Application Examples
Communication set-up for RED 670
Differential protection and 670 series binary transfer in telecommunication networks

Please send comments about this document to bertil.j.lundqvist@se.abb.com
Rev. F
Content

Chapter

About this application examples

Page 3

General

Page 5

1. RED 670 Differential protection and telecommunication networks
2. Common telecommunication systems for power utilities
3. Telecommunication networks with symmetric of fixed routes with echo timing
4. Route switching criteria for telecommunication networks with specified (controlled) route switching
5. Unspecified route switching can not be handled
6. Reference clock deviation > set maximum deviation value ±200-2000 µs
7. Route switching/interruptions > 2 seconds, example

2. Echo timing function

Page 12

3. RED 670 with built-in GPS clock for unspecified route switching
4. Start up of the GPS system (cold start)
5. Setting for version 1.0 and 1.1 revision 9 and earlier
6. Setting in version 1.1 revision 10 and later with new design of the time system clock synchronization
7. Accuracy of the GPS system
8. Enabling of the echo timing according to application (I)
9. Blocking of the echo-timing after GPS interruption
10. Selectivity planning

4. Digital signal communication for line differential protection RED 670
5. Configuration of analog signals - Line Data Communication Module
6. Configuration of LDCM output signals
7. Configuration of redundant channels

5. Binary signal transfer for the 670 series
6. Function block
7. Analog and binary input and output signals
8. Setting guidelines

6. Communication channels

7. Communication alternatives
 1. Fiberoptic communication interfaces with IEEE C37.94 international standard protocol
 2. Galvanic interface type X.21

8. PDH telecommunication system

Page 47
8.1 General communication requirements .. 47
8.2 Communication structure for IEEE C37.94 fiberoptic interface in 670 series
and 21-216 with G.703 64 kbit/s in a PDH-system .. 47
8.3 Service settings of 21-216... 48
8.4 Start and usage... 51
8.5 Service settings of 670 series with G.703 co-directional......................... 52
8.6 Service settings of Transceiver 21-216 G.703 64 kbit 53
8.7 Grounding .. 53

9 Communication structure for the X.21 built-in galvanic interface 55
9.1 Connection and Service settings of 670 series with X.21 galvanic interface 55
9.2 Check of settings on 670 series HMI and communication status............... 55
9.3 Supervision of the communication on the 670 series HMI 57

10 PDH/SDH telecommunication system set-up with 670 series 64 kbit/s
C37.94 interface to transceiver type 21-219 .. 58
10.1 Transceiver 21-219 service settings for SDH systems 58
11 Communication check/fault tracing .. 67
11.1 Information available on the HMI .. 67
11.2 Detection of communication faults on Fibersystem transceiver type
21-216 C37.94/G.703 64 kbit/s modem.. 69
11.3 Detection of communication faults on Fibersystem transceiver type
21-219 C37.94/G.703 G.703 E1 2 Mbit/s modem... 69
11.4 Detection of communication faults by loop back tests. 70

Sample specification of communication requirements for differential protection RED 670 and the 670 series protection and control terminals in digital telecommunication networks............... 73

Related documents... 75
This is an Application Example for Communication set-up for RED 670 Differential protection in telecommunication networks and the remaining IED 670 for binary signal transfer.

Document number: 1MRK 505 197-UEN

Revision: F. Setting in version 1.1 revision 10 and later with new design of the time system clock synchronization included.

Issue date: January 2010

Data subject to change without notice

We reserve all rights to this document, even in the event that a patent is issued and a different commercial proprietary right is registered. Improper use, in particular reproduction and dissemination to third parties, is not permitted.

This document has been carefully checked. HOWEVER, IN CASE ANY ERRORS ARE detected, the reader is kindly requested to notify the manufacturer at the address below.

The data contained in this manual is intended solely for the CONCEPT OR product description and is not to be deemed to be a statement of guaranteed properties. In the interests of our customers, we constantly seek to ensure that our products are developed to the latest technological standards. As a result, it is possible that there may be some differences between the HW/SW product and this application note.

Manufacturer:

ABB AB
Substation Automation Products
SE-721 59 Västerås
Telephone: +46 (0) 21 34 20 00
Facsimile: +46 (0) 21 14 69 18
www.abb.com/substationautomation

© Copyright 2010 ABB. All rights reserved.
General

1 RED 670 Differential protection and telecommunication networks

(Valid also for the other 670 series products)

There are two main application areas of telecommunication networks for the multiterminal current differential protection RED 670 for up to 5 line ends.

(I) Telecommunication networks with symmetric or fixed routes, where echo timing can be used, including back-to-back systems.

(II) Telecommunication networks with unspecified route switching, where the accurate global time in the Global Positioning System (GPS) is required.

Echo-timing according to (I) will be used as fall back system if the GPS reference is lost in one or more RED 670s in telecom networks type (II).

Note that for Echo-timing, the internal clock in each RED 670 is used as a master and compared with the internal clocks in the remote RED 670s as slaves. The difference and drift between the internal clocks are monitored continuously, and compensated for with echo messages between all ends with 40 ms intervals over the communication system. At start, it will take around 15 seconds to get full synchronization of the internal clocks. The deviation between the internal clocks are compensated to be within 1 µs relative time.

Note also that the internal clock has an additional function as real time clock for other protection and monitoring functions such as event timing, but this is totally separate from the current differential function.

For networks with unspecified route switching, the reference for the internal clock is Global time, for example the global time in the GPS system from a built-in GPS receiver. The internal clock in each RED 670 will be set according to the global time from the GPS system. The inaccuracy depends on connection time to the GPS system. After start-up (cold start) a software calibration procedure is carried out. After less than one hour, all internal clocks real time deviation from Global time has been decreased to 1 µs.

Note also, there can only be one master clock in the telecommunication system for synchronization of the multiplexers, transceivers and the differential protection relays communication modems. (One master, the other slaves) This clock could also be a GPS clock but the telecommunication network synchronization is totally separate from the current differential protection internal clock synchronization.
The differential protection can be configured as master-slave or master-master. To configure the differential protection to slave, the differential protection is switched off. The configuration of the communication system is not affected by the protection configuration.

1.1 Common telecommunication systems for power utilities.

There are mainly two types of telecommunication networks, which are used by electric power utilities. In most cases these networks are owned by the utility, but it can also be leased communication links from external companies.

The type used for 64 kbits channels are called PDH systems, Plesiochronous Digital Hierarchy. Plesio is greek and means almost. Thus proper synchronization of the PDH System must be provided to be used in protection applications.

Nowadays SDH systems are introduced in telecommunication networks for power utilities. SDH means Synchronous Digital Hierarchy, and is specified > 2Mbit/second.

The abbreviations PDH and SDH are used in the following text.

For utility communication PDH/SDH systems are most common

SDH systems > 2 Mbit/second

ATM/IP systems > 622 Mbit/second

Other systems > x Gbit/second

PDH systems < 2 Mbit/second

PDH, Plesiochronous Digital Hierarchy

SDH, Synchronous Digital Hierarchy

Figure 1: Telecommunication networks for differential protection.
1.2 Telecommunication networks with symmetric or fixed routes with echo timing

Networks with fixed routes for example with symmetric time delay or networks with fixed route switching, where both directions have symmetric time delay even after route switching has been performed. A different channel delay time is automatically compensated. For this type of networks echo-timing can be used. If there is a fixed route with specified asymmetry, the asymmetry can be compensated for by the setting parameter asymmetric delay, see section 5.3 Setting guidelines page 28.

The maximum interruption time for route switching and echo timing, for example when the communication channel is lost, without affecting the synchronization of the internal clocks, is 2 seconds. (The protection is blocked during the interruption.)

From protection point of view route switching interruptions should be <50ms. (In practice a route switching will normally take <100 µs). The maximum allowed time delay in the telecommunication system is settable up to 2x40 ms. (Default is 2x20 ms = 40 ms) For longer channel delays, the differential function is blocked. The differential protection is also blocked if the virtual time deviation between the internal clocks in the RED 670 (One to five ends) is more than the set value ±200-2000 µs for MaxDiffLevel, see Figure 3. The differential function is blocked until the internal clocks deviation are within the set value. The time to new synchronization will depend on the interruption time. (The slow drift between the internal clocks during normal operation is continuously compensated for.)

Figure 2: Three end application
1.3 Route switching criteria for telecommunication networks with specified (controlled) route switching

During route switching, a wider communication channel asymmetry can be accepted, as the clock in the two ends will only have a small deviation during the time the communication is switched from one route to another < 2 seconds. However, route switching can only be handled correctly after complete start-up of the terminals (about 90 seconds), for example when the internal clocks are properly synchronized which will take an additional 15 seconds after the channel is restored. The 2 second limit is derived from the stability of the internal clocks. Longer route switching than 2 seconds will block the differential function until the clocks are synchronized again. The synchronization time will depend on interruption time, see Section 1.5 page 10.

1.4 Unspecified route switching can not be handled

Setting of maximum deviation between internal clocks, MaxDiffLevel in the respective RED 670 (one to five). Setting range ±200-2000 µs. The setting is made on the HMI or with PCM 600, Protection and Control Manager for setting, engineering and disturbance handling of the 600-series. The abbreviation PCM 600 will be used in the following text. The set maximum reference clock deviation is depending on the factors below.

a Jitter and wander in the telecommunication system, typical ±50 µs in SDH systems and ±100-200 µs in PDH systems (< ±100 µs according to the telecommunication standards, see Section 6 page 34.)

b Acceptable small asymmetric delay, typical ±50 to 100 µs
 - A constant (fixed) asymmetric delay in the duplex channels can be adjusted by setting of the asymmetric delay on the built in HMI or by the PST (parameter setting tool) in the PCM 600 tool.

c Buffer memory in the telecommunication system, typical < +100 µs
 (Buffer memories should be avoided)

d Clock drift during two seconds, < ±100 µs
Figure 3: Setting of MaxDiffLevel in the PCM 600

MaxDiffLevel equals maximum individual time difference level between the internal clocks in the respective line ends. The setting range is 0.2-2 ms. The allowed time difference setting must be coordinated with reference to the sensitivity of the differential function.

This setting is only relevant for echo timing, for example when the GPS is lost.

MaxDiffLevel is defined and measured at a sudden change in time difference between the line ends, induced by route switching.

If the MaxDiffLevel is exceeded, the differential function is blocked. (The MaxDiffLevel is assumed to be asymmetric, this is worst case.)

To avoid that a number of small changes below the MaxDiffLevel give unwanted trip, these small changes are summated and checked to be below MaxDiffLevel, see Section 2 page 12.

There is no supervising function in RED 670, which can detect the difference between an asymmetric delay, buffer memory delay, telecommunication system jitter and wander and internal clock drift. The sum of these factors are supervised by observing the deviation between the internal clocks in all RED 670s.
With an SDH System (>2 Mbit), e.g. G.703 E1, and acceptable small asymmetric delay, the value 2 x ±300 µs can be used. With a PDH (nx64 kbit) system and a buffer memory of for example 100 µs, a typical maximum deviation is 2x ±400 µs. The setting should be calculated accordingly. For example increased minimum operate current for increased deviation.

Thus, a route switching, which causes a virtual difference between the internal clocks in the respective RED 670s due to asymmetry in the communication channel delay, jitter and wander and buffer memory, below the set maximum clock deviation is not causing any communication failure alarm or blocking of the differential trip function. It is considered to be within the accuracy requirements and will be compensated for by the normal synchronization mechanism for the internal clocks.

If the route switching takes longer time than 2 seconds, the master and slave terminal will start to re-synchronize, after a delay of 4 seconds, with the new channel asymmetry incorporated. The synchronization will adjust the internal clock difference compared to the internal clocks in RED 670 in other line ends within ±1 µs. The time synchronization messages are evaluated every 5 ms. With setting of ±200 µs maximum internal clock deviation between the respective RED 670s, it will take around 10 seconds to reach a new synchronization. The synchronization will reach ±1 µs accuracy after additional 10-15 seconds.

1.5 Reference clock deviation >set maximum deviation value ±200-2000 µs

A route switching that causes a virtual difference between the internal clock in one RED 670 compared with RED 670 in other ends > set value due the asymmetry in the communication channel, jitter and wander in the communication system and buffer memory delay is supervised during 50 internal clock synchronization messages. The time synchronization messages are sent every 5 ms but evaluated every 40 ms, which gives a total stability time of 2 seconds. During this time the differential protection is still in operation, but the synchronization of the internal clocks is blocked. Thus the original accuracy between the internal clocks will be maintained during a communication interruption due to route switching. The route switching will typically be performed in <50 ms according to most communication standards. However, to make the system more robust, 2 seconds communication interruption can be tolerated without the loss of protection performance.

If the deviation between the internal clocks are outside the specified interval after 2 seconds, internal Comfail will be issued and the current differential trip blocked. After restoration of the communication channels, a new synchronization with a clock adjustment in steps of 20 µs initially for each clock synchronization message will take place. The clock adjustment step will gradually decrease, when the internal clock differences is reduced.

If the communication channels in both directions are restored to the same time delay in both directions within 2 seconds, the difference between the internal clocks will be within set limits.
Route switching within 2 seconds has no influence on the clock synchronization for the current differential protection with reference to differential function blocking. Thus, the differential function is available directly when the communication is restored.

1.6 Route switching/interruptions >2 seconds, example

Application area (I) Echo timing
If the route switching takes longer time, for example 4 seconds, the internal clocks will be synchronized with the asymmetric delay included. The influence of the asymmetry will then be: 2 seconds / 40 ms x 10 µs (average of 20 ms and 1 µs) = 0.5 ms, which can cause unwanted trip, depending on the set sensitivity of the differential function.

Application area (II) Global time (GPS)
Communication failure in the range of 10 to 30 seconds can cause the relay to lose the synchronization. Communication failure >30 seconds will always need a new synchronization of the internal clocks. If the synchronization has been lost, it takes 5 to 15 seconds of healthy communication to get the relays synchronized again and work with normal tripping times.
2 Echo timing function

An additional feature has been added in the echo timing function to detect accumulated dt changes below the set limit ±200-2000 µs, to avoid that small changes will create an accumulated asymmetry, which can cause unwanted trip. Due to jitter and wander etc. this function is restricted to four dt changes.

The setting of the differential protection sensitivity must be coordinated with the setting of the MaxDiffLevel. The influence of the MaxDiffLevel on sensitivity is shown in Figure 4.

![Virtual error in Ampere at different asymmetric delays](en07000225.wmf)

Figure 4: Virtual error

The dt detection has a setting for the dead band of ±200-2000 µs. If the accumulated dt for up to four changes are greater then the set dead band, but below the set MaxDiffLevel, no action is taken. When the fifth dt happens, the protection is blocked, even if the maximum deviation is not reached. (This restriction is included due to measuring inaccuracy, if too many consecutive dt changes are accumulated).
See the oscillogram in Figure 5 for explanations of dead band D, measured change \(dt \) and scattering (deviation in calculation), inside the set deadband.

![Diagram of Deadband](en07000226.wmf)

Figure 5: Deadband

<table>
<thead>
<tr>
<th>D</th>
<th>DeadbandDiff ±200 µs (setting range ±200-2000 µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dt</td>
<td>Measured change ±200 µs in this example</td>
</tr>
<tr>
<td>Scattering</td>
<td>Random fluctuations in delay time, due for example to varying switching time in multiplexers, which gives jitter and wander etc.</td>
</tr>
</tbody>
</table>
Figure 6: DeadbandtDiff

DeadbandtDiff equals dead band time difference. This setting is used to compensate for measuring inaccuracy due to scattering when accumulating changes smaller than MaxtDiffLevel.

After blocking by MaxtDiffLevel the communication set up must be checked before restarting.
3 RED 670 with built-in GPS clock for unspecified route switching

For telecommunication networks with unspecified route switching RED 670 with built-in GPS clock must be used. Thus, the differential protection can operate correctly, independent of asymmetric delays in the communication channels. The maximum allowed time delay in the telecommunication system is settable, $0-2 \times 20 \text{ ms} = 40 \text{ ms}$, as the sum of the delay in both directions. It is also possible to make an asymmetric split, for example 10 ms in one direction and 30 ms in the other direction as the delay can be accurately measured when GPS timing is available. For longer delays, the differential function is blocked.

![Three end Application with GPS](en07000160.vsd)

Figure 7: Three end application with GPS

3.1 Start up of the GPS system (cold start)

With the antenna placed for good visibility, the GPS system takes up to 15 minutes to find the satellites (minimum 4) and start synchronizing the internal clocks in the RED 670 with the global time from the GPS system.

At the beginning of the synchronization procedure, the internal clocks in the RED 670s are adjusted to have the correct global time in seconds, only integers are set. The remaining fractional part to reach global time, milliseconds (ms) and microseconds (µs), are used to slowly synchronize the RED 670 internal clocks to global time.

The synchronization of the internal clock to the global time is done with a rate of 1 ms/s to reach the global time. When the RED 670 internal clock is within 16µs from the global time, the differential function is enabled. Thereafter a soft calibration is performed, in which the RED 670 internal clock is synchronized to maintain the global time + 1µs for a period of time, especially important during interruptions in the GPS system. When the internal clock and the global time deviates more than 16 µs, the GPS timing is deactivated. If only GPS is used the differential protection is blocked or the back-up echo timing enabled.
3.2 Setting for version 1.0 and 1.1 revision 9 and earlier

The time for reaching + 16µs deviation, is depending on the adjustment range and adjustment rate. As the internal clock in the RED670 can be up to 0.5 seconds wrong after setting the time in seconds (integers) mentioned earlier, the time for reaching + 16µs can be up to 10 minutes or up to 3 hours depending on the setting of the adjustment rate. The adjustment of the synchronization of the RED 670 internal clock to the global time in the GPS system has two modes, Fast or Slow. The mode can be selected in the HMI or PCM 600, for version 1.0 and 1.1 revision 9 and earlier. In version 1.1 revision 10 an automatic setting is introduced, see HMI window below.

The "Fast" setting has 1 ms/s second adjustment rate.
The “Slow” setting has + 50 µs/s second adjustment rate.

HMI tree on RED 670 front:

Setting
 - Time
 - Synchronization
 - Time synchronization
 - Time adjustment rate Fast or Slow

Recommended settings:

Commissioning
- Echo timing and no GPS Slow
- GPS and echo timing as back-up Fast
- GPS Fast

In service
- Echo timing and no GPS Slow (< 3h to synchronize with external time source)
- GPS and echo timing as back-up Slow (< 3h to shift to GPS from echo)
- GPS Fast (<10 min diffblock at start-up)

If the echo timing has been enabled as back-up for the GPS system, the RED 670 internal clock can not deviate more than +/- 50 µs, which is the maximum adjustment rate of the internal clock, depending on the echo timing adjustment capability in a 64 kbit communication system.

This limitation is not valid for echo timing without GPS.

Note:

Set the course time synchronizing source (CoarseSyncSrc) to OFF when GPS time synchronization of line differential function is used.

Set the fine time synchronization source (FineSyncSource) to GPS. The GPS will thus provide the complete time synchronization.

GPS alone shall synchronize the analogue values in such systems.

No other external time synchronizing source is allowed including minute pulse, not even as back-up in version 1.1 rev 9 and earlier.

This limitation is eliminated in version 1.1 rev 10 and later.
3.3 Setting in version 1.1 revision 10 and later with new design of the time system clock synchronization

The time system is based on a “software clock”, which can be adjusted from external time sources and a hardware clock. The protection and control modules will be timed from a “hardware” clock, which runs independently from the “software” clock. See figure below.

![Time system clock synchronization diagram](en08000287.vsd)

All time tagging is performed by the “software” clock. When for example a status signal is changed in the protection system with the function based on "free running hardware" clock, the event is time tagged by the software clock when it reaches the event recorder. Thus the “hardware” clock can run independently.

The echo mode for the differential protection is based on the “hardware” clock. Thus, there is normally no need to synchronize the “hardware” clock and the “software” clock.
The synchronization of the “hardware” clock and the “software” clock is necessary only when GPS or IRIG B 00X with optical fibre, IEEE 1344 is used for differential-protection. The two clock systems are synchronized by a special clock synchronization unit with two modes, fast and slow. A special feature, an automatic fast clock time regulator is used. The automatic fast mode makes the synchronization time as short as possible during start-up or at interruptions/disturbances in the GPS timing. The setting fast or slow is also available on the HMI and can be used for example during commissioning or maintenance.

If a GPS clock is used for other products in the 670-series than current differential RED 670, the “hardware” and “software” clocks are not synchronized.

Fast clock synchronization mode

At start-up and after interruptions in the GPS or IRIG B time signal, the clock deviation between the GPS time and the internal differential time system can be substantial. A new start-up is also required after for example maintenance of the auxiliary voltage system.

When the time difference is >16 µs, the differential function is blocked and the time regulator for the hardware clock is automatically using a fast mode to synchronize the clock systems. The time adjustment is made with an exponential function, i.e. big time adjustment steps in the beginning, then smaller steps until a time deviation between the GPS time and the differential time system of <16 µs has been reached. Then the differential function is enabled and the synchronization remains in fast mode or switches to slow mode, depending on the setting.

Slow clock synchronization mode

During normal service, a setting with slow synchronization mode is normally used, which prevents the hardware clock to make too big time steps, >16 µs, emanating from the differential protection requirement of correct timing.

The time for reaching + 16µs deviation, is depending on the adjustment range and adjustment rate. As the internal clock in the RED670 can be up to 0.5 seconds wrong after setting the time in seconds (integers) mentioned earlier, the time for reaching + 16µs can be up to 10 minutes or up to 3 hours depending on the setting of the adjustment rate. The adjustment of the synchronization of the RED 670 internal clock to the global time in the GPS system has two modes, Fast or Slow. The mode can be selected in the HMI or PCM 600, for version 1.0 and 1.1. (In version 1.1 revision 10 or later an automatic setting is introduced), see HMI window below.

The "Fast" setting has 1 ms/s second adjustment rate.
The “Slow” setting has + 50 µs/s second adjustment rate.

If the echo timing has been enabled as back-up for the GPS system, the RED 670 internal clock can not deviate more than +/- 50 µs/s, which is the maximum adjustment rate of the internal clock, depending on the echo timing adjustment capability in a 64 kbit communication system.

This limitation is not valid for echo timing without GPS.
3.4 Accuracy of the GPS system

The accuracy of the soft calibration of the RED 670 internal clocks is dependent of the time the GPS system has been in service. Thus, if the GPS system is lost directly after the differential protection has been enabled, the drift of the clock can be up to 16 µs/second. However, by using software calibration this drift will be reduced to 1µs/second during a time span of < 1 hour. This reduced drift is also reducing the restart time after a short GPS interruption. If the time difference after the interruption is less than the set MaxDiffLevel, the differential system can be enabled directly.

3.5 Enabling of the echo timing according to application (I)

The echo timing is enabled when the GPS is lost. The enabling of the echo timing will have a delay, depending on how long the GPS has been working after start.

Starting inaccuracy of the internal clock is 16 µs and will go down to ±1µs after some minutes.

3.6 Blocking of the echo-timing after GPS interruption

As the telecommunication system has unspecified route switching, the echo-timing can only be used with unchanged time delay in both directions (within set limits, see Section 1.2 page 7). As soon as the time delay is outside the set limits the differential function is blocked. Some additional features are included to increase the performance of the echo timing blocking, see below.

a) If redundant or alternative routes are available, these routes are also supervised for change in time delay. If there is no time delay difference in the redundant or alternative route, the echo-timing will continue with the reserve channel.

b) In telecommunication systems with unspecified route switching, time differences below the set limits are accumulated to handle multiple route switching, which together can reach the set time difference limit according to Section 1.2 page 7.

3.7 Selectivity planning

A missed protection message due to for example bit errors, prolongs the tripping time. Maximum interruption time and bit error rate should be part of the selectivity planning.
RED 670 with built-in GPS clock for unspecified route switching
4 Digital signal communication for line differential protection RED 670

The line differential protection RED 670 uses digital 64 kbit/s communication channels to exchange sampled current values between the ends every 5 ms. Each telegram contains current sample values, time information, trip-, block- and alarm signals and eight separate binary signals which can be used for any purpose, for example transfer trip from external protection equipment. Each 670 series equipment can have a maximum of four communication channels.

On a two ended line there is a need of one 64 kbit/s communication channel provided that there is only one CT in each line end as shown in Figure 9.

![Figure 9: Two-terminal line](en07000169.vsd)

In case of a 1/2 breaker arrangements or ring buses, one line end can have two CTs as shown in Figure 10.

![Figure 10: Two-terminal line with a 1/2 breaker](en07000170.vsd)

In this case, current values from two CTs in the double breakers, ring main or breaker-and-a-half systems end with dual breaker arrangement need to be sent to the remote end. As a 64 kbit/s channel only has capacity for one three-phase current (duplex), this implies that two communication channels will be needed, and this is also the normal solution.

Alternatively, it is possible to sum and check the two local currents before sending them and in that way reduce the number of communication channels needed. The evaluation is then made in software in the 670 series, but doing it in this way, there will be reduced information about bias currents in the two CTs.
In RED 670, the bias current is considered the greatest phase current in any line end and it is common for all three phases. When sending full information from both local CTs to the remote end, as shown in Figure 10, this principle works, but when the two local currents are added together before sending the single resulting current on the single communication channel, information about the real phase currents from the two local CTs will not be available in the remote line end.

Whether it will be possible to use one communication channel instead of two (as shown in Figure 10) must be decided from case to case. It must be realized that correct information about bias currents will always be available locally, whilst only limited information will be available at the end, that receives the limited information over only one channel.

For the configuration of redundant channels see Section 4.2 page 23. For further information see Chapter Remote communication, in “Application manual”.

4.1 Configuration of analog signals - Line Data Communication Module

The communication between the 670 series protection and control products is provided by a Line Data Communication Module. The abbreviation LDCM is used in the entire text.

The currents from the local end enter RED 670 via the Analog Input Modules as analog values. These currents need to be converted to digital values and then forwarded to the line differential function in the local RED 670, as well as being transmitted to a remote RED 670 via a Line Data Communication Module with either fiberoptic C37.94 or galvanic X.21 at 64 kbit. The currents from a remote RED 670 are received as digital values in the local RED 670 via an LDCM and is thereafter forwarded to the line differential function in the local RED 670.

The engineering tool PCM600, protection and control manager is used for the configuration and setting of the 670 series. The abbreviation PCM will be used in the following text. The Signal Matrix tool, SMT is used to configure and connect input and output signals. The abbreviation SMT will be used in the following text. The configuration of this data flow is made in the SMT tool in PCM 600 which is principally shown in Figure 11, next page.
Introduction

Figure 11 shows how one IED in a three ended line differential protection can be configured. Especially notice that there are two LDCMs, each one supporting a duplex connection with a remote line end. Thus, the same local current is configured to both LDCMs, whilst the received currents from the LDCMs are configured separately to the line differential function.

4.2 Configuration of LDCM output signals

There are a number of signals available from the LDCM that can be connected to the virtual binary inputs (SMBI) in the 670 series and used internally in the configuration. The signals appear only in the SMT tool where they can be mapped to the desired virtual input.

See Chapter 5 Analog and binary signal transfer for the 670 series page 28, Binary signal transfer to remote end in “Technical reference manual” for more detailed explanation of the signals. The signal name is found in the Object Properties window by clicking on the input signal number in the SMT tool. Connect the signals to the virtual inputs as desired. See Figure 12.
Figure 12: Example of LDCM signals as seen in the Signal matrix tool
4.3 Configuration of redundant channels

LDCM installation sequence: slot 312, slot 313, slot 322, slot 323, slot 302 and slot 303.

2-4 LDCM can be included depending of availability of IRIG-B respective RS485 modules. IRIG-B will be seated in slot 302 and RS485 will be seated in slot 312.

Slots 303, 313 and 323 can be set as redundant line differential communication channel in PCM 600.

For two or three line ends

Figure 13: Typical LDCM application

Figure 14: Typical application with redundant channels
Note:

Main and redundant channel is placed on the same base card in slot 303-302, 313-312 and 323-322. For more details, see Figure 15.

Figure 15: Designation for 1/1x9” casing with 2 TRM slots
Figure 16: Signal Matrix for one LDCM
The position for the main and redundant channels are predefined in the basic configuration, in other words they cannot be shifted. The signal matrix for the redundant channel must be empty. It is automatically updated when the main channel is lost. See Figure 17, above.
Figure 18: Setting example of RED 670 with redundant channel (two duplex channels)
5 Binary signal transfer for the 670 series

REL 670, REC 670, REB 670 and REG 670 can utilize the same 64 kbit communication facilities for binary signal transfer of up to 192 external or internal logical signals, for example Carrier Send, Carrier Receive, block signals, control signals etc.

![Two-terminal line](en07000169.vsd)

Figure 19: Two-terminal line

The start and stop flags are the 0111 1110 sequence (7E hexadecimal), defined in the HDLC standard. The CRC is designed according to the standard CRC16 definition. The optional address field in the HDLC frame is not used. Instead a separate addressing is included in the data field. The address field is used for checking that the received message originates from the correct equipment. There is always a risk that multiplexers occasionally mix the messages up. Each point in the system is given a number. The 670 series is then programmed to accept messages from a specific IED number. If the CRC function detects a faulty message, the message is thrown away and not used in the evaluation. When the communication is used exclusively for binary signals, the full data capacity of the communication channel is used for the binary signal purpose which gives the capacity of 192 signals.

![Setting example of RED 670 with one communication channel for binary transfer](en07000234.vsd)

Figure 20: Setting example of RED 670 with one communication channel for binary transfer
5.1 Function block

Note!

The function blocks are not represented in the configuration tool. The signals appear only in the SMT tool when a LDCM is included in the configuration with the function selector tool. In the SMT tool they can be mapped to the desired virtual input (SMBI) in the 670 series and used internally in the configuration.

5.2 Analog and binary input and output signals

In the PCM 600 configuration and setting tool, the communication module (LDCM) has an affix, either CRM or CRB, which defines actual type of signal transfer.

CRM 1-6; Remote Communication Multi is used to send both analog and binary signals (RED 670).

CRB 1-6; Remote Communication Binary is used to send binary signals (remaining IED 670).

CRM and CRB number 1-6 has predefined slots in the IED 670 hardware. Only four slots can be used simultaneously.

Table 1: Predefined slots for analog and binary signals

<table>
<thead>
<tr>
<th>Analog and binary signals</th>
<th>Binary signals</th>
<th>Communication slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRM-1</td>
<td>CRB-1</td>
<td>302</td>
</tr>
<tr>
<td>CRM-2</td>
<td>CRB-2</td>
<td>303</td>
</tr>
<tr>
<td>CRM-3</td>
<td>CRB-3</td>
<td>312</td>
</tr>
<tr>
<td>CRM-4</td>
<td>CRB-4</td>
<td>313</td>
</tr>
<tr>
<td>CRM-5</td>
<td>CRB-5</td>
<td>322</td>
</tr>
<tr>
<td>CRM-6</td>
<td>CRB-6</td>
<td>323</td>
</tr>
</tbody>
</table>

Table 2: Output signals for the LDCMRecBinStat (CRM1-) function block in analog mode (see also section 11, fault tracing)

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMFAIL</td>
<td>Detected error in the differential communication</td>
</tr>
<tr>
<td>YBIT</td>
<td>Detected error in remote end with incoming message</td>
</tr>
<tr>
<td>NOCARR</td>
<td>No carrier is detected in the incoming message</td>
</tr>
<tr>
<td>NOMESS</td>
<td>No start and stop flags identified for the incoming message</td>
</tr>
<tr>
<td>ADDERR</td>
<td>Incoming message from a wrong terminal</td>
</tr>
<tr>
<td>LNGTHERR</td>
<td>Wrong length of the incoming message</td>
</tr>
<tr>
<td>CRCERROR</td>
<td>Identified error by CRC check in incoming message</td>
</tr>
<tr>
<td>TRDELEERR</td>
<td>Transmission time is longer than permitted</td>
</tr>
<tr>
<td>SYNCERR</td>
<td>Indicates when synchronisation is not correct</td>
</tr>
<tr>
<td>REMCOMF</td>
<td>Remote terminal indicates problem with received message</td>
</tr>
</tbody>
</table>
Binary signal transfer for the 670 series

Introduction

5.3 Setting guidelines

Channel mode: This parameter can be set ON or OFF. If OFF is set with locally measured currents (analog inputs) trip and transfer trip will be issued. Besides this, it can be set OutOfService which signifies that the local LDCM is out of service. Thus, with this setting, the communication channel is active and a message is sent to the remote IED that the local IED is out of service, but there is no COMFAIL and the analog and binary values are sent as zero.

Note:

Only applicable for no-load conditions; for example during maintenance of a HV-breaker.

TerminalNo: This setting assigns a number to the local REX 670. Up to 256 REX 670 can be assigned unique numbers. For aline differential protection, maximum 6 IEDs can be included. The possibility to use the large number of IED designations is reserved for the case where a high security against incorrect addressing in multiplexed systems is desired.

RemoteTermNo: this setting assigns a to the remote IED.

DiffSync: Here the method of time synchronization, Echo or GPS, for the line differential function is selected.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMGPSER</td>
<td>Remote terminal indicates problem with GPS synchronization</td>
</tr>
<tr>
<td>SUBSTITU</td>
<td>Link error, values are substituted</td>
</tr>
<tr>
<td>LOWLEVEL</td>
<td>Low signal level on the receive link</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMFAIL</td>
<td>Detected error in the differential communication</td>
</tr>
<tr>
<td>YBIT</td>
<td>Detected error in remote end with incoming message</td>
</tr>
<tr>
<td>NOCARR</td>
<td>No carrier is detected in the incoming message</td>
</tr>
<tr>
<td>NOMESS</td>
<td>No start and stop flags identified for the incoming message</td>
</tr>
<tr>
<td>ADDRERR</td>
<td>Incoming message from a wrong terminal</td>
</tr>
<tr>
<td>LNGTHERR</td>
<td>Wrong length of the incoming message</td>
</tr>
<tr>
<td>CRCERROR</td>
<td>Identified error by CRC check in incoming message</td>
</tr>
<tr>
<td>REMCOMF</td>
<td>Remote terminal indicates problem with received message</td>
</tr>
<tr>
<td>LOWLEVEL</td>
<td>Low signal level on the receive link</td>
</tr>
</tbody>
</table>

Table 2: Output signals for the LDCMRecBinStat (CRM1-) function block in analog mode (see also section 11, fault tracing)

Table 3: Binary output signals for the LDCMRecBinStat (CRB1-) function block in binary mode (see also section 11, fault tracing)
GPSSyncErr: If GPS synchronization is lost, the synchronization of the line differential function will continue during 16 s. based on the stability in the local 670 units clocks. Thereafter the setting Block will block the line differential function or the setting Echo will make it continue by using the Echo synchronization method. It shall be noticed that using Echo in this situation is only safe as long as there is no risk of varying transmission asymmetry.

CommSync: This setting decides the Master/Slave relation in the communication system and shall not be mistaken for the synchronization of line differential current samples. When direct fibre is used, one LDCM is set as Master and the other one as Slave. When a modem and multiplexer is used, the REX 670 is always set as Slave, as the telecommunication system will provide the clock master.

OptoPower: The setting LowPower is used according to table 7, page 37.

TransmCurr: This setting decides which of 2 possible local currents that shall be transmitted, or if and how the sum of 2 local currents shall be transmitted, or finally if the channel shall be used as a redundant channel.

In a 1½ breaker arrangement, there will be 2 local currents, and the grounding on the CTs can be different for these. CT-SUM will transmit the sum of the 2 CT groups. CT-DIFF1 will transmit CT group 1 minus CT group 2 and CT-Diff2 will transmit CT group 2 minus CT group 1.

CT-GRP1 or CT-GRP2 will transmit the respective CT group, and the setting RedundantChannel makes it possible to use the channel as a backup channel.

ComFailAlrmDel: Time delay of communication failure alarm. In communication systems, route switching can sometimes cause interruptions with a duration up to 50 ms. Thus, a too short time delay setting might cause nuisance alarms in these situations.

ComFailResDel: Time delay of communication failure alarm reset.

RedChSwTime: Time delay before switchover to redundant channel in case of primary channel failure.

RedChRturnTime: Time delay before switchback to the primary channel after channel failure.

AsymDelay: the asymmetry is defined as transmission delay minus receive delay. If a fixed asymmetry is known, the Echo synchronization method can be used if the parameter AsymDelay is properly set. From the definition follows that the asymmetry will always be positive in one end, and negative in the other end.

Note:

A false asymmetric delay can be present when A/D converter revision 1 is used in one terminal and A/D converter revision 2 is used in the other terminal. This will give a differential current due to an angle discrepancy of 3-5°.
Setting example:

AsymDelay for RED 670 in end A is set 3 ms - 2 ms = 1 ms
AsymDelay for RED 670 in end B is set 2 ms - 3 ms = -1 ms

*The 3 ms delay in route A-C-B includes the delay in the multiplexer in end C. The setting can be found under LDCM configuration/CRM-CRB/AsymDelay

Figure 21: Setting example of AsymDelay for RED 670

MaxTransmDelay: Data for maximum 40 ms transmission delay can be buffered up. Delay time in the range of some ms are common. It shall be noticed that if data arrive in the wrong order, the oldest data will just be disregarded.

CompRange: the set value is current peak value over which truncation will be made. To set this value, knowledge of the fault current levels should be known. The setting is not overly critical as it considers very high current values for which correct operation normally still can be achieved.

5.3.1 Setting parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Step</th>
<th>Default</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelMode</td>
<td>Off, ON, OutOfService</td>
<td>-</td>
<td>ON</td>
<td>-</td>
<td>Channel mode of LDCM, 0=OFF, 1=ON, 2=OutOfService</td>
</tr>
<tr>
<td></td>
<td>To be used in multiterminal lines for example maintenance in one end to avoid communication failure and different protect blocking in remaining RED 670.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Basic general settings for the LDCMRecBinStat (CRM1-) function
Table 4: Basic general settings for the LDCMRecBinStat (CRM1-) function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Step</th>
<th>Default</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TerminalNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number used for line differential communication</td>
</tr>
<tr>
<td>RemoteTermNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number on remote terminal</td>
</tr>
<tr>
<td>DiffSync</td>
<td>ECHO</td>
<td>-</td>
<td>ECHO</td>
<td>-</td>
<td>Diff Synchronization mode of LDCM, 0=ECHO, 1=GPS</td>
</tr>
<tr>
<td>GPSSyncErr</td>
<td>Block</td>
<td>-</td>
<td>Block</td>
<td>-</td>
<td>Operation mode when GPS synchroniation signal is lost</td>
</tr>
<tr>
<td>CommSync</td>
<td>Slave</td>
<td>-</td>
<td>Slave</td>
<td>-</td>
<td>Com Synchronization mode of LDCM, 0=Slave, 1=Master</td>
</tr>
<tr>
<td>OptoPower</td>
<td>LowPower</td>
<td>-</td>
<td>LowPower</td>
<td>-</td>
<td>Transmission power for LDCM, 0=Low, 1=High</td>
</tr>
<tr>
<td>TransmCurr</td>
<td>CT-GRP1</td>
<td>-</td>
<td>CT-GRP1</td>
<td>-</td>
<td>Summation mode for transmitted current values</td>
</tr>
<tr>
<td></td>
<td>CT-GRP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT-SUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT-DIFF1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CT-DIFF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ComFailAlrmDel</td>
<td>5 - 500</td>
<td>5</td>
<td>10</td>
<td>ms</td>
<td>Time delay before communication error signal is activated</td>
</tr>
<tr>
<td>ComFailResDel</td>
<td>5 - 500</td>
<td>5</td>
<td>10</td>
<td>ms</td>
<td>Reset delay before communication error signal is reset</td>
</tr>
<tr>
<td>RedChSwTime</td>
<td>5 - 500</td>
<td>5</td>
<td>5</td>
<td>ms</td>
<td>Time delay before switching in redundant channel</td>
</tr>
<tr>
<td>RedChRturnTime</td>
<td>5 - 500</td>
<td>5</td>
<td>100</td>
<td>ms</td>
<td>Time delay before switching back from redundant channel</td>
</tr>
<tr>
<td>AsymDelay</td>
<td>-20.00 - 20.00</td>
<td>0.01</td>
<td>0.00</td>
<td>ms</td>
<td>Asymmetric delay when communication use echo synch.</td>
</tr>
<tr>
<td>MaxTransmDelay</td>
<td>0 - 40</td>
<td>1</td>
<td>20</td>
<td>ms</td>
<td>Max allowed transmission delay</td>
</tr>
<tr>
<td>CompRange</td>
<td>0-10kA</td>
<td>-</td>
<td>0-25kA</td>
<td>-</td>
<td>Compression range</td>
</tr>
<tr>
<td></td>
<td>0-25kA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-50kA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-150kA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxtDiffLevel</td>
<td>200 - 2000</td>
<td>1</td>
<td>600</td>
<td>µs</td>
<td>Maximum time diff for ECHO back-up</td>
</tr>
<tr>
<td>DeadbandtDiff</td>
<td>200 - 1000</td>
<td>1</td>
<td>300</td>
<td>µs</td>
<td>Deadband for t Diff</td>
</tr>
<tr>
<td>InvertPolX.21</td>
<td>Off/ON</td>
<td>-</td>
<td>Off</td>
<td>-</td>
<td>Invert polarization for X.21 communication</td>
</tr>
</tbody>
</table>
Table 5: Basic general settings for the LDCMRecBinStat (CRM2-) function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Step</th>
<th>Default</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelMode</td>
<td>Off ON OutOfService</td>
<td>-</td>
<td>ON</td>
<td>-</td>
<td>Channel mode of LDCM, 0=OFF, 1=ON, 2=OutOfService</td>
</tr>
<tr>
<td>TerminalNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number used for line differential communication</td>
</tr>
<tr>
<td>RemoteTermNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number on remote terminal</td>
</tr>
<tr>
<td>DiffSync</td>
<td>ECHO GPS</td>
<td>-</td>
<td>ECHO</td>
<td>-</td>
<td>Diff Synchronization mode of LDCM, 0=ECHO, 1=GPS</td>
</tr>
<tr>
<td>GPSSyncErr</td>
<td>Block Echo</td>
<td>-</td>
<td>Block</td>
<td>-</td>
<td>Operation mode when GPS synchroniation signal is lost</td>
</tr>
<tr>
<td>CommSync</td>
<td>Slave Master</td>
<td>-</td>
<td>Slave</td>
<td>-</td>
<td>Com Synchronization mode of LDCM, 0=Slave, 1=Master</td>
</tr>
<tr>
<td>OptoPower</td>
<td>LowPower HighPower</td>
<td>-</td>
<td>LowPower</td>
<td>-</td>
<td>Transmission power for LDCM, 0=Low, 1=High</td>
</tr>
<tr>
<td>TransmCurr</td>
<td>CT-GRP1 CT-GRP2 CT-SUM CT-DIFF1 CT-DIFF2 RedundantChannel</td>
<td>-</td>
<td>CT-GRP1</td>
<td>-</td>
<td>Summation mode for transmitted current values</td>
</tr>
<tr>
<td>ComFailAlrmDel</td>
<td>5 - 500</td>
<td>5</td>
<td>100</td>
<td>ms</td>
<td>Time delay before communication error signal is activated</td>
</tr>
<tr>
<td>ComFailResDel</td>
<td>5 - 500</td>
<td>5</td>
<td>10</td>
<td>ms</td>
<td>Reset delay before communication error signal is reset</td>
</tr>
<tr>
<td>RedChSwTime</td>
<td>5 - 500</td>
<td>5</td>
<td>5</td>
<td>ms</td>
<td>Time delay before switching in redundant channel</td>
</tr>
<tr>
<td>RedChRturnTime</td>
<td>5 - 500</td>
<td>5</td>
<td>100</td>
<td>ms</td>
<td>Time delay before switching back from redundant channel</td>
</tr>
<tr>
<td>AsymDelay (Refers to fixed routes with known asymmetric delay)</td>
<td>-20.00 - 20.00</td>
<td>0.01</td>
<td>0.00</td>
<td>ms</td>
<td>Asymmetric delay when communication use echo synch.</td>
</tr>
<tr>
<td>MaxTransmDelay</td>
<td>0 - 40</td>
<td>1</td>
<td>20</td>
<td>ms</td>
<td>Max allowed transmission delay</td>
</tr>
<tr>
<td>CompRange</td>
<td>0-10kA 0-25kA 0-50kA 0-150kA</td>
<td>-</td>
<td>0-25kA</td>
<td>-</td>
<td>Compression range</td>
</tr>
<tr>
<td>MaxtDiffLevel</td>
<td>200 - 2000</td>
<td>1</td>
<td>600</td>
<td>µs</td>
<td>Maximum time diff for ECHO back-up</td>
</tr>
<tr>
<td>DeadbandtDiff</td>
<td>200 - 1000</td>
<td>1</td>
<td>300</td>
<td>µs</td>
<td>Deadband for t Diff</td>
</tr>
</tbody>
</table>
Binary signal transfer for the 670 series

Introduction

Table 5: Basic general settings for the LDCMRecBinStat (CRM2-) function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Step</th>
<th>Default</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InvertPolX.21</td>
<td>Off, ON</td>
<td>-</td>
<td>Off</td>
<td>-</td>
<td>Invert polarization for X.21 communication</td>
</tr>
</tbody>
</table>

Table 6: Basic general settings for the LDCMRecBinStat (CRB1-) function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Step</th>
<th>Default</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelMode</td>
<td>Off, On, OutOfService</td>
<td>-</td>
<td>On</td>
<td>-</td>
<td>Channel mode of LDCM, 0=OFF, 1=ON, 2=OutOf-Service</td>
</tr>
<tr>
<td>TerminalNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number used for line differential communication</td>
</tr>
<tr>
<td>RemoteTermNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number on remote terminal</td>
</tr>
<tr>
<td>CommSync</td>
<td>Slave, Master</td>
<td>-</td>
<td>Slave</td>
<td>-</td>
<td>Com Synchronization mode of LDCM, 0=Slave, 1=Master</td>
</tr>
<tr>
<td>OptoPower</td>
<td>LowPower, HighPower</td>
<td>-</td>
<td>LowPower</td>
<td>-</td>
<td>Transmission power for LDCM, 0=Low, 1=High</td>
</tr>
<tr>
<td>ComFailAlrmDel</td>
<td>5 - 500</td>
<td>5</td>
<td>10/100 depending on version</td>
<td>ms</td>
<td>Time delay before communication error signal is activated</td>
</tr>
<tr>
<td>ComFailResDel</td>
<td>5 - 500</td>
<td>5</td>
<td>10</td>
<td>ms</td>
<td>Reset delay before communication error signal is reset</td>
</tr>
<tr>
<td>InvertPolX.21</td>
<td>Off, On</td>
<td>-</td>
<td>Off</td>
<td>-</td>
<td>Invert polarization for X.21 communication</td>
</tr>
</tbody>
</table>

Note:

ComfailAlrmDel; COMFAIL Alarm Delay:

ComFailAlrmDel should be set ≥ 100 ms, in normal service. Route switching in telecommunication networks normally takes < 50 ms. ComFailResDelay should be set at 10 ms.

(For fault tracing it can be advantageous to set the ComFailAlrmDel at 5 - 10 ms.)
Communication channels

Each 670 series device can be configured with up to four remote communication interfaces. The communication configuration for each channel is individually set.

Application examples:

Figure 22: Two ended line with 1 1/2 breaker

Figure 23: Two ended line with 1 1/2 breaker, redundant channels
Communication channels

Introduction

Figure 24: Multiterminal line for 5 line-ends, master-master

Figure 25: Multiterminal line for 5 line-ends, master-slave
7 Communication alternatives

- C 37.94 64 kbit/s communication module up to four ports
- Possibility for redundant channels (for 2 and 3 terminals)
- Fibre optical module for dedicated single mode fibers, typical 70/130 km
- C37.94 direct to PCM/MUX
- External G.703 converter, 64 kbit/s PDH or 2 Mbits SDH
- Galvanic X21 interface
- Two local analogue inputs for differential protection
- Additional local inputs for complementary protection

Figure 26: Communication alternatives for 670 series
7.1 Fiberoptic communication interfaces with IEEE C37.94 international standard protocol

The 670 series can be configured with 1-4 fiberoptic interfaces according to IEEE C37.94 1. with 12 x 64 bits channels (only one 64 kbits channel LDCM is used).

Up to 4 modules type LDCM can be included. Three different types are available.

- For Multimode fiberoptic 50/125 µm or 62.5/125 µm for 2-3 km to telecommunication equipment (Can also be used for back-to-back applications 2-3 km), (850 nm)
- For single mode fiberoptic 9/125 µm for back to back applications < 70 km (1300 nm)
- For single mode fiberoptic 9/125 µm for back to back applications < 130 km (1550 nm)
- Selection of high or low optical power, see Table 9.

| Optical budget for 670 series: 64 kbit communication with C37.94 interface |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| **Fiber optic communication** | **850 nm** | **850 nm** | **1310 nm** |
| **Modem type** | **Multimode fiberoptic 50/125 µm** | **Multimode fiberoptic 62.5/125 µm** | **Single mode fiberoptic 9/125 µm** |
| **Contact type** | **ST** | **ST** | **FC/PC** |
| **Minimum output power** | **-21 dBm** | **-17 dBm** | **-7 dBm** |
| **Minimum receiver sensitivity**| **-30 dBm** | **-30 dBm** | **-29 dBm** |
| **Optical budget** | **9 dB** | **13 dB** | **22 dB** |
| **Optical budget** | **26 dB** | **26 dB** | **26 dB** |

The optical budget includes a satisfactory margin for aging in transmitter and receiver during 20-30 years.
7.2 Galvanic interface type X.21

Introduction

The galvanic X.21 line data communication module is used for connection to telecommunication equipment, for example leased telephone lines. The module supports 64 kbits/s data communication between IEDs.
Example of applications:

- Line differential protection
- Binary signal transfer

7.2.1 Design

The galvanic X.21 line data communication module uses a ABB specific PC*MIP Type II format.

Figure 27: Overview of the X.21 LDCM module

Figure 28: The X.21 LDCM module external connectors

1. Ground selection connector for IO, screw terminals, 2-pole
2. Ground pin
3. Soft ground pin, see Figure 29 below
4. X.21 Micro D-sub 15 pole male connector according to the V11 (X:27) balanced version
Communication alternatives

Introduction

Figure 29: Schematic view of soft ground

Grounding

At special problems with ground loops the soft ground connection for the IO-ground can be tested.

Three different kinds of grounding principles can be set (used for fault tracing):

1. Direct ground - The normal grounding is direct ground, connect terminal 2 direct to chassi.
2. No ground - Leave the connector without any connection
3. Soft ground - connect soft ground pin (3), see Figure 29 above
X.21 Connector

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shield (ground)</td>
</tr>
<tr>
<td>2</td>
<td>TXD A</td>
</tr>
<tr>
<td>3</td>
<td>Control A</td>
</tr>
<tr>
<td>4</td>
<td>RXD A</td>
</tr>
<tr>
<td>6</td>
<td>Signal timing A</td>
</tr>
<tr>
<td>8</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>TXD B</td>
</tr>
<tr>
<td>10</td>
<td>Control B</td>
</tr>
<tr>
<td>11</td>
<td>RXD B</td>
</tr>
<tr>
<td>13</td>
<td>Signal timing B</td>
</tr>
<tr>
<td>5, 7, 12, 14, 15</td>
<td>Not used</td>
</tr>
</tbody>
</table>

7.2.2 Functionality

The data format is HDLC. The speed for the transmission of the messages used is 64 kbit/s.

A maximum of 100 meter of cable is allowed to ensure the quality of the data (deviation from X.21 standard cable length).

Synchronization

The X.21 LDCM works like a DTE (Data Terminal Equipment) and is normally expecting synchronization from the DCE (Data Circuit equipment). The transmission is normally synchronized to the Signal Element Timing signal when a device is a DTE. When the signal is high it will read the data at the receiver and when the signal is low it will write data to the transmitter. This behaviour can be inverted in the control register.

Normally an external multiplexer is used and it should act like the master.

When two X.21 LDCM is directly communicating with each other one must be set as a master generating the synchronization for the other (the slave). The DTE signal Element Timing is created from the internal 64 kHz clock.

The Byte Timing signal is not used in ABB devices.
Technical data

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Range of value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector, X.21</td>
<td>Micro D-sub, 15-pole male, 1.27 mm (=.050") pitch</td>
</tr>
<tr>
<td>Connector, ground selection</td>
<td>2 pole screw terminal</td>
</tr>
<tr>
<td>Standard</td>
<td>CCITT X.21</td>
</tr>
<tr>
<td>Communication speed</td>
<td>64 kbit/s</td>
</tr>
<tr>
<td>Insulation</td>
<td>1 kV</td>
</tr>
<tr>
<td>Maximum cable length</td>
<td>100 m</td>
</tr>
</tbody>
</table>
8 PDH telecommunication system

PDH telecommunication system set-up with 64 kbit/s C37.94 interface to transceiver type 21-216, or X.21 directly to telecommunication systems. For PDH telecommunication systems with 21-219, see section 10.

8.1 General communication requirements

There is a short delay in alarm time, normally 100 ms, for the communication fail in the relay, derived from the dependability of the differential protection function. This will require a high quality communication system, see “Appendix 1” on page 69.

If the telecommunication system is disturbed more than 100 ms, an alarm will be correctly issued.

8.2 Communication structure for IEEE C37.94 fiberoptic interface in 670 series and 21-216 with G.703 64 kbit/s in a PDH-system

REL 670 Line differential relay or other 670 series for binary signal transfer

Transceiver 21-216 Optical/electrical interface converter

MUX = Multiplexer or PCM = Pulse Code Multiplexer is two different names for the same thing.

Figure 30: PDH Communication structure
8.3 Service settings of 21-216

Fiber Optic Port

Figure 31: The fiber optic connector is of ST type.

Confirm the attenuation of the fiber optic cable, including splices and patch cables, does not exceed the system budget. Do not forget to add a safety margin. Minimum safety margin is 3dB.

Make sure that the local fiber optic transmitter, marked Tx, is connected to the remote units fiber optic receiver, marked Rx. Local Rx shall be connected to remote Tx.

Figure 32: G.703 64kbit/s Codir Port
Use a cable with twisted pairs and a high quality shield. Only foil shielding is not enough. Rx+ and Rx- should form one twisted pair - Tx+ and Tx- another twisted pair. A Cat5 S/FTP-cable, /Shielded/Foil Twisted Pair) used for example in Ethernet communication is a good cable. The outer shield is a braided mesh around the cable. In addition every twisted pair has a foil-shielding.

If a S7FTP patchcable for Ethernet is used, be aware that a cross-connected cable has only the pairs on pin 1-2 and 3-6 cross-connected, the two remaining pairs are not cross-connected.

Clock configuration switch

From 21-216 revision 2 and later, a rotary switch is added to the front panel, to ease installation and testing.

When two 21-216 are used in a PDH or a PDH/SDH system the two 21-216 shall be set as slaves, i.e. when external clock is used.

Back-to-back testing

For testing back-to-back with the G703 ports directly connected, one of the 21-216 shall be set as Master (internal clock).
8.3.1 Clock synchronization configuration

A rotary switch on the front panel can be used for clock synchronization configuration.

The rotary switch has 16 positions, (HEX-switch).

![Clock configuration switch image]

Figure 33: Clock configuration switch

At position 0 the switch’s arrow, visible through the adjusting hole, points straight down. In position 0, external clock is selected (default).

<table>
<thead>
<tr>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>External clock is selected (Slave)</td>
</tr>
<tr>
<td>1</td>
<td>External clock is selected and inverted (Slave)</td>
</tr>
<tr>
<td>2</td>
<td>Internal clock is selected (Master)</td>
</tr>
<tr>
<td>3</td>
<td>Internal clock is selected and inverted (Master)</td>
</tr>
<tr>
<td>4-7</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>8-15</td>
<td>Reserved for factory testing</td>
</tr>
</tbody>
</table>

When a “not used” channel is selected or if both codir and fiber clock are selected, the ERR-LED on the front panel is lit.
8.4 Start and usage

Power on

Connect the power cord to the 21-216 and then connect to mains.

If the link doesn’t work, try to cross-connect the fiber at one end.

8.4.1 LED-status

There are 12 LED-indicators at the front panel.

Figur 34: Front panel

Power
A green LED lit when power is connected to the unit.

RA
Remote Alarm. A red LED indicating that the remote unit has encounter a fault condition and has set the “Yellow Alarm bit” in the IEEE C37.94 protocol.

LA
Local Alarm. A red LED indicating that the 21-206 has encounter a fault in the IEEE C37.94 protocol -LOS Loss Of Signal. The “Yellow Alarm bit” is set in the outgoing IEEE C37.94 protocol

ERR
Error. A red LED indicating that the 21-216 has detected an internal error. The ERR-LED also indicates that not allowed setting of jumpers is made.

LF
Link Fiber. A green LED indicating that the 21-216 receives correct IEEE C37.94 frames, (no LOS).

LT
Link Twisted pair/G.703 codir. A green LED indicating that 21-216 receives G.703 codir 64kbit/s protocol.
PDH telecommunication system

Introduction

RxF
Receive data on Fiber. A green LED indicating that 21-216 receives data in IEEE C37.94 format.

RxT
Receive data on twisted pair/G.703 codir. A green LED indicating that 21-216 receives data in G.703 codir protocol.

Channel
For yellow LED’s representing the channel chosen by jumpers at installation. The channel is “calculated” by adding the lit LED’s. For example if LED 1 and LED 2 are lit 1+2=3 Channel 3 is chosen. This means that data to/from G.703.codir-port is sent and received on the IEEE C37.94 protocol on the fiber.

Clock synchronization configuration

Clock synchronization configuration can be done “on the fly” with the rotary switch on the front panel. See chapter “Service settings of 21-216”

8.5 Service settings of 670 series with G.703 co-directional

Figure 35: CRM3 set as slave

```
<table>
<thead>
<tr>
<th>Group / Parameter Name</th>
<th>IED Value</th>
<th>PC Value</th>
<th>Unit</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelMode</td>
<td>On</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TerminalNo</td>
<td>2</td>
<td>0</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RemoteTermNo</td>
<td>1</td>
<td>0</td>
<td>255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DllSync</td>
<td>ECHO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPSSyncExt</td>
<td>Block</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CommSync</td>
<td>Slave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OptoPower</td>
<td>LowPower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TransmCurr</td>
<td>CT-GPIP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConfailAlmDel</td>
<td>100</td>
<td>ms</td>
<td>5</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>ConfailResDel</td>
<td>100</td>
<td>ms</td>
<td>5</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>RedChSwTime</td>
<td>5</td>
<td>ms</td>
<td>5</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>RedChRtmTime</td>
<td>5</td>
<td>ms</td>
<td>5</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>AsynDelay</td>
<td>0.00</td>
<td>ms</td>
<td>-200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>MaxTransDelay</td>
<td>20</td>
<td>ms</td>
<td>0</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>CompRange</td>
<td>0.25kA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaxDiffLevel</td>
<td>600</td>
<td>us</td>
<td>200</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>DeadBandDiff</td>
<td>300</td>
<td>us</td>
<td>200</td>
<td></td>
<td>1000</td>
</tr>
</tbody>
</table>
```

en07000255.vsd

52

1MRK 505 197-JEN Rev. F
8.6 Service settings of Transceiver 21-216 G.703 64 kbit

There is only one setting that is required. The transceiver has to be set to external clock. The rotating dip switch in position 0. For back-to-back testing one 21-216 has to be set as master internal clock, rotary switch in position 2, (overrides settings of jumpers 8 and 9).

8.7 Grounding

The recommended grounding is - direct grounding (default setting). At ground loop problems, the soft ground mode can be advantageous, see Figure 37 and Figure 38.
The strapping area/jumper P4 selects how internal signalground and chassieground are referenced together. With a jumper between P4’s terminals chassieground and signalground are directly tied together. Without a jumper on P4 chassieground and signalground are connected together with a 100 kΩ resistor in parallel with a 100nF capacitor.

Reassemble
After jumper selecting, reassembling is done in the reversed order as described above. Do not forget to reconnect protective ground cables.

8.7.1 Detection of communication faults on 21-216
There is a supervision on the 21-216 which can be used for fault tracing.

RA
Remote Alarm. A red LED indicating that the remote unit has encountered a fault condition and has set a red LED indicating that the remote unit has encountered a fault condition and has set the “Yellow Alarm bit” in the IEEE C37.94 protocol.

LA
Local Alarm. A red LED indicating that the 21-206 has encountered a fault in the IEEE C37.94 protocol -LOS Loss Of Signal. The “Yellow Alarm bit” is set in the outgoing IEEE C37.94 protocol

If IED 670 has a communication fail alarm and there is no indication for RA or LA on the 21-216 then the communication interruption is in the telecommunication system.
9 Communication structure for the X.21 built-in galvanic interface

REL 670 Line differential relay or 670 series for binary transfer
Built-in interface type X.21
PCM = Pulse Code Multiplexer = MUX

![Communication structure for X.21](en07000259.wmf)

Figure 39: Communication structure for X.21

9.1 Connection and Service settings of 670 series with X.21 galvanic interface

X.21 connector
The connector used for the X.21 communication is a 15-pole male Micro D-sub according to the V11 (X.27) balanced version. See section 7.2 page 41.

9.2 Check of settings on 670 series HMI and communication status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Step</th>
<th>Default</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelMode</td>
<td>Off, ON, OutOfService</td>
<td>-</td>
<td>ON</td>
<td>-</td>
<td>Channel mode of LDCM, 0=OFF, 1=ON, 2=OutOfService</td>
</tr>
<tr>
<td>TerminalNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number used for line differential communi-</td>
</tr>
<tr>
<td>RemoteTermNo</td>
<td>0 - 255</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>Terminal number on remote terminal</td>
</tr>
</tbody>
</table>

Table 10: Basic general settings for the LDCMRecBinStat (CRM1-) function
Communication structure for the X.21 built-in galvanic interface

Introduction

After making these settings check the result on the HMI of the IED 670.

Look under Test/Function Status/Communication/Remote communication/LDCM312/CRM3/ on both end terminals and verify that the result is OK. Received 100%, transmit 100%.
9.3 Supervision of the communication on the 670 series HMI

9.3.1 Communication structure for laboratory testing

During laboratory testing one of the 21-216 has to provide the timing. This is done by removing the jumper on S14 EXT CLK in one of them. Remember to restore after testing.

![Diagram of communication structure for laboratory testing](en07000155.vsd)

Figure 40: Communication structure for laboratory testing
10 **PDH/SDH telecommunication system set-up with 670 series 64 kbit/s C37.94 interface to transceiver type 21-219**

The transceiver 21-219 can be used for both SDH or PDH systems.

10.1 **Transceiver 21-219 service settings for SDH systems**

Normally the SDH system with an accurate Master clock gives a high quality communication with very low Bit Error Rate (BER 10^{-9}).

10.1.1 **Service settings with the port for 21-219 synchronized to the SDH system master clock**

Setting up of a SDH system requires that the port for 21-219 is synchronized from the actual SDH network master clock. Thus the SDH telecommunication multiplexer (MUX) must be set to fulfil this. These settings are vendor dependent, but normally the SDH MUX has to be set for retiming and the format according G.704 framed, structured, unstructured etc.

The format transparent cannot be used in SDH systems because no synchronization on the 21-219 SDH port is available.

Communication structure:

670 series
Transceiver 21-219 Optical/electrical interface converter
SDH MUX = Multiplexer in the SDH system
Introduction

Setting of clock source (slave mode)

In normal operation the 21-219 at both end of a line shall be configured for External clock, thus the configuration switch at the front shall be in position 0, the led 1, 2, 4, 8 shall all be off.

Service settings with the SDH/PDH port synchronized from one of the 21-219 transceivers (PDH system)

The communication quality in PDH systems are normally not as good as in SDH systems due to less stable clocks as Master. The bit error rate is normally BER 10^{-6}.

Set-up as PDH system requires that the synchronization is provided from an external source, for example one of the 21-219 transceivers. Thus the SDH MUX must be set not to interfere with the synchronization. This setting is normally fulfilled by setting the SDH MUX in transparent mode.

Communication structure:

- 670 series Protection/control relay
- Transceiver 21-219 Optical/electrical interface converter
- SDH MUX = Multiplexer in the SDH system

Figure 41: Communication structure

- LOCAL
- <10m
- RED 670
- Transciever 21-219
- SDH MUX
- Multi-mode Fibre optic <3.5 km
- Galvanic connection Interface G.703 E1 (2MB)
- SDH Master
- G704 (framed etc.)
- Slaves
- <10m
- REMOTE
- RED 670
- Transciever 21-219
- SDH MUX
- Multi-mode Fibre optic <3.5 km
- Galvanic connection Interface G.703 E1 (2MB)
- Slaves (External clock)
Introduction

Figure 42: Communication structure

Setting of clock source (Master - slave mode)

Local end Master 21-219: In normal operation the 21-219 master should be set for Internal clock. Thus the configuration switch at the front shall be in position 1 and LED 1 shall be lit. The LED 2, 4, 8 shall all be off.

Remote end Slave 21-219: In normal operation the 21-219 slave shall be configured for External clock. Thus the configuration switch at the front shall be in position 0. The LED 1, 2, 4, 8 shall all be off.

Both 670 series devices shall be set as slaves.

Note that the differential protection clock is a separate issue not involved in communication and always is set as Master for the differential protection, even if the differential protection is configured Master - Slave.
10.1.3 Service settings of transceiver 21-219 G.703 E1 2 Mbit

There is only one setting that is required. The 21-219 has to be set for external or internal clock, depending on configuration of the telecommunication system.

Figure 43: 21-219 Fiber optic IEEE C37.94 G.703 E1 Multiplexor

1 Functional ground
2 Power Supply IEC 320 connector
3 G.703 port
4 Fiber Optic Ports “Channel 0”
5 Fiber Optic Ports “Channel 1”
6 Status LEDs Fiber Optic Port “Channel 1”
7 Status LEDs Fiber Optic Port “Channel 0”
8 Reset button
9 Config-switch
10 Status LEDs G.703 and configuration
Transceiver 21-219 has two channels which can be used for redundant communication, see Figure 44 below.

Figure 44: Protection system with redundant communication channels

10.1.4 Configuration

Normal use

Normally no configuration is needed!

When two 21-219 are connected back-to-back, (E1 ports connected to each other), one of the 21-219 should be set to “Master mode”.
Config rotary switch

![Image of rotary switch](en07000249.wmf)

Figure 45: Rotary Switch

The rotary switch has 16 positions, (HEX_switch).

![Image of rotary switch enlarged](en07000252.wmf)

Figure 46: Rotary switch enlarged

At position 0 the arrow in the switch, visible through the adjusting hole, points straight down.

All configuration is done by setting the position of the “Config” rotary switch on the front panel. The “Config”-switch is operated with a small screwdriver. The switch has 16 positions. Every switch position is presented by the four LEDs 1, 2, 4, and 8, see figure 48. The LEDs forms a corresponding binary-value of the switch position. In the table below “X” marks a lit LED.

<table>
<thead>
<tr>
<th>LED 1</th>
<th>LED 2</th>
<th>LED 3</th>
<th>LED 4</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0H) External clock selected. "Slave mode"</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(1H) Internal clock selected. "Master mode"</td>
</tr>
</tbody>
</table>
10.1.5 Signals on front

Figure 47: LED indicators

1 LED indicators for “Channel 0”
2 LED indicators for “Channel 1”

LA = Local Alarm. A red LED indicating that the 21-219 has encountered a fault in the received IEEE C37.94 protocol - LOS Loss Of Signal. The “Yellow Alarm bit” is set in the outgoing IEEE C37.94 protocol.

Is red when the 21-219 has detected an error. This indication has a memory function. When the local-error is no longer present, the LA-LED will blink until the “Reset”-button is pressed.

RA = Remote Alarm. A red LED indicating that the remote unit has encountered a fault condition and has set the “yellow Alarm bit” in the IEEE C37.94 protocol.

Is red when the remote unit of the fiber optic link has detected an error. This indication has a memory function. When the remote-error is no longer present, the RA-LED will blink until the “Reset”-button is pressed.

ST = Status. A red LED is lit when the 21-219 has set outgoing data on fiber to AIS-condition.

LI = Link Fiber. A green LED indicating that the 21-219 receives correct IEEE C37.94 frames, (No Loss). Blinks when the fiber optic receiver indicate low signal amplitude. Low amplitude is indicated when received optical signal power is between -35dBm and -40dBm.

The IEEE C37.94 standard specifies: “The receiver shall operate error-free (BER <1E-9) for mean optical power between -32dBm and -11dBm”.

TxD. Received data from E1 sent out to IEEE C37.94. A yellow LED indicating that 21-219 sends data in IEEE C37.94 format.

RxD. Receive IEEE C37.94 data on fiber. A yellow LED indicating that the 21-219 receives data in IEEE C37.94 protocol.
10.1.6 Detection of communication faults on 21-219

There is supervision on the 21-219 which can be used for fault tracing.

There are two red light emitting diodes on the front of the 21-219, LA (Local Alarm) if there is some problem in 21-219, and RA (Remote Alarm) which is supervising the fiber optic link from the 21-219 to the 670 series, see section 10.1.5 page 67.

If 670 series has a communication fail alarm and there is no indication for LA or Ra on the 21-219, then the communication interruption is in the telecommunication system.

Grounding of 21-219

The interface protection circuitry in the 21-219 is based on the requirement that the telecommunication multiplexer (MUX) interface is directly or low resistive grounded to the same ground as the grounding screw on the front of the 21-219. There is no overturned protection in 21-219. If there is a potential difference between the 21-219 ground and the MUX ground it will result in a current flowing in the outer shield of the connecting cable that may damage the cable and degrade the system functionality with bit errors as a consequence.

Thus a correct grounding is essential, with the coaxial cables outer shield grounded to the chassi via the BNC contacts at both ends, see Figure 48.

![Figure 48: Coaxial cables outer shield grounded to the chassi at both ends](en07000158.vsd)
Communication settings of 670 series connected to 21-219

The same setting as for 21-216 are used, see Section 10.1.3 page 61.

Communication structure for laboratory testing

During laboratory testing back-to-back one of the 21-219 must be set as Master. This is done by turning the configuration switch to pos 1 "EXT CLK" on one of them, LED 1 shall be lit and LED 2, 4, 8 shall be off.
11 Communication check/fault tracing

11.1 Information available on the HMI

On the HMI of RED 670 and the 670 series, the status of the remote communication can be supervised. The available information is also useful at fault tracing.

The information on the HMI can be found in the following HMI tree on the RED 670 front.

Enter

- Test

- Function status

- Communication

- Remote communication

- LDCM (slot); Line Differential Communication Module

- CRM (no 1-4) Communication remote multi (analogue + binary)

or

- CRB (no 1-4) Communication remote binary (only binary-192 BI/BO)

SMT/CRM and CRB: Signal Matrix Tool connection number to connect information to for example the event recorder.

11.1.1 Example of HMI info for transmission delay and asymmetry.

```
ECHO mode
```

<table>
<thead>
<tr>
<th>IED A</th>
<th>IED B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings in IED A</td>
<td>Settings in IED B</td>
</tr>
<tr>
<td>asymDelay</td>
<td>-3.10 ms</td>
</tr>
<tr>
<td>Service value in IED A</td>
<td>Service value in IED B</td>
</tr>
<tr>
<td>transmDelay</td>
<td>0.400 ms</td>
</tr>
<tr>
<td>asymDelay</td>
<td>-3.10 (same as setting)</td>
</tr>
</tbody>
</table>

0.4 ms Transmission delay, 3.5 ms Asymmetric delay in test set-up
In GPS mode the actual values are shown

<table>
<thead>
<tr>
<th>Service values in IED A</th>
<th>Service values in IED B</th>
</tr>
</thead>
<tbody>
<tr>
<td>transmDelay</td>
<td>transmDelay</td>
</tr>
<tr>
<td>0.4 ms</td>
<td>3.500 ms</td>
</tr>
<tr>
<td>asymDelay</td>
<td>asymDelay</td>
</tr>
<tr>
<td>-3.1 ms</td>
<td>3.100 ms</td>
</tr>
</tbody>
</table>

Window

Remote communication/LDCM(slot)/CRM for RED 670 and /CRB for the 670 series

<table>
<thead>
<tr>
<th>HMI Info</th>
<th>Normal (Example)</th>
<th>Faulty (Example)</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>TransmDelay in Echo mode 1)</td>
<td>2 ms</td>
<td>-</td>
<td>Time</td>
</tr>
<tr>
<td>Transmission delay in GPS mode 1)</td>
<td>2 ms</td>
<td>-</td>
<td>Time</td>
</tr>
<tr>
<td>NoOfShInterr</td>
<td>50</td>
<td>-</td>
<td>Counter</td>
</tr>
<tr>
<td>NoOfMEDInterr</td>
<td>10</td>
<td>-</td>
<td>Counter</td>
</tr>
<tr>
<td>NoOfLongInterr</td>
<td>5</td>
<td>-</td>
<td>Counter</td>
</tr>
<tr>
<td>CommStatus</td>
<td>OK</td>
<td>NoRXD</td>
<td>Status</td>
</tr>
<tr>
<td>COMFAIL</td>
<td>0</td>
<td>1</td>
<td>Status</td>
</tr>
<tr>
<td>NoOFTXD</td>
<td>100.000</td>
<td><100</td>
<td>Status %</td>
</tr>
<tr>
<td>NoORXD</td>
<td>100.000</td>
<td><75*</td>
<td>Status %</td>
</tr>
<tr>
<td>Ybit</td>
<td>0</td>
<td>1</td>
<td>Status</td>
</tr>
<tr>
<td>AsymDelay 1)</td>
<td>0.5 ms</td>
<td>-</td>
<td>Setting/GPS ms</td>
</tr>
</tbody>
</table>
| NOCARR | 0 | 1 | Status | No carrier is detected in the incoming message. Group signal - Logical OR for:
• LINK_LOST No input data stream at the optical receiver
• SYNC_LOST The clock synchronization is lost
• C37 ERROR Error at the C37.94 fiberoptic receiver (Faulty format) |
| NOMESS | 0 | 1 | Status | No start and stop flags in incoming message |
| ADRERR | 0 | 1 | Status | Incoming message from non-valid address |
Communication check/fault tracing

Introduction

**Around 75 % RXD is typical if for example two Master clocks are present in the communication system

** Only in RED 670

11.2 Detection of communication faults on Fibersystem transceiver type 21-216 C37.94/G.703 64 kbit/s modem.

There is supervision on the 21-216 which can be used for fault tracing, see section 8.7.

There are two red light emitting diodes on the front of the 21-216, LA (Local Alarm), there are some problem in 21-216 and RA (Remote Alarm) which is supervising the fiber optic link from the 21-216 to the 670 series.

If IED 670 has a communication fail alarm and there is no indication for LA or Ra on the 21-216, then the communication interruption is in the telecommunication system.

11.3 Detection of communication faults on Fibersystem transceiver type 21-219 C37.94/G.703 G.703 E1 2 Mbit/s modem

There is supervision on the 21-219 which can be used for fault tracing, see section 8.7.

There are two red light emitting diodes on the front of the 21-219, LA (Local Alarm), there are some problem in 21-219 and RA (Remote Alarm) which is supervising the fiber optic link from the 21-219 to the 670 series.

If IED 670 has a communication fail alarm and there is no indication for LA or Ra on the 21-219, then the communication interruption is in the telecommunication system.
11.4 Detection of communication faults by loop back tests.

A very efficient way to trace the origin of communication problems is to make so called loop-back tests, that is to make a loop back to the local RED 670 or 670 series products at various points in the communication system. The loop back tests involve both fiberoptic loop-back and galvanic cable loop-back, depending on actual point in the communication system.

Loop back test sequence.

Set the local relay and the remote relay with the same address.

Setting of the Line Differential Communication module- LDCM
- general settings
 - communication
 - LDCM communication
 - LDCM (slot no)
 - CRM(no) or CRB(No) for the 670 series
 - Terminal No []
 - Remote terminal No same []
 - Echo Synchronization On or Off
 - GPS synchronization Off or On

The synchronization method shall be the same in the loop-back tests as in actual service.

Perform Loop back tests at consecutive points in the communication system. The number of test will depend on the actual communication system, and number of channels.

Fibersystem transceiver 21-216 will be connected to a 64 kbit PDH Multiplexer. Fibersystem 21-219 is normally connected directly to a 2 Mbit SDH multiplexer, reducing the number of interface points for the loop-back test.

Test 1. Connect RX and TX directly on the actual LDCM with a fiberoptic loop. Check that the communication is OK on the HMI, see 11.1 page 70.

If there is more then one LDCM (max 4) on the local RED 670, the test must be repeated for each channel.

Figure 49: Fiberoptic or galvanic loop-back
Test 2- to Test N. Loop back RX+ to TX+ and RX- to TX-. Loop back in respective interface points one by one in the communication system. Check the communication information on the HMI for each interface point, see 11.1 above. If no fault is found, Test 1 and Test 2 should be repeated in inverse order from the remote end.

Note:

For loop-back tests with X21 galvanic interface special procedures and equipment is needed. Contact your local ABB representative.
Communication check/fault tracing

Introduction
Sample specification of communication requirements for differential protection RED 670 and the 670 series protection and control terminals in digital telecommunication networks

The communication requirements are based on echo timing.

Bit Error Rate (BER) according to ITU-T G.821, G.826 and G.828

- $<10^{-6}$ according to the standard for data and voice transfer

Bit Error Rate (BER) for high availability of the differential protection

- $<10^{-8}$ - 10^{-9} during normal operation
- $<10^{-6}$ during disturbed operation

During disturbed conditions, the trip security function in RED 670 can cope with high bit error rates up to 10^{-5} or even up to 10^{-4}. The trip security can be configured to be independent of COMFAIL from the differential protection communication supervision, or blocked when COMFAIL is issued after receive error >100ms. (Default)

Synchronization in SDH systems with G.703 E1 or IEEE C37.94

The G.703 E1, 2 Mbit shall be set according to ITU-T G.803, G.810-13

- One master clock for the actual network
- The actual port Synchronized to the SDH system clock at 2048 kbit
- Synchronization; bit synchronized, synchronized mapping
- Maximum clock deviation $<\pm50$ ppm nominal, $<\pm100$ ppm operational
- Jitter and Wander according to ITU-T G.823 and G.825
- Buffer memory $<250\ \mu$s, $<100\ \mu$s asymmetric difference
- Format G.704 frame, structured etc.
- No CRC-check

Synchronization in PDH systems connected to SDH systems

- Independent synchronization, asynchronous mapping.
- The actual SDH port must be set to allow transmission of the master clock from the PDH-system via the SDH-system in transparent mode
- Maximum clock deviation $<\pm50$ ppm nominal, $<\pm100$ ppm operational
- Jitter and Wander according to ITU-T G.823 and G.825
- Buffer memory $<100\ \mu$s
- Format: Transparent
- Maximum channel delay
Sample specification of communication requirements for differential protection RED 670 and the 670 series protection and control terminals in digital telecommunication networks

Appendix 1

- Loop time <30 ms continuous (2 x 15 ms)

IED 670 with echo synchronization of differential clock (without GPS clock)
- Both channels must have the same route with maximum asymmetry of 0.2-0.5 ms, depending on set sensitivity of the differential protection.
- A fixed asymmetry can be compensated (setting of asymmetric delay in built in HMI or the parameter setting tool PST).

IED 670 with GPS clock
- Independent of asymmetry.
Related documents

<table>
<thead>
<tr>
<th>Documents related to RED 670</th>
<th>Identity number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator’s manual</td>
<td>1MRK 505 184-UEN</td>
</tr>
<tr>
<td>Installation and commissioning manual</td>
<td>1MRK 505 185-UEN</td>
</tr>
<tr>
<td>Technical reference manual</td>
<td>1MRK 505 183-UEN</td>
</tr>
<tr>
<td>Application manual</td>
<td>1MRK 505 186-UEN</td>
</tr>
<tr>
<td>Buyer’s guide</td>
<td>1MRK 505 188-BEN</td>
</tr>
<tr>
<td>Connection diagram, Single breaker arr. Three phase tripping arr.</td>
<td>1MRK 002 801-BA</td>
</tr>
<tr>
<td>Connection diagram, Single breaker arr. Single phase tripping</td>
<td>1MRK 002 801-CA</td>
</tr>
<tr>
<td>Connection diagram, Multi breaker arr. Three phase tripping arr.</td>
<td>1MRK 002 801-DA</td>
</tr>
<tr>
<td>Connection diagram, Multi breaker arr. Single phase tripping arr.</td>
<td>1MRK 002 801-EA</td>
</tr>
<tr>
<td>Configuration diagram A, Single breaker with single or double busbars</td>
<td>1MRK 004 500-82</td>
</tr>
<tr>
<td>Configuration diagram B, Single breaker with single or double busbars</td>
<td>1MRK 004 500-83</td>
</tr>
<tr>
<td>Configuration diagram C, Multi breakers such as 1 1/2 or ring busbar arr.</td>
<td>1MRK 004 500-84</td>
</tr>
<tr>
<td>Configuration diagram D, Multi breakers such as 1 1/2 or ring busbar arr.</td>
<td>1MRK 004 500-85</td>
</tr>
<tr>
<td>Setting example 1, 230 kV Short cable line with 1 1/2 CB arr</td>
<td>1MRK 505 175-WEN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Documents related to REL 670</th>
<th>Identity number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator’s manual</td>
<td>1MRK 506 276-UEN</td>
</tr>
<tr>
<td>Installation and commissioning manual</td>
<td>1MRK 506 277-UEN</td>
</tr>
<tr>
<td>Technical reference manual</td>
<td>1MRK 506 275-UEN</td>
</tr>
<tr>
<td>Application manual</td>
<td>1MRK 506 278-UEN</td>
</tr>
<tr>
<td>Buyer’s guide</td>
<td>1MRK 506 280-BEN</td>
</tr>
<tr>
<td>Connection diagram, Single breaker arr. Three phase tripping arr.</td>
<td>1MRK 002 801-BA</td>
</tr>
</tbody>
</table>
Connection diagram, Single breaker arr. Single phase tripping arr. 1MRK 002 801-CA
Connection diagram, Multi breaker arr. Three phase tripping arr. 1MRK 002 801-DA
Connection diagram, Multi breaker arr. Single phase tripping arr. 1MRK 002 801-EA
Configuration diagram A, Single breaker with single or double busbar, 3 pole tripping (A31) 1MRK 004 500-86
Configuration diagram B, Single breaker with single or double busbar, 1/3 pole tripping (A32) 1MRK 004 500-87
Configuration diagram C, Multi breaker such as 1 1/2 or ring busbar arr. 3 pole tripping (B31) 1MRK 004 500-88
Configuration diagram D, Multi breaker such as 1 1/2 or ring busbar arr. 1/3 pole tripping (B32) 1MRK 004 500-89
Setting example 1, 400 kV Long overhead power line with 1 1/2 CB arr. Quadrilateral characteristic. 1MRK 506 267-WEN
Setting example 2, Setting example 1, 400 kV Long overhead power line with 1 1/2 CB arr. Mho characteristic. 1MRK 506 291-WEN
Setting example 3, 230 kV Extremely long overhead power line, double bus, single CB arr. Quadrilateral characteristic. 1MRK 506 268-WEN
Setting example 4, 230 kV Extremely long overhead power line, double bus, single CB arr. Mho characteristic. 1MRK 506 292-WEN
Setting example 5, 132 kV Short overhead power line, double bus, single CB arr. Quadrilateral characteristic. 1MRK 506 269-WEN
Setting example 6, 132 kV Short overhead power line, double bus, single CB arr. Mho characteristic. 1MRK 506 290-WEN
Setting example 7, 70 kV power line on a resonance earth system. Double bus, single breaker arrangement. 1MRK 506 293-WEN
Setting example 8, 400 kV long series compensated line. 1 1/2 2 breaker arrangement. 1MRK 506 294-WEN

Documents related to REC 670

<table>
<thead>
<tr>
<th>Identity number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator’s manual</td>
</tr>
<tr>
<td>Installation and commissioning manual</td>
</tr>
<tr>
<td>Technical reference manual</td>
</tr>
<tr>
<td>Application manual</td>
</tr>
<tr>
<td>Buyer’s guide</td>
</tr>
</tbody>
</table>
Appendix 2
Related documents

Connection diagram, Single breaker 1MRK 002 801-FA
Connection diagram, Double breaker 1MRK 002 801-MA
Connection diagram, 1 1/2CB 1MRK 002 801-NA
Configuration diagram A, Single breaker arr. with single or double busbar 1MRK 004 500-90
Configuration diagram B, Double breaker arrangements 1MRK 004 500-91
Configuration diagram C, 1 1/2 breaker arr. for a full bay 1MRK 004 500-92

Documents related to RET 670

Operator's manual 1MRK 504 087-UEN
Installation and commissioning manual 1MRK 504 088-UEN
Technical reference manual 1MRK 504 086-UEN
Application manual 1MRK 504 089-UEN
Buyer's guide 1MRK 504 091-BEN
Connection diagram, Two winding transf. Single breaker arrangements 1MRK 002 801-LA
Connection diagram, Two winding transf. Multi breaker arrangements 1MRK 002 801-HA
Connection diagram, Three winding transf. Single breaker arrangements 1MRK 002 801-KA
Connection diagram, Three winding transf. Multi breaker arrangements 1MRK 002 801-GA
Configuration diagram A, Two winding transf. Single breaker arr. with single or double busbar but with a single breaker arr. on both sides (A30) 1MRK 004 500-93
Configuration diagram B, Two winding transf. in multi breaker arr. on one or both sides (A40) 1MRK 004 500-94
Configuration diagram C, Three winding transf. Single breaker arr. with single or double busbar but with a single breaker arr. on both sides (B30) 1MRK 004 500-95
Configuration diagram D, Three winding transf. in multi breaker arr. on one or both sides (B40) 1MRK 004 500-96
Configuration diagram E, Two or three winding transf., back-up protection package (A10) 1MRK 004 500-135
Configuration diagram F, Tap changer control package for two parallel transformers. (A25) 1MRK 004 500-140
Configuration diagram F. Tap changer control package for four parallel transformers. (A25)

1MRK 004 500-140

Setting example 1, 400/230 kV 500 MVA Transformer, YNyn connected

1MRK 504 083-WEN

Setting example 2, 132/230 kV 40 MVA Transformer, YNd1 connected

1MRK 504 084-WEN

Related documents

Documents related to REB 670

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 505 179-UEN</td>
<td>Operator’s manual</td>
</tr>
<tr>
<td>1MRK 505 180-UEN</td>
<td>Installation and commissioning manual</td>
</tr>
<tr>
<td>1MRK 505 178-UEN</td>
<td>Technical reference manual</td>
</tr>
<tr>
<td>1MRK 505 181-UEN</td>
<td>Application manual</td>
</tr>
<tr>
<td>1MRK 505 182-BEN</td>
<td>Buyer’s guide</td>
</tr>
</tbody>
</table>

Documents related to REG 670

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 502 014-UEN</td>
<td>Operator’s manual</td>
</tr>
<tr>
<td>1MRK 502 015-UEN</td>
<td>Installation and commissioning manual</td>
</tr>
<tr>
<td>1MRK 502 013-UEN</td>
<td>Technical reference manual</td>
</tr>
<tr>
<td>1MRK 502 016-UEN</td>
<td>Application manual</td>
</tr>
<tr>
<td>1MRK 502 019-BEN</td>
<td>Buyer’s guide</td>
</tr>
<tr>
<td>1MRK 502 020-WEN</td>
<td>Setting example</td>
</tr>
</tbody>
</table>

Documents related to all IEDs

<table>
<thead>
<tr>
<th>Identity number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1MRK 013 003-BEN</td>
<td>Connection and Installation components</td>
</tr>
<tr>
<td>1MRK 512 001-BEN</td>
<td>Test system, COMBITEST</td>
</tr>
<tr>
<td>1MRK 514 012-BEN</td>
<td>Accessories for IED 670</td>
</tr>
<tr>
<td>1MRK 500 080-UEN</td>
<td>Getting started guide IED 670</td>
</tr>
<tr>
<td>1MRK 500 083-WEN</td>
<td>SPA and LON signal list for IED 670, ver. 1.1</td>
</tr>
<tr>
<td>1MRK 500 084-WEN</td>
<td>IEC 61850 Data objects list for IED 670, ver. 1.1</td>
</tr>
<tr>
<td>1KHA001027-UEN</td>
<td>Generic IEC 61850 IED Connectivity package</td>
</tr>
</tbody>
</table>
Related documents

Protection and Control IED Manager PCM 600 Installation sheet 1MRS755552
Engineering guide IED 670 products 1MRK 511 179-UEN
Buyer’s guide REG 216 1MRB520004-BEN

Note:
Latest versions of the described documentation can be found at www.abb.com/substationautomation.

Fibersystem 21-216 manual at www.fibersystem.se
Fibersystem 21-219 manual at www.fibersystem.se