Detectors with different measurement principles for numerous process and emission monitoring applications

Up to five measurement components per gas analyzer

Suitable for measuring flammable gases

Version with protection type II 3G for measurement of non-flammable gases

Performance-tested versions for emission monitoring according to Directive 2001/80/EC

QAL3 monitoring according to EN 14181 (optional)

Automatic calibration including pump and valve control

Simplified calibration with air or integral calibration cells eliminating the need for test gas cylinders

Customizable analog outputs, digital inputs and digital outputs

Modbus and Profibus interface

Simple menu-driven operator interface

Clear-text status messages

Configuration of rarely required functions with included configuration program

Self-monitoring function indicates when maintenance is required

Housing versions for 19-inch rack mounting (Model EL3020) and wall mounting (Model EL3040)

Integral gas feed (optional in Model EL3020)
Overview of the Gas Analyzers

Measuring Technology (Analyzers)
The following analyzers are available for selection:
• Uras26 infrared photometer for the measurement of infrared-active gas components e.g. CO, NO, SO2
• Magnos206 oxygen analyzer for the measurement of O2 in process gas or in N2
• ZO23 trace oxygen analyzer for the measurement of O2 in pure gases (N2, CO2, Ar)
• Caldos27 thermal conductivity analyzer for the measurement of binary gas mixtures with different thermal conductivity e.g. Ar in O2, H2 in Ar, CH4 in N2
• Electrochemical oxygen sensor for the measurement of O2
The electrochemical oxygen sensor can only be used in combination with the Uras26 infrared photometer.
The Magnos206 oxygen analyzer and the Caldos27 thermal conductivity analyzer can also be used in combination with the Uras26 infrared photometer.
The ZO23 trace oxygen analyzer cannot be used in combination with one of the other analyzers. Only one ZO23 trace oxygen analyzer can be installed in the gas analyzer.
Each analyzer has one physical measurement range per sample component. A section of the physical measurement range can be mapped to the current output (analog output) by on-site configuration. Calibration is always executed in the physical measurement range. The permissible measurement range limits are given by the specification of the smallest and largest measurement ranges for the individual analyzers.
A total of up to five measurement components can be measured with one gas analyzer.

Integral Gas Feed
The integral gas feed (optional in Model EL3020) is available in two versions. It includes
• either the solenoid valve, pump, coarse filter, capillary tube and flow sensor modules
• or a flow sensor module.

Electrical Interfaces
The electrical interfaces for the output of measured values and communication with external systems include
• The integrated Ethernet-10/100BASE-T interface (for configuration, software update and QAL3 data transfer)
as well as the integrated I/O modules depending on the functional range and order
• Analog output module with two analog outputs,
• Digital I/O module with four digital inputs and four digital outputs,
• Modbus module with one RS485 and one RS232 interface,
• Profinet module with one RS485 and one MBP interface.

Housing Design
The housing for the EL3020 gas analyzer model is designed as a 19-inch housing with 3 height units and degree of protection IP20.
The housing for the EL3040 gas analyzer model is designed as a wall-mount housing with degree of protection IP65.

QAL3 Monitoring
QAL3 monitoring is available as an option in the gas analyzer. It is used to fulfill the requirements according to EN 14181 for storage and analysis of device adjustment data. The QAL3 monitoring option features the following functions:
• Automatic acquisition, verification and documentation of drift and precision at zero and reference points
• Reporting via CUSUM and Shewhart control charts
• QAL3 data storage in the gas analyzer (maximum 1 year)
• QAL3 data display and query as well as parameter setting via web browser
• Status messages on deviations beyond requirements
• Data export for further processing with spreadsheet programs
The gas analyzer must be connected to a PC via the Ethernet interface for QAL3 monitoring operation.
Infrared Photometer Uras26

Measurement Principle
Non-dispersive infrared absorption
Photometer to measure up to 4 components

Sample Components and Measurement Ranges
Sample Components and Smallest Measurement Ranges

<table>
<thead>
<tr>
<th>Sample Component</th>
<th>Smallest Measurement Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0–100 ppm</td>
</tr>
<tr>
<td>CO₂</td>
<td>0–100 ppm</td>
</tr>
<tr>
<td>NO</td>
<td>0–150 ppm</td>
</tr>
<tr>
<td>SO₂</td>
<td>0–100 ppm</td>
</tr>
<tr>
<td>N₂O</td>
<td>0–100 ppm</td>
</tr>
<tr>
<td>CH₄</td>
<td>0–100 ppm</td>
</tr>
</tbody>
</table>

Measurement Range Quantity
2 measurement ranges

Measurement Range Limits

<table>
<thead>
<tr>
<th>Smallest Measurement Range</th>
<th>Largest Measurement Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–100 ppm (NO: 0–150 ppm)</td>
<td>0–500 ppm (NO: 0–750 ppm)</td>
</tr>
<tr>
<td>0–200 ppm</td>
<td>0–1000 ppm</td>
</tr>
<tr>
<td>0–600 ppm</td>
<td>0–3000 ppm</td>
</tr>
<tr>
<td>0–2000 ppm</td>
<td>0–10000 ppm</td>
</tr>
<tr>
<td>0–0.8 Vol.-%</td>
<td>0–3 Vol.-%</td>
</tr>
<tr>
<td>0–2 Vol.-%</td>
<td>0–10 Vol.-%</td>
</tr>
<tr>
<td>0–6 Vol.-%</td>
<td>0–30 Vol.-%</td>
</tr>
<tr>
<td>0–20 Vol.-%</td>
<td>0–100 Vol.-%</td>
</tr>
</tbody>
</table>

An individual measurement range within the limits shown in the table can be factory-set on special order.
Measurement ranges are freely adjustable within the limits shown in the table.
Measurement ranges should not be set within ignition limits.

Stability
The following data apply only if all influence factors (e.g. flow rate, temperature, atmospheric pressure) are constant.

Linearity Deviation
≤ 1% of span

Repeatability
≤ 0.5 % of span

Zero Drift
≤ 1% of span per week

Sensitivity Drift
≤ 1% of measured value per week

Output Fluctuation (2 σ)
≤ 0.2 % of span at electronic T90 time (static/dynamic)
= 5/0 sec

Detection Limit (4 σ)
≤ 0.4 % of span at electronic T90 time (static/dynamic)
= 5/0 sec

Influence Effects
Flow Effect
Flow rate in the 20–100 l/h range: Within detection limits

Associated Gas Effect/Cross Sensitivity
The knowledge of the sample gas composition is necessary for the analyzer configuration.
Selectivity measures to reduce associated gas effect (optional): Incorporation of interference filters or filter cells, internal electronic cross-sensitivity correction for one sample component by other sample components measured with the gas analyzer.

Temperature Effect
Ambient temperature in permissible range
- At zero-point: ≤ 2 % of span per 10 °C
- On sensitivity without thermostat:
 ≤ 3 % of measured value per 10 °C
- On sensitivity with thermostat (optional):
 ≤ 2 % of measured value per 10 °C
Thermostat temperature = 55 °C

Air Pressure Effect
- At zero-point: No effect
- On sensitivity with pressure correction by means of integral pressure sensor: ≤ 0.2 % of measured value per 1% barometric pressure change
The pressure sensor is located in the sample gas path if hoses are used as the internal gas lines.
If stainless-steel tubing is used for internal gas lines the pressure sensor is routed to the outside via a hose.
Pressure sensor working range: \(p_{\text{min}} = 600–1250 \text{ hPa} \)

Power Supply Effect
Voltage and frequency in the permissible range: No effect
Infrared Photometer Uras26

Dynamic Response

- Warm-Up Time
 Approx. 30 minutes without thermostat; approx. 2 hours with thermostat

- 90% Response Time
 \[T_{90} = 2.5 \text{ sec for measurement cell length } = 175 \text{ mm, sample gas flow } = 60 \text{ l/h and electronic } T_{90} \text{ time (static/dynamic)} = 5/0 \text{ sec.} \]

Calibration

- Zero-Point Calibration
 With inert gas, e.g. N₂, or with ambient air that is free of the sample component.

- End-Point Calibration
 With gas-filled calibration cells (optional) or with test gas mixtures. It is recommended to verify the calibration cell set values once a year.

Materials in Contact with the Sample Medium

- Analyzer (Sample Cells)
 Tubing: Aluminum; Window: CaF₂ or BaF₂;
 Connectors: Stainless steel 1.4305

- Gas Lines and Connectors
 FPM (Fluorocarbon rubber) hoses, PVDF connectors.
 When flammable components are present in the sample gas:
 Stainless steel tubes 1.4571, stainless steel connectors 1.4305

Gas Inlet Conditions

- The analyzer must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

- Temperature
 The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.

- Inlet Pressure
 \(p_e = 2-500 \text{ hPa} \)
 Lower pressures require a sample gas pump and higher pressures require a pressure reducer.

- Outlet Pressure
 Atmospheric pressure

- Flow Rate
 20–100 l/h

- Corrosive Gases
 Highly corrosive associated gas components, e.g. chlorine (Cl₂) and hydrogen chloride (HCl), as well as gases or aerosols containing chlorine must be cooled or undergo prior absorption.

- Flammable Gases
 In the version with gas lines and connectors made of stainless steel the analyzer is suitable for measuring flammable gases in general purpose environment. The special requirements must be observed (see operator’s manual).

Gas Connections

- See page 20 (Model EL3020) and page 22 (Model EL3040).
 The version with two separate gas paths is used for NOx measurement with NO₂/NO converter connected upstream.
Oxygen Analyzer Magnos206

Measurement Principle
Paramagnetic behavior of oxygen
Magnetomechanical oxygen analyzer; short 90% response time

Sample Component and Measurement Range
Sample Component
Oxygen (O2)

Smallest Measurement Range
0–2 Vol.-% O2

Quantity and Measurement Range Limits
2 measurement ranges
Measurement ranges are freely adjustable; they are factory-set per order to 0–5 or 0–100 or 98–100 Vol.-% O2.

Largest Measurement Range
0–100 Vol.-% O2
Measurement ranges should not be set within ignition limits.

Measurement Ranges with Suppressed Zero-Point
Suppressed measurement ranges are freely adjustable in the range 0–100 Vol.-% O2. Smallest span 2 Vol.-% O2. The combination of a suppressed and an initial measurement range is not possible.
Pressure correction with a pressure sensor is required.
A pressure sensor is installed when the analyzer has been ordered with suppressed measurement range.

Stability
The following data apply only if all influence factors (e.g. flow rate, temperature, atmospheric pressure) are constant. They are based on a span of 2 Vol.-% O2.

Linearity Deviation
≤ 0.5 % of span

Repeatability
≤ 50 ppm O2 (time base for gas exchange ≥ 5 minutes)

Zero Drift
≤ 3 % of span of the smallest measurement range (per order) per week, minimum 300 ppm O2 per week; following prolonged transport and storage time the drift can be higher during the first weeks of operation.

Sensitivity Drift
≤ 0.1 Vol.-% O2 per week or ≤ 1 % of measured value per week (not cumulative), whichever is smaller.
≤ 0.25 % of measured value per year, minimum 0.05 Vol.-% O2 per year

Output Fluctuation (2 σ)
≤ 25 ppm O2 at electronic T90 time (static/dynamic) = 3/0 sec

Detection Limit (4 σ)
≤ 50 ppm O2 at electronic T90 time (static/dynamic) = 3/0 sec

Influence Effects
Flow Effect
≤ 0.1 Vol.-% O2 in the 30–90 l/h range

Associated Gas Effect
The effect of associated gases as a shift of the zero-point – expressed in Vol.-% O2 – can be estimated using the approximate values in the following table:

<table>
<thead>
<tr>
<th>Associated Gas Concentration</th>
<th>Zero-Point Shift in 100 Vol.-%</th>
<th>Vol.-% O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen H2</td>
<td>+0.28</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Sulfide H2S</td>
<td>−0.45</td>
<td></td>
</tr>
<tr>
<td>Argon Ar</td>
<td>−0.26</td>
<td></td>
</tr>
<tr>
<td>Helium He</td>
<td>+0.30</td>
<td></td>
</tr>
<tr>
<td>Neon Ne</td>
<td>+0.13</td>
<td></td>
</tr>
<tr>
<td>Nitrogen N2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Oxide NO</td>
<td>+43</td>
<td></td>
</tr>
<tr>
<td>Nitrogen Dioxide NO2</td>
<td>+28</td>
<td></td>
</tr>
<tr>
<td>Nitrous Oxide N2O</td>
<td>−0.20</td>
<td></td>
</tr>
<tr>
<td>Carbon Monoxide CO</td>
<td>−0.01</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide CO2</td>
<td>−0.32</td>
<td></td>
</tr>
<tr>
<td>Carbon Oxysulfide COS</td>
<td>−0.90</td>
<td></td>
</tr>
<tr>
<td>Ethane C2H6</td>
<td>−0.46</td>
<td></td>
</tr>
<tr>
<td>Ethylene C2H4</td>
<td>−0.29</td>
<td></td>
</tr>
<tr>
<td>Methane CH4</td>
<td>−0.24</td>
<td></td>
</tr>
<tr>
<td>Propane C3H8</td>
<td>−0.98</td>
<td></td>
</tr>
<tr>
<td>Propylene C3H6</td>
<td>−0.55</td>
<td></td>
</tr>
<tr>
<td>Trichloroethane C2HCl3</td>
<td>−2.17</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride CH2CHCl</td>
<td>−0.75</td>
<td></td>
</tr>
</tbody>
</table>

For further associated gases refer to EN 61207-3

Temperature Effect
Ambient temperature in the permissible range
- At zero-point: ≤ 1 % of span per 10 °C, ≤ 2 % of span per 10 °C in combination with Uras26
- On sensitivity: ≤ 0.2 % of measured value per 10 °C
Thermostat temperature = 64 °C

Air Pressure Effect
- At zero-point: No effect
- On sensitivity with no pressure correction:
 ≤ 1 % of measured value per 1 % air pressure change
- On sensitivity with pressure correction using integrated pressure sensor (optional):
 ≤ 0.01 % of measured value per 1 % pressure change or
 ≤ 0.002 Vol.-% O2 per 1 % pressure change, whichever is greater
Pressure sensor working range: pabs = 600–1250 hPa

Power Supply Effect
Voltage and frequency in the permissible range: ≤ 0.2 % of span

Position Effect
Zero-point shift ≤ 0.05 Vol.-% O2 per 1° deviation from horizontal orientation. Position has no effect on the hard-mounted unit.
Oxygen Analyzer Magnos206

Dynamic Response

Warm-Up Time
< 1 hour

90% Response Time
\[T_{90} \leq 4 \text{ sec} \] at a sample gas flow of 90 l/h and electronic T90 time (static/dynamic) = 3/0 sec, gas change from N₂ to air

Calibration

Zero-Point Calibration
With oxygen-free process gas or substitute gas

End-Point Calibration
With process gas with a known oxygen concentration or a substitute gas such as dried air

Single-Point Calibration
Zero-point calibration with any oxygen concentration, e.g. with nitrogen (N₂) or ambient air, processed through a cooler or H₂O absorber; sensitivity deviation ≤ 0.05 Vol.-% O₂ per year.
Pressure correction by means of pressure sensor is recommended for single-point calibration with air.
Depending on the measurement task involved, the zero- and end-points should be verified periodically.

Calibration of Measurement Ranges with Suppressed Zero-Point
Highly suppressed measurement ranges (≥95–100 Vol.-% O₂) should only be calibrated with test gases with concentrations in the selected measurement range.

Materials in Contact with the Sample Medium

Analyzer
Sample chamber (direct connection): Stainless steel 1.4305, glass, platinum, rhodium, epoxy resin;
Seals: FPM (Fluorocarbon rubber), PEEK

Gas Inlet Conditions

The analyzer must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

Temperature
-5 to +50 °C

The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Inlet Pressure
\[p_a = 2\text{-}100 \text{ hPa} \]

Lower pressures require a sample gas pump and higher pressures require a pressure reducer.

Outlet Pressure
Atmospheric pressure

Flow Rate
30–90 l/h

Abrupt changes in gas flow rates should be avoided when using highly suppressed measurement ranges.

Corrosive Gases
Consultation with ABB Analytical is required if the sample gas contains Cl₂, HCl, HF or other corrosive components.
The AO2000-Magnos206 analyzer should be used if the sample gas contains NH₃.

Flammable Gases
The analyzer is suitable for measuring flammable gases in general purpose environment. The special requirements must be observed (see operator's manual).

Gas Connections
see page 21 (Model EL3020) and page 23 (Model EL3040)
Trace Oxygen Analyzer ZO23

Measurement Principle
Potentiometric measurement; zirconium dioxide cell for determination of the oxygen concentration in accordance with Nernst’s equation; reference gas: ambient air.

The analyzer is used for the continuous measurement of oxygen in pure gases (N₂, CO₂, Ar). The measuring cell is catalytically inactivated to the extent that flammable carrier components in stoichiometric concentrations only negligibly reduce the oxygen value.

Sample Component and Measurement Ranges

<table>
<thead>
<tr>
<th>Sample Component</th>
<th>Measurement Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen (O₂)</td>
<td>2 measurement ranges</td>
</tr>
<tr>
<td></td>
<td>Measurement ranges are freely adjustable within the 0...1 ppm to 0...250,000 ppm O₂ range; they are factory-set to 0 to 1/0 to 10 ppm O₂.</td>
</tr>
<tr>
<td></td>
<td>The following measurement data refer to a measurement span of 100 ppm O₂ with an integrated pump and flow control.</td>
</tr>
</tbody>
</table>

Stability

Linearity
Owing to the measurement principle, zirconium dioxide cells are base linear.

Repeatability
< 1% of the measurement range or 100 ppb O₂ (whichever is greater)

Zero Drift
The zero point (reference point) is displayed if ambient air is present on the sample gas side. The value for air of 20.6 % Vol. of O₂ may deviate through aging of the cell.

< 1% of the measurement range per week or 250 ppb O₂ (whichever is greater)

Sensitivity Drift
Depends on possible interfering components (catalyst poisons) in the sample gas and the aging of the cell.

For pure gas measurements in N₂ and Ar:
< 1% of the measurement range per week or 250 ppb O₂ (whichever is greater)

Output Fluctuation (2 α)
< ±0.5 % of the measured value or 50 ppb O₂ (whichever is greater)

Influence Effects

Flow Effect
≤ 1% of the measurement span or 100 ppb O₂ (whichever is greater) for a flow rate of 8 ± 0.2 l/h.

The flow rate must be kept constant to ±0.2 l/h in the permissible range. The permissible range is 5 to 10 l/h. The flow rate is kept constant to 8 ± 0.2 l/h with integrated pump and flow control.

Associated Gas Effect
Inert gases (Ar, CO₂, N₂) have no effect. Flammable gases (CO, H₂, CH₄) in stoichiometric concentrations to the oxygen content: Conversion of O₂ < 20 % of the stoichiometric conversion. If higher concentrations of flammable gases are present, higher O₂ conversions must be expected. The concentration of flammable gases in the sample gas must not exceed 100 ppm.

Temperature Effect
The effect of the ambient temperature in the permissible range of +5 to +45 °C is < 2 % of the measured value or 50 ppb O₂ per 10 °C change in the ambient temperature (whichever is greater).

Air Pressure Effect
No effect through a change in air pressure; sample gas must flow out of the outlet without back pressure.

Power Supply Effect
24 V DC ± 5 %: no effect

Position Effect
No position effect for permanently installed instruments
Trace Oxygen Analyzer ZO23

Dynamic Response

Warm-Up Time
The operating temperature of the cell is reached after approx. 15 min. Offset calibration with reference gas (ambient air) after 2 h flow. The measurement is ready-to-run after valves and lines have been purged with sample gas. Typical purging time for valves and lines: approx. 2 to 5 h.

90% Response Time
$T_{90} < 60 \text{ s}$ for the alternation of 2 test gases in the measurement range 10 ppm with a sample gas flow rate $= 8 \text{ l/h}$ and electronic T_{90} time $= 3 \text{ s}$

Calibration

Offset Calibration
The reference value for ambient air is calibrated at 20.6 % Vol. by means of ambient air on the sample gas side.

End-Point Calibration
By means of test gas O$_2$ in N$_2$ (or in CO$_2$ or in Ar); O$_2$ concentration in the measurement range, e.g. 10 ppm O$_2$

Function Test
An extended response time or reduced sensitivity are dimensions for the correct functioning of the measuring cell. The function test can be carried out by feeding the sample gas without any additional test gases. On the basis of the progression of the test, it can be assessed whether the reaction time of the sensor lies within a specified tolerance. The function test is started manually and lasts approx. 15 min.

Materials in Contact with the Sample Medium

Analyzer
Zirconium dioxide cell: ZrO$_2$, electrodes containing platinum;
Dust filter: PP; Pump: EPDM; Flow sensor: on semiconductor basis, nickel-plated brass

Gas Lines and Connectors
Stainless steel 1.4571, FPM and silicon hoses in the gas outlet;
Gas connections: stainless steel 1.4401/1.4305

Pneumatics Diagram

As an option, an integrated gas feed can be installed in the trace oxygen analyzer (see pneumatics diagram). The analyzer cannot be connected to the EL3000 series integral gas feed.

Gas Inlet Conditions

The analyzer must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

Temperature
-5 to +50 °C

Inlet Pressure
$p_a = 2$ to 20 hPa

Outlet Pressure
Atmospheric pressure

Flow Rate
5 to 10 l/h. The flow rate must be kept constant to ±0.2 l/h in this range.
The flow rate is kept constant to $8 \pm 0.2 \text{ l/h}$ with integrated pump and flow control. The sample gas must be taken from a bypass at zero pressure.

Corrosive Gases
The presence of corrosive gases and catalyst poisons, e.g. halogens, gases containing sulfur and heavy-metal dust, leads to faster aging and/or destruction of the ZrO$_2$ cell.

Flammable Gases
The concentration of flammable gases in the sample gas must not exceed 100 ppm.

Purge Gas
If case purging is selected, purging may only be carried out with air (not with N$_2$), since the ambient air is used as a reference gas.

Gas Connections
see page 21 (Model EL3020) and page 23 (Model EL3040)
Measurement Principle

Difference in thermal conductivity of various gases
Micromechanical silicon sensor with especially short T90 time

Sample Components and Measurement Ranges

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air in Ar</td>
<td>0–6 Vol.-%</td>
<td>94–100 Vol.-%</td>
</tr>
<tr>
<td>Ar in air</td>
<td>0–6 Vol.-%</td>
<td>94–100 Vol.-%</td>
</tr>
<tr>
<td>Air in CO₂</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>CO₂ in air</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>Air in H₂</td>
<td>0–3 Vol.-%</td>
<td>–</td>
</tr>
<tr>
<td>H₂ in air</td>
<td>0–1 Vol.-%</td>
<td>–</td>
</tr>
<tr>
<td>Air in He</td>
<td>0–3 Vol.-%</td>
<td>98–100 Vol.-%</td>
</tr>
<tr>
<td>He in air</td>
<td>0–2 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>Ar in CO₂</td>
<td>–</td>
<td>50–100 Vol.-%</td>
</tr>
<tr>
<td>CO₂ in Ar</td>
<td>0–60 Vol.-%</td>
<td>–</td>
</tr>
<tr>
<td>Ar in H₂</td>
<td>0–3 Vol.-%</td>
<td>99–100 Vol.-%</td>
</tr>
<tr>
<td>H₂ in Ar</td>
<td>0–1 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>Ar in He</td>
<td>0–3 Vol.-%</td>
<td>99–100 Vol.-%</td>
</tr>
<tr>
<td>He in Ar</td>
<td>0–1 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>Ar in N₂</td>
<td>0–6 Vol.-%</td>
<td>94–100 Vol.-%</td>
</tr>
<tr>
<td>N₂ in Ar</td>
<td>0–6 Vol.-%</td>
<td>94–100 Vol.-%</td>
</tr>
<tr>
<td>Ar in O₂</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>O₂ in Ar</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>CH₄ in H₂</td>
<td>0–3 Vol.-%</td>
<td>99–100 Vol.-%</td>
</tr>
<tr>
<td>H₂ in CH₄</td>
<td>0–1 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>CH₄ in N₂</td>
<td>0–6 Vol.-%</td>
<td>94–100 Vol.-%</td>
</tr>
<tr>
<td>N₂ in CH₄</td>
<td>0–6 Vol.-%</td>
<td>94–100 Vol.-%</td>
</tr>
<tr>
<td>CO in H₂</td>
<td>0–3 Vol.-%</td>
<td>99–100 Vol.-%</td>
</tr>
<tr>
<td>H₂ in CO</td>
<td>0–1 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>CO₂ in H₂</td>
<td>0–3 Vol.-%</td>
<td>99–100 Vol.-%</td>
</tr>
<tr>
<td>H₂ in CO₂</td>
<td>0–1 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>CO₂ in N₂</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>N₂ in CO₂</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>H₂ in N₂</td>
<td>0–1 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>N₂ in H₂</td>
<td>0–3 Vol.-%</td>
<td>99–100 Vol.-%</td>
</tr>
<tr>
<td>H₂ in NH₃</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>NH₃ in H₂</td>
<td>0–10 Vol.-%</td>
<td>90–100 Vol.-%</td>
</tr>
<tr>
<td>He in N₂</td>
<td>0–2 Vol.-%</td>
<td>97–100 Vol.-%</td>
</tr>
<tr>
<td>N₂ in He</td>
<td>0–3 Vol.-%</td>
<td>98–100 Vol.-%</td>
</tr>
</tbody>
</table>

Largest Measurement Range

0–100 Vol.-% or 0 Vol.-% to saturation, depending on measurement task
Measurement ranges should not be set within ignition limits.

Stability

The following data apply only if all influence factors (e.g. flow rate, temperature, atmospheric pressure) are constant. They relate to smallest measurement ranges given in the table. The deviations may be larger for smaller measurement ranges.

Linearity Deviation ≤ 2 % of span

Repeatability ≤ 1 % of span

Zero Drift ≤ 2 % of smallest possible measurement range per week

Sensitivity Drift ≤ 0.5 % of smallest possible measurement range per week

Output Fluctuation (2σ) ≤ 0.5 % of smallest measurement range span at electronic T90 time = 0 sec

Detection Limit (4σ) ≤ 1 % of smallest measurement range span at electronic T90 time = 0 sec

Influence Effects

The following data relate to smallest measurement ranges given in the table. The influence effects will be larger at operating altitudes > 2000 meters.

Flow Effect ≤ 0.5 % of span at a flow change of ±10 l/h. At an identical flow rate for test and sample gases the flow rate effect is automatically compensated.

Associated Gas Effect

The knowledge of the sample gas composition is necessary for the analyzer configuration. If the sample gas contains components in addition to the sample component and associated gas (binary gas mixture), this will result in erroneous measurements.

Temperature Effect

Ambient temperature in the permissible range at each point in the measurement range: ≤ 1 % of span per 10 °C, based on temperature at the time of calibration Thermostat temperature = 60 °C

Air Pressure Effect

≤ 0.25 % of span per 10 hPa for the smallest possible ranges given; for larger spans the effect is correspondingly lower. Pressure sensor working range: pₐₜₙ = 600–1250 hPa

Power Supply Effect

Voltage and frequency in the permissible range: ≤ 0.2 % of span

Position Effect

< 1 % of span up to 30° deviation from horizontal orientation
Thermal Conductivity Analyzer Caldos27

Dynamic Response

Warm-Up Time
- Approx. 30 minutes

90% Response Time
- \(T_{90} \leq 2 \text{ sec} \) at sample gas flow of 60 l/h and electronic
- \(T_{90} \) time (static/dynamic) = 0/0 sec

Calibration

Zero-Point Calibration
- With test gas, measurement component-free process gas or substitute gas

End-Point Calibration
- With test gas, process gas having a known sample gas concentration or substitute gas

Single-Point Calibration
- A single-point calibration can be performed with standard gas, since the zero- and end-points will not drift independently due to the sensor principle employed. This technique leaves out safety-related measurements. Depending on the measurement task involved, the zero- and end-points should be verified periodically (Recommendation: once a year).

Materials in Contact with the Sample Medium

Analyzer
- Sample chamber (direct connection): Stainless steel 1.4305;
- Sensor: Gold, silicon ox-nitride; Seat: FFKM75 (Perfluoro rubber)

Gas Inlet Conditions

The analyzer must not be used for measurement of ignitable gas/air or gas/oxygen mixtures.

Temperature
- +5 to +50 °C

The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required. Water vapor content variations cause volume errors.

Inlet Pressure
- \(p_s = 2–100 \text{ hPa} \)
- Lower pressures require a sample gas pump and higher pressures require a pressure reducer.

Outlet Pressure
- Atmospheric pressure

Flow Rate
- Normally 10–90 l/h, minimum 1 l/h

Pressure Drop
- \(< 2 \text{ hPa} \) at 60 l/h \(\text{N}_2 \)

Corrosive Gases
- Consultation with ABB Analytical is required if the sample gas contains Cl\(_2\), HCl, HF, SO\(_2\), NH\(_3\), H\(_2\)S or other corrosive components.

Flammable Gases
- The analyzer is suitable for measuring flammable gases in general purpose environment. The special requirements must be observed (see operator's manual).

Gas Connections
- see page 21 (Model EL3020) and page 23 (Model EL3040)
Electrochemical Oxygen Sensor

Measurement Principle
Electrochemical oxygen sensor

Sample Component and Measurement Range

- **Sample Component**
 - Oxygen (O₂)

- **Smallest Measurement Range**
 - 0–5 Vol.-% O₂

- **Measurement Range**
 - Adjustable from 0–5 Vol.-% O₂ to 0–25 Vol.-% O₂

Stability

- **Linearity Deviation**
 - Linear in the range > 1 Vol.-% O₂

- **Repeatability**
 - ≤ 0.5 % of span

- **Zero Drift**
 - Stable over long-term due to absolute zero point

- **Sensitivity Drift**
 - ≤ 1% of the measurement range per week

- **Output Fluctuation (2σ)**
 - ≤ 0.2 % of the measurement range at electronic T90 time (static/dynamic) = 5/0 sec

- **Detection Limit (4σ)**
 - ≤ 0.4 % of the measurement range at electronic T90 time (static/dynamic) = 5/0 sec

Influence Effects

- **Flow Effect**
 - Flow rate in the 20–100 l/h range:
 - ≤ 2 % of the measurement range

- **Temperature Effect**
 - Ambient temperature in the +5 to +40 °C range:
 - ≤ 0.2 Vol.-% O₂ per 10 °C

- **Air Pressure Effect**
 - At zero-point: No effect
 - On sensitivity with no pressure correction:
 - ≤ 1% of measured value per 1 % air pressure change
 - On sensitivity with pressure correction:
 - ≤ 0.2 % of sample value per 1 % air pressure change

- **Pressure correction is only possible if the oxygen sensor is connected to the Uras26 infrared photometer with an integral pressure sensor.**

- **Power Supply Effect**
 - Voltage and frequency in the permissible range: ≤ 0.2 % of span

Dynamic Response

- **90% Response Time**
 - $T_{90} \leq 30$ sec at sample gas flow of 60 l/h and electronic
 - T_{90} time (static/dynamic) = 5/0 sec

Calibration

- **Zero-Point Calibration**
 - The oxygen sensor zero is not calibrated since it is fundamentally stable.

- **End-Point Calibration**
 - With ambient air at 20.96 Vol.-% O₂

Materials in Contact with the Sample Medium

- **Sensor**
 - Polystyrol-ABS, PTFE, FPM (Fluorocarbon rubber)

- **Housing Body**
 - PVC, FPM (Fluorocarbon rubber) seals

- **Gas Ports**
 - Stainless steel 1.4571

Gas Inlet Conditions

- The oxygen sensor must not be used for measurement of flammable gases and ignitable gas/air or gas/oxygen mixtures.

- **Temperature**
 - The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.

- **Moisture Content**
 - H_2O dew point ≥ 2 °C
 - The oxygen sensor should not be used with dry sample gas.

- **Inlet Pressure**
 - $p_e = 2–500$ hPa

- **Outlet Pressure**
 - Atmospheric pressure

- **Flow Rate**
 - 20–100 l/h

- **Associated Gas**
 - The oxygen sensor should not be used if the associated gas contains the following components: H₂S, chlorine or fluorine compounds, heavy metals, aerosols, mercaptane, base components.

Note

- The oxygen sensor can only be used in combination with the Uras26 infrared photometer. It cannot be used when the internal gas lines in the Uras26 are made up of stainless steel pipes.
Integral Gas Feed

Versions
The integral gas feed (optional in Model EL3020) is available in two versions. It includes:
- either the solenoid valve, pump, coarse filter, capillary tube and flow sensor modules
- or the flow sensor module.

The integral gas feed cannot be installed when the internal gas lines are made up of stainless steel pipes. It cannot be used in combination with the trace oxygen analyzer ZO23.

Test Gas Supply
Type
3/2-way solenoid valve
Power Consumption
Approx. 3 W
Materials in Contact with the Sample Medium
PVDF, FPM

Gas Feed
Type
Magnetic piston pump
Feed Rate
Max. of 60 l/h, depending on the analyzer type and inlet/outlet pressure
Flow Rate
Adjustable
Power Consumption
Approx. 10 W
Materials in Contact with the Sample Medium
PVDF, EPDM, stainless steel 1.4571

Flow Monitor
Type
Miniature flow sensor
Materials in Contact with the Sample Medium
Al2O3, silicon, gold, GFK

Gas Inlet Conditions
The integral gas feed modules must not be used for measurement of flammable gases and ignitable gas/air or gas/oxygen mixtures.
Temperature
+5 to +45 °C
The sample gas dew point should be at least 5 °C below the temperature throughout the sample gas path. Otherwise a sample gas cooler or condensate trap is required.
Flow Rate
30–60 l/h
Corrosive Gases
Corrosive associated gas components and aerosols must be cooled or undergo prior absorption.

General Data

Housing
<table>
<thead>
<tr>
<th>Model EL3020</th>
<th>Model EL3040</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>19-inch housing</td>
</tr>
<tr>
<td>Protection Type</td>
<td>IP20</td>
</tr>
</tbody>
</table>

Materials
<table>
<thead>
<tr>
<th>Housing</th>
<th>Analyzer Rear Panel</th>
<th>Keypad Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galvanized sheet steel</td>
<td>Aluminum, PVC-C</td>
<td>Polyester</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>Outer surfaces varnished</td>
<td>Polyester</td>
</tr>
<tr>
<td>Aluminum, PVC-C</td>
<td>Aluminum, PVC-C</td>
<td></td>
</tr>
</tbody>
</table>

Colors
Light gray (RAL 7035), basalt gray (RAL 7012)

Weight
Approx. 7–15 kg
Approx. 13–21 kg

Dimensions
see page 15
see page 16

Display and Operation
Display
Backlit graphics display with 240 x 160-pixel resolution
Measured value display
- Numerical value with physical unit,
 also with bar graph indication in single display
- Resolution better than 0.2 % of the measurement span
- Simultaneous display of up to 5 measured values
- Flow: bar graph indication

Status display
Symbols in the display; the active status messages can be accessed directly from the measured value display
Operation
5 keys (cursor cross and OK); menu-assisted operation

Limit Value Monitoring
Limit values can be set using the configuration program.
The limit value signals (alarms) are output via the digital ports.

Pressure Sensor
Use
Standard for Uras26 and Caldos27, option for Magnos206
Materials in Contact with the Sample Medium
Silicon gel, plastics, FPM (Fluorocarbon rubber)

Fine Filtration
Version
Disposable filter with Borosilicate glass microfiber filter element (supplied as accessory)
Retention Rate
99.99 % for particles > 0.1 μm
Materials in Contact with the Sample Medium
Polyamide, borosilicate glass with PVDF binder
Electromagnetic Compatibility

Noise Immunity

Emitted Interference

Electrical Safety

Tested per EN 61010-1:2001
Protection Class I
Overload Category/Pollution Level
Power supply, signal inputs and outputs: III/2
Safe Isolation
The power supply is galvanically isolated from other circuits by means of reinforced or double insulation. Operational low voltage (PELV) on low-voltage side

Mechanical Stress

Operation
Vibration test to EN 60068-2-6:1996
Vibrations up to 0.5g/150 Hz have no influence on the measured value. In Uras26, slight transient effects on the measured value can occur in the region of the modulation frequency.

Transport
In its original packaging, the gas analyzer will withstand normal shipping conditions.

Ambient Conditions

The gas analyzer is intended for indoor installation only.

Ambient Temperature
Operation: +5 to +45 °C
Uras26 in combination with another analyzer: +5 to +40 °C
Storage and transport: −25 to +65 °C

Relative Humidity
< 75 %, slight condensation allowed

Air Circulation
For sufficient air circulation, multiple housings in a 19-inch rack must be installed with a separation of at least one height unit between housings.

Installation Location Altitude
Max. 2000 m above sea level (over 2000 m on request)

Power Supply

Input Voltage
100–240 V AC (−15 %, +10 %); 50–60 Hz (± 3 Hz)

Power Consumption
Max. 187 VA

Connection
3-pin plug per EN 60320-1/C14; connection cable supplied

Version for Measurement of Flammable Gases

In the version with gas lines and connectors made of stainless steel the gas analyzer (Models EL3020 and EL3040) is suitable for measuring flammable gases in general purpose environment. In Model EL3040, housing purge with nitrogen or air must be provided. The special requirements must be observed (see operator's manual).

Version with Protection Type II 3G for Installation in Hazardous Location for Measurement of Non-flammable Gases and Vapors

The gas analyzer Model EL3040 is tested for explosion protection. It is suitable for installation in hazardous locations when the technical data and the special requirements (see operator's manual) are observed.

The gas analyzer may be used for measurement of non-flammable gases and vapors. It is marked according to the Directive 94/9/EC with II 3G Ex nAC II T4 X

In undisturbed operation there cannot be any sparking, arcing or impermissible temperatures inside the device.

Explosion protection through: Non-sparking instruments and devices with low power consumption; sealed or encapsulated devices

Judgment according to EN 60079-15:2005: Electrical apparatus for explosive gas atmospheres – Part 15: Type of protection “n”, Sections 1 to 16, 19, 20, 22, 23, 29

Marking according to EN 60079-15:2005, Section 35

Housing Degree of Protection IP65

Note Regarding the Performance Characteristics of the Analyzers

The performance characteristics of the analyzers have been determined according to the international standard IEC 1207-1: 1994 “Expression of performance of gas analyzers”. They are based on N₂ as the associated gas. Compliance with these characteristics when measuring other gas mixtures can only be assured if their composition is known.
Dimensional Drawings

19-Inch Rack Housing (Model EL3020)

Dimensions in mm
Dimensional Drawings

Wall-mount Housing (Model EL3040)

```
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>366</td>
</tr>
<tr>
<td>Width</td>
<td>420</td>
</tr>
<tr>
<td>Depth</td>
<td>360</td>
</tr>
<tr>
<td>Clearance</td>
<td>480</td>
</tr>
<tr>
<td>Diameter</td>
<td>20</td>
</tr>
<tr>
<td>Diameter</td>
<td>23</td>
</tr>
</tbody>
</table>
```

Clearance required to allow the door to swing open

Dimensions in mm
Electrical Connections

Power Supply and Signal Lines Model EL3020 (View from behind)

Power Supply Connection
(3-pin plug per EN 60320-1/C14; connection cable supplied)

I/O Modules (4 slots, assembly example):
1. Digital I/O Module (max. 2 modules)
2. Analog Output Module (max. 3 modules)
3. Modbus Module (RS232 and RS485 interface)
4. Profibus Module (RS485 and MBP interface)
5. Ethernet-10/100BASE-T Connection (8-pin RJ45 plug)
6. Potential Compensation Connection (clamping range max. 4 mm²)

Screwed Cable Glands for Cable Diameter:
- M20 Power Supply 5–13 mm
- M25 Modbus/Profibus 8–17 mm
- M25 Network 8–17 mm
- M25 3x Analog Outputs 8–17 mm
- M32 Digital Inputs/Outputs 12–21 mm
- M32 Digital Inputs/Outputs 12–21 mm

Notes Regarding Conductor Section for I/O Module Connection:
- The maximum capacity of terminals for stranded or solid conductors is 1 mm² (17 AWG).
- The stranded conductor may be tinned on the tip or twisted for simplified connection.
- When using wire end ferrules the total section should not exceed 1 mm², i.e. the maximum stranded conductor section is 0.5 mm². The Weidmüller PZ 6/5 crimping tool must be used for crimping the ferrules.

Note Regarding the Functional Scope of the Ethernet Interface:
The Ethernet interface is intended for
- Communication with configuration software ECT for gas analyzer configuration and software update and
- QAL3 data transfer if the QAL3 monitoring option is integrated in the gas analyzer.

Power Supply and Signal Lines Model EL3040 (View from below)
Electrical Connections

Analog Output Module

Analog Outputs (AO1, AO2)

0/4–20 mA (configurable, factory-set to 4–20 mA), common negative pole, galvanically isolated from ground, freely connectable to ground, max. gain relative to protective ground potential 50 V, max. working resistance 750 Ω. Resolution 16 bit. The output signal cannot be lower than 0 mA.

Electrical Connections

1 AO1+
2 AO1–
3 AO2+
4 AO2–

Design: 4-pin terminal strip for braided or solid conductors with a maximum section of 1 mm² (17 AWG). Observe the notes regarding conductor section (see page 17)!

Modbus Module

RS232

1 RxD
2 3 TxD
3 5 GND

Design: 9-pin Sub-D male connector

RS485

1 RTxD–
2 RTxD+
3 5 GND

Design: 9-pin Sub-D female connector

Profibus Module

RS485

1 – not used
2 M24 24 V Output Ground, max. 0.2 A
3 RxD/TxD-P Receive/Transmit Data Plus, B-Line
4 – not used
5 DGND Data Transmission Potential (Ref. Pot. for VP)
6 VP Supply Voltage Plus (5 V)
7 P24 24 V Output Voltage Plus
8 RxD/TxD-N Receive/Transmit Data N, A-Line
9 – not used

Design: 9-pin Sub-D female connector

MBP Interface (non-intrinsically safe):

1 +
2 3 –
4 GND

Design: 4-pin terminal strip for braided or solid conductors with a maximum section of 1 mm² (17 AWG). Observe the information regarding conductor section (see page 17)!
Digital I/O Module

Digital Inputs (DI1 to DI4)
Optocouplers with internal 24 VDC power supply. Control with floating contacts, with external voltage 12–24 VDC or with open collector drivers PNP or NPN.

Digital Outputs (DO1 to DO4)
Floating double-throw contacts, max. contact load rating 30 VDC/1 A
Relays must at all times be operated within the specified data range. Inductive or capacitive loads are to be connected with suitable protective measures (self-induction recuperation diodes for inductive loads and series resistors for capacitive loads).

Digital input and output signals Standard assignment

<table>
<thead>
<tr>
<th>Digital I/O Module</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall status</td>
<td>DO1</td>
<td></td>
</tr>
<tr>
<td>Start automatic calibration</td>
<td>DI1</td>
<td></td>
</tr>
<tr>
<td>Stop automatic calibration</td>
<td>DI2</td>
<td></td>
</tr>
<tr>
<td>Sample gas valve</td>
<td>DO4</td>
<td></td>
</tr>
<tr>
<td>Zero gas valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span gas valve</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump on/off</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit 1</td>
<td>DO2</td>
<td></td>
</tr>
<tr>
<td>Limit 2</td>
<td>DO3</td>
<td></td>
</tr>
<tr>
<td>Limit 3</td>
<td>DO1</td>
<td></td>
</tr>
<tr>
<td>Limit 4</td>
<td>DO2</td>
<td></td>
</tr>
<tr>
<td>Limit 5</td>
<td>DO3</td>
<td></td>
</tr>
<tr>
<td>Limit 6</td>
<td>DO4</td>
<td></td>
</tr>
<tr>
<td>Limit 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring range switch-over</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring range feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus DI 1–8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External failure</td>
<td>DI3</td>
<td></td>
</tr>
<tr>
<td>External maintenance request</td>
<td>DI4</td>
<td></td>
</tr>
</tbody>
</table>

Relays are shown in the unpowered state. The unpowered state is the failure mode.

Electrical Connections
see connection diagram
Design: 2x12-pin terminal strip for braided or solid conductors with a maximum section of 1 mm² (17 AWG). Observe the notes regarding conductor section (see page 17)!

1) factory-set, can be changed by on-site configuration
2) when a pump (integral gas feed) is installed
3) Multiple external status signals can be configured depending on the number of free digital inputs.
Gas Connections Model EL3020

Analyzer Uras26 – Version with Gas Connections for Hoses (internal gas lines made up of hoses)

Gas Connections

1. Sample Gas Inlet - Gas Path 1 without “Integral Gas Feed” option
2. Sample Gas Outlet - Gas Path 1 connected to sample gas inlet of Caldos27 or Magnos206 if applicable
3. Sample Gas Outlet for “Integral Gas Feed” option, factory-connected to Sample Gas Inlet gas Path 1
4. Sample Gas Inlet for “Integral Gas Feed” option with flow sensor only (without solenoid valve)
5. Sample Gas Inlet - Gas Path 2
6. Sample Gas Outlet - Gas Path 2
21. Sample Gas Inlet at solenoid valve for “Integral Gas Feed” option with
22. Test Gas Inlet at solenoid valve

Design: Hose nozzles (PVDF) for hoses with 4 mm inner diameter

Note: Pressure sensor (standard) and O₂ sensor (option) are connected internally as follows:
- downstream the sample cell 1 outlet for one sample cell or for two separate gas paths,
- downstream the sample cell 2 outlet for two sample cells in series.

Analyzer Uras26 – Version with Gas Connections for Pipes (internal gas lines made up of stainless steel pipes)

Gas Connections

6. Pressure Sensor

Design: Hose nozzle (PVDF) for hose with 4 mm inner diameter

11. Sample Gas Inlet
12. Sample Gas Outlet for one sample cell connected to sample gas inlet of Caldos27 or Magnos206 if applicable
13. Sample Gas Outlet for two sample cells in series

Design: 1/8 NPT female thread for threaded connections (not supplied)

Notes: This version is used when flammable components are present in the sample gas.
- O₂ sensor, “Integral Gas Feed” option and version with two separate gas paths cannot be provided.
Gas Connections Model EL3020

Analyzer Magnos206

Analyzer Caldos27

Analyzer ZO23

Gas Connections

1 Sample Gas Inlet
2 Sample Gas Outlet

Design: 1/8 NPT female thread (ZO23: Gas inlet 3 mm Swagelok®); connection of flexible tubes: 2 straight screwed fittings (PP) with nozzles for hoses with 4 mm inner diameter (supplied)

3 Sample Gas Outlet for “Integral Gas Feed” option, factory-connected to 1 Sample Gas Inlet
4 Sample Gas Inlet for “Integral Gas Feed” option with flow sensor only (without solenoid valve)
6 Pressure Sensor Option for Magnos206, standard for Caldos27

21 Sample Gas Inlet at solenoid valve for “Integral Gas Feed” option with
22 Test Gas Inlet at solenoid valve solenoid valve, pump, filter, capillary and flow sensor

Design: Hose nozzles (PVDF) for hoses with 4 mm inner diameter
Gas Connections Model EL3040

Analyzer Uras26

Gas Connections with 1 Gas Path
(internal gas lines made up of hoses or stainless steel pipes)

1 not used
2 not used
3 Sample Gas Inlet
4 Sample Gas Outlet for one sample cell
5 Purge Gas Inlet Housing
6 Purge Gas Outlet Housing
7 not used
8 Sample Gas Outlet for two sample cells in series
9 Pressure Sensor (internal gas paths made up of stainless steel pipes)
10 not used

Gas Connections with 2 Separate Gas Paths
(internal gas lines made up of hoses)

1 not used
2 not used
3 Sample Gas Inlet Gas Path 1
4 Sample Gas Outlet Gas Path 1
5 Purge Gas Inlet Housing
6 Purge Gas Outlet Housing
7 Sample Gas Inlet Gas Path 2
8 Sample Gas Outlet Gas Path 2
9 not used
10 not used

Design: 1/8 NPT female thread

Notes: When the internal gas paths are made up of hoses, pressure sensor (standard) and O₂ sensor (option) are connected internally as follows:
downstream the sample cell 1 outlet for one sample cell or for two separate gas paths,
downstream the sample cell 2 outlet for two sample cells in series.

When the internal gas paths are made up of stainless steel pipes, O₂ sensor and version with two separate gas paths cannot be provided.
The version with two separate gas paths is used for NOx measurement with a NO₂/NO converter connected upstream.
Gas Connections Model EL3040

Analyzer Magnos206

1 Sample Gas Inlet
2 Sample Gas Outlet
3 not used
4 not used
11 Purge Gas Inlet Housing
12 Purge Gas Outlet Housing
13 Pressure Sensor Option for Magnos206, standard for Caldos27

Design: 1/8 NPT female thread (ZO23: Gas inlet 3 mm Swagelok®)

Analyzer Caldos27

Analyzer ZO23

Gas Connections

1 Sample Gas Inlet
2 Sample Gas Outlet
3 not used
4 not used
11 Purge Gas Inlet Housing
12 Purge Gas Outlet Housing
13 Pressure Sensor Option for Magnos206, standard for Caldos27

Design: 1/8 NPT female thread (ZO23: Gas inlet 3 mm Swagelok®)
Certifications

CE Declaration of Conformity

The EL3060 Series gas analyzers satisfy the provisions of the following European directives:

- 2006/95/EC Low Voltage Directive
- 2006/108/EC EMC Directive
- 94/9/EC ATEX Directive

Compliance with the provisions of directive 2006/95/EC is evidenced by full compliance with European standard:

EN 61010-1:2001

Compliance with the provisions of directive 2006/108/EC is evidenced by full compliance with European standards:

Compliance of the version in Category 3G for measurement of non-flammable gases and vapors with the provisions of directive 94/9/EC is evidenced by full compliance with European standard:

EN 60079-15:2005

Performance Test

The EL3000 Series gas analyzers

- Uras26 (sample components CO, NO, SO2, CO2, N2O),
- Magnos206 (sample component O2) and
- Electrochemical oxygen sensor (sample component O2)

are certified for use in facilities requiring authorization according to Directive 2001/80/EG and meet the requirements of the 27th/30th BlmSchV (Federal Inmissions Control Ordinance) and TA-Luft (Technical Instructions on Air Quality) regulations. The requirements based on QAL1 according to EN 14181 and EN ISO 14956 are fulfilled.

Approval for USA and Canada – CSA

The EL3000 Series gas analyzers are certified for use in general purpose environment, evidenced by full compliance with standards CAN/CSA-C22.2 No. 61010-1-04 and UL 61010-1:2004 (2nd Edition).
ABB has Sales & Customer Support expertise in over 100 countries worldwide.

www.abb.com

The Company’s policy is one of continuous product improvement and the right is reserved to modify the information contained herein without notice.

Printed in the Fed. Rep. of Germany (08.08)

© ABB 2008

ABB Automation GmbH
Analytical
Stierstaedter Strasse 5
60488 Frankfurt am Main
Germany
Phone: +49 69 7930-40
Fax: +49 69 7930-4566
E-Mail: analytical-mkt.deapr@de.abb.com