

ABB Automation & Power World: April 18-21, 2011

WPO-100-1A&1B Advanced diagnostics for detection and root cause analysis of problems in power transformers

WCS-100-1A & 1B Advanced diagnostics for detection and root cause analysis of problems in power transformers

- Dr. Poorvi Patel
- Manager, TRES Engineering Solutions
- ABB
- St. Louis, MO

Your safety is important to us Please be aware of these emergency procedures

- In the event of an emergency please dial ext. 55555 from any house phone. Do not dial 9-1-1.
- In the event of an alarm, please proceed carefully to the nearest exit. Emergency exits are clearly marked throughout the hotel and convention center.
- Use the stairwells to evacuate the building and do not attempt to use the elevators.
- Hotel associates will be located throughout the public space to assist in directing guests toward the closest exit.
- Any guest requiring assistance during an evacuation should dial "0" from any house phone and notify the operator of their location.
- Do not re-enter the building until advised by hotel personnel or an "all clear" announcement is made.

Your safety is important to us Convention Center exits in case of an emergency

Advanced diagnostics for detection and root cause analysis of problems in power transformers

- What is DFR?
- DFR- Cases
- What is SFRA?
- FRA- Cases

Why Dielectric Frequency Response? Traditional Power Factor Testing

Dielectric Frequency Response

Dielectric Response of Power Transformers

- Off-line diagnostics
- Oil and cellulose insulation system
- Dielectric properties are strongly affected by moisture and ageing.
- Dielectric response measurements can be used for diagnostic purposes.

Why Dielectric Response

Purpose of measurement

- Diagnostic test of insulation system
 - Moisture content
 - Oil Conductivity
- Diagnose defects in system
 - Diagnose high PF or tan δ
 - Contamination
 - Carbon Tracking
 - Resistance in core ground circuit
- Quality control test of Factory and/or Field processing

Why Dielectric Response?

- Important to know the moisture level
 - Moisture and acids accelerates ageing
 - High moisture level can lead to bubble formation
- Oil conductivity is an ageing indicator
- Oil samples unreliable at low (off-line) temperatures

Cellulose Moisture from Oil Samples

From. P.J.Griffin, C. M. Bruce and J. D. Christie: "Comparison of Water Equilibrium in Silicone and Mineral Oil Transformers", Minutes of the Fifty-Fifty Annual Conference of Double Clients, Sec. 10-9.1, 1988

Power Products where DFR is used

- Transformer diagnostics
 - Power Transformers
 - Transformer Bushings
 - Instrument Transformers
- Cable diagnostics
 - XLPE cables
 - Oil/paper cables
- Manufacturing controlling system
- Trouble shooting electrical apparatus
- Material chacterization

DFR-Measurements

Equipment Setup

- Sinusoidal signal of amplitude up to 200V peak
- Frequency sweep range
 - 0.0001 10 kHz maximum
 - .001 1000 Hz typical
 - 0.01-1000 Hz minimum

- Three-electrode set up: the voltage electrode "Hi", the current sense electrode "Lo" and the ground
 - UST
 - (GST)
 - GST-g

Ungrounded specimen test, UST, with guard

Two winding transformer

2

GST

High

Low

GST-Guard

Tank

CH

ABB

Two winding transformer

With this lead connection the following measurement could be performed

No	Mode	Hi (Red)	Lo (Blue)	Ground (Black)	Configuration	Measure
1	GST	Low	High	Tank	GST-Guard	CL

Three winding transformer

List of measurement set-ups for three winding power transformer using IDA 200

No	Mode	Hi (red)	Lo (blue)	Ground (black)	Configuratio n	Measure	Measurement Template
1	UST	High	Low	Tert+Tank	UST	Сні	3W-CHL
2	UST	High	Tert	Lov+Tank	UST	Снт	3W-CHT
3	UST	Low	Tert	High+Tank	UST	CLT	3W-CLT
4	GST	High	Lov+Tert	Tank	GST-Guard	Сн	3W-CH
5	GST	Low	High+Tert	Tank	GST-Guard	Cı	3W-CL
6	GST	Tert	High+Low	Tank	GST-Guard	Ст	3W-CT

Rainy days

- Instrument is sensitive to water
 - Can cause failure of electronics if the instruments gets soaked
 - Keep instrument under shelter if rain threatens
- Water on bushings affects readings
 - Try guarding the bushing porcelain
- UST test between windings usually unaffected.

Minimize Influence of contaminated Bushing insulation

GST-g and GST with small low voltage bushings or wet or dirty bushings, recommend guarding the bushing insulation to minimize the influence of contamination

High Capacitance Transformers

- Current at 1000 Hz and even 470 Hz may be too high
 - Instrument will not measure point
 - Reduce voltage so the 1000 Hz point is measured
 - Make 2 measurements
 - 1 at reduce voltage with 1-1000 Hz
 - 1 with full voltage from 0.001 Hz to 470 Hz
 - Add the 1000 Hz data to make a complete .001 1000 Hz file
 - Use text editor program like notepad

Low Capacitance Measurement

- Instrument may stop and display error message.
- Determine the reason for the low capacitance
 - Check nameplate connection
 - Check for inner-winding shields
- Change the minimum capacitance value on the C file
- Make the measurement
- Look for unusual results

Noise

 Noise is any signal that is not produced by the applied voltage or the response of the transformer

AC Noise

- Overhead power lines
- Nearby energized transformers
- Improper grounds
- Harmonics

DC Noise

- Ground currents
- Dissimilar metals
- Industrial processes

DC Noise

Problems

- Causes Error Signal and Halts Test
- Can cause error if DC current is large

Solution

- Increase DC current limit in C file
- Check Grounding Connections
- Record DC current levels for future reference

Error Message – High dc current

Oil & Air Temperature

-Top and Bottom Oil Temperature

- Air Temperature

Oil Conductivity Measurement

Check the DFR- Instrument before testing

1) Red on 1, blue on 2 and black on $0 - UST - C_{12}$ 2) Red on 1, blue on 2 and black on $0 - GSTg - C_{10}$ 3) Red on 2, blue on 1 and black on $0 - GSTg - C_{20}$

Dielectric Response of a Power Transformer

Dielectric response of a power transformer depends on:

- The dielectric response of the constituent materials
- The structure/geometry of the constituent material

Dielectric Response - Insulation Oil

Dielectric Response of Moisture Content

DR of Oil Impregnated Pressboard, Temperature Dependence

Dielectric Response of a Power Transformer

Dielectric response of a power transformer depends on:

- The dielectric response of the constituent materials
- The structure/geometry of the constituent material

Oil and Pressboard in Series

Measurement considerations

CHL => meas. D1//D2

CHL => meas. D1

Power Transformer Insulation: Oil & Cellulose

- Cylindrical barriers
- Axial spacers

Simplified geometry for modelling:

- The X-Y model
- Relative proportion of barriers, X
- Relative proportion of Sticks, Y

Influence of Geometry

The X-Y model - Tool for Analysis

Materials characteristics

Insert the materials in the geometry

The X-Y model - Tool for Analysis

DFR-Cases

Carbon tracking

Case #1 – New Transformer

•HV kV: 220 kV(Y- connection)•XV kV : 72.5 kV(Y- connection)•TV kV: 12.0 kV(Δ- connection)•Top rating MVA: 125 MVA at 50 Hz•Cooling Class: ONAN/ONAF/ONAF

•Average oil temperature : 20 °C

Case #1 – New Transformer – Test Configurations

- HV UST XV
- HV UST TV
- XV to ground
- HV to ground
- TV to ground

Case #1 – New Transformer – HV UST XV

Case #1 – Temperature influence

An Error in Temperature can affect the estimate of moisture in the insulation

Case #1 – New Transformer – Geometrical prop.

An Error in %X and %Y can affect the accurcy of the results

-Case 2- Unit Gassing in the field!!

HV:525 kVXV:15 kVMVA:236 MVACoolant:Mineral oil

- The unit was producing combustible gasses. No obvious fault could be detected.
- Customer performed routine tests, and all were normal
- DFR- measurements were done as a last resort to help locate the source so the unit could be repaired in the field without returning it to the factory.
- ABB performed H-ground, X-ground and H-X DFR tests

Combustible Gases

Case #3: Winding Configuration

Case #3: Unit Gassing in Operation -HV to XV

ABB

Case #3: Unit Gassing in Operation -HV to Ground

 The tip up test on the HV indicated the potential of a loose connection

 2. The DFR test on the HV indicated the presence of a parallel capacitance resistance circuit

 The inspection of the shielding tube showed that the sleeve (also called union coupling) that connects the vertical tube with the horizontal Y tubes at the HV windings connection was loose and did not make proper contact.

There had been arcing at the sleeve and also between the cable inside the shielding tube and the tube.

Case: Unit Gassing in Operation - After Repair

Summary

Determine moisture of the insulation

Abnormal DGA

- Just want to know the condition of your transformer

Suspect contamination or core issues

What is SFRA?

<u>SFRA means</u>: Sweep Frequency Response Analysis

SFRA is: "An off-line, non-destructive diagnostic technique"

<u>SFRA is:</u> Measurement of electrical response (from 10 Hz to 2 MHz or more).

SFRA is: Comparative method (two spectra are compared)

<u>SFRA shows</u>: Spectrum changes ⇔ mechanical

defo SFRA can detect mechanical problems without opening the transformer.

What is FRA? (principle of FRA)

Inductances and capacitances act together, creating resonances

What is FRA? What the responses look like?

What do we see in an FRA spectrum?

Typical FRA spectrum, larger transformer (HV self-winding, open circuit)

What is FRA?

What we can detect today using FRA?

Changes in FRA response reveal a wide range of fault types:

- axial winding collapse
- clamping failure
- hoop buckling
- shorted turns
- bad core grounding
- open, broken, grounded, ... tertiary winding
- bad contact (?)

^{- . . .}

Two Examples

- 1) Short-circuited turns
- 2) Hoop Buckling

Example: Short-circuited turns

Example: Short-circuited turns

Example: Hoop Buckling

Hoop buckling means:

-Internal winding (usually LV) collapses

-Reason:

- large (compressive) radial forces on the winding during a short-circuit fault.

Example: Hoop Buckling

Example: Hoop Buckling

When should we perform FRA?

When should we perform FRA?

- After manufacturing
 - Fingerprint measurement
 - Create first reference

- As part of a routine diagnostic protocol
 - To check for changes during service time

- After installation or relocation
 - To check for transformer integrity

When should we perform FRA?

In case of troubles:

- After a major change in on-line diagnostic condition
 - After a transformer alarm
 - After a significant through-fault event
- After external failures compromising the transformer condition (short circuits, close lightning impact, ...)
- To compare with a sister unit in troubles

SFRA-Measurements

What is FRA? What the devices look like?

FRAX-101 produced by Megger Group

ABB-Switzerland is working with this device

Agilent (HP) – Network analyzer General device – Not dedicated to FRA

FRAmit produced by Utility & Industrial Products, Inc

M5300 produced by Doble

ABB-USA is working with this device

Traftek produced by B&C Diagnostics

FRA 5310 produced by Haefely

FRAnalyzer produced by Omicron

ABB-Germany is working with this device

SoFT produced by ABB Complete transformer fingerprinting

Measurement procedure (do not forget!!!)

Take Pictures:

- -Name plate
- -Transformer
- -Connections

ABB											
60 Hz THREE PHASE GENERATOR STEP-UP TRANSFORMER											
OIL IMMERSED OFWF			8	ERIAL No.	12176-01						
TERMINAL CONNECTO	wacnes	NONINAL POWER	VOLTABE LE	LEVEL IN	9						
HUNEND VN	113		Sel GRO VITAL TA	NUTS 185							
RUALAD D		- M -	81.88	HD -	1						
OFWE - WITH WE SALLONG	MER MINUTE OF	COOL NO WATER A	T MIC								
	<u>.</u> 7	₽	ETRADARD No. CULTOMER P.D. No. NAME TERMOLE REP. CONVECTION DAMA VEHICLE NATERIAL TEAT OF NAME/FACT	A86 LAU	ANNE CITY 12.00 4000021083-1 10176 KV12178004-8 COPPER						
			INTERATION PLUSP I		RAL OF						
₹.≒.≒.			TANK COOLERS AND FOR FULL VACUUM	NAD TO PSI FOSI	ARE BUTARE						
"fren "fren "fr			TANK OPERATING P	E AT THE COME	NTO 1 PB						
**************************************	-942	80	ENERGIZED TAP CHAN ONNECTION TAP HOR A D 1								
		IE									
01 02		5	ARNING OPERATE	TAP CHARGER C	NLY WHEN						
Rol	Total and		MART 1100								
	-		ISANGET CARTER	NALS NATO	ACCORNEY						
den den	Leen /		CARD DE LE	10 10005	C888						
			LARAS ALL AL	12 2000.5	6198810 C1790 20						
ette ette	d+=0		HE T.M.Y #1	10 1001	-						
E E			total factor of the	G Lings	24582						
	÷.	140	TE 20 N.Y. BRATE HENE	HUE WETERING	CBVDHPN						
	È	60	REARCOCKE	0	*						
		1.0	ACAND ACCESSIONES	ē							
	1	2.6									
<u> </u>			T DES MANS (STT ART)								
MADE IN VARENNES, DUEDED, CANKON											

Measurement procedure (setup installation)

Typical test connection (three key elements): The unit under test (Transformer) The FRA device (Many possibilities) The cabling (three coaxial cables) **AC Voltage** (Swept frequency or time pulse) Transformer Under Test **FRA Device**

Measurement procedure (setup installation)

Typical test connection (Avoid loops in GND connections)

Measurement procedure (before to start)

 $U_{\text{out}}(f)$

 $FRA(dB) = 20\log_{10}$

Check your leads

- 8 × Doble Sweep Frequency Response Analyzer File Edit Test Init Graph Help Legend * 9 Data Manager Magnitude Phase Impedance Sub-Band Waveform. Analysis Tabulation Apparatus lead test-lead test_2008-10-06_1 0. -0.5 ा -1.5 Magritude, d8 Small scale in 2 vertical axis: -25 ंव -35 -4 100Hz 1kHz 10kHz 100kHz 1MHz Frequency, Hz Apparatus and Test Legend * & w... 🖉 s... 🖉 s... 🖗 M... 🖓 s... 🖄 P... 🛅 D... ■ 🍕 🔶 📰 🕹 🛢 髪 🖌 🔍 🛲 🎧 🚟 🗒 🗮 😫 10:12 AM Start 83%

Measurement procedure (list of test)

Which measurements do we want to do?

	Test type	Test N°	t 3-phases Delta-Wye	3-phases Wye-Delta	3-phases Delta-Delta	3-phases Wye-Wye				
	HV self-winding	1	H1-H2	H1-H0	H1-H2	H1-H0				
	(open circuit)		L H2-H3	L H2-H0	H2-H3	H2-H0				
╞	l erminais lioaung	(A) Open circuit: (HV and LV windings)								
	LV Self-winding	<u>⊢ 4</u>		×2 ×3	X2 X2	X2 X0	0 /			
	Terminals floating	$-\frac{5}{6}$	X3-X0	X3-X1	X3-X1	X3-X0				
	HV self-winding	7	H1-H2	H1-H0	H1-H2	H1-H0				
	(short circuit) Short [X1, X2, X3]*	(B) Short circuit: (HV and LV windings)								
	LV self-winding						-			
	Short [H1, H2, H3]*	12	X2-X0 X3-X0	X2-X3 X3-X1	X2-X3 X3-X1	X2-X0 X3-X0				
	Capacitive Inter-Winding Terminals floating	(C) Capacitive inter-winding: (Between HV and LV windings)								
	Inductive Inter-winding Ground [H-, X-]	Inductive nter-winding round [H-, X-] (D) Inductive inter-winding : (Between HV and LV windings)								

Measurement procedure

Why open circuit measurements?

We can see:

- Winding short-circuits
- Broken delta winding
- Core related problems (circulating currents, bad joints, ...)

Why short circuit measurements?

- Precise short-circuit reactance measurement
 → close agreement between phases (0.1 dB rule)
- Very good reproducibility within the whole frequency range
- Not affected by core magnetization

SFRA-Analysis

Baseline MeasurementsSister unitsPhase to Phase

Typical results: Large transformer

Typical results: Open- vs. short circuit

Background: Open- vs. short-circuit

Magnetic flux paths for low-frequency measurements

Open-circuit test: Y vs. Delta

Configuration – Self-Winding (Open circuit)

Typical results: Areas of influences (Approx.)

Typical results: Areas of influences (Approx.)

Typical results: Areas of influences (Approx.)

Typical results: Influence of winding resistance test

Measurements before and after winding resistance test

Typical results: Cable shield grounding at bushing

Oil influence in FRA signatures (HV Winding):

Tap Position influence in FRA signatures

Noise from Instrumentation!

Short circuit test

Short-circuit test: 0.1dB criterion

The short-circuit inductance is proportional to the crosssection area A of the main channel:

$$L_{\rm sc} \approx \frac{\mu_0 N^2 A}{h}$$

< 0.1dB means that A changes by < 1%

Good practices: Short circuit Connection

Reduce short circuit cable resistance and inductance by using several conductors in parallel.

SFRA- Cases

Case # 1

Residual magnetization

Case #1 Residual magnetization

- FRA measurement identified residual magnetization
- The outer phases (A & B) did not align well with one another at the low frequency region.
- All Short circuit tests showed symmetry between windings.
- It was discovered that the field test specialist performed a DC resistance test one day earlier.

Case # 1 Residual magnetization

Case # 1 FRA results after Demagnetizing

Case # 2

Shorted turns

Case # 2 Shorted turns

- Ratio test indicated shorted winding turn on phase B
- FRA was made to decide whether HV or LV winding had failed

Case # 2 Shorted turns – Which winding (HV or LV)..??

Case # 2 Shorted turns – Which winding (HV or LV)..??

Case # 2 Shorted turns – Which winding (HV or LV)..??

Case # 2 Shorted turns - lesson learned

- Both HV and XV open circuit tests indicate that phase B has shorted turns
- HV short circuit test indicates that HV winding has shorted turn
- HV short deviation at low frequency also indicates that HV B-phase has extra losses

Case # 3

Earthed tertiary

253/13.2 kV, 100 MVA (YNyn0yn0+dd)

Buried tertiary (with internal earth, no external access)

- 253/13.2 kV, 100 MVA (YNyn0yn0+dd)

- 240/72 kV, 150MVA (YNyn0+d)
- Tertiary brought out and earthed externally
- Possible to remove tertiary earth keeping delta intact

- Tertiary earth removed and delta intact
- Symmetry between phases is preserved

Reminders Automation & Power World 2011

- Please be sure to complete the workshop evaluation
- Professional Development Hours (PDHs) and Continuing Education Credits (CEUs):
 - You will receive a link via e-mail to print certificates for all the workshops you have attended during Automation & Power World 2011.
 - BE SURE YOU HAVE YOUR BADGE SCANNED for each workshop you attend. If you do not have your badge scanned you will not be able to obtain PDHs or CEUs.

Power and productivity

