Ekip UP

The protection relay designed for low voltage power-stations, as well as mining and oil&gas plants
Contents

002–003 Applications
004–009 Solutions
005–007 Safety protections
008–009 Connectivity and asset management
Applications

Setting configurations no longer is a mission for a few experts. Instead, it becomes a matter of just a click with Ekip UP, the first relay manufactured in the same factory with mechanical switching parts to protect utility power stations as well as oil and gas and mining low-voltage electrical distribution systems.

Every year, around $1 billion worth of low-voltage circuit breakers and switch disconnectors is installed at conventional and hydro generation plants, refinery and petrochemical sites, mining and metal industry locations. These markets are growing from global macro trends like urbanization and modernization. The shift of population from countryside to cities increases the industrialization of extensive urban areas, so the need for power generation grows.

Meanwhile, new digital technologies are ready to replace old electro-mechanical products to enable advanced connectivity and control inside power grids. The revamping of existing sites also is driven by environmental targets like IED (Industrial Emissions Directive) or the most stringent BREF values (the European references on the Best Available Techniques for the different industrial sectors).
In the mentioned market segments, almost all the switching devices are protected by external electronic relays for several reasons:

- **Project speed up**
 The design routing of the external relay plus circuit breaker of medium-voltage switchgear is replicated in low voltage to keep the same approach. Sometimes the relay enables additional protection and communication performances beyond embedded solutions.

- **Reliability analysis**
 Instead of having a trip unit embedded in the circuit breaker, having the protection release outside the mechanical part splits the failure risks.

- **Ease of maintenance**
 When an aged mechanical part must be replaced, with the separated unit the protection settings are not impacted and there’s no need for any configuration upload.

- **Testing capability**
 Periodic secondary current injection tests are allowed on external relays through direct signals from generators to the related current and voltage sockets.

In the switchgear, the relays are typically used for primary protection of the switch disconnectors and sometimes as backup for circuit breakers to increase redundancy.

They protect feeders (mains, incomings, departures), generators (diesel gensets, co-generators, wind and mini-hydro turbines), motors and transformer/busbars. Feeder and generator relays represent more than 65% of low voltage share.
Solutions

Ekip UP is not only the answer for safety protection and service continuity in power stations, oil and gas, and mining, but it is also the first range of protection relays based on specific requirements of low-voltage plants.

For example, with a color touch-screen display and a graphics-friendly Ekip Connect commissioning tool, Ekip UP does not require skilled engineers to manage protection relays.

The result of reduced service activities is a 30% reduction in overall costs for the solution compared to traditional relays created for more complex medium-voltage applications.

Ekip UP’s modular approach allows the facility to purchase only what is needed at this stage in terms of signalling, connectivity and advanced protection, such as a Synchrocheck module or restricted earth fault function, and to add evolving features like load-shedding logics or interface systems later through a simple plug-and-play technique.

These digital units do not require voltage transformers nor use traditional current transformers, so they use less wiring and fewer components than conventional relays developed for medium-voltage applications, saving substantial space.

Ekip UP relays work instead with current sensors up to 6300A based on Rogowski coil technology, shrinking the footprint for monitoring and control compared to current transformers and ensuring better linearity performance for high kA fault currents. Open style sensors unlock the upgrade of existing low-voltage switchgear, especially in electrical distribution revamping projects for oil and gas.

1 Up to Ue=690V, for 690V<Ue≤1150V VTs are requested.
Ekip Up is the protection relay designed for low voltage power-stations, as well as mining and oil&gas plants. The protection relay is manufactured in the same factories as circuit breakers and switch disconnectors so as to ensure unique technology-provider liability for the complete switching system. Moreover, Ekip UP incorporates an embedded network analyzer function that furnishes insights into power quality (e.g., harmonics, voltage sags and spikes) to help increase productivity in the plant’s electrical distribution together with nine communication protocols, resulting in an all-in-one digital platform with multi-function targets.

Safety protections

All Ekip UP units are CE-marked and cULus-listed. They conform to the Standard IEC 60255 - “Measuring relays and protection equipment” and UL 508, CSA C22.2 No. 14-13 - "Standard for Industrial Control Equipment.”

Interfacing with every low-voltage circuit breaker or switch disconnector, the digital unit offers 35 ANSI protections built into Ekip UP Protect for distribution feeders and Protect+ for power generators.

The Protect+ version also embeds the option for dual settings, adapting the thresholds according to grid topology—for example, protection values for departures can be reduced when mains are opened so as to keep plant coordination based on a new short-circuit level.

The available protection functions are coded in compliance with the IEEE C37.2 “IEEE Standard for Electrical Power System Device Function Numbers, Acronyms, and Contact Designations” which is also known as the ANSI code.

Rogowski coils

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td>In: up to 2000 A</td>
<td>Iu: 400 A</td>
<td>In: up to 6300 A</td>
</tr>
<tr>
<td>Busbars: 2x60x10mm</td>
<td>Busbars: 1x30x10mm</td>
<td>Busbars: 4x10x100mm</td>
</tr>
<tr>
<td>Kit: 3p/4p</td>
<td>Cables: 1x240mm²</td>
<td>Kit: 3p / 4p</td>
</tr>
<tr>
<td>In: up to 4000 A</td>
<td>Iu: 1600A</td>
<td></td>
</tr>
<tr>
<td>Busbars: 4x10x100mm</td>
<td>Cables: 2 x 2 x 11mm</td>
<td></td>
</tr>
<tr>
<td>Kit: 3p / 4p</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To provide evidence of solution reliability, ABB tests the complete measuring chain at the feeder factory site for 100% of products that are shipped, giving the customer the production calibration reports with primary current injection tests. Software-based protection tests are available with the Ekip Connect commissioning tool, while secondary injection tests can be executed during FAT with most common signal generator brands.

Ekip UP is the first relay in the market manufactured in the same factories as circuit breakers and switch disconnectors so as to ensure unique technology-provider liability for the complete switching system.

Protection list from ANSI words

- BF: breaker failure
- 49: thermal model
- 50P/N: phase/neutral instantaneous over-current
- 51P/N: phase/neutral overcurrent
- 50G: ground instantaneous over-current
- 51G: ground overcurrent
- 46: current unbalance
- 64: residual current
- 59: over voltage
- 27: under voltage
- 47: voltage unbalance
- 59N: residual voltage
- 81O: over frequency
- 81U: under frequency
- 78: power factor
- 32R: reverse power
- 68: zone selectivity
- 25: synchrocheck

Protection list in addition to Ekip UP Protection

- 67P: directional over-current
- 87REF: restricted earth fault (alternative to ANSI 64)
- 27VI: negative sequence under voltage
- 27Vd: positive sequence under voltage
- 51V: volts per hertz
- 81R: recof (rate of change of frequency)
- 32O: over reactive/active power
- 32L: under active power
Solutions

Ekip UP + switch disconnector

Together with a switch disconnector, Ekip UP acts on its shunt opening/closing coils, updating the asset with protections.

This is the typical protection scheme in oil and gas and mining plants. In this way, the digital relay ensures a breaking capacity equal to the switch-disconnector’s ability to withstand current:

\[I_{cu} = I_{cw} (1s) \]

The switching current and voltage of the Ekip Signalling 4k module, as given in the product technical manual, the ratings of the opening (or undervoltage) and closing releases are up to 250Vac and 150Vdc ones.

Default wiring is according to the diagram below. Other connections are possible according to flexible I/O settings configurable on the display or the Ekip Connect commissioning tool.

As it is declared in its own documentation.

If different, an auxiliary relay may be needed, and its timing should be considered for the opening/closing commands.
Ekip UP plus a circuit breaker compose a consistent backup tripping system, besides adding protections to the embedded trip unit.

This is the typical protection scheme in utility power-station sites. The digital unit works independently from the embedded trip unit, having its own sensors and electronic boards.

Additionally, it can send the tripping command to shunt releases, as mentioned above, to operate another opening system rather than the tripping coil. In some circuit breakers, this also means another operating mechanism furnishes 100% redundancy. Conversely, there are breakers that can be opened through digital input triggered to “external trip” and then by their own trip coil. In these cases, Ekip UP is quicker to grant selectivity performances together with additional redundancy to shunt opening releases5.

This is possible for ABB SACE New Emax and Emax 2 circuit breakers.

If managed in this mode, the short-circuit times change accordingly.

1. Ekip UP protections timing (depending on specific protection setting according to technical manual).
2. Ekip Signalling 4k.01 digital output commutation timing: 7ms
3. Mechanical breaking time through direct connection to opening coil:
 a. SACE Emax 2 trip time by the mean of open releases is 35ms;
 b. SACE New Emax trip time by the mean of open releases is 60ms.
 c. GE Entelliguard G trip time by mean of shunt trip release is 20ms.
4. Clearing time depends significantly on the fault parameters (current, voltage, power factor, transients’ phenomena in the faults current, etc.). Considering short-circuit AC conditions and for a rated voltage no higher than 690V, it can be assumed for both, ABB SACE Emax 2 and ABB New Emax, to be from 25ms to 40ms. For GE Entelliguard G the clearing time is 16ms.

For short-circuit, the maximum times4 are shown below.

<table>
<thead>
<tr>
<th>Ekip UP +</th>
<th>Max breaking time [ms]</th>
<th>Max clearing time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emax 2/CB</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>New Emax/CB</td>
<td>70</td>
<td>110</td>
</tr>
</tbody>
</table>

These data are based with 0s delay on digital input.

4 They also consider conservative tolerances.
4 There are circuit breakers for which it is possible to mount two shunt opening releases or one plus undervoltage release.
Solutions

Connectivity and asset management

Besides protections, Ekip Up Protect and Protect+ provide up to 3,000 data points relating to measurements, status and protection settings to supervision systems inside utility, oil-and-gas and mining facilities. With embedded native protocols like IEC61850 or Modbus TCP/IP, it is also possible to realize digital selectivity schemes among low-voltage and medium-voltage relays.

- Ekip UP has embedded metering capability from typical electrical parameters to full power quality for energy monitoring.
- All the info is available on the color touch-screen display as well as by connectivity protocols for site SCADA.
- Also, two dataloggers are available for current and voltage, which support diagnostic after faults.

<table>
<thead>
<tr>
<th>Type of measurement</th>
<th>Short description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous</td>
<td>Currents (L1, L2, L3, N, rms) Earth fault current (rms) L-L voltage (V12, V23, V31, rms) L-N voltage (V1, V2, V3, rms) Phase sequence Frequency (Hz) Active power (P1, P2, P3, Ptot) Reactive power (Q1, Q2, Q3, Qtot) Apparent power (S1, S2, S3, Stot) Power factor (cos-phi) Peak factor (L1, L2, L3, N)</td>
</tr>
<tr>
<td>Cumulative measurement</td>
<td>Active power Ep (tot, + and -) Reactive power Eq (tot, + and -) Apparent power Es (tot)</td>
</tr>
<tr>
<td>Network analyzer</td>
<td>Average volts/hour (Vmin= 0.75-0.95 xVn, Vmax= 1.05-1.25 xVn, Events/day in past year and total events) Short voltage interruptions Short voltage spikes, sags and swells Voltage unbalance and micro-interruptions Harmonics analysis (THDv, THDi, V/I up to 50th order) 2 independent registers for V/I/P with sampling frequency user-settable from 1200 to 9600Hz</td>
</tr>
<tr>
<td>Time-stamped values</td>
<td>Currents (Imin, Imax) L-L voltage (Vmin, Vmax) Reactive power (Qmean, Qmax) Apparent power (Smean, Smax) Time-stamp of last 200 events</td>
</tr>
<tr>
<td>Data logging</td>
<td>Currents (L1, L2, L3, N, Ig) Voltages (V12, V23, V31) Active power (Pmean, Pmax) Max recorded duration Recording stop delay Recording intervals = 5 to 120 min, user-settable</td>
</tr>
<tr>
<td>Trip and opening data/Info</td>
<td>Type of protection on trip Fault values per phase based on trigger (see note below) Time-stamping (date, time, progressive number)</td>
</tr>
<tr>
<td>Maintenance indicators</td>
<td>Last 30 trips info (see note below) Last 200 events info (time-stamped) Mechanical operations (can be sent to alarm) Total number of trips (see note below) Total operating time (hours) Last maintenance performed (date) Maintenance required indication Unit ID (type, assigned name and serial number)</td>
</tr>
<tr>
<td>Self-diagnosis</td>
<td>Internal connections checks CB failure to open (ANSI 50BF) (see note below) Over-temperature (pre-alarm and alarm)</td>
</tr>
</tbody>
</table>
• Native connectivity ensures the connection of the relay to the local SCADA, DCS, RTUs, PLCs and cloud-based platform. With spread Ekip Com connectivity modules, there is no need of any protocol converter, but each one can be chosen according to architecture needed on site, with as many as four modules together providing redundancy.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Ekip Com Module</th>
<th>Ekip Com Redundant Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modbus RTU</td>
<td>Ekip Com Module RS-485</td>
<td>Ekip Com R Module RS-485</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>Ekip Com Module TCP</td>
<td>Ekip Com R Module TCP</td>
</tr>
<tr>
<td>Profinet</td>
<td>Ekip Com Profinet</td>
<td>Ekip Com R Profinet</td>
</tr>
<tr>
<td>EtherNet/IP™</td>
<td>Ekip Com Ethernet/IP™</td>
<td>Ekip Com R Ethernet/IP™</td>
</tr>
<tr>
<td>DeviceNet™</td>
<td>Ekip Com DeviceNet™</td>
<td>Ekip Com R DeviceNet™</td>
</tr>
<tr>
<td>IEC61850</td>
<td>Ekip Com IEC61850</td>
<td>Ekip Com R IEC61850</td>
</tr>
<tr>
<td>OpenADR</td>
<td>Ekip Com Open ADR</td>
<td>-</td>
</tr>
<tr>
<td>Cloud connectivity</td>
<td>Ekip Com Hub</td>
<td>-</td>
</tr>
</tbody>
</table>

Thanks to a built-in Ekip Com Hub gateway, the digital unit sends the information about the switch disconnector or the circuit breaker linked with it, together with data collected from others existing meters, if any. This is achieved through Ekip UP’s own measuring capabilities and Modbus-network connectivity pooling data from up to 200 devices per plant. No additional meters or gateways are needed.

If Ekip UP is installed together with an ABB SACE Emx3 circuit breaker/switch disconnector, GE Enetelliguard G circuit breaker/switch disconnector (coming soon!) or ABB SACE Emx2 switch disconnector, it enables the Predict function on ABB Ability™ EDCS. The predictive maintenance algorithm is based on utilization category, asset aging, switching operations, current flows and environmental conditions through temperature measurements available from the Ekip 3T cartridge module on Ekip UP.

This condition-based function reduces operational costs up to 35% and optimizes the maintenance scheduling. It becomes easy to know which spare parts are needed and when maintenance must be planned. These events can be shared to local SCADA through APIs.

• When an internet connection is available, Ekip UP directly uploads a digital twin of the switchgear to the cloud monitoring platform ABB Ability™ EDCS.

Reliability curve on ABB Ability EDCS

1. Ekip UP tag name
2. Here there are the settings related to circuit breaker or switch disconnector associated with Ekip UP and environmental installation conditions. For details, look at Predict technical documentation.
3. Predictive maintenance scheduling (last and next). Next one is forecasted when reliability curve will change from Green to Yellow Zone during normal life. In case of fault, it will be speeded up and SMS/mail will notice maintenance manager.
4. Opening/closing times counted
5. Current utilization of the asset
6. Real time residual life of switching asset
7. Residual life expected during asset life
8. Asset production and installation period
9. Asset ageing curve without fault event
10. Life expectancy restoration after asset maintenance by authorized personnel and Ekip UP installation