Definitions
Transmission Line Arresters

Backflashover
Occurs when lightning strikes the tower structure or overhead shield wire. The lightning discharge current, flowing through the tower and tower footing impedance, produces potential differences across the line insulation. If the line insulation strength is exceeded, flashover occurs i.e. a backflashover. Backflashover is most prevalent when tower footing impedance is high.

Compact insulation lines
Transmission lines with reduced clearances between phases and between phase and earth and with lower insulation level withstand than for normal lines for the same system voltage.

Coupling factor
The ratio of included surge voltage on a parallel conductor to that on a struck conductor. This factor is determined from the geometric relationships between phase and ground (or protected phase conductors). A value often used for estimation purposes is 0.25.

Energy capability
The energy that a surge arrester can absorb, in one or more impulses, without damage and without loss of thermal stability. The capability is different for different types and duration of impulses.

Keraunic level
Number of annual thunderstorm days for a given region.

Shielding
Protection of phase conductors from direct lightning strokes; generally, by means of additional conductor(s) running on the top of the towers and grounded through the tower structures.

Shielding angle
The included angle, usually between 20 to 30 degrees, between shield wire and phase conductor.

Shielding failure
Occurs when lightning strikes a phase conductor of a line protected by overhead shield wires.

TLA
Transmission Line Arresters.

Tower footing impedance
The impedance seen by a lightning surge flowing from the tower base to true ground. The risk for backflashover increases with increasing footing impedance.

Travelling waves
Occur when lightning strikes a transmission line span and a high current surge is injected on to the struck conductor. The impulse voltage and current waves divide and propagate in both directions from the stroke terminal at a velocity of approximately 300 meters per microsecond with magnitudes determined by the stroke current and line surge impedance.
Both large and small public/private utility owners of transmission systems face a sharpened competitive situation which demands increased availability and reliability of the systems. Consumers have become more demanding as their processes are dependent on constant and reliable energy supply of good quality.

In many countries, it has also been increasingly difficult to obtain permission to build new lines of normal dimensions. Hence, new lines under construction may mostly be “compact-insulation” lines. This, in turn, requires optimal control of overvoltages caused by lightning or switching events. Surge arresters installed along the line or at a few selected critical towers, in this case, may be an attractive solution or a complement to other means.

Improvement in the reliability and availability of a transmission system can be obtained in one or more of the following ways:

1. **Duplication of the system (more than one line)**
 This is a very expensive method and often impractical.

2. **Increased insulation withstand.**
 It can both be expensive and create other problems such as the need for increased insulation of station equipment.

3. **Improved footing impedance**
 Often difficult and expensive, specially in hilly terrain.

4. **Shield wires**
 If the provision was not in the original tower design, it can be expensive to retrofit such shielding. It helps eliminate a large number of interruptions but it is not enough to obtain the now-demanded degree of reliability.

5. **Protection of line insulation by surge arresters**
 Surge arresters connected in parallel with them at selected towers. In this application usually the term line arresters is used. Protection using polymer-housed arresters (ABB type PEXLIM) along with additional accessories for fixing the arresters across the insulators and providing automatic disconnection of the arresters in the event of their being overstressed is called the PEXLINK concept. This method is simple, cost-effective and, in many cases, an attractive alternative to the methods mentioned above.

More information on internet
Visit www.abb.com/arrestersonline for viewing the PEXLINK video.
ABB’s philosophy is to provide protection for line insulation at selected locations by using standard available components. The main item is the gapless silicone polymer-housed arrester, PEXLIM, with metal-oxide (MO) active elements. Such arresters have been used for many years for protection of equipment in substations and hence their protective performance is well-known.

The low weight permits installation on existing structures and the polymer housing gives increased safety of the line equipment as well as people and animals which may be in the vicinity of the lines during overstress conditions.

With regard to lightning energy, line arresters are exposed to more severe conditions than arresters placed in substations. The latter are benefited by the reduction of surge steepness due to line corona effect and reduction in surge amplitude as the lightning current finds parallel paths through shielding wires, flashover and parallel lines. Thus, it is necessary to ensure that the MO blocks of the TLA are not under-dimensioned from energy and current point-of-view. A computer program is used to determine the optimum number of locations (generally where the footing impedance is high) and to calculate the arrester stresses at each of the chosen locations.

The design permits installation using standard transmission-line hardware normally available locally. The design also permits mounting at different angles based on tower geometry and conductor spacing.

If very high availability is desired, a very large number of locations may have to be protected, mainly due to the unpredictable nature of lightning. In such a case it may not be economically justified to select arresters with “sufficient energy capability” and instead a higher failure rate may be acceptable.

To ensure quick, safe, automatic and controlled disconnection of a failed arrester, ABB uses a special disconnecting device with a suitable link, often in the earthing circuit of the arresters.

The earth lead is designed to withstand the short-circuit currents and the disconnecting device is tested to ensure no false operations. Thus, at a failure, the tripped line does not have to be locked-out and attended to immediately.

By moulding the silicone polymer housing on the active MO elements directly, internal atmosphere is eliminated and with it the risk of ingress of moisture which in the past has been established as the major cause of arrester failures in service.
Increased line availability
By locating the PEXLINK on sections of lines with high footing impedance towers and one additional low footing-impedance tower at each end of the section, PEXLINK protects existing shielded and non-shielded lines from abnormal lightning surges (frequent or high amplitudes) and reduces the outages.

The reduced outages are beneficial also indirectly in that sensitive equipment is not damaged and the circuit breakers overhaul interval can be increased. Thus, total maintenance costs are also reduced.

This protection may be used for all system voltages where the stated abnormal conditions exist. Arresters with moderate energy capability are often sufficient. However, the high-current capability must be large and distribution-type arresters may not be suitable.

Switching overvoltage control
For long EHV lines, surge arresters usually are located at line-ends. In addition, by locating arresters at one or more points along the line e.g. at midpoint or 1/3 and 2/3 line length switching surge overvoltages and thus line insulation requirements could be limited without using preinsertion resistors. Arresters used for this type of application should be designed for high energy capability. Usually a class 2 or 3 arrester will be sufficient on the line but higher arrester classes may be necessary at the receiving end of the line.

Compact-insulation lines
Arresters placed in parallel with line insulators permit a large degree of compacting of a transmission line with lower right-of-way costs as a result.

Line upgrading
The existing insulation level of a line, when suitably protected by arresters, may be upgraded for service at a higher system voltage leading to greater power transfer without much additional capital cost.

Extended station protection
By locating arresters on towers near a substation, the risk of backflashovers near the station is eliminated. This results in reduction of steepness and amplitude of incoming travelling waves, thus improving the protection performance of station arresters and eliminating the need for additional expensive metal-enclosed arresters even for large GIS.

Substitute for shield wires
In cases where provision of shield wires is not practical physically or is very expensive, e.g. very long spans, very high towers etc., arresters are a good and economical substitute.

Arresters located in all phases on each tower eliminate the need for both shield wires and good footing impedance and may be economically justified in cases where the cost of reduction in footing impedance and the cost of overhead shield wire are very high.
PEXLINK
Application

No arresters at all. Lightning stroke to tower number 5
Very high risk for flashover due to high TFI (Tower Footing Impedance) with an earth fault followed by a circuit breaker operation as a consequence.

Arresters in all 9 towers. Lightning stroke to tower number 5
The overvoltage profile is well below the BIL of the system all along the section. An ideal protection is obtained.
PEXLINK
Features

Standard components
The suspension of the arresters is simplified and standard clamps and similar hardware normally available may be used for this purpose. This leads to overall economy for the user.

<table>
<thead>
<tr>
<th>Arrester type</th>
<th>Lightning discharge capability as per IEC 60099-4 Annex N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>PEXLIM R</td>
<td>2.5 kJ/kV (U_r)*</td>
</tr>
<tr>
<td>PEXLIM Q</td>
<td>4.0 kJ/kV (U_r)*</td>
</tr>
<tr>
<td>PEXLIM P</td>
<td>7.0 kJ/kV (U_r)*</td>
</tr>
</tbody>
</table>

* U_r = Rated voltage
** As = Ampere second

A few examples can be seen in the figures for “Some erection alternatives” on next page.

The disconnecting device is carefully chosen to perform its function only at the failure of the arrester.

The separation of the disconnector is quick and effective and the method of connection advised by ABB in each particular case ensures that neither the disconnected wire nor the damaged arrester lead to any interference with other live parts. Thus, after a failure, the line can be re-charged without attending to it immediately.

The disconnection is easily visible from the ground and thus locating it is simple for the maintenance crew.

Easy to install
The PEXLIM arresters are built-up of optimum-length modules and hence can be easily designed for use on various voltages. They are light and hence easily transported up the towers.
Some erection alternatives

Different arrangements showing how easy it is to install the PEXLINK concept in towers of different design.