User’s manual
Emergency stop, stop category 1 (option +Q952) for ACS880 multidrives
List of related manuals

<table>
<thead>
<tr>
<th>General drive manuals</th>
<th>Code (English)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety instructions for ACS880 multidrive cabinets and modules</td>
<td>3AU000102301</td>
</tr>
<tr>
<td>Mechanical installation instructions for ACS880 multidrive cabinets</td>
<td>3AU000101764</td>
</tr>
<tr>
<td>Electrical planning instructions for ACS880 multidrive cabinets and modules</td>
<td>3AU000102324</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply unit manuals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-207 IGBT supply units hardware manual</td>
<td>3AU000130644</td>
</tr>
<tr>
<td>ACS880-307 (+A003) diode supply units hardware manual</td>
<td>3AU000102453</td>
</tr>
<tr>
<td>ACS880-307 (+A018) diode supply units hardware manual</td>
<td>3AX5000011408</td>
</tr>
<tr>
<td>ACS880-907 regenerative rectifier units hardware manual</td>
<td>3AX5000020546</td>
</tr>
<tr>
<td>ACS880 IGBT supply control program firmware manual</td>
<td>3AU000131562</td>
</tr>
<tr>
<td>ACS880 diode supply control program firmware manual</td>
<td>3AU000103295</td>
</tr>
<tr>
<td>ACS880 regenerative rectifier control program firmware manual</td>
<td>3AX5000020827</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inverter unit manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-107 inverter units hardware manual</td>
<td>3AU000102519</td>
</tr>
<tr>
<td>ACS880 primary control program firmware manual</td>
<td>3AU000085967</td>
</tr>
<tr>
<td>ACS880 primary control program quick start-up guide</td>
<td>3AU000098062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC tool manuals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start-up and maintenance PC tool Drive composer user’s manual</td>
<td>3AU000094606</td>
</tr>
<tr>
<td>Functional safety design tool user’s manual</td>
<td>3AX1000102417</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option manuals and guides</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS-AP-x Assistant control panels user’s manual</td>
<td>3AU000085685</td>
</tr>
<tr>
<td>Functional safety; Technical guide No. 10</td>
<td>3AU000048753</td>
</tr>
<tr>
<td>Safety and functional safety; A general guide</td>
<td>1SFC01008B0201</td>
</tr>
<tr>
<td>ABB Safety information and solutions</td>
<td>www.abb.com/safety</td>
</tr>
<tr>
<td>Manuals and quick guides for I/O extension modules, fieldbus adapters, etc.</td>
<td></td>
</tr>
</tbody>
</table>

You can find manuals and other product documents in PDF format on the Internet. See section Document library on the Internet on the inside of the back cover. For manuals not available in the Document library, contact your local ABB representative.
User’s manual

Emergency stop, stop category 1 (option +Q952) for ACS880 multidrives

Table of contents
Table of contents

List of related manuals ... 2

1. Introduction to the manual

Contents this chapter ... 7
Applicability .. 7
Safety instructions ... 8
Target audience ... 8
Contents .. 8
Related documents .. 8
Abbreviations ... 9
Exclusion of liability .. 9
Quick reference guide for implementing a safety system 9

2. Option description and instructions

Contents this chapter ... 11
Description ... 11
Operation principle ... 12
Fault reaction function ... 13
Parameter settings ... 13
Hardware settings .. 15
Wiring ... 16
Start-up and acceptance test ... 17
 Checks and settings with no voltage connected 17
 Settings with voltage connected .. 17
 Acceptance test ... 17
Use of the safety function ... 19
 Activating ... 19
 Resetting ... 19
Emergency stop indications ... 19
Fault tracing ... 20
Maintenance ... 21
 Proof test interval .. 21
 Competence .. 21
 Residual risk ... 21
 Intentional misuse .. 22
 Decommissioning ... 22
Safety data .. 23
 Safety data values ... 23
 Safety component types .. 23
 Safety block diagrams .. 23
 Relevant failure modes ... 24
 Fault exclusions .. 24
 Operation delays .. 24
General rules, notes and definitions ... 25
 Validation of the safety functions .. 25
 Authorized person ... 25
 Validation procedure .. 25
 Acceptance test reports .. 25
Competence .. 25
Ambient conditions .. 26
Reporting problems and failures related to safety functions 26
Related standards and directives 26
Compliance with the European Machinery Directive 26

Further information
Product and service inquiries 27
Product training .. 27
Providing feedback on ABB Drives manuals 27
Document library on the Internet 27
Introduction to the manual

Contents this chapter
This chapter describes the manual in short and gives some general information for the reader. The chapter also contains a quick reference for implementing a safety system.

Applicability
The manual applies to ACS880 multidrives which have the option: Emergency stop, stop category 1 with main contactor/circuit breaker, with safety relays (option +Q952).
Safety instructions

Only a qualified electrician who has appropriate knowledge on functional/machine/process safety is allowed to install, start up and maintain the safety circuit.

WARNING! After making additions to the drive safety circuit or modifying it, or changing circuit boards inside the drive, always test the functioning of the safety circuit according to the acceptance test procedure. Any changes in the electrical installations of the drive may affect the safety performance or operation of the drive unexpectedly. All customer-made changes are on the customer’s responsibility.

WARNING! Read and obey all safety instructions given for the drive in *ACS880 multidrive cabinets and modules safety instructions* (3AUA0000102301 [English]). If you ignore them, injury or death, or damage to the equipment can occur.

This manual does not repeat the complete safety instructions of the drive but it only includes the instructions related to the scope of this manual.

Target audience

The manual is intended for people who install, start up, use and service the safety option of the drive. Read the manual before working on the drive. You are expected to know the fundamentals of electricity, wiring, electrical components, electrical schematic symbols, and functional safety.

Contents

The chapters of this manual are briefly described below.

Introduction to the manual (this chapter) introduces this manual.

Option description and instructions describes the safety option and instructs how to wire, start up, test, validate, use and maintain it.

Related documents

- Product manuals (see the inside of the front cover)
- Circuit diagrams delivered with the drive
- Part lists delivered with the drive
- Safety data report
Abbreviations

Abbreviations used in this manual are listed below.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat.</td>
<td>Category</td>
<td>EN/IEC 60204-1</td>
</tr>
<tr>
<td></td>
<td>1. Stop category according to EN/IEC 60204-1</td>
<td>EN ISO 13849-1</td>
</tr>
<tr>
<td></td>
<td>2. Classification of the safety-related parts of a control system in respect of their resistance to faults and their subsequent behavior in the fault condition, and which is achieved by the structural arrangement of the parts, fault detection and/or by their reliability. The categories are: B, 1, 2, 3 and 4.</td>
<td>EN ISO 13849-1</td>
</tr>
<tr>
<td>DI</td>
<td>Digital input</td>
<td>EN/IEC 60204-1</td>
</tr>
<tr>
<td>DIIL</td>
<td>Digital input interlock</td>
<td>EN/IEC 60204-1</td>
</tr>
<tr>
<td>E-stop</td>
<td>Emergency stop</td>
<td>EN/IEC 60204-1</td>
</tr>
<tr>
<td>HFT</td>
<td>Hardware fault tolerance</td>
<td>EN ISO 13849-1</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated gate bipolar transistor</td>
<td>EN ISO 13849-1</td>
</tr>
<tr>
<td>PL</td>
<td>Performance level (levels are: a, b, c, d and e). Corresponds to SIL.</td>
<td>EN ISO 13849-1</td>
</tr>
<tr>
<td>RO</td>
<td>Relay output</td>
<td>IEC 61508, EN/IEC 62061</td>
</tr>
<tr>
<td>SIL</td>
<td>Safety integrity level</td>
<td>IEC 61508, EN/IEC 62061</td>
</tr>
</tbody>
</table>

Exclusion of liability

ABB is not responsible for the implementation, verification and validation of the overall safety system. It is the responsibility of the system integrator (or other party) who is responsible for the overall system and system safety.

The system integrator (or other responsible party) must make sure that the entire implementation complies with all relevant standards, directives and local electrical code, and that the system is tested, verified and validated correctly.

Quick reference guide for implementing a safety system

| Task | ✓ |
|------|---|---|
| Select the appropriate functional safety standard for the implementation: EN ISO 13849-1, EN/IEC 62061, IEC 61511 or other. | ☐ |
| If you select EN/IEC 62061 or IEC 61511, make a safety plan. See EN/IEC 62061 or IEC 61511. | ☐ |
| Assess safety: analyze and evaluate risks (estimate SIL/PL) and define risk reduction strategies. Define the safety requirements. | ☐ |
| Design the safety system. The part of the design made by ABB is described in chapter Option description and instructions on page 11. | ☐ |
| Verify the achieved SIL/PL with, for example, FSDT-01 Functional safety design tool or similar. See Functional safety design tool user's manual (3AXD10000102417 [English]). | ☐ |
| Connect the wiring. See section Wiring on page 16. | ☐ |
| Set the parameters. See section Parameter settings on page 13. | ☐ |
Validate that the implemented system meets the safety requirements:
- Do the acceptance test. See section *Start-up and acceptance test* on page 17.

Write the necessary documentation.
Option description and instructions

Contents this chapter
This chapter describes the +Q952 emergency stop option and instructs how to wire, start up, test, validate, use and maintain it.

Description
The option +Q952 corresponds to a controlled stop in accordance with stop category 1 (EN/IEC 60204-1). After the user has given the emergency stop command, the drive first decelerates the motor(s) to zero speed according to a preset ramp time. Then, the drive trips the main contactor/breaker which cuts off the input power of the drive.

Note: Drives with the Prevention of unexpected start-up (POUS) option (+Q957):
If the user activates the POUS function during the emergency stop deceleration ramp, it overrides the emergency stop function. This activates the Safe torque off (STO) function of the drive immediately and the motor coasts to a stop. For more information on the POUS safety function, see Prevention of unexpected start-up (option +Q957) for ACS880 multidrives user’s manual (3AUA0000119894 [English]).

The design principles of the option +Q952 comply with EN ISO13850.

For a list of related standards and European directives, see section Related standards and directives on page 26.
Operation principle

This figure shows a simplified operation principle. For a more detailed description, see the circuit diagrams delivered with the drive.

1) Reset circuit
2) To the next inverter unit
A41 Control board (inverter unit)
A51 Control board (supply unit)
A61 Emergency stop safety relay with delay contacts
K61 Timer relay
K64 Auxiliary relay to reset circuit
K65 Auxiliary safety relay
K66 Auxiliary relay
F61 Protection switch
Q2 Main contactor
P62 Emergency stop indication (optional or user-defined)
S61 Emergency stop button (optional or user-defined)
S62 Emergency stop reset button (optional or user-defined)
T1 Supply module
T11...TXX Inverter module(s)
T62 24 V power supply

The dash-dot line (− −) in the figure indicates a user-defined installation.
Initial status: The drive is in operation and the motor is running.

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The user activates emergency stop by the pushing emergency stop button [S61].</td>
</tr>
<tr>
<td>2.</td>
<td>The emergency stop safety relay [A61] switches off the digital input on the inverter units control boards [A41] giving the emergency stop command. The break delay counter of the emergency stop safety relay [A61] starts (user-adjustable delay).</td>
</tr>
<tr>
<td>3.</td>
<td>Each inverter unit acknowledges the reception of the emergency stop command by energizing the relay outputs (RO1) on the inverter units control boards [A41]. The emergency stop circuitry continues its operation sequence. Note: If any inverter unit fails to acknowledge the reception of the emergency stop command in 2 seconds, the main contactor is tripped.</td>
</tr>
<tr>
<td>4.</td>
<td>The inverter units decelerate motors to zero speed in emergency stop deceleration time (parameter setting).</td>
</tr>
<tr>
<td>5.</td>
<td>The break delay counter of safety relay [A61] trips and delayed contact switches off the power for the auxiliary safety relay [K65] and auxiliary relay [K66]. The auxiliary safety relay [K65] switches off the main contactor [Q2].</td>
</tr>
<tr>
<td>6.</td>
<td>The auxiliary relay [K64] energizes the indication lamp [P62] of the emergency stop reset button [S62].</td>
</tr>
</tbody>
</table>
| 7. | Normal operation resumes after the user:
 • releases the emergency stop button [S61] to normal (up) position
 • resets the emergency stop circuit with the emergency stop reset button [S62] (the user must push the button for 0.1 to 3 seconds)
 • closes the main contactor [Q2] with the operating switch
 • makes sure that the inverter units have received the start signals (depends on the configuration, see the firmware manual). |

Fault reaction function

Definition: A safety function requires a ‘fault reaction function’ that attempts to initiate a safe state if the safety function's diagnostics detect a fault within the hardware/software that performs the safety function.

The fault reaction function of the emergency stop safety relay [A61] trips if it detects a failure (short circuit between signals, open circuits, redundancy fault when the emergency stop button is pushed) in the safety circuit. The fault reaction function shifts the drive immediately into the safe state by switching on the drive emergency stop command, opening the main contactor, and keeping them on until the detected fault has been repaired. The indication lamp [P62] of the reset button [S62] is on until the fault has been repaired.

The emergency stop reset circuit must be open when the user releases the emergency stop button [S61]. The emergency stop safety relay [A61] detects if the reset circuit is closed and the relay does not close.

If the reset button [S62] is pressed for more than 10 seconds, the emergency stop safety relay [A61] goes into a fault state. The user must reset the safety relay, see section *Fault tracing* on page 20.

Parameter settings

Note: ACS880 primary control program controls the inverter unit by default. There are dedicated control boards for the supply and inverter units.
The inverter unit parameter settings in ACS880 primary control program:

- parameter 10.24 **RO1 source** is set to value \(P.10.1.3^- \)
- parameter 21.04 **Emergency stop mode** is set to value *Eme ramp stop (Off3)*
- parameter 21.05 **Emergency stop source** is set to value *DI4* (delivery-specific, refer to the circuit diagrams)
- parameter 31.22 **STO indication run/stop** is set to value *Warning/Warning* (recommended)
- parameters 23.23 and 46.01: Select a suitable value. See the firmware manual and section *Hardware settings* on page 15.

The supply unit parameter settings in the ACS880 supply control programs:

- parameter 121.04 **Emergency stop mode** is set to value *Stop and warning*
- parameter 121.05 **Emergency stop source** is set to value *DIIL*

For more information, see the firmware manuals.
Hardware settings

Set the time delay of the emergency stop safety relay [A61] according to the application needs with the rotary switches on the safety relay.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tFkt</td>
<td>1</td>
<td>Selects the delay mode. Must be 1.</td>
</tr>
<tr>
<td>tmax</td>
<td>User-defined</td>
<td>Selects the time range (in seconds) for the delayed contacts. Value range: 1-300 s.</td>
</tr>
<tr>
<td>t</td>
<td>User-defined</td>
<td>Adjusts the time within the selected range in 10% steps. Value range: 0.1-1.</td>
</tr>
</tbody>
</table>

Example: Required time \(t_v \) = 30 s, set:

- \(t_{\text{max}} = 30 \text{ s} \) and \(t = 1 \) \(t_v = t_{\text{max}} \times t = 30 \text{ s} \times 1 = 30 \text{ s} \),
- or
- \(t_{\text{max}} = 300 \text{ s} \) and \(t = 0.1 \) \(t_v = t_{\text{max}} \times t = 300 \text{ s} \times 0.1 = 30 \text{ s} \).

Tune the delay for the emergency stop safety relay [A61] a little longer than the emergency stop deceleration time defined by drive parameters 23.23 and 46.01 (see section Parameter settings on page 13).
Wiring

If option +G331 has been selected one emergency stop button and one reset button are installed on the cabinet door and wired to the drive at the factory. There are double contacts in the emergency stop button and double wiring (two-channel connection) between the button and the emergency stop safety relay [A61]. The safety relay detects cross faults and faults across one contact from the emergency stop button. This function must be used in a redundant manner, that is, the emergency stop button must be connected to both terminals with a separate contact.

If needed, install additional emergency stop buttons on site and wire them to the appropriate terminal block inside the drive cabinet. See the circuit diagrams delivered with the drive. Follow the rules below:

1. Use only double-contact button approved for the emergency stop circuits.

2. Connect the emergency stop buttons with two conductors (two-channel connection).
 Note: Keep the channels separate. If you use only one channel, or if the first and second channels are connected together (for example, in a chain), the cross fault detection of the emergency stop safety relay trips and activates the emergency stop command of the inverter unit as it detects a redundancy fault.

3. Use a shielded, twisted pair cable. We recommend a double-shielded cable and gold-plated contacts in the emergency stop button.

4. Ensure that the sum resistance for one channel (loop resistance) from the field to the safety relay does not exceed 1 kohm.

5. Follow the general control cable installation instructions given in the drive hardware manual.

You can also install additional reset buttons and indication lamps for the emergency stop circuit on site. We recommend gold-plated contacts in the reset button. Wire the buttons to the appropriate terminal block inside the drive cabinet. See the circuit diagrams delivered with the drive. Follow the rules below:

1. Sum resistance of the external reset circuit may not exceed 1 kohm.

2. Follow the general control cable installation instructions given in the drive hardware manual.
Start-up and acceptance test

You need the Drive composer PC tool or a control panel to perform the start-up and acceptance test.

Initial status: Make sure that the drive is ready for use, that is, you have done the tasks of the drive start-up procedure. See the hardware manual.

<table>
<thead>
<tr>
<th>Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING! Obey the Safety instructions, page 8. If you ignore them, injury or death, or damage to the equipment can occur.</td>
<td>✓</td>
</tr>
</tbody>
</table>

Checks and settings with no voltage connected

If any connections of emergency stop circuit have been done on site (such as wiring of additional emergency stop buttons, connection of shipping splits of large drives, etc.), check the connections against the appropriate circuit diagrams.

Check that the hardware settings relevant to the safety function are set as defined in section Hardware settings on page 15.

Settings with voltage connected

Check that the parameters relevant to the safety function are set as defined in section Parameter settings on page 13.

Acceptance test

Ensure that the motors can be run and stopped freely during the test.

Start the inverter units and ensure that the motors are running. If possible, use a motor speed close to the maximum speed of the application.

We recommend that you monitor these signals with the Drive composer PC tool:

- 01.01 Motor speed used (rpm)
- 01.02 Motor speed estimated (rpm)
- 01.07 Motor current (A)
- 01.10 Motor torque (%)
- 23.01 Speed ref ramp input (rpm)
- 23.02 Speed ref ramp output (rpm)
- 90.01 Motor speed for control (rpm)
- 90.10 Encoder 1 speed (rpm) (if you use an encoder)

Push the emergency stop button [S61].

Ensure that the inverter units stop the motors by decelerating and display a related warning. See section Emergency stop indications on page 19.

Ensure that the indication lamp [P62] switches on.

Ensure that you cannot switch the power on with the operating switch.

Ensure that you cannot start inverter units and motors from any control location: Ensure that the motor does not start even if you switch the start signal off and on or push the start key of the panel.

Turn the emergency stop button [S61] until it releases and returns to the up position.

Push the emergency stop reset button [S62]. Ensure that the indication lamp [P62] switches off.

Switch off inverter units start signals.

Power up the drive (see the hardware and firmware manuals).
18 Option description and instructions

<table>
<thead>
<tr>
<th>Action</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart the inverter units and motors and check that they operate normally.</td>
<td>✓</td>
</tr>
<tr>
<td>Repeat the test from each operating location (every emergency stop button and reset button).</td>
<td></td>
</tr>
<tr>
<td>Fill in and sign the acceptance test report which verifies that the safety function is safe and accepted to operation.</td>
<td></td>
</tr>
</tbody>
</table>
Use of the safety function

- **Activating**
 1. Push the emergency stop button [S61]. The emergency stop activates and the button locks in "ON" (open) position.

- **Resetting**
 1. Turn the emergency stop button [S61] until it releases.
 Note: You must push the reset button [S62] for 0.1 to 3 seconds.
 3. If necessary, close the main contactor with the operating switch (see the hardware and firmware manuals).
 The main contactor/breaker closes and the drive is powered up.
 4. Make sure that the inverter units have received the external start signals (depends on the configuration, see the firmware manual).
 5. You can now restart the inverter units.

Note: You have to reset the emergency stop circuit with the reset button [S62] also after you have powered up the drive.

Emergency stop indications

When the emergency stop is on:
- the inverter unit control program has the warning *Emergency stop (off1 or off3)* active.
- the emergency stop reset button [S62] on cabinet door is illuminated (indication lamp [P62]) after the emergency stop deceleration ramp time has passed.
- the ON LED of the emergency stop safety relay [A61] is green and steady.
Fault tracing

This table describes the status LEDs of the emergency stop safety relay [A61].

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>LED is lit and steady</th>
<th>LED is lit and flashing</th>
<th>LED is not lit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Green</td>
<td>Power supply is connected.</td>
<td></td>
<td>Power supply is not connected.</td>
</tr>
<tr>
<td>ERR</td>
<td>Red</td>
<td>System error. Replace the unit if the error is not removed after restart.</td>
<td>During external errors. See the figure below for details.</td>
<td></td>
</tr>
<tr>
<td>K1/K2</td>
<td>Green</td>
<td>Relays K1 and K2 are energized (instantaneous contact).</td>
<td>During external errors.</td>
<td></td>
</tr>
<tr>
<td>K3/K4</td>
<td>Green</td>
<td>Relays K3 and K4 are energized (delayed contacts).</td>
<td>During the time delay.</td>
<td></td>
</tr>
</tbody>
</table>

This figure describes the ERR LED indications in fault situations.

To reset the emergency stop safety relay [A61] after fault situations, switch off the external power supply of the safety relay.

For more fault tracing possibilities, see the hardware and firmware manuals of the drive.
Maintenance

After the operation of the safety function is tested at start-up, it does not need any scheduled maintenance, excluding the main contactor which has a limited lifetime. Replace the contactor before the end of its lifetime. See the contactor data sheet or manual. Repeat the acceptance test for the function after the replacement. See section *Start-up and acceptance test* (page 17).

In addition to proof testing, it is a good practice to check the operation of the function when other maintenance routines of the machinery are carried out. Do the acceptance test described in section *Start-up and acceptance test* (page 17).

If you change any wiring or component after the start up, or restore parameters to their default values:
- Use only ABB approved spare parts.
- Register the change to the change log for the safety circuits.
- Test the safety function again after the change. Obey the rules given in section *Start-up and acceptance test* (page 17).
- Document the tests and store the report into the logbook of the machine.

Proof test interval

After the operation of the safety function is validated at start-up, the safety function must be maintained by periodic proof testing. In high demand mode of operation, the maximum proof test interval is 20 years. In low demand mode of operation, the maximum proof test interval is 1 year (high or low demand as defined in IEC 61508, EN/IEC 62061 and EN ISO 13849-1). Regardless of the mode of operation, it is a good practice to check the operation of the safety function at least once a year. Do the test as described in section *Start-up and acceptance test* on page 17.

The person responsible for the design of the complete safety function should also note the Recommendation of Use CNB/M/11.050 published by the European co-ordination of Notified Bodies for Machinery concerning dual-channel safety-related systems with electromechanical outputs:
- When the safety integrity requirement for the safety function is SIL 3 or PL e (cat. 3 or 4), the proof test for the function must be performed at least every month.
- When the safety integrity requirement for the safety function is SIL 2 (HFT = 1) or PL d (cat. 3), the proof test for the function must be performed at least every 12 months.

This is a recommendation and depends on the required (not achieved) SIL/PL. For example, safety relays, contactor relays, emergency stop buttons, switches etc. are typically safety devices which contain electromechanical outputs.

Competence

The maintenance and proof test activities of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6.

Residual risk

The safety functions are used to reduce the recognized hazardous conditions. In spite of this, it is not always possible to eliminate all potential hazards. Therefore the warnings for the residual risks must be given to the operators.
Intentional misuse
The safety circuit is not designed to protect a machine against intentional misuse.

Decommissioning
When you decommission an emergency stop circuit or an inverter unit, make sure that the safety of the machine is maintained until the decommissioning is complete.
Safety data

- **Safety data values**
 Each multidrives delivery is unique. If included in the customer order, ABB calculates the safety data for the safety function, and delivers the data separately to the customer.

- **Safety component types**
 Safety component types as defined in IEC 61508-2:
 - emergency stop button: type A
 - safety relays: type A
 - contactor(s), circuit breaker: type A.

- **Safety block diagrams**
 Each multidrives delivery is unique. If included in the customer order, ABB defines the safety block diagram for each multidrives delivery, and delivers the diagram separately to the customer.
Relevant failure modes

- The main contactor does not open when requested. (All contactor failures are considered dangerous.)
- Internal failures of safety relays and the emergency stop button. These failures are included in the PFH value of the function.

Fault exclusions

Fault exclusions (not considered in the calculations):
- any short and open circuits in the cables of the safety circuit
- any short and open circuits in the cabinet terminal blocks of the safety circuits.

Operation delays

Emergency stop total delay: Emergency stop deceleration ramp time + 250 ms
General rules, notes and definitions

- **Validation of the safety functions**

You must do an acceptance test (validation) to validate the correct operation of safety functions.

Authorized person

An authorized person with expertise and knowledge of the safety function must do the acceptance test of the safety function. The authorized person must fill in and sign the test report.

Validation procedure

You must do the acceptance test using the checklist given in section *Start-up and acceptance test* on page 17:

- at initial start-up of the safety function
- after any changes related to the safety function (wiring, components, safety function related parameter settings etc.)
- after any maintenance action related to the safety function.

The acceptance test must include at least the following steps:

- you must have an acceptance test plan
- you must test all commissioned functions for proper operation, from each operation location
- you must document all acceptance tests.

Acceptance test reports

You must store the signed acceptance test reports in the logbook of the machine. The report must include, as required by the referred standards:

- a description of the safety application (including a figure)
- a description and revisions of safety components that are used in the safety application
- a list of all safety functions that are used in the safety application
- a list of all safety related parameters and their values
- documentation of start-up activities, references to failure reports and resolution of failures
- the test results for each safety function, checksums, date of the tests and confirmation by the test personnel.

You must store any new acceptance test reports performed due to changes or maintenance in the logbook of the machine.

Competence

The acceptance test of the safety function must be carried out by a competent person with adequate expertise and knowledge of the safety function as well as functional safety, as required by IEC 61508-1 clause 6. The test procedures and report must be documented and signed by this person.
Option description and instructions

- **Ambient conditions**

 For the environmental limits for the safety functions and the drive, refer to the hardware manual.

- **Reporting problems and failures related to safety functions**

 Contact your local ABB representative.

Related standards and directives

<table>
<thead>
<tr>
<th>Standard</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN ISO 13849-1:2015</td>
<td>Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design</td>
</tr>
<tr>
<td>IEC 61511-1:2016</td>
<td>Functional safety – Safety instrumented systems for the process industry sector – Part 1: Framework, definitions, system, hardware and application programming requirements</td>
</tr>
<tr>
<td>IEC 61326-3-1:2008</td>
<td>Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) – General industrial applications</td>
</tr>
<tr>
<td>2006/42/EC</td>
<td>European Machinery Directive</td>
</tr>
<tr>
<td>Other</td>
<td>Machine-specific C-type standards</td>
</tr>
</tbody>
</table>

- **Compliance with the European Machinery Directive**

 The drive is an electronic product which is covered by the European Low Voltage Directive. However, the drive internal safety function of this manual (option +Q952) is in the scope of the Machinery Directive as a safety component. This function complies with European harmonized standards such as EN/IEC 61800-5-2. The declaration of conformity is delivered with the drive.
Further information

Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/searchchannels.

Product training
For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Navigate to new.abb.com/drives/manuals-feedback-form.

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet at www.abb.com/drives/documents.