AX480, AX488 and AX468
Single and dual input analyzers for dissolved oxygen
Measurement made easy
More processing power, lower energy costs

Cost effective
- select one or two dissolved oxygen inputs or combine pH/Redox (ORP) and dissolved oxygen in one analyzer

Reduced installation cost
- easy access terminations; reduced panel space

High functionality at minimum cost
- three alarms and two fully isolated current outputs
- integral water / chemical sensor cleaner control
- integral PID controller (AX480)

Expanded monitoring and control
- add-on option board provides up to five alarm relays and four current outputs
- service logbook providing historical data

On line assurance of reliability
- comprehensive sensor and instrument self-checking

High measurement accuracy
- salinity, temperature and atmospheric pressure compensation included

Energy saving
- high visibility, backlit display with auto switch-off function

Reduced yearly maintenance costs
- 12 to 30 V DC option negates the need for costly safety tests
The AX400 series

AX400 Analyzers incorporate the latest technology providing highly reliable, flexible, feature-packed devices that satisfy a diverse range of process monitoring and control applications. The complete range encompasses solutions for pH/Redox (ORP), conductivity and dissolved oxygen.

AX48x instruments enable continuous measurements of one or two dissolved oxygen points with simultaneous local display and retransmission. AX48x is used with 9408 Series immersion, submersion and self-cleaning floating-ball sensors providing measurements with exceptional accuracy and performance.

AX400 Series analyzers are available for either wall-/pipe- or panel-mounting and are rated to IP65.

High functionality as standard

All versions are supplied with two, fully isolated current outputs as standard, that can be assigned to the measured parameter, sample temperature or any appropriate calculated variables.

Three programmable relay set points are available that can also be assigned as required.

Innovative features such as a power-saving display and a diagnostic current output option all contribute to low cost of ownership.

Plug-and-produce expanded control

An advanced function card provides an additional two current outputs and two further alarm relays that can be assigned to either measured values or sample temperature.

ABB plug-and-produce software automatically reconfigures the analyzer if an option board is added later. No user programming is necessary.

A real-time clock and logbook are also included, making the full-facility versions extremely powerful and versatile.

Significantly reduced maintenance costs

The AX400 analyzers are supplied as standard for 85 to 265 V AC operation. There are no inner switches to set.

They can also be provided for 24 V AC or 12 to 30 V DC supply and recognize automatically which of the two supplies is being used. 24 V DC operation reduces maintenance costs significantly by negating the need for costly, yearly safety tests to ensure compliance with safety procedures.
Energy saving display

The backlit display has been designed to operate in all types of environments and shows both the measured parameter(s) and, on a separate 16-character display line, diagnostic and computed information.

On dual-input analyzers both measured parameters are displayed simultaneously.

For conservation of energy, the backlight can be set to switch off automatically after 60 seconds of inactivity.

Easy access installation terminals

Easy access to the terminations ensures rapid and cost-effective installation. The wall-/pipe-mount version has been designed to ensure that cable connection is simple and convenient. Ingress protection of the electronics section is retained even when the terminal compartment is opened.

AX400 termination chamber makes access easy

Backlight can be set to switch off when inactive
Cost savings with aeration lane zone control

Depending on the incoming load to large aeration tanks, the profile of horizontal oxygen can change considerably. Controlling the entire tank based solely on a final measurement can be extremely inefficient.

Control in several zones saves costs

Controlling several sections individually can considerably increase the tank capacity and bring additional savings in energy. The AX488 enables two continuous measurements from a single analyzer with simultaneous local display and retransmission.

Dual-input enables zone control for optimum tank capacity and reduced energy costs

The AX488 operates as two separate analyzers, thus reducing initial expenditure, saving space and minimizing installation costs when compared to using two individual analyzers. This capability provides on-line validation of the process measurement.

Making two simultaneous measurements and configuring one of the set points as a difference alarm provides continuous on-line checking and early warning of malfunction of the measurement.

Alternatively, both measurements can be compared and an average value calculated and transmitted via the analog output.

In aeration lanes where four individual measurements are made, two AX488s can considerably reduce capital expenditure.
On-line assurance of reliability

The AX48x displays a bar-graph of the sensor’s output after calibration. This unique feature provides information on the sensor condition and enables maximum use of the sensor before replacement.

Sensor capsule replacement is a simple operation that can be carried out in a few minutes.

<table>
<thead>
<tr>
<th>Bars</th>
<th>Sensor output efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85 %</td>
</tr>
<tr>
<td></td>
<td>60 %</td>
</tr>
<tr>
<td></td>
<td>50 %</td>
</tr>
<tr>
<td></td>
<td>< 50 % low sensor efficiency</td>
</tr>
</tbody>
</table>

Bar graph sensor life indicator

Reduced maintenance through in-line cleaning

Many installed sensors benefit from regular cleaning. When carried out manually, this can be laborious and costly – so is often ignored. Advanced AX48x analyzers make it possible to automate sensor cleaning of floating ball, immersion or submersible systems by using a programmable wash-timer contact to activate a cleaning agent valve or pump.

Efficient jet-spray cleaning control

Pulsed water-wash and jet-wash chemical clean actions are standard, user-selectable functions. The frequency and duration of the wash can be tuned to meet the needs of the application.

Efficient auto-cleaning control for one or two sensor systems

For chemical cleaning a 60 liter (13 gallon) sensor cleaning station can be supplied (model no. AA0010), complete with delivery pump and low level alarm. Chemical cleaning has proved particularly successful on potable drinking water plants where manganese and iron in the sample can create unacceptably high levels of maintenance. Effective cleaning reduces cost of ownership.
Combined dissolved oxygen and pH or Redox (ORP)

The AX468 version measures pH or Redox (ORP) and dissolved oxygen with the same analyzer. The option board provides the capability to retransmit pH, dissolved oxygen and both sample temperatures. Five programmable alarms can be assigned to suit the needs of the application, enabling even the most demanding requirements to be met.

Confidence in service

To complement the well-proven design, unrivalled accuracy and reliability in service of the dissolved oxygen sensor, the entire sensing loop is regularly self-monitored for short circuits and temperature element faults. The instrument incorporates a nonvolatile memory, eliminating the need for battery back-up, and line-voltage supply filtering to minimize the effects of mains borne interference.

Temperature compensation, salinity and pressure correction factor

The solubility of oxygen in water is affected by:
- sample temperature
- solution salinity
- atmospheric pressure

The AX48x analyzer uses a Pt100 temperature sensor to apply automatic compensation for the effects of temperature on the oxygen permeability of the sensor membrane. Parameters such as salinity in ppm and barometric pressure, or height above sea level, can also be entered during calibration to compensate for these effects.

AX480 integral P, PI and PID control

The single input AX480 analyzers incorporate three-term PID control, offering three modes of sophisticated control: analog, pulse length (time proportional) and pulse frequency. These are supplied as standard and can be operated in direct- or reverse-acting mode, dependent upon the application.
...AX480 integral P, PI and PID control

Auto / Manual and bumpless transfer
An auto / manual feature is incorporated for rapid manual access to the control functions. The controller facilitates bumpless transfer between manual and auto modes, providing the measured variable is within the proportional band and some integral action time has been programmed.

Current output proportional control
In this case, the control signal is provided by the 4 to 20 mA output of the AX480 analyzers rather than using the alarm / control contacts. The magnitude of the current output changes in proportion to the deviation from set point. This method is used generally with motorized valves or when controlling the speed of dosing pumps with a 4 to 20 mA proportional input.

Pulse-frequency proportional control
Impulse pumps dosing chemical reagents are controlled easily by the AX480’s pulse-frequency proportional control output. In this case, the pulse length of the alarm / control contact is fixed and the frequency of the delivered pulses increases in proportion to the system error, as set by the proportional band. Diaphragm metering pumps must have a remote pulse input capability in order to utilize this function.

Example
If the pulse frequency is set at 120 pulses per minute and the percentage output is 100 % then the pulse rate is 2 pulses per second. If the percentage output is reduced to 50 %, the pulse rate falls to one pulse per second.

Power failure recovery
In the event of a power failure the user can configure the control mode to be Auto, Manual or Last. This optimizes control conditions on power-up to ensure rapid recovery of process control.
9408 dissolved oxygen sensor systems

AX480, AX488 and AX468 dissolved oxygen analyzers are designed specifically to operate with the industry-proven, anti-fouling 9408 Series sensors.

Reliable monitoring of dissolved oxygen levels in waste treatment tanks can be hampered by sensor fouling with rags or other large solids. 9408 sensors can be supplied with anti-fouling, floating ball systems making rags and solids difficult to lodge. In addition, all 9408 systems can be equipped with a powerful jet-wash facility for removal of tough deposits.

Each sensor system includes an 8012-170 sensor capsule. This is mounted in a support tube with an integral temperature sensor for automatic temperature compensation and measurement. Maintenance simply involves a quick plug-in of a replacement capsule. Lifetime is typically 9 to 12 months and in many cases longer.

- Reduced sensor fouling
 - Large diameter, floating ball repels rags and coating
 - Optional jet-wash system for stubborn deposits
- Low maintenance, long-life sensor
 - No changing of electrolyte or membrane
 - Simple replacement, plug-in cartridge
- Simple calibration
 - Zero calibration is not essential
 - Simple, single-point air calibration
- Comprehensive mounting methods
 - Floating ball, immersion, submersion and flow-through systems available
Specification – sensor systems

General

Sensor
- 8012-170 sensor capsule

Response
- Typically 20 s for 90 % of a step-change of oxygen concentration at 20 °C (68 °F)

Temperature compensation
- Automatic correction with integral Pt100 temperature sensor

Operating temperature
- 0 to 40 °C (32 to 104 °F)

Operating pressure
- Atmospheric

Minimum liquid velocity
- 30 cm/s

Accuracy
- ±0.2 mg/l or ±2 % saturation within ±10 °C (±50 °F)
 - of the calibration temperature in the range 0 to 35 °C (32 to 95 °F)

Connection cable
- Part no. 0233-828
- Maximum length
 - 100 m (32.5 ft.)

Floating ball systems

Materials of construction
- Support arm: ABS plastic
- Flotation collar: polypropylene
- Mounting bracket: stainless steel

Mounting
- Pipe mounting: 50 mm (2 in.) OD
- Support arm length (9408-70x only)
 - 3 m (10 ft.)

Immersion systems

Materials of construction
- Polypropylene

Mounting
- Wall-mounting bracket

Immersion lengths
- 1, 2 and 3 m (3.3, 6.6 and 10 ft.)

Submersible systems

Materials of construction
- Polypropylene

Mounting
- Support chain (user supplied)

Cable length
- 8 m (26 ft.)

Flow-through cartridge systems

Operating pressure
- 2 bar (30 psi)

Minimum flow rate
- 2 l/min

Materials of construction
- Polypropylene

Mounting
- Support chain (user supplied)

Process connections
- ½ in or 1 in BSP inlet and outlet
- ½ in or 1 in NPT inlet and outlet

Cable lengths
- 1, 3, 5, 10 and 20 m (3, 9, 15, 30 and 60 ft. approx.) standard lengths
Specification – analyzers

Dissolved oxygen – AX480, AX488 and AX468

Range
 Programmable 0 to 250% saturation, 0 to 25 mg/l or 0 to 25 ppm
Minimum span
 • 0 to 2 mg/l or ppm
 • 0 to 20% saturation
Units of measure
 % saturation, mg/l and ppm
Resolution
 0.1 (% saturation), 0.01 (mg/l) or 0.01 (ppm)
Accuracy
 1 (% saturation), 0.1 (mg/l) or 0.1 (ppm)
Operating temperature range
 0 to 40 °C (32 to 104 °F)
Temperature sensor input
 3-wire Pt100
Salinity correction
 Automatic over the range 0 to 40 parts per thousand
Auto sensor life indicator
 Indicates conditions of remaining sensor life

pH/Redox – AX468 only

Inputs
 • One pH or mV input and solution earth
 • One temperature sensor
 • Enables connection to glass or enamel pH and reference sensors and Redox (ORP) sensors
Input resistance
 • Glass > 1 x 10¹³Ω
 • Reference 1 x 10¹³Ω
Range
 –2 to 16 pH or –1200 to +1200 mV
Minimum span
 Any 2 pH span or 100 mV
Resolution
 0.01 pH
Accuracy
 0.01 pH
Temperature compensation modes
 • Automatic or manual Nernstian compensation
 – Range –10 to 200 °C (14 to 392 °F)
 • Process solution compensation with configurable coefficient
 – Range –10 to 200 °C (14 to 392 °F)
 adjustable –0.05 to 0.02 %/°C (~0.02 to 0.009 %/°F)
Temperature sensor
 Programmable Pt100 (3-wire), Pt1000 & Balco 3k
Calibration ranges
 Check value (zero point) 0 to 14 pH
Slope
 Between 40 and 105 % (low limit user-configurable)

Electrode calibration modes

Calibration with auto-stability checking
 Automatic one or two point calibration selectable from:
 • ABB
 • DIN
 • Merck
 • NIST
 • US Tech
 Two x user-defined buffer tables for manual entry or two-point calibration or single-point process calibration

Display

Type
 Dual 5-digit, 7-segment, backlit LCD
Information
 16-character, single line dot-matrix
Energy-saving function
 Backlit LCD configurable as On or Auto Off after 60 s
Logbook*
 Electronic record of major process events and calibration data
Real-time clock*
 Records time for logbook and auto-manual functions

Sensor cleaning function

Configurable cleaning action relay contact
 Continuous or pulse in 1 s on and off times
Frequency
 5 minutes to 24 hours, programmable in 15 minute increments up to 1 hour then in 1 hour increments for 1 to 24 hours
Duration
 15 s to 10 minutes, programmable in 15 s increments up to 1 minute then in 1 minute increments up to 10 minutes
Recovery period
 30 s to 5 minutes, programmable in 30 s increments

*Available if option board is fitted
...Specification – analyzers

Relay outputs – on/off
- **Number of relays**
 - Three supplied as standard or five with option board fitted
- **Number of set points**
 - Three supplied as standard or five with option board fitted
- **Set point adjustment**
 - Configurable as normal or failsafe high / low or diagnostic alert
- **Hysteresis of reading**
 - Programmable 0 to 5 % in 0.1 % increments
- **Delay**
 - Programmable 0 to 60 s in 1 s intervals
- **Relay contacts**
 - Single-pole changeover
 - Rating 5 A, 115 / 230 V AC, 5 A DC
- **Insulation**
 - 2 kV RMS contacts to earth / ground

Analog outputs
- **Number of current outputs (fully isolated)**
 - Two supplied as standard or four with option board fitted
- **Output ranges**
 - 0 to 10 mA, 0 to 20 mA or 4 to 20 mA
 - Analog output programmable to any value between 0 and 22 mA to indicate system failure
- **Accuracy**
 - ±0.25 % FSD, ±0.5 % of reading (whichever is the greater)
- **Resolution**
 - 0.1 % at 10 mA, 0.05 % at 20 mA
- **Maximum load resistance**
 - 750 Ω at 20 mA
- **Configuration**
 - Can be assigned to either measured variable or either sample temperature

Digital communications
- **Communications**
 - Profibus DP (with option board fitted)

Control function – AX480 only
- **Controller type**
 - P, PI, PID (Configurable)

Control outputs
- **Output**
 - Can be assigned a maximum of two relays, two analog outputs or one of each
- **Analog**
 - Current output control (0 to 100%)
 - Time proportioning cycle time
 - 1.0 to 300.0 s, programmable in increments of 0.1 s
 - **Pulse frequency**
 - 1 to 120 pulses per minute, programmable in increments of 1 pulse per minute
 - **Controller action**
 - Direct or reverse
- **Proportional band**
 - 0.1 to 999.9 %, programmable in increments of 0.1 %
 - **Integral action time (reset)**
 - 1 to 7200 s, programmable in increments of 1 s (0 = Off)
- **Derivative**
 - 0.1 to 999.9 s programmable in increments of 0.1 s, only available for single set point control
- **Auto / Manual**
 - User-programmable

Access to functions
- **Direct keypad access**
 - Measurement, maintenance, configuration,
 - diagnostics or service functions
 - Performed without external equipment or internal jumpers

Mechanical data
- **Wall- / pipe-mount versions**
 - IP65 (not evaluated under UL certification)
 - Dimensions (height, width, depth)
 - 192 x 230 x 94 mm (7.56 x 9.06 x 3.7 in.)
 - **Weight** 1 kg (2.2 lb.)
- **Panel-mount versions**
 - IP65 (front only)
 - Dimensions (height, width, depth)
 - 96 x 96 x 162 mm (3.78 x 3.78 x 6.38 in.)
 - **Weight** 0.6 kg (1.32 lb.)
- **Cable entry types**
 - Standard – 5 or 7 x M20 cable glands
 - N. American – 7 x knockouts suitable for ½ in. Hubble gland
Power supply
Voltage requirements
• 100 to 240 V AC, 50 / 60 Hz (90 V min. to 264 V max. AC)
• 12 to 30 V DC
Power consumption
10 W
Insulation
Mains to earth (line to ground) 2 kV RMS

Environmental data
Operating temperature limits
–20 to 55 °C (–4 to 131 °F)
Storage temperature limits
–25 to 75 °C (–13 to 167 °F)
Operating humidity limits
Up to 95 % RH non-condensing

EMC
Emissions and immunity
Meets requirements of:
• EN61326 (for an industrial environment)
• EN50081-2
• EN50082-2

Approvals, certification and safety
Safety approval
UL
CE Mark
Covers EMC & LV Directives
(including latest version EN 61010)
General safety
• EN61010-1
• Overvoltage Class II on inputs and outputs
• Pollution category 2

Languages
Languages configurable
• English
• French
• German
• Italian
• Spanish
Overall dimensions

Dimensions in mm (in.)

Wall-/Pipe-mount version

Panel-mount version
Electrical connections

Wall-/Pipe-mount version

Terminal block A

- L: Live
- N: Neutral
- E: Earth
- A4: C
- A5: NC
- A6: NO
- A7: C
- A8: NC
- A9: NO
- A10: C
- A11: NC
- A12: NO
- A13: +
- A14: –
- A15: +
- A16: –

Terminal block B

- Sensor connections:
 - B1: B9: Temperature compensator common (yellow)
 - B2: B10: Temperature compensator third lead (green)
 - B3: B11: Temperature compensator (black)
 - B4: B12: Sensor +ve (red)
 - B5: B13: Sensor –ve (blue)
 - B6: B14: Screen
 - B7: B15: Not used
 - B8: B16: Not used

Panel-mount version

Terminal block A

- Terminal block C (analog option board)

Terminal block B

- Terminal block C (analog option board)

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C

Terminal block A

- Terminal block C

Terminal block B

- Terminal block C
Ordering information – analyzers

<table>
<thead>
<tr>
<th>Single and dual input analyzers for dissolved oxygen and pH/Redox (ORP) models AX480, AX488 and AX468</th>
<th>AX4</th>
</tr>
</thead>
<tbody>
<tr>
<td>**AX480, AX488 AND AX468 DISSOLVED OXYGEN ANALYZERS</td>
<td>DS/AX4DO-EN REV. K**</td>
</tr>
<tr>
<td>First process variable (PV1)</td>
<td>X</td>
</tr>
<tr>
<td>Conductivity 0 to 10,000 µS cm(^{-1}) for 2-electrode sensors</td>
<td>1</td>
</tr>
<tr>
<td>Conductivity 0 to 1,999 mS cm(^{-1}) for 4-electrode sensors</td>
<td>3</td>
</tr>
<tr>
<td>Conductivity USP<645> for 2-electrode sensors</td>
<td>5</td>
</tr>
<tr>
<td>pH/Redox (ORP)</td>
<td>6</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>8</td>
</tr>
<tr>
<td>Second process variable (PV2)</td>
<td>X</td>
</tr>
<tr>
<td>No second process variable – select for PID control of PV1</td>
<td>0</td>
</tr>
<tr>
<td>Conductivity 0 to 10,000 µS cm(^{-1}) for 2-electrode sensors</td>
<td>1</td>
</tr>
<tr>
<td>Conductivity 0 to 1,999 mS cm(^{-1}) for 4-electrode sensors(^{**})</td>
<td>3</td>
</tr>
<tr>
<td>Conductivity USP<645> for 2-electrode sensors</td>
<td>5</td>
</tr>
<tr>
<td>pH/Redox (ORP)</td>
<td>6</td>
</tr>
<tr>
<td>Dissolved oxygen</td>
<td>8</td>
</tr>
<tr>
<td>Enclosure types</td>
<td>X</td>
</tr>
<tr>
<td>Wall-mount IP65, general</td>
<td>X</td>
</tr>
<tr>
<td>Wall-mount – cable glands fitted</td>
<td>1</td>
</tr>
<tr>
<td>Pipe-mount</td>
<td>2</td>
</tr>
<tr>
<td>Wall-mount IP65, North American</td>
<td>X</td>
</tr>
<tr>
<td>Wall-mount</td>
<td>6</td>
</tr>
<tr>
<td>Pipe-mount</td>
<td>7</td>
</tr>
<tr>
<td>Panel-mount, universal</td>
<td>8</td>
</tr>
<tr>
<td>Panel-mount(^{**})</td>
<td>9</td>
</tr>
<tr>
<td>Advanced functions and communications</td>
<td>X</td>
</tr>
<tr>
<td>Basic (2 current outputs + 3 relays)</td>
<td>0</td>
</tr>
<tr>
<td>Advanced (4 current outputs + 5 relays + logbook)</td>
<td>1</td>
</tr>
<tr>
<td>Profibus DP, basic (2 current outputs + 3 relays)(^{**})</td>
<td>2</td>
</tr>
<tr>
<td>Profibus DP, advanced (4 current outputs + 5 relays + logbook)(^{**})</td>
<td>3</td>
</tr>
<tr>
<td>Power supply</td>
<td>X</td>
</tr>
<tr>
<td>100 to 240 V AC 50 / 60 Hz</td>
<td>0</td>
</tr>
<tr>
<td>12 to 30 V DC</td>
<td>1</td>
</tr>
<tr>
<td>Reserved</td>
<td>X</td>
</tr>
<tr>
<td>Manual</td>
<td>X</td>
</tr>
<tr>
<td>English</td>
<td>1</td>
</tr>
<tr>
<td>French</td>
<td>2</td>
</tr>
<tr>
<td>Italian</td>
<td>3</td>
</tr>
<tr>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>Spanish</td>
<td>5</td>
</tr>
</tbody>
</table>

* When ordering units with a second process variable (PV2) the code digit for PV2 in the order code number must be equal to, or greater than, the code digit for PV1 (for example, AX416 is permissible, AX461 is not permissible).

** Profibus DP is not available in panel-mount housing when 0 to 1,999 mS/cm is selected as the second process variable (PV2).
Ordering information – sensor systems

<table>
<thead>
<tr>
<th>9408 sensor systems</th>
<th>9408</th>
<th>XX</th>
<th>X</th>
</tr>
</thead>
</table>

Floating ball systems
- Floating ball system – complete 70
- Floating ball kit (metric) support arm supplied by user 75
- Floating ball kit (imperial) support arm supplied by user 76

Immersion systems
- Immersion system length 1 m (3.3 ft.) 71
- Immersion system length 2 m (6.6 ft.) 72
- Immersion system length 3 m (10 ft.) 73

Submersible systems
- Supplied with 8 m (26 ft.) of fixed cable 60
- Without cleaning 0
- Jet wash 2

<table>
<thead>
<tr>
<th>9408 sensor systems</th>
<th>9408</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
</table>

Flow-through cartridge

<table>
<thead>
<tr>
<th>Process connection</th>
<th>1 in. BSP</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼ in BSP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1 in NPT</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>¼ in NPT</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cable length</th>
<th>1 m (3.3 ft.)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 m (10 ft.)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5 m (16 ft.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>10 m (32 ft.)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20 m (64 ft.)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- Without cleaning 0
- Jet wash 2
Acknowledgements

PROFIBUS is a registered trademark of PROFIBUS and PROFINET International (PI).