

ABB DRIVES FOR WATER AND WASTEWATER

Level control ACQ580

This guide assists with the setup and use of the ACQ580 level control function in detail.

Contents

Introduction	3
The level control function	4
Commissioning the drive(s)	5
Simplified operation example	11
Additional notes Level conflict Limited maximum number of pumps running at the same time Tank flush/Snoring	12 12 12 12

Introduction

Wet wells, sewer pumping stations or lift stations are used to move wastewater to higher elevations in order to allow further transport to the wastewater works by gravity flow. Sewage is processed into and sometimes stored (until it reaches a determined level) in a sealed underground pit.

Instrumentation is used to detect the level of sewage and when the level rises to a predetermined point, a pump is started to lift the sewage upward through a pressurized pipe system (sewer force main or rising main). Depending on the size and variation of the inflow and the degree of inconvenience in case of pump failure, there are often multiple pumps in a wet well. The number, spacing and size of pumps in the well is designed to minimize pump starts and stops (thus, reducing energy use and mechanical wear), while avoiding too long of a retention time in the tank (preventing the sewage from becoming septic and smelling).

Since catchment characteristics change (i.e. extra demand from rainwater runoff) and flow estimates can be inaccurate, accurate pump selection can be difficult, hence oversizing is a common practice. Running an oversized pump at its Best Efficiency Point (BEP) instead of at full speed is an excellent reason to apply a variable frequency drive on the pump.

The picture below shows a traditional wet well set up. There are three level sensors (highlighted with red dots) in the pit to operate the pumping station with three pumps, via a PLC.

- Bottom sensor: Stop level
- Middle sensor: Start level 1 (1st pump)
- Top sensor: Start level 2 (2nd pump)

Whether filling a water tank or emptying a wet well, the level control function in the ACQ580 is an extremely helpful and easy to use feature.

The function helps the pumping system achieve economical and reliable wastewater tank emptying or potable water reservoir filling by

- Optimizing energy usage, as the pumps are running at the most efficient speed
- Avoiding caking by varying the surface level
- Ensuring sufficient wastewater flow in the pipelines to avoid sedimentation
- Creating a redundant system to ensure continuous operation
- Removing the need for mechanical components (float switches)
- Eliminating the need for a PLC

The level control function

Typical set up

There are two operation modes available in the level control:

- filling for potable water applications; the goal is to fill, for example, the water tower
- emptying for wastewater tank application; the goal is to empty the wastewater sewage collection tank

The level control function utilizes three external signals:

- Analog input for the measured level of the liquid
- Digital input for the high-level sensor*
- Digital input for the low-level sensor*

* the internal response to this sensor differs depending on if the ACQ580 is filling or emptying a tank.

Figure 1: Example of typical wet well set up with three pumps

Please note:

- The level control function is typically used with multiple pumps; however, it can be used with a single pump.
- The level control does not regulate to a level (i.e. it's not a PID function), it runs the pumps at either the BEP speed or full speed.

Commissioning the drive(s)

How to set up the level control function

Using the assistant control panel, access the Multipump control section in the Primary settings.

Menu – Primary settings – Multipump control

Select Pumping mode

Auto	🖰 ACQ580) 49.8 Hz
Primary s	settings —	
Start, sto	p, reference	►
Motor		►∥
Pump fea	tures	▶
PID contr	ol	Not selected ►
Multipum	p control	Off ►
Back	03:32 p.n	n. Select

Auto	🌈 ACQ580	49.8 Hz
Multipum	p control ——	
🔏 Pumpi	ng mode:	Off
Back	03:34 n m	Select
DUCK	00.04 p.m.	001000

Select the desired Level control (filling or emptying) and press Next

* For this example, we will be setting up a wastewater tank that will be emptied. However, the steps to follow will be the same when setting up the drive to fill a tank.

Auto	C ACQ580	49.8 Hz
Pumpi	ng mode	
Select Off	pumping mode to use:	ſ
Intellig Level (jent pump control (IPC) control (filling)	
Level	control (emptying)	
Back	03:34 p.m.	Next

Set the Node number for the drive by pressing the Right Arrow

After setting the number, press Save and then Next

* Note: Node numbers must be unique for each drive in the tank and should <u>not</u> be 0 (zero)

Auto	C ACQ580	49.8 Hz
Pump n	ode number	
Set node	e number for this drive	t.
Node n	umber:	1►
Back	03:37 p.m.	Next

Select the I2I (drive to drive) communication method

Auto	🌈 ACQ580	49.8 Hz
121 confi	guration	
Select the communic	e intelligent pump c cation via:	ontrol
EFB		
FBA (FM	BA-01)	
Back	03:38 p.m.	Next

Next, it's time to set up some specifics for this drive

Select Settings for this pump

Auto	(~ ACQ580	0.0 Hz
Multipun	np control ———	
🗶 Pump	ing mode:	LC
Multipum	np comms (121) link:	EFB
Settings	for this pump	•
Shared s	settings	•
Back	08:30 a.m.	Select

C ACQ580

08:34 a.m.

Settings for this pump

0.0 Hz

1

Edit

ACQ580

Medium

Auto

Drive name

Node number:

🗹 Can be master

Prefer this pump:

With these settings, you can

- set the drive name to match the pump identification
- change the node number (if you failed to earlier)
- determine if this drive should ever be the Master of the pumping system
- set the running preference (for even wear, set this the same in all drives).

Note: Master enabled drive processes the feedback signals and activates/deactivates the follower drives. For redundant operation, several drives must be allowed to act as master. Tank level feedback must be hardwired to all master enabled drives.

Now it's time to set up common settings within the system,

While still in the Multipump control section of Primary settings, select Shared settings

Auto	C ACQ580	0.0 Hz
Multipu	mp control ———	
🔏 Pum	ping mode:	LC
Multipu	mp comms (121) link:	EFB
Settings for this pump		•
Shared	settings	•
Back	03:38 p.m.	Select

You can synchronize the settings with all drives on the I2I communication at this point.

Synchronization will save significant amount of time for the total system configuration. It also ensures that values within selected parameter groups are equal and copied according to last changed parameter.

Auto	(~ ACQ580	0.0 Hz
Shared se	ttings ——	
🗡 Synchro	nization setting	gs
Total numb	er of pumps:	1
Efficient sp	eed:	44 Hz
Start/stop	from:	Not selected 🛛
Level feed	back	•
Back	03:42 p.m.	Select

Set the number of pumps that are in the system (1 to 8)

Note: This will affect the number of settings that appear later when setting the Start/stop levels.

Auto	~ AC	:Q580	0.0 Hz
Shared s	ettings		
🗡 Synch	ronization	ı settings	Î
Total nun	nber of pu	umps:	3
Efficient	speed:		44 Hz
Start/sto	p from:	DI1 sta	rt∕stop 🛈 🏾
Level fee	dback		►
Back	07:5	3 a.m.	Edit

Set the BEP for the pump

This is the frequency at which the drive will run, as long as the pump can keep up with the inflow at this speed. A number of factors affect this value and a discussion with the pump supplier is required to determine the proper value.

Auto	C ACQ5	80	0.0 Hz
Shared	settings —		
🗡 Synch	nronization se	ettings	Î
Total nu	mber of pum	ps:	1
Efficient	speed:		44 Hz
Start/st	op from:	Not se	lected
Level fee	edback		- ►
~ ~			
Back	03:47 p).m.	Edit

Set the start and stop control location

Note: This selection basically enables the drive to start when demand requires.

Auto	acq280	0.0 Hz
Start/st	op from:	
Not sele	ected	Î
DI1 star	t/stop	
Embedd	led fieldbus	U
Fieldbus	3	
DI1P st	art, DI2 stop	
Cancel	03:48 p.m.	Save

Set up the measured level information by selecting Level feedback

Auto	ന ACQ	580	0.0 Hz
Shared :	settings –		
🔏 Synch	nronization s	settings	;
Total nu	mber of pun	nps:	3 🛛
Efficient	speed:		44 Hz
Start/st	op from:	DI1 sta	art∕stop 🛈 🏾
Level fee	edback		•
Back	07:56	a.m.	Select

Select the Level source and then select the Level unit

Auto	🜈 ACQ580	0.0 Hz
Level fee	dback ——	
Measured	level:	11.39 m
Measured	level %:	23 %
Level sour	rce:	AI2 scaled
Al2 scalin	g	*
Level unit:		m
Back	03:50 p.m.	Edit

Now set the scaling for the selected Analog Input

Note: The name of this selection will be AI2 scaling or AI1 scaling depending on the Level source.

Auto	(~ ACQ580	0.0 Hz
Al2 scali	ing ———	
Range:		010 V
Scaled m	in:	0.000
Scaled m	iax:	50.000
Deele	02.50	E 1:4
Dack	03:50 p.m.	Edit

After the Level feedback setup is complete, back out one step and Select Start/stop levels to set up the system control.

Auto	C AC	Q580	0.0 Hz
Shared s	ettings		
Total num	nber of pu	ımps:	3
Efficient :	speed:		44 Hz
Start/sto	p from:	DI1 sta	art/stop 🛈
Level fee	dback		•
Start/sto	p levels		►
Back	04:1	8 p.m.	Select

Set the desired starting levels for each pump in the system

Note: The number of pump settings appearing depend on the number that was entered earlier (Total number of pumps)

Auto	C ACQ580	0.0 Hz
Start/sto	p levels ——	
Start 1st	oump at:	20.00 m
Start 2nd	pump at:	25.00 m
Start 3rd	pump at:	30.00 m
Stop 3rd pump at:		15.00 m 🏻
Stop 2nd	pump at:	13.00 m
Back	04:22 p.m.	Edit

Set the desired stopping levels for each pump in the system

Note: The number of pump settings appearing depend on the number that was entered earlier (Total number of pumps)

Auto	acq280 🖓	0.0 Hz
Start/s	top levels ——	
Start 1s	t pump at:	20.00 m 🛛
Start 2n	id pump at:	25.00 m
Start 3r	d pump at:	30.00 m
Stop 3rd	d pump at:	15.00 m
Stop 2n	d pump at:	13.00 m
~ ^		44.00
Back	04:22 p.m.	Edit

Set the measured level at which all running pumps should ignore the BEP and Run at full speed.

Note: This level is required to try and prevent overflow (when emptying) of wastewater

Auto	🖰 ACQ580	0.0 Hz
Start/st	op levels ——	
Start 3rd	l pump at:	30.00 m
Stop 3rd	pump at:	15.00 m ∥
Stop 2nd	l pump at:	13.00 m 🛛
Stop 1st	pump at:	11.00 m 🛛
Run full	speed at:	45.00 m
Back	04:22 p.m.	Edit

Finally, in order to try and prevent caking (by having the water sitting at one level too long), set the Maximum time between levels.

Auto	(~ ACQ580	0.0 Hz
Start/s	top levels —	
Stop 3rd	d pump at:	15.00 m
Stop 2n	d pump at:	13.00 m
Stop 1st	t pump at:	11.00 m
Run full	speed at:	45.00 m
Maximu	m time between	levels: 1.0 h
Back	08:16 a.m.	Edit

Back out of Start/stop levels and set up Autochange to define pump change trigger.

Auto 🕻	🍽 ACQ580	0.0 Hz
Shared setti	ngs —	
Efficient spee	ed:	44 Hz
Start/stop fr	om: DI1	start∕stop 🛈 🕯
Level feedba	ck	►
Start/stop le	vels	▶
Autochange		►.
Back	04:27 p.m	. Select

There are numerous Autochange triggers to choose from, select the one that meets the systems requirements.

Auto	(~ ACQ580	0.0 Hz
Autochar	ge triggered by:	
Not sele	cted	Î
Fixed interval		
Even we	аг	Ĭ
All stopp	ed	
Timed fu	nction 1	
Cancel	04:28 p.m.	Save

The last thing to do is to set the feedback sources for the safety float switches (high and low limits) and the subsequent actions when hitting these switches. These settings are in parameters 76.90 – 76.93.

Note: A number of the prior settings can be reviewed and modified in group 76 Multipump configuration as well.

Auto	C ACQ580	0.0 Hz
76 Mul t	tipump configurat	ion ——
76.77 Pu	Imp priority	Normal
76.90 LC	low level switch	Selected
76.91 LC	high level switch	Selected
76.92 LC	low level action	Warning
76.93 LC	Chigh level action	Warning
Back	08:56 a.m.	Edit

Please note that in addition to the Commissioning steps shown above, there are other parameters that are required for proper operation of the pumping system (not covered in this document):

- Set drive frequency/speed limits
- Set Motor data
- Check Constant speed(s) if needed
- Ext1/Ext2 selection, commands and reference

Simplified operation example

Additional notes

Level conflict

When setting up the Start and Stop levels:

- The levels should be within the Al2 scaled min/max o If a value is outside the scaling, the drive will not start and will indicate why (level conflict)
- The start levels should
 - o Decrease from pump 1-2-3... when in Emptying control
 - o Increase from pump 1-2-3... when in Filling control

- The stop levels should
 - o Increase (or be the same) from pump 1-2-3... when in Emptying control
 - o Decrease (or b the same) from pump 1-2-3... when in Filling control

Start/Stop point "1" does not always pertain to pump "A"

• ACQ580 will rotate the "master" of the system; the "master" uses Start/Stop point 1 and then subsequent pumps will use Start/Stop points 2-8.

Limited maximum number of pumps running at the same time

Sometimes there is a need to limit the maximum number of pumps running on Level control. This can be e.g. due to limitations on the pipeline capacity. Common set-up is duty-assist-standby configuration, where one of the pumps should always be on standby mode.

A solution for this kind of case is to set the start point of the standby pump to a level just within the level feedback AI scaling min/max.

- Example:
 - o tank emptying, tank height 8 m
 - o level sensor connected to Al
 - o 3 pumps
 - o Al scaled, scale from 0 to 10 m
 - o Start point 1:5m
 - o Start point 2:6 m
 - Start point 3: 9.99 m (So the 3rd starting point is outside the possible real-life water level, but inside the range defined with AI scaling parameters)

• Run pumps with full speed: 7m (This level should be lower than 3rd pump starting level) This setup would never start the 3rd pump but would have it always available in case needed.

Tank flush/Snoring

A common way to avoid sedimentation at the bottom of the tank it is pump the tank as empty as possible every now and then. This can be done by pumping the pump with full speed until the pump draws air and "snoring" sound is heard. A simple way is to assign constant speed to a digital input which in turn is connected to a push button on the control cabinet door.

Menu \rightarrow Primary settings \rightarrow Start, stop, reference \rightarrow Auto control location

• Timed Function 1 (we will change this later)

Menu \rightarrow Primary settings \rightarrow Start, stop, reference \rightarrow Primary auto control location

- Start/stop from: DI1 (the same as level control start source)
- Reference from: Not selected

Menu \rightarrow Primary settings \rightarrow Start, stop, reference \rightarrow Constant frequencies/speeds

- Use constant frequencies/speeds
- Select frequency/speed from: DI6 frequency/speed 1
- Set Frequency 1 / Speed 1 to *snoring freq/speed* (normally pump's full speed is used)

The last settings must set via parameters:

Menu \rightarrow Parameters \rightarrow Complete list \rightarrow 19 Operation mode \rightarrow Par 19.11 Ext1/Ext2 selection \rightarrow Other \rightarrow 10 Standard DI, RO \rightarrow 10.02 DI delayed status \rightarrow DI6 (-1) (digital input 6 *inverted*)

With these settings the drive is normally part of the Level control system, but when the pushbutton (NO) connected to DI6 is pressed, snoring is started thus the pump is run with snoring speed as long as the button is pressed. If the button is used as trigger only for the snoring sequence, the length of the snoring sequence can be set at Par 10.16 DI6 OFF delay. Snoring is disabled if the start signal DI1 is off.

This guide is designed to help assist with using the level control function available in the ACQ580 VFD. Please consult your local ABB for additional assistance.