Asset Health Center
Optimization of Maintenance Spend Across the Power Equipment Fleet Using On-Line Condition Data

PPO-000-2
Managing the Aging Installed Base

- Very aged infrastructure (average 40+ years)
- Lack of expert knowledge (retirees, non-replacements, etc.)
- Utilities cannot afford to continue time-based maintenance
- Utilities cannot afford to replace aging equipment

- Utilities would like to move to condition-based maintenance to reduce cost and also reduce risk
- Data for asset management is often distributed in various locations and formats
- Monitoring systems are being installed to provide timely data

- Several utilities are pulling data from many places and concentrating it in new data servers, then prompting the questions …

 What do I do with all this data?
 and what data should I be gathering?

 And, I only want one system for all my assets!
Traditional Scope of ABB Support Services

- **Transformers**
 - 70% of large power transformers are ABB legacy
 - Risk assessment and life extension
 - Advanced diagnostics and testing
 - LTC repairs and replacements
 - Factory repair and remanufacturing

- **High Voltage Breakers**
 - Support capability for 60-70% of installed base
 - Parts, Refurbishment and Retrofit
 - Advanced diagnostics – radiography and SF6 leak detection
 - Risk assessment and life extension

- **Low- and Medium-Voltage Switchgear**
 - Over 1 million breakers in service in US
 - Parts, Refurbishment, Retrofit, Roll-in Replacement
 - Protection & Control assessment and upgrades
 - Nuclear & Non-nuclear
Overall Asset Health Center Vision

Process

- **Results**
- **Actions with W.O.**
- **Dashboard**
- **Smart Analytics**
- **Data Collection**
- **Sensors/Monitors**
- **Assets**

Benefits

<table>
<thead>
<tr>
<th>Business Management</th>
<th>Overview of system operational conditions with drill down capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Levels</td>
<td>Clear and complete set of service performance levels</td>
</tr>
<tr>
<td>Decision Making</td>
<td>Business decisions based on data to minimize uncertainty and increase confidence in the direction of the organization.</td>
</tr>
<tr>
<td>Operation Improvement</td>
<td>Improved operational efficiencies by making high priority information available to employees</td>
</tr>
<tr>
<td>Life Cycle View</td>
<td>Life cycle cost analysis consistently applied to determine how to best spend funds.</td>
</tr>
<tr>
<td>Financial Impact</td>
<td>Forecasts of asset performance impacts to future revenue requirements</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Management of system operational risks with streamlined proactive sensing, analytic and data mining technology.</td>
</tr>
</tbody>
</table>
End-to-End Solution to Drive Asset Performance

- Performance models are key
- Leverage data to
 - Define risk factors
 - Quantify them
 - Recommend mitigation options
 - Optimize spending

© ABB Group
March 11, 2011 | Slide 6
ABB MTM Program
Well Established Fleet Risk Assessment – Patented Process

Transformer Fleet

Fleet Screening

Advanced Life Assessment

Design / Condition Assessment

Loss of Life Assessment

Replacement

Refurbishment

Cooling Upgrade

Engineered Solutions

Corrective Maintenance Actions

© ABB Group
April 18, 2011 | Slide 7
Transformer Fleet Assessment – Process Flow Map
Includes Risk Factors Specific to Individual Designs
Transformer Fleet Assessment – Process Flow Map

- One-time data gathering process
- Utilizes ABB Risk of Failure algorithms developed using ABB legacy design knowledge and field experience
- Uses the unit criticality as defined by the utility to prioritize the work required to reduce risk

![Diagram showing the process flow map for transformer fleet assessment.](image-url)
Transformer or Breaker Risk Assessment
Risk Monitoring with Remote Monitoring and Consolidated Data

- Remote monitoring can continuously update many factors in the risk assessment to provide a near-real time alert for critical risks as they develop
- Defer routine inspections and PM but still stay ahead of risks that can cause an unexpected outage

![Diagram showing risk categories and inputs]

© ABB Group April 18, 2011 | Slide 10
Mix of Sensor Usage
Units Shipped with ABB Transformers

Gas & Moisture sensors and Thermal Monitors are the predominant sensors installed on new power transformers.
Sensor Price Range

<table>
<thead>
<tr>
<th>System / Sensor</th>
<th>Price Range ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated monitor</td>
<td>12 K – 60 K</td>
</tr>
<tr>
<td>Gas in Oil</td>
<td>5 K – 50 K</td>
</tr>
<tr>
<td>Moisture in Oil</td>
<td>1.5 K – 3 K</td>
</tr>
<tr>
<td>Thermal Monitor</td>
<td>5 K – 15 K</td>
</tr>
<tr>
<td>Bushing Monitor</td>
<td>3 K – 15 K</td>
</tr>
</tbody>
</table>
Individual Asset Assessment

- Define contributing risks
- Quantification of Risk Factors
- Recommendation of mitigation actions and urgency
- Auto-notification of responsible parties
 - Everyone knows all we know
- Generation of draft work order for review
- Data mining capability to allow searches for similar issues and/or similar units in the fleet
Fleet Assessment

- Optimize spending across an asset fleet to address the highest risks first
- Quantify the unaddressed risks at selected spending levels
- Optimize the capital replacement program to evaluate the tradeoffs with continued maintenance expense and/or unaddressed risk
- Compliance reporting

Asset Fleet Performance Model
System-Wide Assessment

- Define risk by region or substation
- Optimize O&M and CapEx replacement spend across assets for a balanced risk mitigation plan
 - Transformers
 - HV Breakers
 - Station batteries, …

System Health Model

Data Warehouse
- Operation fault History PI (short circuit, etc)
- Asset Fault and Maintenance History
- Asset Registry
- Asset Performance Model—Transformer
- Asset Performance Model—Circuit Breaker
- Asset Fleet Performance Model

System Health Model
- System Health Model
- Constraint Management
- Priority Management
- Operation Analysis
- Compliance Management
- Risk Management
- Visualization

Sample Outputs
- System Health Status
 - Western Region
 - Western Region
 - Eastern Region

© ABB Group
April 18, 2011 | Slide 15
Integrating the Data, Algorithms, Reporting, ERP

- ABB acquired Ventyx in 2010
 - Leading business solutions provider offering software, data and advisory services
- Ventyx acquired Insert Key Solutions in Dec 2010
 - Reliability focused process improvement at nuclear and thermal plants
- Ventyx acquired Obvient Strategies in Jan 2011
 - Obvient’s FocalPoint Platform provides data integration and visualization capabilities
FocalPoint Solution Overview

Business Intelligence Model (BI M)

Information Technology

- Real-Time
- Near Real-Time
- Facts & Dimensions (Warehouse)
- Summaries & Aggregations (ROLAP)
- Archive (Warehouse)
- Application Models

Extract Transform Load

- Mapping
- Identification
- FocalPoint ETL
- Filtering
- Cleansing

Sources

- Internet

External Data

- Industry Standards
- Manufacturer’s Data.
- Geographic Demographics

Ad Hoc Query & Reporting

Business Activity Monitoring

Digital Dashboard Solutions

External Communications

BI Applications Asset Mgmt., Cap Project Mgt., etc.

Web & Mobile Users

FocalPoint Administrator

Spatial Administrator

Scorecard Administrator

Web Part Editor

Static Content Generator

Information Services (ETL)

Web & Mobile Users

Asset Mgmt., Cap Project Mgt., etc.

Ad Hoc Reporting

External Communications

Web & Mobile Users
Overall Asset Health Center Vision

Process

- **Results**
- **Actions with W.O.**
- **Dashboard**
- **Smart Analytics**
- **Data Collection**
- **Sensors/Monitors**
- **Assets**

Benefits

<table>
<thead>
<tr>
<th>Business Management</th>
<th>Overview of system operational conditions with drill down capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Levels</td>
<td>Clear and complete set of service performance levels</td>
</tr>
<tr>
<td>Decision Making</td>
<td>Business decisions based on data to minimize uncertainty and increase confidence in the direction of the organization.</td>
</tr>
<tr>
<td>Operation Improvement</td>
<td>Improved operational efficiencies by making high priority information available to employees</td>
</tr>
<tr>
<td>Life Cycle View</td>
<td>Life cycle cost analysis consistently applied to determine how to best spend funds.</td>
</tr>
<tr>
<td>Financial Impact</td>
<td>Forecasts of asset performance impacts to future revenue requirements</td>
</tr>
<tr>
<td>Risk Management</td>
<td>Management of system operational risks with streamlined proactive sensing, analytic and data mining technology.</td>
</tr>
</tbody>
</table>
Asset Health Center

- We believe that the convergence of domain expertise and system integration can be a great step forward in quantifying risk and optimizing spending plans.
- Early identification of incipient failures can avoid unexpected and costly outages.
- We are working closely with utilities to define their requirements for the system.
- Product risk algorithms are already well developed, and more are in process.
- Ventyx’s Obvient FocalPoint software platform is already applied at many utilities, and seems well suited for visualization and as a dashboard.
- Target for pilot application late 2010.
Circuit Breaker Monitoring

- Diagnostic and monitoring system for SF6 power circuit breakers rated 38kV and above

Dead Tank Live Tank GIS
Why Condition Based Monitoring

- Continue to reduce O&M resources
- Unplanned downtime is extremely costly
- Local in-house expertise continues to decline
- Expected to provide more expertise than ever before
- Harder to schedule outages
- Need to make better decisions more quickly
- Legislation is being enacted (i.e. SF6)
SF6 Regulations (US)

U.S. Environmental Protection Agency (EPA) - SF6 gas is currently being regulated and is deemed as a GHG (greenhouse gas). Mandatory legislation started Jan 1, 2010 with reports due by April 1, 2011. Effective January 1, 2011, the rule sets an initial emission rate at ten (10) percent of owners’ SF6 capacity. Beginning in 2012 owners of equipment using SF6 must reduce emissions by one (1) percent each year, reaching an emission rate of only one (1) percent by 2020. (California)

There is a possibility for legislation to tax greenhouse gas emissions at $5-10-20 / ton CO₂ equivalent

It is estimated that more than 500,000 lb are emitted annually by US utilities

- Taxing will cost over $108MUSD annually at the $20 / lb of SF6
- SF6 will cost over $4MUSD annually at a price of $8-$10 / lb of SF6
CBS – Conditions Overview

Circuit Breaker Sentinel

SF6 Gas System
- Tank/Gas Temp. (°C)
- Comp. SF6 Pres. (psi)
- Leak Rate (1) (psi/s)
- Leak Rate (2) (psi/min)
- Leak Rate (3) (psi/h)
- Leak Rate (4) (psi/day)
- Leak Rate (5) (psi/month)

Electrical Controls & Auxiliaries
- Close Coil Monitor
- Primary Trip Coil Monitor
- Secondary Trip Coil Monitor
- Close Coil Energization Time
- Primary Coil Energization Time
- Secondary Coil Energization Time
- Mech/Cabinet Temperature
- Thermostat / Energized Heaters
- Motor Starts (total)
- Motor Starts w/o Operation
- Motor Run Time
- Trip Count

Interrupter Wear
- Contact Wear (%)
- Aux Noz. Wear (%)
- Main Nozzle Wear (%)
- RMS Current(1) kA
- RMS Current(2) kA
- RMS Current(3) kA

Mechanical System
- Total Travel (mm)
- Reaction Time (ms)
- Mechanism Time (ms)
- Contact Velocity (m/s)

© ABB Group
Types of Conditions

- Quantitative Monitoring

 Measure → Calculate → Compare → Alarm
 Value → Quantity → Ok?

- Functional Monitoring / Exceptions

 Measure → Identify State → Identify Exception → Check → Alarm
 Value → State → Count Time → Ok?
 Measure → Identify State → State
Algorithms: Integrity Alarm

- Integrity is used to eliminate false alarms due to missing data
- Indication of sensor status
 - Sensor Problem
 - Hardware Defect
 - Wiring Problem
Algorithms: Temperature Compensated Pressure

- Dynamic
- Quasi-stationary

Liquefaction Curve

- Pressure
 - p_1
 - p_2
 - p_{comp}

Liquid SF$_6$

Gaseous SF$_6$

T_1, T_{room}, T_2, Temperature

© ABB Group
Algorithms: Gas Trending

Seconds

Minutes

Hours

Days

Month

Temperature Compensated Pressure

No Trend

No Trend

False Trend

Clear Trend

Slight Trend

Time
CBS-F6 Installations

- Customers: Allegheny Power, Empire District Electric, KCPL, Idaho Power, PG&E, Alabama Power, New Mexico Power
- Manufactures: ABB, Siemens, GE
ITAIPU – CBS Retrofit Project
GIS Application

- **Customer:** Itaipu hydropower plant in South Brazil
- **Opportunity:** (54) CBS on ABB 550kV BBC gas insulated switchgear (GIS)

Project Description:
Customer was looking for a reliability centered program, built around condition monitoring and data analysis to cost effectively manage substation assets.

Article:
http://www.abb.com/cawp/seitp202/2c2c1dac21f8c834c12577cf0040187d.aspx
RG&E – CBS / 800xA Retrofit Project
DTB Application

- **Customer:** Rochester Gas & Electric
- **Opportunity:** (18) CBS on ABB 362/121kV DTB w/ Asset Optimization Package

Project Description:
- Improvement in maintenance efficiencies due to costly practices
- PUC driver for system improvement due to recent rate increases
- Includes dedicated Sierra cellular devices for communications
KCPL – CBS Retrofit Project
LTB Application

- **Customer:** Kansas City Power & Light
- **Opportunity:** (2) CBS on ASEA 362kV LTB

Project Description:
Monitoring system to support a critical nuclear application.
Reductions in failures to improve asset reliability
National Grid – CBS Retrofit Project
DTB Application

- **Customer:** National Grid
- **Opportunity:** (1) CBS on ABB 362PME (Pilot for 900MHz devices)

Project Description:
First asset monitor device for circuit breakers
Evaluating CBS device to support condition based monitoring
Pilot for 900MHz communications from pole to pole to control house
Business Case

- **Innovative technologies**
 - Our CBS devices provide a compliant “Smart Grid” solution that continually monitors the health of a circuit breaker.

Productivity
- Allows users to move from the typical "Time Based Maintenance" to a "Conditioned Based Maintenance" approach.
 - Defers/extends maintenance intervals
 - Reduces unnecessary downtime
 - Extend life of the breaker

Environmental Impact
- Compliant with EPA regulations to reduce the usage of SF6 gas.
 - Early leak detection
 - Proper outage planning

Cost-reduction
- Reduce maintenance intervals
- Reduce/eliminate emergency repairs
- Loss of revenue due to failed equipment
- SF6 gas usage

Efficiency
- Useful tool for maintenance personnel to effectively maintain assets.
 - Prioritize higher maintenance (preventive/corrective) actions
 - Allow adequate time to schedule outages

© ABB Group
April 18, 2011 | Slide 34