A Visit To OEVRZ
EXPO 1520 Report
FLIRT EMUs For Alger
Modernising The Zillertalbahn
And Pinzgauer Lokalbahn Fleets
The Hundredth TEPT078

23 September 2009 marked the 140th anniversary of locomotive construction at the Kolomna zavod (KZ), and as part of the celebrations TEPT078/100 was delivered to Tynda depot on the company of Chem-3/745, on 7 October 2009. The photo essay is a good comparison to be made between the two types of machine. Authorisation of TEM T002 is expected soon, and then the locomotive will probably join other GE units at Vaidai Marshalling Yard.

First Orders For ABB's New Range Of Traction Motors

In October 2009, at Triebwerk in Munich, ABB Machines Vlaardingen for traction motors for a new batch of trains being built for the metro in Caracas. This was followed soon after with another somewhat smaller order for a train on a metro network in China. Together, these contracts are worth 15 million euros, and the deliveries for the Venezuelan metro systems are to run from early 2010 to late 2011. The new range of medium powered traction motors of modular design was presented for the first time at trb/Royalton 2009. Models are available within the power range 100 to 800 kW, and sensors, cooling systems and support packages can be easily adapted to different client requirements. The production principle is up to date and flexible one, shortening the interval between placement of order and delivery of the end product.

ABB Machines

27.8 m³ 800 l (total 55.2 m³), it rides on type 2V5241 bogies, is fitted with a finer braking system and is permitted to run at up to 120 km/h empty and 100 km/h with cargo. Total runs were realised at the 103.5 km 29 October 2009 via Zimborod between 29 September and 2 October 2009. The accompanying photo essay, provided for the 400th and is planning to order a batch in 2010.

Rails Across The Gobi Desert

The first railway to be built in Mongolia was a 43 km mineral line linking the capital, Ulaanbaatar, with coal mines at Nagsai, inaugurated in 1938. The following year the Russians built a 235 km line from Ulaanbaatar to the Russian-Siberian railway. In 1941, in northeastern Mongolia, for hanger. This isolated network was later extended to 549 km in length following the construction of a branch to Ulan Bator. It was not until 1949 that work started on the 1,700 km Trans-Mongolian Railway, which was completed in 1951. The line runs from a junction on the Trans-Siberian Railway at Ulaanbaatar to Ulan Bator, via Ulaanbato, to Kherlen, where it joins the Chinese national railway. It is 1,645 mm gauge and double track within China, and 1,520 mm gauge and mostly single track in Mongolia and Russia. The border stations are at Nasakha (Russian) and Söögii (Mongolian) and at Zamin Uul (Mongolian and Breitzen), and the distance from Söögii to Zamin Uul is 1,000 km. Single carriage takes place at Chark, the break of gauge. There are 94 stations. The largest and most important station is Ulaanbaatar and an important copper ore mining centre 240 km northwest of Ulaanbaatar. Border crossings are serviced by the Ulaanbaatar railways (the cost mines). The Trans-Mongolian Railway is thus an important link between the Russian Federation and Mongolia and the ports of Russia, Europe, and South and Southeast Asia, and is used by through passenger services between Moscow and Beijing. The nearest airports or near ports to Ulaanbaatar are Tanfii in China, 1,700 km and Vostochnii in Russia (4,400 km). Even in spite of the break of gauge, rail has a distinct advantage over road for the movement of freight and of Mongolia, although railways are self-timed by law to reflect their consignments at the border crossings. In 2009, the state budget for railway development amounted to 50% above the amount for TOT, the Mongolian government remaining in the remainder. The resulting amount of funds is not sufficient for network reconstruction and development, with regulation by MTZ. Meanwhile, the Mongolian railway tender was matched with the agreement with the USA under which the purchase of 165 million USD would be made available under the Millennium Challenge Account to modernise the country’s rail network. This initiative was rejected in April 2009.

Facts And Figures

- The Trans-Mongolian Railway is 1,700 km
- 1,520 mm gauge
- The main hub at Ulaanbaatar
- The border stations are at Nasakha (Russian) and Söögii (Mongolian) and at Zamin Uul (Mongolian and Breitzen)
- The distance from Söögii to Zamin Uul is 1,000 km
- Single carriage takes place at Chark, the break of gauge
- There are 94 stations
- The largest and most important station is Ulaanbaatar
- An important copper ore mining centre 240 km northwest of Ulaanbaatar
- Border crossings are serviced by the Ulaanbaatar railways
- The Trans-Mongolian Railway is thus an important link between the Russian Federation and Mongolia and the ports of Russia, Europe, and South and Southeast Asia
- It is used by through passenger services between Moscow and Beijing
- The nearest airports or near ports to Ulaanbaatar are Tanfii in China, 1,700 km and Vostochnii in Russia (4,400 km)
- Even in spite of the break of gauge, rail has a distinct advantage over road for the movement of freight
- The Mongolian railway tender was matched with the agreement with the USA under which the purchase of 165 million USD would be made available under the Millennium Challenge Account to modernise the country’s rail network
- This initiative was rejected in April 2009

Railmix

Railmix

CERMET's New Cement Wagon

A few years ago CERMET, which is a Polish company producing cement, mainly handling cement and other similar products, was looking to develop a new type of cements also wagon. Before a prototype was built, CERMET realised numerous tests involving similar designs of wagon used elsewhere on European rail networks to determine the attention to the undercarriage system. The wagon eventually produced is a Fabrykaw Wagons-Gzeweczycy, carries the type classification A440, and measures 15,041 mm long over buffers, weighs 34,000 kg tare, and can carry a maximum payload of 65 t in two