ICOS FastScanner™
(formerly MobileGuard™ Software)
Contents

1 Preface ... 4
 Copyright ... 4
 Disclaimer ... 4
 Cybersecurity Disclaimer 4
 Customer Support 4
 Text Formats and Warning Icons 5
 Text Formats 5
 Warning Icons 5

2 Introduction ... 5

3 System Software 6
 Overview .. 6
 Installing MobileGuard™ Software 6
 System Requirements 6
 Install Required Prerequisite Software 6
 Install Peripheral Prerequisite Software 6
 Install MobileGuard™ Software 7
 Required Settings 8
 Windows .. 8
 Chrome .. 8
 Amazon Corretto Version 8 8
 MobileGuard™ Application 8
 Install License File 8
 Screens .. 9
 Login Screen 9
 User Management Roles and Privileges 9
 Map Screen .. 10
 Map Screen - Mapsheet Grids Coverage and Cropping 12
 Map Screen - Emissions and Packages 14
 Map Options Sidebar 15
 Map Options Sidebar - Map Provider 17
 Map Options Sidebar - Google Map Type 17
 Map Options Sidebar - Offline Map 17
 Time Series Screen 19
 Data Management Screen 20
 Data Management Screen - Synchronization Status .. 21
 Data Management Screen - Import 21
 Data Management Screen - Merge Selected Packages .. 21
 Data Management Screen - Options 22
 Data Management Screen - Graph View 22
 Data Management Screen - Tree View 23
 Data Management Screen - Filter 23
 Data Management Screen - Synchronize 24
 Data Management Screen - Preview PDF 24
 Data Management Screen - Reprocess 24
 Data Management - Highlight Packages Based on Sync Time .. 25
 Data Management - Download/Upload Selected Packages from/to Cloud 26
 Data Management - Drive Package Map Preview 27
 Millhouse Profiles 28
 Task History 31
 Instruments and Alarms 32
 Instruments and Alarms - Create New Instrument with Alarm Parameters 32
 Instruments and Alarms - Edit Instrument Alarm Parameters .. 33
 Assets List ... 34
 Assets Import 34
 User Management 37
 User Management - with Azure Connected ... 38
 User Management - Default User Accounts 40
 General Settings 41
 PDF Report Settings 41
 Cloud Settings 42
 Vehicle Setup 44
 Vehicle Setup - GPS Receiver Configuration ... 44
 License and Terms of Use 44
Software User Manual

Using the System

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>License Types</td>
<td>44</td>
</tr>
<tr>
<td>License Terms</td>
<td>44</td>
</tr>
<tr>
<td>4 Using the System</td>
<td>48</td>
</tr>
<tr>
<td>Hardware Pre-Drive or Pre-Flight Inspection</td>
<td>48</td>
</tr>
<tr>
<td>System Power-On</td>
<td>48</td>
</tr>
<tr>
<td>Software Startup</td>
<td>48</td>
</tr>
<tr>
<td>Access UI</td>
<td>48</td>
</tr>
<tr>
<td>Conduct Test Drive Package</td>
<td>48</td>
</tr>
<tr>
<td>Standard Operation</td>
<td>49</td>
</tr>
<tr>
<td>Conduct a Mobile Survey</td>
<td>49</td>
</tr>
<tr>
<td>Drive Package Naming</td>
<td>50</td>
</tr>
<tr>
<td>How to</td>
<td>50</td>
</tr>
<tr>
<td>Display Data in MobileGuard™ Software</td>
<td>50</td>
</tr>
<tr>
<td>Combine Multiple Drive Packages</td>
<td>50</td>
</tr>
<tr>
<td>Reprocess Data with Different Analysis Settings</td>
<td>50</td>
</tr>
<tr>
<td>Import Data</td>
<td>51</td>
</tr>
<tr>
<td>Reprocess or Merge Data with Survey Coverage</td>
<td>51</td>
</tr>
<tr>
<td>Crop Pipeline Data Using Lasso Tool</td>
<td>53</td>
</tr>
<tr>
<td>Auto-Suggest Assets Based on Location</td>
<td>54</td>
</tr>
<tr>
<td>Comment Using Cone Button</td>
<td>55</td>
</tr>
<tr>
<td>Set up HoverGuard™ System Settings</td>
<td>56</td>
</tr>
<tr>
<td>Report Generation - MobileGuard™</td>
<td>57</td>
</tr>
<tr>
<td>What are Drive Packages?</td>
<td>57</td>
</tr>
<tr>
<td>PDF Report</td>
<td>57</td>
</tr>
<tr>
<td>PDF Report - Drive Package Overview</td>
<td>57</td>
</tr>
<tr>
<td>PDF Report - Individual Emission Indication Reports</td>
<td>57</td>
</tr>
<tr>
<td>PDF Report - Operator Notes</td>
<td>60</td>
</tr>
<tr>
<td>KMZ Output</td>
<td>61</td>
</tr>
<tr>
<td>KMZ/SHP File Embedded Drive Package Data</td>
<td>62</td>
</tr>
<tr>
<td>KMZ Output - Emission-Indication Search Areas</td>
<td>63</td>
</tr>
<tr>
<td>KMZ Output - Emission-Indication Survey-Area Information Box</td>
<td>65</td>
</tr>
<tr>
<td>CSV Output</td>
<td>65</td>
</tr>
<tr>
<td>Interpreting Survey Area</td>
<td>66</td>
</tr>
<tr>
<td>Emission Indications Aggregation</td>
<td>66</td>
</tr>
<tr>
<td>Calculate Survey Area Coverage</td>
<td>66</td>
</tr>
<tr>
<td>Mapsheet Grid Highlight and Locating</td>
<td>69</td>
</tr>
<tr>
<td>Report Generation - HoverGuard™</td>
<td>70</td>
</tr>
<tr>
<td>Data Transfer</td>
<td>70</td>
</tr>
<tr>
<td>Software Setup</td>
<td>71</td>
</tr>
<tr>
<td>Import and Process Data</td>
<td>76</td>
</tr>
<tr>
<td>Report Properties</td>
<td>78</td>
</tr>
<tr>
<td>PDF Report</td>
<td>78</td>
</tr>
<tr>
<td>PDF Report - Flight Package Overview</td>
<td>78</td>
</tr>
<tr>
<td>PDF Report - Individual Emission Indication Reports</td>
<td>78</td>
</tr>
<tr>
<td>Report Generation - MobileGuard™</td>
<td>78</td>
</tr>
<tr>
<td>Data Transfer</td>
<td>79</td>
</tr>
<tr>
<td>PDF Report - Leak Trace</td>
<td>81</td>
</tr>
<tr>
<td>PDF Report - Measured Time Traces</td>
<td>82</td>
</tr>
<tr>
<td>PDF Report - Wind Properties</td>
<td>83</td>
</tr>
<tr>
<td>PDF Report - Survey Detection Statistics</td>
<td>83</td>
</tr>
<tr>
<td>KMZ Output</td>
<td>83</td>
</tr>
<tr>
<td>KMZ/SHP File Embedded Flight Package Data</td>
<td>83</td>
</tr>
<tr>
<td>CSV Output</td>
<td>84</td>
</tr>
<tr>
<td>Data Storage - MobileGuard™</td>
<td>85</td>
</tr>
<tr>
<td>Azure Account Configuration</td>
<td>85</td>
</tr>
<tr>
<td>Change Azure Password</td>
<td>86</td>
</tr>
<tr>
<td>Google Drive Account Configuration</td>
<td>89</td>
</tr>
<tr>
<td>CSV Data Definitions</td>
<td>95</td>
</tr>
<tr>
<td>Data Storage - HoverGuard™</td>
<td>96</td>
</tr>
<tr>
<td>CSV Data Definitions</td>
<td>96</td>
</tr>
<tr>
<td>System Shutdown</td>
<td>97</td>
</tr>
</tbody>
</table>
1 Preface

Copyright

© 2022 ABB Inc. All rights reserved. No information contained in this document may be reproduced in any form, in full or in part, without prior written consent from ABB.

Disclaimer

This document contains product specifications and performance statements that may be in conflict with other ABB published literature, such as product flyers and product catalogs. All specifications, product characteristics, and performance statements included in this document are suggested specifications only. In case of conflict between product characteristics in this document and specifications in the official ABB product catalogs, the latter takes precedence.

ABB reserves the right to make changes to the specifications of all equipment and software, and to the contents of this document, without obligation to notify any person or organization of such changes. Every effort has been made to ensure that the information contained in this document is current and accurate. Please contact ABB if you find any error in this document, so we can make appropriate corrections.

Cybersecurity Disclaimer

This product is designed to be connected to and to communicate information and data via a network interface. It is operator’s sole responsibility to provide and continuously ensure a secure connection between the product and your network or any other network (as the case may be). Operator shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB, Inc. and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Customer Support

ABB provides product support services worldwide. To receive product support, either in or out of warranty, contact the ABB office that serves your geographical area, or the office indicated below:

ABB Inc. Measurement & Analytics
3400, rue Pierre-Ardouin
Quebec, (Quebec) G1P 0B2 Canada

Tel: 1 800 858 3847 (North America)
Tel: +1 418 877 2944 (Worldwide)
Fax: +1 418 877 2834
Technical Support: icos.support@ca.abb.com
Text Formats and Warning Icons

Text Formats
This section describes text formats and warning icons used in this manual.
– Italicized text is used for emphasis in text and also to emphasize the names of screens or text fields.
– Bold text is used to show text that you type in fields and also button choices that you enter.

Warning Icons
Warning icons used in this manual are shown and described below.

⚠️ NOTE OR IMPORTANT!
Emphasizes facts and conditions important to analyzer operation.

⚠️ WARNING!
General Warning icon: gives general safety information that must be followed to avoid hazardous conditions.

2 Introduction
This manual covers the use and operation of MobileGuard™ user interface (UI) software, including installing the software, screen descriptions, and using the UI to detect and estimate the location of natural gas emissions from roadways.

Also included in this manual are instructions for suggested driving patterns, and data transfer and analysis through secured WiFi to other devices.
3 System Software

Overview

MobileGuard™ emission detection user-interface (UI) software displays real-time geospatial maps of multiple gas concentrations and stores data which can be transmitted to your Google Drive storage in real-time.

⚠️ WARNING!
For cybersecurity reasons, users are advised to change all passwords from their default value.

Installing MobileGuard™ Software

In some cases, it may be useful to install the MobileGuard™ software on a separate computer (for example, a dedicated command center). This section describes installing MobileGuard™ software.

System Requirements
The MobileGuard™ software requires a computer with the following minimum specifications:
• Windows 10, 64-bit
• 8 GB memory
• 250 GB hard disk
• 802.11n/g/b compatible wireless adapter
• Minimum 1920x1080 screen resolution

The MobileGuard™ software requires access to the following TCP ports on the intranet:
• 22 basic SSH commands to analyzer
• 445 SMB port (not currently used)
• 8082 Watchdog Websocket connection
• 20002 Websocket data stream from analyzer
• 9090 Location Services
• 9091, 9092, 9093 Local Database and Windows Service communication

The MobileGuard™ software requires access to the following TCP port on the internet:
• 443 HTTPS

Ensure that these ports are not blocked by any firewall software on the intranet or internet.

ABB Inc. bares no responsibility for security vulnerabilities introduced by opening ports beyond those specified here.

Install Required Prerequisite Software

Install the following before the MobileGuard™ software.
• Google Chrome
• Amazon Corretto v8

NOTE
Amazon Corretto is recommended. If you want to use Java Development Kit (v8), 64-bit version, Java charges a fee.

If you use the Java Development Kit, and the MobileGuard™ software does not work after installation, check the following environment variables:
1. If the JAVA_HOME environment variable does not point to this installation, create or modify it.
2. Add %JAVA_HOME%\bin to the Path environment variable.

Install Peripheral Prerequisite Software

It is highly recommended to install the following software.
• TeamViewer ABB Host (refer to the MobileGuard™ System Manual)
• Notepad++
• 7-Zip
• Google Earth
...3 System Software

Install MobileGuard™ Software

1. Double-click the MobileGuard™ software setup installer, ABB MobileGuard 3.x.y.exe.

2. The ABB MobileGuard Setup screen appears: Click the Yes button to allow the installation to proceed. (See Figure 1.)

3. At the first prompt, set the services to be installed by placing a checkmark in the corresponding box (see Figure 2):
 - **Install as Windows Service**: service that runs the MobileGuard™ software.
 - **Add service tray icon**: displays current status of MobileGuard™ service.
 - **Start service on Windows start**: Allow the services to start each time Windows starts.
 - **Create shortcut for drive packages storage directory**: Create a shortcut to the location of where the drive packages are created and stored.
 - **Configure Windows Firewall for MobileGuard remote access**: Allow MobileGuard™ services to connect to the internet.

4. Click Next. A window appears displaying a summary of actions prior to installation (see Figure 3).

5. Click Install. The following screen appears while the installation is in progress. The installation time varies depending on the computer.
3 System Software

When installation is complete, the following screen appears (see Figure 5): Click Finish.

Once installation finishes, allow the ABB MobileGuard™ service a few seconds to start (the Tray icon should change from a gray dot to a green dot – see Figure 6).

8 Once the MobileGuard™ service is active, start the application in one of two ways:
- Double-click the ABB MobileGuard shortcut on the desktop.
- Start > ABB MobileGuard > ABB MobileGuard.

Required Settings

This section lists recommendations for running the MobileGuard™ software.

Windows
- Use malware protection.
- Do not disable Windows firewall.
- Create an admin account password.
- Create a user account.

Chrome
- Do not log in with a personal account.
- Do not manually update Chrome, unless instructed by ABB.

Amazon Corretto Version 8
- The MobileGuard™ application is compatible with Amazon Corretto Version 8. It is recommended to apply all available security patches, but do not change the major version.

MobileGuard™ Application
- Do not create group accounts for multiple users.
- Do not give standard users admin accounts.

Install License File
- Each MobileGuard™ Software package receives a license.bin file for the software to run normally. This must be placed in the installation directory prior to starting the software. (C:\Program Files (x86)\ABB MobileGuard\license)
- Refer to the “License and Terms of Use” section for details on licensing.
...3 System Software

Screens

Login Screen

Figure 7 shows the MobileGuard™ Login screen. Enter your username and password, then click Sign In to access the MobileGuard™ application.

User Management Roles and Privileges

The MobileGuard™ software allows for creation of user accounts with various levels of access to features in the software. For example, Technician-level accounts allow drive packages to be collected; however, Technician-level accounts do not allow modification of any software settings. Table 1 lists user role access (privilege level) to MobileGuard™ UI features.

Table 1 User Role Access Privilege Levels

<table>
<thead>
<tr>
<th>Feature</th>
<th>Administrator</th>
<th>ABB Support</th>
<th>Scientist</th>
<th>Technician</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Start/Stop Drive</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time Series</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Data Management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>General Settings</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Millhouse Profiles</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Instruments and Alarms</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Cloud Settings</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>User Management</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Assets Management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No ¹</td>
</tr>
<tr>
<td>Task History</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes ²</td>
</tr>
<tr>
<td>Vehicle Setup</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Analyzer Shutdown</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1 Technicians may crop and import assets, but not delete them.
2 Technicians may access the task history, but not the associated logs.
...3 System Software

Map Screen
On the sidebar, select Map to access the Map screen. See Figure 8.

The following describes Map screen features:
- **Sidebar** – Accesses various Modes or Map Options screens. Click the adjacent arrow to collapse or expand the sidebar.
- **Drive package file** – Drive package/asset used for calculating survey coverage. Figure 8 shows an example of San Jose Loop for asset used for survey coverage.
- **Start button** – Click to start a drive package: A drive-package creation box appears in which you may optionally modify the automatically generated drive-package name. Click **OK** to start the drive package. Click **Stop** to finalize the drive package. The filename of the package is displayed next to the button.
- **Map Options icon** – Accesses map options. The sidebar changes as shown in Figure 9. To return the sidebar to Modes screens, click the icon again, or click the X on the sidebar adjacent to Map Options. For details, refer to the “Map Options Sidebar” section.
...3 System Software

![Map Options Sidebar](image)

- **Tracking** icon – Click to follow the car on the map.
- **Color bar setting** – Click to edit the methane breadcrumb color scheme: The window shown in Figure 10 appears. When done editing the \textit{min} and \textit{max} fields, click \textit{Save} to save the changes, then \textit{Close} to close the window.
 - The \textit{Breadcrumb Colorbar Min} and \textit{Breadcrumb Colorbar Max} fields are stored as the standard setting. They are only available for administrator-level and support-level users, and are hidden for the technician-level driver. These fields are used to set parameters for the reports and are the superset for the lower controls.
 - The \textit{min} and \textit{max} fields are used as a narrowing of the upper range (\textit{Breadcrumb Colorbar Min} and \textit{Breadcrumb Colorbar Max}) for a detailed viewing on the map and do not affect the generated report.

![Color Bar Setting Window](image)

Figure 10 Color Bar Setting Window

- **Gas status indicator** – Click, or hover over, the indicator to check the status.
 - Green: The incoming methane concentration is within the user-defined threshold.
 - Red: The methane concentration exceeds the user-defined threshold.
- **GPS indicator** – Incoming GPS data.
- **Mute button** – Click to mute the gas alarm.
- **Data status indicators** – Click, or hover over, an indicator to check the status of analyzer components and wind. Green and red indicate good communication between the software and analyzer. Green indicates data present are within specification. Red indicates data present with a major alarm. Gray indicates no communication between the software and analyzer, or a problem with an analyzer component, such as a disconnection. Indicators represent the following:
 - F – Gas flow
 - P – Cell pressure
 - T – Gas and ambient temperatures
 - RD – Cavity (Laser 1 and 2) ringdown time
 - W – Incoming wind data
- **About icon** - Click to access the About screen (Figure 11) to view information about the MobileGuard™ software.

![Map Options Sidebar](image)

Figure 9 Map Options Sidebar

\textbf{NOTE}

Mutual validation prevents going beyond the scope declared in the other controls.
...3 System Software

Figure 11 About Screen

- Dark/Light icon – toggles the UI between dark and light mode. Dark mode is useful for night driving.
- Log out icon – Click to log out of the MobileGuard™ UI.
- If you select Change password, the window shown in Figure 12 appears:

![Change Password Window](image)

Figure 12 Change Password Window

To change your password, type your current password, new password, confirm your new password, then click Save.

- Reboot/Shutdown – Click the On/Off icon, then select Reboot or Shutdown to reboot or shut down the analyzer (see Figure 13).

Figure 13 Reboot/Shutdown

Map Screen - Mapsheet Grids Coverage and Cropping

The mapsheet grid coverage calculation lets you import a large asset file with numerous grids and other pipeline data into the application. The cropping mechanism lets you select a specific mapsheet and create a separate asset file (KML) of that mapsheet with the other pipeline data within its bounds.

The following is an example procedure for using this feature.

1 From the Map screen, click the Coverage Calculation Mapsheet Grid menu icon (Figure 14).

Figure 14 Coverage Calculation Mapsheet Grid Menu Icon
...3 System Software

The screen shown in Figure 15 appears:

![Select Asset File Types](image1.png)

Figure 15 Select Asset File Types

2 Select the following type of asset files:
- Grids – mapsheet data
- Main – pipeline data
- Service – pipeline data

MobileGuard™ automatically searches for asset filenames that contain these names, but you can specify by confirming each file.

![NOTE](image2.png)

NOTE

Mapsheet grid assets should have unique naming. Mapsheets with duplicate names could cause the incorrect mapsheet to be cropped when using the Asset Cropping feature.

3 To automatically import cropped assets, check the Auto upload to geoserver after cropping box.

4 Select the mapsheet from the imported grid file (see Figure 16). Checking the adjacent box will calculate the real-time coverage for that specific mapsheet. Clicking the Scissors icon crops (creates) a new KML file with pipeline data within the mapsheet bounds.

You can also click the Crop All Selected button to crop multiple files.

5 After you select the Scissors cropping button (or Crop All Selected button), click Confirm.

6 Click Yes to automatically upload the newly created asset into the Geoserver for viewing on the map.

You can now select the newly created asset file for coverage calculation. The example shown in Figure 18 is San Jose Loop.

![Auto Upload Asset after Crop](image3.png)

Figure 17 Auto Upload Asset after Crop

![Coverage Loaded Asset](image4.png)

Figure 18 Coverage Loaded Asset

![Asset Selection for Cropping](image5.png)

Figure 16 Asset Selection for Cropping
...3 System Software

Map Screen - Emissions and Packages
Click the icon to the right of Emissions and Packages (see Figure 19) to search drive packages to view on the map or use for coverage calculation.

Figure 19 Search Drive Packages

When clicked, the Drive Packages window appears (see Figure 20) in which you can search all fields, then select multiple drives by selecting the adjacent box or radio button.
- Check box(es) to view drive package(s) on the map.
- Select a radio button to use a drive package for coverage calculation.

After making selection(s), click outside the window to return to the Map screen: The drive packages are listed (see Figure 21). Click on an item to display details. \(\text{CH}_4 \) ppm lists peak methane concentrations. \(\text{C}_2\text{H}_6 \) ppm lists peak ethane concentrations. Emission Id lists the corresponding ID. Figure 20 shows an example of multiple drive packages: Each emission is nested under a header which indicates from which drive package it came. You can sort by column names.

- **Check box(es) or click radio button to select drive package(s)**

Figure 20 Drive Packages Window

- **Sort columns**
- **Remove survey**
- **Magnifier**
- **Eye**
- **Trail**

Figure 21 Multiple Drive Package Display

- **CH\(_4\) (ppm), \(C_2H_6\) (ppm), Emission Id** – Sort columns by clicking on these headers.
- **Cones/Blobs** – Toggle between Cones and Blobs to select how leak emission indications are displayed. For example, if you select Cones, the area around the emission would be a cone shape.

To comment on a hazard or impediment indication displayed by a cone, refer to “Comment Using Cone Button”.

- **Magnifier** – Locate and center survey on map.
- **Trail** – Display breadcrumb on survey.
- **Eye** – Highlight survey over others displayed.
- **X** – Remove survey from Map screen.
3 System Software

Map Options Sidebar
The following describes Map Options sidebar features (see Figure 9).

- **Tracking** – Click to lock the map on the current GPS location.
- **Assets** – user-specified utility assets.
- **2D Map Rotation** – Click to enable when changing the Surface Pro Tablet orientation.
- **Real Time Data** – breadcrumb (vehicle path and methane concentration) and wind vector.
- **Millhouse Results** – map without emission indicators.
- **Survey Area** – toggles estimated survey area.
- **View Mode (3D/2D)** – Click to view the map as three-dimensional, two-dimensional split view, or two-dimensional full view (default).

You can view surveys in 3D, enabling a curtain view of the recorded CH₄ to visualize emission indications. The map can be 3D full view (Figure 22), split view with 2D (Figure 23), or hidden for 2D Map as full view (default). Figure 23 shows split view with 2D with leak-emission indication zoomed in.

The following describes changing views.
- **Activate Curtain view** – Click the Trail header in the Emissions & Packages area. Then, change the scaling of the curtain view: Slide the Trails scale on the bottom left of the map.
- **Change perspective** - Hold down the left mouse button and move the mouse.
- **Zoom in/out** – Scroll using the mouse scroll wheel.
- **Drag map** – Hold down the right mouse button and move the mouse.
- **Trails scale** – Increase the size of the curtain view scaling.
3 System Software

Figure 22 Full-View 3D Map

Figure 23 Split View with 2D
...3 System Software

Map Options Sidebar - Map Provider
Select one of the following to open the desired map provider type area. Choices include:
- Google
- Open Layers
- Leaflet
- Bing
- Gaode
- Geoserver

Map Options Sidebar - Google Map Type
This area lets you select the view:
- Default – map (default)
- Dark – dark mode for night driving
- Map – street map
- Satellite – satellite imagery

Map Options Sidebar - Offline Map
MobileGuard™ supports use of offline maps in SHP format. OpenStreetMap Data Extracts can be downloaded here: https://download.geofabrik.de/

⚠️ WARNING!
Importing large regions slows MobileGuard™ performance. It is recommended to only load specific regions necessary for surveying.

To import offline maps:

1. Go to the Map screen (select Map on the sidebar).
2. Select Geoserver as the map provider (see Figure 24).
3. Click Add Offline Layer (see Figure 24).
4. Navigate to the directory that has the map data (see Figure 24).
...3 System Software

See Figure 25 for an example of Northern California offline maps (buildings and land use) used during a test survey.

NOTE

When using offline maps, the PDF report will not have the map summary embedded: For this, reprocessing with internet connection and selecting a different map provider will be required.

![Figure 25 Offline Map Example](image-url)
...3 System Software

Time Series Screen
The time history of methane, ethane, and water concentrations collected during an active drive can be plotted on the Time Series screen.

On the sidebar, select Time Series to access the screen shown in Figure 26.

Figure 26 Time Series Screen
This screen displays the time history for gas species being detected. It functions only during active drives. A specific gas can be selected to be displayed.
3 System Software

Data Management Screen

The Data Management screen is the first screen displayed after COMMAND CENTER admin users log in. See Figure 27. (For details on user license types, refer to “License Types”. For details on logging in, refer to “Login Screen”.)

On the sidebar, select Data Management to access the screen shown in Figure 27.

![Data Management Screen](image)

Figure 27 Data Management Screen

This screen lists data associated with drive packages: name, date, status, instrument ID, package type, and instrument type (see Figure 28).

![Drive Package Data](image)

Figure 28 Drive Package Data
...3 System Software

Data Management Screen - Synchronization Status

Drive-package synchronization statuses are as follows (see Figure 29):

- **ONLY_CLOUD** – file stored only in the cloud (Google Drive or ABB Ability Cloud repository), not locally on computer
- **ONLY_LOCAL** – file stored only local on computer, not in the cloud
- **CLOUD_NEWER** – same file as file stored locally, but stored in the cloud with more recent data
- **LOCAL_NEWER** – same file as file stored in the cloud, but stored locally with more recent data
- **IN_SYNC** – file stored in the cloud and locally with identical data

NOTE

The Data Management screen lists all known drive packages (local and remote) and their synchronization status with Google Drive or ABB Ability Cloud.

If the Google account is not connected, or when the MobileGuard™ application is unable to retrieve or refresh the list of files currently stored in Google Drive, only local files are shown, and their status is set to **DISCONNECTED**. If this occurs, click the **Refresh** icon.

Data Management Screen - Import

Click **Import** (see Figure 27) to add analyzer raw data files to the list.

Data Management Screen - Merge Selected Packages

You can select multiple locally stored drive packages and merge the data into one file on the list. This combines raw data from different drive packages and processes the data using Millhouse algorithms. To do this:

1. Check the boxes next to the files you want to merge.
2. Click **merge selected** (see Figure 27).

The files are merged into one file in the list.

![Figure 29 Synchronization Status](image-url)
3 System Software

Data Management Screen - Options
Click the Options icon to access the Data Management Options screen (see Figure 30).

![Options icon](image)

Use the left side bar to:
- Update old packages to create data-set identifiers and vehicle-analysis identifiers. This is required to merge older packages.
- Download all packages from Google cloud.
- Upload all packages to Google cloud.
- Display package metadata date, synchronization state, instrument ID, package type, and instrument type: Click the adjacent square to select the desired parameter.

To return the sidebar to Modes screens, click the icon again, or click the X on the sidebar adjacent to Data Management Options.

Data Management Screen - Graph View
Click the Graph icon to access the Data Management screen in graph view (see Figure 31). (Clicking this icon returns you to the default view.) Old packages will have to be updated for this display to link the raw data files.

Use this screen to view the relationship between raw and processed data (analysis packages).
- Left side: raw files
- Right side: processed packages that used the raw data

![Graph icon](image)
...3 System Software

Data Management Screen - Tree View
Click the Tree icon to access the Data Management screen in tree view (see Figure 32). This expands the entire tree structure. Choose a structure and use the drop-down menu to expand and view its contents.

Data Management Screen - Filter
Use to search any package in the list.

1. Click the Filter icon (see Figure 27): The screen shown in Figure 33 appears.

2. Enter search information in the Name contains field.

3. Select filters.
 To select a range of dates to filter, click the Survey(s) end date/range box: The screen shown in Figure 34 appears. Select the start day, then end day, to highlight a section to filter.

4. Click Apply filters.
...3 System Software

Data Management Filter Selection

To remove all search filters currently being used, use the Clear All Filters button (see Figure 27).

Data Management Screen - Synchronize
Select a file's Synchronize icon (see Figure 27) to store a file's current data in the cloud and locally (IN_SYNC state).

Data Management Screen - Preview PDF
Click the Preview PDF icon (see Figure 27) to preview the PDF report of the drive package. See Figure 35 for an example of a report.

Data Management Screen - Reprocess
Select a file's Reprocess icon (see Figure 27) to reprocess the package. The Millhouse profile can be selected before processing. The window in Figure 36 appears.

To remove all search filters currently being used, use the Clear All Filters button (see Figure 27).

The following options are available:
• Upload the file to Google Drive – check the adjacent box.
• Generate a PDF of the file – check the adjacent box.

The above two options may be used simultaneously.

• Processing profile – Select which Millhouse profile to use from the Processing profile drop-down menu. Provides easy access to reprocess using a different Millhouse profile.

After making selections, click Process or Cancel to cancel the action.
...3 System Software

Data Management - Highlight Packages Based on Sync Time
When connected to your Azure Storage account, you can set which packages are highlighted based on sync time. Under General Settings > GUI Settings > Package modification indicator, you can set the time to highlight packages that were modified within this time (see Figure 37). For example, setting to 1440 minutes would highlight all packages that have been modified/uploaded to the cloud in the past 24 hours, as shown in Figure 38.

![Figure 37 - Data Management Highlight Option](image1)

![Figure 38 - Data Management Highlighted Packages](image2)

To display the most recently uploaded/modified packages at the top, click the Sort icon (see Figure 38), then select the sorting option, Last modified on cloud on top from the drop-down menu (see Figure 39).

![Figure 39 - Sort Packages Drop-Down Selection](image3)
3 System Software

Data Management - Download/Upload Selected Packages from/to Cloud

In addition to downloading or uploading all packages from/to the cloud, you also have the option of downloading or uploading selected packages from/to the cloud.

To download selected packages from the cloud:

1. From the Data Management screen, select the Options icon (see Figure 30).
2. Select the desired package(s).
3. From the sidebar, click Download Selected Packages from Cloud (see Figure 40).

![Data Management Options - Download/Upload Selected Packages]

To upload selected packages to the cloud:

1. From the Data Management screen, select the Options icon (see Figure 30).
2. Select the desired package(s).
3. From the sidebar, click Upload Selected Packages to the Cloud (see Figure 40).

Figure 41 shows the progress of uploading multiple packages to the Azure Storage container.

After the upload has completed, a summary result is shown to alert you if any packages were unsuccessfully uploaded (see Figure 42).
...3 System Software

Figure 41 Uploading Multiple Packages to Cloud

Figure 42 Cloud Upload Summary

Data Management - Drive Package Map Preview
To view a map preview of a drive package from the Data Management screen:

1 From the Data Management screen, click the Map icon on the desired drive package (see Figure 43): A map preview of the drive package appears.

2 Select the Options icon to view the map: The UI switches to the Map screen for a larger view.
...3 System Software

Millhouse Profiles

On the sidebar, select **Millhouse Profiles** to access the **Millhouse Profiles** screen (Figure 44).

![Millhouse Profiles Screen](image)

Use this screen to set variables in Millhouse profiles. Use the drop-down menus to select a processing or real-time profile. Pre-defined profiles cannot be altered; a copy must be made first.

To add a new profile, click **New**: The screen shown in Figure 45 appears.

![Add New Millhouse Profiles Screen](image)
...3 System Software

If the Arguments list is empty, click **New** to add an argument. After adding the profile, click **Save** to save the profile and return to the Millhouse Profiles screen or **Cancel** to cancel the changes and return to the Millhouse Profiles screen.

To import a file, click **Import** (see Figure 44), click **Choose** to choose the file, then click **Import** to import the file or **Cancel** to cancel the action.

To export a file, click **Export** (see Figure 44) to create a text file and store in the desired location (for example, storing on a local computer for importing to another computer).

To copy a file, click the **Copy** icon (see Figure 44) in the row of the file. The screen shown in Figure 46 appears. Rename the file, and add, modify, or delete arguments as needed. Then click **Save** or **Cancel** to cancel the action.

To delete a file, click the **Delete** icon (see Figure 44) in the row of the file to delete, then click **Save** or **Cancel** to cancel the action.

Table 2 describes Millhouse settings.
3 System Software

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>Default Value</th>
<th>Metadata Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>CSV file to analyze</td>
<td>None</td>
<td>File</td>
</tr>
<tr>
<td>plumes</td>
<td>Flag for proceeding with Gaussian plume analysis</td>
<td>1</td>
<td>FLAG</td>
</tr>
<tr>
<td>aggregate_source</td>
<td>Aggregate emission indications by source position</td>
<td>0</td>
<td>METERS</td>
</tr>
<tr>
<td>aggregate_detection</td>
<td>Aggregate emission indications by detection</td>
<td>0</td>
<td>METERS</td>
</tr>
<tr>
<td>leak_prefix</td>
<td>Emission ID prefix (eg, drive identifying string)</td>
<td>"LEAKTOOL"</td>
<td>PREFIX</td>
</tr>
<tr>
<td>leak_png</td>
<td>Save emission pictures as png</td>
<td>1</td>
<td>FLAG</td>
</tr>
<tr>
<td>leaks</td>
<td>Save emission indication information to a file</td>
<td>1</td>
<td>FLAG</td>
</tr>
<tr>
<td>leak_csv</td>
<td>Save emission digest to a CSV file</td>
<td>1</td>
<td>FLAG</td>
</tr>
<tr>
<td>survey_area</td>
<td>Calculate survey area (rate in standard cubic feet per hour)</td>
<td>1.0</td>
<td>RATE</td>
</tr>
<tr>
<td>survey_area_png</td>
<td>Save survey area overlay as png</td>
<td>1</td>
<td>FLAG</td>
</tr>
<tr>
<td>survey_area_max_pixels</td>
<td>Largest X or Y size of survey area overlay image</td>
<td>5000.0</td>
<td>PIXELS</td>
</tr>
<tr>
<td>kmz</td>
<td>Write KML analysis file</td>
<td>"MillhouseResults.kmz"</td>
<td>FILENAME</td>
</tr>
<tr>
<td>xml</td>
<td>Write XML analysis file</td>
<td>"MillhouseResults.xml"</td>
<td>FILENAME</td>
</tr>
<tr>
<td>xml_user</td>
<td>Username for XML file</td>
<td></td>
<td>NAME</td>
</tr>
<tr>
<td>xml_instrument_type</td>
<td>Instrument type for XML file</td>
<td></td>
<td>TYPE</td>
</tr>
<tr>
<td>xml_instrument_id</td>
<td>Instrument ID for XML file</td>
<td>"0xFFFF"</td>
<td>ID</td>
</tr>
<tr>
<td>xml_trigger_type</td>
<td>Trigger type for XML file</td>
<td>"ivory"</td>
<td>TYPE</td>
</tr>
<tr>
<td>xml_algorithm</td>
<td>Algorithm name for XML file</td>
<td>"quicksort"</td>
<td>NAME</td>
</tr>
<tr>
<td>xml_data_files</td>
<td>Names of data files for XML file</td>
<td>[]</td>
<td>FILENAMES</td>
</tr>
<tr>
<td>peak_ppm</td>
<td>Methane peak detection threshold</td>
<td>0.01</td>
<td>PPM</td>
</tr>
<tr>
<td>baseline_ppm</td>
<td>Methane de-baselining threshold</td>
<td>0.005</td>
<td>PPM</td>
</tr>
<tr>
<td>ch4_ridge_ppm</td>
<td>Methane ridge detection threshold</td>
<td>0.005</td>
<td>PPM</td>
</tr>
<tr>
<td>ch4_smoothing_seconds</td>
<td>Methane de-baselining smoothing sigma</td>
<td>60.0</td>
<td>SECONDS</td>
</tr>
<tr>
<td>c2h6_baseline_gaussian_seconds</td>
<td>Ethane de-baselining smoothing sigma</td>
<td>10.0</td>
<td>SECONDS</td>
</tr>
<tr>
<td>c2h6_signal_boxcar_samples</td>
<td>Ethane signal smoothing samples</td>
<td>20</td>
<td>SAMPLES</td>
</tr>
<tr>
<td>natural_gas_c2h6_fraction</td>
<td>Fraction (from 0 to 1) of ethane in natural gas</td>
<td>0.03</td>
<td>FRACTION</td>
</tr>
<tr>
<td>c2h6_std_ppm</td>
<td>Expected standard deviation of 3-sample max of boxcar-smoothed C₂H₆ signal</td>
<td>30.003</td>
<td>PPM</td>
</tr>
<tr>
<td>minimum_speed</td>
<td>Omit data from analysis when vehicle speed is below this level</td>
<td>0.1</td>
<td>KNOTS</td>
</tr>
<tr>
<td>timeslip</td>
<td>Time slip (seconds) for gas data</td>
<td>0.0</td>
<td>SECONDS</td>
</tr>
<tr>
<td>wind_factor</td>
<td>Wind-speed multiplier to compensate for flow over vehicle</td>
<td>1.0</td>
<td>FACTOR</td>
</tr>
<tr>
<td>minimum_indication_distance_m</td>
<td>Minimum upwind distance from detection point to emission indication (constraint during fitting)</td>
<td>1.0</td>
<td>METERS</td>
</tr>
<tr>
<td>maximum_indication_distance_m</td>
<td>Maximum upwind or transverse distance from detection point to emission indication (constraint during fitting)</td>
<td>1000000.0</td>
<td>METERS</td>
</tr>
<tr>
<td>maximum_indication_clamp_distance_m</td>
<td>Adjust emission indication source points back to this distance (after fitting)</td>
<td>1000000.0</td>
<td>1000000.0</td>
</tr>
<tr>
<td>output_dir</td>
<td>Directory for output files. Default for log_dir, results_dir, and image_overlay_dir</td>
<td></td>
<td>PATH</td>
</tr>
<tr>
<td>log_dir</td>
<td>Directory for log and debug files</td>
<td></td>
<td>PATH</td>
</tr>
<tr>
<td>results_dir</td>
<td>Directory for XML and KML reports</td>
<td></td>
<td>PATH</td>
</tr>
<tr>
<td>image_overlay_dir</td>
<td>Directory for UI overlay images</td>
<td></td>
<td>PATH</td>
</tr>
<tr>
<td>save_raw</td>
<td>Save raw data to a CSV file</td>
<td>1</td>
<td>FLAG</td>
</tr>
<tr>
<td>save_concentrations</td>
<td>Save preprocessed data to a file</td>
<td>0</td>
<td>FLAG</td>
</tr>
<tr>
<td>num_lines</td>
<td>Clip data file to first N lines</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>minimum_wind_mps</td>
<td>Minimum wind speed gate (m/s)</td>
<td>044704</td>
<td></td>
</tr>
<tr>
<td>maximum_wind_mps</td>
<td>Maximum wind speed gate (m/s)</td>
<td>11.176</td>
<td></td>
</tr>
<tr>
<td>ly</td>
<td>Turbulence parameter</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>lz</td>
<td>Turbulence parameter</td>
<td>0.061</td>
<td></td>
</tr>
<tr>
<td>pad_2d</td>
<td>Enables 2-dimensional padding for plume fitting</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>shp</td>
<td>Enables SHP file output in millhouse folder, that is: shp=millhouse_shapefile</td>
<td>Disabled</td>
<td></td>
</tr>
<tr>
<td>anemometer_mounting_angle_deg</td>
<td>Adjusts the wind calculation based on the mounting angle of the anemometer (UAV only)</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
...3 System Software

Task History

On the sidebar, select **Task History** to access the Task History screen (Figure 47) to see the status, details, and history of tasks performed.

![Task History Screen](image)

- Click the **Details** icon (Figure 47) to see more details on the task: The screen shown in Figure 48 appears.
 - To save the details displayed, click the down arrow at the upper right corner.
 - Click **Back to list** to return to the Task History screen (Figure 47).

![Task History Details Screen](image)

- The following are examples of task details shown in Figure 47:
 - **Upload drive package**: The task performed was uploading a drive package to the Google Drive account (optional).
 - **Collect drive package**: The task performed was stopping the drive in progress.
 - **Millhouse processing**: This task is performed every 3 minutes to process the data.

- If an error occurs in the application, **Task History** highlights red and remains red until you click **Task History** again. (See Figure 49.) In this way, drivers are alerted when an error occurs. **Task History** remains highlighted red even if subsequent processes are successful.

![Red-Highlighted Task History](image)
...3 System Software

Instruments and Alarms
On the sidebar, select **Instruments and Alarms** to access the *Instruments and Alarms* screen (Figure 50).

⚠️ WARNING!
Please consult with ABB Support before making any changes in the *Instruments and Alarms* screen.

Select Instruments and Alarms

Figure 50 Instruments and Alarms Screen

The types of analyzers are listed.

Instruments and Alarms - Create New Instrument with Alarm Parameters

To create a new instrument and corresponding alarm parameters, perform the following:

1. Click **Create new** (see Figure 50): The screen shown in Figure 51 appears.
2. Enter the instrument type and CSV header: After these fields are filled, the **Generate** button is highlighted.
3. Click **Generate** (Figure 51).
4. Click **Back to list** to return to the *Instruments and Alarms* screen: The new entry appears in the list.
33

System Software

Instruments and Alarms - Edit Instrument Alarm Parameters

To display or edit an instrument’s alarm parameters, click the **Edit** icon (see Figure 50): The screen shown in Figure 52 appears.

![Edit Instrument/Alarm Screen](image)

Figure 52 Edit Instrument/Alarm Screen

To add a row for an alarm, click **Add** in the top-left corner (see Figure 52) and select an alarm. The screen shown in Figure 53 appears.

Use the **Alarm** type drop-down menu (see Figure 53) to select the type of the alarm: **Gas** or **System**, then specify alarm parameters. (Alarm parameters appear when **Gas** or **System** is selected.) (See Figure 53.)

![Add Row for Instrument Alarm Parameters](image)

Figure 53 Add Row for Instrument Alarm Parameters

After entering and selecting the parameters, click **Save** to save the changes or **Cancel** to cancel the changes. Either of these actions return you to the **Edit Instrument/Alarm** screen (see Figure 52). The row appears at the bottom of the screen.

To edit a row, click the **Edit** icon under **Actions**: (see Figure 52) The screen shown in Figure 53 appears with the **Column index** automatically populated. Specify and save or cancel parameters the same as when adding a row.

To delete a row, click the **Delete** icon under **Actions** (see Figure 52): The row is removed.

To save all changes made in the **Edit Instruments/Alarms** screen (see Figure 52), click **Save** in the upper left corner. To cancel any changes made in the **Edit Instruments/Alarms** screen, click **Cancel** in the upper left corner.

Click **Back to list** (see Figure 52) to return to the **Instruments and Alarm** screen.
...3 System Software

Assets List
On the sidebar, select **Assets List** (see Figure 8) to access the **Assets List** screen (Figure 54).

This screen displays the assets imported to PostgreSQL and served (published) by the local instance of Geoserver. Click the **Buildings** icon (to the On position) (see Figure 54) to display infrastructure data in an asset file (in the 3D map view). To turn off this feature, click the **Buildings** icon again (to the Off position). See Figure 55 for an example.

Click the **Edit** icon to edit the name and properties of an asset (see Figure 54).
Click the **Delete** icon to delete an asset (see Figure 54).

Assets Import
On the sidebar, select **Assets List** (see Figure 8), then click the **Assets Import** button to access the **Assets Import** screen (Figure 56).

Click to select only new assets
…3 System Software

To import assets from the installation directory (C:\Program Files (x86)\ABB MobileGuard\data\assets), do the following:

1 Click Assets List, then click the Assets Import button.

2 If you want to change the directory to import assets from, click the three dots (Figure 56), then navigate to the location of the desired directory.

3 Click the down arrow on the right side of the screen to search the directory for asset files (KML, KMZ, SHP) (see Figure 56).

 NOTE

The maximum KML, extracted KMZ, file size the software supports is 900 MB. It is recommended to use SHP format for larger asset files.

 NOTE

Assets should be in the following formats: LineString, MultiLineString, and in WGS84 (or EPSG:4326).

 • While the directory is being searched, the following screen (Figure 57) is displayed:

 ![Figure 57 Checking Import Directory](image)

 The list displays which asset files are new and which have already been loaded into the MobileGuard™ application. A Disk icon indicates files already in MobileGuard™ (see Figure 58).

 ![Figure 58 Assets Already in Application](image)

4 When the assets are displayed, check the box next to the assets file you want to import (see Figure 59). To select only new asset files that have not already been loaded into the MobileGuard™ application, check the Select all new box.

 ![Figure 59 Select Assets to Import](image)
...3 System Software

5 Click **Import selected** (see Figure 59). The screen shown in Figure 60 is displayed during the import process.

![Figure 60 Assets Import in Progress](image)

When the file is imported, you can see the assets displayed in the **Assets List** screen (Figure 54).

6 To display the assets on the **Map** screen (see Figure 8), click the **Map Options** icon, then on the sidebar: Select **Assets** and filter the assets as needed (see Figure 61).

![Figure 61 Filter Assets](image)
...3 System Software

User Management
Access to use of the MobileGuard™ application is controlled by user accounts and the privileges granted to those users' accounts. The accounts consist of a username, password, email and role (refer to Table 1 for role definitions). The username is used to log who performs operations with the application.

On the sidebar, select User Management (see Figure 8) to access the User Management screen (Figure 62).

This screen displays a list of current users that can be managed, depending on the privilege level (listed under the Role column). An administrator may perform the following:

- Click New to add a user: In the screen which appears, type user information in the fields, then click Submit to add the user or Cancel to cancel the action.

- Click Import to import a list of users from an encrypted file to another computer. Click Choose to browse for the encrypted file of users. Enter the same password as that created when exporting the list of users. Select one of the following from the Import type drop-down menu:
 - Add – Add users from the imported list. Users in the imported list with the same username as users in the MobileGuard™ application are not imported to the MobileGuard™ application.
 - Overwrite – Add users from the imported list and overwrite existing users (with the same username) in the MobileGuard™ application.
 - Synchronize – Add users from the imported list and delete users (except default users - admin, support) from the MobileGuard™ application not in the imported list. If the imported user has the same username as the user in the MobileGuard™ application, the user in the application is overwritten.

 Then, click Import to import the list of users or Cancel to cancel the action.

- Click Export to export the list of users in the User Management screen to an encrypted file, which can then be imported to another computer. Use the Password field to create a password. Checking the Include administrators box includes users assigned the Administrator role. If you do not want to export users assigned this role, uncheck this box.

 Then, click Export to export the list of users or Cancel to cancel the action.

- Click the Edit icon in the row of a user to edit the user’s properties.
- Click the Change Password icon in the row of a user to change the user’s password.
- Click the Delete icon in the row of a user to delete the user.
...3 System Software

User Management - with Azure Connected
Once connected to the Azure active directory, the Azure group admin can create (commission) other users in the MobileGuard™ User Management screen, and also remove (decommission) users. (To connect to Azure, refer to “Azure Account Configuration”.)

Create users:

1. Click the **Cloud User** icon (see Figure 63): The **Users Commissioning** dialog-box appears.

2. Select which local user(s) to invite to the Azure Storage account. These users will get an email invitation to join the Azure storage group, similar to the Group Admin commissioning.

3. Click **Confirm**: The user(s) are added to the account. In Figure 65, **driver@abb.com** is added.
...3 System Software

Remove users:

1 Click the - Cloud User icon (see Figure 63): The Decommissioning Users dialog-box appears.

![Decommissioning Users Dialog-Box](image)

2 Select which local user(s) to remove from the Azure Storage account.

3 Click **Confirm**: The user(s) are removed from the account.
3 System Software

User Management - Default User Accounts
The software has two pre-installed default user accounts that may not be deleted (see Figure 62).

Admin
This account has full administrative privileges as defined in Table 1.
Username: admin
Default password: admin123
Default email: admin@example@domain.com

Support
This account has support role privileges as defined in Table 1.
Username: support
Default password: support123
Default email: support@example@domain.com

⚠️ WARNING!
For cybersecurity reasons, users are advised to change all passwords from their default value.
3 System Software

General Settings
On the sidebar, select General Settings (see Figure 8) to access the General Settings screen. (See Figure 67).

![General Settings Screen](image)

Figure 67 General Settings Screen

This screen displays categorized general MobileGuard™ settings.
- Click a category to access the category's settings and corresponding values.
- Use the Filter field to limit the type of settings displayed.
- To edit a setting's value, expand a category, click the setting, type the value in the field, then click Save (see Figure 68).

![General Settings Screen with Category Expanded](image)

Figure 68 General Settings Screen with Category Expanded

PDF Report Settings
On the sidebar, select PDF Report Settings (see Figure 8) to access the PDF Report Settings screen (Figure 69).

![PDF Report Settings Screen](image)

Figure 69 PDF Report Settings Screen
...3 System Software

Use this screen to configure how the PDF report is generated for each MobileGuard™ drive package (refer to the “PDF Report” section for details on this report).

To select a variable, check the box or select from the drop-down menu, then click Save or Cancel to cancel the action. (See Figure 70.)

Cloud Settings

On the sidebar, select Cloud Settings (see Figure 8) to access the Cloud Settings screen (Figure 71).

This screen lets you choose your provider for drive package storage location: Azure or Google Drive.
3 System Software

Figure 72 Cloud Settings Screen - Google Provider

This screen lets you connect to your Google Drive storage location for your drive packages and upload the packages.

- Click Select to choose the cloud secret file (.json).
- Click Upload to upload the secret file to MobileGuard™.
- Click Cancel to cancel changes made in this screen.
- Click Connect to connect to your Google account.
3 System Software

Vehicle Setup

On the sidebar, select **Vehicle Setup** (see Figure 8) to access the Vehicle Setup screen (Figure 73).

![Vehicle Setup Screen](Figure 73)

Vehicle Setup - GPS Receiver Configuration

Click **Retrieve Current Configuration** to display the GPS receiver's current configuration.

Click **Configure for 2 Hz** to configure the GPS receiver for 2 Hz (standard MobileGuard™ configuration).

The GPS receiver must broadcast a National Marine Electronics Association (NMEA) standard GPRMC data stream and no other content. No other NMEA streams or error codes should be broadcast: Doing so may result in unpredictable behavior.

License and Terms of Use

License Types

ABB supplies two types of licenses for users:

- **SURVEY** allows the user to connect to the GLA232-FMEA Fast Methane/Ethane Analyzer for data collection and analysis. This license type is paired with the analyzer that comes with the purchase of a MobileGuard™ system and is valid through the license agreement term.

- **COMMAND CENTER** is used only for post-processing data. The user can reprocess, import, merge, and view data taken by the vehicle. This license type does not allow for connecting to an analyzer and taking real-time data.

License Terms

License files are distributed by our Service Department as a `license.bin` file, which is to be placed in the installation directory of the MobileGuard™ program (that is, `C:\Program Files (x86)\ABB MobileGuard\license`). If the file is missing, the screen shown in Figure 74 appears when logging in.

![License File Present in Installation Directory at Login](Figure 75)

![License Agreement Expired](Figure 76)

The following screen appears when the license agreement has ended and is expired. The software will not let you log in until an updated license.bin file has been generated by ABB Service.
...3 System Software

The following screen is displayed if the license.bin file does not match the serial number of the analyzer in the vehicle, or the analyzer is currently not connected to the MobileGuard™ application. To take real-time data, the SSH connection (bottom right) must be LIVE (refer to the “General Settings” section), and the serial number must match.

Figure 77 Serial Number not Compliant

Once the SSH connection is established and serial numbers are compliant, the software allows for real-time data acquisition and displays the Start button (top left – see Figure 78).

Figure 78 License Valid over 90 Days – Green Font Color
…3 System Software

Figure 79 License Valid 89-31 Days – Yellow Font Color

Figure 80 License Valid Less than 30 Days – Red Font Color
...3 System Software

Figure 81 License will expire in 1 day – Message Prompt to Warn User
4 Using the System

Hardware Pre-Drive or Pre-Flight Inspection

For the MobileGuard™ pre-drive inspection, refer to the MobileGuard™ System Manual.

For the HoverGuard™ pre-flight inspection, refer to the HoverGuard™ Solution Manual.

System Power-On

For the MobileGuard™ system power-on, refer to the MobileGuard™ System Manual.

For the HoverGuard™ system power-on, refer to the HoverGuard™ Solution Manual.

Software Startup

Access UI

1. Power on the laptop/tablet.
2. Connect the laptop/tablet to the Cradlepoint’s wireless network.
3. Ensure the ABB MobileGuard™ Tray icon has a green light and a status that reads Running (Figure 82). If the indicator light remains gray, reboot the laptop/tablet.
4. Double-click the ABB MobileGuard shortcut on the desktop to start the application.
5. Log into the UI using your designated username and password.
6. A test drive package is recommended at startup to ensure the system is working properly. Refer to “Conduct Test Drive Package”.

Conduct Test Drive Package

1. Start a test drive package by clicking the Start button in the upper left part of the UI (see Figure 8).
2. Ensure the pump inside of the analyzer starts up during drive package initialization.
3. After the drive package starts, ensure that the GPS icon (bullseye), F, P, T, RD, and W indicator lights in the upper right part of the UI are not flashing red (see Figure 83).
4. Click on, or hover over, each icon to see their reported current value.

NOTE

Gas Status may be red if the incoming methane concentration exceeds the user-defined threshold.

5. Ensure that the methane concentration is a physically believable value – the global methane background is approximately 2 ppm.
6. Click the Stop button in the upper left (see Figure 84) to close the test-drive package, and then Abort to discard the test run.
Using the System

Standard Operation

Conduct a Mobile Survey

WARNING!
Use extreme caution when conducting drive surveys to avoid hitting the sonic anemometer on overhanging objects. The anemometer is a sensitive measurement device and will be damaged or destroyed by impacts. The mast height (including anemometer) is approximately 3 meters (10 feet).

NOTE
The vehicle must be moving at a minimum speed to detect emission sources. The default minimum speed (3 knots / 3.5 mph / 5.6 kph) may be configured in General Settings > Vehicle Calibration Settings > Min. Car Speed (knots).

1. After driving to the survey area, pull off the road in a safe area.
2. Start a drive package: Click the **Start** button in the upper left part of the UI (see Figure 8).
3. When the drive-package creation box appears, optionally modify the automatically generated drive-package name with a human-interpretable label. For details on drive-package naming, refer to “Drive Package Naming”.
4. Add any comments to the comment box, then click **OK**.
5. The drive package begins its approximately 1 minute initialization procedure – ensure that the analyzer pump starts during this period.
6. After warm-up, check that the data stream is being read correctly: Check for a blue **CONNECTED** icon in the lower left part of the UI (see Figure 85).
7. Check the instrument condition: Ensure all icons in the upper right part of the UI (see Figure 83) are green by clicking or hovering over the icons.
8. Drive the survey area in accordance with the driving guidelines described in the MobileGuard™ System Manual.
9. When the survey is complete, click the **Stop** button in the upper left part of the UI (see Figure 84) to finalize the drive package.
10. Add any end-of-drive comments, then click **OK**.
11. Wait for the final drive-package analysis, then upload the data to your Google Drive storage location, if desired.
12. A local copy of drive packages is available from the desktop shortcut to ABB MobileGuard™ Drive Packages - these can be transferred using any standard PC file transfer methods. If Google Drive Upload is enabled, you can find the completed drive packages in your Google Drive folder.

NOTE
Refer to the “System Software” section for more detailed information about using the software.

Figure 85 Connected Icon
...4 Using the System

Drive Package Naming
Adding additional tags to a drive package filename is beneficial when surveying the same assets multiple times. Keeping similar drives together by a naming convention alleviates the work to merge them together later.

The following describes adding additional tags to a drive package:

1. Click the Start button in the upper left of the UI (see Figure 8): The Drive package box appears (Figure 86).

 ![Figure 86 Drive Package Box](image)

2. From the Selected asset file name suffix drop-down list, append the asset filename to the drive filename. This list displays all currently loaded asset files.

3. From the Sequence Letter drop-down list, append the sequence letter (for example, A, B, C) of the drive to specify multiple passes were taken on a particular mapsheet.

4. From the Continued Drive drop-down list, append the Continued # tag to flag the drive as a partial survey.

 The File name field displays the filename of the drive package. This field is updated with each additional tag selected (for example, 180300001234_20200415_1111_Loop – A Continued 1).

How to

Display Data in MobileGuard™ Software

1. On the MobileGuard UI, select Map at the top of the sidebar (see Figure 8).
2. Click the icon to the right of Emissions & Packages: The window shown in Figure 20 appears.
3. Search drive package(s) to view on the map.
4. Select the desired drive package(s) by checking the adjacent box(es).
5. Click outside the window to return to the Map screen.
6. Check the box next to an item (below Emissions & Packages) to display details.
7. The map display shows the details. Zoom in and out as needed to check data.

Combine Multiple Drive Packages
To select multiple locally stored drive packages and merge the data into one file on the list:

1. Click Data Management on the sidebar (see Figure 27).
2. Check the boxes next to the files you want to merge.
3. Click Merge selected.

Reprocess Data with Different Analysis Settings

1. Click Data Management on the sidebar (see Figure 27).
2. Select the drive package you wish to reprocess: Click the left-hand checkbox.
3. Click the Reprocess icon on the right-hand side: The Reprocess window appears (Figure 36).
4. Select the desired file from the Processing Profile menu (Figure 36).
5. Click Process.

NOTE

Packages must be IN_SYNC, ONLY_LOCAL, and of the same TYPE.
...4 Using the System

Import Data

NOTE

For information on importing and processing data if using HoverGuard™, refer to the “Import and Process Data” section.

1. Click **Data Management** on the sidebar (see Figure 27).
2. Click the **Import** button: A file navigation window appears.
3. Select the data file you wish to reprocess.

NOTE

Only .csv, .zip, and .txt files are accepted, in the following format: [Instrument_ID]_[Serial_Number]_[YYYY-MM-dd]_[fXXXX]. For example: meaRMY_lgr-18-1234_2022-01-02_f0000.csv.

This should only be done with raw data files from the analyzer.

4. Modify the filename if needed: This will be the folder containing the reprocessed drive data.
5. Select **Drive** for Package Type.
6. Enter **Start comment** and **End comment**: These will appear as the operator notes in the drive package results PDF summary.

Reprocess or Merge Data with Survey Coverage

In many cases, the survey coverage has already been calculated based on a cropped mapsheet. If you want to merge or reprocess this data at a later time, the coverage assets must be present.

The following screens alert you if an asset file used for a previous drive file is missing at the time of merging or reprocessing.

![Figure 87 Warning Prompt](image-url)
4 Using the System

A warning prompt appears if the drive about to be reprocessed is missing the asset file used for calculating survey coverage.

If the asset file is currently imported into the database and is loaded on the map, the reprocessing prompt shows the correct file is selected for reprocessing. See Figure 90 below.

Figure 88 Error - Missing Asset File

An error appears indicating a missing asset file: Click on the red arrow to show the missing asset file.

Figure 89 below shows the missing asset file highlighted in red font with the corresponding coverage calculation.

Figure 90 Reprocessing Prompt Showing Correct File

Figure 89 Missing Asset File Highlighted
...4 Using the System

Crop Pipeline Data Using Lasso Tool
Crop pipeline data based on custom polygons using the lasso tool as follows:

1 Enable pipeline assets:
 a From the Map screen, select the Map Options icon (3 dots).
 b From the Map Options sidebar, set the Assets toggle in the right position (to enable assets in general).
 c Enable individual Map SHP file(s): Map > Options > Assets > MAPX.shp (set Toggle icon to ON).

2 Select the Scissors icon on the Map screen to activate the lasso (see Figure 91).

3 Create a custom polygon to crop the assets within the boundary by clicking on the map and returning to the original point.
 - Once the original point is clicked, the assets are cropped and imported to the Geoserver.
 - A new KML file is created containing the polygon and pipeline data, auto named to Feature-1, Polygon, and nested under DRAW_XXX.KML.

4 To rename each asset layer and/or the KML file, click the Pencil icon (see Figure 92).
4 Using the System

Auto-Suggest Assets Based on Location

Automatically select which assets to load for surveys as follows:

1. Verify assets have been imported (or cropped).
2. From the Map screen, select the **Map Options** icon (3 dots).
3. Double-click the location on the map: A circle appears and automatically loads assets whose segments fall within the circle (see Figure 93).

![Figure 93 Circle Containing Assets for Survey](image)

4. The default is 500 m (1640 ft): If desired, change the circle radius using the **Area Radius** slide bar (see Figure 93).

Assets (if enabled) are also set for survey coverage calculation, real-time, and the PDF report.
...4 Using the System

Comment Using Cone Button

To log hazards, or impediments, of your investigation during a survey, perform the following:

1. Click the **Cone** button (see Figure 94).

 ![Cone Button](image)

 Figure 94 Cone Button

2. The window shown in Figure 95 appears: Enter a comment.

 ![Cone Comment Window](image)

 Figure 95 Cone Comment Window

3. Click **Save**.

 The cone and comment will appear when viewing the drive from the map view. In the PDF report, cones will be on the top layer of the map summary, and the comment will be near the end of the report.
...4 Using the System

Set up HoverGuard™ System Settings

HoverGuard™ can send real-time data from the UAV to the MobileGuard™ application via RF modem-to-serial connections.

To set up system settings, perform the following:

1. To allow the MobileGuard™ application to acknowledge whether the analyzer software is actively running: Type `ps -A | grep icos` in the Analyzer SSH ICOS Query field (see Figure 96), then click Save.

 ![Analyzer SSH ICOS Query](image)

 Figure 96 Analyzer SSH ICOS Query

2. Use the Analyzer SSH Stop command to remotely stop the analyzer software: Select the command shown in Figure 97, then click Save.

 ![SSH Stop Command](image)

 Figure 97 SSH Stop Command

3. For the modems to communicate to render the appropriate data on the map, verify the HoverGuard™ instrument type has the correctly mapped data parameters:
 a. Navigate to the Instruments and Alarms screen. (For details, refer to “Instruments and Alarms”.)
 b. Click the Edit icon. (For details, refer to “Instruments and Alarms - Edit Instrument Alarm Parameters”.)
 c. Use Table 3 to verify the proper mapping of data columns.

 ![Verify HoverGuard™ Instrument Type Parameters](image)

 Table 3 Verify HoverGuard™ Instrument Type Parameters

<table>
<thead>
<tr>
<th>CSV Name</th>
<th>Data Column</th>
<th>Data Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude (degrees)</td>
<td>latitude</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>Longitude (degrees)</td>
<td>longitude</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>GPS Fix Status</td>
<td>gpsFixStatus</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>elevation</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>Vehicle Heading (degrees)</td>
<td>course</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>WindSpeed3D (m/s)</td>
<td>windSpeed</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>WindDirection (degree)</td>
<td>windDirection</td>
<td>COMMON_PARAMETER</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>temperature</td>
<td>COMMON_PARAMETER</td>
</tr>
</tbody>
</table>

d. If parameters require changing, click the Edit icon in the parameter row and change as needed. (For details, refer to “Instruments and Alarms - Edit Instrument Alarm Parameters”.)
...4 Using the System

Report Generation - MobileGuard™

What are Drive Packages?
Drive packages are zipped archives that contain several different files, the most important of which are described in Table 4.

Table 4 Drive Package Filenames

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive.pdf</td>
<td>Report containing a summary of the results from the data contained within the drive package. In addition, statistics are provided for each individual emission indication.</td>
</tr>
<tr>
<td><data_file-name>.csv</td>
<td>Raw data (e.g., concentrations, wind conditions, GPS) for the drive package. Data file naming will be unique to the original drive or flight package taken.</td>
</tr>
<tr>
<td>drive.xml</td>
<td>Collection of metadata for the drive.</td>
</tr>
<tr>
<td>millhouse/</td>
<td>Folder containing analyzed results divided into various .kmz and .shp files.</td>
</tr>
</tbody>
</table>

PDF Report
A PDF report, drive.pdf, is generated for each MobileGuard™ drive package and is located in the top directory of the .drive archive. This report contains a summary of the drive package, including important statistics and details for each emission indication. This section briefly describes the data contained in each of these reports.

PDF Report - Drive Package Overview

Report Header
The first table of the PDF report provides the following general information about the drive package:
- Report ID – name of the drive package that contains this PDF report.
- Report Generated By – ID of the user that generated the report.
- Report Date – timestamp for generation of the current drive package.
- Analyzer Number – ID of the analyzer used to generate the drive package.
- Operator – user ID for the operator(s) that collected data used in the drive package.
- Drive Start – timestamp for the earliest data point used in the drive package.
- Drive Stop – timestamp for the latest data point used in the drive package.
- Nearest Town – estimated nearest town to the survey area in the drive package.

Error Statistics
This table tabulates the number of times various alarms were triggered by the data in the current drive package (the number of times data values were not recorded or fell outside of the range defined for a given instrument type).

These values are color-coded so that the fields are green if no alarms were detected, or red or yellow if one or more alarms were triggered. Yellow indicates alarms that should be reviewed, but are not inherently problematic to the system (for example, brief GPS dropouts may occur when the vehicle is under an overpass, but are well-handled by the software). Red indicates alarms that should not occur during normal operation and require immediate action. If alarms are consistently triggered by a given MobileGuard™ installation, this indicates a problem with the installation – contact ABB immediately.

The following alarms are recorded in the Error Statistics table:
- Wind Data – number of missing anemometer data points.
- GPS – number of missing GPS data points.

NOTE
Missing GPS data points occur frequently if the GPS antenna does not have line-of-sight access to satellites. For example, this may occur if the MobileGuard™ vehicle is stopped under an overpass or bridge. To surmount this issue, the MobileGuard™ software attempts to fix small gaps in the GPS location by interpolation between registered data points.

- Ringdown – number of data points where a measured laser-cavity ringdown value fell outside of the specified range for a given analyzer type. If ringdown errors persist, contact ABB for further assistance.
- Temperature – number of data points where the internal analyzer temperature (both ambient and gas temperature) fell outside of the specified range for a given analyzer type (typically 5 - 50 °C / 41 - 122 °F). If temperature errors occur, check that all fan inlets to the analyzer are unobstructed. It may be necessary to adjust the vehicle cabin temperature and allow some time for the analyzer to equilibrate. If temperature errors persist, contact ABB for further assistance.
- Pressure – number of data points where the instrument’s internal pressure fell outside of the specified range for a given analyzer type (typically 295 - 305 Torr).
- Flow – number of data points where the measured flow fell outside of the specified range for a given analyzer type (typically 20 - 30 standard liters per minute). Flow errors may be caused by a clog in the inlet or dirty filters.
- Humidity – currently not applicable.
...4 Using the System

Emission Indication Statistics
This table contains basic statistics about the survey area and emission indications contained in the current drive package:
- Distance Driven (mi) – total distance traveled for data in the current drive package.
- Total Survey Area (mi\(^2\)) – total area surveyed in the current drive package.

NOTE
This value depends on the survey_area parameter, which may be adjusted in the Millhouse Profiles screen.

- Raw Indications – total number of raw emission indications generated from data in the current drive package.
- Aggregated Indications – total number of emission indications from data in the current drive package after distance-based aggregation has been performed.
- Natural Gas Source (%) – percent of aggregated emission indications that arise from a natural gas source.
- Biogas Source (%) – percent of aggregated emission indications that arise from biogas sources.
- Indeterminate Source (%) – percent of aggregated emission indications that have an unidentified source.
- Survey Coverage (Total FT) – total asset (pipeline data) coverage in feet.

Measurement Statistics
This table contains basic statistics about raw measurement values obtained by the MobileGuard™ system. For each measurement type, the minimum, maximum, and mean recorded values are reported.
- \(\text{CH}_4 \) (ppm) – raw measured methane concentration (not baseline subtracted).
- \(\text{C}_2\text{H}_6 \) (ppm) – raw measured ethane concentration (not baseline subtracted).
- Outside Temperature (°C) – exterior temperature measured by the anemometer.
- Wind Speed (mph) – wind speed measured by the anemometer after correction for car speed.
- Car Speed (mph) – car speed measured by GPS.
- Wind Azimuth (deg) – angular direction of wind in the plane of the car. 180 degrees denotes wind moving from the front to the back of the vehicle.
- Wind Elevation (deg) – angular direction of the wind pointing outside of the plane of the car (plane of the car is 0 degrees).

Notes
Comments entered by the user at the beginning or end of a drive.

Complete Survey Route
Map segment which depicts the entire survey area for the drive package. Aggregated emission-indication survey areas from the drive package are overlaid on this map. (See Figure 98 for an example.)
Using the System

Survey Detection Statistics
Two histograms of the peak CH₄ concentration associated with aggregated emission indications in the current drive package are provided. The left plot is a histogram spanning 0 to 1 ppm, and the right plot is a histogram for emissions with larger associated concentrations. (See Figure 99 for an example.) The right plot auto-scales the X axis and separates the available emission indication data into ten successive bins.

Measured Time Traces
A set of time-dependent data is shown in a graph for each individual data set used in the current drive package. (See Figure 100 for an example.)

- CH₄ – background subtracted methane concentration. A red dot appears at each point in time that a raw emission indication was identified.
- C₂H₆ – raw ethane concentration (pink), calculated background ethane signal (green), and background subtracted ethane concentration (blue).
- Speed – vehicle speed.
- Wind Speed – measured wind speed after correction for the speed of the vehicle.
- Azimuth – azimuthal angle of the wind direction and median azimuthal angle while the vehicle is in motion (see Figure 101).
...4 Using the System

PDF Report - Individual Emission Indication Reports
After the Drive Package Overview section, the MobileGuard™ PDF report contains additional pages with information about individual aggregated emission indications for the current drive package.

Emission IndicationMeasured Values
This table contains several entries that contain statistics tabulated for individual aggregated emission indications. The values in the table are:
• Detection Location – point at which the vehicle detects emission.
• Child Emission Count – the number of raw emission indications aggregated together for the current emission indication.
• Indication Start – start time of elevated methane concentration for the current emission indication.
• Indication Stop – stop time of elevated methane concentration for the current emission indication.
• Indication Length (ft) – distance traveled by the vehicle during the time window associated with the current emission indication.
• Indication Duration (sec) – length of time over which the elevated methane concentration for the current emission indication persisted.
• Car Speed Min (mph) – minimum observed car speed during the time window associated with measurement of the current emission indication.
• Car Speed Max (mph) – maximum observed car speed during the time window associated with measurement of the current emission indication.
• Car Speed at Peak (mph) – car speed at the peak methane concentration observed in data associated with the current emission indication.
• Wind Speed (mph) – average wind speed during the time window associated with the current emission indication.
• CH₄ Peak Rise (ppm) – highest background subtracted methane concentration measured in data associated with the current emission indication.
• Baseline CH₄ (ppm) – average background methane concentration for data associated with the current emission indication.

NOTE
The average azimuthal value should be between 178 and 182 degrees.

• Elevation – elevation angle of the wind direction (see Figure 102). The elevation angle is positive if the wind direction is pointing upward and negative for a downward wind direction.
...4 Using the System

Emission Indication Estimates
- Source Location – estimated location (latitude, longitude) of the source of the emission indication in decimal degrees.
- Source Direction (deg) – angle between the line pointing from south to north and the line pointing from the point of detection to the estimated source location.
- Distance (ft) – distance from the point of detection to the estimated source location.
- Search Area Size (ft²) – size of the search area for the current emission indication.
- Source Rate (SCFH) – estimated rate of methane emission from the source associated with the current emission indication, in standard cubic feet per hour (SCFH).

NOTE
This is an experimental feature currently turned off by default. It can be activated in the PDF Report Settings > Report Emission Rates menu option.

Emission Indication Map
Each aggregated emission indication in the PDF report is accompanied by a zoomed-in map of the area surrounding the current emission indication. (See Figure 103 for an example.)

PDF Report - Operator Notes
Contains geospatially tagged comments added during a drive. See Figure 104 for an example.

KMZ Output
The /millhouse/ directory in the drive package produced by the MobileGuard™ software contains several output files in .kmz format. These files, defined in Table 5, contain the results of the drive and can be loaded into GIS software that supports .kmz or .kml data (for example, Google Earth). In addition, each KMZ output can be produced for SHP format if specified in the Millhouse profile.

Table 5 Millhouse Files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/millhouse/millhouse.kmz</td>
<td>Complete results from the survey, partially divided into different layers for aggregated emission-indication survey areas</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_child_leaks.kmz</td>
<td>Partial layer file containing the full unaggregated set of emission-indication survey areas</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_circles.kmz</td>
<td>Partial layer file containing circles with a 5 meter (16 foot) radius around the point of detection</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_leaks.kmz</td>
<td>Partial layer file containing only the aggregated emission-indication survey areas</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_pies.kmz</td>
<td>Partial layer file containing only the aggregated emission indications with survey areas replaced by icons that express the angular uncertainty of the emission origin estimate, but with a fixed distance estimate of 50 meters (164 feet)</td>
</tr>
<tr>
<td>/millhouse/millhouse_ch4_line.kmz</td>
<td>Partial layer file containing the breadcrumb trace with color representing the measured methane concentration</td>
</tr>
<tr>
<td>/millhouse/millhouse_surveyarea.kmz</td>
<td>Partial layer file containing the estimated survey area (defined in the millhouse profile)</td>
</tr>
<tr>
<td>/millhouse/millhouse_wind.kmz</td>
<td>Partial layer file containing arrows representing the measured wind speed and direction</td>
</tr>
</tbody>
</table>

Notes
Operator Startup Notes:
Section 2A reported leaks from previous drive. Driving back to validate leak.

Operator Completion Notes:
Drive 2/4 in section 2A.

Figure 103 Emission Indication Map

Figure 104 Operator Notes Example
Using the System

KMZ/SHP File Embedded Drive Package Data
MobileGuard has embedded much of the .drive package data into the layers of the kmz/shp file. Figure 105 is an example of a millhouse_aggregated_emissions.shp file loaded into a GIS program. The highlighted emission is selected to view the information attached to that layer.

Figure 105 SHP Metadata
...4 Using the System

KMZ Output - Emission-Indication Search Areas
When the MobileGuard™ software identifies a likely gas emission, it represents that detection and the suggested search area as an emission indication. The displayed emission indication icon identifies the point where increased methane is detected along the drive path and an estimate of the emission source location within a bounded area. The shaded, bounded icon area is derived from the uncertainty in the angular and distance estimates. These representations contain a great deal of information, most importantly, the estimated location of the source, detection location, and type of gas. Practically, the emission indication icon provides a search area boundary where investigators are likely to find the source of the leaked gas.

The software offers the choice of two graphical representations for the Emission Indication Search Area (EISA): a simplified, truncated annular icon or an ellipsoidal icon. You may select the displayed type using the **Cones/Blobs** icon toggle located at the top of the Emission & Packages list shown on the left-hand side of the map display. KMZ (and optionally SHP) files of both icon types are automatically generated by the MobileGuard™ report generation process.

![EISA Icon Type Toggle](image)

Figure 106 EISA Icon Type Toggle

The truncated annular icon is shown in Figure 107. The apex of the conical area is placed where the methane peak is detected along the drive path. The estimated source location is placed at the center of the shaded annular area – this dot is not explicitly plotted in the UI, but may be inferred from the shape of the shaded area. The angular extent of the annulus shows the angular position uncertainty, and the radial extent of the shaded area shows the distance uncertainty.
...4 Using the System

Figure 107 Truncated Annular EISA

The ellipsoidal icon is shown in Figure 108 and is composed of two primary areas. The first is the ellipse that represents the uncertainty in the location of the estimated emission source. The center of this ellipse is the estimated source location, while the major axes of the ellipse show the uncertainty in the location of the source position. The second portion of the EISA is the interstitial search area which is bounded by the section of the drive path where the measured methane exceeds 50% of the detected peak and the two lines that connect this drive path segment with the ellipse’s angular uncertainty major axis.

Figure 108 Ellipsoidal EISA

The emission indications are categorized by the estimated gas source type. A red indication suggests the source of the observed methane plume is natural gas emanating from a pipeline. In some locations, there are also natural sources of thermogenic gas that contain ethane: These sources are indistinguishable from pipeline sources. Gray suggests a biogenic source of methane. Common sources of biogenic gas are sewers, swamps, waste water treatment plants, landfills, and enteric fermentation (for example, cows). Yellow indicates a weak methane measurement that does not allow the system to distinguish between natural gas and biogenic methane. A yellow source is referred to by the MobileGuard™ software as an indeterminate source.
4 Using the System

KMZ Output - Emission-Indication Survey-Area Information Box

Clicking on an **Emission-Indication Survey-Area** icon brings up a box containing additional information about the emission indication. Figure 109 is an example of an emission-indication survey-area information box.

![Figure 109](image)

Figure 109 Emission-Indication Survey-Area Information Box

The following describes the information contained in this box in more detail.

Emission ID and Redundancy

The first line of the information box contains the emission ID number and the number of aggregated child emissions contained by this emission indication. In Figure 109, the emission ID is #11, and there is only one identified emission contributing to the displayed emission identification survey area.

Peak CH₄ Rise

This field provides the maximum observed methane concentration for the baseline subtracted-plume measurement that gave rise to the specific emission indication.

Peak Time

A timestamp corresponding to the given emission indication.

CSV Output

MobileGuard™ drive packages also contain several CSV formatted output files containing generated data associated with the current drive package. These files are described in Table 6.

NOTE

If there are other formats that would assist your particular workflow, ABB can create new output to meet your needs. Please contact ABB Support for more information.

Table 6 CSV Output

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><data_file-name>.csv</td>
<td>All raw data associated with the current drive package. Includes timestamps, data generated by the analyzer (for example, methane and ethane concentrations, pressure, temperature, ringdown times), GPS data, and anemometer data.</td>
</tr>
<tr>
<td>/millhouse/ concentrations.csv</td>
<td>Raw and background subtracted methane and ethane concentrations (this file is not generated by default – contact ABB Support for more information).</td>
</tr>
<tr>
<td>/millhouse/ emissionDigest.csv</td>
<td>Latitude and longitude data for the predicted source locations of all raw emission indications generated in the current drive package. Also, the peak methane concentration associated with each indication.</td>
</tr>
<tr>
<td>/millhouse/ emissionDigest_aggregated.csv</td>
<td>Latitude and longitude data for the predicted source locations of aggregated emission indications generated in the current drive package. Also, the peak methane concentration associated with each aggregated indication.</td>
</tr>
<tr>
<td>/millhouse/ emissionIndicationDump.csv</td>
<td>Collection of detailed emission indication parameters for the current drive package.</td>
</tr>
</tbody>
</table>
...4 Using the System

Interpreting Survey Area
The MobileGuard™ software provides an estimated survey area in real-time collection, and both the PDF and KMZ reports. The survey area is computed from user-input parameters to the analysis routine (minimum methane threshold and survey area emission rate) along with the measured methane concentration profile, wind speed, and direction.

A proprietary method is used to calculate the survey area that incorporates all the measured data to provide the most accurate estimate of source location possible. However, the shaded area represents the region with greater than 50% probability for detecting an emission of the specified rate in a single pass under the current wind conditions with the user-specified methane threshold.

The default value for the minimum methane threshold is 50 ppb above background, and the default survey area emission rate is 1 SCFH. Increasing the survey area emission rate, or decreasing the methane threshold, yields an increased survey-area size.

Emission Indications Aggregation
In most cases, it is desirable to aggregate emission indications together based on certain criteria. For example, if a road with a single emission source is driven twice, the MobileGuard™ system generates two raw emission indications for that single emission source. To account for this situation, the MobileGuard™ software provides the user with the ability to aggregate raw emission indications into a single aggregated indication (via Millhouse settings), which represents the group of correlated raw indications. (See Figure 110, where VEID1 is Vehicle Emission Indication 1, and VEID2 is Vehicle Emission Indication 2).

To do this, the MobileGuard™ software uses two user-defined radii for the aggregation process. The first aggregation radius is the distance between the points on the vehicle path where raw emission indications were measured (labeled \(r_d \) in Figure 110). If the detection radius between two emission indications is less than the user-defined value for the detection aggregation radius (15 meters / 50 feet by default), the two raw indications are aggregated into a single aggregated indication. The second aggregation radius uses the distance between the estimated emission source location for raw indications (\(r_s \) in Figure 110) and aggregates based on this value.

The appropriate values for \(r_d \) and \(r_s \) depend on the user requirements.

Calculate Survey Area Coverage
The survey-area coverage calculation is based on the survey area and the overlapping pipeline data presented on the map. Pipeline assets loaded into the MobileGuard™ application during investigation will be used to calculate the total survey coverage in feet and in percentage per each pipeline map (asset file).

1 Load the pipeline data you want to calculate the coverage for. Refer to “Assets List” and “Assets Import”.

2 Enable Survey Coverage Calculation:
 a Select PDF Report Settings on the sidebar.
 b Click the field next to Enable Survey Area calculation.
 c Check the box next to Enable Survey Area calculation.
 d Click Save.

3 Calculate the coverage of an asset file in one of the following two methods (see Figure 111):
 • Real-time coverage calculation: Proceed to Step 4.
 • Coverage calculation in PDF report: Skip to Step 5.

![Figure 110](image.png)

![Figure 111](image.png)
...4 Using the System

4 Real-time coverage calculation: From the Map screen, perform one of the following methods (Mapsheet Grid or Single KML/SHP) to perform the coverage calculation.

– Mapsheet Grid:
 a) Set the Coverage Calculation toggle in the right position – calculation based on the mapsheet grid.
 b) Click the Coverage Calculation Mapsheet Grid menu icon (Figure 14).
 c) Confirm the Grids/Main/Service asset files have been uploaded (Figure 15). Refer to “Assets Import”.
 d) The screen shown in Figure 16 appears: Select the checkbox to calculate coverage for that specific mapsheet.
 e) If you want the coverage in the PDF report, cropping is necessary: Click the Scissors icon and upload the newly created asset to Geoserver. You can now calculate based on the Single KML/SHP file method, described below, and activate that mapsheet for PDF Report calculation.
 f) Click Confirm.

– Single KML/SHP:
 a) Set the Coverage Calculation toggle in left position – calculation based on single asset file already uploaded.
 b) Click the Coverage Calculation Single KML/SHP menu icon (see Figure 112). The screen shown in Figure 113 appears.
 c) Select the asset file by checking the box.
 d) Click Confirm: The real-time or archival package coverage is displayed (see Figure 114).

5 Coverage calculation in PDF report:
 a) Verify the asset has been uploaded.
 b) From the Map screen, select the Map Options icon (3 dots), then verify Assets is ON.
 c) Under Assets, turn on selected assets: Click the Toggle icon.

NOTE
Cropping is necessary if you want to have calculation in the PDF report.

6 Drive with Survey Coverage Calculation active. If real-time coverage was activated, the percentage covered will update with each Millhouse processing.

7 Once the drive is finished, see Survey Coverage (Total), in total feet, in the summary and percentage on the last page for each asset loaded during the drive or reprocess.

NOTE
Total Coverage Calculation combines the percentage of coverage for each asset into a total percentage. Total Coverage Calculation is appended to the coverage table in the PDF report.
...4 Using the System

WARNING!

Having assets loaded that are not covered during the survey will result in a 0 percent coverage, thus lowering the total coverage calculation.

Coverage calculation should be based on smaller asset sizes (less than 100,000 features) in the asset file.

MobileGuard Survey Report
Survey Calculation

<table>
<thead>
<tr>
<th>Asset Files</th>
<th>Survey Area Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KmlFile (S3_Loop.kml)</td>
<td>89.79</td>
</tr>
<tr>
<td>Total (ft)</td>
<td>20462.07</td>
</tr>
</tbody>
</table>

Figure 116 Percentage of Survey Coverage for Each Asset File Loaded

You can also view the coverage calculation on archival packages as follows:

8 From the Map screen, perform one of the following methods (Mapsheet Grid or Single KML/SHP) to perform the coverage calculation.

- Mapsheet Grid:
 a Set the Coverage Calculation toggle in the right position – calculation based on the mapsheet grid.
 b Click the Coverage Calculation Mapsheet Grid menu icon (Figure 14).
 c Confirm the Grids/Main/Service asset files have been uploaded (Figure 15). Refer to “Assets Import”.
 d The screen shown in Figure 16 appears: Select the checkbox to calculate coverage for that specific mapsheet.
 e If you want the coverage in the PDF report, cropping is necessary: Click the Scissors icon and upload the newly created asset to Geoserver. You can now calculate based on the Single KML/SHP file method, described below, and activate that mapsheet for PDF Report calculation.
 f Click Confirm.

- Single KML/SHP:
 a Set the Coverage Calculation toggle in left position – calculation based on single asset file already uploaded.
 b Click the Coverage Calculation Single KML/SHP menu icon (see Figure 112).
 c Select the asset file by checking the box.
 d Click Confirm: The real-time or archival package coverage is displayed (see Figure 114).

9 Click the icon to the right of Emissions and Packages.

10 From the Drive Packages window, select the radio button to use a drive package for coverage calculation.

Figure 117 Select Archival Drive Package
...4 Using the System

Mapsheet Grid Highlight and Locating
During real-time coverage calculation, you can select which mapsheets to highlight when surveying.

To load and highlight a specific mapsheet grid:

1. Select **Map** to access the Map screen.
2. Set the **Coverage Calculation** toggle in the right position – calculation based on the mapsheet grid. (See Figure 118.)
3. Confirm the **Grids/Main/Service** asset files have been uploaded (Figure 15). Refer to “Assets Import”.
4. The screen shown in Figure 16 appears: Select the checkbox to calculate coverage for that specific mapsheet.
5. Click **Confirm**.
6. Click the **location** icon to the left of the asset name to view. (See Figure 118.)
7. Click the asset name to highlight that grid.

![Figure 118 Mapsheet Grid Highlight](image)
…4 Using the System

Report Generation - HoverGuard™

Data Transfer

1. Power on the analyzer: Press the power button on the connector panel to the On position. Refer to the GLA133 Series UAV-Microportable User Manual (document number 3KXG167006R4601).

2. On a computer that has the MobileGuard™ software installed, go to the WiFi symbol to access all available networks.

3. From the available network list, select the network (SSID) marked on the analyzer label. It should read: RUT240_XXXX, where XXXX varies from analyzer to analyzer. Once selected, enter the corresponding password from the same label for access. The password consists of eight characters (XXXXXXXX) that vary from analyzer to analyzer. (Figure 119)

4. Open the Windows File Explorer (not an internet browser) and type in the IP address from Figure 119 into the address bar. The address must in the form \192.168.1.XXX, where XXX is a three digit number that varies from analyzer to analyzer. After pressing return, the computer has access to a shared data directory in the analyzer (lgrdata), as shown in Figure 120.

5. Double-click the lgrdata folder to show the data folders (data grouped by date) as shown in Figure 121.

6. Double-click on any of the folders to show the zipped data files (Figure 122).

7. Copy the relevant data file(s) to the computer, then unzip the files.
...4 Using the System

Software Setup

1. Start the MobileGuard™ software and log in (refer to the “Access UI” section for details).

2. The MobileGuard™ software is pre-configured for the GLA133-GGA. If that analyzer is being used, this “Software Setup” section may be skipped. Otherwise, a new Instrument must be created: Proceed to Step 3.

3. In order to parse the analyzer data correctly, a new instrument type must be configured using the raw-data file headers. Select Instruments and Alarms to access the required screen (Figure 123).

4. Delete the existing DJI instrument type: Select DJI, then click the trash can icon.

5. Create a new instrument and corresponding alarm parameters: Click Create new. The screen shown in Figure 124 appears.

6. Enter the instrument type (DJI).

7. Copy and paste the header line from the raw data file into the CSV header text box (that is, the column names separated by commas beginning with SysTime).

8. Click Generate.

9. The resulting window (Figure 125) shows the CSV names along with other data attributes. Click Save to save the newly created instrument type.
...4 Using the System

Back to main Instruments and Alarms screen

![Instrument Parameters](image1)

Figure 125 Instrument Parameters

10 Click **Back to list** to return to the Instruments and Alarms screen - the new entry appears in the list: Instrument Type: DJI. (Figure 126)

![Newly Created DJI Instrument Type](image2)

Figure 126 Newly Created DJI Instrument Type
...4 Using the System

11 Under General Settings > Analyzer Settings, specify the following (Figure 127):

 a. Analyzer Type: DJI (click Save).

 b. Package Type: flight (click Save).

12 By default, the report will be saved to the folder /data/LGR LDS. To change this folder, go to General Settings > Local Directory Settings, then modify Local Drive Package Directory to the desired folder. Ensure that there are no quotations surrounding the path. (Figure 128)
...4 Using the System

13 Create a new millhouse profile: Click Millhouse Profiles and then the copy button on the [Predefined] default_uav line (Figure 129).

![Copy profile](image)

Figure 129 Copy Pre-defined Profile

14 Change the Profile name to default_uav (user) (Figure 130).

15 Change the argument name from --fitter_algorithm=multigaussian to --fitter_algorithm=regression (Figure 130).

16 Click Save to save the profile (Figure 130).

![Change profile name](image)

Figure 130 Create New Millhouse Profile

17 Update the Processing profile and Realtime profile to [User] default_uav (user) (Figure 131): Use the drop-down menu to select the profiles.
...4 Using the System

![Figure 131: Update Processing and Realtime Profiles](image1)

18 Ensure that the sampling delay time is set to 500 ms for HoverGuard™: Click **General Settings**, then **Vehicle Calibration Settings** and ensure that the value is set to **500**, then click **Save**, if changing the value. (Figure 132)

![Figure 132: Change Sampling Delay Time Setting](image2)
...4 Using the System

Import and Process Data

1. Import the raw data file. Ensure that the filename is of the format: `<INSTRUM_TYPE>_<SERIAL_NUMBER>_<DATE>_INDEX>.txt`
 - Example: DJI_18050001234_2022-10-25_f0000.txt
 - `INSTRUM_TYPE` must match the name given in Step 6 above (in the “Software Setup” section).

2. On the MobileGuard™ application, click the Data Management button.

3. Click Import. (Figure 133)

 ![Click Import](image)

 Figure 133 Click Import

4. Set the report properties (Figure 134):
 a. Navigate to the relevant raw-data file and select it.
 b. Rename the report filename, if desired (this will be the flight package name).
 c. Select Package Type: Flight.
 d. Select the desired Millhouse Processing profile: [User]uav_webapp_anemometer.
 e. Click Submit. The flight file will be processed and saved to the folder specified in Step 12 above (“Software Setup” section).

 ![Report Processing Parameters](image)

 Figure 134 Report Processing Parameters
...4 Using the System

5 The resulting archive filename will have a name like _2022305_2247.flight. Extract this file using a file extractor, such as 7-Zip. Archived reports can also be reviewed directly with the MobileGuard™ software by navigating back to the Data Management screen and clicking the desired pdf report icon (Figure 135).

Figure 135 View Archival Reports

...4 Using the System

Report Properties
Flight packages are zipped archives that contain several different files, the most important of which are described in Table 7.

Table 7 Flight Package Filenames

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drive.pdf</td>
<td>Report containing a summary of the results from the data contained within the flight package. In addition, statistics are provided for each individual emission indication.</td>
</tr>
<tr>
<td><flight_filename>.csv</td>
<td>Raw data (eg, concentrations, wind conditions, GPS) for the flight package.</td>
</tr>
<tr>
<td>drive.xml</td>
<td>Collection of metadata for the flight.</td>
</tr>
<tr>
<td>/millhouse/</td>
<td>Folder containing analyzed results divided into various .kmz and .shp files.</td>
</tr>
</tbody>
</table>

PDF Report
A PDF report, drive.pdf is generated for each flight package and is located in the top directory of the .flight archive. This report contains a summary of the flight package, including important statistics and details for each emission indication. This section briefly describes the data contained in each of these reports.

PDF Report - Flight Package Overview
Report Header
The first table of the PDF report (Figure 136) provides the following general information about the flight package.

Survery Report for_20210305_2247

- Report ID – name of the flight package that contains this PDF report.
- Report Generated By – ID of the user that generated the report.
- Report Date – timestamp for generation of the current flight package.
- Analyzer Serial Number – ID of the analyzer used to generate the flight package.
- Analyzer Calibration Date – date the analyzer was last calibrated.
- Survey Start – timestamp for the earliest data point used in the flight package.
- Survey Stop – timestamp for the latest data point used in the flight package.
- Operator – user ID for the operator(s) that collected data used in the flight package.

Emission Indication Statistics
This table contains basic statistics about the survey area and emission indications contained in the current flight package.

<table>
<thead>
<tr>
<th></th>
<th>34</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Natural Gas Sources (%) of Total</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>No. of Biogas Sources (%) of Total</td>
<td>2 (100%)</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Survey Area (sq. mi)</td>
<td>0.89</td>
<td></td>
</tr>
</tbody>
</table>

Figure 137 Emission Indication Statistics Example

- Total No. of Detected Sources – total number of raw emission indications generated from data in the current flight package.
- No. of Sources After Aggregation – total number of emission indications from data in the current flight package.
- No. of Natural Gas Sources (% of Total) – percent of aggregated emission indications that arise from a natural gas source.
- No. of Biogas Sources (% of Total) – percent of aggregated emission indications that arise from biogas sources.
- No. of Indeterminate Sources (% of Total) – percent of aggregated emission indications that have an unidentified source.
- Total Survey Area (mi²) – total area surveyed in the current flight package.

NOTE
This value depends on the survey_area parameter, which may be adjusted in the Millhouse Profiles screen.

- Distance Surveyed (mi) – total distance traveled for data in the current flight package.
...4 Using the System

Complete Survey Route
Map segment which depicts the entire survey area for the flight package. Aggregated emission-indication survey areas from the flight package are overlaid on this map. (Figure 138)

PDF Report - Individual Emission Indication Reports
After the Flight Package Overview section, the MobileGuard™ PDF report contains additional pages with information about individual aggregated emission indications for the current flight package.

Emission Indication Measured Values
This table contains several entries that contain statistics tabulated for individual aggregated emission indications.

<table>
<thead>
<tr>
<th>Emission Indication Measured</th>
<th>Detection Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Type</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>Child Emission</td>
<td>2</td>
</tr>
<tr>
<td>Indication Start</td>
<td>February 4, 2021, 6:51:50 AM PST</td>
</tr>
<tr>
<td>Indication Stop</td>
<td>February 4, 2021, 6:51:55 AM</td>
</tr>
<tr>
<td>Indication Length (ft)</td>
<td>1.11</td>
</tr>
<tr>
<td>Indication Duration (sec)</td>
<td>4.76</td>
</tr>
<tr>
<td>Survey Speed at Detection</td>
<td>0.06</td>
</tr>
<tr>
<td>Survey Altitude at Detection</td>
<td>8.43</td>
</tr>
<tr>
<td>Wind Speed (mph)</td>
<td>8.35</td>
</tr>
<tr>
<td>Baseline CH₄ (ppm)</td>
<td>2.52</td>
</tr>
<tr>
<td>CH₄ Peak Rise (ppm)</td>
<td>0.18</td>
</tr>
<tr>
<td>C₂H₆ Peak Rise (ppm)</td>
<td>null</td>
</tr>
</tbody>
</table>

Figure 139 Measurement Statistics Example

- CH₄ (ppm) – raw measured methane concentration (not baseline subtracted).
- C₂H₆ (ppm) – raw measured ethane concentration (not measured).
- Outside Temperature (°C) – exterior temperature measured by the anemometer.
- Wind Speed (mph) – wind speed measured by the anemometer after correction for UAV speed.
- Survey Speed (mph) – UAV speed measured by GPS.

Notes
Comments entered by the user at the beginning or end of a flight.
- Operator startup notes
- Operator completion notes

Figure 140 Individual Aggregated Emission Indications

The values in the table are:
- Detection Location – GPS coordinates corresponding to location of emission detection.
- Source Type – natural gas, biogas, or indeterminate.
- Child Emission Count – number of raw emission indications aggregated together for the current emission indication.
- Indication Start – start time of elevated methane concentration for the current emission indication.
- Indication Stop – stop time of elevated methane concentration for the current emission indication.
- Indication Length (ft) – distance traveled by the UAV during the time window associated with the current emission indication.
- Indication Duration (sec) – length of time over which the elevated methane concentration for the current emission indication persisted.
- Survey Speed at Detection (mph) – UAV speed during the time window associated with measurement of the current emission indication.
- Survey Altitude at Detection (ft) – UAV altitude during the time window associated with measurement of the current emission indication.
- Wind Speed (mph) – average wind speed during the time window associated with the current emission indication.
- Baseline CH₄ (ppm) – average background methane concentration for data associated with the current emission indication.
- CH₄ Peak Rise (ppm) – highest background subtracted methane concentration measured in data associated with the current emission indication.
- C₂H₆ Peak Rise (ppm) – average background ethane concentration for data associated with the current emission indication.
...4 Using the System

Emission Indication Estimates
This table shows an example of emission indication estimates.

<table>
<thead>
<tr>
<th>Source Location</th>
<th>Source Direction (deg)</th>
<th>Distance (ft)</th>
<th>Search Area Size (ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.XXXXXX, -121.XXXXXX</td>
<td>122.56 +/- 116.84</td>
<td>13.38 +/- 6.69</td>
<td>182.56</td>
</tr>
</tbody>
</table>

• Source Location – estimated location (latitude, longitude) of the source of the emission indication in decimal degrees.
• Source Direction (deg) – angle between the line pointing from south to north and the line pointing from the point of detection to the estimated source location.
• Distance (ft) – distance from the point of detection to the estimated source location.
• Search Area Size (ft²) – size of the search area for the current emission indication.

Emission Indication Map
Each aggregated emission indication in the PDF report is accompanied by a zoomed-in map of the area surrounding the current emission indication. (See Figure 142 for an example.)

Figure 141 Emission Indication Estimates

Figure 142 Emission Indication Map (HoverGuard™)
4 Using the System

PDF Report - Leak Trace
Each aggregated emission indication in the PDF report is accompanied by a leak trace – that is, a zoomed-in view of the methane concentration corresponding to the current emission indication. (See Figure 143 for an example.)

Figure 143 Emission Indication Map – Leak Trace
Using the System

PDF Report - Measured Time Traces
A set of time-dependent data is shown in a graph for each individual data set used in the current flight package (see Figure 144 for an example).

Figure 144 Measured Time Traces (HoverGuard™)

- CH₄ – background subtracted methane concentration. The dark blue region corresponds to times when the UAV was in flight.
- Speed – UAV speed.
- Wind Speed – measured wind speed after correction for the speed of the UAV.
- Azimuth – azimuthal (in-plane) angle of the wind direction (see Figure 145 and Figure 146).

Figure 145 Azimuth Angle Definition for a Given Wind Direction

- Elevation – elevation angle of the wind direction. The elevation angle is positive if the wind direction is pointing upward and negative for a downward wind direction.

Figure 146 Wind Rose
…4 Using the System

PDF Report - Wind Properties
Figure 146 illustrates a wind rose showing the distribution of wind velocities (corrected for UAV velocity) during the flight package collection time.

PDF Report - Survey Detection Statistics
Two histograms of the peak CH₄ concentration associated with aggregated emission indications in the current flight package are provided. The left plot is a histogram spanning 0 to 1 ppm, and the right plot is a histogram for emissions with larger associated concentrations. (See Figure 147 for an example.) The right plot auto-scales the X axis and separates the available emission indication data into ten successive bins.

![Figure 146](image)

![Figure 147](image)

Table 8: Millhouse Files (HoverGuard™)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/millhouse/millhouse.kmz</td>
<td>Complete results from the survey, partially divided into different layers for aggregated emission-indication survey areas only or full lists of emission-indication survey areas</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_child_leaks.kmz</td>
<td>Partial layer file containing the full unaggregated set of emission-indication survey areas</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_circles.kmz</td>
<td>Partial layer file containing circles with a 5 meter (16 foot) radius around the point of detection</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_leaks.kmz</td>
<td>Partial layer file containing only the aggregated emission-indication survey areas</td>
</tr>
<tr>
<td>/millhouse/millhouse_aggregated_pies.kmz</td>
<td>Partial layer file containing only the aggregated emission indications with survey areas replaced by icons that express the angular uncertainty of the emission origin estimate, but with a fixed distance estimate of 50 meters (164 feet)</td>
</tr>
<tr>
<td>/millhouse/millhouse_ch4_line.kmz</td>
<td>Partial layer file containing the breadcrumb trace with color representing the measured methane concentration</td>
</tr>
<tr>
<td>/millhouse/millhouse_surveyarea.kmz</td>
<td>Partial layer file containing the estimated survey area (defined in the millhouse profile)</td>
</tr>
<tr>
<td>/millhouse/millhouse_wind.kmz</td>
<td>Partial layer file containing arrows representing the measured wind speed and direction</td>
</tr>
</tbody>
</table>

KMZ Output
The /millhouse/ directory in the flight package produced by the MobileGuard™ software contains several output files in .kmz format. These files, defined in Table 8, contain the results of the flight and can be loaded into GIS software that supports .kmz or .kml data (for example, Google Earth). In addition, each KMZ output can be produced for SHP format if specified in the Millhouse profile.

KMZ/SHP File Embedded Flight Package Data
MobileGuard has embedded much of the .flight package data into the layers of the kmz/shp file. Figure 105 is an example of a millhouse_aggregated_emissions.shp file loaded into a GIS program. The highlighted emission is selected to view the information attached to that layer.
...4 Using the System

CSV Output
MobileGuard™ flight packages also contain several CSV formatted output files containing generated data associated with the current flight package. These files are described in Table 9.

⚠️ NOTE
If there are other formats that would assist your particular workflow, ABB can create new output to meet your needs. Please contact ABB Support for more information.

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><data_filename>.csv</td>
<td>All raw data associated with the current flight package. Includes timestamps, data generated by the analyzer (for example, methane concentrations, pressure, temperature, ringdown times), GPS data, and anemometer data.</td>
</tr>
<tr>
<td>/millhouse/concentrations.csv</td>
<td>Raw and background subtracted methane concentrations (this file is not generated by default – contact ABB Support for more information).</td>
</tr>
<tr>
<td>/millhouse/emissionDigest.csv</td>
<td>Latitude and longitude data for the predicted source locations of all raw emission indications generated in the current flight package. Also, the peak methane concentration associated with each indication.</td>
</tr>
<tr>
<td>/millhouse/emissionDigest_aggregated.csv</td>
<td>Latitude and longitude data for the predicted source locations of aggregated emission indications generated in the current flight package. Also, the peak methane concentration associated with each aggregated indication.</td>
</tr>
<tr>
<td>/millhouse/emissionIndicationDump.csv</td>
<td>Collection of detailed emission indication parameters for the current flight package.</td>
</tr>
</tbody>
</table>
...4 Using the System

Data Storage - MobileGuard™

There are two types of storage accounts:
- Azure - to create an Azure account, refer to “Azure Account Configuration”.
- Google Drive - to create a Google Drive account, refer to “Google Drive Account Configuration”.

Azure Account Configuration

This section describes configuring an Azure storage account.

1. From the Cloud Settings screen click Connect to Azure.

2. Enter the email address and password emailed to you during the commissioning step. If you have not received the email address and password, contact icos.support@ca.abb.com to set up an Azure Storage account.

3. Click Sign in.

...4 Using the System

MobileGuard™ initiates the connection to Azure (Figure 150), then you are connected to your Azure storage account (Figure 151).

![Connecting to Azure](image)

Figure 150 Connecting to Azure

![Connected to Azure](image)

Figure 151 Connected to Azure

Change Azure Password

When a new user is added to the Azure Storage, a randomly generated password is sent via email to that user. To change the password, follow the sequence below:

1. On the sidebar, select **Cloud Settings** (see Figure 8) to access the **Cloud Settings** screen (Figure 71).
2. Click **Connect to Azure** (see Figure 148).
3. The screen shown in Figure 152 appears: Click **Forgot your password**.

![Forgot your password](image)

Figure 152 Click Forgot your password
4 The screen shown in Figure 153 appears requesting the registered email address: Enter the registered email address.

Figure 153 Send Verification Code

5 Click **Send Verification Code**.

An email will be sent with a code (see example below). The email will come from: msonlineservicesteam@microsoftonline.com on behalf of MobileGuard™.

Figure 154 Azure Forgot Password Email Code

6 Enter the code from the email, then click **Verify code**.

Figure 155 Enter Verification Code
...4 Using the System

7 When the screen displays the email address is verified, click **Continue**.

![Email Address Verified](image-1)

Figure 156 Email Address Verified

8 Enter and confirm your new password.

![Enter New Azure Password](image-2)

Figure 157 Enter New Azure Password.

9 Click **Continue** to return to the *Cloud Settings* screen.

NOTE

Password complexity is set to minimum 8 characters and maximum 64 characters in length, and requires 3 of 4 character classes: uppercase, lowercase, number, symbol.
...4 Using the System

Google Drive Account Configuration
This section describes configuring a Google drive account which requires setting up a drive package repository: This requires the following:
- Configuring a Google account
- Generating OAuth client IDs
- Linking MobileGuard™ application to Google JSON file

To set up a drive package repository, perform the steps which follow:

Configure Google Account

1. After creating a Google account, log into the Google Developer Console (http://console.developers.google.com).

2. Click Select a project in the upper-left part of the screen (Figure 158).

3. In the new window, click the + sign to Create project. (Figure 159).
Using the System

4 On the next screen (Figure 160):
 a Type Leak Detection Application in the Project Name field.
 b Choose No, then Yes, in the subsequent fields.
 c Click Create.

5 Wait for the project to be created. (It may take a few minutes – you can track progress in the Notifications area).

6 Click the Select a project menu (see Figure 158), then click the Leak Detection Application project (see Figure 161).

7 Make sure that the new project is selected – the toolbar should look like Figure 162.
...4 Using the System

8 Click the Credentials menu on the left, then click the OAuth consent screen tab.

9 Fill out the form in the OAuth consent screen, then click Save (Figure 163).

10 On the next screen, click the Create credentials drop-down menu, then click OAuth client ID (Figure 164).
...4 Using the System

11 Choose Other for the Application type, type a name in the Name field (the default option, Other client 1, may be used), then click Create. (Figure 165)

![Create Application](image)

Figure 165 Create Application

12 A screen displaying your client ID and client secret appears: Click OK (Figure 166).

![Client ID and Secret](image)

Figure 166 Client ID and Secret

13 Click the Google APIs button (Figure 167) to return to the Overview screen (Figure 168).

![Click Google APIs](image)

Figure 167 Click Google APIs
…4 Using the System

Enable the **Drive API** (Figure 168) by clicking this option on the **Overview** screen, then the **Enable** button on the following screen. Once an API is enabled, click the **Library** button from the left menu to return to the **Overview** screen to select other API options.

Generate OAuth Client IDs

1. In the Google Developer Console, click **Credentials > Create Credentials > OAuth Client ID**.
2. Select **Application Type** > **Other**, then enter any name.
3. Click **Create**, then close the pop-up window.
4. A list of created credentials is displayed – click the newly created credential name to display its details.
5. Click the **Download JSON** button, then save the downloaded file. This file will be loaded into the MobileGuard™ software (refer to the section which follows (“Link MobileGuard™ Application to Google JSON File”).

Link MobileGuard™ Application to Google JSON File

1. On the sidebar, select **Cloud Settings**. If there is no connected Google account, the configuration screen looks like Figure 169.
...4 Using the System

2 Click **Select**: The window shown in Figure 170 appears.

![Figure 170 JSON File Selection Window](image)

3 Select the desired .json file from the list displayed, then click **Open**: The file appears in the *MobileGuard Cloud Settings* screen.

![Figure 171 MobileGuard™ Cloud Settings Screen with .json File](image)

4 Click **Upload**.

5 Click **Connect** to link the MobileGuard™ application to the .json file.

6 Enter the credentials for Google Drive.

7 Select **Allow** to give MobileGuard™ permission to sync with Google Drive.
...4 Using the System

CSV Data Definitions
This section contains a brief definition of the various column
data in .csv files generated by the MobileGuard™ system.

<data_filename>.csv
<data_filename>.csv is generated in the top directory of a drive
package and contains the raw data collected by the analyzer,
sonic anemometer, and GPS receiver.

<table>
<thead>
<tr>
<th>Column</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Time (local)</td>
<td>Month/Day/Year Hr:Min:Sec</td>
<td>UDT time at which complete analyzer + GPS + anemometer data was acquired</td>
</tr>
<tr>
<td>Time</td>
<td>Month/Day/Year Hr:Min:Sec</td>
<td>UDT time at which analyzer data was acquired</td>
</tr>
<tr>
<td>[CH4]_ppm</td>
<td>ppm</td>
<td>Methane concentration</td>
</tr>
<tr>
<td>[CH4]_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[H2O]_ppm</td>
<td>ppm</td>
<td>Water concentration</td>
</tr>
<tr>
<td>[H2O]_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[C2H6]_ppm</td>
<td>ppm</td>
<td>Ethane concentration</td>
</tr>
<tr>
<td>[C2H6]_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[CH2H6]d_ppm</td>
<td>ppm</td>
<td>Dry ethane concentration</td>
</tr>
<tr>
<td>[C2H6]d_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Flow_slm</td>
<td>SLM</td>
<td>Flow rate of gas through inlet system</td>
</tr>
<tr>
<td>Flow_slm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>GasP_torr</td>
<td>Torr</td>
<td>Pressure inside of optical cell</td>
</tr>
<tr>
<td>GasP_torr_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>GasT_C</td>
<td>°C</td>
<td>Temperature inside of optical cell</td>
</tr>
<tr>
<td>GasT_C_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>AmbT_C</td>
<td>°C</td>
<td>Temperature inside of analyzer</td>
</tr>
<tr>
<td>AmbT_C_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>RD0_us</td>
<td>μs</td>
<td>Ringdown time of laser 0 (methane measurement)</td>
</tr>
<tr>
<td>RD0_us_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>RD1_us</td>
<td>μs</td>
<td>Ringdown time of laser 1 (ethane and water measurement)</td>
</tr>
<tr>
<td>RD1_us_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Fit_Flag</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MIU_VALVE</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MIU_DESC</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>GPS Time Stamp</td>
<td>Month/Day/Year Hr:Min:Sec</td>
<td>UDT time at which GPS data was acquired</td>
</tr>
<tr>
<td>Latitude (deg)</td>
<td>Degrees</td>
<td>GPS latitude</td>
</tr>
<tr>
<td>Longitude (deg)</td>
<td>Degrees</td>
<td>GPS longitude</td>
</tr>
<tr>
<td>Speed (knots)</td>
<td>Knots</td>
<td>Vehicle speed</td>
</tr>
<tr>
<td>Course (deg)</td>
<td>Degrees</td>
<td>Course determined from current waypoint and previous waypoint</td>
</tr>
<tr>
<td>GPS Fix Status</td>
<td>n/a</td>
<td>A = valid data, V = invalid data</td>
</tr>
<tr>
<td>Wind Speed (m/s)</td>
<td>m/s</td>
<td>Total measured wind speed</td>
</tr>
<tr>
<td>Azimuth (deg)</td>
<td>Degrees</td>
<td>Azimuthal (in-plane) angle describing wind vector</td>
</tr>
<tr>
<td>Elevation (deg)</td>
<td>Degrees</td>
<td>Elevation (vertical) angle describing wind vector</td>
</tr>
<tr>
<td>Speed-of-Sound (m/s)</td>
<td>m/s</td>
<td>Local speed of sound measured by sonic anemometer</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>°C</td>
<td>Local temperature measured by sonic anemometer</td>
</tr>
</tbody>
</table>
...4 Using the System

Data Storage - HoverGuard™

CSV Data Definitions
This section contains a brief definition of the various column data in .csv files generated by the MobileGuard™ system.

A <data_filename>.csv file is generated in the top directory of a flight package and contains the raw data collected by the analyzer, sonic anemometer, and GPS receiver.

Table 11 <data_filename>.csv Data Definitions for a GLA133-GPC

<table>
<thead>
<tr>
<th>Column</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Time (local)</td>
<td>Month/Day/Year Hr:Min:Sec</td>
<td>UDT time at which complete analyzer + GPS + anemometer data was acquired</td>
</tr>
<tr>
<td>Time</td>
<td>Month/Day/Year Hr:Min:Sec</td>
<td>UDT time at which analyzer data was acquired</td>
</tr>
<tr>
<td>[CH4]_ppm</td>
<td>ppm</td>
<td>Methane concentration in parts per million</td>
</tr>
<tr>
<td>[CH4]_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[CO2]_ppm</td>
<td>ppm</td>
<td>Carbon dioxide concentration in parts per million</td>
</tr>
<tr>
<td>[CO2]_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[H2O]_ppm</td>
<td>ppm</td>
<td>Water concentration in parts per million</td>
</tr>
<tr>
<td>[H2O]_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[CH4]d_ppm</td>
<td>ppm</td>
<td>Dry methane concentration in parts per million</td>
</tr>
<tr>
<td>[CH4]d_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>[CO2]d_ppm</td>
<td>ppm</td>
<td>Dry carbon dioxide concentration in parts per million</td>
</tr>
<tr>
<td>[CO2]d_ppm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Flow_slm</td>
<td>SLM</td>
<td>Flow rate of gas through inlet system</td>
</tr>
<tr>
<td>Flow_slm_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>GasP_torr</td>
<td>Torr</td>
<td>Pressure inside of optical cell</td>
</tr>
<tr>
<td>GasP_torr_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>GasT_C</td>
<td>°C</td>
<td>Temperature inside of optical cell</td>
</tr>
<tr>
<td>GasT_C_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>AmbT_C</td>
<td>°C</td>
<td>Temperature inside of analyzer</td>
</tr>
<tr>
<td>AmbT_C_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>RD0_us</td>
<td>µs</td>
<td>Ringdown time of laser 0 (methane measurement)</td>
</tr>
<tr>
<td>RD0_us_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Gnd</td>
<td>Volts</td>
<td>Detector voltage with no light present</td>
</tr>
<tr>
<td>Gnd_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>LTCO_v</td>
<td>Volts</td>
<td>Linelock voltage for laser 0</td>
</tr>
<tr>
<td>LTCO_v_sd</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Temp_Status_mA</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Analyzer_Status_mA</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>BattPer</td>
<td>%</td>
<td>Battery percentage</td>
</tr>
<tr>
<td>Fit_Flag</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MIU_VALVE</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>MIU_DESC</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Quaternion w</td>
<td>n/a</td>
<td>Quaternion constant</td>
</tr>
<tr>
<td>Quaternion x</td>
<td>n/a</td>
<td>X component of quaternion vector</td>
</tr>
<tr>
<td>Quaternion y</td>
<td>n/a</td>
<td>Y component of quaternion vector</td>
</tr>
<tr>
<td>Quaternion z</td>
<td>n/a</td>
<td>Z component of quaternion vector</td>
</tr>
<tr>
<td>Latitude (deg)</td>
<td>Degrees</td>
<td>GPS latitude</td>
</tr>
<tr>
<td>Longitude (deg)</td>
<td>Degrees</td>
<td>GPS longitude</td>
</tr>
<tr>
<td>Ground X Speed (m/s)</td>
<td>m/s</td>
<td>Ground speed along UAV X-axis (constant latitude)</td>
</tr>
<tr>
<td>Ground Y Speed (m/s)</td>
<td>m/s</td>
<td>Ground speed along UAV Y-axis (constant longitude)</td>
</tr>
<tr>
<td>Ground Z Speed (m/s)</td>
<td>m/s</td>
<td>Ground speed along UAV Z-axis (vertical speed)</td>
</tr>
<tr>
<td>Vehicle Heading (degrees)</td>
<td>Degrees</td>
<td>Vehicle heading with 0 degrees corresponding to True North</td>
</tr>
<tr>
<td>Wind Speed 3D (m/s)</td>
<td>m/s</td>
<td>Total measured wind speed</td>
</tr>
<tr>
<td>Wind Direction (degree)</td>
<td>Degrees</td>
<td>Azimuthal (in-plane) angle describing wind vector</td>
</tr>
<tr>
<td>Uvector (m/s)</td>
<td>m/s</td>
<td>Wind speed along the anemometer U-vector</td>
</tr>
<tr>
<td>Vvector (m/s)</td>
<td>m/s</td>
<td>Wind speed along the anemometer V-vector</td>
</tr>
<tr>
<td>Wvector (m/s)</td>
<td>m/s</td>
<td>Wind speed along the anemometer W-vector</td>
</tr>
<tr>
<td>Temperature (C)</td>
<td>°C</td>
<td>Local temperature measured by sonic anemometer</td>
</tr>
</tbody>
</table>
...4 Using the System

System Shutdown

For the MobileGuard™ system shutdown, refer to the MobileGuard™ System Manual.

For the HoverGuard™ system shutdown, refer to the HoverGuard™ Solution Manual.