

ABB MEASUREMENT & ANALYTICS | SCHNITTSTELLENBESCHREIBUNG

TTX300

Temperatur-Messumformer

PROFIBUS PA

Measurement made easy

TTX300-PA

Weitere Informationen

Zusätzliche Dokumentation zum TTX300 steht kostenlos unter www.abb.de/temperatur zum Download zur Verfügung.

Alternativ einfach diesen Code scannen:

TTF300

TTH300

Inhaltsverzeichnis

1	Einleitung	3
2	Ident-Nummer	3
3	Konfiguration	4
4	Block-Übersicht	5
	Blockstruktur	
	Slotzuordnung	5
	Physical Block	
	Analog Input	
	Discrete Input	
	Analog Output	7
	Transducer – Temperatur	7
	Transducer – HMI	
	Transducer – Erweiterte Diagnose	9
5	Diagnose	10
	DDLM_SLAVE_DIAG	
	Diagnosedaten im Physical Block	10
	Messwert Status	10
6	Adresskonflikterkennung	11
7	Inbetriebnahme ohne azyklischen Master	11

1 Einleitung

In dieser Anleitung werden die kommunikationsspezifischen Eigenschaften des Messumformers TTX300-PA beschrieben. Allgemeine Hinweise zu Betrieb, Sensorkonfiguration, Anschluss oder Explosionsschutz finden sich in der Betriebsanleitung bzw. in der Inbetriebnahmeanleitung.

Der Messumformer TTX300 entspricht PA Profil 3.01 inkl. Condensed Status (Classic Status optional).

Zur Inbetriebnahme ist ein Gerätetreiber in Form einer EDD (Electronic Device Description) oder DTM (Device Type Manager) sowie eine GSD-Datei erforderlich. EDD, DTM und GSD können unter www.abb.com geladen werden.

2 Ident-Nummer

Jedes PROFIBUS®-Gerät hat von der PROFIBUS Dachorganisation PI (PROFIBUS International) eine eindeutige Identifikations-Nummer zugewiesen bekommen.

Diese lautet für den TTX300-Messumformer: 0x3470.

Bei Anwendung dieser gerätespezifischen Ident-Nummer kann die gesamte Funktionalität des Gerätes genutzt werden. Gemäß PA-Profil unterstützt der Messumformer weitere profil- spezifische Ident-Nummern.

Wird auf eine Austauschbarkeit der Geräte im Sinne des PA-Profils wertgelegt, so wird die Verwendung der profil-spezifischen Ident-Nummern und Gerätetreiber empfohlen.

Über den Gerätetreiber oder das HMI können verschiedene Ident-Nummern ausgewählt werden:

- Profil
- Gerätespezifisch [0x3470]

Die Profil-Ident-Nummer wird durch die Anzahl und Art von Funktionsblöcken des Gerätes bestimmt. Der Messumformer TTH300 unterstützt folgende Profil-Ident-Nummern:

0x9700	1 AI	(PV = Primary Value = Berechneter Wert aus Sensor 1 und Sensor 2)
0x9701	2 AI	(PV & SV1 = Berechneter Wert und Sensor 1)
0x9702	3 AI	(PV & SV1 & SV2 = Berechneter Wert und Sensor 1 und Sensor 2)
0x9703	4 AI	(PV & SV1 & SV2 & SV3 = Berechneter Wert und Sensor 1 und Sensor 2 und Elektroniktemperatur)

Die Auswahl erfolgt wie oben gezeigt zweistufig:

- 1. Auswahl ob profil- oder gerätespezifisch.
- 2. Bei Auswahl Profil erfolgt zusätzlich Auswahl der Profil-Ident-Nummer.

Die Profil-GSD-Dateien sind über das Internet zu erhalten (www.profibus.com). Die aktuelle gerätespezifische GSD-Datei sowie Gerätetreiber (DTM, EDD) finden sich unter www.abb.com.

Die im System verwendete Ident-Nummer wird dem Feldgerät während des Hochlauf mitgeteilt. Das Feldgerät prüft die angeforderte Ident-Nummer mit seiner eigenen und reagiert bei Nichtübereinstimmung mit Meldung eines Parameterfehlers (PrmFault). Damit gelangt das falsch angesprochene Feldgerät nicht in den zyklischen Datenaustausch.

In diesem Fall muss entweder eine zur Ident-Nummer des Feldgerätes passende GSD-Datei verwendet werden oder die Ident-Nummer im Feldgerät muss entsprechend umgestellt werden.

Hinweis

Die Meldung Parameterfehler (PrmFault) kann auch auf eine falsch eingestellte Geräteadresse hindeuten, wenn die Konfigurations- / Parametrierdaten mit Ident-Nummer einem anderen Feldgerät zugeordnet sind. Es ist deshalb zweckmäßig, Ident-Nummer und Geräteadresse zu überprüfen.

3 Konfiguration

Unter Konfiguration versteht man bei PROFIBUS® die Festlegung von Umfang und Struktur der zyklischen Ein- und Ausgabedaten. Die Konfiguration wird im zyklischen Master (PROFIBUS-Master innerhalb des Leitsystem bzw. der SPS) offline eingestellt und dem Feldgerät bei Anlauf einmalig mitgeteilt. Die Konfiguration ist nur mit Unterbrechen des zyklischen Datenaustauschs änderbar.

Hinweis

- Ausgabedaten sind Daten / Variablen, die zyklisch vom Master zum Feldgerät gesendet werden, beispielsweise der Sollwert an einen Aktor oder Stellungsregler.
- Eingabedaten sind Daten / Variablen, die zyklisch vom Feldgerät an den Master gesendet werden, beispielsweise die gemessene Temperatur.

PA Feldgeräte sind modulare Slaves, das heißt Umfang und Struktur der zyklischen Ein- und Ausgabedaten sind offline in der Konfigurationsphase wählbar. Die Konfiguration bestimmt dabei Anzahl und Typ der im Gerät aktiven Funktionsblöcke. Ein Funktionsblock, z. B, Analog-Input (AI) hat dem Typ entsprechend festgelegte Ein- und / oder Ausgabedaten. Je mehr Funktionsblöcke im Feldgerät über die Konfiguration aktiviert werden, desto mehr Ein- und Ausgabedaten werden mit diesem Gerät zyklisch kommuniziert.

Das PROFIBUS-PA® Profil definiert folgende (für den TTH300 relevante) Funktionsblöcke:

Analog Input (AI)	Zur Übertragung eines analogen Messwertes als 32 Bit Floating Point + Statusbyte vom Slave zum Master (Feldgerät zu Leitsystem / SPS)
Analog Output (AO)	Zur Übertragung eines analogen Sollwertes als 32 Bit Floating Point + Statusbyte vom Master zum Slave (Leitsystem / SPS zum Feldgerät)
Discrete Input (DI)	Zur Übertragung eines diskreten (digitalen) Wertes als Byte + Statusbyte vom Slave zum Master (Feldgerät zu Leitsystem / SPS)

4 Block-Übersicht

Blockstruktur

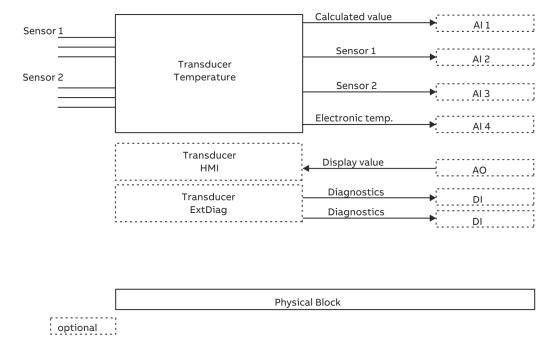


Abbildung 1: Blockstruktur

Slotzuordnung

	0x3470	0x9700	0x9701	0x9702	0x9703	Transportierter Wert
	TTH300	PA-Profil	PA-Profil	PA-Profil	PA-Profil	
		1*AI	2*AI	3*AI	4*AI	
Physical Block	Slot 0	Slot 0	Slot 0	Slot 0	Slot 0	-
Analog Input Block 1	Slot 1	Slot 1	Slot 1	Slot 1	Slot 1	PV = Berechneter Wert
Analog Input Block 2	Slot 2	-	Slot 2	Slot 2	Slot 2	SV 1 = Sensor 1
Analog Input Block 3	Slot 3	-	-	Slot 3	Slot 3	SV 2 = Sensor 2
Analog Input Block 4	Slot 4	-	-	-	Slot 4	SV 3 = Elektroniktemp.
nalog Output	Slot 5	-	-	-	-	Wert an lokales HMI
iscrete Input 1	Slot 6	-	-	-	-	Erweiterte Diagnose 1
riscrete Input 2	Slot 7	-	-	-	-	Erweiterte Diagnose 2
ransducer – Temperatur	Slot 8	Slot 8	Slot 8	Slot 8	Slot 8	-
ransducer – HMI	Slot 9	-	-	-	-	-
ransducer – Erweiterte Diagnose	Slot 10	-	-	-	-	-

... 4 Block-Übersicht

Physical Block

Der "Physical Block" enthält allgemeine Angaben über das Feldgerät, wie Hersteller, Gerätetyp, Versionsnummern, usw. Im Gerätetreiber (EDD / DTM) werden die folgenden, wichtigsten "Physical Block" Parameter in der Rubrik "Identifikation" angezeigt:

Parameter [DE]	Parameter [EN]	Beschreibung
Software Version	Software Version	Firmware Version des Feldgerätes
Hardware Version	Hardware Version	Hardware Version des Feldgerätes
Hersteller	Vendor	Hersteller des Feldgerätes
Gerätetyp	Device Type	Typ bzw. Name des Feldgerätes
Seriennummer	Serial Number	Seriennummer des Feldgerätes
Zertifikate	Certifications	Zertifikate (z.B. Explosionsschutz)
Beschreibung	Descriptor	Vom Anwender eingebbarer Text, der im Feldgerät netzausfallsicher gespeichert wird.
Nachricht	Message	Vom Anwender eingebbarer Text, der im Feldgerät netzausfallsicher gespeichert wird
Installationsdatum	Install Date	Installationsdatum des Gerätes in der Anlage bzw. Datum der Erstinbetriebnahme. Vom
		Anwender eingebbar, im Feldgerät netzausfallsicher gespeichert
Ident Nummer	Ident Number	Auswahl Ident-Nummer zwischen geräte - / herstellerspezifisch und Profil.
Herstellungs-datum	Assembly Date	Produktionsdatum des Feldgerätes
Static Revision Counter	Static Revision Counter	Revisionszähler des Parametersatzes jedes Blocks

Analog Input

Der "Analog-Input-Block" entspricht dem PA-Profil 3.01 (inkl. "Condensed" Status). Ein Al-Block erfüllt verschiedene Aufgaben wie Umskalierungen, Alarmbehandlung, Simulation usw.

Zur Vereinfachung der Konfiguration des Messumformers ist der Kanalparameter (CHANNEL) bereits auf den entsprechenden Kanal des "Transducer – Temperatur" voreingestellt:

Al1:	PRIMARY_VALUE_1 = Berechneter Wert aus Sensor 1 und Sensor 2 (Differenz, Mittelwert, etc.)				
AI2:	PRIMARY_VALUE_2 = Messwert Sensor 1				
AI3:	PRIMARY_VALUE_3 = Messwert Sensor 2				
AI4:	SECONDARY_VALUE = Temperatur der Vergleichsstelle bzw. Gerätetemperatur bei interner Vergleichsstelle.				

Discrete Input

Der "Discrete-Input-Block" entspricht dem PA-Profil 3.01 (inkl. "Condensed" Status) und dient beim TTX300 dem zyklischen Auslesen der erweiterten Diagnoseinformation. Beide DI-Blöcke werden zusammen mit dem "Transducer – Erweiterte Diagnose" verwendet. Siehe Abschnitt "Transducer – Erweiterte Diagnose".

Analog Output

Der "Analog-Output-Block" entspricht dem PA-Profil 3.01 (inkl. Condensed Status) und dient (optional) der Ausgabe eines beliebigen zyklischen analogen Wertes aus dem Netzwerk. Der Wert kann von einem anderen Feldgerät oder aber vom Host, d. h. aus dem Leitsystem stammen. Der TTX300 ist damit als Anzeiger verwendbar.

Transducer - Temperatur

Der "Transducer-Block" enthält alle Parameter und Funktionen, die zur Temperaturmessung und Temperaturberechnung nötig sind. Die gemessenen und berechneten Werte stehen als "Transducer-Block-Ausgangswert" bereit und werden von den Funktionsblöcken als "Channel" abgerufen.

Das zyklische Auslesen von Messwerten ist nur aus Funktionsblöcken möglich.

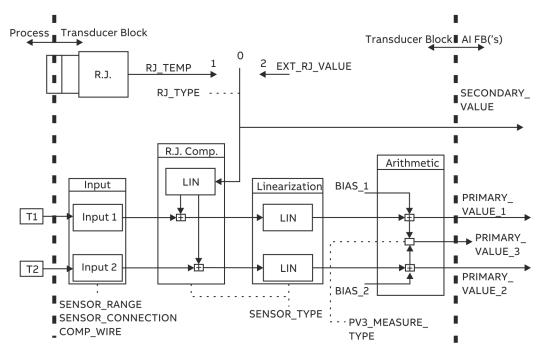


Abbildung 2: Transducer-Block

... 4 Block-Übersicht

... Transducer – Temperatur

Parameter [DE]	Parameter [EN]	Beschreibung			
Messart	Measurement Mode	Messart PV. Auswahl abhängig	von ausgewählten Sensortypen 1 / 2:		
		PV1 (Sensor 1)			
		PV2 (Sensor 2)			
		Differenz PV1 (Sensor 1) - PV2 (S	Sensor 2)		
		Differenz PV2 (Sensor 2) - PV1 (Sensor 1)			
		Mittelwert			
		Redundanz			
Typ Sensor	Type Sensor 1 / 2	Einstellung Sensortyp für Senso	or 1 / 2. Es werden alle Sensoren gemäß Datenblatt bzw. Handbuch		
1/2		unterstützt.			
Messbereich Sensor 1 / 2	Range Sensor 1 / 2	Physikalischer Messbereich Sen	nsor 1 / 2, abhängig vom ausgewählten Sensortyp		
Bias (Offset) Sensor 1 / 2	Bias (Offset) Sensor 1 / 2	Für Sensor 1 / 2 kann dem Mess	swert ein Offset addiert werden (auch negativ).		
Anschluss Sensor 1 / 2	Connection Sensor 1 / 2	Anschlussart des Sensors (Zwei Widerstandssensoren	i-, Drei-, Vierleiterschaltung). Nur verwendet für		
Vergleichsstelle (VG) 1 / 2	Cold Junction Compensation 1 / 2	Art der Vergleichsstelle:			
		no reference (nicht benutzt)	Keine Kompensation		
		intern (intern)	Intern (im Messumformer gemessen)		
		extern (extern)	Extern über Thermostat stabilisiert		
		Sensor 1	Gemessen über Widerstandsthermometer an Kanal 1 (nur einstellbar an Kanal 2)		
Temperatur feste VG 1 / 2	Temperature fixed CJ 1 / 2	Im Fall einer extern stabilisierte	en Vergleichsstelle wird deren Temperatur hier in °C eingetragen		
Leitungs-widerstand 1 / 2	Line Resistance 1 / 2	Leitungswiderstand Sensor 1 /	2 im Falle Widerstandsthermometer oder lineare		
		Widerstandsmessung als Senso	or und Zweileiterschaltung Anschlussart ausgewählt		
CvD Datensatz 1 / 2	CvD Data Set 1 / 2	Callendar-Van Dusen Datensatz	z 1 / 2. Koeffizienten R0, A, B, C		
Anwenderspezifische	Fixpoint 1 / 2	Anwenderspezifische Kennlinie	mit je 32 Stützpunktepaaren (X132, Y132) streng monoton		
Kennlinie 1 / 2		steigend oder fallend			
Drift Grenzwert	Drift Limit	Ansprechschwelle Driftüberwac	chung zw. Sensor 1 / 2		
Drift Zeitbereich	Drift Time	Ansprechzeit Driftüberwachung	g zw. Sensor 1 / 2		
Driftüberwachung eingeschaltet	Drift Detection active	Sensor-Driftüberwachung ein-	oder ausschalten		
Rauschunterdrückung	Noise Filter	Der Messumformer besitzt eine	zur Laufzeit veränderbare Charakteristik der Rausch- /		
		Störungsunterdrückung der Sensormesssignale. Mit der Einstellung "Langsam" wird die Qualität			
		der Messung bei verrauschten Messsignalen verbessert. Die Einstellung "Schnell" verkürzt die			
		Ansprechzeit des Messumforme	ers, erfordert aber qualitativ hochwertige Messsignale. Die		
		Qualität der Messsignale kann o	durch die Verwendung von geschirmten und möglichst kurzen		
		Messleitungen verbessert werd	en.		

Transducer - HMI

Das "Transducer – HMI" enthält alle Parameter und Funktionen, die zur Konfiguration des lokalen LCD-Anzeigers notwendig sind. Optional kann der Anzeigewert über einen AO-Block über das Feldbus-Netzwerk vorgegeben werden.

Parameter [DE]	Parameter [EN]	Beschreibung
Sprache	Language	Sprache, die im HMI (LCD Anzeiger) verwendet wird. Die Sprache des Gerätetreibers im
		Host / Konfigurationswerkzeug wird von dieser Einstellung nicht beeinflusst.
Kontrast	Contrast	Kontrasteinstellung
Lokale Bedienung	Local Operation	Möglichkeit zur Sperrung der lokalen Bedienung
Ansicht 1	View 1	Signalauswahl bei einzeiliger Darstellung
Ansicht 2 Zeile 1	View 2 line 2	Signalauswahl Zeile 1 bei zweizeiliger Darstellung
Ansicht 2 Zeile 2	View 2 line 2	Signalauswahl Zeile 2 bei zweizeiliger Darstellung
Automatische Umschaltung	Autoscroll	Aktiviert bzw. deaktiviert die automatische Umschaltung zwischen Ansicht 1 (einzeilig) und
		2 (zweizeilig)

Transducer – Erweiterte Diagnose

PA-Geräte liefern die Diagnose über ihren "Physical Block". Diese Diagnose kann vom Gerätetreiber (EDD, DTM) ausgelesen werden. Üblicherweise hat man im Host aus dessen Applikation heraus keinen Zugriff auf diese Daten. Damit ist es nicht möglich, auf einzelne Diagnoseereignisse applikationsgesteuert zu reagieren. Zum Beispiel könnte bei der Anzeige eines Wartungsbedarfs aufgrund einer Redundanzumschaltung des Sensors eine bestimmte Funktion im Leitsystem gestartet werden. Der Messumformer bietet dafür zwei DI-Blöcke an (Discrete Input).

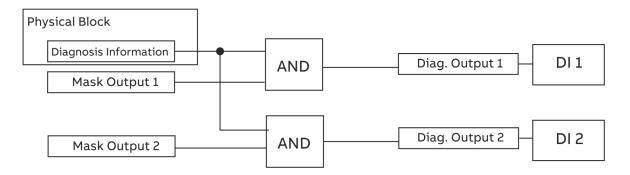


Abbildung 3: Transducer - Erweiterte Diagnose

Das Verhalten der Binärsignale ist im Transducer – Erweiterte Diagnose über die Parameter "Maske Output 1" und "Maske Output 2" parametrierbar. Es wird eine bitweise UND-Verknüpfung durchgeführt. Das Ergebnis ist TRUE (ungleich 0), wenn mindestens eine Bit Operation logisch 1 ergibt, andernfalls FALSE (gleich 0). Das Ergebnis wird an den abgeschlossenen DI Block weitergeleitet. Beide Masken können unabhängig von einander eingestellt werden. Die Operation mit der zweiten Maske liefert den Wert für DI Block 2. Ein aktiviertes Kontrollkästchen setzt in der Maske eine 1. Das Verhalten des Transducer Blocks und der angeschlossenen DI Blöcke kann bei online Verbindung durch Simulation der Diagnose überprüft werden.

Parameter [DE] Parameter [EN]		Beschreibung
Ausgang 1 / 2 Output 1 / 2 Anzeige Ausgangskanal 1 / 2 (kommuniziert über DI 1 / 2		Anzeige Ausgangskanal 1 / 2 (kommuniziert über DI 1 / 2)
Maske Ausgang 1 / 2	Mask Output 1 / 2	Maskierung der Diagnose-Bedingungen, die zu einem logisch 1 Signal am Ausgang des Blocks
	führen. Der Ausgang ist 1 (wahr, true), wenn mindestens eine der	
ist. Die Einste		ist. Die Einstellung beeinflusst nicht die Diagnoseverarbeitung selbst.

5 Diagnose

Ein POFIBUS-PA® Gerät liefert drei unterschiedliche Diagnose-Informationen:

- Ereignisgesteuert an den zyklischen Master über "DDLM_SLAVE_DIAG Service"
- Per Abfrage der Diagnosedaten aus dem Physical Block
- · Als Messwert Status

DDLM SLAVE DIAG

Der Master fordert bei laufender zyklischer Kommunikation regelmäßig mit "Request Data Exchange" Eingabedaten vom Slave an. In der Antwort des Slave ist ein Bit (Diagnostic Flag), welches besagt, ob neue Diagnoseinformationen im Slave vorhanden sind. Wenn sich im Slave in Diagnosis oder Diagnosis Extension etwas ändert (ein oder mehrere Bits setzen / löschen), wird einmalig vom Slave in "Response Data Exchange" das "Diagnostic Flag" auf "true" gesetzt. Daraufhin fordert der Master mit "Request Get Diag" Diagnosedaten vom Slave an. Dieser antwortet mit "Response Get Diag". Der "Get Diag" Dienst findet somit nur bei Änderungen der Diagnosedaten im Slave statt.

Die Auswertung / Darstellung der Diagnoseinformationen wird im Wesentlichen von den Möglichkeiten des Leitsystems / SPS bestimmt. Unterschiede können sich ergeben bei Sprache, Formatierung und Darstellung der Meldungen sowie Zusatzinformationen wie Slave Adresse, TAG oder Zeitstempel der Meldung. Im Profil – Betrieb (Ident_Nummer ist 0x97xx) ist die Diagnoseinformation beschränkt auf die im Profil beschriebenen Meldungen.

Gemäß NAMUR Empfehlung NE 107 und PA-Profil 3.01 sind die Diagnosemeldungen gruppiert nach Sensor, Betriebsbedingungen, Elektronik, Installation / Konfiguration und klassifiziert nach Fehler, Wartungsbedarf, Außerhalb Spezifikation sowie Funktionsprüfung.

Diagnosedaten im Physical Block

Die über den Physical Block bzw. die Treiberfunktion "Diagnose" ausgelesenen Informationen entsprechen den über den "DDLM_SLAVE_DIAG" gesendeten. Jedoch werden diese vom Feldgerät nicht ereignisgesteuert gesendet, sondern lediglich auf Anforderung eines Klasse -2 Masters (EDD bzw. DTM Host).

Zusätzlich sind folgende erweiterte Diagnose bzw. Asset-Management Informationen verfügbar:

Parameter [DE]	Parameter [EN]	Beschreibung
Busversorgung	Fieldbus Supply	Versorgungsspannung des Messumformers.
Gerätetemperatur	Device Temperature	Geräte- / Elektroniktemperatur
Min. Gerätetemperatur	Min Device Temperatur	Schleppzeiger: Minimale Geräte-/ Elektroniktemperatur
Max. Gerätetemperatur	Max Device Temperature	Schleppzeiger: Maximale Geräte-/ Elektroniktemperatur
Min. Wert Sensor 1 / 2	Min Value Sensor 1 / 2	Schleppzeiger: Minimaler Messwert Sensor 1 / 2
Max. Wert Sensor 1 / 2	Max Value Sensor 1 / 2	Schleppzeiger: Maximaler Messwert Sensor 1 / 2
Betriebsstunden	Running Hours	Betriebsstundenzähler
Betriebsstunden bei	Atrange	Betriebsstunden gruppiert nach Gerätetemperatur

Messwert Status

Der Status jeden Messwertes wird mit einem Byte beschrieben, welches immer zusammen mit dem Messwert kommuniziert wird. Die Kodierung des Status-Bytes ist im PA-Profil 3.01 beschrieben. Der TTX300 unterstützt sowohl die konventionelle Kodierung gemäß PA-Profil 3.0 als auch den neuen Condensed Status (optional in PA 3.01). Die Auswahl erfolgt über die GSD-Datei: Wird die Profil-GSD Datei verwendet, ist der Status konventionell (expanded bzw. classic). Bei Verwendung der gerätespezifischen GSD-Datei wird die Status-Byte Kodierung durch das Leitsystem / SPS vorgegeben.

6 Adresskonflikterkennung

Alle PROFIBUS®-Geräte in einem logischen Netzwerk benötigen eine eindeutige Adresse (0 bis 126). Die Verwaltung bzw. die Zuweisung der Geräteadressen muss durch den Anwender erfolgen. Haben zwei Geräte die gleiche Adresse, ist eine Kommunikation mit beiden Geräten nicht mehr möglich.

Besonders kritisch ist dies beim Gerätetausch. In dem Fall befinden sich die Geräte bereits im zyklischen Datenaustausch mit dem PROFIBUS-Master (Leitsystem, SPS).

Wenn ein defektes Gerät durch ein Ersatzgerät ausgetauscht werden muss, kann dem neuen Gerät bereits durch einen früheren Einsatz eine Adresse zugewiesen sein. Ist diese Adresse bereits in dem Netzwerk vergeben, kommt es zu einem Adresskonflikt. Die Messstelle ist somit nicht mehr zu erreichen!

Der TTX300 erkennt Adresskonflikte im gleichen logischen Bussegment und weist sich automatisch die Adresse 125 zu. Sollte die Adresse 125 ebenfalls belegt sein, wird Adresse 124 benutzt (die größtmögliche, freie Adresse ≤ 125). Damit werden Adresskonflikte beim Gerätetausch und ein damit verbundener Ausfall nicht betroffener Messstellen weitestgehend vermieden.

Einschränkungen ergeben sich aus dem Verhalten von einigen PA-Segmentkopplern, die Telegramme von Teilnehmern aus dem schnelleren DP-Netz ("Nordseite des Kopplers") nicht in den PA-Bus kommunizieren.

Je nach Anzahl der Teilnehmer, Übertragungsqualität des Netzwerkes (Telegrammwiederholungen) sowie der Bus-Zykluszeit ergibt sich eine etwas längere Hochlaufzeit des TTX300.

7 Inbetriebnahme ohne azyklischen Master

Ein Temperaturmessumformer nach PA-Profil wie der TTX300 wird durch mehr als 300 Parameter vollständig beschrieben. Diese Parameter sind über die verfügbaren Gerätetreiber DTM und EDD einstellbar. Die Verwendung beider Technologien setzt ein leistungsfähiges Leitsystem voraus oder stützt sich auf ein parallel zum Leitsystem vorhandenes PC-gebundenes Parametrierwerkzeug. Ältere oder einfache Leitsysteme / SPS bieten meist keine FDT oder EDD kompatible Schnittstelle. Im Falle von separaten Parametrierwerkzeugen muss der Anwender die Datenkonsistenz zwischen Leitsystemapplikation und Geräteparametern sicherstellen. Nach einem Gerätetausch ist ein explizites, meist manuelles Nachladen des Parametersatzes in das Feldgerät erforderlich (Download).

Häufige Fehlerquelle ist beispielsweise eine falsche Einheiteneinstellung:

Die Leitsystemapplikation ist auf Einheit x eingestellt, das Feldgerät liefert Einheit y.

Da die Einheit nicht zusammen mit dem Messwert übertragen wird, bleibt dieser Fehler leicht unentdeckt, gerade wenn die Einheiten ähnlich sind, wie °C und °F.

Bei Einsatz von separaten Parametrierwerkzeugen ist ein Mechanismus wünschenswert, der beim Anlauf des Gerätes automatisch die zur Messstelle passenden Parameter lädt und somit die Konsistenz des Parametersatzes zwischen Gerät und Leitsystem unabhängig zur Vorgeschichte des Feldgerätes sicherstellt. In den meisten Anwendungen (der einfachen Temperaturmessung mit Standard-Sensoren) ist nur ein Bruchteil der mehr als 300 Parameter notwendig.

Der TTX300 bietet mit der Parametrierung über GSD Datei wirkliche Plug & Play Funktionalität. Die Parametrierung erfolgt dabei direkt aus dem Konfigurationswerkzeug des Leitsystems bzw. des PROFIBUS Masters. DTM und EDD sind dabei nicht erforderlich. Je nach Leistungsfähigkeit des PROFIBUS Masters können die Parameter während des zyklischen Betriebs geändert und stoßfrei geladen werden. Das Laden erfolgt automatisch beim Neustart des Masters oder des Feldgerätes.

Gegenüber FDT und EDD Technologie hat der Einsatz der GSD-Datei einige Einschränkungen im Sprachumfang. So ist z. B. keine Eingabe von Dezimalzahlen möglich und Parameter können nicht gegeneinander plausibilisiert werden. Es sind daher nur die wichtigsten Parameter in vereinfachter Form zugänglich.

Die Darstellung der Parameter und Art der Eingabe kann von System zu System variieren. Folgende Parameter können auf diese Weise eingestellt werden:

Globale Parameter

Parameter [DE]	Parameter [EN]	ter [EN] Beschreibung			
Statusformat	Status format	classic	Statusbyte kodiert nach PA-Profil 3.0		
		condensed	Statusbyte kodiert nach PA-Profil 3.01, Amendment 2		
Parametrierung	Parameterization	Legt fest, ob die Parametrierung über DPV0 (GSD) und DPV1 (azyklisch, EDD			
		erfolgt oder nur übe	erfolgt oder nur über DPV1 (EDD, DTM)		

... 7 Inbetriebnahme ohne azyklischen Master

... Messwert Status

Transducer - Temperatur

Parameter [DE]	Parameter [EN]	Beschreibung				
Messart	Measurement Mode	Messart PV. Auswahl abha	ängig von			
		ausgewählten Sensortype	en 1 / 2:			
		PV1 (Sensor 1)				
		PV2 (Sensor 2)				
		Differenz PV1 (Sensor 1) –	PV2 (Sensor 2)			
		Differenz PV2 (Sensor 2) –	- PV1 (Sensor 1)			
		Mittelwert				
		Redundanz				
Einheit PV	PV unit	Einheit der PV (Calculated	l Value)			
Rauschunterdrückung	Noise filter	Der Messumformer besitz	Der Messumformer besitzt eine zur Laufzeit veränderbare Charakteristik der Rausch-/			
		Störungsunterdrückung o	Störungsunterdrückung der Sensormesssignale. Mit der Einstellung "Langsam" wird			
		Qualität der Messung bei	Qualität der Messung bei verrauschten Messsignalen			
		verbessert. Die Einstellun	"Schnell" verkürzt die Ansprechzeit des Messumformers,			
		erfordert aber qualitativ h	ochwertige Messsignale. Die Qualität der Messsignale kann du			
		die Verwendung von gesc	g von geschirmten und möglichst kurzen Messleitungen verbessert werden.			
Sensor 1 / 2	Sensor 1 (LIN_TYPE)	Einstellung Sensortyp für Sensor 1 / 2				
Sensoranschluss 1 / 2 /	Sensor Connect. 1 / 2 /	Widerstandssensoren	Anschlussart des Se	nsors (Zwei-, Drei-, Vierleiterschaltung).		
Vergleichsstelle 1 / 2	RJ Type 1 / 2	Thermoelemente	Art der Vergleichsst	Art der Vergleichsstelle:		
			No reference (nicht	Keine Kompensation		
			benutzt)			
			Intern (intern)	Intern (im Messumformer gemessen)		
			Extern (extern)	Extern über Thermostat stabilisiert		
			Sensor 1	Gemessen über Widerstands-		
				thermometer an Kanal 1		
				(nur einstellbar an Kanal 2)		
Leitungswiderst. 1 / 2 /	Line R 1 / 2 /	Widerstandssensoren	Leitungswiderstand	Sensor 1 / 2 im Falle		
VergleichsstTemp 1 / 2	Fix. RJ Val. 1 / 2 (x100)	Widerstandsthermometer oder lineare Wider		meter oder lineare Widerstandsmessung		
			als Sensor und Zwei	leiterschaltung Anschlussart ausgewählt		
		Thermoelemente	Im Fall einer extern	stabilisierten Vergleichsstelle wird deren		
			Temperatur hier in °	C eingetragen		

Transducer - HMI

Parameter [DE]	Parameter [EN]	Beschreibung
Sprache	HMI Language	Sprache, die im HMI (LCD-Anzeiger) verwendet wird. Die Sprache des Gerätetreibers im Host / Konfigurationswerkzeug wird von dieser Einstellung nicht beeinflusst
Lokale Bedienung	HMI Local operation	Möglichkeit zur Sperrung der lokalen Bedienung
Autoscroll	HMI Autoscroll	Aktiviert bzw. deaktiviert die automatische Umschaltung zwischen Ansicht 1 (einzeilig) und 2 (zweizeilig)
Kontrast	HMI Contrast	Kontrasteinstellung
Auswahl Ansicht 1	HMI Select View 1	Signalauswahl bei einzeiliger Darstellung
Auswahl Ansicht 2, Zeile 1	HMI Select View 2 Line 1	Signalauswahl Zeile 1 bei zweizeiliger Darstellung
Auswahl Ansicht 2, Zeile 2	HMI Select View 2 Line 2	Signalauswahl Zeile 2 bei zweizeiliger Darstellung

Analog Input Block 1 bis 4 (Al1 bis 4)

Parameter [DE]	Parameter [EN]	Beschreibung
Skalierung Eingang Anfang (×10	Scale START input	Eingangsskalierung (Anfang) in Einheit des Messwertes multipliziert mit 10
	(PVEu0 ×10)	
Skalierung Eingang	Scale END input	Eingangsskalierung (Ende) in Einheit des Messwertes multipliziert mit 10
Ende (×10)	(PVEu100 ×10)	
Skalierung Ausgang Anfang (×10)	Scale START output	Ausgangsskalierung (Anfang) in Zieleinheit multipliziert mit 10
	(OUTEu0 ×10)	
Skalierung Ausgang	Scale END output	Ausgangsskalierung (Ende) in Zieleinheit multipliziert mit 10
Ende (×10)	(OUTEu100 ×10)	
Dämpfung	Damping (PVTIME)	Dampfungszeitkonstante in s
Ersatzwert-strategie	Failure strategy (FSAFE_TYPE)	Bestimmt den Ausgangswert des Blocks bei fehlerhaftem Eingangswert (Status BAD)
Ersatzwert	Failsafe value	Gibt den Ersatzwert (multipliziert mit 10) bei Auswahl der Ersatzwertstrategie "Ersatzwert
	(FSAFE_VALUE ×10)	+ UNCERTAIN" an. Dieser Wert wird anstelle des Messwertes bzw. letzten gültigen Wertes
		zyklisch an den PROFIBUS®-Master übertragen
Alarmgrenze oben (×10)	Upper lim. alarm	Oberer Alarmgrenzwert multipliziert mit 10
	(HI_HI_LIM ×10)	
Warngrenze oben (×10)	Upper lim. warning	Oberer Warngrenzwert multipliziert mit 10
	(HI_LIM ×10)	
Warngrenze unten (×10)	Lower lim. warning	Unterer Warngrenzwert multipliziert mit 10
	(LO_LIM ×10)	
Alarmgrenze unten (×10)	Lower lim. alarm	Unterer Alarmgrenzwert multipliziert mit 10
	(LO_LO_LIM ×10)	
Einheit	Unit	Ausgangseinheit des Blocks

... 7 Inbetriebnahme ohne azyklischen Master

... Messwert Status

Analog Output Block (AO)

Parameter [DE]	Parameter [EN]	Beschreibung
Skalierung Eingang Anfang (×10)	Scale START input (PVEu0 ×10)	Eingangsskalierung (Anfang) in Einheit des Messwertes multipliziert mit 10
Skalierung Eingang Ende (×10)	Scale END input (PVEu100 ×10)	Eingangsskalierung (Ende) in Einheit des Messwertes multipliziert mit 10
Skalierung Ausgang Anfang (×10)	Scale START output (OUTEu0 ×10)	Ausgangsskalierung (Anfang) in Zieleinheit multipliziert mit 10
Skalierung Ausgang Ende (×10)	Scale END output (OUTEu100 ×10)	Ausgangsskalierung (Ende) in Zieleinheit multipliziert mit 10
Ersatzwertzeit	Failsafe Time (FSAFE_TIME)	Zeit in s, nachdem der Ausgang des Blocks der gewählten Ersatzwertstrategie folgt.
Ersatzwert-strategie	Failure strategy (FSAFE_TYPE)	Bestimmt den Ausgangswert des Blocks bei fehlerhaftem Eingangswert (Status BAD)
Einheit	Unit	Einheit des Sollwertes (SP)
Ersatzwert	Failsafe value (FSAFE_VALUE ×10)	Gibt den Ersatzwert (multipliziert mit 10) bei Auswahl der Ersatzwertstrategie "Ersatzwert + UNCERTAIN" an. Dieser Wert wird anstelle des Messwertes bzw. letzten gültigen Wertes zyklisch an den PROFIBUS®-Master übertragen
Öffner / Schließer	Increase Close	Für TTX300 nicht relevant.

Discrete Input Block 1 bis 2 (DI1 bis 2)

Parameter [DE]	Parameter [EN]	Beschreibung
Ersatzwertstrategie	Failure strategy (FSAFE_TYPE)	Bestimmt den Ausgangswert des Blocks bei fehlerhaftem Eingangswert (Status BAD)
Signal ist	Signal is	Invertiert oder nicht invertiert
Ersatzwert	Failsafe value	Gibt den Ersatzwert bei Auswahl der Ersatzwertstrategie "Ersatzwert + UNCERTAIN" an.
		Dieser Wert wird anstelle des Messwertes bzw. letzten gültigen Wertes zyklisch an den
		PROFIBUS-Master übertragen

Trademarks

PROFIBUS und PROFIBUS PA sind eingetragene Warenzeichen der PROFIBUS & PROFINET International (PI)

_

ABB Automation Products GmbH Measurement & Analytics

Instrumentation Sales Oberhausener Str. 33 40472 Ratingen Deutschland

Tel: 0800 1114411 Fax: 0800 1114422

Email: vertrieb.messtechnik-produkte@de.abb.com

ABB AG

Measurement & Analytics

Brown-Boveri-Str. 3 2351 Wr. Neudorf Österreich

Tel: +43 1 60109 0

Email: instr.at@at.abb.com

abb.de/temperatur

ABB Automation Products GmbH Measurement & Analytics

Im Segelhof 5405 Baden-Dättwil Schweiz

Tel: +41 58 586 8459 Fax: +41 58 586 7511

Email: instr.ch@ch.abb.com

Bei Bestellungen gelten die vereinbarten detaillierten Angaben. ABB übernimmt keinerlei Verantwortung für eventuelle Fehler oder Unvollständigkeiten in diesem Dokument.