

USER MANUAL - EXTERNAL

Safe Digital

Intelligent solution for secondary switchgear

 \oplus

- Greener
- Smarter
- Safer
- More reliable

At ABB, we believe in a world in which nature and technology go hand in hand. A world in which powering your operations also means powering positive change – for your business and our planet.

We strive to create products and solutions that make a difference. Our philosophy is that greener is smarter, and smarter is greener. That's the thinking behind our latest medium-voltage, secondary gas insulated switchgear (SGIS) -Safe Digital.

Table of contents

1. Introduction	04
2. Safe Digital system structure	06
3. Data concentrator	08
4. Temperature rise monitoring	11
5. Gas pressure monitoring	17
6. Mechanical characteristics monitoring	19
7. 3PS position video monitoring	21
8. Partial discharge monitoring	22
9. Local Human Machine Interface (LHMI)	24

1. Introduction

Figure 1A Definition of ABB MV Digital GIS

1.1 Digital Gas Insulated Switchgear (GIS)

ABB's Digital solutions make our GIS switchgear smarter, safer, and more efficient. The definition of GIS Digital is based on two pillars:

- Smart Automation & Control (A&C)
- Monitoring & Diagnostics (M&D)

With the help of Smart Automation & Control efficient action and quick reaction can be enabled for safe and efficient operation as well as increased availability of power supply by integrating grid automation solutions as well as current and voltage sensors. Bus communication is realized via IEC 61850.

Monitoring & Diagnostics ensures that the switchgear is in a good condition for highest reliability by continuously monitoring its condition and initiate maintenance the switchgear only when really needed. Part of the M&D portfolio is ABB Ability TM, the Asset Health Monitoring (locally and remotely via cloud systems).

1.2 Manual scope

This manual contains brief instructions and engineering guidelines for ABB's Secondary Gas Insulated Switchgear (SGIS) - Safe Digital. It provides details about its main components as well as M&D features for products listed below^a:

- SafeRing/SafePlus 12 kV, C/F/V/V20/V25 modules
- SafeRing/SafePlus 24 kV, C/F/V/V20/V25 modules
- SafeRing/SafePlus 40.5 kV, C/V modules
- SafeRing/SafePlus Air 12kV, C/V modules

a: Functions and configurations may vary depending on product type.

Before applying the Safe Digital M&D functions, it is recommended to go through the content of this manual. Special attention shall be paid to various precautions and use restrictions mentioned in the manual.

Figure 1A

—

1.3 Abbreviations and Terminology

Some terminology will be frequently used in this document and their definitions are listed as below Table 1A.

Table 1A Abbreviations and Terminology
--

Term	Description	
GIS	Gas Insulated Switchgear	
PGIS	Primary Gas Insulated Switchgear	
SGIS	Secondary Gas Insulated Switchgear	
M&D	Monitoring and Diagnostic	
MRC	MyRemoteCare	
EAM	Energy Asset Management	
IED	Intelligent electronic device	
IEC	International Electrotechnical Communication	
GB	China National Standard	
3PS	Three Position Switch	
IoT	Internet of Things	
VPIS	Voltage Presence Indicating System	
TR	Temperature Rise	
STR	Static Temperature Rise	
DTR	Dynamic Temperature Rise	
P20	Gas pressure compensated at 20 °C	
VI	Vacuum Interrupter	
СВ	Circuit Breaker	
HMI	Human Machine Interface	
LHMI	Local Human Machine Interface	
AC	Alternative Current	
DC	Direct Current	
T&H	Temperature and Humidity	
10	Input/Output	
СТ	Current Transformer	
MV	Medium voltage	
VT	Voltage Transformer	
LVC	Low Voltage Compartment	

2. Safe Digital system structure

Figure 2A System structure of Safe Digital

2.1 Logic topology

Safe Digital mainly including 5 function blocks:

Cable bushing temperatures rise monitoring

- Gas tank pressure monitoring
- Operation mechanism mechanical characteristic monitoring
- 3PS position video monitoring
- Partial discharge monitoring

Also, including 4 common blocks:

- Data concentrator (MDC4-M)
- Gateway and Cloud Platform (EAM, MRC)
- Local Human-Machine Interface (LHMI)
- Mobile APP (for on-site used only, MDC4-M)

A comprehensive Safe Digital system structure is shown in Figure 2A.

1. The cloud connectivity is optional

Figure 2A

2.2 List of components

The electronic components used in Safe Digital solution are listed in Table 2A.

Table 2A Safe Digital electronic components

No.	lcon	Component Name	Model Number
1	,	Data concentrator	MDC4-M
2		Ambient air T&H sensor	THS01
3		Intelligent temperature sensor	STE202
4		Intelligent temperature sensor 3-in-1	STE203
5		Intelligent current sensor	SEC201
6		Current transformer sensor	
7	┖┎╴	Gas density sensor	DM60R
8		Mechanical charact. sensor	SMX202
9		Hall current sensor	
10		Resistance rotation angle sensor	
11	N S N S III	Hall rotation angle sensor	
12	0 g	Intelligent web camera	SAC40-R
13	Ë	Ethernet switch	TL-SF1008 (Industrial)
14		PD data recorder	HTR02-6AWA-PDD
15		PD monitoring antenna	AN-F1
16	انت م	Gateway	
17		LHMI (advanced)	IP touch 7
18		LHMI (standard)	MP58B

3. Data concentrator

Figure 3A Data Concentrator MDC4-M

3.1.MDC4-M

The data concentrator MDC4-M (as shown in Figure 3A) is a key device for data recording, communication and algorithm implementation on site which is normally installed on the DIN-rail inside the LV compartment. The pin definitions of MDC4-M are listed in Table 3A.

Table 3A MDC4-M pin definition

Port	Pin	Function	Safe Digital Application
	1 – PE		
	2 – AC220 L	Power input	Power supply
	3 – AC220 N		
	4 – R-NO		
X1	5 – R-NC	Digital outputs	Alarm output
	6 – R-COM		
	7 – DIN-COM		
	8 – DIN1	Digital input	Reserved
	9 – DIN2		
	1 – RS485-B1	Unstroom communication DC495 1	
2 – RS485-A1		Opstream communication R5485-1	Local HMI
	3 – RS485-B2	Unstructure communication DC405.2	DC Configuration on Cotomory
4 – RS485-A2		Opstream communication RS485-2	PC configuration of Gateway
X2 5 – GND 6 – RS485-B3			
	Power for sensors	Power supply and	
	7 – RS485-A3	Downstream communication RS485-3	communication for sensors
	8 – +12V		

Figure 3B LED and QR code of MDC4-M

Figure 3C Welcome screen of MConfig

The LEDs located on the front panel (as shown in Figure 3B) are used for indicating the working/ communication/alarm status. Detailed definition of LED and QR code are explained in Table 3B.

Detailed information regarding MDC4-M please refer to the latest version of MDC4-M user manual.

Figure 3B

Table 3B LED and QR code definition

Name	Position	LED state	Description
Bupping LED Indicator	1	OFF	Auxiliary power supply is disconnected
Running LED Indicator	1	Flashing	Normal operation
	2	ON	No TR wireless communication
comm. LED indicator		Flashing	TR wireless communicating
	3	OFF	No alarm presents
Alarm LED Indicator		ON	Alarm triggered
Wi-Fi QR code	4		WIFI ID to setup communication with MDC4-M

3.2 MConfig

ABB's manufacture and service can install MConfig, a configuration tool, which runs on PC or laptop to test the product or modules, store production data and set related parameters. MConfig provides two working modes: online and offline. When it is in offline mode, the configuration parameters can be stored locally and can be downloaded to the device once it is in online mode. Data can be exported for other application purpose.

The starting up screen of MConfig is shown in Figure 3C. Product key is required to login MConfig.

Figure 3C

For Product Key application, you need to provide your PC MAC address and send to MConfig development team (Andy-Kaiming.Lin@cn.abb.com).

Figure 3D Typical user interface of MDC4-M APP

Figure 3E QR code for iOS/Android MDC4-M APP download

3.3.Mobile APP

ABB engineers and users can install a special mobile application to view local data and set related parameters.

The mobile APP support both iOS and Android environment and can be connected with MDC4-M via Wi-Fi by scanning the QR code on the front panel of MDC4-M.

3:42	:::! ? F)	2:30	::!! 🗢 🗗	.111 中国移动 奈	10:02 AM	81
≡ S	etting Connection	≡ Setting	g Connection	<	Setting	
RMU Name : Di	aital Lab	RMU Name : Digital				
MDC4-M ID	M11190917118	MDC4-M ID	M11190917118		116-1-1-1	-1-
Comm. Address	001	Comm. Address	001	1	1 k	
RMU Type	SafeRing 12kV	RMU Type	SafeRing 12kV		5.5 B	
Init 1 A Temperature	24.1°C	Air Chamber 1 Pressure P20	1.01Bar	M-) Temperati	ire parameter	
Init 1 B Temperature	23.8°C	Air Chamber 2 Pressure P20		i y temperate	ne parameter	
Init 1 C Temperature	24.1°C	Air Chamber 3 Pressure P20				
nit 2 A Temperature	24.1°C	Air Chamber 4 Pressure P20		Hir VCP Infor	nation	
nit 2 B Temperature	24.1°C	Air Chamber 5 Pressure P20		TIR ACD IIIOII	ation	
nit 2 C Temperature	24.5°C	Air Chamber 6 Pressure P20				
mbient Temperature	28.7°C	Air Chamber 7 Pressure P20		C Suitebaas	r Information	
mbient Humidity	57%			Lo Switchgee	i information	
nit 3 A Temperature						
nit 3 B Temperature					0.0	
Init 3 C Temperature				s Language	en	
nit 4 A Temperature						
nit 4 B Temperature						
Init 4 C Temperature						
Init 5 A Temperature						
Init 5 B Temperature						
Jnit 5 C Temperature						
Jnit 6 A Temperature						
L° L	$\hat{\varphi}$	0° 1	$\widehat{\mathcal{P}}$		version:1010	

Figure 3D

The MDC4-M APP can be downloaded by simply scan the QR code below using your smart phone.

Figure 3E

4. Temperature rise monitoring

Figure 4A Hierarchy chart of temperature rise monitoring function

Figure 4B Ambient air T&H sensor THS01

Support maximum 6 units

Figure 4A

The system hierarchy chart of temperature rise monitoring function is shown in Figure 4A. Take MDC4-M as the core of the system, various devices/sensors are connected:

- Ambient air T&H sensor THS01 (Figure 4B)
- Cable bushing TR sensor STE202 (Figure 4D)
- Current sensor SEC201^b
- Current transformer connected to SEC201^b

4.1 Ambient air T&H sensor THS01

Ambient air T&H sensor is used to measure the environmental temperature and humidity. The environment temperature is used for TR and gas pressure M&D algorithms. THS01 is connected to MDC4-M Modbus port via RS485 interface. Its appearance is shown in Figure 4B, terminals are defined in Table 4A.

Figure 4B

Table 4A Ambient air T&H sensor terminal definition

Pin number	Pin number connected to	Function	
A	MDC4-M: X2 – 7	Commission time	
В	MDC4-M: X2 – 6	communication	
V+	+12/24VDC	Deureneurelu	
V1	GND	Power supply	

Figure 4C Recommended install position of THS01 for SGIS

4.1.1 Cable Compartment Installation (Recommended)

THS01 can be mounted on the inner side of sideboard behind the cable compartment as shown in Figure 4C. If there is potential heat/cooling source around, the install position should be carefully evaluated by ABB's engineer.

4.1.2 LV Compartment Installation

THS01 can also be installed on the din-rail inside the LV compartment. It shall be kept at a necessary distance from any potential heat source and cooling source to ensure the accurate acquisition of ambient temperature. If a heating device is set in or near the LV compartment, THS01 shall be moved to cable compartment (Figure 4C) or consult ABB R&D team.

The ambient air T&H sensor THS01 should be kept away from any potential heat/cooling source!

Figure 4C

Figure 4D TR sensor STE202 and its installation demonstration

Figure 4E Installation

of TR sensor STE202 for SGIS

4.2 Temperature rise sensor

Temperature monitoring devices STE series are key components in ABB's switchgear and apparatus condition assessment solutions. The devices are battery-free, self-powered smart temperature sensors, utilizing wireless communication technology for connecting to ABB's monitoring and diagnostics data concentrators.

4.2.1 STE202

STE202 can be installed directly on high-voltage parts of medium-voltage switchgear as shown on the right-hand side of Figure 4D. The sensor probe needs to be in direct contact with the measured point. The strap needs to be tightened and fastened to prevent slipping off.

Figure 4D

The installation of TR sensor including 3 steps as listed below and illustrated in Figure 4E:

- 1. Install the sensor probe on the bushings together with the VPIS cable for each phase.
- 2. Connect the sensor probe with the grey box.
- 3. Wrap the data acquisition and communication module around the cable surface and press the buckle of the strap to ensure the module is tightly fixed as shown in Figure 4E (d).

(a) Sensor probe and bushing

(c) Gray box on cable

(b) Connection between sensor probe and gray box

(d) Gray box buckled

Figure 4F Waterproof connectors of STE202

Figure 4G TR sensor STE203 (3-in-1) The STE202 is designed as waterproof. If disconnecting/reconnecting of the sensor cable from gray box, make sure the red sealing ring is inside the connector and the waterproof joint is tightened up as shown in Figure 4F.

Figure 4H Parts of STE203

Figure 4F

The TR sensor is only applicable to the accessories (T-head) with cable skin grounded.

4.2.2 STE203

STE203 is a new type of TR sensor which can combine 3 sensor probes with 1 gray box, as show in Figure 4G.

Figure 4G

STE203 consist of 4 parts: main gray box, sensor probe, insulation washer and 4-way BNC adaptor, as shown in Figure 4H.

(b) Sensor probe

(c) Isolation washer

(d) 4-way BNC adaptor

Figure 4H

(a) Main gray box

Figure 4I STE203 insulation washer on sensor probe

Figure 4J SEC201 and installation on din-rail

The installation of TR sensor STE203 including 5 steps as listed below: 1. Plug a total of 6 insulating washers in the round mounting holes of three (phase A, B and C) STE203 sensor probes, as shown in Figure 4I.

Figure 4I

- 2. Fasten the metallic end of the STE203 sensor probe at the VPIS connections of the bushings in the cable compartment.
- 3. Connect the female connector of four-way BNC connector with the male connectors of sensors probes of A, B and C respectively, and connect the only male connector with the female connector of gray box.
- 4. Wrap the gray box around the surface of cable accessories. Then, lock the buckle to ensure that the installation is stable .
- 5. Fix the four-way BNC connector to the left side of the type T cable accessories.

4.3 Primary current sensor SEC201

SEC201 is a smart sensor for switchgear primary current measurement using split-core current transformer sensors. They are key components in ABB's switchgear and apparatus condition assessment solutions. They can be opened and snapped around on the secondary side of the primary current CT, then utilizing RS485 communication for connecting to data concentrators.

Figure 4J

For dynamic temperature rise (DTR) monitoring solution, SEC201 are required to obtain the primary current information. In this case, primary CT in switchgear cable compartment is a compulsory element. The ratio of primary CT coils should be configured.

Primary CT and SEC201 are compulsory when DTR is enabled!

Figure 4K Configuration interface of STR/DTR using MConfig for SGIS

4.4 Configuration of STR/DTR M&D with MDC4-M

The configuration of TR sensor and setting up the connection with MDC4-M can be done via MConfig. The type of TR sensor (1-in-1 STE202 or 3-in-1 STE203), ID code of TR sensor, and the ratio of primary CT coils need to be input in the corresponding text box of each unit as shown in Figure 4K.

I SGIS	t MDC4-M Accessories						
Basic Informa	ion				QRCode		
Configure	Gas Tank&Unit Names						ORCode
SGIS Type	SafeRing 12kV		~				dinoodo
Serial No	503124079/10001-001			Threshold			Export to Im
Gas Tank Q	TY 1 ~	Operation Voltage	220V DC ~	-			History Reco
Unit QTY	3 ~	TR Band	1	0			
Temp Senso	r Connect 1 - in - 1 V						
-Unit1		Unit2					
Unit Typ	c ~	Unit Type	C ~				
Cable ph	A ID 212103081011	Cable phA ID	212103081014				
Cable ph	B ID 212103081012	Cable phB ID	212103081015				
Cable ph	C ID 212103081013	Cable phC ID	212103081016		Real-time Data		Gas Task1(P20)
CT Ratio	400/5 ~	CT Ratio	400/5 ~		Read Data	AI AH	Clas Talik ((F20)
Unit3					1s 🗸 🗸	~ ~	- Dal
Unit Typ	F v					pna pnB pnC	
Cable ph	A ID 212103081017				Unit1	"	C/A
Cable ph	B ID 212103081018				Unit2	1	C/A
Cable ph	C ID 212103081019				Unit3	1	C/A
CT Ratio	400/5 ~						

Figure 4K

Different TR bands shall be selected for different MDC4-M within 20m distance in the same space!

5. Gas pressure monitoring

Figure 5A Hierarchy chart of gas tank pressure monitoring function

Figure 5B Installation of gas density sensor

Figure 5A

The system hierarchy chart of gas tank pressure monitoring function is shown in Figure 5A. Take MDC4-M as the core of the system, various devices/sensors are connected:

• Ambient air T&H sensor – THS01 (Figure 4B)

• Gas density sensor – DM60R (Figure 5B)

5.1.Ambient air T&H sensor THS01

THS01 is compulsory for gas tank pressure monitoring to compensate the environment temperature. Details of THS01 and its installation please refer to chapter 4.1.

5.2.Gas density sensor DM60R

The gas tank pressure can be monitored using gas density sensor DM60R, as shown in Figure 5B. DM60R is connected with MDC4-M via RS485 port. The terminal definition is listed in Table 5A

Figure 5B

Table 5A Terminal definition of gas density sensor DM60R

Terminal No.	Color	Definition	Function	
1	Red	+12V DC	Devues eventski	
2	Black	GND	Power supply	
3	Yellow	RS485-A+	Communication	
4	Blue	RS485-B-	Communication	

Figure 5C Modbus address configuration of DM60R via MConfig

5.3.Configuration of DM60R

The Modbus address of DM60R can be configured via MConfig which is shown as below.

MConfig			×
File - 😳 Options - 💣 Connect MDC4-M	Accessories		🧃 🖡 🎁 🔘
Accessories	DM60R(Gas density monitor)		
Consider the second se	DM60R(Sas density monitor) Installation Loc Device Address Temperature Pressure	Gas Tark1	
	1		Vering 13

— Figure 5C

_

6. Mechanical characteristics monitoring

Figure 6A Hierarchy chart of mechanical characteristics monitoring function

Figure 6B Mechanical characteristics monitoring sensor SMX202

Support maximum 6 units

Figure 6A

The system hierarchy chart of mechanical characteristics monitoring function is shown in Figure 6A Hierarchy chart of mechanical characteristics monitoring function. Take MDC4-M as the core of the system, various devices/sensors are connected:

- Mechanical characteristics monitoring sensor SMX202 (Figure 6B)
- Resistive rotation angle sensor (Figure 6C)
- Hall* rotation angle sensor (Figure 6D)
- Hall current sensor (Figure 6E)

6.1 Mechanical character sensor (SMX202)

The mechanical characteristics sensor is the core component for mechanical monitoring of the switchgear mechanism. As shown in Figure 6B, it has five ports. The functions and terminal definition of each port are shown Table 6A. SMX202 is installed on the customized DIN-rail beside the operating mechanism in the mechanism compartment and connected with MDC4-M using RS485 port.

Figure 6B

*: For EL mechanism only.

Figure 6C Resistive rotation angle sensor

Figure 6D Hall rotation angle sensor

Figure 6E Hall current sensor

Table 6A SMX202 Port Definition

Port	Pin	Function
	1 - 12/24VDC	
	2 – RS485-A	
СОМ	3 – RS485-B	Power supply and communication ports
	4 – GND 5 - EARTH	
	1 – GND	
т	2 – Output	Ports for angle sensor
	3 – VCC	
	1 – GND	
М	2 – Output	PPorts for motor current sensor
0	3 – Vref	for close coil current sensor
-	4 – VCC	

 \bigwedge

The configuration of SMX202 is handled by ABB manufacturing or service only as special calibration is required!

Figure 6E

6.1.1 Resistive rotation angle sensor

The resistive rotation angle sensor is shown in Figure 6C. It is installed on the hexagonal shaft of the indicator flag and has a special buffering design for installation.

6.1.3 Hall current sensor

Hall current sensor is used to measure the current of charging motor, opening coil, and closing coil, as shown in Figure 6D.

Figure 6C

6.1.2 Hall rotation angle sensor

Hall rotation angle sensor is applicable to EL mechanism, as shown in Figure 6D. It is installed on EL mechanical sleeve.

7. 3PS position video monitoring

The system hierarchy chart of 3PS position video monitoring function is shown in Figure 7A. IP cameras (Figure 7B) are connected to local display

(IP touch 7) and/or gateway via ethernet switch.

The IP camera is installed on the back of gas tank, as shown in Figure 7C, and demonstration snap screens are in Figure 7D.

Figure 7B

Figure 7C

Earthing position

Close position — Figure 4H

Open position

Fault position

8. Partial discharge monitoring

Figure 8B PD data transceiver HTR02-6AWA-PDD

Figure 8A

The system hierarchy chart of partial discharge monitoring function is shown in Figure 8A. Take MDC4-M as the core of the system, various devices/sensors are connected:

- PD data recorder HTR02-6AWA-PDD (Figure 8B)
- PD UHF antenna AN-F1 (Figure 8D)

8.1 PD data transceiver HTR02-6AWS-PDD

Figure 8C HTR02 connection

Figure 8D PD UHF antenna AN-F1

Figure 8E SENSeOR Configuration Tool HTR02-6AWA-PDD can be connected to MDC4-M via RS485 port. If multiple HTR02-6AWA-PDD are used, the they can be connected in series as shown in Figure 8C.

Figure 8C

8.2 PD UHF antenna AN-F1

Figure 8D

8.3 Configuration of PD data transceiver

The HTR02-6AWA-PDD is configured via PC by using SENSeOR Configuration Tool, as shown below. Detailed instruction of configuration of HTR02-6AWA-PDD please refer to SENSeOR user manual.

Figure 8E

The outputs of HTR02-6AWA-PDD are gathered by MDC4-M (advanced M&D algorithms are implemented in MDC4-M), providing a comprehensive evaluation of dielectric health status and score of SGIS.

9. Local Human Machine Interface (LHMI)

Figure 9A Local HMI LV compartment door installation

Figure 9B LHMI MP58B

Figure 9C Typical screen shots of LHMI MP58B

The local HMI is installed on the low-voltage compartment door as an option, as shown in Figure 9A.

9.1 MP58B

Figure 9B

Temp

Unit1 Status

Unit2 Status

Unit3 Status

Unit4 Status

Unit5 Status

Health

Switch status

Home

Gas Tank 1

Gas Tank 2

Gas Tank 3 Gas Tank 4

Gas Tank 5 Gas (P20)

Switch

Temp

Mech

Closed

Closed

Closed

Closed

ENV

1.23 Bar

1.23 Bar

1.23 Bar

1.23 Bar 1.23 Bar

Open

Mech

MP58B is a LHMI for MDC4-M which is fully compatible with existing Safe Digital solutions with color display. It is a plug-and-play device requiring no additional configuration.

Typical screen shots of MP58B are shown in Figure 9C.

Figure 9A

Home screen

н	ome	Temp	Mech	Electric	ENV
c	Closing Time				ms
C	Closing Coil Current				A
c	Closing Speed				°/ms
c	Closing Overshoot				•
т	Travel Degree				•
U	nit 1	Unit 2			

Gas pressure

Environment

Home Temp Mech Elec ENV Ambient Air 20.5 °C 89 %

ENV

°C

Unit 5

Mechanical

Figure 9C

Figure 9D LHMI IP Touch 7

9.2 IP touch 7

Figure 9E Typical screen shots of LHMI IP Touch 7

IP touch 7 is shown in Figure 9D and the detailed information can refer to its user manual. Typical screen shots of IP touch 7 are shown in Figure 9E.

Figure 9D

 \triangle

The surface of IP touch 7 is made of glass. Pay attention to protection during installation and configuration in case of physical damage!

ABB		Ę	Th 02/01/20 18:09
Home			\$
test	MDC4-M ID Comm.Add Switchgear Switchgear Switchgear Hardware V Software V		M00190214001 001 test 1safe1 123123123 V1.001 test_APP&Mo
Temperature			

t	#					
SGIS						¢
SG01	>					
		Ambient Temp	erature			
01		Ambient Humi	dity			
		U1 A Temperat				
		U1 B Temperature				
U3		U1 C Temperat				
U4						
U5						
116			· ·			
Temp	erature	Gas pressure	Mechanism		Video	

Home screen

Temperature

Gas pressure

Mechanism

Video

Figure 9E

ABB Beijing Switchgear Limited

Building No. 2, No.12 Jingyuan Street, Economic-Technological Development Area, Beijing, 100176, P. R. China Tel: +86 10 8709 9199

ABB (China) customer hotline

Phone: 800-820-9696 400-820-9696 Email: contact.center@cn.abb.com

www.abb.com