Operating Guide
COMMANDER 1900 Series
Circular Chart Recorders
Controller Versions
The Company

ABB Ltd. is an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of ABB Ltd.'s dedication to quality and accuracy.

Use of Instructions

⚠️ Warning. An instruction that draws attention to the risk of injury or death.

🌟 Note. Clarification of an instruction or additional information.

⚠️ Caution. An instruction that draws attention to the risk of damage to the product, process or surroundings.

ℹ️ Information. Further reference for more detailed information or technical details.

Although Warning hazards are related to personal injury, and Caution hazards are associated with equipment or property damage, it must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all Warning and Caution notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of Marketing Communications Department, ABB Ltd.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

The COMMANDER 1900 series of documentation is shown in Fig. 1.1. The Standard Manuals, including the specification sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.
2.1 Instrument Power-up – Fig. 2.1 and 2.2

Caution. Ensure that all connections, especially to the earth stud, are made correctly.

a) Check that the input sensors are installed correctly.

b) Check that the pen(s) are installed correctly – see Fig. 2.1.

c) Switch on the supply to the instrument, any power-operated control circuits and the input signals. Wait for the pens to settle.

Note. On power-up, the pens are moved to an off-chart position for automatic referencing. Pen chatter may occur on those pens nearest the reference position. This is a normal function of the instrument.

d) The start-up sequence shown in Fig. 2.2 is displayed on faceplate 1 when the supply is first switched on.

Fig. 2.1 Checking the Pen(s) Installation

Instrument Test identifies the instrument type, e.g. 1914r – see Table 2.1 in the Installation Manual.

CPU Test carries out check of processor circuitry – see Error Codes below.

Configuration Test carries out check of non-volatile memories containing the instrument configuration, then indicates pass or fail – see Error Codes below.

Calibration Test carries out check of non-volatile memories containing the calibration data for each analog input and output, then indicates pass or fail – see Error Codes below.

Battery Back RAM Test carries out check of battery back RAM, then indicates pass or fail – see Error Codes below.

Error Codes are displayed in the event of a fault – see Section 2.1.1.

Lined Failed indicates power failure and is cleared when advancing to the next frame or page.

Fig. 2.2 Instrument Displays at Start-up
2.1.1 Power-up Error Codes

If any of the power-up tests fail (see Fig. 2.2), error codes are displayed to identify the fault. Refer to Fig. 2.3 for error code interpretations.

Configuration and battery-backed RAM errors

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>No error</td>
<td>None</td>
</tr>
<tr>
<td>A</td>
<td>Main program data stored in non-volatile memory on main board is corrupt</td>
<td>Check and correct program data</td>
</tr>
<tr>
<td>B</td>
<td>Control Date stored in non-volatile memory on main board is corrupt</td>
<td>Check and correct control program data</td>
</tr>
<tr>
<td>C</td>
<td>Timer set up stored in battery-backed RAM is corrupt</td>
<td>Check and correct data in Set Up Timer Page*</td>
</tr>
<tr>
<td>D</td>
<td>Maths set up stored in battery-backed RAM is corrupt</td>
<td>Check and correct data in Set Up Maths Page*</td>
</tr>
<tr>
<td>E</td>
<td>Ramp/soak profile set up stored in battery-backed RAM is corrupt</td>
<td>Check and correct data in Profile Control and Profile Program Pages</td>
</tr>
<tr>
<td>F</td>
<td>Totalizer set up in battery-backed RAM has been corrupt</td>
<td>Check and correct data in Set Up Totals Page*</td>
</tr>
</tbody>
</table>

* Refer to the Advanced Software Options Manual

Calibration errors

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main board</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Module in position 2</td>
<td>Power down and then up again. If fault remains, contact the local Service Organisation.</td>
</tr>
<tr>
<td>3</td>
<td>Module in position 3</td>
<td>Analog input and/or analog output calibration is corrupt</td>
</tr>
<tr>
<td>4</td>
<td>Module in position 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Module in position 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Module in position 6</td>
<td></td>
</tr>
</tbody>
</table>

Note. Acknowledging the Error Code clears the error state but does not rectify the fault. After acknowledging the error, carry out the relevant action detailed in the above tables.

Fig. 2.3 Power-up Error Codes
2.2 Fitting the Chart – Fig. 2.4

1. Raise pens
2. Lift the chart clamp and remove the chart
3. Fit new chart ensuring that it is beneath the pen lifter bars
4. Locate chart under guides
5. Rotate chart to align the time line with the red pen (see also Fig. 2.1)
6. Lower the chart clamp

Fig. 2.4 Fitting the Chart

2.3 Fitting the Pen Capsule(s) – Fig. 2.5

1. Raise pens
2. Gently pull the arm off the bracket
3. Remove spent capsule
4. Fit new pen capsule ensuring that the arm locates in the pen capsule slot
5. Remove cap
6. Slide pen assembly onto the appropriate bracket until it clips into place.
7. Ensure that the arm is positioned above its lifter bar.

Fig. 2.5 Fitting the Pen Capsules
The displays, l.e.d. indicators and operation/programming controls are located on the faceplates on the front panel of the instrument – see Fig 3.1.

3.1 Displays and L.E.D. Indicators – Fig. 3.1

The displays comprise 2 rows of 6 characters.

At the top of each programming page (the page header) both displays are used to describe the particular page selected.

When parameters within the selected page are viewed, the upper display shows the parameter and the lower display shows the value or setting for that parameter.

Alarm and Channel states are indicated by separate l.e.d.s on the front panel faceplate(s) – see Fig. 3.1.

Alarm and Channel states are indicated by separate l.e.d.s on the front panel faceplate(s) – see Fig. 3.1.

An 11 segment Bar Graph Display indicates deviation of the measured value from the set point.

- **AL** – States of alarms on controller channel
- **RMT** – On if the Remote set point in use
- **AT** – On if the instrument is in Automatic tuning
- **MAN** – On if the instrument is in Manual control mode

Table 3.1 Character Set

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
A	R	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z										
B	b	N	n	o	p	q	r	s	t	u	v	w	x	y	z										
C	c or C	O	o	p	q	r	s	t	u	v	w	x	y	z											
D	d	O	o	p	q	r	s	t	u	v	w	x	y	z											
E	e	P	p	q	r	s	t	u	v	w	x	y	z												
F	f	P	p	q	r	s	t	u	v	w	x	y	z												
G	g	Q	q	r	s	t	u	v	w	x	y	z													
H	h or h	R	r	s	t	u	v	w	x	y	z														

Fig. 3.1 Location of Displays, Controls and L.E.D. Indicators
Fig. 3.2 Faceplate Combinations and Product Codes
3.2 Use of Controls – Fig. 3.3(a) to (g)

Fig. 3.3(a) Advancing to Next Page

Return from any frame

Page 1
- Frame 1
- Frame 2
- Frame 3
- Frame 4

Page 2
- Frame 1
- Frame 2
- Frame 3

Lift/Lower pen on alternate operations

* Note. If ‘Auto Pen Drop’ is selected in the Set Up Chart Page, BASIC CONFIGURATION LEVEL, the pens automatically return to their operating positions after a five minute delay.

Fig. 3.3(e) Lifting/Lowering the Pens

Fig. 3.3(b) Moving Between Parameters

Advance to next Frame

Page X
- Frame 1
- Frame 2
- Frame 3
- Frame 4

Information. The switch is programmed in the Set Up Function Keys Page, ADVANCED CONFIGURATION LEVEL.

- Acknowledge any alarm
- Auto-tune
- Pen lift/lower
- Profile ramp soak
- Local /Remote

or

Return operator to top of Operating Page.

Fig. 3.3(f) Selecting Programmable Functions

Fig. 3.3(c) Adjusting a Parameter Value

Parameter Value

Adjust

* Note. Continued pressure on the and switches causes the rate of change of the displayed value to increase. To make small adjustments operate the switches momentarily.

Fig. 3.3(g) Auto/Manual Switch Functions

Auto/Manual switch – used for selecting Automatic or Manual mode on alternate operations. When manual mode is selected the displays revert automatically to the process variable values and control output or valve position (if position-proportioning or boundless motorized valve control is selected at Control Type in the Set Up Control Page).

Fig. 3.3(d) Selecting a Parameter Choice

Parameter X

Select

* Note. Continued pressure on the and switches causes the rate of change of the displayed value to increase. To make small adjustments operate the switches momentarily.
Note. The Alarm Acknowledge pages only occur if an alarm is present.

Fig. 4.1 Summary of Operating Levels for Different Faceplate Types
The instrument has dedicated Operating Pages – see Fig. 4.1. These pages are used for general monitoring of the process measurements and are not affected by the security system which inhibits access to the programming and control pages only – see Section 5.5 on page 18.

4.1 Input Error Messages – Fig. 4.2

<table>
<thead>
<tr>
<th>Message</th>
<th>Reason</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>RdFR IL</td>
<td>Internal analog to digital converter system hardware has failed</td>
<td>• Check the input/output board is located correctly in its socket.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Power down and up.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the ‘RdFR IL’ message is still present, contact the local Service Organisation</td>
</tr>
<tr>
<td>F–INPt</td>
<td>Process variable input is above or below fault detection level.</td>
<td>• Check input source for possible broken sensor</td>
</tr>
<tr>
<td></td>
<td>Process variable input exceeds the limits for the linearizer</td>
<td>• Check input connections</td>
</tr>
<tr>
<td></td>
<td>selected.</td>
<td>• Check input link position</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check input configuration in Set Up Input Page</td>
</tr>
<tr>
<td>F–rSPt</td>
<td>Remote set point input is above or below fault detection level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remote set point input exceeds the limits for the linearizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>selected.</td>
<td></td>
</tr>
<tr>
<td>F–PFb</td>
<td>Position feedback input is above or below fault detection level.</td>
<td></td>
</tr>
</tbody>
</table>

Note. Error messages are cleared automatically when the fault condition no longer exists.

Fig. 4.2 Input Error Messages Displayed in the Operating Page
Fig. 5.2 Summary of Operating Level Frames (Heat/Cool Control)
5.1 Operating Page Introduction

5.1.1 Set Point Tracking
With set point tracking enabled (Set Points Page, CONTROL CONFIGURATION LEVEL) the local set point value tracks the process variable when the controller is in Manual control mode. In this mode of operation the set point limits do not apply. If the set point value is outside its limits when Automatic control mode is selected, the local set point remains outside its limits and can only be adjusted in one direction, towards its limits. Once inside the limits they apply as normal.

With remote set point tracking enabled, the local set point tracks the remote set point value when in the remote set point mode. In this mode of operation the local set point limits do not apply. If the set point value is outside its limits when the local set point value is selected, the local set point remains outside its limits and can only be adjusted in one direction, towards its limits. Once inside the limits they apply as normal.

5.1.2 Auto/Manual Transfer
All auto-to-manual transfers are bumpless. If the local set point is used and set point tracking is enabled, all manual-to-auto transfers are bumpless, since the set point is always at the same value as the process variable. Without set point tracking enabled, the response following a manual-to-auto transfer depends on the control settings. With an integral action setting the output is ramped up or down to remove any process variable offset from the set point (providing the process variable is within the proportional band). If the integral action is off, the output may step to a new value when the controller is transferred back to automatic control mode.

With remote set point tracking enabled, the control set point switches automatically from remote to local when manual mode is selected.

5.1.3 Profile Control – Fig. 5.3

5.1.4 Cascade Control
The master in a cascade set-up is always channel 1 and the slave is always channel 2. If the slave is switched to manual control with cascade set point selected, the slave’s set point reverts automatically to local set point.

Ratio and bias are applied to the master output value so that the slave’s cascade set point value = Ratio x Master Output + Bias.

With Output Tracking enabled – if the slave is switched to manual mode or local set point, the master is switched automatically to manual. The manual output of the master tracks the local set point value of the slave. The value fed back to the master takes into account any ratio and bias settings.

With Output Tracking disabled – switching the slave to manual mode or local set point does not affect the operation of the master.

To return to full cascade control carry out the following procedure:

a) Switch the Slave controller into automatic control mode.

b) Switch the Slave Controller set point to ‘Cascade’.

c) Switch the Master controller to automatic control mode (if currently in Manual)

5.1.5 Heat/Cool Control – Fig. 5.4
When in automatic control mode both the heat and cool outputs are turned off when in the Output Off Hysteresis Band. In manual control mode the Output Off Hysteresis Band has no effect. If the P.I.D. output is within the Off Hysteresis Band when the controller is returned to auto control mode, the Off Hysteresis Band has no effect until either the P.I.D. output goes outside the band or becomes equal to the Crossover Value.
5.2 Operating Page Displays

Process Variable

Control Set Point
The set point in use is displayed (Local, Remote, Dual or Cascade). If the Local or Dual set point is displayed it can be adjusted using the [] and [] switches, providing adjustment is enabled in the Set Up Operating Page, CONTROL CONFIGURATION LEVEL – refer to the Programming Guide.

Process Variable

Control Output Value (%)
To adjust the output value manually: select Manual control mode using the switch ('MAN' l.e.d. is illuminated) and then use the [] and [] switches to set the required value (between 0 and 100%).

Process Variable

Manual Reset
Use the [] and [] switches to set a value which eliminates any offset from the set point (between 0 and 100%). Manual reset only appears if enabled in the Set Up Operating Page, CONTROL CONFIGURATION LEVEL and the Integral Action Time in the OPERATOR LEVEL is ‘OFF’.

Continued on next page.

Process Variable

Valve Status and Valve Position (%)
- W – valve stopped
- O – valve opening
- C – valve closing

The valve position is displayed as a percentage of its full travel position (not displayed on boundless controllers). To adjust the valve position manually: select Manual control mode using the switch ('MAN' l.e.d. is illuminated) and then use the [] and [] switches to set valve position required ([] switch opens the valve and [] switch closes the valve). With neither switch pressed the valve is stopped.

P.I.D. Output (%)
To adjust the output value manually: select Manual control mode using the switch ('MAN' l.e.d. is illuminated) and then use the [] and [] switches to set the value required (between 0 and 100%).

Heat Output (%)
This frame is not displayed if the P.I.D. output is below the Crossover Value. The output can be adjusted using the [] and [] switches when in the Manual control mode.

Cool Output (%)
This frame is not displayed if the P.I.D. output is above the Crossover Value. The output can be adjusted using the [] and [] switches when in the Manual control mode.
Operating Page Displays

Process Variable

Temperature Units

The units are set in the **BASIC CONFIGURATION LEVEL**. Display is blank if ‘NONE’ is selected.

Set Point Type Selection

The Balance displays show the difference between the Local and Second set point values (remote, dual or cascade) when switching from local to second set point, i.e.

\[
\text{Balance} = \text{Second set point} - \text{Local set point}
\]

If the difference is too great, press the \(\text{switch} \) to return to the Control Set Point frame and adjust the Local set point to obtain an acceptable difference.

If remote set point tracking is enabled (**Set Points Page**, **CONTROL CONFIGURATION LEVEL**), the local set point tracks the remote set point when the remote set point is selected.

The \(\text{switch} \) (if programmed in the **ADVANCED CONFIGURATION LEVEL**) can also be used for Local/Second set point selection, but transfer takes place without display of the Balance value, i.e.

Remote (or Cascade) Set Point Ratio

The remote (or cascade) set point input (in engineering units) is multiplied by the ratio to obtain the control set point value, i.e.

\[
\text{Remote (or cascade) Set Point Value} = \text{Input} \times \text{Ratio} + \text{Bias}
\]

Use the \(\text{and } \text{switches to set the ratio required, between 0.010 and 9.999 in 0.001 increments}

Remote (or Cascade) Set Point Bias

The bias value is added to the remote (cascade) set point value (see previous frame)

Use the \(\text{and } \text{switches to set the bias required.}

The bias can be set to either a positive or negative value (in engineering units).

Continued on next page.
...5.2 Operating Page Displays

Profile Program Selected

Profile Status:
- STOP – waiting for run command, profile is inactive
- rAMP – program is running and ramping
- SOAK – program is running and soaking
- HOLd – operator hold or controller is in manual
- H–HOLd – holdback hold in hold, due to guaranteed ramp/soak hysteresis values being exceeded
- r–HOLd – retort function has placed controller in hold
- r–rAMP – retort function is ramping set point back to soak value
- END – current program is completed but digital input signal is in ‘Run’ state.

Current Profile Segment

Time Remaining
Time remaining until the end of the current segment (in minutes or hours), depending on the Ramp/Soak Time Units set in the Profile Control Page, Advanced Software Options Manual. ‘h’ is displayed if hours are selected.

Use the [] or [] switches to add or subtract the extended time from the soak time. Refer to the Profile Control Page. If the extended soak value is set to ‘0’ the Time Remaining feature is disabled.

Repeat Count
Remaining number of times the current profile is to be repeated.

Current Time
Time (displayed using 24hr clock)

Current Date
Day and Month
5.3 Alarm Acknowledge Page

5.3.1 Alarm Indications – Fig. 5.5
The definitions for alarm states (on, off or flashing) are detailed in Fig. 5.5.

5.3.2 Acknowledging Alarms
Unacknowledged alarms can be acknowledged from the faceplates on the front of the instrument in two ways:

In the Operating Level – by pressing the switch at any frame (providing the switch is programmed for this function – see Section 5.1 in the Programming Manual). The switch acknowledges all alarms from either faceplate.

In the Alarm Acknowledge Page – by pressing the switch – see Section 5.3.3 following.

Note. In the Alarm Acknowledge Page Channel 1 alarms can only be acknowledged using faceplate 1. Channel 2 alarms (if applicable) can only be acknowledged using faceplate 2.

5.3.3 Using the Alarm Acknowledge Page

No Alarm Present
No l.e.d. indicators illuminated.

Alarm Present
AL l.e.d. indicator flashing, indicating alarm exists on this channel.

Use the switch to return to top of Alarm Acknowledge Page.

Alarm Acknowledge Page
Use the switch to advance to next frame.

Alarm Identity
Upper display: shows the alarm identity and type.

Lower Display: shows the trip level of the alarm identified in the upper display.

Acknowledge Alarm
Use the switch to acknowledge the alarm. When the alarm is acknowledged, ‘ACKNGd’ is displayed and a constant l.e.d. indicates the acknowledged alarm.

If there are more active alarms on the selected channel the l.e.d. continues to flash until all alarms for this channel have been acknowledged.

Fig. 5.5 Alarm LED Indications
5.4 Totals Page Displays
This page is omitted from both faceplates if the Totalizer Option is not fitted. The page is also omitted from faceplate 1 if Total 1 is set to OFF and from faceplate 2 if Total 2 is set to OFF – refer to the Set Up Totals Page in the Advanced Software Options Manual.

Page Header – Totals Page.

Front Panel (Batch) Flow Total 1 (2)
The batch flow total is calculated from process variable 1 (2).

The flow total can be reset in the next frame if Reset Enable in Set Up Totals Page is set to 'ENbL - y'.

Counter Reset
The Front (Batch) Flow Total can be reset to the Preset Value in Set Up Totals Page if required.

Select 't1 YES' to reset the counter ('t1' indicates Flow Total 1).

* Note. If the Counter Reset is disabled in Set Up Totals Page, the counter reset frame is omitted.

Counter Stop/Go
Select 'GO' to start the counter or 'STOP' to stop it.

* Note. If the Counter Stop/Go is disabled in Set Up Totals Page, the frame can be viewed but not altered. If a digital signal is assigned to Totalizer Stop/Go, an active digital signal sets the counter to GO and the Counter cannot be stopped from the front panel.
5.5 Access to Configuration Levels

A security system is used to prevent tampering with the program parameters by utilizing a Tune password and a configuration password. A Tune password can be assigned to controller faceplates giving access to that faceplates controller settings. A Configuration password gives access to all controller settings and programming pages – refer to the Programming Manual.

5.5.1 Security Code Page

Set the security code to the correct Tune or Configuration password using the [▲] and [▼] switches and use the [●] switch to advance to the controller settings or other programming levels (OPERATOR, BASIC CONFIGURATION, CONTROL CONFIGURATION and ADVANCED CONFIGURATION).

The passwords are programmed in the Access Page in the BASIC CONFIGURATION LEVEL.

Pen Position Adjustment (Pens 1 to 4)

The position of any trend pen can be adjusted against a reference standard (without changing the displayed value). Each pen can be adjusted in steps upwards (towards the edge of the chart) or downwards (towards the center of the chart).

When this feature is enabled, a password must be entered before adjustments can be made.

Note if pen adjustment is disabled or if the password is incorrect, the four Pen Adjustment frames are not displayed.

For each trend pen, the lower part of the frame shows the pen position adjustment.

- Pen position adjusted downwards by > 25 steps
- Pen position adjusted downwards by between 1 and 25 steps
- Pen position not adjusted
- Pen position adjusted upwards by between 1 and 25 steps
- Pen position adjusted upwards by > 25 steps

The pen adjustment frame for any given pen only appears if the pen is a Trend pen.
5.6 Profile States Page

Page Header – Profile States

The [] switch can be programmed to jump to this frame (Set Up Function Keys Page, ADVANCED CONFIGURATION LEVEL). If the switch is used, the display reverts automatically to the first frame of the Operating Page when leaving this page.

Program Select
Select the program to be run (1 to 10).

Profile Status (Ramp Soak)

\[rS-Off/On \] – (Ramp Soak Run/Off) select \(\text{run} \) to start selected program. Press the switch to activate.

\[rS-run/Hold \] – (Ramp Soak Run/Hold) select \(\text{Hold} \) to stop selected program at current level. Press the switch to activate.

\[rS-Hold \] – (Ramp Soak Hold) program is in the hold state, either as a result of an operator hold, the controller is in manual or the holdback facility (guaranteed ramp/soak). Select run to continue running the profile if operator has stopped program. Press the switch to activate.

\[rS-Hold/End \] – (Run/Hold End) the profile is completed, and the digital input assigned to the profile function is still in the ‘Run’ state. This frame is only displayed if a digital input is used to run and hold the profile.

* Note. If a digital input is assigned to the run/hold function, the user is prevented from overriding the digital signal

Profile Reset
If the profile is running and \(\text{YES} \) is selected, the profile returns to the beginning of the program and continues to run.

* Note. To end a program, select \(\text{Hold} \) at the Profile Status frame (see above) and then select \(\text{YES} \) at this frame. The local set point value takes the value of the first level of the selected program.

Skip Segment
The segment number (or \(End \)) is shown in the upper display.

\(sh.IP-F \) (skip forward) – abandon current segment and start next segment.

\(sh.IP-N \) (do not skip) – maintain control using current segment.

\(sh.IP-b \) (skip back) – return to beginning of current segment.

For multiple skip operations, the last selection (\(F \) or \(b \)) is displayed for 3 seconds before reverting to \(sh.IP-N \).
5.7 Auto-tuning Introduction

- On demand user-activated tuning.
- Two types of auto-tuning – initial ‘Start-up’ and when close to Set Point.
- Tuning for P, P.I. or P.I.D. control can be selected.
- Tuning for $\frac{1}{4}$ wave damped or minimum overshoot can be selected.
- Automatic entry of calculated control terms – unless an auto-tune error occurs.
- Error and Caution messages – indicate reason for tuning problems.

Information. The noise level of the process is monitored and then a step is applied to the control output value. The response of the process is recorded and these results are used to calculate the control terms.

Fig. 5.6 ‘Start-up’ Auto-tuning

Information. ‘At Set Point’ auto-tuning automatically calculates the P.I.D. terms based on the process reaction during an auto-tuning cycle. The controller output is manipulated to give six process oscillations which are used to determine the tuning parameters.

Fig. 5.7 ‘At Set Point’ Auto-tuning
5.7.1 Auto-tuning Page

Information on Initial Conditions.

- **'Start-up' Tuning** – the controller is placed in the Manual control mode with the control output value set to give a stable process variable at least 10% of the engineering range below the control set point.

- **'At Set Point' Tuning** – may be initialized in the automatic mode but the process variable must be close to the required set point and stable. The control output must also be stable. However, for best results the Manual control mode can be used to stabilize the output and the process value. The output must be adjusted slowly to allow process response to the change, to bring the process variable to the required control set point. The closer the process is to the set point, the more effective the auto-tuning cycle.

Auto-tune Type

The two tuning facilities ("Start-up" and "At Set point") are used to calculate automatically the Proportional, Integral and Derivative terms required.

- **'Start-up' Tuning** is used from initial start-up or when there is a large change in set point value.

- **'At Set point' Tuning** is used when the process is close to the required set point.

Select the auto-tune type required.

Output Step Size

The output step size is a percentage of the control output.

- **'Start-up' Tuning** – the larger the step size used the quicker the auto-tuning process is performed, but the greater the overshoot (above the calculated trip point). If too small a step size is used the response may be too slow for the auto-tuning to operate correctly. In practice, use as large a step size as can be tolerated.

- **'At Set Point' Tuning** – the controller output changes by plus and minus the output step size from its initial starting value when auto-tuning is executed. If the output step size is too large to allow this its value is reduced.

Example – If the controller output value = 30% and the selected step size = 50%. The step size is reduced to 30%.

The Step size should be large enough so that the amplitude of the process variable excursions are at least four times larger than the hysteresis parameter to allow the best possible response data. The output step size must be small enough to avoid crossing either of the auto-tune limits (see following frames).

Set the step size required.

Continued on next page.
...5 CONTROL OPERATION

...5.7.1 Auto-tuning Page

Hysteresis Value
The hysteresis value is entered in engineering units and is used to determine when to change the controller output value.

‘At Set Point’ Tuning only – when the process variable crosses the hysteresis band (plus and minus the hysteresis value), the controller output changes by plus and minus the STP value from its initial starting value. The hysteresis value should be set as small as possible but larger than the noise in the process variable signal, to allow the best possible response data.

Set the hysteresis value required (in engineering units).

Auto-tune High Limit
The process variable must be between the high and low limits when auto-tuning is activated. If the process value exceeds one of these, the auto-tuning cycle is shut off automatically by reverting to the manual control mode and returning the controller output to the value set when the auto-tuning was activated. The high and low values are the limits for cancelling auto-tune execution.

Set the value required (in engineering units), the decimal point is set automatically.

Auto-tune Low Limit
Set the value required.

Three Term Control Parameters
Select the Proportional, Integral and Derivative terms required.

Control Type
Select:
‘A’ for quickest response with 1/4 wave damping.
or
‘B’ for quickest response with minimum overshoot.

Continued on next page.
...5.7.1 Auto-tuning Page

Auto-tune Status/Enable
Select At-ON to enable auto-tune cycle. The ‘AT’ (auto-tune) l.e.d. is illuminated. The time taken for completion of auto-tuning is dependent on the speed of response of the controlled process.

> **Note.** If Auto-tune is selected it is not possible to exit the Auto-tuning Page until the auto-tune cycle is complete or ended by the operator.

Process Variable (upper display)

Control Set Point Value (lower display)
The set point is displayed for monitoring only and cannot be changed at this frame.

Process Variable (upper display)

Control Output (lower display)
The output value is displayed for monitoring only and cannot be changed at this frame.

Auto-tune Status and Enable/Disable

- **At-ON** – (Auto-tune On) auto-tuning can be switched off by pressing the OP switch to select At-OP and then pressing the At-END switch.
- **At-UPd** – (Auto-tune Update) the auto-tune cycle is complete and the calculated terms are being written to memory.
- **At-END** – (Auto-tune End) the auto-tune cycle is complete. If no failures occur during the cycle, the calculated values are loaded into memory as new control terms and the instrument returns automatically to the Operating Page. If failures or cautions occur during auto-tuning, error messages are displayed in the next frame.

Auto-tune Error Messages
If a **Failure** occurs the controller reverts to the manual control mode, the old control terms are retained and the auto-tune l.e.d. flashes.

If a **Caution** occurs the calculated control terms are loaded into memory and control continues in the automatic mode. Any errors are acknowledged when exiting this frame and the auto-tune l.e.d. flashes.

For an explanation of error messages – refer to Table 5.1 overleaf.
5.8 Auto-tune Diagnostic Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–TUNE Flashing with CaUln or Sp t00 Close or IncrSE SLP</td>
<td>The auto-tune process has selected a proportional band or integral action time above the high limits of these parameters so the high value has been used.</td>
<td>Because of the process characteristics, re-trying the auto-tuning process is unlikely to improve the calculated control parameters.</td>
</tr>
<tr>
<td>A–TUNE FAIL or Sp t00 Close or INPUT L1 Lts</td>
<td>The process variable signal is excessively 'noisy'.</td>
<td>If desired, allow the process variable to move further below the control set point (by changing the control output in the manual control mode) before re-trying 'Start-up' auto-tuning. Alternatively, use the 'At Set Point' auto-tune facility.</td>
</tr>
<tr>
<td>A–TUNE SLP Process</td>
<td>The process is too slow for the auto-tuning to work correctly.</td>
<td>Restart auto-tune with a larger output step size or a smaller hysteresis value.</td>
</tr>
<tr>
<td>A–TUNE Fail or Sp t00 Close or Input L1 Lts</td>
<td>The input failure level has been exceeded, possibly due to a broken sensors or the process has exceeded one of the auto-tune limits.</td>
<td>Check input wiring to try and find the source of the problem. If the process is changing rapidly then allow it to settle before re-trying the auto-tuning process.</td>
</tr>
<tr>
<td>User Abort or Update Error or 11E Out</td>
<td>Operator has stopped auto-tune process.</td>
<td>Allow the process variable to move further below the control set point before re-trying 'Start-up' auto-tuning. Alternatively, use the 'At Set Point' auto-tune facility.</td>
</tr>
<tr>
<td>Non-volatile memory failure while updating control parameters.</td>
<td>Check input wiring to find the cause of the failure or restart auto-tuning with a smaller output step size.</td>
<td>None.</td>
</tr>
<tr>
<td>The auto-tune process is too slow.</td>
<td>Re-try auto-tune, if error persists contact local Service Organization.</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1 Auto-tuning Error and Diagnostic Messages

5.8 CONTROL OPERATION
5.9 Introduction to Standard Control

Information. Proportional control gives an output that is proportional to the deviation of the process variable from the set point. The range over which the output is adjusted from 0 to 100% is called the proportional band and this is expressed as a percentage of the engineering range span.

Examples shown with a Proportional Band Offset of 50%

<table>
<thead>
<tr>
<th>Proportional Band Settings</th>
<th>Control</th>
<th>Set Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>60%</td>
<td>200%</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
<td>50.0%</td>
</tr>
<tr>
<td>100%</td>
<td>0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>200%</td>
<td>0%</td>
<td>200.0%</td>
</tr>
</tbody>
</table>

Fig. 5.8 Proportional Control

Information. With Proportional Control (P only or P and D) the controller may stabilize the process at a value which is offset from the set point. This offset can be removed using the manual reset adjustment which effectively shifts the Proportional Band.

Fig. 5.9 Manual Reset

Reverse Acting – the output decreases as the process variable increases.

Direct Acting – the output increases as the process variable increases.

Fig. 5.10 Control Action
Introduction to Standard Control

Fig. 5.11 Integral Action Time

Example shows an Integral Action Time of 30 seconds

Information. The integral action time is the time in which the output signal due to the integral action increases by an amount equal to the part of the output signal due to the proportional action when a constant deviation is present.

Fig. 5.12 Derivative Action

Information. With the process variable changing at a constant rate, the derivative action produces a change in output proportional to this rate of change. The derivative time constant, is the time interval in which the part of the output signal due to proportional action increases by an amount (y%) equal to the part of the output signal due to derivative action (x%). The derivative acting on the process variable instead of the deviation (process variable-set point) prevents unwanted derivative action when the set point is changed.

Fig. 5.13 Approach Band

Information. The approach band can be used to introduce the derivative term before the proportional band is reached, i.e. using settings above 1.0. This has the effect of slowing down the rate of rise. However, if the rate of rise is very slow, the introduction of the derivative term can be delayed, i.e. using settings below 1.0.

Fig. 5.14 On/Off Hysteresis

Information. Hysteresis is used with on/off control to give acceptable control without causing the output to switch too rapidly.
5.9 Introduction to Standard Control

Example shows a Cycle Time of 20 seconds

\[
\text{% Output} = \frac{\text{On Time}}{\text{Cycle Time}} \times 100
\]

\[
\text{% Output} = \frac{10}{20} \times 100 = 50\%
\]

\[
\text{% Output} = \frac{5}{20} \times 100 = 25\%
\]

Information. The cycle time is the period of oscillation (in seconds) of the output for time proportioning mark/space ratio control. The optimum value is a function of the process characteristics.

Fig. 5.16 Cycle Time

Information. A control offset of 0% allows early control of the output and reduces the overshoot on initial start-up. Control offset is set in the Control Page in the CONTROL CONFIGURATION LEVEL, Programming Guide.

Fig. 5.15 Offset

- **On/Off Control** – use for applications where precise control is not required or where frequent switching of a contactor using time proportioning control causes premature wear.

- **Proportional Control** – use where:
 - cycling action of on/off control is unacceptable
 - load changes are small or infrequent
 - offset can be tolerated or eliminated using manual reset.

- **Integral Action** – introduce to the control system:
 - to eliminate offset automatically
 - if set point or load changes frequently

- **Derivative Action** – introduce to the control system:
 - to enable faster approach to the set point (by enabling use of a smaller proportional band)
 - to minimize overshoot.
Initial Settings
- Proportional Band = 100%
- Integral Action Time = OFF
- Derivative Action Time = OFF

Decrease Proportional Band
- Adjust the set point a small amount
- Hold the set point at the new value until the process begins to move
- Reset the set point to the original value

Increase Proportional Band
- Observe response of process

- Note Proportional Band value (Pbc)
- Measure the critical cycle time (tcc)

Calculate Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>P</th>
<th>P+I</th>
<th>P+D</th>
<th>P+I+D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>2 x Pbc</td>
<td>2.2 x Pbc</td>
<td>1.6 x Pbc</td>
<td>1.6 x Pbc</td>
</tr>
<tr>
<td>I</td>
<td>tc/1.2</td>
<td>tc/2</td>
<td>tc/2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>tc/12</td>
<td>tc/8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.17 Manual Tuning
Table 5.2 Effect of Control Responses on Processes

<table>
<thead>
<tr>
<th>Response</th>
<th>Contributions</th>
<th>Effect Of Response Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Hysteresis</td>
<td>Helps to prevent rapid switching of output</td>
<td>Too High: Process swings too far above and below set point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too Low: Output switches too rapidly</td>
</tr>
<tr>
<td></td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Proportional Band</td>
<td>Stable control with the minimum offset and minimum period of oscillation</td>
<td>Too High: More stable, Longer period</td>
</tr>
<tr>
<td></td>
<td>consistent with stability.</td>
<td>Too Low: Stability decreases</td>
</tr>
<tr>
<td></td>
<td></td>
<td> </td>
</tr>
<tr>
<td>Integral</td>
<td>Eliminates offset between Process and Set Point.</td>
<td>Too High: Stability decreases, Period of oscillation increases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct: Integral Action time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too Low: Integral Action time too Low</td>
</tr>
<tr>
<td>Derivative</td>
<td>Increases stability, permitting smaller proportional band and larger integral</td>
<td>Too High: Stability decreases</td>
</tr>
<tr>
<td></td>
<td>action times to be used.</td>
<td>Maximum contribution not realized</td>
</tr>
<tr>
<td></td>
<td>Reduces height of first peak.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduces period of oscillation.</td>
<td> </td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.9.1 Control Page (Standard Control)

- **Cycle Time (only applicable for control using relay output)**
 - This setting can be ignored for analog control outputs.
 - Set the required cycle time for time proportioning control, from 1.0 to 300.0 in 0.1 second increments (300 seconds = 5 minutes) – see Fig. 5.16 on page 27.

- **Hysteresis (only applicable for control using relay output)**
 - This setting can be ignored for analogue control outputs.
 - The hysteresis is operational above or below (depending on the control action, direct or reverse) the set point and is only applicable for ON/OFF control – see Fig. 5.14 on page 26.
 - Set the hysteresis value required for on/off control in engineering units (between 0 and 10% of engineering range span).

- **Proportional Band**
 - Set the proportional band value required, between 0.1 and 999.9% in 0.1% increments.

- **Integral Action Time**
 - Set the required time between 1 and 7200 in 1 second increments (7200 seconds = 120 minutes). ‘OFF’ is selected above 7200 or below 1.

- **Manual Reset**
 - Set the required proportional band offset on the lower display, between 0.0 and 100.0% of the engineering range span in 0.1% increments.

- **Derivative Action Time**
 - Set the required time between 0.1 and 999.9 in 0.1 second increments (999.9 seconds = 16.67 minutes). ‘OFF’ is selected below 0.1.

- **Approach Band**
 - Set the required value between 0.1 and 3.0 in 0.1 increments. (Set 1.0 initially).
5.10 Introduction to Heat/Cool Control

Note. Refer to sections 5.10.2 and 5.10.3

Information.
- **P.I.D. Output** – is the output value calculated by the controller. The output is divided into two different control elements one for raising the product temperature (heat output) and one for lowering the product temperature (cool output).
- **Transition Bandwidth** – used to transfer smoothly from one set of control terms to the other.
- **Crossover Value** – defines the changeover point between heat output active and cool output active. The crossover value is also the centre of the transition and off hysteresis bands.
- **Output Off Hysteresis Band** – for the majority of applications Outputs 1 and 2 have opposing control actions i.e. one is direct acting and the other is reverse. In this configuration both outputs are at 0% within the off hysteresis band. The band setting is used to prevent oscillation of control changes.
- **Heat/Cool Outputs** – refer to P.I.D. Output, above.

Fig. 5.18 Heat/Cool Control – Principle of Operation
5.10.1 Control Page (Heat/Cool Control)

- **Cycle Time (heat output)**
 This setting can be ignored for analog control outputs.
 Set the required cycle time for time proportioning control, from 1.0 to 300.0 in 0.1 second increments (300 seconds = 5 minutes).

- **Proportional Band (heat output)**
 Set the proportional band value required, between 0.1 and 999.9% in 0.1% increments.

- **Integral Action Time (heat output)**
 Set the required time between 1 and 7200 in 1 second increments (7200 seconds = 120 minutes). ‘OFF’ is selected below 1 and above 7200.

- **Manual Reset (heat output)**
 Set the required proportional band offset on the lower display, between 0.0 and 100.0% of the engineering range span in 0.1% increments.

- **Cycle Time (cool output)**
 This setting can be ignored for analog control outputs.
 Set the required cycle time for time proportioning control, from 1.0 to 300.0 in 0.1 second increments (300 seconds = 5 minutes).

- **Proportional Band (cool output)**
 Set the proportional band value required, between 0.1 and 999.9% in 0.1% increments.

- **Integral Action Time (cool output)**
 Set the required time between 1 and 7200 in 1 second increments (7200 seconds = 120 minutes). ‘OFF’ is selected below 1 and above 7200.

Continued on next page.
5.10.1 Control Page (Heat/Cool Control)

- **Manual Reset (cool output)**
 - Set the required proportional band offset, between 0.0 and 100.0% of the engineering range span in 0.1% increments.

- **Derivative Action Time**
 - Set the required time between 0.1 and 999.9 in 0.1 second increments (999.9 seconds = 16.67 minutes). ‘OFF’ is selected below 0.1.

- **Approach Band**
 - Set the required value between 0.1 and 3.0 in 0.1 increments. (Set 1.0 initially).

- **Crossover Output Value**
 - Set the required value between 0.0 and 100.0% of the P.I.D. output, in 0.1% increments – see Section 5.10.2.

- **Transition Bandwidth**
 - Set the required value between 0.0 and 100.0% of the P.I.D. output, in 0.1% increments – see Section 5.10.3.

- **Output Off Hysteresis Band**
 - Set the required value which prevents oscillation of control changes, between 0.0 and 25.0% of the P.I.D. output, in 0.1% increments.

5.10.2 Calculating the Crossover Value – Fig. 5.18
The crossover value is calculated from the expression:

\[
\text{Crossover Value} = \frac{100}{G_h/G_c + 1}
\]

Where \(G_h/G_c\) is the ratio of the two output driver gains.

Example – if the proportional band settings for the heat output is 20% and for the cool output is 25%:

\[
\text{Transition Bandwidth} = \frac{25 - 20}{25} \times 100 = 20\%
\]

5.10.3 Calculating the Transition Bandwidth Value – Fig. 5.18
The Transition Bandwidth is the percentage difference of the proportional band settings.

\[
\text{Transition Bandwidth} = \frac{25 - 20}{25} \times 100 = 20\%
\]

If the proportional band settings for both outputs are equal, the bandwidth is 0%. As a general rule, the Transition Bandwidth should not exceed 30%.

5 CONTROL OPERATION
If all Totalizers are off or Totalizer option not fitted

Fig. 6.1 Summary of Operating Level Frames (Record Faceplates 2 and 3)

Note. The Alarm Acknowledge pages only occur if an alarm is present.
6.1 Operating Page Displays

- **Process Variable 2 (PV2)**
 - 200.3
 - 300.3
 - Temperature Units for PV2 as set in the Set Up Inputs Page. BASIC CONFIGURATION LEVEL. Display is blank if 'NONE' is selected.

- **Process Variable 3 (PV3)**
 - 300.3
 - 400.5
 - Temperature Units for PV3 as set in the Set Up Inputs Page. Display is blank if 'NONE' is selected.

- **Current Time**
 - 12:00
 - Time* (displayed using 24hr clock)
 - *Only displayed when timer option is fitted.

- **Current Date**
 - 24 JAN
 - Day and Month*
 - *Only displayed when timer option is fitted.

- **Process Variable 3 (PV3)*
 - 300.3
 - 400.5
 - Temperature Units for PV3 as set in the Set Up Inputs Page. Display is blank if 'NONE' is selected.

- **Process Variable 4 (PV4)*
 - 300.3
 - 400.5
 - Temperature Units for PV4 as set in the Set Up Inputs Page. Display is blank if 'NONE' is selected.

- **Current Time**
 - 12:00
 - Time* (displayed using 24hr clock)
 - *Only displayed when timer option is fitted.

- **Current Date**
 - 24 JAN
 - Day and Month*
 - *Only displayed when timer option is fitted.
6.2 Alarm Acknowledge Page

6.2.1 Alarm Indications – Fig. 6.2
The definitions for alarm states (on, off or flashing) are detailed in Fig. 6.2.

6.2.2 Acknowledging Alarms
Unacknowledged alarms can be acknowledged from the faceplate controls on the front panel in two ways:

In the **Operating Level** – by pressing the \(\) switch at any frame (providing the switch is programmed for this function – see Section 5.1 in the Programming Manual). The \(\) switch acknowledges all alarms from either faceplate.

In the **Alarm Acknowledge Page** – by pressing the \(\) switch – see Section 6.2.3 following.

*Note. In the Alarm Acknowledge Page Channel 2 and 3 alarms can only be acknowledged using faceplate 2. Channel 3 and 4 alarms (if applicable) can only be acknowledged using faceplate 3.

Record Faceplate

- No l.e.d. illuminated indicates no alarms present and the Alarm Acknowledge Page is not present in the OPERATOR LEVEL.

- A flashing l.e.d. indicates that an unacknowledged alarm exists on that channel. For example, a flashing AL2 l.e.d. indicates an alarm on channel 2.

- A constant l.e.d. indicates that all active alarms have been acknowledged on that channel.

Using the Alarm Acknowledge Page

- **No Alarm Present**
 - No l.e.d. indicators illuminated.

- **Alarm Present**
 - AL3 l.e.d. indicator flashing, indicating alarm exists on channel 3.
 - Use \(\) switch to return to top of Alarm Acknowledge Page.

- **Alarm Acknowledge Page**
 - Use the \(\) switch to advance to next frame.

- **Alarm Identity**
 - Upper display: shows the alarm identity and type.
 - Lower Display: shows the trip level of the alarm identified in the upper display.

- **Acknowledge Alarm**
 - Use the \(\) switch to acknowledge the alarm. When the alarm is acknowledged, ‘ACKNGd’ is displayed and a constant l.e.d. indicates the acknowledged alarm.

If there are more active alarms on channel 3 the l.e.d. continues to flash until all alarms for that channel have been acknowledged.
6.3 Totals Page Displays
This page is omitted from both faceplates if the Totalizer Option is not fitted. The page is also omitted from faceplate 2 if both Totals 2 and 3 are set to OFF and from faceplate 3 if both Totals 3 and 4 are set to OFF – refer to the Set Up Totals Page in the Advanced Software Options Manual.

Front Panel (Batch) Flow Total 2 (3)
The batch flow total is calculated from process variable 2 (3).

Example – a flashing channel 2 I.e.d. indicates Flow Total 2 parameters displayed.

Counter Reset
The Front (Batch) Flow Total can be reset to the Preset Value in Set Up Totals Page if Reset Enable in Set Up Totals Page is set to ‘ENBL – Y’.

Select ‘t2 YES’ to reset the counter (t2 indicates Flow Total 2).

Note. If the Counter Reset is disabled in Set Up Totals Page, the counter reset frame is omitted.

Counter Stop/Go
Select ‘GO’ to start the counter or ‘STOP’ to stop it.

Note. If the Counter Stop/Go is disabled in Set Up Totals Page, the frame can be viewed but not altered. If a digital signal is assigned to the Totalizer Stop/Go source, an active digital signal sets the counter to GO and the Counter cannot be stopped from the front panel.

Front Panel (Batch) Flow Total 3 (4)
Repeat the above procedure for Flow Total 3 (4).

Note. The number of totalizers is dependent on the number of pens fitted to the instrument e.g. a 3 pen instrument has 3 totalizers.
7 SIMPLE FAULT FINDING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not power up</td>
<td>a) Internal fuse (if fitted) is blown</td>
<td>a) Check wiring, rectify fault and replace fuse</td>
</tr>
<tr>
<td></td>
<td>b) Internal power switch (if fitted) is OFF</td>
<td>b) Turn power switch ON</td>
</tr>
<tr>
<td></td>
<td>c) Power supply connections are incorrect</td>
<td>c) Check connections</td>
</tr>
<tr>
<td>Chart does not appear to move</td>
<td>a) Very slow chart speed selected</td>
<td>a) Select required chart speed in Set Up Chart Page</td>
</tr>
<tr>
<td></td>
<td>b) Chart stop function enabled</td>
<td>b) De-activate source being used to stop chart – see Set Up Chart Page</td>
</tr>
<tr>
<td>Pens in recording position but do not drop</td>
<td>Chart stop function enabled</td>
<td>De-activate source used to stop chart – see Set Up Chart Page</td>
</tr>
<tr>
<td>onto paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pen does not move beyond 94% position</td>
<td>When real time event pen is fitted the red pen cannot go beyond 94% to prevent</td>
<td>Use chart range which prevents the need to go beyond 94% of maximum on</td>
</tr>
<tr>
<td>on chart</td>
<td>pens clashing</td>
<td>chart</td>
</tr>
<tr>
<td>Pen lift switch on front panel does not</td>
<td>Pen lift switch is disabled</td>
<td>Enable pen-lift switch in Set Up Chart Page</td>
</tr>
<tr>
<td>work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pens do not remain lifted when pen lift key</td>
<td>Auto pen drop feature is enabled</td>
<td>Disable auto pen drop in Set Up Chart Page if this is not required</td>
</tr>
<tr>
<td>is used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog inputs are slow to respond</td>
<td>A large filter time has is set</td>
<td>Set digital filter value to give required response in Set Up Inputs</td>
</tr>
<tr>
<td>Time or date incorrect</td>
<td>Not set for correct local time</td>
<td>Set correct time and date in Set Up Clock Page – refer to Advanced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Software Manual</td>
</tr>
<tr>
<td>Totalizers cannot be set to STOP or GO</td>
<td>Operator STOP/GO selection is not enabled in the OPERATOR LEVEL</td>
<td>Enable counter STOP/GO in the Set Up Totals Page</td>
</tr>
<tr>
<td>Totalizer cannot be set to STOP</td>
<td>Digital signal assigned to the total STOP/GO function is active</td>
<td>De-activate digital signal assigned to total STOP/GO function</td>
</tr>
<tr>
<td>External relays connected to relays in</td>
<td>Arc suppression capacitors are provided across the relay contacts and capacitor</td>
<td>Remove the arc suppression components – IC4 and IC5 on mainboard</td>
</tr>
<tr>
<td>instrument fail to de-energize</td>
<td>leakage current may be sufficient to prevent an external relay from</td>
<td>IC6 and IC7 on standard I/O and analog relay IC3 to IC10 on 4 relay</td>
</tr>
<tr>
<td></td>
<td>de-energizing</td>
<td>module</td>
</tr>
<tr>
<td>Pens return to a different position after a</td>
<td>Pens are interfering with one another due to incorrect setting of pens</td>
<td>Each pen requires the force of 1 gram to lift it off the paper. Carefully bend arm (up or down) close to the plastic moulding to give correct setting</td>
</tr>
</tbody>
</table>
8 SPARES LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen Capsules (pack of 3)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>C1900/0119</td>
</tr>
<tr>
<td>Blue</td>
<td>C1900/0120</td>
</tr>
<tr>
<td>Red</td>
<td>C1900/0121</td>
</tr>
<tr>
<td>Green</td>
<td>C1900/0122</td>
</tr>
<tr>
<td>Violet*</td>
<td>C1900/0123</td>
</tr>
</tbody>
</table>

Pen Arm Assemblies

- ER/C Type Chart (J or R in Code Number) – Standard Pen: C1900/0076
- ER/C Type Chart (J or R in Code Number) – Event Pen: C1900/0078
- PX105 and PXR105 Type Chart (K or S in Code Number) – Standard Pen: C1900/0075
- PX105 and PXR105 Type Chart (K or S in Code Number) – Event Pen: C1900/0077

Fuses

- 24V: B11071 (4A)
- 115V: B11070 (1A)
- 230V: B11069 (500mA)

*True time line event option only.
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC motors to 1kV
- Drive systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart, Strip Chart and Paperless Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Magnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Wedge Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Referbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, conductivity, and dissolved oxygen transmitters and sensors
- ammonia, nitrate, phosphate, silica, sodium, chloride, fluoride, dissolved oxygen and hydrazine analyzers.
- Zirconia oxygen analyzers, katharometers, hydrogen purity and purge-gas monitors, thermal conductivity.

Customer Support

ABB Ltd. provides a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Ltd.
Tel: +44 (0)1480-475-321
Fax: +44 (0)1480-217-948

United States of America
ABB Inc.
Instrumentation Division
Tel: +1 215-674-6000
Fax: +1 215-674-7183

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification. Periodic checks must be made on the equipment's condition.

In the event of a failure under warranty, the following documentation must be provided as substantiation:
1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of operating and maintenance records relating to the alleged faulty unit.