frequency reference
- **P1207 CONST SPEED 6**: Homing frequency reference. Not used in this application

- **P1401 RELAY OUTPUT 1 34**: At target
- **P1402 RELAY OUTPUT 2 34**: At target
- **P1403 RO 1 ON DELAY 3.5 s**: Switch-on delay for relay 1
- **P1404 RO 1 OFF DELAY 0 s**: Switch-off delay for relay 1
- **P1405 RO 2 ON DELAY 5 s**: Switch-on delay for relay 2
- **P1406 RO 2 OFF DELAY 0.3 s**: Switch-off delay for relay 2

- **P2102 STOP FUNCTION 2**: Ramp stop is used
- **P2202 ACCELER TIME 1 acc. to process**: Acceleration time to Target 1
- **P2203 DECELER TIME 1 acc. to process**: Deceleration time to Target 1
- **P2204 ACCELER TIME 2 acc. to process**: Acceleration time to Target 2
- **P2205 DECELER TIME 2 acc. to process**: Deceleration time to Target 2

- **P8207 TARGET 1 LO acc. to process**: Target 1 full revs position
- **P8208 TARGET 1 HI acc. to process**: Target 1 full revs position
- **P8209 TARGET 2 LO acc. to process**: Target 2 full revs position
- **P8210 TARGET 2 HI acc. to process**: Target 2 full revs position
- **P8215 POS MODE 4**: Relative move with position correction
- **P8216 HOMING MODE 0**: No homing

Figure 30. Application example 4, operation diagram
6.5.3 Features
The example is not fully tested and its purpose is only to inspire creating profitable and simple applications.

Application: Relative, continuously repeated moves. One external relay K1 is used. See circuit diagram in Figure 31.

Figure 31. Application example 4, circuit diagram
6.6 Example 5: Jogging with direction setting via digital input

ACS 160 SW VERSION V1403.ROM
This version is based on ACS 160 SW versions V1400, V1401 and V1402.

6.6.1 Description
Manually made homing is called jogging. In jogging mode the frequency reference is given with AI1, and rotation direction is given with digital input DI2. Jogging/positioning mode is selected with digital input DI3. Positioning frequency reference is given with analogue input AI2.

6.6.2 Parameter settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1001</td>
<td>EXT 1 COMMANDS 2: Start/stop with DI1, direction with DI2 in Jogging mode</td>
</tr>
<tr>
<td>P1002</td>
<td>EXT 2 COMMANDS 1: Start/stop with DI1 Positioning mode</td>
</tr>
<tr>
<td>P1003</td>
<td>DIRECTION 3: Request</td>
</tr>
<tr>
<td>P1102</td>
<td>EXT1/EXT2 SEL 3: Jogging/Positioning mode selected with DI3</td>
</tr>
<tr>
<td>P1103</td>
<td>EXT REF1 SELECT 1: Jogging frequency reference set with AI1</td>
</tr>
<tr>
<td>P1106</td>
<td>EXT REF2 SELECT 2: Positioning frequency reference set with AI2</td>
</tr>
<tr>
<td>P1204</td>
<td>CONST SPEED 3 4.7: Target window frequency reference</td>
</tr>
<tr>
<td>P2202</td>
<td>ACCELER TIME 1 0.5: Acceleration time</td>
</tr>
<tr>
<td>P2203</td>
<td>DECELER TIME 1 0.5: Deceleration time</td>
</tr>
<tr>
<td>P8206</td>
<td>POS TABLE SEL 6: Reference set 1 is used, except the positioning frequency reference is selected with parameter 1106 EXT REF2 SELECT</td>
</tr>
<tr>
<td>P8207</td>
<td>TARGET 1 LO 0</td>
</tr>
<tr>
<td>P8208</td>
<td>TARGET 1 HI 107: Target 1 is 107 revs position</td>
</tr>
<tr>
<td>P8215</td>
<td>POS MODE 4: Relative move with position correction</td>
</tr>
<tr>
<td>P8216</td>
<td>HOMING MODE 0: No homing. For defining Home position Jogging mode in EXT1 control location is used.</td>
</tr>
<tr>
<td>P8217</td>
<td>AUX POS CMD 0: Not selected</td>
</tr>
</tbody>
</table>

6.6.3 New functions
Now the positioning frequency reference can be set also with analogue input 1 or 2.
New selections for parameter 8206 (POS TABLE SEL):

6 = Reference set 1, except positioning frequency reference is selected with parameter 1106 (EXT REF2 SELECT).

7 = Reference set 2, except positioning frequency reference is selected with parameter 1106 (EXT REF2 SELECT).
6.7 Example 6: Continuous move of the load between two targets

6.7.1 Description
When the drive is powered up, the load moves left with a speed that is defined with constant speed parameter 1207 (CONST SPEED 6), until the limit switch output signal level changes. If the object is on the left side of the home place when homing starts, the object moves to the right and stops, when the limit switch signal level changes.

Requirement: The limit switch signal must have the same level all the time when the load is to the left from Home position. When Home position is reached, the limit switch resets the position counter to zero and normal positioning operation starts.

The continuous move is shown in Figure 32. The load moves right from the home position towards the target position. When the position counter actual value equals the target position value, the direction changes. The load then moves towards Home position. When the limit switch signal changes, the position counter is reset to zero, the direction changed and the load moves towards the target position again.

Continuous move can be used for example for spinning wires.

![Figure 32. Wobble function of the load](image)

6.7.2 Parameter settings

- **P1002 EXT 2 COMMANDS 1**: Start/stop with DI1 Positioning mode
- **P1102 EXT1/EXT2 SEL 7**: External control location EXT2 is selected
- **P1106 EXT REF2 SELECT 1**: Positioning frequency reference set with AI1
- **P1207 CONST SPEED 6 10 Hz**: Speed reference during homing
- **P2202 ACCELER TIME 1 acc. to process**: Acceleration time
- **P2203 DECELER TIME 1 acc. to process**: Deceleration time
- **P8201 ENC PULSE NUM 1024**: Used encoder gives 1024 pulses / rev
- **P8206 POS TABLE SEL 1**: Target 1 reference set is used only
- **P8207 TARGET 1 LO acc. to process**: Target 1 distance from Home position
- **P8208 TARGET 1 HI acc. to process**: Target 1 distance from Home position
- **P8215 POS MODE 9**: Continuous move is selected
- **P8216 HOMING MODE 4**: Homing frequency reference is set with parameter 1207 CONST SPEED 6. Homing direction is defined with DI3 (forward when inactive, reverse when active). Home position is set to position counter when DI3 state changes.
- **P8217 AUX POS CMD 4**: Selected EXT REF2 gives positioning speed reference (AI1 in this case). This parameter setting can be used only when P8215 (POS MODE) = 9 (CONT MOVE 1).

- **NOTE!** When parameter 8215 (POS MODE) is other than 9 (CONT MOVE 1), the positioning speed reference can be set only with constant speed parameters 1202 (CONST SPEED 1) and 1203 (CONST SPEED 2).
- (Changes in functionality are possible in later software versions.)
6.8 Example 7: Operation when gear is used

6.8.1 Encoder is on the side of the load

ACS 160 positioning algorithm assumes that the encoder is installed to the motor shaft, thus the relationship between the motor shaft speed and the number of encoder pulses/motor shafts is known. However if an encoder is on the side of a load and there is gear between the motor and encoder, parameter 8201 (ENCODER PULSE NUM) value must be changed according to the gear ratio. See Figure 33.

![Encoder gear function](image)

Figure 33. Encoder gear function when encoder is on the side of the load

Motor speed \(n_1 \)

Encoder speed \(n_2 \)

When the motor shaft rotates one revolution, the encoder rotates \(\frac{n_2}{n_1} \) revolutions

\[\text{Pulses received from encoder} = p \times \frac{n_2}{n_1} \] pulses

Parameter 8201 value = encoder pulses/rev * \(\frac{n_2}{n_1} \)

Parameters 8207...8210 (Target 1, Target 2): given as \(\frac{n_1}{n_2} \times \) encoder revolutions

Parameter 8221, 8222 (Target window): given as \(\frac{n_1}{n_2} \times \) encoder revolutions

Parameter 8223, 8224 (Max. target): given as \(\frac{n_1}{n_2} \times \) encoder revolutions

Parameter 8223, 8226 (Home position): given as \(\frac{n_1}{n_2} \times \) encoder revolutions

Position counter actual value, parameters 8227, 8228 show the position as \(\frac{n_1}{n_2} \times \) encoder revolutions

Example: (see Figure 33)

Gear ratio: \(n_1:n_2 = 10 : 1 \)

Encoder: 1000 pulses/rev

Target 1 reference = 180 encoder revolutions

\[P8201 \ (ENC \ PULSE \ NUM) = 1000 \times 1/10 = 100 \ (pulses/rev) \]

\[P8207 \ (TARGET \ 1 \ LO) = 0 \]

\[P8208 \ (TARGET \ 1 \ HI) = 180 \times 10/1 = 1800 \ (revs) \]

In Target 1 position parameter 8228 (POS ACT HI) value = 1800 (revs).
6.8.2 Encoder on the motor shaft

![Diagram of encoder gear function when encoder is on the motor shaft]

Figure 34. Encoder gear function when encoder is on the motor shaft

In case the encoder is on the motor shaft, as in Figure 34, the positioning parameters are set normally as encoder revolutions. If positions are given as load side positions, they must be transformed to the motor (or encoder) side.

\[
\text{Motor speed} \cdot n_1 = \text{Load speed} \cdot n_2
\]

When the motor shaft rotates one revolution, the load rotates \(n_2/n_1 \) revolutions

\(\Rightarrow \quad \text{Pulses received from encoder} = p \text{ pulses} \)

\(\Rightarrow \quad \text{Parameter 8201 value} = \text{encoder pulses/rev} \)

Parameters 8207...8210 (Target 1, Target 2): given as encoder revolutions = \(n_1/n_2 \) * load revolutions

Parameter 8221, 8222 (Target window): given as encoder revolutions = \(n_1/n_2 \) * load revolutions

Parameter 8223, 8224 (Max. target): given as \(n_1/n_2 \) * encoder revolutions = \(n_1/n_2 \) * load revolutions

Parameter 8223, 8226 (Home position): given as \(n_1/n_2 \) * encoder revolutions = \(n_1/n_2 \) * load revolutions

Position counter actual value, parameters 8227, 8228 shows the position as encoder revolutions = \(n_1/n_2 \) * load revolutions
APPENDIX A: COMPLETE PARAMETER SETTINGS TABLE

Here is a complete table of parameters related to the corresponding positioning macro of software version V1.4.0.3. The value for each parameter related to the positioning mode is presented, as well as the alternatives for certain parameters.

<table>
<thead>
<tr>
<th>Block</th>
<th>Description</th>
<th>Parameter</th>
<th>Positioning</th>
<th>Jogging</th>
<th>Homing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Default</td>
<td>Relative move 1</td>
<td>Absolute move 1</td>
<td>Absolute move 1</td>
</tr>
<tr>
<td>Start-up Data</td>
<td>APPLIC MACRO</td>
<td>9902</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Command Inputs</td>
<td>EXT1 COMMANDS</td>
<td>1001</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EXT2 COMMANDS</td>
<td>1002</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DIRECTION</td>
<td>1003</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Reference Select</td>
<td>KEYPAD REF SEL</td>
<td>1101</td>
<td>1</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>EXT1/EXT2 SEL</td>
<td>1102</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>EXT REF1 SELECT</td>
<td>1103</td>
<td>1</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>EXT REF2 SELECT</td>
<td>1106</td>
<td>1</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Constant Speeds</td>
<td>CONST SPEED SEL</td>
<td>1201</td>
<td>0</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>CONST SPEED 1</td>
<td>1202</td>
<td>5 Hz</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>CONST SPEED 2</td>
<td>1203</td>
<td>10 Hz</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>CONST SPEED 3</td>
<td>1204</td>
<td>15 Hz</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>CONST SPEED 6</td>
<td>1207</td>
<td>40 Hz</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Relay Outputs</td>
<td>RELAY OUTPUT 1</td>
<td>1401</td>
<td>3</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>RELAY OUTPUT 2</td>
<td>1402</td>
<td>34</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Limits</td>
<td>OVERVOLT CTRL</td>
<td>2005</td>
<td>1</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Start/Stop</td>
<td>START FUNCTION</td>
<td>2101</td>
<td>1</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td></td>
<td>STOP FUNCTION</td>
<td>2102</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Accel/Decel</td>
<td>ACC/DEC ½ SEL</td>
<td>2201</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>ACCELER TIME 1</td>
<td>2202</td>
<td>5 s</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>DECELER TIME 1</td>
<td>2203</td>
<td>5 s</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>ACCELER TIME 2</td>
<td>2204</td>
<td>60 s</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>DECELER TIME 2</td>
<td>2205</td>
<td>60 s</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>RAMP SHAPE</td>
<td>2206</td>
<td>0</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Braking</td>
<td>MBRK OPEN DLY</td>
<td>5401</td>
<td>0.20 s</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>MBRK FREQ LVL</td>
<td>5403</td>
<td>2 Hz</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>Positioning</td>
<td>ENC PULSE NUM</td>
<td>8201</td>
<td>1024</td>
<td>D/V</td>
<td>D/V</td>
</tr>
<tr>
<td></td>
<td>ENC ERROR</td>
<td>8202</td>
<td>0</td>
<td>D/V</td>
<td>D/V</td>
</tr>
<tr>
<td></td>
<td>ENC DELAY</td>
<td>8203</td>
<td>5 s</td>
<td>D/V</td>
<td>D/V</td>
</tr>
<tr>
<td></td>
<td>ENC SCALING</td>
<td>8204</td>
<td>0</td>
<td>D/V</td>
<td>D/V</td>
</tr>
<tr>
<td></td>
<td>POS TABLE SEL</td>
<td>8206</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>TARGET 1 LO</td>
<td>8207</td>
<td>0</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>TARGET 1 HI</td>
<td>8208</td>
<td>0</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>TARGET 2 LO</td>
<td>8209</td>
<td>0</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>TARGET 2 HI</td>
<td>8210</td>
<td>0</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>POS DELAY</td>
<td>8213</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>POS MODE</td>
<td>8215</td>
<td>8</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>HOMING MODE</td>
<td>8216</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
<td>Description</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUX POS CMD</td>
<td>8217</td>
<td>0</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOPE GAIN 1</td>
<td>8218</td>
<td>980</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPEED GAIN 1</td>
<td>8220</td>
<td>2</td>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T WINDOW LO</td>
<td>8221</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T WINDOW HI</td>
<td>8222</td>
<td>1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX TARGET LO</td>
<td>8223</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAX TARGET HI</td>
<td>8224</td>
<td>1000</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOME POS LO</td>
<td>8225</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOME POS HI</td>
<td>8226</td>
<td>0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS ACT LO</td>
<td>8227</td>
<td>RO</td>
<td>RO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POS ACT HI</td>
<td>8228</td>
<td>RO</td>
<td>RO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DELTA DISTANCE</td>
<td>8229</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D = Positioning macro default value (leave default if no special actions needed), value from column “Default”
V = Input physical/wanted Value
- = This parameter does not need configuring
RO = Read Only