Outdoor Vacuum Circuit Breaker  Type VBF

Instruction for Installation, Service and Maintenance
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Product description</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td><strong>PART A  Receipt, Storage &amp; Safety</strong></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Packing information, Goods marking and transport</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Receipt &amp; Storage prior to Installation</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Safety provisions and assembly instructions</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td><strong>PART B  Instructions for Installation, Operation &amp; Maintenance</strong></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Breaker details</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Function</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Installation</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Commissioning</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Periodical checks</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td><strong>PART C  Operating Mechanism working principle and Maintenance</strong></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Spring charged mechanism</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Maintenance of operating mechanism</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td><strong>Failure Report</strong></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td><strong>List Of Drawings</strong></td>
<td>46</td>
</tr>
<tr>
<td></td>
<td><strong>Drawings</strong></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td><strong>Dismantling of operating coil setup</strong></td>
<td>55</td>
</tr>
</tbody>
</table>

Check that the personnel operating the apparatus have this instruction manual with them.

We recommend that installation and commissioning should be carried out by qualified and authorised personnel.
Product description

Description
Medium Voltage circuit-breaker type VBF, with operating mechanism type ESH.

1.1 Design of the circuit-breaker
The circuit-breaker is made up of three separate poles. These consist of three main parts.

1. Pole assembly

2. Cabinet with operating mechanism

3. Steel structure

1. Pole assembly
- Pole assembly consists of three poles and a common duct.
- Each pole comprises of a vacuum bottle, current transfer contacts and an insulating pull rod placed in the porcelain housing.
- Robust housing for protection against fire and hazardous conditions.
- Primary terminal connectors can be provided, such as NEMA 4.
- All three poles are mounted on a common duct.
- Poles are interconnected with each other as well as to the operating mechanism with a linkage arrangement.
- Simple design - minimises spare parts.
2. Cabinet with operating mechanism

2.1 Base Cabinet
The base cabinet is made of painted mild steel. The cabinet houses a spring operated mechanism which is mechanically linked to all three poles. The cabinet also includes the followings:

- Anti-condensation heater
- Circuit breaker status indicator
- Mechanical operation counter
- Breaker control switches
- Anti-pumping relay
- AC / DC fuses
- Auxiliary wiring
- Terminal blocks

2.2 Operating mechanism
For high operational reliability and minimal maintenance, a simple and robust spring operated mechanism is used.

Features
- O-C-O operation without recharging
- Closing spring is charged by motor in less than 15 secs.
- Mechanical / electrical anti-pumping
- Provision for manual charging
- Suitable for high speed auto-reclosing
- Manual closing and tripping arrangement
- Mechanical ON - OFF and SPRING CHARGED indication
- Auxiliary switch: 13 NO + 13 NC
- Additional tripping solenoid(optional)

3. Structure
The breaker is supplied with galvanised steel structure, if ordered, which supports the breaker on the foundation

4. Standards
The circuit breakers comply with the requirements according to IEC and are restrike-free when breaking a capacitive load.
PART A  Receipt, Storage & Safety

1.0 Packing Information, Goods marking & Transport
   1.1 Goods marking
   1.2 Documents
   1.3 Transport
   1.4 Lifting

2.0 Receipt & storage prior to installation
   2.1 General
   2.2 Receipt & storage of breaker

3.0 Safety provisions and assembly instructions
   3.1 Warning texts
   3.2 Safety Precaution
1.0 Packing Information, goods marking & transport

1.1 Goods marking
The circuit-breaker is transported in seaworthy packing in ‘OPEN’ position in two parts (in most of the cases). The poles with duct is packed in one case and the control cabinet is packed in the other.

The breaker structures (if part of the order) are packed separately.

The CT structures (optional item) are packed separately.

Each case is marked with case markings on two sides with indelible black ink. The case markings include information of case number, gross weight, etc.

In addition to the above, the cases are marked with the following symbols. These should be observed when choosing lifting equipment.

1.2 Documents
Following documents are packed with breaker:
- Instruction manual
- Test certificates
- Drawings
- Packing list

Legend on packing case

- This way up
- Fragile, handle with care
- Use no hook
- No hand truck here
- Keep dry
- Keep away from heat
- Stacking limitation
- Do not roll

Legend on packing case
1.3 Transport
The circuit-breakers shall be transported in packed condition only. Following precautions are to be taken while transporting:

- Ensure that packing cases are not placed on wet surfaces / waterlogged areas.
- Breakers should not be stacked one over the other.

1.4 Lifting
Before lifting the case, observe the information on it (such as symbol, weight, etc.). The cases shall be lifted by a lifting device equipped with forks or slings. If a crane is used, slings shall be used. The units must not be rolled or dropped.
PART A Receipt, Storage & Safety

2.0 Receipt & Storage prior to installation

2.1 General
The breaker with complete packing should always be stored indoor to protect from direct sunlight & rain/snow.

Breakers can be stored upto 3 months from date of shipment from the factory. For longer storage, the packing needs to be removed and the breaker be kept under controlled environmental conditions.

We define storage in controlled conditions as a place with:

- Leak proof roof
- Solid, flat ground
- Relative humidity less than 50%
- Temperature 20°C (± 10° C)

2.2 Receipt & Storage of Breaker
Each delivery, on receipt, should be checked for:

- Shortages and discrepancies. (Check against order and delivery documents).
- Any transit damage and material losses.
- Abnormality, if any, must be notified immediately to: ABB, forwarding agents and the insurance company.

The operating cabinet should be unpacked on arrival. If it is not going to be stored in an approved storage the heating elements must be connected permanently to the electric supply to protect the control equipment from corrosion or freezing damage.

The breaker with duct & poles should be stored in their original transport units, where they are well protected from damage. The breakers if stored outdoors, should be well covered with tarpaulin. The tarpaulin should not be placed directly on breaker. An air gap should be left to prevent condensation.

The minimum allowed ambient temperature for the Outdoor Vacuum Circuit Breaker is (-)30°C.

Structures may be stored outdoors. Spare parts should be stored indoors in a recommended storage area in their original packings.
3.0 Safety provisions for circuit-breaker
The entire assembly instruction should be read carefully before starting the assembly work.

3.1 Warning texts
Warning texts are stated in 5 different degrees of urgency, which should be carefully observed. These are described below:

- **DANGER** indicates an immediate risk situation that can lead to death or serious personal injury if not avoided.

- **Warning** indicates a risk situation that can lead to death or serious personal injury if not avoided.

- **Caution** indicates a risk situation that can lead to small or moderate damage

- **Note** is used when there is danger that can lead to equipment damage only

- **Important** indicates an operation or a suggestion for handling
3.2 Safety Precaution
When working on high-voltage circuit breaker the below-mentioned risk must be taken into consideration and corresponding safety measures taken.

<table>
<thead>
<tr>
<th>RISK</th>
<th>SAFETY MESAURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Work next to high voltage</td>
<td>Warning plate is placed inside the door of the operating device. Disconnect all electrical supply. Connect earthing devices near the workplace. If work must be carried out near energized parts of the plant, it has to follow local safety regulation of the organization responsible for the circuit breaker.</td>
</tr>
<tr>
<td>2) Work on ladders and platforms</td>
<td>The work shall follow the directions of the authority for occupational safety and health. Avoid work in severe weather conditions, which entails a great deal of climbing for short periods.</td>
</tr>
<tr>
<td>3) Work with low- voltage. Both D.C. and A.C. Voltage may be drawn to the operating device.</td>
<td>Do not connect control supply and heater voltage until all connection work is completed.</td>
</tr>
<tr>
<td>4) Risk in operating mechanism and link system</td>
<td>Warning plate is placed on the supporting frame. No work must be carried out unless the closing and opening springs are discharged, the circuit-breaker is in position OFF &quot;0&quot; and the supply to the motor is disconnected. The operating mechanism must not be operated unless it is connected to the circuit.</td>
</tr>
<tr>
<td>5) Work on pressurized porcelain Insulators.</td>
<td>Work close to the insulators of the circuit breaker that entails risk of porcelain damage must not be carried out until the gas pressure has been lowered to 1.0 bar absolute pressure.</td>
</tr>
</tbody>
</table>
PART B  Installation, Operation & Maintenance

General

1.0 Technical details
  1.1 Type designation
  1.2 Specifications
  1.3 Rating plate

2.0 Breaker details

3.0 Function
  3.1 Switching operations
  3.2 Closing operation
  3.3 Opening operation

4.0 Installation
  General
  4.1 Preparations
  4.2 Installation procedure
    4.2.1 Installation of breaker with cabinet attached to the pole duct
    4.2.1.1 Unpacking of structure
    4.2.1.2 Various parts of structure assembly
    4.2.1.3 Assembly sequence for structure
    4.2.1.4 Dismantling of cases
      4.2.1.4.1 Unpacking of cabinet
      4.2.1.4.2 Unpacking of duct & Pole assembly
    4.2.1.5 Assembly of duct with poles on cabinet
    4.2.1.6 Assembly of entire circuit breaker on structure
  4.2.2 Installation of breaker with cabinet at lower height
    4.2.2.1 Various parts of structure assembly
    4.2.2.2 Unpacking of structure
    4.2.2.3 Assembly sequence for structure
    4.2.2.4 Unpacking of duct & pole assembly
    4.2.2.5 Dismantling of cases
      4.2.2.5.1 Unpacking of cabinet
  4.2.3 High voltage connections
  4.2.4 Low voltage connections
  4.2.5 Earthing

5.0 Commissioning
  5.1 General procedure
  5.2 Space heaters
  5.3 Starting conditions
  5.4 Function test
  5.5 Trial switching operations
  5.6 Anti-pumping device
  5.7 Check of heaters
  5.8 Concluding work

6.0 Periodical checks
  6.1 General
  6.2 Checking programme
  6.3 General Inspection of the circuit breaker
General

1.0 Technical details
This operating instruction is applicable for Outdoor circuit Breaker type VBF.

1.1 Type designation
Outdoor Vacuum Circuit Breaker

<table>
<thead>
<tr>
<th>Type</th>
<th>VBF 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>24 for 24kV, 36 for 36kV</td>
</tr>
<tr>
<td>Rated normal current</td>
<td>12 for 1250 Amp, 16 for 1600 Amp</td>
</tr>
<tr>
<td>Rated breaking capacity</td>
<td>26.3kA</td>
</tr>
</tbody>
</table>

1.2 Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>VBF 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>IEC – 62271-100</td>
</tr>
<tr>
<td>Rated voltage</td>
<td>36kV</td>
</tr>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Insulation level</td>
<td>70/170kVp.</td>
</tr>
<tr>
<td>Normal current</td>
<td>1250 / 1600 Amps.</td>
</tr>
<tr>
<td>Short circuit breaking current</td>
<td>26.3 kA</td>
</tr>
<tr>
<td>Operating sequence</td>
<td>0-0.3S-CO-3 Min.-CO</td>
</tr>
<tr>
<td>Weight</td>
<td>800 kg</td>
</tr>
</tbody>
</table>

1.3 Rating plate

![Rating plate diagram]
2.0 Breaker details
The circuit breaker type VBF is a three pole vacuum circuit breaker and designed in a column type construction with "spring stored energy operating mechanism" as shown in Standard General Arrangement drawing (refer Fig.1a, b & c)

Breaker Pole
The breaker pole consists of (ref. Fig.2)
- 10001 - Insulator body
- 10200 - Vacuum interrupter
- 10017 - Lamellar contact
- 10502 - Current collecting hub
- 10008 & 10500 - Upper and lower terminal
- 10300 - Insulating Rod
- 10401 - Crank Housing
The poles are filled with SF6 or Nitrogen gas individually at a pressure of 1.5 bar (abs). (Nitrogen can be provided on request)

3.0 Function
The standard schematic circuit diagram of the breaker shown in Fig.3 (please refer order bound drawings for details)

3.1 Switching operations
As supplied from ABB the circuit breaker will be in open position and closing spring in discharged condition. When the control supply is given to the breaker, closing spring will get charged automatically by means of spring charging motor.

3.2 Closing operation
To close the circuit breaker the "CLOSE" control element is actuated either electrically through the closing coil or mechanically through push button arrangement. This enables the, spring stored energy mechanism to release the spring energy, through the linkage system, which rotate the common shaft. The rotation of the common shaft moves the moving contact of all the poles upward through the operating stud, closing the circuit breaker. This movement also exerts the required contact pressure on the moving contact.

3.3 Opening operation
To open the circuit breaker, the "OPEN" control element is actuated either electrically through the opening coil or mechanically through push button arrangement. This enables the spring stored energy mechanism to release the spring energy through the linkage system, which rotate the common shaft in opposite direction. This rotation forces the moving contact of all the poles to move downward, opening the circuit breaker.

4.0 Installation
General
As supplied from ABB the circuit breaker are complete in all respect with all the necessary settings for smooth and trouble free operations of the circuit breaker. All the moving parts of the circuit breaker are positioned correctly and coupled together and they are well secured with the fasteners.

It is recommended to use standard tools and standard practices for lifting and transport of the circuit breaker at time of installation so as to avoid mechanical damage of the pole parts. In general the unpacking and lifting of the circuit breaker shall be done as explained and given in clause 4.2.
4.1 Preparations
The following are to be made available --
An erection crane with a load carrying capacity of
about 1500 kg, and a crane hook with height of at
least 4 m (= 13 feet) above the floor.
- Lifting ropes.
- Dimension drawings, installation drawings,
  wiring and circuit diagram.
- Torque wrench for a range of 6-100 NM
- Circlip pliers.
- Commercially available set of open and ring
  spanners size from 7 mm to 43 mm.
- Cleaning and working material like cloth etc.
- Conducting grease.
- Spirit level.

4.2 Installation procedure

4.2.1 Installation of Breaker with cabinet
attached to the pole duct
Circuit Breaker can be transported in three
parts as explained below.
1 Cabinet with Spring-Mechanism Drive &
   Electrical wiring & apparatus.
2 Duct-with-Poles and the inter-pole-links.
3 Structure Assembly

In some cases CB is transported in two cases
1. Complete CB
2. Structure assembly.

Before delivery, both Tripping and Closing Springs are
discharged and Circuit Breaker kept in OPEN position.
Before starting installation ensure that foundation with
Foundation Bolts as per drawing is ready [Refer Fig.1a,
1b & 1c].

4.2.1.1 Unpacking of structure
- Place the case horizontally on a flat surface before
  opening the cover.
- Check that all parts are included in the delivery.
  Check the packing list.
- Check that no parts have been damaged during
  transport; especially the porcelain insulators.
- Report any faults immediately to the ABB
  representative.

4.2.1.2 Various parts of Structure assembly:

List of the parts of structure
1. Upper Leg Assly- 2 Nos.
2. Lower Legs Assly – 2Nos
3. Support Angles(front and rear) 2 Nos
4. Stiffeners – 2Nos
5. Cross-Angles. – 4 Nos
6. Foundation Bolts- 4 Nos [2 Nos
   Additional for CT structure ]

List of the additional parts for CT structure
7. Upper Leg Assly – 2Nos
8. Lower Leg Assly – 2 Nos
9. Support Angles – 2 Nos
10. C-Channel for C.T/P.T.- 1 No

One Spanner each [open & ring] of size 18x19
& 24x27 needed to assemble the structure
PART B  Installation, Operation & Maintenance

4.2.1.3. Assembly sequences for Structure:

- Fix the Lower Leg Assembly as shown.
- Fix M20 Plain Washer, Spring Washer & Hex nut or Expansion Bolts in case the foundation is with Expansion bolts.
- Keep Nuts slightly loose for flexibility during entire Assembly of structure.

Arrangement without CT structure

- Fix the Lower Leg Assembly as shown.
- Fix M20 Plain Washer, Spring Washer & Hex nut or Expansion Bolts in case the foundation is with Expansion Bolts.
- Keep Nuts slightly loose for flexibility during entire assembly of structure.
- Fix Lower Legs of CT Structure Assembly (optional)

Arrangement with CT Structure [Optional]

- Now fix Cross-Support Angles (5) as shown using M12 bolts, spring washers, plain washers & Hex Nuts.
- Slide Upper Leg Assembly (1) into Lower Leg Assembly to achieve height.
- Fix Support Angles (3) as per the order bound GA drawing and M12 bolts, spring washers, plain washers & Hex Nuts.
- For the sake of flexibility, do not fully tighten the fasteners.

Circuit Breaker Structure Assembly
Slide Upper Leg (7) in Lower Leg assembly & assemble using M12 bolts, spring, washers, plain washers & Hex Nuts.

Fix Support-Angles(9) on Upper Leg Assembly(1) & (7) as Shown

Fix Cross-Angles (11)

Fix CT Frame(10) on the Support Angles(9)

For the sake of flexibility, do not fully tighten the fasteners.

Circuit-breaker Structure Assembly with CT structure

4.2.1.4 Dismantling of Cases

4.2.1.4.1 Unpacking of Cabinet

- Remove top & all side covers of casing containing Cabinet Assembly.
- Remove Vacuum sealing
- Do not remove the bottom pallet.

Cabinet Assembly on palate
**4.2.1.4.2 Unpacking of Duct & Pole Assembly**

- Remove top & all side covers of casing containing Poles-with-Duct assembly.
- Remove Vacuum sealing.
- Hold Poles-with-Duct Assembly by lifting crane as shown.
- Remove the M8 Bolts from the rear covers of the Duct & open the rear cover.
- Remove bolts fixed to the bottom packing pallet.

---

**4.2.1.5 Assembly of Duct-with-Poles on Cabinet:**

- Lift entire assembly, match 4 holes with cabinet and place it slowly on the cabinet.
- Assemble Poles-with-Duct & Cabinet together using M12 bolts, spring washers. M12 nut are welded to the cabinet.
- Remove the bolts from the pallet as shown. (Bolts can be removed without opening the Cabinet)

Lift the entire assembly to the ready structure.
4.2.1.6 Assembly of entire Circuit-Breaker on structure

- Refer figure below before going for assembly.
- Slowly lower the Circuit-Breaker in such a way that the Cabinet enters inside the Upper Leg Assemblies & rests on the support angles & the Duct rests on the Upper Leg Assemblies of structure.
- Ensure that stiffener plates are placed inside the duct and assemble with structure.
- Engage Cabinet with the support angles. Fix M12 bolts, spring washers, plain washers from bottom of the support angles. [M12 Nuts are welded inside the cabinet]
- This completes the assembly.

Now fasten all hardware; do not remove slings until all hardware are fastened fully.
Connection of Driving-Link with composite-lever:

Remove the pin and U-Clip from the lever arm

Rotate the Composite-Lever such that the hole of the lever-arm matches with the hole in Driving Link & insert the pin

Insert the Pin from back and put U-Clip

These figures are of Y-pole

- This completes the assembly.
- Now fasten all the hardware.
- Remove the lifting-ropes & wooden blocks.
- Carry out pre-commissioning tests as described in Commissioning section.
4.2.2 Installation of Breaker with cabinet at lower height

Circuit Breakers are be transported in three parts as explained below.
1. Cabinet with Spring-Mechanism Drive & Electrical wiring & apparatus.
3. Structure Assembly and connecting drive link & pipe assemblies.

Following additional items are supplied and to be used for installation of control cabinet at lower height:

- Extended Drive-link
- Special pin for setting
- Cover for driver-link
- Top support angle

Before delivery, both Tripping and Closing Springs are discharged and Circuit Breaker kept in OPEN position.

Before starting installation ensure that foundation with Foundation Bolts as per drawing is ready (Refer Fig.1a, 1b & 1c on page 47, 48 & 49).

4.2.2.1 Various parts of Structure assembly:

List of the parts of structure
1. Upper Leg Assly - 2 Nos.
2. Lower Legs Assly - 2 Nos
3. Top Support Angles (front and rear) - 2 Nos
4. Bottom Support Angles (front and rear) - 2 Nos
5. Stiffeners - 2 Nos
6. Cross-Angles - 4 Nos
7. Foundation Bolts - 4 Nos [2 Nos Additional for CT structure]

List of the additional parts for CT structure
8. Upper Leg Assly - 2 Nos
9. Lower Leg Assly - 2 Nos
10. Support Angles - 2 Nos
11. C-Channel for C.T/P.T. - 1 No

One Spanner each [open & ring] of size 18x19 & 24x27 needed to assemble the structure
4.2.2.2 Unpacking of structure
- Place the case horizontally on a flat surface before opening the cover.
- Check that all parts are included in the delivery. Check the packing list.
- Check that no parts have been damaged during transport; especially the porcelain insulators.
- Report any faults immediately to the ABB representative.

4.2.2.3 Assembly sequences for Structure:

Arrangement without CT structure:
- Fix the Lower Leg Assly as shown in Fig.4
- Fix M20 Plain Washer, Spring Washer & Hex nut or Expansion Bolts in case the foundation is with Expansion bolts.
- Keep Nuts slightly loose for flexibility during entire Assembly of structure.

Arrangement with CT Structure [Optional]:
- Fix the Lower Leg Assly as shown
- Fix M20 Plain Washer, Spring Washer & Hex nut or Expansion Bolts in case the foundation is with expansion Bolts.
- Keep Nuts slightly loose for flexibility during entire assembly of structure.
- Fix Lower Legs of CT Structure Assembly [optional]

Circuit Breaker Structure Assembly:
- Now fix Cross-Support Angles (6) as shown M12 bolts, spring washers, plain washers & Hex Nuts.
- Fix Bottom Support Angles(4) as per the order bound GA drawing To achieve lower height and M12 bolts, spring washers, plain washers & hex nuts.
- For the sake of flexibility, do not fully tighten the fasteners.
4.2.2.4 Unpacking of Duct & Pole Assembly

- Remove top & all side covers of casing containing Poles-with-Duct assembly.
- Remove Vacuum sealing.
- Hold Poles-with-Duct Assembly by lifting crane as shown.
- Remove the M8 Bolts from the rear covers of the Duct & open the rear cover.
- Remove bolts fixed to the bottom packing pallet.

4.2.2.5 Dismantling of Cases

4.2.2.5.1 Unpacking of Cabinet

- Remove top & all side covers of casing containing Cabinet Assembly.
- Remove Vacuum sealing.
- Do not remove the bottom pallet.

- Fix 2 nos eye-bolts on the cabinet diagonally, remove fixing bolts(2) and lift the cabinet.
• Position top cabinet support angle above the cabinet ensuring that the notch (shown in figure) is at the rear.

• Assemble upper legs(1) and support angles together as shown in figure.

• Slide Upper Leg (7) in Lower Leg assembly & assemble using M12 bolts, spring, washers, plain washers & Hex Nuts.

• Fix Support-Angles(9) on Upper Leg Assembly(1) & (7) as shown

• Fix Cross-Angles (11)

• Fix CT Frame(10) on the Support Angles(9)

For the sake of flexibility, do not fully tighten the fasteners.

• Fix the cabinet on the lower support angles such that the hinged door is on the front side.

• Fix hardware from the bottom (M12 nuts are welded inside the cabinet).
Lift the pole and duct assembly and fit it on the structure as shown in figure.

Put stiffener plate inside the duct where duct & upper legs are bolted together.
For driver link setting press composite lever down (OPEN) using lever and connect the **driver link** between **drive shaft** and **composite lever** as shown in figure. (Drive link has opposite threads on either ends. When the drive link is rotated, end pieces on both ends either gets tightened or loosened simultaneously).

**Caution:** Do not attempt to close the circuit breaker before drive link setting is over.
4.2.3 High voltage connection
The high voltage connection fasteners shall be preferable of M12 size stainless steel bolts/galvanized bolt and nut and at least one washer and 1 spring washer. Terminal connectors should be properly cleaned using SS wire brush to remove the aluminum oxide film and conducting grease to be applied. The conductor terminals shall be connected in such a fashion that clearances are maintained properly.

4.2.4 Low voltage connections
The Auxiliary circuit connections shall be checked as per relevant schematic diagram for correctness (See Fig. 3, page no.51 for typical schematics). A removable gland plate is provided in the bottom of the control cabinet (Fig.3 pg.51), which can be suitably drilled as per control cable glands.

4.2.5 Earthing
Earthing connection should be made as shown in GA drawing (Fig. 3, pg. 51). All earthing joints should be securely bolted together. Connections to the station earthing should have a cross section, not less than that of the earth connection pad welded on the structure.
5. Commissioning:

5.1 General Procedures

All the activities concerning commissioning of the breakers must be carried out by ABB personnel or customer personnel who are suitably qualified and have an in-depth knowledge of the apparatus & installation. If the operations are disabled, do not force the mechanical interlocks, but check that the operation sequence is correct.

- Before putting the circuit-breaker into service carry out the following operations.
- Check the tightness of the power connection on the circuit breaker terminals.
- Check that the value of the supply voltage for the auxiliary circuits is within 85% and 110% of the rated voltage of the electrical devices.
- Check that no foreign body, such as packing material, has got into the moving parts.
- Check correct setting of the thermostat (0°C).
- Also carry out the checks indicated in the following table.

<table>
<thead>
<tr>
<th>Subject of inspection</th>
<th>Procedure</th>
<th>Positive check</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Insulation Resistance</strong></td>
<td><strong>Medium voltage circuits</strong></td>
<td>The insulation resistance should be at least 200 Meg. ohm and, in any case, constant in time.</td>
</tr>
<tr>
<td></td>
<td>With a 2500 V Megger, measure the insulation resistance between phases and exposed conductive part of the circuit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Auxiliary circuits</strong></td>
<td>The insulation resistance should be a few Mohm and, in any case, constant in time.</td>
</tr>
<tr>
<td></td>
<td>With a 500 V Megger measure the insulation resistance between the auxiliary circuits and the exposed conductive part</td>
<td></td>
</tr>
<tr>
<td><strong>Auxiliary Circuits</strong></td>
<td>Check that the connections to the control circuit are correct; and the supply voltage is correct.</td>
<td>The connections are according to the electric diagram enclosed with the circuit-breaker.</td>
</tr>
<tr>
<td><strong>Manually charged operating mechanism</strong></td>
<td>Carry out a few closing and opening operations (see chap. 6). N.B. Give rated auxiliary supply to the u/v release on the operating mechanism (if provided).</td>
<td>The operations and relative signals occur correctly.</td>
</tr>
<tr>
<td><strong>Motor charged operating mechanism</strong></td>
<td>Give rated auxiliary supply to the geared motor for spring charging</td>
<td>The springs are charged correctly. The signals are correct. The geared motor cuts off when the springs are charged.</td>
</tr>
<tr>
<td></td>
<td>Carry out a few closing and opening operations. N.B. Give rated auxiliary supply to the under-voltage release on the operating mechanism (if provided).</td>
<td>The geared motor recharges the springs after each closing operation.</td>
</tr>
</tbody>
</table>
### Subject of inspection

<table>
<thead>
<tr>
<th>Subject of inspection</th>
<th>Procedure</th>
<th>Positive check</th>
</tr>
</thead>
</table>
| Under-Voltage release | Give the rated auxiliary supply to the under-voltage release and carry out the circuit-breaker closing operation | The circuit-breaker closes correctly  
The signals are correct  
The circuit-breaker opens |
|                       | Disconnect the power supply to the release                                |                                                                                  |
| Shunt opening release  | Close the circuit breaker manually  
Put the changeover switch on LOCAL  
Locally control the electric opening of the circuit-breaker using the special pushbutton (alternatively opening can be set and controlled remotely). | The signal changes over  
The circuit breaker opens normally |
| Local-remote selector SW | Open the circuit breaker manually  
Put the changeover switch on LOCAL  
Locally control the electric closing of the circuit-breaker using the special pushbutton (alternatively closing can be set and controlled remotely). | The circuit breaker closes normally |
| Key lock              | Open the circuit breaker  
Turn the key and remove it. Attempt the circuit breaker closing operation  
Insert the key again and turn it 90 deg.  
Carry out the closing operation | Neither manual nor electric closing takes place  
Both electric and manual closing take place correctly; in this position the key cannot be removed |
| Changeover switch for Local/Remote electrical control | Put the changeover switch on REMOTE  
Close the operating mechanism enclosure door. Carry out a few opening and closing operations using the special remote controls.  
Open the operating mechanism enclosure door. Try to carry out the remote closing operation. | The operations and signals are normal  
Remote closing is not possible |
| Auxiliary contacts in the operating mechanism | Insert the auxiliary contacts into suitable signalling circuits. Carry out a few closing and opening operations | Signals occur correctly |
| Cable glands          | Check lightness of the fairleads used and of the free ones.               | The fairleads used must be correctly locked; the free fairleads must be covered with the relative plate and blocked |

### 5.2 Space heaters

A space heater is provided in the control cabinet. The heater switch must always be ON when the breaker is in service to prevent condensation.
5.3 Starting conditions
The erected circuit breaker is isolated from high voltage system and earthed according to regulation. The control current circuit is connected to the low-voltage system.

5.4 Function test
Check correspondence with the customer related diagram and that the connections have been made correctly. Then the trial switching can be carried out from a protected position.

The trial switching may be performed if:
- The circuit breaker is isolated from the high voltage and earthed according to regulations.
- The spring tension indicator of the spring operated mechanism indicates the position "tensioned".

5.5 Trial switching operations
Give few Close/Open command and see that the breaker Close/Open Properly.

5.6 Anti-pumping device
- Issue a "close" command by applying a control voltage to terminal 101 & 102 leave the voltage applied. The breaker will close.
- Issue open command by applying a voltage to terminal 103 & 104. The breaker will open.
- After the interruption by OPEN command the circuit breaker should not re-close in spite of the CLOSE command still being present.

Note:
The ESH operating mechanism on VBF circuit breaker is fitted with a mechanical anti-pumping device, which prevents re-closing due to either electrical or mechanical commands.

5.7 Check of heaters:
Measure the resistance or apply voltage and measure the current, when the thermostat controlled additional heater is installed, check the adjustment of thermostat.

5.8 Concluding Work:
- Remove all test and measuring equipment.
- Connect circuit breaker to high voltage power lines.
- Make sure that safety regulations are followed.
- Take the breaker in to service.
6. Periodical checks:

Before carrying out any operation, make sure that the operating mechanism springs are discharged and that the apparatus is in the open position.

6.1. General

During normal service, the circuit-breakers are maintenance-free. The frequency and sort of inspections basically depend on the service conditions. Various factors must be taken into account: frequency of operations, interrupted current values, relative power factor and the installation ambient.

As a precaution, the following table gives the checking program, showing the relevant time intervals. As far as the time interval between these operations is concerned, it is advisable to comply with specifications given in the table, at least during the first check. On the basis of the results obtained during the periodic inspections, contact an ABB service center for any clarifications.

6.2 Checking Program

<table>
<thead>
<tr>
<th>Maintenance operation</th>
<th>Installation in normal ambient</th>
<th>Installation in dusty or polluted ambient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry out the general inspection (For details, refer clause 7.4)</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Measure the insulation resistance</td>
<td>4 years</td>
<td>2 years</td>
</tr>
<tr>
<td>Lubricate the sliding points</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Carrying out the operating mechanism maintenance</td>
<td>Five years or every 10000 operations</td>
<td>Three years or every 5000 operations</td>
</tr>
<tr>
<td>Complete overhaul</td>
<td>Ten years or every 10000 operations</td>
<td>Five years or every 10000 operations</td>
</tr>
</tbody>
</table>
### Maintenance operation

<table>
<thead>
<tr>
<th>Maintenance operation</th>
<th>Installation in normal ambient</th>
<th>Installation in Dusty or polluted ambient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection of electronics circuit</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Cleaning of electronic circuit</td>
<td>2 years</td>
<td>1 year</td>
</tr>
<tr>
<td>Retention of spring circlips and spring washer</td>
<td>2 years</td>
<td>1 year</td>
</tr>
</tbody>
</table>

6.3 General Inspection of the circuit breaker

<table>
<thead>
<tr>
<th>Part subjected to</th>
<th>Abnormalities noticed</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring operated mechanism</td>
<td>Presence of dust on the mechanism</td>
<td>Clean with a dry brush or cloth</td>
</tr>
<tr>
<td></td>
<td>Distorted or oxidised spring</td>
<td>Replace the damaged spring</td>
</tr>
<tr>
<td></td>
<td>Locking rings out of place, loose nuts or screws.</td>
<td>Re-fix the locking rings in Their position and tighten the nuts &amp; screws</td>
</tr>
<tr>
<td>High voltage breaker pole parts</td>
<td>Presence of dust or dirt on the the insulating parts</td>
<td>Clean with a dry brush or cloth</td>
</tr>
<tr>
<td></td>
<td>Locking rings out of place, loose nuts or screws.</td>
<td>Re-fix the locking rings in Their position and tighten the nuts &amp; screws</td>
</tr>
<tr>
<td></td>
<td>Distortion or cracking of the insulating parts</td>
<td>Ask ABB Nasik for replacement of the damaged parts</td>
</tr>
<tr>
<td></td>
<td>Trace of overheating or loose screws on the connection to the circuit breaker terminals</td>
<td>Clean the connections and the breaker terminals with a rough rag soaked in a suitable solvent cover them with neutral grease and tighten the screw</td>
</tr>
</tbody>
</table>
### PART B  Installation, Operation & Maintenance

<table>
<thead>
<tr>
<th>Part subjected to</th>
<th>Abnormalities noticed</th>
<th>Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthing connection</td>
<td>Trace of the oxidation and / or loose nuts</td>
<td>Clean with a rough cloth soaked in a suitable solvent. Tighten the earthing connection fully and cover it with neutral grease</td>
</tr>
<tr>
<td>Auxiliary circuit supply voltage</td>
<td>Check the supply voltage of the operating mechanism electrical accessories</td>
<td>The close/ opening coils must operate correctly for values between 85% and 110% of the relative rated voltage</td>
</tr>
<tr>
<td>Operating and control elements</td>
<td>Carry out the functional tests</td>
<td>Replace the damaged or faulty elements (if necessary as ABB)</td>
</tr>
</tbody>
</table>
PART C OPERATING MECHANISM WORKING PRINCIPLE AND MAINTENANCE

1.0 Spring charged mechanism
   1.1 General
   1.2 Construction
   1.3 Operating mechanism - Working principle
      1.3.1 Electrical spring charging
      1.3.2 Manual spring charging

1.4 Breaker Operation
   1.4.1 Closing operation
   1.4.2 Tripping operation

1.5 Maintenance of Operating Mechanism
   1.5.1 Maintenance Schedule.
   1.5.2 Trouble shooting guide
   1.5.3 Replacement of operating coils
   1.5.4 Replacement of micro-switch
   1.5.5 Replacement of motor
   1.5.6 Replacement of operating mechanism
   1.5.7 Recommended spares parts
OPERATING MECHANISM

1.0 Spring charged mechanism

1.1 General
The operating mechanism has a spring charging device, which can be operated by motor or manually. The operating device has helical tension spring for closing and opening. The opening spring is charged automatically when the breaker is closed.
A closed breaker with charged closing spring can thus be operated OPEN - CLOSE - OPEN without intermediate motorized or manual charging, and the breaker can, therefore, be used for auto re-closing duty cycle.

An indication shows whether the closed spring is charged or not, and the number of opening operations are recorded by the counter.

The motor can be supplied via station battery, a network or via transformer with a limit load of at least 500 VA. The motor starts after each closing operation and charges the closing springs within 15 seconds.

1.2 Construction
The construction of the operating mechanism is shown in Fig A.

Major components of ESH mechanism are:
1. Closing Spring
2. Tripping Spring
3. Geared-Motor
4. Push Button Assembly
5. Closing Coil
6. Tripping Coil.
8. Auxiliary switch.
9. Spring Charged indication
10. Breaker ON/OFF indications
11. Bottom Shaft (Charging Shaft)
12. Top Shaft (Power Shaft)
1.3 Operating mechanism - Working principle

There are two options for charging the springs
1. By electric motor.
2. Manual operation

1.3.1 Electrical Spring Charging (Ref Fig B)
Spring charging unit consists of Arm (1), Charging gear (2), Closing Spring (3), latches (4), reduction gear with Spring charging Motor and Cam (5). Closing - Spring assembly & charging gear are mounted on power shaft. When the Motor rotates, the reduction gear connected to that gives 1/144 reduction. Reduction gear assembly is connected axially with the Cam that rotates the spring-charging arm.

The arm rotates the charging gear, at the same time; the latches hold the charging gear and arm returns to its position. Closing spring gets stretched and this continues till the spring gets fully charged. The backward rotation of the charging gear (2) is prevented by latches (4). A plastic cam activates Motor-cut-off switch & Spring Charged indication will appear after full charging. Closing lever (6) stops the shaft from further rotation. Motor cutoff switch disconnect the supply of the motor. Fig. F (page 37) shows initial stage of closing spring and associated lever (L1).

Fig. G (page 37) shows the condition after closing spring gets fully charged. During this process latch L1 rotates of about 180°.
The spring charging motor charges the springs after each closing operation until the spring-charged indication appears. Should there be no voltage during charging, the geared motor stops, and starts recharging the springs automatically when the voltage is on again. It is, however, always possible to complete the charging operation manually. Motor supply gets cut-off automatically as the spring gets completely charged.

1.3.2 Manual Spring Charging
For charging the Closing-springs manually, fully insert the charging handle into the seat and rotate it clockwise until you see the spring-charged indication. **Ensure the handle is engaged with the seat.** The force, which can normally be applied to the charging handle, is 130 N. In any case, the maximum force applied must not exceed 170 N. As the springs get charged, a sound [internal latches getting engaged] can be heard. The arm won’t rotate the charging-gear further, since the charging-gear has no teeth on remaining periphery.

1.4 Breaker Operations:

1.4.1 Closing Operation:
Consider both the springs are in discharged condition and breaker is open (Ref Fig. E, Page 37). In this condition neither close nor open operation is possible to perform on the breaker. Latch assembly (La) and (Lb) are in released condition. The closing spring can be charged either electrically or manually as explained in section 1.3. During the process of charging pin (P1) comes in contact with closing lever (Ref Fig F, Page 37). Pin (P1) will create pressure on closing lever as closing spring is fully charged. Position of the closing lever in this condition is retained by half shaft.

If close command is initiated now, it will rotate half shaft (Ref Fig. G). Rotation of half shaft will release closing lever and hence charging gear. Due to this spring energy stored in closing spring acts on power shaft, which will cause the rotation of the cam mounted on the power shaft. Mechanism lever (Ref Fig. G) is resting on the outer periphery of this cam, which is directly connected to charging shaft. Rotation of cam will push this mechanism lever upwards, this will results in rotation of the charging shaft. Tripping lever is mounted on same charging shaft. One end of this tripping lever is connected to common shaft of the breaker via link, and another end is connected to tripping spring. Rotation of around 90° will close the circuit breaker as well as charging of the tripping spring.
**PART C Operating Mechanism working principle & maintenance**

**Fig. E** Mechanism in open condition & both the springs in discharged condition

**Fig. F** Mechanism in open condition & Closing Springs is charged,

**Fig. G** Circuit-Breaker Closed, tripping spring charged
1.4.2 Tripping Operation:

Now with previous reference consider tripping spring is in charged condition. Fig. H shows the charged condition of the tripping spring and internal detail for position of different components. Latch Assembly (La) and (Lb) engaged with each other. Engagement of (La) and (Lb) will confirm that breaker will not open in this condition unless and until the opening command is initiated.

If trip command is initiated now, it will pull the latch (Ref. Fig. I). Hence its engagement with the latch assembly will break. This will move the latch assembly La in downward direction. Downward movement of latch assembly will release the latch Lb. Hence there is no more pressure or any engagement that will retain the current poison of arm and leverage. Armand levers are free to move now. As previously discussed these components are directly connected to charging shaft. Tripping spring directly exerts pressure on the shaft via tripping lever. As leverage becomes free to move tripping spring will pull back the tripping lever and open the circuit breaker.
1.5 Maintenance of Operating Mechanism

Before carrying out the maintenance of operating mechanism ensure that the breaker is open, the sequential isolators are open and the closing and opening springs are discharged.

1.5.1 Maintenance schedule

<table>
<thead>
<tr>
<th>Sr No.</th>
<th>Description</th>
<th>Before start Up</th>
<th>Every 1000 operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Checking of operating mechanism.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2.</td>
<td>Checking of fastener tightness.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3.</td>
<td>Checking of shock absorbers for leakage or struck up.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4.</td>
<td>Checking of various tension springs and bending springs for their proper place.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5.</td>
<td>Closing and tripping spring assembly and split pin/ Circlip on them.</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>6.</td>
<td>Bearing items.</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>7.</td>
<td>Checking of Operation box Assembly for proper open/close operation.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>8.</td>
<td>Checking of setting. Proper engagement of lever on shaft.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>9.</td>
<td>Spring cut off micro switches.</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10.</td>
<td>Lubrication of charging device and operating gear</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

NOTE

1. Complete overhaul of circuit breaker operating mechanism to be done after 10000 operation or 10 years, whichever is earlier.
2. Ask ABB Nasik for details of overhaul procedure.

1.5.2 Trouble shooting guide

<table>
<thead>
<tr>
<th>FAULT</th>
<th>CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring does not get charged</td>
<td>Motor has wrong or no operating voltage.</td>
<td>Measure voltage on the motor leads.</td>
</tr>
<tr>
<td></td>
<td>Motor shaft broken.</td>
<td>Change motor.</td>
</tr>
<tr>
<td></td>
<td>Motor gear damaged.</td>
<td>Change motor.</td>
</tr>
<tr>
<td></td>
<td>The latch for the tripping device does not function.</td>
<td>Change mechanism.</td>
</tr>
<tr>
<td></td>
<td>Disconnection in the wires.</td>
<td>Check by measuring.</td>
</tr>
<tr>
<td></td>
<td>Micro-switch arm wrongly adjusted.</td>
<td>Adjust the micro-switch operating arm.</td>
</tr>
</tbody>
</table>
Closing of breaker does not take place although there is an indication that the springs are charged.

Breaker continuously opens and closes.

Operating coils does not operate.

The toggle joints of the mechanism are incorrectly adjusted.

Wrong wiring of the auxiliary circuit.

Wrongly adjusted clearances of opening magnets armature.

Anti pumping relay wrong or faulty.

Measuring the voltage and adjusting the coils adjustment screw.

Check the springs.

Adjust the toggle joints.

Check the wiring as per schematic drawing.

Adjust the opening magnet.

Change relay.

<table>
<thead>
<tr>
<th>FAULT</th>
<th>CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaker closes then opens again. Operating coils does not operate.</td>
<td>Measure the voltage and adjust the coils adjustment screw. Check the springs.</td>
<td></td>
</tr>
<tr>
<td>The toggle joints of the mechanism are incorrectly adjusted.</td>
<td></td>
<td>Adjust the toggle joints.</td>
</tr>
<tr>
<td>Wrong wiring of the auxiliary circuit.</td>
<td></td>
<td>Check the wiring as per schematic drawing. Adjust the opening magnet.</td>
</tr>
<tr>
<td>Wrongly adjusted clearances of opening magnets armature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaker continuously opens and closes.</td>
<td>Anti pumping relay wrong or faulty.</td>
<td>Change relay.</td>
</tr>
</tbody>
</table>

1.5.3 Replacement of operating coil
Refer Figs.5 to 8, (page no 55 to 56) indicate the mounting arrangement for closing coils and the tripping coils.

1.5.4 Replacement of micro-switch
Refer Figs. 13 & 14, (page no. 59) indicate the mounting arrangement for micro-switch.

1.5.5 Replacement of motor
Refer Figs.10 to 12, (page no. 57 & 59) indicate the mounting arrangement for motor.

1.5.6 Replacement of operating mechanism
The operating mechanism shall be replaced in the following manner.

- Disconnect the linkage of the operating mechanism to the main shall be replaced in the following manner.
- Disconnect the electrical connection.
- Loosen screws that fix the operating mechanism cabinet.
- Take out the operating mechanism and fix new one.
- Reconnect the electrical connections and the linkage of the main shaft. After fixing the operating mechanism the following check shall be carried out.
- Charge the closing spring.
- Close the breaker.
- If required then adjust the micro-switch for proper operation.
- Check the breakers with the auxiliary supply connect while charging at minimum operating voltage of the motor.
- Take few operations for the new mechanism.
- Seal various lock nuts of various settings with red paint.
1.5.7 Recommended spares parts

The following spares shall be kept to take care of any contingency

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Name of parts</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Spring charging motor</td>
<td>15032</td>
</tr>
<tr>
<td>2</td>
<td>Tripping/closing coils</td>
<td>15030(A,B)</td>
</tr>
<tr>
<td>3</td>
<td>Micro-switches</td>
<td>15033</td>
</tr>
<tr>
<td>4</td>
<td>Auxiliary switches</td>
<td>15027</td>
</tr>
<tr>
<td>5</td>
<td>Shock absorber</td>
<td>15007</td>
</tr>
<tr>
<td>6</td>
<td>Operating box assembly</td>
<td>15012</td>
</tr>
<tr>
<td>7</td>
<td>Opening transmission lever</td>
<td>15010</td>
</tr>
<tr>
<td>8</td>
<td>Closing transmission lever</td>
<td>15011</td>
</tr>
<tr>
<td>9</td>
<td>Operating Mechanism</td>
<td>15000A</td>
</tr>
</tbody>
</table>
In case of failure please take a copy of this form and complete it as fully as possible, to make feasible failure analysis and rectify it. For selecting options tick suitable box. If no alternative is applicable, proper description can be filled out in the space provided. Item description should be given for both circuit-breaker and operating mechanism.

1. Identification

Date -------------

Customer ------------

Item designation Serial number
----------------------- -----------------------
----------------------- -----------------------
----------------------- -----------------------
----------------------- -----------------------
----------------------- -----------------------

Order number --------------

2. Historical data

Condition of the breaker when the failure was detected (only one alternative to be selected)

☐ In service
☐ During maintenance
☐ During installation

Use of the circuit-breaker (Only one alternative to be selected)

☐ Line breaker
☐ Reactor breaker
☐ Capacitor breaker
☐ Transformer breaker
☐ By-pass breaker

Date taken into service------------------ Date of failure------------------

Date of last overhaul------------------

Total number of operating cycles since taken into service------------------

Total number of operating cycles since last overhaul------------------
3. Characteristics of the failure (multiple alternatives may be selected)

- Does not close on command.
- Does not open on command.
- Closes without command
- Open without command
- Does not make the current
- Does not break the current
- Fails to carry current
- Breakdown to earth
- Breakdown between poles
- Internal breakdown across open pole
- External breakdown across open pole
- Locking on open or closed position
- Corona
- Loose parts
- Missing parts
- Faulty parts
- Corrosion
- Surface defect other than corrosion
- Incorrect function

Change in functional characteristics

- Incorrect closing time
- Incorrect opening time, coil I
- Incorrect opening time, coil II
- Incorrect damping
- Incorrect CLOSE/OPEN time
- Too high resistance
- Incorrect pre-insertion time for the resistors
- Incorrect time span between contacts

4. External circumstances
(Many alternatives may be selected)

- Strong wind
- Rain
- Sudden variation in temperature
- Snow, ice or hoar-frost
- Corrosive atmosphere
- Fog or high humidity
- Lightning

Ambient temperature (°C)
5. Component responsible (Many alternatives may be selected)

COMPONENT AT SERVICE VOLTAGE

Making and breaking unit
☐ Current collector hub
☐ Plug
☐ Laminar contact
☐ Top cap
☐ Interrupting Chamber insulator
☐ Vacuum interrupter
☐ Top terminal plate
☐ Bottom terminal plate

Main insulation to earth
☐ Post insulator
☐ Interrupting Chamber insulator

ELECTRICAL CONTROL AND AUXILIARY CIRCUITS

☐ Operating magnet
☐ Closing magnet
☐ Auxiliary contact
☐ Counter
☐ Control panel
☐ Limit switch
☐ Micro switch
☐ Thermal relay or heater
☐ Terminal blocks, cables
☐ Driving motor for mechanism

OPERATING MECHANISM UNIT

☐ ESH mechanism

Different Assemblies in ESH Mechanism
☐ Opening coil set up
☐ Closing coil set up
☐ Tripping spring assembly
☐ Electric motor
☐ Auxiliary switch
☐ Indicators
☐ Counter
☐ Opening breaker indicator
☐ Closing breaker indicator
☐ Latch assembly for charging gear
☐ Charging gear assembly
☐ Charging lever group assembly
☐ Shock absorber
☐ Closing lever
☐ Opening box assembly
☐ Opening transmission lever
☐ Closing transmission lever
6. Consequences (Multiple alternatives may be selected)
- Unplanned removal from service
- Planned removal from service
- Major disturbance
- Minor disturbance
- Fire or explosion
- Removal from service of other breakers to prevent repetition of failure
- Circuit-breaker downtime,
- Beyond planned time (hours)

7. Action taken (Select only one alternative)
- Repair of defective component
- Exchange of defective component
- Exchange of circuit-breaker pole
- Exchange of operating device
- Exchange of circuit-breaker

Action to be taken (Select only one alternative)
- By personnel from ABB
- By personnel from ABB in current company
- By customer's personnel

Time required to obtain spare parts (hours) ----------
Time required for repair (hours)-----------------------

Place: ----------------------_signature
Date: ----------------------- (Name & Designation)
# LIST OF DRAWINGS

<table>
<thead>
<tr>
<th>FIG. NO.</th>
<th>NAME OF THE FIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>Standard General Arrangement Drawing of VBF Breaker with breaker &amp; CT structure</td>
</tr>
<tr>
<td>1b.</td>
<td>Standard General Arrangement Drawing of VBF Breaker (with breaker structure)</td>
</tr>
<tr>
<td>1c.</td>
<td>Standard General Arrangement Drawing of VBF breaker control cabinet at lower height (with breaker structure)</td>
</tr>
<tr>
<td>4a, b &amp; c.</td>
<td>ESH mechanism with cabinet</td>
</tr>
<tr>
<td>5.</td>
<td>Dismantling of operating coils setup.</td>
</tr>
<tr>
<td>6.</td>
<td>Steps for replacement of shunt opening release (Y02).</td>
</tr>
<tr>
<td>7.</td>
<td>Steps for replacement of shunt opening release (Y01).</td>
</tr>
<tr>
<td>9.</td>
<td>Operating Coils setup for temperature -10°C</td>
</tr>
<tr>
<td>10 - 11</td>
<td>Steps for replacement of motor.</td>
</tr>
</tbody>
</table>
Total weight 850Kgs approx.
Creepage distance of bushing insulator 900 mm
Paint shade for control cabinet: RAL 7035
Insulator colour: Brown

Aa  Terminals(Al.alloy)
Cs  Position indicator ON-OFF,Mech Counter
Fi  Interrupting chamber
Fb  Foundation bolt (M20)
Ge  Earthing point (Galvenising Bus.)
Ms  Control cubicle with spring drive
Vs  Supporting insulator column
Vvs  Supporting structure (Galvanised steel structure)
VCTs  CT Supporting structure (Galvanised steel structure)

Total weight 850Kgs approx.
Creepage distance of bushing insulator 900 mm
Paint shade for control cabinet: RAL 7035
Insulator colour: Brown

Note: Mounting holes for mounting of CT on CT Structure are 450 X 450

Fig. 1a. Standard General Arrangement Drawing of VBF Breaker with breaker & CT structure
Fig. 1b. Standard General Arrangement Drawing of VBF Breaker (with breaker structure)

- Total weight 800Kgs approx.
- Creepage distance of bushing insulator 900 mm
- Paint shade for control cabinet: RAL 7035
- Insulator colour: Brown

Aa Terminals (Al. alloy)
Cs Position indicator ON-OFF, Mech Counter
Fl Interrupting chamber
Fb Foundation bolt (M20)
Ge Earthing point (Galvanising Bus.)
Ms Control cubicle with spring drive
Vi Supporting insulator column
Vs Supporting structure (Galvanised steel structure)
VCTs CT Supporting structure (Galvanised steel structure)
Total weight 800Kgs approx.
Creepage distance of bushing insulator 900 mm
Paint shade for control cabinet: RAL 7035
Insulator colour: Brown

Note: Mounting holes for mounting of CT on CT Structure are 450 X 450
Drawings

Fig. 1c. Standard General Arrangement Drawing of VBF breaker control cabinet at lower height (with breaker structure)

Aa Terminals (Al.alloy)
Cs Position indicator ON-OFF, Mech Counter
Fl Interrupting chamber
Fb Foundation bolt (M20)
Ge Earthing point (Galvanising Bus.)
Ms Control cubicle with spring drive
Vi Supporting insulator column
Vs Supporting structure (Galvanised steel structure)

Total weight 850Kgs approx.
Creepage distance of bushing insulator 900 mm
Paint shade for control cabinet : RAL 7035
Insulator colour : Brown

Foundation Plinth details
Fig. 2 Breaker Pole Assembly

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10001</td>
<td>Insulator body</td>
</tr>
<tr>
<td>10200</td>
<td>Vacuum interrupter</td>
</tr>
<tr>
<td>10017</td>
<td>Lamellar contact</td>
</tr>
<tr>
<td>10502</td>
<td>Current collecting hub</td>
</tr>
<tr>
<td>10008 &amp; 10500</td>
<td>Upper and lower terminal</td>
</tr>
<tr>
<td>10300</td>
<td>Insulating Rod</td>
</tr>
<tr>
<td>10401</td>
<td>Crank Housing</td>
</tr>
</tbody>
</table>
Fig. 4a  ESH Mechanism with Cabinet [* Refer Legend on pg. 54]

Fig. 4b  ESH Mechanism with Cabinet [* Refer Legend on pg. 54]
Fig 4c  View from Rear side (Covers removed)
<table>
<thead>
<tr>
<th>15000A</th>
<th>Operating Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000</td>
<td>Closing Lever</td>
</tr>
<tr>
<td>15001</td>
<td>Cam</td>
</tr>
<tr>
<td>15002</td>
<td>Charging Gear Assembly</td>
</tr>
<tr>
<td>15003</td>
<td>Charging lever group Assembly</td>
</tr>
<tr>
<td>15004</td>
<td>Tension Spring</td>
</tr>
<tr>
<td>15005</td>
<td>Closing Spring Assembly</td>
</tr>
<tr>
<td>15006</td>
<td>Indicator</td>
</tr>
<tr>
<td>15007</td>
<td>Shock Absorber</td>
</tr>
<tr>
<td>15008</td>
<td>Counter</td>
</tr>
<tr>
<td>15009</td>
<td>Circlip</td>
</tr>
<tr>
<td>15010</td>
<td>Opening Transmission Lever</td>
</tr>
<tr>
<td>15011</td>
<td>Closing Transmission Lever</td>
</tr>
<tr>
<td>15012</td>
<td>Shaft for closing lever</td>
</tr>
<tr>
<td>15013</td>
<td>Shaft for Spring</td>
</tr>
<tr>
<td>15012</td>
<td>Operation Box Assembly</td>
</tr>
<tr>
<td>15013</td>
<td>Push button For Closing</td>
</tr>
<tr>
<td>15014</td>
<td>Push button For Opening</td>
</tr>
<tr>
<td>15015</td>
<td>Opening Breaker Indicator</td>
</tr>
<tr>
<td>15016</td>
<td>Posterior Plate Assembly</td>
</tr>
<tr>
<td>15017</td>
<td>Column For fixing Shield</td>
</tr>
<tr>
<td>15018</td>
<td>Bending Spring</td>
</tr>
<tr>
<td>15019</td>
<td>Hook Assembly</td>
</tr>
<tr>
<td>15020</td>
<td>Hook Support Shaft</td>
</tr>
<tr>
<td>15021</td>
<td>Intermediate Plate</td>
</tr>
<tr>
<td>15022</td>
<td>Front Plate</td>
</tr>
<tr>
<td>15023</td>
<td>Power Shaft</td>
</tr>
<tr>
<td>15024</td>
<td>Bearing Spacer</td>
</tr>
<tr>
<td>15025</td>
<td>Bearing</td>
</tr>
<tr>
<td>15026</td>
<td>Charging Shaft</td>
</tr>
<tr>
<td>15027</td>
<td>Auxiliary Switch</td>
</tr>
<tr>
<td>15028</td>
<td>Connection link</td>
</tr>
<tr>
<td>15029</td>
<td>Tripping Spring Assembly</td>
</tr>
<tr>
<td>15030</td>
<td>Shunt operating release(Y01,Y02)</td>
</tr>
<tr>
<td>15031</td>
<td>Shunt Closing release</td>
</tr>
<tr>
<td>15032</td>
<td>Electric Motor</td>
</tr>
<tr>
<td>15033</td>
<td>Micro-Switch</td>
</tr>
<tr>
<td>15034</td>
<td>Common Shaft</td>
</tr>
<tr>
<td>15035</td>
<td>Lever</td>
</tr>
<tr>
<td>15036</td>
<td>Operating Rod</td>
</tr>
</tbody>
</table>
Dismantling of Operating Coils Setup

Unscrew the fixing screw of the release group mount

FOR ASSEMBLY, PROCEED IN REVERSE ORDER

Steps for replacement of shunt opening release (Yo2)

Unscrew the four coil fixing screws (14) and withdraw the relative YC coil (15).

Unscrew the four coil fixing screws (19) and withdraw the relative YO1 coil (18).

FOR ASSEMBLY, PROCEED IN REVERSE ORDER
Dismantling of Operating Coils Setup

Steps For Replacement of Shunt Opening Release (YO1) 15030

Fig. 7

**YO1 SHUNT OPENING RELEASE**

When the YC shunt closing release is present, unscrew the four fixing screws (14) and withdraw it (15)

Unscrew the four fixing screws (17) and withdraw the relative YO1 release (16).

FOR ASSEMBLY, PROCEED IN REVERSE ORDER

For assembly, proceed in reverse order

---

Steps For Replacement of Shunt Closing Release (YC) 15031

Disconnect the power supply connectors of the additional shunt opening release

**YC SHUNT CLOSING RELEASES**

Unscrew the four fixing screws and withdraw release (8)

FOR ASSEMBLY, PROCEED IN REVERSE ORDER

Fig. 8
Dismantling of Operating Coils Setup

Operating Coil Set-Up for Temperature -10 deg. C

Fig. 9
Steps For Replacement of Shunt Opening Release (YO2) 15030

Steps For Replacement of Motor 15032

Remove the two motor limit microswitch fixing screws (2)

Raise the pair of driving latches using screwdriver and push the lever (3) forward.

Release the return spring, raise the pair of charging pawls and push the lever towards (4).

Unscrew the motor flange fixing screws (6)

Fig. 10
Dismantling of Operating Coils Setup

**Disconnect the motor power supply (7)**

Fig. 11

Motor

Fig. 12
Dismantling of Operating Coils Setup

Steps for replacement of micro-switch 15033

For assembly connect the Faston as it was in its original position

Fig.13

Unscrew the microswitch fixing screws

Disconnect the microswitch connection

Unscrew the microswitch fixing screws (2)

Pull down cover of microswitch (3)

To assemble, proceed in reverse order

Fig.14
<table>
<thead>
<tr>
<th>North</th>
<th>East</th>
<th>West</th>
<th>Central</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBCC Tower No.15, Bhikaji Cama Place 4th Floor No. 9 Lala Lajpat Rai Sarani (Elgin Road)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tel: +91 11-26186000</td>
<td>Tel: +91 33-22832911/906</td>
<td>Tel: +91 22-56318231-39</td>
<td>Tel: +91 771-5060816-18</td>
<td></td>
</tr>
<tr>
<td>Fax: +91 11-26197592/84035</td>
<td>Fax: +91 33-22832990</td>
<td>Fax: +91 22-56318276-77</td>
<td>Fax: +91 771-5023051</td>
<td></td>
</tr>
</tbody>
</table>

www.abb.com/in
1VDU28003-YN
Jan.05