266DSH
Differential pressure transmitters
Measurement made easy
Engineered solutions for all applications

Base accuracy
• from 0.06 % of calibrated span (optional 0.04 %)

Reliable sensing system coupled with very latest digital technologies
• provides large turn down ratio up to 100:1

Comprehensive sensor choice
• optimize in-use total performance and stability

10–year stability
• 0.15 % of URL

Flexible configuration facilities
• provided locally via local LCD keypad

New TTG (Through-The-Glass) keypad technology
• allows quick and easy local configuration without opening the cover, even in explosion proof environments

IEC 61508 certification
• version for SIL2 (1oo1) and SIL3 (1oo2) applications

PED compliance
• Category III for PS > 20 MPa, 200 bar
• Sound Engineering Practice (SEP) for PS ≤ 20 MPa, 200 bar

WirelessHART version
• the battery powered solution compliant to IEC 62591

Best-in-class battery life
• up to 10 years @ 32 s update time
• in-field replaceable

Product in compliance with Directive 2011/65/UE (RoHS II)

In-built advanced diagnostics
Specification – functional

Range and span limits

<table>
<thead>
<tr>
<th>Sensor code</th>
<th>Upper range limit (URL)</th>
<th>Lower range limit (LRL)</th>
<th>Minimum measuring span</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 kPa</td>
<td>–1 kPa</td>
<td>0.05 kPa</td>
</tr>
<tr>
<td></td>
<td>10 mbar</td>
<td>–10 mbar</td>
<td>0.5 mbar</td>
</tr>
<tr>
<td></td>
<td>4 inH2O</td>
<td>–4 inH2O</td>
<td>0.2 inH2O</td>
</tr>
<tr>
<td>B</td>
<td>4 kPa</td>
<td>–4 kPa</td>
<td>0.2 kPa</td>
</tr>
<tr>
<td></td>
<td>40 mbar</td>
<td>–40 mbar</td>
<td>2 mbar</td>
</tr>
<tr>
<td></td>
<td>16 inH2O</td>
<td>–16 inH2O</td>
<td>0.8 inH2O</td>
</tr>
<tr>
<td>E</td>
<td>16 kPa</td>
<td>–16 kPa</td>
<td>0.54 kPa</td>
</tr>
<tr>
<td></td>
<td>160 mbar</td>
<td>–160 mbar</td>
<td>5.4 mbar</td>
</tr>
<tr>
<td></td>
<td>64 inH2O</td>
<td>–64 inH2O</td>
<td>2.16 inH2O</td>
</tr>
<tr>
<td>F</td>
<td>40 kPa</td>
<td>–40 kPa</td>
<td>0.4 kPa</td>
</tr>
<tr>
<td></td>
<td>400 mbar</td>
<td>–400 mbar</td>
<td>4 mbar</td>
</tr>
<tr>
<td></td>
<td>160 inH2O</td>
<td>–160 inH2O</td>
<td>1.6 inH2O</td>
</tr>
<tr>
<td>H</td>
<td>160 kPa</td>
<td>–160 kPa</td>
<td>1.6 kPa</td>
</tr>
<tr>
<td></td>
<td>1600 mbar</td>
<td>–1600 mbar</td>
<td>16 mbar</td>
</tr>
<tr>
<td></td>
<td>642 inH2O</td>
<td>–642 inH2O</td>
<td>6.4 inH2O</td>
</tr>
<tr>
<td>M</td>
<td>600 kPa</td>
<td>–600 kPa</td>
<td>6 kPa</td>
</tr>
<tr>
<td></td>
<td>6 bar</td>
<td>–6 bar</td>
<td>0.06 bar</td>
</tr>
<tr>
<td></td>
<td>87 psi</td>
<td>–87 psi</td>
<td>0.87 psi</td>
</tr>
<tr>
<td>P</td>
<td>2400 kPa</td>
<td>–2400 kPa</td>
<td>24 kPa</td>
</tr>
<tr>
<td></td>
<td>24 bar</td>
<td>–24 bar</td>
<td>0.24 bar</td>
</tr>
<tr>
<td></td>
<td>348 psi</td>
<td>–348 psi</td>
<td>3.5 psi</td>
</tr>
<tr>
<td>Q</td>
<td>8000 kPa</td>
<td>–8000 kPa</td>
<td>80 kPa</td>
</tr>
<tr>
<td></td>
<td>80 bar</td>
<td>–80 bar</td>
<td>0.8 bar</td>
</tr>
<tr>
<td></td>
<td>1160 psi</td>
<td>–1160 psi</td>
<td>11.6 psi</td>
</tr>
<tr>
<td>S</td>
<td>16000 kPa</td>
<td>–16000 kPa</td>
<td>160 kPa</td>
</tr>
<tr>
<td></td>
<td>160 bar</td>
<td>–160 bar</td>
<td>1.6 bar</td>
</tr>
<tr>
<td></td>
<td>2320 psi</td>
<td>–2320 psi</td>
<td>23.2 psi</td>
</tr>
</tbody>
</table>

Span limit

Maximum span = URL
(can be further adjusted up to ± URL (TD = 0.5) for differential models, within the range limits)

IT IS RECOMMENDED TO SELECT THE TRANSMITTER SENSOR CODE PROVIDING THE TURNDOWN VALUE AS LOWEST AS POSSIBLE TO OPTIMIZE PERFORMANCE CHARACTERISTICS.

Zero suppression and elevation

Zero and span can be adjusted to any value within the range limits detailed in the table as long as:
– calibrated span ≥ minimum span

Damping (feature not available for WirelessHART version)

Selectable time constant : between 0 and 60 s
This is in addition to sensor response time.

Turn on time

Operation within specification in less than 10 s with minimum damping.

Insulation resistance

> 100 MΩ at 500 V DC (terminals to earth)
Specification – operative limits

Pressure limits

Overpressure limits

The differential pressure transmitters, models 266DSH, work without damage within the following pressure limits:

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Fill fluid</th>
<th>Overpressure limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor F to S</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 21 MPa, 210 bar, 3045 psi *, **</td>
</tr>
<tr>
<td>Sensor F to Q</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 42 MPa, 420 bar, 6090 psi</td>
</tr>
<tr>
<td>Sensor E</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 16 MPa, 160 bar, 2320 psi</td>
</tr>
<tr>
<td>Sensor B</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 7 MPa, 70 bar, 1015 psi</td>
</tr>
<tr>
<td>Sensor F to S</td>
<td>Inert (Galden)</td>
<td>0.135 kPa abs, 1.35 mbar abs, 1 mmHg and 21 MPa, 210 bar, 3045 psi *, **</td>
</tr>
<tr>
<td>Sensor E</td>
<td>Inert (Galden)</td>
<td>0.135 kPa abs, 1.35 mbar abs, 1 mmHg and 16 MPa, 160 bar, 2320 psi</td>
</tr>
</tbody>
</table>

* 1 MPa, 10 bar, 145 psi for Kynar-PVDF
** 16 MPa, 160 bar, 2320 psi for AISI 316 ss NACE "exposed bolting"

For flange mounted version

<table>
<thead>
<tr>
<th>Flange</th>
<th>Fill fluid</th>
<th>Overpressure limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASME B16.5 Class 150</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 230 psi</td>
</tr>
<tr>
<td>ASME B16.5 Class 300</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 600 psi</td>
</tr>
<tr>
<td>EN 1092-1 PN 16</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 13.5 bar</td>
</tr>
<tr>
<td>EN 1092-1 PN 40</td>
<td>Silicone oil</td>
<td>0.07 kPa abs, 0.7 mbar abs, 0.5 mmHg and 33.8 bar</td>
</tr>
<tr>
<td>ASME B16.5 Class 150</td>
<td>Inert (Galden)</td>
<td>0.135 kPa abs, 1.35 mbar abs, 1 mmHg and 230 psi</td>
</tr>
<tr>
<td>ASME B16.5 Class 300</td>
<td>Inert (Galden)</td>
<td>0.135 kPa abs, 1.35 mbar abs, 1 mmHg and 600 psi</td>
</tr>
<tr>
<td>EN 1092-1 PN 16</td>
<td>Inert (Galden)</td>
<td>0.135 kPa abs, 1.35 mbar abs, 1 mmHg and 13.5 bar</td>
</tr>
<tr>
<td>EN 1092-1 PN 40</td>
<td>Inert (Galden)</td>
<td>0.135 kPa abs, 1.35 mbar abs, 1 mmHg and 33.8 bar</td>
</tr>
</tbody>
</table>

* 1 MPa, 10 bar, 145 psi for Kynar-PVDF
** 16 MPa, 160 bar, 2320 psi for AISI 316 ss NACE "exposed bolting"

Static pressure limits

The differential pressure transmitters, models 266DSH work within specifications between the following limits:

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Static pressure limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor F to S</td>
<td>1.3 kPa abs, 13 mbar abs, 0.2 psia and 21 MPa, 210 bar, 3045 psi *, **</td>
</tr>
<tr>
<td>Sensor F to Q</td>
<td>1.3 kPa abs, 13 mbar abs, 0.2 psia and 42 MPa, 420 bar, 6090 psi</td>
</tr>
<tr>
<td>Sensor E</td>
<td>1.3 kPa abs, 13 mbar abs, 0.2 psia and 16 MPa, 160 bar, 2320 psi</td>
</tr>
<tr>
<td>Sensor B</td>
<td>1.3 kPa abs, 13 mbar abs, 0.2 psia and 7 MPa, 70 bar, 1015 psi</td>
</tr>
<tr>
<td>Sensor A</td>
<td>1.3 kPa abs, 13 mbar abs, 0.2 psia and 2 MPa, 20 bar, 290 psi</td>
</tr>
</tbody>
</table>

* 1 MPa, 10 bar, 145 psi for Kynar-PVDF
** 16 MPa, 160 bar, 2320 psi for AISI 316 ss NACE "exposed bolting"

Proof pressure

The transmitter with threaded process connection can be exposed without leaking to line pressure of up to

- 48 MPa, 480 bar, 6960 psi for standard static version
- 77 MPa, 770 bar, 11165 psi for high static version.
- up to two times the flange rating for the flange mounted version.

Meet ANSI/ISA-S 82.03 hydrostatic test requirements.
Temperature limits °C (°F)

Ambient

- Ambient temperature limits
 - Models 266DSH
 - Silicone oil for sensor F to S: –40 and 85 °C (–40 and 185 °F)
 - Silicone oil for sensor A to E: –25 and 85 °C (–13 and 185 °F)
 - Inert (Galden) for sensor F to S: –20 and 85 °C (–4 and 185 °F)
 - Inert (Galden) for sensor E: –10 and 85 °C (14 and 185 °F)

Models 266DSH

- Ambient temperature limits
 - LCD integral display: –40 and 85 °C (–40 and 185 °F)

IMPORTANT

For Hazardous Atmosphere applications see the temperature range specified on the certificate/approval relevant to the aimed type of protection.

Process

- Process temperature limits
 - Models 266DSH
 - Silicone oil for sensor F to S: –40 and 121 °C (–40 and 250 °F)
 - Silicone oil for sensor A to E: –25 and 121 °C (–13 and 250 °F)
 - Inert (Galden) for sensor F to S: –20 and 100 °C (–4 and 212 °F)
 - Inert (Galden) for sensor E: –10 and 100 °C (14 and 212 °F)

* 100 °C (212 °F) for application below atmospheric pressure
** 65 °C (150 °F) for application below atmospheric pressure

Models 266DSH

- Process temperature limits
 - Viton gasket: –20 and 121 °C (–4 and 250 °F)

Storage

- Storage temperature limits
 - Models 266DSH
 - Storage limits: –50 and 85 °C (–58 and 185 °F)
 - LCD integral display: –40 and 85 °C (–40 and 185 °F)

Environmental limits

Electromagnetic compatibility (EMC)

- Comply with 2014/30/UE to standards EN 61326-1:2013.
- For IEC 61508 SIL certified transmitter to EN 61326-3-1:2008.
- For transmitter with option "YE" to NAMUR NE 021 (2004).
- Surge immunity level (with surge protector): 4 kV (according to IEC 61000-4-5 EN 61000-4-5)

Pressure equipment directive (PED)

- Category III Module H for PS ≥ 20 MPa, 200 bar
- Sound Engineering Practice (SEP) for PS < 20 MPa, 200 bar

Humidity

- Relative humidity: up to 100 %
- Condensing, icing: admissible

Vibration resistance

- Accelerations up to 2 g at frequency up to 1000 Hz (according to IEC 60068-2-6)

Shock resistance

- Acceleration: 50 g
- Duration: 11 ms (according to IEC 60068-2-27)

Wet and dust-laden atmospheres

- The transmitter is dust and sand tight and protected against immersion effects as defined by IEC 60529 (2001) to IP 67 (IP 68 on request) or by NEMA Type 4X.
- IP65 with Harting Han connector.
- Aluminium and AISI housings as barrel version also comply to IP 66 as defined by IEC 60529 (2001).
...Specification – operative limits

Hazardous atmospheres
(FOR ALL VERSIONS EXCEPT WirelessHART)
With or without integral display

INTRINSIC SAFETY Ex ia:
- ATEX Europe (code E1) approval
 II 1 G Ex ia IIC T6...T4 Ga, II 1/2 G Ex ia IIC T6...T4 Ga/Gb,
 II 1 D Ex ia IIC T85 °C Da, II 1/2 D Ex ia IIC T85 °C Da;
 IP66, IP67.
- IECEx (code E8) approval
 Ex ia IIC T6...T4 Ga/Gb, Ex ia IIC T85 °C Da; IP66, IP67.
- NEPSI China (code EY)
 Ex ia IIC T4/T5/T6 Ga, Ex ia IIC T4/T5/T6 Ga/Gb,
 Ex iaD 20 T85/T100/T135, Ex iaD 20/21 T85/T100/T135.

EXPLOSION PROOF:
- ATEX Europe (code E2) approval
 II 1/2 G Ex db IIC T6 Ga/Gb Ta=−50 °C to +75 °C,
 II 1/2 D Ex tb IIC T85 °C Db Ta = −50 °C to +75 °C;
 IP66, IP67.
- IECEx (code E9) approval
 Ex db IIC T6 Ga/Gb Ta=−50 °C to +75 °C,
 Ex tb IIC T85 °C Db Ta = −50 °C to +75 °C; IP66, IP67.
- NEPSI China (code EZ)
 Ex d IIC T6 Gb, Ex d A21 IP67 T85 °C.

INTRINSIC SAFETY Ex ic:
- ATEX Europe (code E3) type examination
 II 3 G Ex ic IIC T6...T4 Gc,
 II 3 D Ex tc IIIC T85 °C Dc; IP66, IP67.
- IECEx (code ER) type examination
 Ex ic IIC T6...T4 Gc, Ex tc IIIC T85 °C Dc; IP66, IP67.
- NEPSI China (code ES) type examination
 Ex ic IIC T4~T6 Gc, Ex na IIC T4~T6 Gc,
 Ex td A22 IP67 T85 °C.

FM Approvals US (code E6) and
FM Approvals Canada (code E4):
- Explosionproof (US): Class I, Division 1,
 Groups A, B, C, D; T5
- Explosionproof (Canada): Class I, Division 1,
 Groups B, C, D; T5
- Dust-ignitionproof: Class II, Division 1, Groups E, F, G;
 Class III, Div. 1; T5
- Flameproof (US): Class I, Zone 1 AEx d IIC T4 Gb
- Flameproof (Canada): Class I, Zone 1 Ex d IIC T4 Gb
- Nonincendive: Class I, Division 2, Groups A, B, C, D T6...T4
- Energy limited (US): Class I, Zone 2 AEx nC IIC T6...T4
- Energy limited (Canada): Class I, Zone 2 Ex nC IIC T6...T4
- Intrinsically safe: Class I, II, III, Division 1,
 Groups A, B, C, D, E, F, G T6...T4
 Class I, Zone 0 AEx ia IIC T6...T4 (US)
 Class I, Zone 0 Ex ia IIC T6...T4 (Canada)
 Type 4X, IP66, IP67 for all above markings.

COMBINED FM Approvals US and Canada
- Intrinsically safe (code EA)

COMBINED ATEX, FM and IECEx Approvals (code EN)
Technical Regulations Customs Union EAC (Russia,
Kazakhstan, Belarus), Inmetro (Brazil), Kosha (Korea)

IMPORTANT
REFER TO CERTIFICATES FOR AMBIENT TEMPERATURE RANGES RELATED TO THE DIFFERENT TEMPERATURE CLASSES.
HIGH STATIC VERSION IS NOT IN COMPLIANCE WITH ISA 12.27.01 FOR SEALING REQUIREMENTS, SPECIFICALLY FOR FM APPROVAL (Canada).
Electrical Characteristics and Options

Optional indicators
Integrated digital display
(code LS; only with HART standard functionality)
Wide screen LCD, 128 x 64 pixel,
52.5 x 27.2 mm (2.06 x 1.07 in.) dot matrix.
Two keys for zero/SPAN or without keypad.
User selectable application-specific visualizations.
Display may also indicate static pressure,
sensor temperature and diagnostic messages.

HART® digital communication and 4 to 20 mA output – Standard and Advanced functionality
Device type: 1a06hex (listed with HCF)

Power supply
The transmitter operates from 10.5 to 42 V DC with no load and is protected against reverse polarity connection (additional load allows operations over 42 V DC). For Ex ia and other intrinsically safe approval power supply must not exceed 30 V DC. Minimum operating voltage increases to 12.3 V DC with optional surge protector or to 10.8 V DC with optional conformity to NAMUR NE 21 (2004).

Ripple
20 mV max on a 250 Ω load as per HART specifications.

Load limitations
4 to 20 mA and HART total loop resistance :
\[R (\text{k} \Omega) = \frac{\text{Supply voltage – min. operating voltage (V DC)}}{22 \text{ mA}} \]
A minimum of 250 Ω is required for HART communication.

Output signal
Two-wire 4 to 20 mA, user-selectable for linear or square root output, power of \(\sqrt{2} \) or \(\sqrt{3} \), square root for bidirectional flow, 22 points linearization table (i.e. for horizontal or spherical tank level measurement). HART® communication provides digital process variable superimposed on 4 to 20 mA signal, with protocol based on Bell 202 FSK standard.
HART revision 7 is the default HART output. HART revision 5 is selectable on request.

Output current limits (to NAMUR NE 43 standard)
Overload condition
- Lower limit: 3.8 mA (configurable from 3.8 to 4 mA)
- Upper limit: 20.5 mA (configurable from 20 to 21 mA)
Alarm current
- Lower limit: 3.6 mA (configurable from 3.6 to 4 mA)
- Upper limit: 21 mA (configurable from 20 to 23 mA, limited to 22 mA for HART Safety; apply for electronics release 7.1.15 or later)
Factory setting: high alarm current.

Integral display with integral keypad
(code L1; not with HART standard functionality)
Wide screen LCD, 128 x 64 pixel,
52.5 x 27.2 mm (2.06 x 1.07 in.) dot matrix.
Multilanguage. Four keys for configuration and management of device.
Easy setup for quick commissioning.
User selectable application-specific visualizations.
Display may also indicate static pressure, sensor temperature and diagnostic messages and provides configuration facilities.

Integral display with Through-The-Glass (TTG) activated keypad (code LS; not with HART standard functionality)
As above integral display but equipped with the innovative TTG keypad allowing the activation of the configuration and management menus of the device without the need of removing the transmitter housing cover. TTG keypad is protected against accidental activations.

Optional surge protection
Up to 4kV
- voltage 1.2 μs rise time / 50 μs delay time to half value
- current 8 μs rise time / 20 μs delay time to half value

Process diagnostics (PILD)
Plugged impulse line detection (PILD) generates a warning via communication (HART, PA, FF). The device can be configured to drive the output to “Alarm current” or set a status “BAD”.

Integral display with integral keypad
(code L1; not with HART standard functionality)
Wide screen LCD, 128 x 64 pixel,
52.5 x 27.2 mm (2.06 x 1.07 in.) dot matrix.
Multilanguage. Four keys for configuration and management of device.
Easy setup for quick commissioning.
User selectable application-specific visualizations.
Display may also indicate static pressure, sensor temperature and diagnostic messages.

Ripple
20 mV max on a 250 Ω load as per HART specifications.

Load limitations
4 to 20 mA and HART total loop resistance :
\[R (\text{k} \Omega) = \frac{\text{Supply voltage – min. operating voltage (V DC)}}{22 \text{ mA}} \]
A minimum of 250 Ω is required for HART communication.

Output signal
Two-wire 4 to 20 mA, user-selectable for linear or square root output, power of \(\sqrt{2} \) or \(\sqrt{3} \), square root for bidirectional flow, 22 points linearization table (i.e. for horizontal or spherical tank level measurement). HART® communication provides digital process variable superimposed on 4 to 20 mA signal, with protocol based on Bell 202 FSK standard.
HART revision 7 is the default HART output. HART revision 5 is selectable on request.

Output current limits (to NAMUR NE 43 standard)
Overload condition
- Lower limit: 3.8 mA (configurable from 3.8 to 4 mA)
- Upper limit: 20.5 mA (configurable from 20 to 21 mA)
Alarm current
- Lower limit: 3.6 mA (configurable from 3.6 to 4 mA)
- Upper limit: 21 mA (configurable from 20 to 23 mA, limited to 22 mA for HART Safety; apply for electronics release 7.1.15 or later)
Factory setting: high alarm current.
...Specification – electrical characteristics and options

IEC 62591 WirelessHART® output
Device type: 1a06hex (listed with HCF)
Network ID: ABBhex (2747 decimal)
Join keys: 57495245hex (1464422981) 4c455353hex (1279611731) 4649454chex (1179206988) 444b4559hex (1145783641).

Power Supply
1x D-cell size lithium-thionyl chloride battery.
Battery life: 10 years at 32 sec. update time, 8 years at 16 sec. update time or 5 years at 8 sec. update time.
(at reference conditions of 25 ± 2 °C ambient temperature, data routed from 3 additional devices, LCD off).
THE BATTERY CAN BE REPLACED IN FIELD, ALSO IN HAZARDOUS CLASSIFIED AREA.

Output signal
IEC 62591 WirelessHART Version 7.5 (IEEE 802.15.4-2006);
Frequency band: 2.4 GHz DSSS
Update rate: user selectable from 1 sec. to 60 min.

Integrated adjustable omnidirectional antenna
– Output radio frequency: maximum 10 mW (10 dBm) EIRP
– Range: up to 300 m. (328 yds.)
Minimum distance between antenna and person is 0.2 m. (8 in.)

Telecommunications directive
Every wireless measuring device must be certified in accordance with the telecommunications directive, in this case the frequency range. This certification is country-specific.

European directives
Radio Equipment & Telecommunications Terminal Equipment Directive 2014/53/UE to standards EN 60950-1:2013,
EN 62311:2008, EN 301 489-1 V1.9.2, EN 301 489-17 V2.2.1, EN 300 328 v1.8.1.
In Europe, use of the 2400 - 2483.5 MHz frequency band is not harmonized. Country-specific regulations must be observed.

Restrictions for Norway
Operation not permitted within a radius of 20 km around Ny-Alesund in Svalbard. For more information, see www.npt.no Norway Posts and Telecommunications site

Extra-european radio frequency licences
USA to FCC Part 15.247:2009;
Canada to IC RSS-210 and ICES-003;
Argentina; United Arab Emirates (UAE); India; Mexico.

PROFIBUS® PA output
Device type
Pressure transmitter compliant to Profiles 3.0.1
Identification number: 3450 (hex)

Power supply
The transmitter operates from 9 to 32 V DC, polarity independent, with or without surge protector.
For Ex ia approval power supply must not exceed 17.5 V DC.
Intrinsic safety installation according to FISCO model.

Current consumption
operating (quiescent): 15 mA
fault current limiting: 20 mA max.

Output signal
Physical layer in compliance to IEC 1158–2/EN 61158–2 with transmission to Manchester II modulation, at 31.25 kbit/s.

Output interface
PROFIBUS PA communication according to Profibus DP50170 Part 2/DIN 19245 part 1–3.

Output update time
25 ms

Data blocks
3 analog input, 1 physical.

Additional blocks
1 Pressure with calibration transducer block
1 Advanced Diagnostics transducer block including Plugged Input Line Detection
1 Local Display transducer block

Transmitter failure mode
On gross transmitter failure condition, detected by self-diagnostics, the output signal can be driven to defined conditions, selectable by the user as safe, last valid or calculated value.
If electronic failure or short circuit occur the transmitter consumption is electronically limited at a defined value (20 mA approx), for safety of the network.
FOUNDATION Fieldbus™ output

Device type
- LINK MASTER DEVICE
- Link Active Scheduler (LAS) capability implemented.
- Manufacturer code: 000320\text{hex}
- Device type code: 0007\text{hex}

Power supply
The transmitter operates from 9 to 32 V DC, polarity independent, with or without surge protector.
For Ex ia approval power supply must not exceed 24 V DC (FF–816 certification) or 17.5 V DC (FISCO certification).

Current consumption
- operating (quiescent): 15 mA
- fault current limiting: 20 mA max.

Output signal
- Physical layer in compliance to IEC 61158–2/EN 61158–2.
- Transmission to Manchester II modulation, at 31.25 kbit/s.

Function blocks/execution period
- 3 enhanced Analog Input blocks/25 ms max (each)
- 1 enhanced PID block/40 ms max.
- 1 standard ARitmetic block/25 ms
- 1 standard Input Selector block/25 ms
- 1 standard Control Selector block/25 ms
- 1 standard Signal Characterization block/25 ms
- 1 standard Integrator/Totalizer block/25 ms

Additional blocks
- 1 enhanced Resource block,
- 1 custom Pressure with calibration transducer block
- 1 custom Advanced Diagnostics transducer block including Plugged Input Line Detection
- 1 custom Local Display transducer block

Number of link objects
35

Number of VCRs
35

Output interface
FOUNDATION fieldbus digital communication protocol to standard H1, compliant to specification V. 1.7.

Transmitter failure mode
The output signal is “frozen” to the last valid value on gross transmitter failure condition, detected by self-diagnostics which also indicate a BAD conditions. If electronic failure or short circuit occur the transmitter consumption is electronically limited at a defined value (20 mA approx), for safety of the network.
Specification – performance

Stated at reference condition to IEC 60770 ambient temperature of 20 °C (68 °F), relative humidity of 65 %, atmospheric pressure of 1013 hPa (1013 mbar), mounting position with vertical diaphragm and zero based range for transmitter with isolating diaphragms in AISI 316 L ss or Hastelloy and silicone oil fill and HART digital trim values equal to 4 mA and to 20 mA span end points, in linear mode.

Unless otherwise specified, errors are quoted as % of span.

Some performance referring to the Upper Range Limit are affected by the actual turndown (TD) as ratio between Upper Range Limit (URL) and calibrated span.

IT IS RECOMMENDED TO SELECT THE TRANSMITTER SENSOR CODE PROVIDING THE TURNDOWN VALUE AS LOWEST AS POSSIBLE TO OPTIMIZE PERFORMANCE CHARACTERISTICS.

Dynamic performance (according to IEC 61298–1 definition)

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Total response time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor F to S</td>
<td>≤ 100 ms *</td>
</tr>
</tbody>
</table>

Total response time for sensor E ≤ 130 ms, for sensor B ≤ 310 ms *

* Availability subject to special request for sensors B to H and not applicable for explosionproof and flameproof.

Total response time includes dead time of 30 ms (for all sensors) with time constant @ 63.2 % of total step change. See “Update Rate” for WirelessHART version.

Accuracy rating

% of calibrated span, including combined effects of terminal based linearity, hysteresis and repeatability.

For fieldbus versions SPAN refer to analog input function block outscale range

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensor</th>
<th>for TD up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>266DSH standard static and for gauge application</td>
<td>F to P</td>
<td>from 1:1 to 10:1</td>
</tr>
<tr>
<td></td>
<td>F to P</td>
<td>from 1:1 to 10:1</td>
</tr>
<tr>
<td></td>
<td>E, Q, S</td>
<td>from 1:1 to 10:1</td>
</tr>
<tr>
<td></td>
<td>Q and S</td>
<td>from 1:1 to 10:1</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>from 1:1 to 30:1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>from 1:1 to 10:1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>from 1:1 to 20:1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>from 1:1 to 4:1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>from 4:1 to 10:1</td>
</tr>
</tbody>
</table>

Ambient temperature

per 20K change between the limits of –40 °C to +85 °C (per 36 °F change between the limits of –40 to +185 °F):

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensor</th>
<th>for TD up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>266DSH</td>
<td>F to Q</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>E and S</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4:1</td>
</tr>
</tbody>
</table>

for an ambient temperature change from –10 °C to +60 °C (+14 to +140 °F):

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensor</th>
<th>for TD up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>266DSH</td>
<td>F to Q</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>E and S</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4:1</td>
</tr>
</tbody>
</table>

per 10K change between the limits of –40 °C to –10 °C or +60 ° to +85 °C (per 18 °F change between the limits of –40 to +14 °F or +140 ° to +185 °F):

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensor</th>
<th>for TD up to</th>
</tr>
</thead>
<tbody>
<tr>
<td>266DSH</td>
<td>F to Q</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>E and S</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>10:1</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>4:1</td>
</tr>
</tbody>
</table>

Static pressure

(zero errors can be calibrated out at line pressure)

per 0.5 MPa, 5 bar or 72.5 psi (sensor A)

per 2 MPa, 20 bar or 290 psi (sensor B)

per 3.5 MPa, 35 bar or 500 psi (sensor E)

per 7 MPa, 70 bar or 1015 psi (sensor F to S)

Model 266DSH standard static

• zero error: ±0.05 % of URL for sensor F to S
 ±0.06 % of URL for sensor A, E
 ±0.07 % of URL for sensor B
 ±0.08 % of URL for sensor E
• span error: ±0.08 % of reading.

Model 266DSH high static

• zero error: ±0.08 % of URL for sensor F to Q
 ±0.10 % of URL for sensor A
 ±0.10 % of URL for sensor E
• span error: ±0.20 % of reading.

Model 266DSH flange mounted

per 2 MPa, 20 bar or 290 psi

• zero error: ±0.05 % of URL for sensor F to P
 ±0.08 % of URL for sensor E
• span error: ±0.08 % of reading.
Supply voltage
Within voltage/load specified limits the total effect is less than 0.005 % of URL per volt.

Load
Within load/voltage specified limits the total effect is negligible.

Electromagnetic field
Meets all the requirements of EN 61326 for surge immunity level (of NAMUR NE 21 on request).

Common mode interference
No effect from 100Vrms @ 50Hz, or 50 V DC

Mounting position
No effect for rotation on diaphragm plane. A tilt up to 90° from vertical causes a zero shift up to 0.5 kPa, 5 mbar or 2 inH2O, which can be corrected with zero adjustment. No span effect.

Stability
±0.15 % of URL over a ten years period
(±0.25 % of URL over a ten years period for sensor A or B)
0.15 % of URL over a five years period for 266DSH high static.

Maximum total performance
For temperature change of 28 °C (50 °F), static pressure change of 5,1 MPa, 51 bar, 740 psi, for model 266DSH with accuracy option code D2 (± 0.04 %)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Span</th>
<th>Maximum total performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>35 kPa, 350 mbar, 140 inH2O</td>
<td>± 0.125 % of calibrated span</td>
</tr>
<tr>
<td>H</td>
<td>150 kPa, 1,5 bar, 600 inH2O</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>550 kPa, 5,5 bar, 80 psi</td>
<td></td>
</tr>
</tbody>
</table>

EMperf = \sqrt{(E_{\Delta Tz} + E_{\Delta Ts})^2 + E_{\Delta Ps}^2 + E_{lin}^2}

EMperf = Maximum total performance
E_{\Delta Tz} = Effect of the ambient temperature on zero
E_{\Delta Ts} = Effect of the ambient temperature on span
E_{\Delta Ps} = Effect of the static pressure on span
E_{lin} = Accuracy rating (for terminal-based linearity 0.04 %)

Total performance
similar to DIN 16086
Temperature change in the range from –10 to 60 °C (14 to 140 °F),
static pressure change (266DSH) 10 MPa, 100 bar, 1450 psi

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensor</th>
<th>TD</th>
<th>Total performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>266DSH std. static, D2 option</td>
<td>F to Q</td>
<td>1:1</td>
<td>± 0.16 % of calibrated span</td>
</tr>
</tbody>
</table>

Emperf = Total Performance
E_{\Delta Tz} = Effect of the ambient temperature on zero
E_{\Delta Ts} = Effect of the ambient temperature on span
E_{\Delta Ps} = Effect of the static pressure on span (266DSH only)
E_{lin} = Accuracy rating (for terminal-based linearity 0.04 % or 0.075% as per model/sensor accuracy)

Maximum total performance and Total performance includes the measuring errors of
- non-linearity including hysteresis and non-reproducibility,
- thermal change of the ambient temperature as regards the zero signal and the calibrated span,
- effect of static pressure change on the calibrated span, with transmitter re-zeroed at line pressure.
Specification – physical

(Refer to ordering information sheets for variant availability related to specific model or versions code)

Materials

Process isolating diaphragms (*)
- AISI 316 L ss; AISI 316 L ss gold plated; Monel 400®;
- Tantalum; Hastelloy® C-276; Hastelloy® C-276 on AISI 316 L ss gasket seat.

Process flanges, adapters, plugs and drain/vent valves (*)
- AISI 316 L ss (1);
- Hastelloy® C-276 (2);
- Monel 400® (3);
- Kynar® (PVDF insert in AISI 316 ss flange).
- AISI 316 L ss with flushing connections for high side of flange mounted version.

Sensor fill fluid
- Silicone oil; Inert fill (Galden®).

Mounting bracket ()**
- Zinc plated carbon steel with chrome passivation; AISI 316 ss; AISI 316 L ss.

Gaskets (*)
- Viton®; PTFE.

Sensor housing
- AISI 316 L ss.

Bolts and nuts
- AISI 316 ss bolts Class A4–80 and nuts Class A4–70 per ISO 3506;
- AISI 316 ss bolts and nuts Class A4–50 per ISO 3506, in compliance with NACE MR0175 Class II (std. static only).
- Plated alloy steel bolts per ASTM-A-193-77a grade B7M and nuts per ASTM A194/A 194 M-90 grade 2HM, in compliance with NACE MR0175 Class II.
- Stainless steel per ASTM-A-453 grade 660D, in compliance with NACE MR0175 Class II (high static only).

Electronic housing and covers

- Aluminium alloy (copper content ≤ 0.3 %) with baked epoxy finish (colour RAL9002); AISI 316 L ss.

Covers O-ring
- Buna N.

Local adjustments (zero, span and write protect)

For Standard HART version:
- Internal for zero and span (on connection board)
- External non-intrusive for zero, span and write protect in glass filled polyphenylene oxyde, removable (code R1).

For all other versions:
- External non-intrusive for zero, span and write protect in glass filled polyphenylene oxyde, removable.

Plates

- Transmitter nameplate: AISI 316 ss screwed to the electronics housing.
- Certification plate and optional tag/calibration plate: self-adhesive attached to the electronics housing or AISI 316 ss fastened to the electronics housing with rivets or screws.
- Optional wired-on customer data plate: AISI 316 ss.
 - Laser printing on metal or thermal printing on self-adhesive.
 - For AISI 316 L ss housing it is mandatory to select option I2 or I3 for plates in AISI 316 ss.

Calibration

Standard: at maximum span, zero based range, ambient temperature and pressure.

Optional: at specified range and ambient conditions.

Device is delivered with a standard 4-point calibration record.
Optional extras
Mounting brackets (code Bx)
 For vertical and horizontal 60mm. (2in) pipes or wall mounting. (EXCEPT U-BOLT ASSEMBLY WHICH IS NOT SUPPLIED FOR WALL MOUNTING, PARTS ARE THE SAME FOR PIPE AND WALL BRACKET OPTIONS, AS PER RELEVANT MATERIALS).

Display (code Lx)
 4-position (at 90°) user orientable, except “LS”.

Optional plates (code Ix)
 Code I1: AISI 316 ss wired-on plate with laser printed customized data (4 lines of 32 characters with 4 mm/0.16 in. height).
 Code I2: AISI 316 ss plate with laser printed tag (up to 32 characters - long) and calibration details (up to 32 characters: lower and upper range values and engineering unit) fixed onto transmitter housing.
 Code I3: complete set of AISI 316 ss plates (see I1 and I2).

Surge protection (code S2)

Cleaning procedure for oxygen service (code P1)

Test Certificates (test, design, calibration, material traceability) (codes Cx and Hx)

Tag and manual language (codes Tx and Mx)

Manifold mounting (code A1)
 Factory mounting and pressure test of ABB M26 manifolds.

Process connections
 on flanges: 1/4 in. – 18 NPT on process axis
 on adapters: 1/2 in. – 14 NPT on process axis
 centre distance (266DSH): 54 mm. (2.13 in.) on flange; 51, 54 or 57 mm. (2.01, 2.13 or 2.24 in.) as per adapters fittings
 fixing threads: 7/16 in. – 20 UNF at 41.3 mm centre distance
 High pressure side of flange mounted version (*):
 2 in. or 3 in., ASME Class 150 or Class 300 RF;
 DN 50 or DN 80, PN 16 or PN 40 to EN 1092-1 Type B1

(*) Bolts and nuts, gasket and mating flange supplied by customer.

Electrical connections
 Two 1/2 in. – 14 NPT or M20x1.5 threaded conduit entries, direct on housing. Only M20x1.5 for WirelessHART with one port used for antenna.
 One certified stainless steel plug (supplied loose with thread according to housing entries) available as option.

Terminal block
 HART version: three terminals for signal/external meter wiring up to 2.5 mm² (14 AWG), also connection points for test and communication purposes.
 WirelessHART version: connection points for test and communication purposes; additional fast connection for external harvesting unit.
 Fieldbus versions: two terminals for signal wiring (bus connection) up to 2.5 mm² (14 AWG)

Grounding
 Internal and external 6 mm² (10 AWG) ground termination points are provided.

Mounting position
 Transmitter can be mounted in any position.
 Electronics housing may be rotated to any position. A positive stop prevents over travel.

Mass (without options)
 4 kg approx (8.8 lb) for standard static and gauge versions;
 4.35 kg approx (9.6 lb) for high static version;
 7 to 11 kg approx (16 to 24 lb) for flange mounted version;
 add 1.5 kg (3.3 lb) for AISI housing.
 Add 650 g (1.5 lb) for packing.

Packing
 Carton 27 x 24 x 20 cm approx (11 x 10 x 8 in.);
 Carton 35 x 33 x 35 cm approx (14 x 13 x 14 in) for flange mounted version.
Specification – configuration

Transmitter with HART communication and 4 to 20 mA

Standard configuration
Transmitters are factory calibrated to customer’s specified range. Calibrated range and tag number are stamped on the tag plate. If a calibration range and tag data are not specified, the transmitter will be supplied with the plate left blank and configured as follows:

- **Engineering Unit**: kPa
- **4 mA**: Zero
- **20 mA**: Upper Range Limit (URL)
- **Output**: Linear
- **Damping**: 1 s
- **Transmitter failure mode**: Upscale
- **Tag**: Blank (up to 32 alphanumeric characters - long; only 8 visible on display - short)

Optional LCD display
- **PV in kPa; output in mA and in percentage on bargraph**

Any or all the above configurable parameters, including Lower range–value and Upper range-value which must be the same unit of measure, can be easily changed using the HART hand–held communicator or by a PC running the configuration software with DTM for 266 models. The transmitter database is customized with specified flange type and material, O–ring and drain/vent materials and meter code option.

Custom configuration (option N6)
The following data may be specified in addition to the standard configuration parameters:
- **Descriptor**: 16 alphanumeric characters
- **Message**: 32 alphanumeric characters
- **Date**: Day, month, year

For HART protocol available engineering units of pressure measure are:
- Pa, kPa, MPa
- inH2O@4 °C, mmH2O@4 °C, psi
- inH2O@68 °F, ftH2O@68 °F, mmH2O@68 °F
- inHg, mmHg, Torr
- g/cm², kg/cm², atm
- mbar, bar

These and others are available for PROFIBUS and FOUNDATION Fieldbus.

Transmitter with WirelessHART communication

Standard configuration
Transmitters are factory calibrated to customer’s specified range. Calibrated range and tag number are stamped on the tag plate. If a calibration range and tag data are not specified, the transmitter will be supplied with the plate left blank and configured as follows:

- **Engineering Unit**: kPa
- **Output scale 0 %**: Lower Range Limit (LRL)
- **Output scale 100 %**: Upper Range Limit (URL)
- **Output**: Linear
- **Update time**: 16 s
- **Tag**: Blank (up to 32 alphanumeric characters - long; only 8 visible on display - short)

Optional LCD display
- **PV in kPa; output in percentage on bargraph**

Any or all the above configurable parameters, including Lower range–value and Upper range-value which must be the same unit of measure, can be easily changed using the HART hand–held communicator or by a PC running the configuration software with DTM for 266 models. The transmitter database is customized with specified flange type and material, O–ring and drain/vent materials and meter code option.

Custom configuration (option N6)
The following data may be specified in addition to the standard configuration parameters:
- **Descriptor**: 16 alphanumeric characters
- **Message**: 32 alphanumeric characters
- **Date**: Day, month, year
Transmitter with PROFIBUS PA communication

Standard configuration

Transmitters are factory calibrated to customer’s specified range. Calibrated range and tag number are stamped on the tag plate. If a calibration range and tag data are not specified, the transmitter will be supplied with the plate left blank and configured as follows:

Measure Profile: Pressure
Engineering Unit: kPa
Output scale 0 %: Lower Range Limit (LRL)
Output scale 100 %: Upper Range Limit (URL)
Output: Linear
Hi-Hi Limit: Upper Range Limit (URL)
Hi Limit: Upper Range Limit (URL)
Low Limit: Lower Range Limit (LRL)
Low-Low Limit: Lower Range Limit (LRL)
Limits hysteresis: 0.5 % of output scale
PV filter: 0 s
Address (set by local key): 126
Tag: PI000 (up to 32 alphanumeric characters; only 8 visible on display)
Optional LCD display: PV in kPa; output in percentage on bargraph

Any or all the above configurable parameters, including the range values which must be the same unit of measure, can be easily changed by a PC running the configuration software with DTM for 266 models. The transmitter database is customized with specified flange type and material, O–ring and drain/vent materials and meter code option.

Custom configuration (option N6)

The following data may be specified in addition to the standard configuration parameters:
Descriptor: 32 alphanumeric characters
Message: 32 alphanumeric characters
Date: Day, month, year

Transmitter with FOUNDATION Fieldbus communication

Standard configuration

Transmitters are factory calibrated to customer’s specified range. Calibrated range and tag number are stamped on the tag plate. If a calibration range and tag data are not specified, the transmitter will be supplied with the plate left blank and the analog input function block FB1 is configured as follows:

Measure Profile: Pressure
Engineering Unit: kPa
Output scale 0 %: Lower Range Limit (LRL)
Output scale 100 %: Upper Range Limit (URL)
Output: Linear
Hi-Hi Limit: Upper Range Limit (URL)
Hi Limit: Upper Range Limit (URL)
Low Limit: Lower Range Limit (LRL)
Low-Low Limit: Lower Range Limit (LRL)
Limits hysteresis: 0.5 % of output scale
PV filter time: 0 s
Tag: PI000 (up to 32 alphanumeric characters; only 8 visible on display)
Optional LCD display: PV in kPa; output in percentage on bargraph

The analog input function block FB2 and FB3 are configured respectively for the sensor temperature measured in °C and for the static pressure measured in MPa.

Any or all the above configurable parameters, including the range values, can be changed using any host compliant to FOUNDATION fieldbus. The transmitter database is customized with specified flange type and material, O–ring and drain/vent materials and meter code option.

Custom configuration (option N6)

The following data may be specified in addition to the standard configuration parameters:
Descriptor: 32 alphanumeric characters
Message: 32 alphanumeric characters
Date: Day, month, year
Dimensions

(not for construction unless certified) – dimensions in mm. (in.)

![Image of Standard static transmitter with barrel housing - horizontal flanges]

(*) 54 (2.13) mm (in) on 1/4 – 18 NPT process flange; 51 (2.01), 54 (2.13) or 57 (2.24) mm (in) according to 1/2 – 14 NPT adapters fitting 54 (2.13) mm (in) with negative side provided with a removable filter for gauge measurement (version 266DSHxP)

NOTE

Process connection, gasket groove and gaskets are in accordance with IEC 61518.

Bolting threads for fixing adapter or other devices (i.e. manifold etc.) on process flange is 7/16 – 20 UNF.

Negative side of gauge measurement version 266DSHxP is provided with a removable filter, granting protection to the atmospheric pressure reference.
Figure 2 High static transmitter with barrel housing - horizontal flanges

Figure 3 Standard static transmitter with barrel housing - vertical flanges
...Dimensions

Figure 4 Transmitter on bracket for vertical or horizontal 60 mm. (2 in.) pipe mounting
Figure 5 Transmitter with Kynar flanges on bracket for vertical or horizontal 60 mm. (2 in.) pipe mounting
...Dimensions

Figure 6 Transmitter with DIN aluminium housing - horizontal flanges on bracket for vertical or horizontal 60 mm. (2 in.) pipe mounting

Figure 7 Transmitter with horizontal flanges on flat bracket for vertical or horizontal 60 mm. (2 in.) pipe mounting
Figure 8 Transmitter with vertical flanges on bracket for vertical or horizontal 60 mm. (2 in.) pipe mounting

Figure 9 Transmitter with barrel housing - flange mounted version
Dimensions

A (dia)	B (dia)	C (dia)	D (dia)	E (dia)	F (Note)	G
ASME Class 150 R.F. 2 in. | 53 (2.09) | 92 (3.62) | 120.5 (4.74) | 152.5 (6) | 20 (0.79) | 19.5 (0.77) | 1.6 (0.07) | 4
ASME Class 150 R.F. 3 in. | 77 (3.04) | 127 (5) | 152.5 (6) | 190.5 (7.5) | 20 (0.79) | 24 (0.94) | 1.6 (0.07) | 4
ASME Class 300 R.F. 2 in. | 53 (2.09) | 92 (3.62) | 127 (5) | 165 (6.5) | 20 (0.79) | 22.5 (0.89) | 1.6 (0.07) | 8
ASME Class 300 R.F. 3 in. | 77 (3.04) | 127 (5) | 168.5 (6.63) | 210 (8.26) | 22 (0.86) | 28.5 (1.12) | 1.6 (0.07) | 8
EN PN 16 Type B1 DN 50 | 53 (2.09) | 102 (4.02) | 125 (4.92) | 165 (6.5) | 18 (0.71) | 20 (0.79) | 3 (0.12) | 4
EN PN 16 Type B1 DN 80 | 77 (3.04) | 138 (5.43) | 160 (6.3) | 200 (7.87) | 18 (0.71) | 20 (0.79) | 2 (0.08) | 8
EN PN 40 Type B1 DN 50 | 53 (2.09) | 102 (4.02) | 125 (4.92) | 165 (6.5) | 18 (0.71) | 20 (0.79) | 3 (0.12) | 4
EN PN 40 Type B1 DN 80 | 77 (3.04) | 138 (5.43) | 160 (6.3) | 200 (7.87) | 18 (0.71) | 24 (0.94) | 2 (0.08) | 8

Note

For ASME, flange thickness tolerance is +3.0 / -0.0 mm (+0.12 / 0.0 in.).

For EN, flange thickness tolerance is +1.0 / -1.3 mm (+0.04 / 0.05 in.) up to 18 mm or ±1.5 mm (±0.06 in.) from 18 to 50 mm from 18 to 50 mm.

Holes of flanges are equally spaced and with reference to transmitter axis they are rotated of 45° for 4 holes versions or of 22.5° for 8 holes versions, with tolerance of 5°.

Figure 10 Transmitter with DIN aluminium housing - flange mounted version
Electrical connections

HART hand-held communicator may be connected at any wiring termination point in the loop, providing the minimum resistance is 250 ohm. If this is less than 250 ohm, additional resistance should be added to allow communications. Maximum voltage drop on external remote indicator is 0.7 V DC.

Figure 11 HART Version

Figure 12 FIELDBUS Versions

Figure 13 WirelessHART version
Ordering Information

Basic ordering information for model 266DSH Differential Pressure Transmitter

Select one character or set of characters from each category and specify complete catalog number.

Refer to additional ordering information and specify one or more codes for each transmitter if additional options are required.

BASE MODEL - 1st to 6th characters

<table>
<thead>
<tr>
<th>BASE MODEL</th>
<th>2 6 6 D S H</th>
</tr>
</thead>
</table>

Differential Pressure Transmitter – BASE ACCURACY 0.06 %

<table>
<thead>
<tr>
<th>SENSOR - Span limits - 7th character</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 and 1 kPa</td>
<td>0.5 and 10 mbar</td>
<td>0.2 and 4 inH2O</td>
<td>(Notes 17, 30)</td>
<td>“Vx” OPTION IS REQUIRED</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>0.2 and 4 kPa</td>
<td>2 and 40 mbar</td>
<td>0.8 and 16 inH2O</td>
<td>(Notes 17, 30)</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.54 and 16 kPa</td>
<td>5.4 and 160 mbar</td>
<td>2.16 and 64 inH2O</td>
<td>(Note 17)</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4 and 40 kPa</td>
<td>4 and 400 mbar</td>
<td>1.6 and 160 inH2O</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6 and 160 kPa</td>
<td>16 and 1600 mbar</td>
<td>6.4 and 642 inH2O</td>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 and 600 kPa</td>
<td>0.06 and 6 bar</td>
<td>0.87 and 87 psi</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 and 2400 kPa</td>
<td>0.24 and 24 bar</td>
<td>3.5 and 348 psi</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 and 8000 kPa</td>
<td>0.8 and 80 bar</td>
<td>11.6 and 1160 psi</td>
<td>Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160 and 16000 kPa</td>
<td>1.6 and 160 bar</td>
<td>23.2 and 2330 psi</td>
<td>(Note 17)</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Application - 8th character

<table>
<thead>
<tr>
<th>Application</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential measurement at standard static pressure</td>
<td>S</td>
</tr>
<tr>
<td>Differential measurement at high static pressure (REMARK)</td>
<td>(Note 30)</td>
</tr>
<tr>
<td>Gauge measurement</td>
<td>H</td>
</tr>
</tbody>
</table>

Diaphragm material / Fill fluid (wetted parts) - 9th character

<table>
<thead>
<tr>
<th>Diaphragm material / Fill fluid (wetted parts)</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 316 L ss</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>Hastelloy® C-276 (on AISI seat)</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>Hastelloy® C-276</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>Monel 400®</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>AISI 316 L ss gold plated</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Silicone oil</td>
</tr>
<tr>
<td>AISI 316 L ss</td>
<td>Inert fluid - Galden</td>
</tr>
<tr>
<td>Hastelloy® C-276</td>
<td>Inert fluid - Galden</td>
</tr>
<tr>
<td>Monel 400®</td>
<td>Inert fluid - Galden</td>
</tr>
<tr>
<td>AISI 316 L ss gold plated</td>
<td>Inert fluid - Galden</td>
</tr>
<tr>
<td>Tantalum</td>
<td>Inert fluid - Galden</td>
</tr>
</tbody>
</table>

REMARK

HIGH STATIC VERSION IS NOT IN COMPLIANCE WITH ISA 12.27.01 FOR SEALING REQUIREMENTS, SPECIFICALLY FOR FM APPROVAL (Canada).
Basic ordering information for model 266DSH Differential Pressure Transmitter

Process flanges/adapters material and connection (wetted parts) - 10th character

<table>
<thead>
<tr>
<th>Material</th>
<th>Connection</th>
<th>NACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 316 L ss (Horizontal)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>A</td>
</tr>
<tr>
<td>AISI 316 L ss (Horizontal)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td>B</td>
</tr>
<tr>
<td>Hastelloy® C-276 (Horizontal)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>D</td>
</tr>
<tr>
<td>Hastelloy® C-276 (Horizontal)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td>E</td>
</tr>
<tr>
<td>Monel 400® (Horizontal)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>G</td>
</tr>
<tr>
<td>Monel 400® (Horizontal)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td>H</td>
</tr>
<tr>
<td>AISI 316 L ss (Vertical)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>Q</td>
</tr>
<tr>
<td>AISI 316 L ss (Vertical)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td>T</td>
</tr>
<tr>
<td>Hastelloy® C-276 (Vertical)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>M</td>
</tr>
<tr>
<td>Hastelloy® C-276 (Vertical)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td>S</td>
</tr>
<tr>
<td>Monel 400® (Vertical)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>U</td>
</tr>
<tr>
<td>Monel 400® (Vertical)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td>V</td>
</tr>
<tr>
<td>PVDF Kynar® insert on AISI 316 ss flange side</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td>P</td>
</tr>
<tr>
<td>PVDF Kynar® insert on AISI 316 ss flange side</td>
<td>1/2 in. – 14 NPT-f direct</td>
<td>Z</td>
</tr>
<tr>
<td>Flange mounted version (REFER TO “F26” ACCESSORY CODE FOR QUOTE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bolts/Gasket (wetted parts) - 11th character

<table>
<thead>
<tr>
<th>Material</th>
<th>Connection</th>
<th>NACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 316 ss</td>
<td>Viton® (Notes 4, 7, 27, 30)</td>
<td>1</td>
</tr>
<tr>
<td>AISI 316 ss</td>
<td>PTFE (Notes 1, 4, 7, 27)</td>
<td>2</td>
</tr>
<tr>
<td>AISI 316 ss – MWP = 16 MPa</td>
<td>Viton® (Notes 7, 30)</td>
<td>3</td>
</tr>
<tr>
<td>AISI 316 ss – MWP = 16 MPa</td>
<td>PTFE (Notes 1, 7)</td>
<td>4</td>
</tr>
<tr>
<td>Stainless steel – MWP = 42 MPa</td>
<td>Viton® (Notes 7, 27, 30)</td>
<td>3</td>
</tr>
<tr>
<td>Stainless steel – MWP = 42 MPa</td>
<td>PTFE (Notes 1, 7, 27)</td>
<td>4</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>Viton® (Notes 4, 7, 27, 30)</td>
<td>8</td>
</tr>
<tr>
<td>Alloy steel</td>
<td>PTFE (Notes 1, 4, 7, 27, 30)</td>
<td>9</td>
</tr>
</tbody>
</table>

Housing material and electrical connection - 12th character

<table>
<thead>
<tr>
<th>Material</th>
<th>Connection</th>
<th>NACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium alloy (barrel version)</td>
<td>1/2 in. – 14 NPT</td>
<td>(Note 21)</td>
</tr>
<tr>
<td>Aluminium alloy (barrel version)</td>
<td>M20 x 1.5 (CM 20) (TO BE USED FOR WirelessHART)</td>
<td>(Note 30)</td>
</tr>
<tr>
<td>AISI 316 L ss (barrel version) (I2 or I3 required)</td>
<td>1/2 in. – 14 NPT</td>
<td>(Note 21)</td>
</tr>
<tr>
<td>AISI 316 L ss (barrel version) (I2 or I3 required)</td>
<td>M20 x 1.5 (CM20) (TO BE USED FOR WirelessHART)</td>
<td>(Note 30)</td>
</tr>
<tr>
<td>Aluminium alloy (DIN version)</td>
<td>M20 x 1.5 (CM20) (not Ex d or XP)</td>
<td>(Note 21, 30)</td>
</tr>
</tbody>
</table>

Output/Additional options - 13th character

- HART and 4 to 20 mA - Standard functionality: 7
- HART and 4 to 20 mA - Advanced functionality (includes option R1): 1
- PROFIBUS PA (includes option R1): 2
- FOUNDATION Fieldbus (includes option R1): 3
- HART and 4 to 20 mA Safety, certified to IEC 61508 (includes option R1): 8
- WirelessHART (includes option R1): 9

NOTE - Option R1 represents the external pushbuttons
...Ordering information

Additional ordering information for model 266DSH Differential Pressure Transmitter

Add one or more 2-digit code(s) after the basic ordering information to select all required options.

<table>
<thead>
<tr>
<th>Accuracy</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04 % accuracy for applicable ranges</td>
<td></td>
<td></td>
<td></td>
<td>D2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drain/vent valve (material and position) (wetted parts)</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 316 L ss on process axis</td>
<td></td>
<td></td>
<td></td>
<td>V1</td>
</tr>
<tr>
<td>AISI 316 L ss on flange side top</td>
<td></td>
<td></td>
<td></td>
<td>V2</td>
</tr>
<tr>
<td>AISI 316 L ss on flange side bottom</td>
<td></td>
<td></td>
<td></td>
<td>V3</td>
</tr>
<tr>
<td>Hastelloy® C-276 on process axis</td>
<td></td>
<td></td>
<td></td>
<td>V4</td>
</tr>
<tr>
<td>Hastelloy® C-276 on flange side top</td>
<td></td>
<td></td>
<td></td>
<td>V5</td>
</tr>
<tr>
<td>Hastelloy® C-276 on flange side bottom</td>
<td></td>
<td></td>
<td></td>
<td>V6</td>
</tr>
<tr>
<td>Monel 400® on process axis</td>
<td></td>
<td></td>
<td></td>
<td>V7</td>
</tr>
<tr>
<td>Monel 400® on flange side top</td>
<td></td>
<td></td>
<td></td>
<td>V8</td>
</tr>
<tr>
<td>Monel 400® on flange side bottom</td>
<td></td>
<td></td>
<td></td>
<td>V9</td>
</tr>
</tbody>
</table>

Hazardous area certifications (see relevant paragraph for complete detailed markings)

<table>
<thead>
<tr>
<th>ATEX Intrinsic Safety Ex ia</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATEX Explosion Proof Ex db</td>
<td>XX</td>
</tr>
<tr>
<td>ATEX Intrinsic Safety Ex ic</td>
<td>XX</td>
</tr>
<tr>
<td>Combined ATEX, IECEx, FM Approvals (USA and FM Approvals (Canada)</td>
<td>XX</td>
</tr>
<tr>
<td>FM Approvals (Canada) approval (XP, DIP, IS, NI, Type N)</td>
<td>XX</td>
</tr>
<tr>
<td>FM Approvals (USA) approval (XP, DIP, IS, NI, Type N)</td>
<td>XX</td>
</tr>
<tr>
<td>FM Approvals (USA and Canada) Intrinsically Safe</td>
<td>XX</td>
</tr>
<tr>
<td>IECEx Intrinsic Safety Ex ia</td>
<td>XX</td>
</tr>
<tr>
<td>IECEx Explosion Proof Ex db</td>
<td>XX</td>
</tr>
<tr>
<td>IECEx Intrinsic Safety Ex ic</td>
<td>XX</td>
</tr>
<tr>
<td>NEPSI Intrinsic Safety Ex ia</td>
<td>XX</td>
</tr>
<tr>
<td>NEPSI Explosion Proof Ex d</td>
<td>XX</td>
</tr>
<tr>
<td>NEPSI Intrinsic Safety Ex ic</td>
<td>XX</td>
</tr>
</tbody>
</table>

Other hazardous area certifications (ONLY AS ALTERNATIVE TO BASIC CERTIFICATION CODE Ex)

Technical Regulations Customs Union (EAC) Intrinsic Safety Ex ia for Russia	XX
Technical Regulations Customs Union (EAC) Explosion Proof Ex d for Russia	XX
Technical Regulations Customs Union (EAC) combined Ex ia and Ex d for Russia	XX
Technical Regulations Customs Union (EAC) Intrinsic Safety Ex ia for Kazakhstan	XX
Technical Regulations Customs Union (EAC) Explosion Proof Ex d for Kazakhstan	XX
Technical Regulations Customs Union (EAC) combined Ex ia and Ex d for Kazakhstan	XX
Inmetro (Brazil) Intrinsically Safe Ex ia	XX
Inmetro (Brazil) Explosion Proof Ex d	XX
Inmetro (Brazil) Intrinsically Safe Ex ic	XX
Combined Inmetro (Brazil) - Intrinsically Safe Ex ia, Explosion Proof and Intrinsically Safe Ex ic	XX
Technical Regulations Customs Union (EAC) Intrinsic Safety Ex ia for Belarus	XX
Technical Regulations Customs Union (EAC) Explosion Proof Ex d for Belarus	XX
Technological Regulations Customs Union (EAC) combined Ex ia and Ex d for Belarus	XX
Kosha (Korea) Intrinsically Safe Ex ia IIC T6, IP67	XX
Kosha (Korea) Explosion Proof Ex d IIC T6, IP67	XX
Combined Kosha (Korea) - Intrinsically Safe and Explosion Proof	XX
Additional ordering information for model 266DSH Differential Pressure Transmitter

<table>
<thead>
<tr>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
</table>

Integral LCD
- Digital LCD integral display with integrated keypad (Note 19) L1
- Digital LCD integral display with TTG (Through-The-Glass) activated keypad (Note 19) L5
- Integrated digital LCD display (ONLY SELECTABLE WITH OUTPUT CODE 7) (Note 25) L5

External non intrusive Z, S and WP pushbuttons
- Transmitters with external pushbutton (ONLY SELECTABLE WITH OUTPUT CODE 7) R1

Mounting bracket (shape and material)
- For pipe/wall mounting - Carbon steel (Not suitable for AISI housing) (Note 27) B1
- For pipe/wall mounting - AISI 316 L ss (Note 27) B2
- Flat type for box - AISI 316 ss (Note 27) B5

Surge
- Surge/Transient Protector (Note 21) S2

Operating manual (multiple selection allowed)
- German (FOR HART, WirelessHART and PROFIBUS VERSIONS) M1
- Italian (ONLY FOR HART VERSIONS) M2
- Spanish (FOR HART, WirelessHART and FOUNDATION Fieldbus VERSIONS) M3
- French (ONLY FOR HART VERSIONS) M4
- English M5
- Portuguese (ONLY FOR HART VERSIONS) MA
- Russian (ONLY FOR HART VERSIONS) MB

Plates language
- German T1
- Italian T2
- Spanish T3
- French T4

Additional tag plate
- Supplemental wired-on stainless steel plate I1
- Tag and certification stainless steel plates and laser printing of tag I2
- Tag, certification and supplemental wired-on stainless steel plates and laser printing of tag I3

Configuration
- Standard – Pressure = inH2O/ psi at 68 °F; Temperature = deg. F N2
- Standard – Pressure = inH2O/ psi at 39.2 °F; Temperature = deg. F N3
- Standard – Pressure = inH2O/ psi at 20 °C; Temperature = deg. C N4
- Standard – Pressure = inH2O/ psi at 4 °C; Temperature = deg. C N5
- Custom N6
- Configured for HART revision 5 (Note 31) NH

Preparation procedure
- Oxygen service cleaning (only available with inert fill and PTFE gasket) Pmax =10 MPa for Galden; Tmax=60 °C/140 °F (Notes 17, 30) P1

Certificates (multiple selection allowed)
- Inspection certificate EN 10204–3.1 of calibration (9-point) C1
- Inspection certificate EN 10204–3.1 of the cleanliness stage (Notes 27, 30) C3
- Inspection certificate EN 10204–3.1 of helium leakage test of the sensor module (Note 30) C4
- Inspection certificate EN 10204–3.1 of the pressure test C5
- Certificate of compliance with the order EN 10204–2.1 of instrument design C6
- PMI test of wetted parts (Note 30) CT
Ordering information

Additional ordering information for model 266DSH Differential Pressure Transmitter

<table>
<thead>
<tr>
<th>Approvals</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metrologic Pattern for Russia (NOT APPLICABLE WITH ANY HAZARDOUS AREA CERTIFICATION) (Note 30)</td>
<td>Y1</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Metrologic Pattern for Kazakhstan (NOT APPLICABLE WITH ANY HAZARDOUS AREA CERTIFICATION) (Note 30)</td>
<td>Y2</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Metrologic Pattern for Belarus (NOT APPLICABLE WITH ANY HAZARDOUS AREA CERTIFICATION) (Note 30)</td>
<td>Y4</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Chinese pattern (NOT APPLICABLE WITH ANY HAZARDOUS AREA CERTIFICATION) (Note 30)</td>
<td>Y5</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>DNV GL approval (Notes 19, 21)</td>
<td>YA</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Approval for Custody transfer (PENDING)</td>
<td>YC</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Conformity to NAMUR NE 021 (2004) (NOT APPLICABLE WITH SURGE PROTECTOR CODE “S2”) (Notes 19, 21, 24, 26)</td>
<td>YE</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>NSF/ANSI 61 Drinking Water Certified</td>
<td>YN</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>CRN (Canadian Registration Number OF14838.5C)</td>
<td>YR</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

Material traceability

<table>
<thead>
<tr>
<th>National radio frequency licence</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic countries (Europe, USA, Canada)</td>
<td>FB</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Argentina</td>
<td>FA</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>FG</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>India</td>
<td>FI</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
<tr>
<td>Mexico</td>
<td>FM</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
<td>XX</td>
</tr>
</tbody>
</table>

Electrical connection plug

| One certified stainless steel plug (supplied loose with thread according to housing entries) | Z1 | XX | XX | XX | XX |

Accessory

| Manifold mounting and pressure test (NOT AVAILABLE WITH OXYGEN SERVICE CLEANING - PREPARATION PROCEDURE CODE P1 or WITH VERTICAL FLANGES WHEN SELECTED WITH BRACKET CODE Bx) (Notes 7, 23, 27, 30) | A1 | XX | XX | XX | XX |
Accessory ordering information model 266DSH flanged mounted version
Select one character or set of characters from each category and specify complete additional catalog number.

<table>
<thead>
<tr>
<th>BASE MODEL - 1st to 3rd characters</th>
<th>F 2 6</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process connections of flange mounted version</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction - 4th character</td>
<td>Differential</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH PRESSURE SIDE - Process mounting flange rating / Size - 5th characters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASME Class 150</td>
<td>2 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASME Class 150</td>
<td>3 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASME Class 300</td>
<td>2 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASME Class 300</td>
<td>3 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN PN 16 / 40</td>
<td>DN 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN PN 16</td>
<td>DN 80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN PN 40</td>
<td>DN 80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH PRESSURE SIDE - Mounting flange material/seat form - 6th characters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AISI 316 L ss</td>
<td>Form RF (raised face) - serrated finish (Note 28)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AISI 316 L ss</td>
<td>EN 1092-1 Type B1 - serrated finish (Note 29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOW PRESSURE SIDE - Process flanges/adapters material and connection (wetted parts) - 7th character</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AISI 316 L ss (Horizontal connection)</td>
<td>1/4 in. – 18 NPT-f direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AISI 316 L ss (Horizontal connection)</td>
<td>1/2 in. – 14 NPT-f through adapter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Suitable for oxygen service
Note 2: Not available with sensor code A and B
Note 3: Not available with AISI 316L ss or Hastelloy C-276 (on AISI seat) diaphragms code S, H, A
Note 4: Not available with sensor code A
Note 5: Not available with Diaphragm material/Fill fluid code S, H, K, M, A, F, C
Note 6: Not available with sensor code A, Q, S
Note 7: Not available with Process Flanges/Adapters material/connection code P, Z
Note 8: Not available with Process Flanges/Adapters material/connection code A, B, D, E, G, H, Q, T, M, S, U, V, Y, W
Note 9: Not available with Process flanges/adapters material/connection code D, E, G, H, Q, T, M, S, U, V, Y, W
Note 10: Not available with Process flanges/adapters material/connection code A, B, D, E, G, H, Q, T, M, S, U, V, Y, W
Note 13: Not available with Process flanges/adapters material/connection code A, B, D, E, Q, T, M, S, U, V, Y, W, R
Note 14: Not available with Process flanges/adapters material/connection code A, B, D, E, Q, T, M, S, Y, W, R
Note 15: Not available with Housing code 3
Note 16: Not available with sensor code E, F, G, H, M, P, Q, and S
Note 17: Not available with high static pressure code H
Note 18: Not available with sensor code A, B, E, S
Note 19: Not available with Output code 7
Note 20: Not available with Housing code A, S, J
Note 21: Not available with Output code 9
Note 22: Not available with Output code 1, 2, 3, 7, 8
Note 23: Not available with Process Flanges/Adapters material/connection code B, E, W, H, T, S, V
Note 24: Not available with Output code 2, 3
Note 25: Not available with Hazardous area certification code WM, WN, WP
Note 26: Not available with Hazardous area certification code EN, E4, E6, EA, EY, EZ, ES, W1, W2, WC, W3, W4, WD, W5, W6, W7, W8, WF, WG, WH, WM, WN, WP
Note 27: Not available with flange mounted version - Process flanges/adapters material/connection code R
Note 28: Not available with EN mounting flange code M, N, L
Note 29: Not available with ASME mounting flange code A, B, D, E
Note 30: Not available NSF/ANSI 61 approval code YN
Note 31: Not available with Output code 2, 3, 9
Standard delivery items (can be differently specified by additional ordering code)
- Adapters supplied loose
- Plug on axis of horizontal connection flange or on side bottom for horizontal connection flange with MWP= 16 MPa;
 nothing for PVDF Kynar insert or for vertical connection flange (no drain/vent valves)
- General purpose (no electrical certification)
- No display, no mounting bracket, no surge protection
- Short-form leaflet instruction and labels in English (metal nameplate; self-adhesive certification and tag)
- Configuration with kPa and deg. C units
- No test, inspection or material traceability certificates

IMPORTANT REMARK FOR ALL MODELS

THE SELECTION OF SUITABLE WETTED PARTS AND FILLING FLUID FOR COMPATIBILITY WITH THE PROCESS MEDIA IS A
CUSTOMER’S RESPONSIBILITY, IF NOT OTHERWISE NOTIFIED BEFORE MANUFACTURING.

NACE COMPLIANCE INFORMATION

1 The materials of constructions comply with metallurgical recommendations of NACE MR0175/ISO 15156 for sour oil field
production environments. As specific environmental limits may apply to certain materials, please consult latest standard
for further details. AISI 316/316 L, Hastelloy C-276, Monel 400 also conform to NACE MR0103 for sour refining
environments.

2 NACE MR-01-75 addresses bolting requirements in two classes:
 - Exposed bolts: bolts directly exposed to the sour environment or buried, incapsulated or anyway not exposed to
 atmosphere
 - Non exposed bolts: the bolting must not be directly exposed to sour environments and must be directly exposed to
 the atmosphere at all times.

266DSH bolting identified by “NACE (non exposed)” are in compliance with requirements of NACE MR0103 when considered
“non exposed bolting”.

266DSH bolting identified by “NACE” are in compliance with requirements of NACE MR0175 when considered “exposed bolting”.

© Hastelloy is a registered trademark of Haynes International
© Monel and Inconel are registered trademarks of Huntington Alloys Corporation
© Galden is a registered trademark of Solvay Specialty Polymers Italy, SpA
© Kynar is a registered trademark of Arkema Inc. Corporation
© HART and WirelessHART are protected trademarks of FieldComm Group, Inc
© PROFIBUS is a registered trademark of PROFIBUS and PROFINET International (PI)
™ FOUNDATION Fieldbus is a trademark of Fieldbus Foundation