Advanced diagnostics for detection and root cause analysis of problems in power transformers
WCS-100-1A & 1B
Advanced diagnostics for detection and root cause analysis of problems in power transformers

- Dr. Poorvi Patel
- Manager, TRES Engineering Solutions
- ABB
- St. Louis, MO
Your safety is important to us
Please be aware of these emergency procedures

- In the event of an emergency please dial ext. 55555 from any house phone. Do not dial 9-1-1.
- In the event of an alarm, please proceed carefully to the nearest exit. Emergency exits are clearly marked throughout the hotel and convention center.
- Use the stairwells to evacuate the building and do not attempt to use the elevators.
- Hotel associates will be located throughout the public space to assist in directing guests toward the closest exit.
- Any guest requiring assistance during an evacuation should dial “0” from any house phone and notify the operator of their location.
- Do not re-enter the building until advised by hotel personnel or an “all clear” announcement is made.
Your safety is important to us
Convention Center exits in case of an emergency

Know your surroundings:
- Identify the meeting room your workshop is being held in
- Locate the nearest exit
Advanced diagnostics for detection and root cause analysis of problems in power transformers

- What is DFR?
- DFR- Cases
- What is SFRA?
- FRA- Cases
.DFR- What is that?
Why Dielectric Frequency Response?
Traditional Power Factor Testing

![Graph showing power factor vs frequency]

- Power factor
- Frequency (Hz)
- 1 mHz
- 60 Hz
- 1 kHz
Dielectric Frequency Response

![Dielectric Frequency Response Diagram](image)

- **Power factor**
- **Frequency (Hz)**: 1 mHz, 50 Hz, 1 kHz

ABB
Dielectric Response of Power Transformers

- Off-line diagnostics
- Oil and cellulose insulation system
- Dielectric properties are strongly affected by moisture and ageing.

Dielectric response measurements can be used for diagnostic purposes.
Why Dielectric Response

Purpose of measurement

- Diagnostic test of insulation system
 - Moisture content
 - Oil Conductivity
- Diagnose defects in system
 - Diagnose high PF or tan δ
 - Contamination
 - Carbon Tracking
 - Resistance in core ground circuit
- Quality control test of Factory and/or Field processing
Why Dielectric Response?

- Important to know the moisture level
 - Moisture and acids accelerates ageing
 - High moisture level can lead to bubble formation

- Oil conductivity is an ageing indicator

- Oil samples unreliable at low (off-line) temperatures
Cellulose Moisture from Oil Samples

From P.J. Griffin, C. M. Bruce and J. D. Christie: “Comparison of Water Equilibrium in Silicone and Mineral Oil Transformers”, Minutes of the Fifty-Fifty Annual Conference of Double Clients, Sec. 10-9.1, 1988
Power Products where DFR is used

- Transformer diagnostics
 - Power Transformers
 - Transformer Bushings
 - Instrument Transformers

- Cable diagnostics
 - XLPE cables
 - Oil/paper cables

- Manufacturing controlling system
- Trouble shooting electrical apparatus
- Material characterization
DFR Measurements
Equipment Setup

- Sinusoidal signal of amplitude up to 200V peak
- Frequency sweep range
 - 0.0001 – 10 kHz maximum
 - 0.001 – 1000 Hz typical
 - 0.01-1000 Hz minimum
- Three-electrode set up: the voltage electrode “Hi”, the current sense electrode “Lo” and the ground
 - UST
 - (GST)
 - GST-g
UST Setups

Ungrounded specimen test, UST, with guard

DFR-Instrument

Earth connection
Two winding transformer

![Diagram of a two winding transformer](Image)

With this lead connection the following measurement could be performed:

<table>
<thead>
<tr>
<th>No</th>
<th>Mode</th>
<th>Hi (Red)</th>
<th>Lo (Blue)</th>
<th>Ground (Black)</th>
<th>Configuration</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UST</td>
<td>High</td>
<td>Low</td>
<td>Tank</td>
<td>UST</td>
<td>CHL</td>
</tr>
<tr>
<td>2</td>
<td>GST</td>
<td>High</td>
<td>Low</td>
<td>Tank</td>
<td>GST-Guard</td>
<td>CH</td>
</tr>
</tbody>
</table>
Two winding transformer

With this lead connection the following measurement could be performed

<table>
<thead>
<tr>
<th>No</th>
<th>Mode</th>
<th>Hi (Red)</th>
<th>Lo (Blue)</th>
<th>Ground (Black)</th>
<th>Configuration</th>
<th>Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GST</td>
<td>Low</td>
<td>High</td>
<td>Tank</td>
<td>GST-Guard</td>
<td>CL</td>
</tr>
</tbody>
</table>
Three winding transformer

List of measurement set-ups for three winding power transformer using IDA 200

<table>
<thead>
<tr>
<th>No</th>
<th>Mode</th>
<th>Hi (red)</th>
<th>Lo (blue)</th>
<th>Ground (black)</th>
<th>Configuration</th>
<th>Measure</th>
<th>Measurement Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UST</td>
<td>High</td>
<td>Low</td>
<td>Tert+Tank</td>
<td>UST</td>
<td>C_{HL}</td>
<td>3W-CHL</td>
</tr>
<tr>
<td>2</td>
<td>UST</td>
<td>High</td>
<td>Tert</td>
<td>Low+Tank</td>
<td>UST</td>
<td>C_{HT}</td>
<td>3W-CHT</td>
</tr>
<tr>
<td>3</td>
<td>UST</td>
<td>Low</td>
<td>Tert</td>
<td>High+Tank</td>
<td>UST</td>
<td>C_{LT}</td>
<td>3W-CLT</td>
</tr>
<tr>
<td>4</td>
<td>GST</td>
<td>High</td>
<td>Low+Tert</td>
<td>Tank</td>
<td>GST-Guard</td>
<td>C_{H}</td>
<td>3W-CH</td>
</tr>
<tr>
<td>5</td>
<td>GST</td>
<td>Low</td>
<td>High+Tert</td>
<td>Tank</td>
<td>GST-Guard</td>
<td>C_{L}</td>
<td>3W-CL</td>
</tr>
<tr>
<td>6</td>
<td>GST</td>
<td>Tert</td>
<td>High+Low</td>
<td>Tank</td>
<td>GST-Guard</td>
<td>C_{T}</td>
<td>3W-CT</td>
</tr>
</tbody>
</table>
Rainy days

- Instrument is sensitive to water
 - Can cause failure of electronics if the instruments gets soaked
 - Keep instrument under shelter if rain threatens

- Water on bushings affects readings
 - Try guarding the bushing porcelain

- UST test between windings usually unaffected.
Minimize Influence of contaminated Bushing insulation

GST-g and GST with small low voltage bushings or wet or dirty bushings, recommend guarding the bushing insulation to minimize the influence of contamination.
High Capacitance Transformers

- Current at 1000 Hz and even 470 Hz may be too high
 - Instrument will not measure point
 - Reduce voltage so the 1000 Hz point is measured
 - Make 2 measurements
 - 1 at reduce voltage with 1-1000 Hz
 - 1 with full voltage from 0.001 Hz to 470 Hz
 - Add the 1000 Hz data to make a complete .001 – 1000 Hz file
 - Use text editor program like notepad
Low Capacitance Measurement

- Instrument may stop and display error message.
- Determine the reason for the low capacitance
 - Check nameplate connection
 - Check for inner-winding shields
- Change the minimum capacitance value on the C file
- Make the measurement
- Look for unusual results
Noise

- Noise is any signal that is not produced by the applied voltage or the response of the transformer

- **AC Noise**
 - Overhead power lines
 - Nearby energized transformers
 - Improper grounds
 - Harmonics

- **DC Noise**
 - Ground currents
 - Dissimilar metals
 - Industrial processes
DC Noise

Problems

- Causes Error Signal and Halts Test
- Can cause error if DC current is large

Solution

- Increase DC current limit in C file
- Check Grounding Connections
- Record DC current levels for future reference
Error Message – High dc current

[IDA 200 System Control]

System Status: Ready
Elapsed time: 00:00:00

Generator Status: Stopped
Voltage: - V
Frequency: - Hz

Message: [367] Measured DC-current. "Max DC Current" measurement aborted. For details see message window and Help (F1) or manual.

MAX DC-current = 1e-6 A

[Image of system control interface]
Oil & Air Temperature

- Top and Bottom Oil Temperature
- Air Temperature
Oil Conductivity Measurement
Check the DFR- Instrument before testing

1) Red on 1, blue on 2 and black on 0 – UST – C_{12}
2) Red on 1, blue on 2 and black on 0 – GSTg – C_{10}
3) Red on 2, blue on 1 and black on 0 – GSTg – C_{20}
DFR-
Analysis
Dielectric Response of a Power Transformer

Dielectric response of a power transformer depends on:

- The dielectric response of the constituent materials
- The structure/geometry of the constituent material

Oil and Pressboard in Series
Dielectric Response - Insulation Oil
Dielectric Response of Moisture Content
DR of Oil Impregnated Pressboard, Temperature Dependence
Dielectric Response of a Power Transformer

Dielectric response of a power transformer depends on:

- The dielectric response of the constituent materials
- The structure/geometry of the constituent material

Oil and Pressboard in Series
Measurement considerations

Winding configurations

CHL => meas. D1//D2

CHL => meas. D1
Power Transformer Insulation: Oil & Cellulose

Segment of insulation in main duct
- Cylindrical barriers
- Axial spacers

Simplified geometry for modelling:
The X-Y model
- Relative proportion of barriers, X
- Relative proportion of Sticks, Y
Influence of the insulation design on the dielectric response. The notation in the legend is such that "RE 10/10" means (real) capacitive part, X=10% and Y=10% etc.
The X-Y model - Tool for Analysis

Simplified geometry

Materials characteristics

Insert the materials in the geometry
The X-Y model - Tool for Analysis

General Input Parameters

- X & Y for the XY-model
- Temperature (°C)
- DFR measurements data

General Output Parameters for the analysis tool

- % moisture,
- Oil conductivity
- Amount of contamination
- High Core ground resistance
DFR- Cases
Preventive Auto issue

Carbon tracking

Bushing Shield Problem

Contamination

Resistor in the core ground

Pump Bearing Failure

Carbon tracking
Case #1 – New Transformer

- HV kV: 220 kV (Y- connection)
- XV kV: 72.5 kV (Y- connection)
- TV kV: 12.0 kV (∆- connection)
- Top rating MVA: 125 MVA at 50 Hz
- Cooling Class: ONAN/ONAF/ONAF
- Average oil temperature: 20 °C
Case #1 – New Transformer – Test Configurations

- HV UST XV
- HV UST TV
- XV to ground
- HV to ground
- TV to ground
Case #1 – New Transformer – HV UST XV
Case #1 – Temperature influence

An Error in Temperature can affect the estimate of moisture in the insulation
Case #1 – New Transformer – Geometrical prop.

An Error in %X and %Y can affect the accuracy of the results.

Spacer Width Y = 14%
- Gives Moisture = 0.5%
- Oil cond. = 1E-12 S/m

Spacer Width Y = 7%
- Gives Moisture = 1.5%
- Oil cond. = 1.2E-12 S/m
Case 2- Unit Gassing in the field!!
Case #3: Unit Gassing in Operation

HV: 525 kV
XV: 15 kV
MVA: 236 MVA
Coolant: Mineral oil
Case #3: Unit Gassing in Operation

- The unit was producing combustible gasses. No obvious fault could be detected.
- Customer performed routine tests, and all were normal.
- DFR- measurements were done as a last resort to help locate the source so the unit could be repaired in the field without returning it to the factory.
- ABB performed H-ground, X-ground and H-X DFR tests.
Case #3: Unit Gassing in Operation

Combustible Gases

- Hydrogen (H2)
- Methane (CH4)
- Acetylene (C2H2)
- Ethane (C2H6)
- Ethylene (C2H4)
- Total Combustible Gas

Date

- 07-Aug-06
- 09-Aug-06
- 11-Aug-06
- 13-Aug-06
- 15-Aug-06
- 17-Aug-06
- 19-Aug-06
- 21-Aug-06
- 23-Aug-06

C2H2, H2 (ppm)

Hydrogen (H2)
Methane (CH4)
Acetylene (C2H2)
Ethane (C2H6)
Ethylene (C2H4)
Total Combustible Gas

Total Comb. Gas
Case #3: Winding Configuration

Test Set-up
- CHL
- CL
- CH
Case #3: Unit Gassing in Operation - HV to XV
Case #3: Unit Gassing in Operation - HV to Ground
Case #3: Unit Gassing in Operation

1. The tip up test on the HV indicated the potential of a loose connection

2. The DFR test on the HV indicated the presence of a parallel capacitance resistance circuit
The inspection of the shielding tube showed that the sleeve (also called union coupling) that connects the vertical tube with the horizontal Y tubes at the HV windings connection was loose and did not make proper contact.

There had been arcing at the sleeve and also between the cable inside the shielding tube and the tube.
Case: Unit Gassing in Operation - After Repair
Summary

- Determine moisture of the insulation
- Abnormal DGA
- Just want to know the condition of your transformer
- Suspect contamination or core issues
-SFRA- What is that?
What is SFRA?

SFRA means: Sweep Frequency Response Analysis

SFRA is: “An off-line, non-destructive diagnostic technique”

SFRA is: Measurement of electrical response (from 10 Hz to 2 MHz or more).

SFRA is: Comparative method (two spectra are compared)

SFRA shows: Spectrum changes ↔ mechanical deformations

SFRA can detect mechanical problems without opening the transformer.
What is FRA? (principle of FRA)

Inductances and capacitances act together, creating resonances

\[\text{FRA(dB)} = 20 \log_{10} \left(\frac{U_{\text{out}}(f)}{U_{\text{in}}(f)} \right) \]
What is FRA? What the responses look like?

Typical FRA spectrum (logarithmic scales):

- Magnitude in dB
- Starts at: some Hertz (e.g. 10 Hz)
- Stops at: some Megahertz (e.g. 2 MHz)
- Logarithmic frequency scale
What do we see in an FRA spectrum?

Typical FRA spectrum, larger transformer (HV self-winding, open circuit)
What is FRA?

What we can detect today using FRA?

Changes in FRA response reveal a wide range of fault types:

- axial winding collapse
- clamping failure
- hoop buckling
- shorted turns
- bad core grounding
- open, broken, grounded, … tertiary winding
- bad contact (?)
- …
Two Examples

1) Short-circuited turns

2) Hoop Buckling
Example: Short-circuited turns

Phase A has clear short-circuit behavior (reduction of the inductance). The other two phases have normal open circuit measurement behavior.
Example: Short-circuited turns
Example: Hoop Buckling

Hoop buckling means:

- Internal winding (usually LV) collapses

- Reason:
 - large (compressive) radial forces on the winding during a short-circuit fault.
Example: Hoop Buckling

Suspect Unit (LV winding)

Clear shift left at critical frequency
Example: Hoop Buckling

Clear deformation in winding
When should we perform FRA?
When should we perform FRA?

- After manufacturing
 - Fingerprint measurement
 - Create first reference
- As part of a routine diagnostic protocol
 - To check for changes during service time
- After installation or relocation
 - To check for transformer integrity
When should we perform FRA?

In case of troubles:

- After a major change in on-line diagnostic condition
 - After a transformer alarm
 - After a significant through-fault event

- After external failures compromising the transformer condition (short circuits, close lightning impact, ...)

- To compare with a sister unit in troubles
SFRA-Measurements
What is FRA? What the devices look like?

- FRAX-101 produced by Megger Group
 ABB-Switzerland is working with this device

- M5300 produced by Doble
 ABB-USA is working with this device

- FRAnalyzer produced by Omicron
 ABB-Germany is working with this device

- Agilent (HP) – Network analyzer
 General device – Not dedicated to FRA

- Traftek produced by B&C Diagnostics

- FRAmnit produced by Utility & Industrial Products, Inc

- FRA 5310 produced by Haefely

- FRA-100 produced by Phenix

- SoFT produced by ABB
 Complete transformer fingerprinting
Measurement procedure (do not forget!!!)

Take Pictures:
- Name plate
- Transformer
- Connections
Measurement procedure (setup installation)

Typical test connection (three key elements):
- The unit under test (Transformer)
- The FRA device (Many possibilities)
- The cabling (three coaxial cables)
Measurement procedure (setup installation)

Typical test connection (Avoid loops in GND connections)

The transformer tank is the reference ground.

formed by cable shield to ground connection and bushing as small as possible!
Measurement procedure (before to start)

Check your leads

\[
\text{FRA(dB)} = 20\log_{10} \left| \frac{U_{\text{out}}(f)}{U_{\text{in}}(f)} \right|
\]

Small scale in vertical axis:
Which measurements do we want to do?

<table>
<thead>
<tr>
<th>Test type</th>
<th>Test N°</th>
<th>3-phases Delta-Wye</th>
<th>3-phases Wye-Delta</th>
<th>3-phases Delta-Delta</th>
<th>3-phases Wye-Wye</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV self-winding (open circuit)</td>
<td>1</td>
<td>H1-H2</td>
<td>H1-H0</td>
<td>H1-H2</td>
<td>H1-H0</td>
</tr>
<tr>
<td>Terminals floating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV self-winding (open circuit)</td>
<td>2</td>
<td>H2-H3</td>
<td>H2-H0</td>
<td>H2-H3</td>
<td>H2-H0</td>
</tr>
<tr>
<td>Terminals floating</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HV self-winding (short circuit)</td>
<td>4</td>
<td>H1-H2</td>
<td>H1-H0</td>
<td>H1-H2</td>
<td>H1-H0</td>
</tr>
<tr>
<td>Short [X1, X2, X3]^*</td>
<td>5</td>
<td>X2-X0</td>
<td>X2-X3</td>
<td>X2-X3</td>
<td>X2-X0</td>
</tr>
<tr>
<td>LV self-winding (short circuit)</td>
<td>6</td>
<td>X3-X0</td>
<td>X3-X1</td>
<td>X3-X1</td>
<td>X3-X0</td>
</tr>
<tr>
<td>Short [H1, H2, H3]^*</td>
<td>7</td>
<td>H1-H2</td>
<td>H1-H0</td>
<td>H1-H2</td>
<td>H1-H0</td>
</tr>
<tr>
<td>Capacitive Inter-Winding</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminals floating</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inductive Inter-winding</td>
<td>10</td>
<td>X1-X3</td>
<td>X1-X2</td>
<td>X1-X2</td>
<td>X1-X3</td>
</tr>
<tr>
<td>Ground [H, X-]</td>
<td>11</td>
<td>X2-X0</td>
<td>X2-X3</td>
<td>X2-X3</td>
<td>X2-X0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>X3-X0</td>
<td>X3-X1</td>
<td>X3-X1</td>
<td>X3-X0</td>
</tr>
</tbody>
</table>

(A) Open circuit: (HV and LV windings)

(B) Short circuit: (HV and LV windings)

(C) Capacitive inter-winding: (Between HV and LV windings)

(D) Inductive inter-winding: (Between HV and LV windings)
Measurement procedure

Why open circuit measurements?

We can see:

- Winding short-circuits
- Broken delta winding
- Core related problems (circulating currents, bad joints, …)

Why short circuit measurements?

- Precise short-circuit reactance measurement
 → close agreement between phases (0.1 dB rule)
- Very good reproducibility within the whole frequency range
- Not affected by core magnetization
SFRA-Analysis
Analysis:

- Baseline Measurements
- Sister units
- Phase to Phase
Typical results: Large transformer

- "LV sc"
- "HV sc"
- "LV oc"
- "HV oc"
Typical results: Open- vs. short circuit

Configuration – Self-Winding (Short circuit)

The Low Voltage terminals are short-circuited.
Background: **Open- vs. short-circuit**

Magnetic flux paths for low-frequency measurements

open-circuit: \(L_{oc} \approx 10 \, \text{H} \)

short-circuit: \(L_{sc} \approx 100 \, \text{mH} \)
Open-circuit test: Y vs. Delta

Configuration – **Self-Winding (Open circuit)**

Star configuration

Voltage injection / Voltage reference

Voltage response

H3-H0 test

Voltage injection
Voltage reference

Delta configuration

Voltage response

The Low Voltage terminals are open (floating)
Typical results: **Areas of influences (Approx.)**

Core influence
Typical results: **Areas of influences (Approx.)**

![Graph showing typical results with areas of winding influence highlighted.](image-url)
Typical results: **Areas of influences (Approx.)**

Leads, grounding influence
Typical results: **Influence of winding resistance test**

Measurements before and after winding resistance test
Typical results: **Cable shield grounding at bushing**

- **Cable shields** grounded
- **Cable shields** NOT grounded

Cable shield must be connected at both ends
Oil influence in FRA signatures (HV Winding):

With Oil

Without Oil
Tap Position influence in FRA signatures
Noise from Instrumentation!
Short circuit test

- 0.1 dB or less
Short-circuit test: 0.1dB criterion

The short-circuit inductance is proportional to the cross-section area A of the main channel:

$$L_{sc} \approx \frac{\mu_0 N^2 A}{h}$$

< 0.1dB means that A changes by < 1%
Good practices: **Short circuit Connection**

Reduce short circuit cable resistance and inductance by using several conductors in parallel.
SFRA- Cases
Case # 1

Residual magnetization
Case # 1 Residual magnetization

- FRA measurement identified residual magnetization

- The outer phases (A & B) did not align well with one another at the low frequency region.

- All Short circuit tests showed symmetry between windings.

- It was discovered that the field test specialist performed a DC resistance test one day earlier.
Case #1 Residual magnetization

All three phases show separation due to the core being magnetized.

100 Hz – 4 kHz
Case # 1 FRA results after Demagnetizing

A & C phase are aligned. Phase B shows higher impedance as usual.
Case # 2

Shorted turns
Case # 2 Shorted turns

- Ratio test indicated shorted winding turn on phase B
- FRA was made to decide whether HV or LV winding had failed
Case # 2 Shorted turns – Which winding (HV or LV)??

HV open circuit

Phase B

Phase A & C
Case # 2 Shorted turns – Which winding (HV or LV)...

LV open circuit
Case # 2 Shorted turns – Which winding (HV or LV)??

- HV short circuit (i.e., HV measured and LV short circuited)
 - Lower inductance due to shorted turns in HV phase B

Diagram: Frequency response analysis showing the impact of shorted turns on the inductance.
Case # 2 Shorted turns - lesson learned

- Both HV and XV open circuit tests indicate that phase B has shorted turns
- HV short circuit test indicates that HV winding has shorted turn
- HV short deviation at low frequency also indicates that HV B-phase has extra losses
Case # 3
Earthed tertiary
Case # 4 Earthed tertiary

- 253/13.2 kV, 100 MVA (YNyn0yn0+dd)

Buried tertiary (with internal earth, no external access)
Case # 4 Earthed tertiary

- 253/13.2 kV, 100 MVA (YNyn0yn0+dd)

Phase asymmetry due to earthed tertiary (buried)
Case # 4 Earthed tertiary

- 240/72 kV, 150MVA (YNyn0+d)
- Tertiary brought out and earthed externally
- Possible to remove tertiary earth *keeping delta intact*
Case # 4 Earthed tertiary

- Tertiary earth removed and delta intact
- Symmetry between phases is preserved

LV open circuit

delta tertiary intact, earth connection removed
Reminders
Automation & Power World 2011

- Please be sure to complete the workshop evaluation

- Professional Development Hours (PDHs) and Continuing Education Credits (CEUs):
 - You will receive a link via e-mail to print certificates for all the workshops you have attended during Automation & Power World 2011.
 - BE SURE YOU HAVE YOUR BADGE SCANNED for each workshop you attend. If you do not have your badge scanned you will not be able to obtain PDHs or CEUs.
Power and productivity for a better world™