

Measurement Products | Measurement made easy

Swirl flowmeters FS4000 Simply fitting your purpose Application guide

Swirl flowmeters Serving your application

Exceeding your expectations about modern field instruments is our goal:

- Highest reliability
- High accuracy
- High measuring dynamics
- Compact and simple installation
- Lowest costs

Find out on the following pages how ABB's unique swirl flowmeters introduce these advantages to numerous industry applications.

And there are many more: For further information how ABB swirl flowmeters can serve your application just contact us on **www.abb.com/flow**.

Burner control in steam production in process power plants page	4
Fuel gas consumption in steam production in power plantspage	6
District heating page	8
Steam distribution with high flow varietypage	10
Steam management in process plants page	12
Oxygen measurement page	14
Dual sensor applications page	16
High pressure gas measurementpage	18
Digester gas treatment and measurement page	20
Aircraft fuel measurementpage	22
Phenol and polycarbonate productionpage	24
Technologypage	26
Technical datapage	27

Typical swirl flowmeter applications in different industries

1. Power

Steam, natural gas, condensate, boiler feed water, air, biogas

2. Chemical Steam, process gas, air, acids, solvents, sludge water

3. Oil and gas

Petrochemical raw materials, petrol, ethylene, steam

4. Pulp and paper Steam, water, natural gas, air

5. Metals and mining

Air, oxygen, burner gas

6. Food and beverage

Carbon dioxide, steam, process air, natural gas, sludge

Burner control in steam production in process power plants

Relevant industries

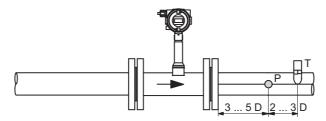
Steam is used and produced in many industries e.g. for heat exchangers, dryers, evaporators, sterilization in:

- Chemical
- Pulp and paper
- Food and beverage

Application / challenge

- Natural gas measurement for burner control
- Wide flow range required
- Installations can influence flow profile in the device
- Increase burner efficiency for fuel saving

 $2^{"}$ (DN50) swirl flowmeter with pressure and temperature measurement: pressure sensor should be installed after the flowmeter. For proper installation see drawing on the right


- Digital signal processing for volume flow, totalization and pulse outputs leads to high reliability and flexibility
- Optional integrated temperature compensation
- Lowest installation cost due to minimal up- and downstream sections
- High accuracy in flow measurement leads to energy (cost) savings
- High range ability that extends low flow capability

Your benefit from using swirl technology:

- Save installation effort for pipe reductions as swirl flowmeters match typically to usual flow speed of up to 40 m/sec (120 ft/sec)
- Take advantage of maintenance free design and long term stability

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
DP flowmeter (Orifice plate)	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
Thermal mass flowmeter	 Less straight pipe run required
	 Less expensive
Vortex flowmeter	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
	 No need for pipe reduction
Coriolis mass flowmeter	 Higher measuring range
	 Less expensive

Correct installation of pressure (P) and temperture (T) sensors

Fuel gas consumption in steam production in power plants

Relevant industries

- Power

Application / challenge

- Natural gas measurement for burner control
- Large pipe sizes require long straight pipe runs for proper flow metering installations
- Often poor gas quality that includes pollutants

16" (DN400) swirl flowmeter installation in smallest space in a power station

- Installation conditions have barely any influence on flow results
- Insensitive against dirt and pollution bearing mediums
- Independent from gas quality and gas content
- Great turndown for high flow dynamics

- Due to virtually no straight pipe requirements, a normally "impossible" installation position becomes possible
- No maintenance because of no moving parts, high long term stability and accuracy without re-calibration
- High accuracy under demanding installation conditions leads to energy (cost) savings

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
DP flowmeter (Orifice plate)	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
Thermal mass flowmeter	 Less straight pipe run required
	 Less sensitive for pollution
Vortex flowmeter	 Much less straight pipe run required
Ultrasonic flowmeter	– Less expensive (3 times)
	 Less straight pipe run required
Turbine flowmeter	 Less sensitive for pollution
	 Maintenance free design
	 Less straight pipe run required

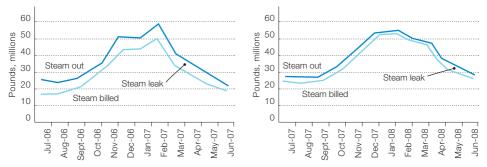
District heating

Relevant industries

- Power

Application / challenge

- Increasing energy costs require more transparency in energy measurement calculations
- Existing metering equipment often provides insufficient results for accurate energy billing
- Existing installation footprint often provides constrains for meter installation
- Energy / steam leakages should be detectable


8" (DN200) swirl flowmeter in a steam pipe, not insulated

- Installable almost everywhere by lowest installation requirements for up- and downstream sections
- Highest accuracy in steam measurement
- Wide measurement span helps to detect energy flow in times of low consumption
- Multiple signal paths for volume flow, totalization and pulse outputs
- Direct mass flow measurement on saturated steam possible

Your benefit from using swirl technology:

- Increased plant efficiency because of more transparency of the heat flows.
- Cost savings for burner fuel from increased plant efficiency
- Leak detection possible due to precise swirl technology

Efficiency before (left graphic) and after (right graphic) installation of swirl flowmeters

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
DP flowmeter (Orifice plate)	 Higher measuring range
	 Higher accuracy
	 Easier to install in existing footprint
Condensate measurement	- Higher accuracy
	 Leak detection possible
Vortex flowmeter	 Higher measuring range
	 Higher accuracy
	 Easier to install in existing footprint

Steam distribution with high flow variety

Relevant industries

- Power

Application / challenge

- Increasing energy costs require more transparency in energy flows
- High differences between summer and winter energy consumption
- Even low energy flow should be monitored and billed

Two swirl flowmeters in steam measurement in split range application, pipes and flowmeters insulated

- High measuring spans with stable accuracy over the whole range lead to lowest offset when switching from summer to winter service
- Better consumption transparency because of detection of energy flow in times of lowest consumption
- Installable almost everywhere by lowest installation demands for up- and downstream sections
- Direct mass flow measurement on saturated steam possible
- Multiple signal paths for volume flow, totalization and pulse outputs

- High measuring ranges help to save costs because a second flowmeter installation is usually not needed
- Increased energy cost transparency during the entire year or measuring period

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
DP flowmeter (Orifice plate)	- Higher measuring range
	- Higher accuracy
Vortex flowmeter	– Higher measuring range
	- Higher accuracy


Steam management in process plants

Relevant industries

- Power
- Chemical
- Pulp and paper
- Food and beverage

Application / challenge

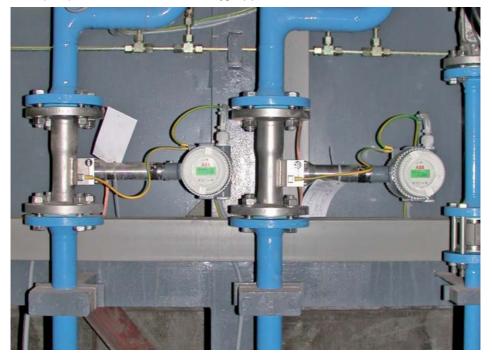
- One central power plant provides steam to different end users in different lines
- Space constraints can make it impossible to keep required up- and downstream sections

Five 4" (DN100) swirl flowmeter for steam distribution significantly save installation space

- Digital signal processing for volume flow, totalization and pulse outputs for highest reliability and accuracy
- Lowest installation demands for up- and downstream sections
- High range ability for high flow dynamics

- Direct steam mass flow measurement no additional temperature sensor installation needed.
- High accuracy over the whole measuring range leads to more cost transparency and energy (cost) savings

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
DP flowmeter (Orifice plate)	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
Vortex flowmeter	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
	 No need for pipe reduction
Coriolis mass flowmeter	– Higher measuring range
	- Less expensive
	 Shorter installation length


Oxygen measurement

Relevant industries

- Metals

Application / challenge

- Oxygen measurement with high varying flow rates requires very high measuring span of up to 1:50
- A small oxygen flow has to keep the oxygen lance free during the time only the burner is working
- Full range is necessary when the oxygen beam is working

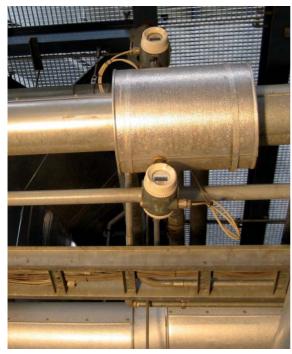
Two 2" (DN50) swirl flowmeters installed in an oxygen pipe

- Superior high measuring dynamics make it possible to reach required turn down ratio with adequate measurement uncertainty within one device
- Highest reliability due to digital signal processing for volume flow, totalization and pulse outputs
- Increared accuracy because of integrated temperature compensation
- Installable almost everywhere because of lowest installation demands for up- and downstream sections

- High long term stability and reliability because of maintenance free measuring system
- No need for re-calibration

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
Thermal Mass flowmeter	 Less straight pipe run required
	 Higher measuring range because of high pressure
Vortex flowmeter	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
	 No need for pipe reduction
Turbine flowmeter	 No moving parts
	- No maintenance
Coriolis mass flowmeter	- Less expensive
	 Same measuring range

Dual sensor applications


Relevant industries

- Chemical
- Oil and gas

Application / challenge

- 2-out-of-3-measurements for triple validation, i.e. dual-sensor-device and seperate single-sensor
- For installations with extremly high plant availability requirement

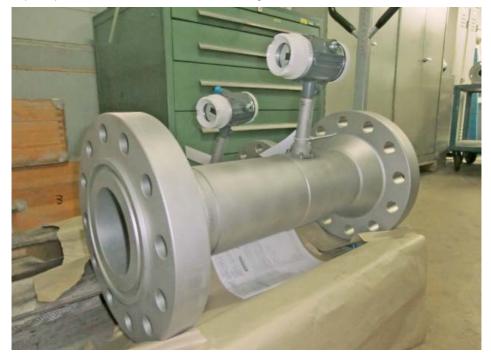
Dual sensor device insulated in conventional sensor layout

Dual sensor swirl flowmeter with 120° sensor layout

- Two completely independent sensors and electronics offer highest flexibility
- Same installation length as single sensor
- All sensor / transmitter options of single sensor device available for dual sensor
- Highest analogy of both sensor signals
- Shortest installations by lowest demands for up- and downstream sections for two devices in line

- Triple validation with one installation possible: three sensors plus three transmitters in one spool piece offers a 2-out-of-3 evaluation without any additional pipe work
- Flexible sensor installation, for example in corners
- Higher plant availability and reliability because of multi-sensor device

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
Vortex flowmeter	 Triple sensor device possible
	 Less straight pipe run required, especially, when 2 or
	3 sensors have to be installed in one line


High pressure gas measurement

Relevant industries

- Chemical
- Oil and gas

Application / challenge

- Gas measurements under high pressure in oil and gas
- High safety demands for welding, material and testing
- Often special material required

6" (DN150) swirl flowmeter with ASME class 900 RTJ flanges

- Installable almost everywhere by lowest installation demands for up- and downstream sections
- Superior high measuring dynamics and lower pressure loss compared to reduced vortex flowmeter
- Simple and robust sensor design without any moving parts leads to high long term stability for reliable measurements
- Digital signal processing for volume flow, totalization and pulse outputs
- Available in different materials like Hastelloy C, Duplex, Super-Duplex

- Cost savings for high pressure piping because of more compact installations
- Highest reliability even in challenging applications
- Maintenance free measuring system
- Tailored solutions with special process connections and special materials

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
DP flowmeter (Orifice plate)	 Higher measuring range
	 Higher accuracy
	 Less straight pipe run required
Turbine flowmeter	 Less straight pipe run required
	 Less sensitive for pollution
	 Maintenance free design
Vortex flowmeter	 Higher measuring range
	- Higher accuracy
	 Less straight pipe run required
	 No need for pipe reduction
Coriolis mass flowmeter	- Less expensive at same performance level

Digester gas treatment and measurement

Relevant industries

- Power

Application / challenge

- Digester gas measurement at lowest pressure
- Dirty, wet and sometimes aggressive gas with changing methane content

6" (DN150) swirl flowmeter in outdoors biogas application

- Unique swirl technolgy excellently manages polluted and wet raw gas before treatment
- Digital signal processing for highly reliable volume flow metering and totalization
- Integral compensation of temperature saves additional installation costs
- With IP67 / NEMA 4X housing ideally suited for outdoors installation

- Installable almost everywhere because of lowest installation demands for up- and downstream sections
- Robust, maintenance free design
- Immune to wet and aggressive biogas contents
- Insensitive against pollution

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
Thermal mass flowmeter	 Less straight pipe run required
	- Less sensitive against moisture, pollution, and agressive
	gas content
	- Higher accuracy as swirl flowmeters are independent of
	gas mixture
Vortex flowmeter	 Higher measuring range
	- Higher accuracy
	 Less straight pipe run required
	 No need for pipe reduction

Aircraft fuel measurement

Relevant industries

- Oil and gas downstream

Application / challenge

- Aircraft filling with Jet A1
- Large volume flow of non-conductive fluid
- High accuracy required

8" (DN200) swirl flowmeter in airport installation for Jet A1 measurement

- Highest accuracy for non-conductive fluids at lowest cost
- Highly reliable volume flow metering, internal totalization and control of external totalizer by pulse output
- Integral compensation of temperature impact can increase accuracy for computed mass flow
- With IP67 / NEMA 4X housing ideally suited for outdoors installation

- Installable almost everywhere because of lowest installation demands for up- and downstream sections
- Get high accuracy at much lower cost compared to other applicable measuring principles
- Fits ideally in existing line size, low pressure loss compared to other principles

For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
Vortex flowmeter	– Higher measuring range
	– Higher accuracy
	 Less straight pipe run required
Coriolis mass flowmeter	- Less expensive, especially in larger sizes

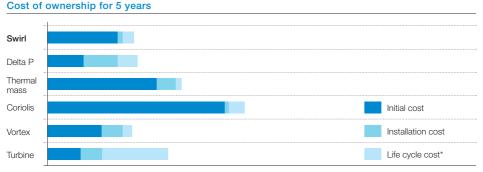
Phenol and polycarbonate production

Relevant industries

- Oil and gas downstream
- Petrochemical

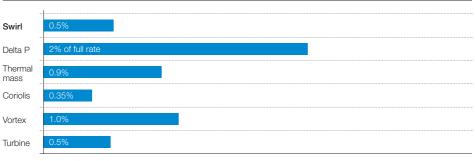
Application / challenge

- Steam, hot water, phenolic products
- Non-conductive fluids in laser pipes
- High accuracy of 0.5% required
- Only very limited upstream space available

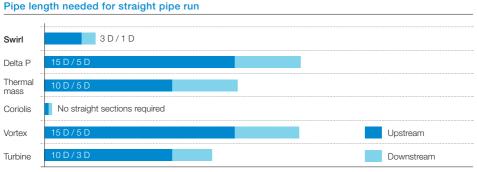

8" (DN200) swirl flowmeter with low space requirements

- Highest accuracy for non-conductive fluids at lowest cost, in this case 8" (DN200) and 12" (DN300) meters
- Installable almost everywhere because of lowest installation demands for up- and downstream sections
- Highly reliable volume flow metering, internal totalization and control of external totalizer by pulse output

- No need for long straight pipe runs, as demanded by other flowmeters
- Get high accuracy at much lower costs compared to all other applicable measuring principles
- It typically fits ideally in existing line size without the need for pipe change
- Handling and commissioning like a standard vortex meter


For this application you	but there are convincing arguments
might use another flowmeter	pro ABB's swirl flowmeters
Vortex flowmeter	 Much less straight pipe run required
	– Higher accuracy
Coriolis mass flowmeter	- Less expensive especially in these large sizes
Turbine flowmeter	- Less sensitive for pollution or gas bubbles
	- Maintenance free design
	 Less straight pipe run required

Technology



* Including energy cost for pressure loss and maintenance cost

Measurement uncertainty*

* For steam and gas applications

D = Nominal diameter

Technical data

The most important data at a glance	
Accuracy for liquids	± 0.5% of rate
Accuracy for gases and steam	± 0.5% of rate
Process connection	Flange design
Meter sizes	DN15 (1/2") – DN400 (16")
Media temperature	-55280 °C (-67536 °F)
Pressure rate (std.)	PN40 / ASME class 150/300
Pressure rate (max.)	PN160 / ASME class 900
Media viscosity	max. 30 cP
Required straight pipe runs	Upstream/downstream
- After a reduction	3 x DN / 1x DN
- After elbows (3 dimensions)	3 x DN / 1x DN
- After a control valve	5 x DN / 1x DN
Ex approvals	ATEX, IECEx zone 1/2 and 21/22
	cFMus class 1 div. 1
	NEPSI zone 1/2
Communication protocols	HART, PROFIBUS PA, FF

Contact us

ABB Automation Products GmbH Measurement Products

Dransfelder Str. 2 37079 Göttingen, Germany Phone: +49 551 905 534 Fax: +49 551 905 555 E-Mail: vertrieb.messtechnik-produkte@de.abb.com

ABB Inc.

125 E. County Line Rd Warminster PA 18974-4995, USA Phone: +1 215 674 6000 Fax: +1 215 674 7183

ABB Engineering (Shanghai) Ltd.

32 Industrial Area Kangqiao Town, Nanhui District Shanghai, 201319, P.R. China Phone: +86(0) 21 61056666 Fax: +86(0) 21 61056677 E-Mail: china.instrumentation@cn.abb.com

www.abb.com/measurement

Note:

Copyright© 2013 ABB All rights reserved

