

SELECTING AND APPLYING OUTPUT FILTERS FOR USE WITH ABB ACS880 480V VFDS

Scope:

This document addresses the issue of how to decide when an output filter may be needed for an ABB 480V ACS880 drive, and gives other requirements and conditions that may apply for a given application.

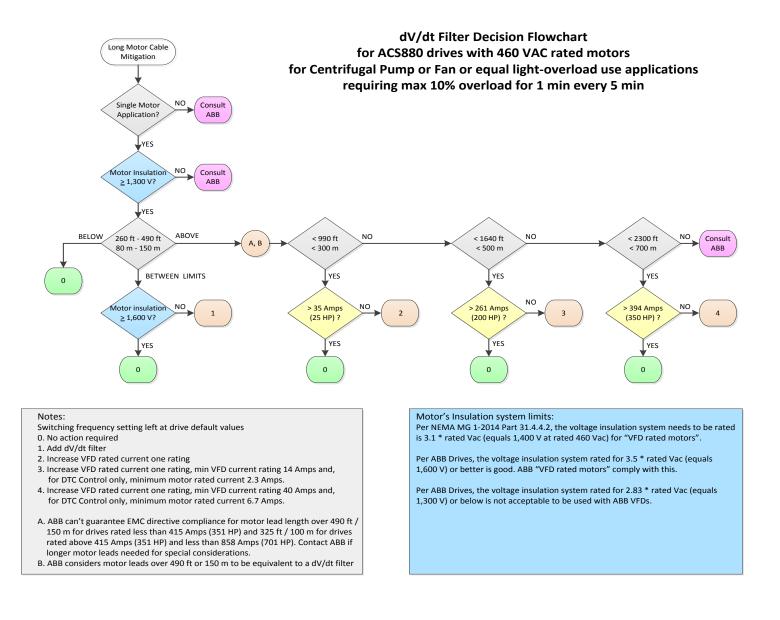
Explanation:

The vast majority of Variable Frequency Drive (VFD) applications perform with no problems for either the motor or the drive with no need to add external output devices. It is sometimes necessary to consider applying a filter on the output of the drive though, especially when the motor leads are relatively long.

With the advent of IGBT technology, drives have much shorter switching times than those using earlier devices. The faster switching of these devices can lead to a faster rise time of the voltage waveform and a higher peak voltage at the motor terminals. This has led to an awareness of the possibility of increased incidents of motor winding failures. Relatively long motor lead lengths and the impedance characteristics of the cable from the VFD to the motor are primary factors that may determine if there could be possible damage to the motor insulation. Some other factors include: Motor insulation voltage rating, motor and drive impedances, IGBT switching algorithms and, of course, the input voltage to the drive.

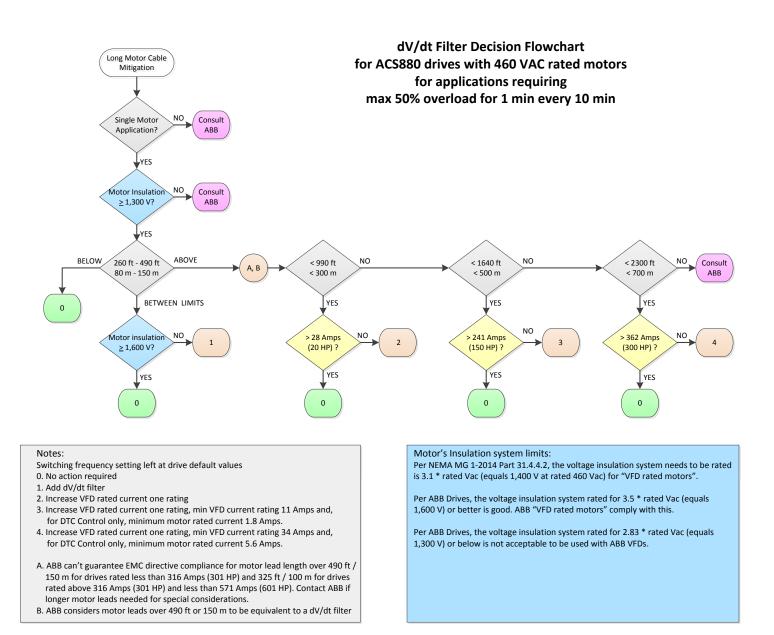
Peak voltages observed at the terminals of a motor connected to a VFD can be quite high because of a voltage doubling effect that occurs because of a condition called *reflected wave*. This is a phenomenon that occurs because of an impedance mismatch at either end of the output cables that causes the voltage pulses to be reflected back in the opposite direction from their source. Then, as they encounter the other waves traveling toward them, their values can add on top of each other like what you might observe by watching the reflections of water waves against a seawall. It is the faster rise time and higher peak voltages that can be an issue for the motor.

The higher peak voltages can weaken the coating of the motor's magnet wire over time leading to a breakdown of the insulation of the stator windings. Often such a failure is likely to occur at the first one or two turns of each winding. This is because a faster voltage rise time (higher dV/dt) increases the stress on these coils.


Filter Selection:

The following flow charts have been created to help with the process of determining if a dV/dt filter would be recommended to be applied based on various application characteristics. It is important to consider all of the details of the application including the drive, the motor cables, and the motor when determining if a filter is needed. It is also important to follow each manufacturer's instructions and recommendations for best installation practices. Please select either Light-Overload or Heavy Duty from the following charts for the type of duty cycle required for the application you have in mind in order help to determine if a filter is needed.

		-	
Authors: Rick Akey - Sr. Application Engineer, Rick			
Hoadley - Principal Consulting Applications Engineer			
		Date: July, 31 2018	
		Document #: LVD-EOTN124U-EN	
External	Industrial, HVAC	Revision: B	
Product Categories: ACS880			


Light-Overload

Authors: Rick Akey - Sr. Application Engineer, Rick		
Hoadley - Principal Consulting Applications Engineer		
		Date: July, 31 2018
		Document #: LVD-EOTN124U-EN
External	Industrial, HVAC	Revision: B
Product Categories	: ACS880	

Heavy Duty – Overload

Authors: Rick Akey - Sr. Application Engineer, Rick		
Hoadley - Principal Consulting Applications Engineer		
		Date: July, 31 2018
		Document #: LVD-EOTN124U-EN
External	Industrial, HVAC	Revision: B
Product Categories:	AC\$880	