
Part II: Quantitative Risk Analysis
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In Part I of this series on risk manage-
ment1), we presented a historical per-
spective of our understanding of risks
and uncertainties and introduced the
main concepts of a comprehensive risk
management process. In particular, we
emphasized the importance of an appro-
priate quantification of risks, and we
briefly addressed the prominent role that
probability theory plays in this context.

In the present article, we discuss in more
detail how uncertainties and risks are
represented in mathematical terms and
what kind of information can be ex-
tracted from such a quantitative de-
scription. It turns out that there is no
unique way to measure risks, and we
analyze and compare some of the risk
measures that are used in present-day
risk management approaches.

Finally, we address some issues and
problems in connection with a quantita-

tive assessment of uncertainties and
risks in real-world situations, and we
discuss the importance of scenario simu-
lations and sensitivity analyses.

Characterization of uncertainties 
and risks
In mathematical terms, uncertainties
are represented as random variables.
These are variables for which the value
they will take cannot be predicted un-
ambiguously. Random variables are
only characterized in terms of the
probabilities with which they take their
different values. A well-known exam-
ple of a random variable is the number
of points in a throw of a fair die. This
number can be 1, 2, 3, 4, 5, or 6, and
all six values are equally likely, ie, they
all have the same probability, 1/6. If
such a die is thrown a large number of
times, this implies, for example, that a
‘6’ will occur in about one sixth of all
throws.

Random variables are thus completely
characterized by a so-called ‘probability
distribution’. This specifies the occur-
rence probability for each value the
variable can assume. In the case of con-
tinuous random variables, the corre-
sponding probability distribution be-
comes a continuous function and is
then often called ‘probability density’
(see below).

Risks arise because of uncertainties, and
the quantity with which a particular risk
is associated is usually a function of
many uncertain (random) variables. As
an example, we may consider the risks
associated with the annual revenue
from generating and selling electricity. If
we are, in particular, interested in the
way this revenue is affected by a re-
duced availability of the generator, the
relevant uncertainties are the number of
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Examples of probability distributions (probability densities)1
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given time interval. The example
shown in is based on an average
number of 3 events (eg, 3 outages per
year). In this case, for example, the
probability of zero events is 5 percent,
about the same as that of observing six
events, and the probability that we ob-
serve two, three, or four events is
about 60 percent.

The Poisson distribution is an example
of a discrete probability distribution, ie
the underlying random variable (num-
ber of events) can only assume discrete
values (0, 1, 2, 3, etc.). Often, however,
we are concerned with continuous ran-
dom variables that can assume any
value in a given interval. The properties
of such random variables are then de-
scribed by a so-called ‘probability den-
sity function’ as shown in the examples
of and . The exponential distribu-
tion is often used to model the ran-
dom characteristics of the duration of
outages or of the time to failure of sys-
tem components (measured in hours,
for example). also illustrates the in-1b

1b

1c1b

1a

terpretation of such probability densi-
ties: The shaded area is equal to the
probability that the duration D of an
outage is between 5 and 7.5 hours. The
total area under the curve is thus equal
to one (the probability that the outage
duration has any value between zero
and infinity is 100 percent).

The perhaps best-known probability
density is the normal (or Gaussian) dis-
tribution shown in . It accurately rep-
resents the uncertainty observed in
many biological and technical systems.
The probability distribution of the value
of a portfolio of assets or of an indus-
trial project, for example, is often also
very close to a normal distribution - at
least if it depends on a not too small
number of independent random vari-
ables. In the example of , the mean
(eg, project) value is assumed to be 10
(eg, US$ 10 million), and the indicated
area under the curve (from minus infin-
ity to zero) is equal to the probability
that the project will lead to a loss (has a
negative value).

1c

1c

outages, the duration of these outages,
and the market price of electricity at the
time of the outages. Using methods
from probability theory, we can then
determine the probability distribution of
the annual revenue, ie the information
needed to estimate the corresponding
risks, provided that the probability dis-
tributions of the underlying uncertain-
ties are known. (In some cases, we also
have to take into account possible cor-
relations between the individual uncer-
tainties)

Probability distributions
To discuss the information contained in
a probability distribution, we consider
three typical examples (see ). The
Poisson distribution refers to the
number of events per time period that
are observed in a so-called Poisson
process. Poisson processes are used as
an accurate model for many practical
problems, eg, to describe the random
occurrence of defects or outages in an
industrial process or the number of
cars that arrive at an intersection in a

1a
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In mathematical terms, such
areas (between minus infinity
and a given value V) repre-
sent the corresponding inte-
gral over the probability den-
sity function. The resulting
function is called ‘cumulative
probability distribution’ .
For any value of V, it specifies
the probability that the (proj-
ect) value is smaller than V.

From the cumulative probabil-
ity function, we can read off
most of the information re-
quired to quantitatively char-
acterize the risks associated
with the random nature of the
corresponding variable. In ,
we have, for example, indi-
cated the 10 percent and 90
percent confidence limits for
the random variable V. These
tell us that with a probability
of 10 percent, V will be be-
low 3.6, and with a probability of 90
percent below 16.4 (ie, above 16.4 with
a probability of 10 percent). The corre-
sponding 80 percent confidence interval
is thus given by [3.6 < V < 16.4].

The most well-known characteristics of
a random variable, its mean value µ and
its variance σ2, however, can in general
not be evaluated from the cumulative
probability distribution. They have to be
determined with the help of the proba-
bility density. For the Poisson distribu-
tion of , for example, µ is calculated
by summing N.p(N) over all values of
N, and σ2 is then obtained by summing
(N – µ)2.p(N). For the examples shown
in and , these sums are replaced
by the corresponding integrals.

Risk measures
The main purpose of a quantification of
risks and uncertainties is to obtain a
sound basis for our respective decisions.
As we have seen, all available informa-
tion on an uncertain (random) variable
is, in principle, contained in the corre-
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sponding probability distribution (or
probability density). A probability distri-
bution, however, is not a practical form
of information for a decision maker, and
there is thus a need for concise (prefer-
ably ‘single number’) risk measures.

Suppose we are concerned with the risk
that the value of an investment portfolio
(or of a planned project) changes in an
unfavorable direction. The simplest
measure of this risk is given by the
mean (expected) value of the potential
losses. Outside the finance industry, this
is often the only quantitative risk meas-
ure that is estimated. The expected loss,
however, is only one of the risk meas-
ures that have to be considered in a
comprehensive risk management
process. It represents an inherent cost
of any business activity and thus affects
the expected net revenue, but it gives
no information about the probability
and magnitude of larger than expected
losses. Corresponding information, how-
ever, is important for determining the
capital required to cover such losses.

More informative risk meas-
ures in this respect, eg, confi-
dence limits, can be evalu-
ated from the cumulative
probability distribution of the
relevant quantity . One of
these risk measures, called
Value at Risk (VaR) [1] [2], has
recently received a lot of at-
tention and has now reached
the status of a generally ac-
cepted risk measurement
standard. 

Value at Risk is defined as the
expected maximum loss (over
a given time period) that will
not be exceeded with a given
probability. To define a VaR-
measure completely, we thus
have to specify the time pe-
riod over which the changes
in value, ∆V, are considered,
as well as the probability α
(confidence level) with which

a potential loss should not exceed VaR.
In mathematical terms, VaR is deter-
mined by the following implicit equa-
tion:
Prob [ ∆V < - VaR ] = 1 – α,

where Prob refers to the cumulative
probability distribution of ∆V, the
change in portfolio or project value
over a given time period. The definition
of VaR, for a confidence level of 95 per-
cent, is illustrated in .

Value at Risk has become an important
risk management instrument in the fi-
nance industry. According to the ‘Capi-
tal Accord’ of the Basel Committee on
Banking Supervision [3], banks are now
required to calculate VaR on a daily ba-
sis, for a time interval (holding period)
of 10 days and a confidence level of 
99 percent. The VaR-concept, however,
also plays an increasingly important role
in the non-finance industry, and analo-
gous measures have been defined for a
variety of business risks, eg, Profit at
Risk and Credit Value at Risk.
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The VaR-concept, on the other hand,
also has some limitations. In particular,
it generally provides no information on
the expected magnitude of losses that
are larger than the VaR-limit. Although
such losses only occur with a small
probability (equal to 1 – α), it may be
very dangerous not to know ‘how bad it
can become if something goes wrong’.

Aggregation of risks
Most business risks depend on a num-
ber of different uncertain factors. If we
now assume that we can determine or
estimate the probability distributions of
the individual risk factors, we are still
faced with the problem of aggregating
these into the probability distribution of
the total risk.

A generally applicable and commonly
used approach to solve such problems
is Monte Carlo Simulation. In the Monte
Carlo simulation method, the probability
distribution of the total risk is deter-
mined by using a large sample of ran-
domly generated values for the individ-
ual risk factors. These values are drawn
from the known or estimated probabil-
ity distributions of the different risk fac-
tors, or directly from corresponding his-

torical data. Monte Carlo methods have
the advantage that no specific form for
the individual probability distributions
has to be assumed and that correlations
can easily be taken into account. The
drawback, however, is that a reasonably
accurate estimation of VaR usually re-
quires a very large number of Monte
Carlo steps.

If we are satisfied, however, with an ap-
proximate evaluation of the aggregated
risk probability distribution, we can use
analytical methods and do not have to
perform time-consuming Monte Carlo
simulations. A widely used approach is
based on the central limit theorem. This
tells us that the probability distribution
of a sum of independent random vari-
ables can be approximated by a normal
distribution if the number of individual
random variables is large enough. A
normal distribution, however, is com-
pletely characterized by its mean value
and its variance, and for a sum of ran-
dom variables, these are simply calcu-
lated by summing the respective contri-
butions of the individual terms.

The approximation of an aggregated
risk probability distribution by a normal

(Gaussian) distribution is illustrated in
. It refers to a sum of ten binary risk

factors, each of which assumes a value
of 10 with a probability of 0.2 and a
value of zero with a probability of 0.8.
In general, the ‘Gauss approximation’ is
already sufficiently accurate for a sum
of only about five risk factors, provided
that their probability distributions are
not too asymmetric, and if very precise
information about the tails of the aggre-
gated distribution is not required.

Assessment of probability 
distributions
For some types of risk, we can base our
assessment of the corresponding proba-
bility distribution on historical data. This
is certainly the case for market risks
such as, eg, currency and interest rate
risks. For banks, the Basel Committee
on Banking Supervision indeed sets a
number of binding standards [3]) for the
measurement of such risks, eg:

‘The choice of historical observation
period (sample period) for calculating
value-at-risk will be constrained to a
minimum length of one year.’
‘Banks should update their data sets
no less frequently than once every
three months and should also re-
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assess them whenever mar-
ket prices are subject to
material changes.’

As an example, shows a
histogram of the relative
changes of the USD/CHF
closing rates during 1993. To
facilitate the calculation of
VaR-limits, such a histogram
of historical data is often ap-
proximated by a normal dis-
tribution with the same mean
value and standard deviation.
As the example shows, how-
ever, this approximation un-
derestimates the very small
and, more importantly, the
very large changes. It is an
established fact that the prob-
ability distributions of market
risks have so-called ‘fat tails’,
ie, large changes occur more
frequently than estimated by
a normal distribution, and
there are indications that some technical
risks (eg, power blackouts) exhibit the
same phenomenon. To estimate the
probability of large losses or damages, it
is therefore important that these obser-
vations are adequately taken into ac-
count.

Outside the finance industry, historical
data may be available in some specific
cases (eg, outage and performance data
for certain components or systems), but
much more often the probabilistic char-
acteristics of the different risks have to
be assessed without reliable statistical
data. In such cases, we have to base our
analysis primarily on expert judgment.
Experts, however, will usually not spec-
ify risks in terms of a probability distri-
bution but, eg, in terms of an exposure

5

and of a probability with which the cor-
responding costs will actually material-
ize (or in terms of the minimum, most
likely, and maximum impact of a given
risk). From these characteristics, we
then have to infer, perhaps with some
additional information, an adequate
probability distribution, or at least an
estimate for the mean value and vari-
ance of the different risk factors.

Scenario simulations
Given the fact that often only a rough
and not very reliable estimate of the dif-
ferent risks is available, is it then still
useful to perform a detailed quantitative
analysis?

Most risk managers will agree that it is
always better to have some quantitative

information than none at all.
However, in situations where
we only have rough estimates
or guesses about our risks, it
obviously makes little sense to
perform a very accurate math-
ematical analysis. It is then
much more important that a
corresponding evaluation is
supplemented by appropriate
scenario simulations. With the
help of such simulations, we
can, eg, analyze the effects of
modeling uncertainties and
determine the sensitivity of
our results with respect to dif-
ferent assumptions.

As the inherent uncertainties
associated with an extrapola-
tion of risk estimations to fu-
ture time periods can never be
completely eliminated, sce-
nario simulations play an im-
portant role in any quantita-

tive risk analysis procedure. Moreover,
scenario simulations often represent the
only alternative to determine the impact
of extreme events (‘stress testing’) or,
eg, to examine the relative effects of dif-
ferent hedging strategies.

The use of scenario simulations will be
demonstrated in part III of this series,
where the possibilities and limitations of
a quantitative risk analysis are illustrated
on the basis of a fictitious but represen-
tative industrial project.
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The continuous curve indicates the approximation by a normal 
probability distribution with the same mean value and standard deviation.


