The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The UKAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of our dedication to quality and accuracy.

Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use'. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Warning – Refer to the manual for instructions</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution – Risk of electric shock</td>
</tr>
<tr>
<td>⚡️</td>
<td>Protective earth (ground) terminal</td>
</tr>
<tr>
<td>⚡️</td>
<td>Earth (ground) terminal</td>
</tr>
<tr>
<td>⚡️</td>
<td>Direct current supply only</td>
</tr>
<tr>
<td>⚡️</td>
<td>Alternating current supply only</td>
</tr>
<tr>
<td>⚡️</td>
<td>Both direct and alternating current supply</td>
</tr>
<tr>
<td>⚡️</td>
<td>The equipment is protected through double insulation</td>
</tr>
</tbody>
</table>

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
FRONT PANEL KEYS

Side Scroll Key
- Advance to next page

Down Scroll Key
- Advance to next frame

Up/Down Key
- Adjusts parameter values
- Flashing prompt precedes adjustable parameters

Select

Flashing prompt identifies page selected

Cursor
- Moves between pages in menus and...
- between parameters in a frame

Star Key
- Multi-function keys.
The function is dependent upon the frame displayed (e.g. Print, Edit, Acknowledge etc.)

Hash Key
- Operator Message
- Start of batch 47H350

Pen Lift/Lower Key
- Lifts/lowers pen on alternate operations
1. Enter the EDIT mode using the key.

Operator Message PRINT *
Start of batch 47H350 EDIT #

2. Select character using the and keys.

Flashing

Edit Tag:

Edit Tag: a

Flashing

3. Enter the character using the key.

Flashing

4. Repeat steps 2 and 3 until the message is complete.

5. Press the key to exit the EDIT mode.
GETTING STARTED

This Advanced Process Recorder is a 250mm strip chart recorder providing accurate and reliable recording of up to 24 channels. The instrument also provides a range of advanced processing capabilities such as flow totalization, math blocks, logic equations, configurable displays and full message printing.

With the option to fit PC memory card data storage, RS485 Modbus communication and up to 18 alarm relays, the recorder becomes a very powerful signal processing tool.

To assist the operator in analyzing any process problem the advanced process recorder has a unique Cue and Review system, allowing the user to examine historical data anywhere on the chart at the push of a button.

The instrument can be supplied for panel mounting or for portable use. The front facia, rated IP65, is resistant to hosedown and dusty environments.

The manual is divided into 4 Sections containing all the information required to install, configure and operate the instrument.

Symbol Identification and Contents of Sections

<table>
<thead>
<tr>
<th>CHARTS AND PENS</th>
<th>CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Loading a Chart</td>
<td>• Security Access</td>
</tr>
<tr>
<td>• Fitting the Pen Capsule</td>
<td>• Input Configuration</td>
</tr>
<tr>
<td></td>
<td>• Alarm Configuration</td>
</tr>
<tr>
<td></td>
<td>• Chart Set Up</td>
</tr>
<tr>
<td></td>
<td>• Security Code Set Up</td>
</tr>
<tr>
<td></td>
<td>• Totalizer Set Up</td>
</tr>
<tr>
<td></td>
<td>• Maths Blocks</td>
</tr>
<tr>
<td></td>
<td>• Memory Card</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>INSTALLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Viewing Data</td>
<td>• Mounting</td>
</tr>
<tr>
<td>• Selecting the Chart Speed</td>
<td>• Electrical Connections</td>
</tr>
<tr>
<td>• Operator Messages</td>
<td></td>
</tr>
<tr>
<td>• Security</td>
<td></td>
</tr>
</tbody>
</table>

Accessories

- Roll Chart
- Pen Capsule
- Shunt Resistor (one per channel)
- Quick Reference Guide (IM/SR250A–Q)
- Optional Terminal Compartment Extension and Cable Grommets
- Mounting Clamps
1.1 Loading a Chart

Caution.

- Channel values and text messages are not recorded during chart reloading and therefore cannot be printed when the chart reload is complete.
- All alarms and relays operate normally during chart reload.
- Do not operate the instrument without the chart cassette fitted.

Chart loading is a four-step procedure:

a) Select the Chart Page .. This page – see Fig. 1.1
b) Start automatic rewind of the old chart .. Page 4
c) Load the new chart ... Page 5 – see Fig. 1.2
d) Advance the chart to an appropriate time line Page 4

Press the key to access the Chart Page

Select the security access code using the and keys (0 to 9999, default = 0)

Press the key to access the Chart Page

Fig. 1.1 Selecting the Chart Page
...1 CHARTS AND PENS

...1.1 Loading a Chart – Fig. 1.2

Start Chart Reload?

Select the Chart Page – see Fig. 1.1, previous page.

Start Chart Reload
To load a chart, select 'YES' using the ▲ key.

Press the ▲ key to start automatic rewind.

If the motor continues to drive when the chart paper is rewound, press the ▼ (STOP) key.

Caution. Do not press the ▼ key whilst the chart is winding. This action cancels automatic rewind and only manual rewind is available.

To pause the rewind press the ◄ key.

To abort the rewind and continue recording, press the ◄ key while 'REWINDING PAUSED' is displayed.

Load a New Chart
Remove the old chart and load new chart paper – see Fig. 1.2.

If necessary, press the ◄ key until any remaining chart is rewound.

Refit the chart cassette then press the ◄ key to take up any slack in the chart and resume recording.

Completion
HOME: Press the ◄ key to go directly to the Operating Page.

or

ALIGN: Press the ◄ key to start time alignment.

Time Alignment
The chart can be advanced to ensure that the time is printed on major time lines (1 hour graduations). Recording stops and the print head moves from side to side on the chart to enable precise adjustment onto a time line.

Press the ◄ key to advance the chart to a time line.

Press the ◄ key to resume recording.

*1 The 'ALIGN' facility is displayed only if Time Alignment is enabled – see Section 3.4.1/ Chart Control Page/ Time Alignment.
...1.1 Loading a Chart – Fig. 1.2

1. Press the catches on both sides and open the door

2. ...press the lower catch...

3. ...lift the display panel...

4. ...lift the upper catch...

5. ...and remove the chart cassette

6. Remove the spindle from the old chart and insert into the new chart roll

7. Fit the spindle into the cassette, ensuring the gearwheel fits against the chart

8. Ensure spindle is located correctly

9. Pull chart out under the top roller

10. Wrap the chart around the cassette

11. Feed the chart under the guidebar

12. Feed the chart under the bar on the lower roller

13. Pull through approximately 50mm of chart

14. Use the thumbwheel to tighten the chart

Information. The chart paper is suitable for operation within the following environmental limits:

- 0°C to 40°C at 15 to 80% RH
- 40°C to 50°C at 25 to 80% RH

Fig. 1.2 Loading a Roll Chart
1.2 Fitting the Pen Capsule – Fig. 1.3

a) Switch on the power supply.

b) Fit a new capsule as shown in Fig. 1.3.

Information.

- After fitting a new capsule the ink flow takes a short time to achieve full color density.
- More ink is used if the input signal being recorded changes rapidly. To prolong the life of the pen capsule do not select an input range which is oversensitive. If the input signal is noisy, use the digital filter to reduce the effect of the noise – see Section 3.2.1/ Input Set Up Page/ Filter Time.
- Two types of pen capsule are available, standard and high temperature. The high temperature capsule is designed for use by recorders operating at ambient temperatures consistently above 30°C (86°F).

Fig. 1.3 Fitting the Pen Capsule

1. Activate the pen lift (raise the pens)
2. Open the door
3. Press the lower catch
4. Lift the display panel
5. Remove/replace the pen capsule – see Information
6. Close the display panel
7. Close the door
8. De-activate the pen lift (lower the pens)

Information. Some resistance may be felt as the spring clip locates in the capsule.
2 OPERATION

2.1 Introduction – Figs. 2.1 to 2.3

2.1.1 Operator Level Pages – Fig. 2.1
An overview of the Operator Level pages is contained on the back fold-out.

2.1.2 Operating Displays – Fig. 2.2
In the normal, day-to-day mode of the instrument, channel information is displayed sequentially (autoscroll active).
2.1.3 Warning Messages – Fig. 2.3
Warning messages provide instrument status and input warnings.

Channel input out of limits.
- Check input source
- Check input configuration (Section 3)
- Check the electrical connections (Section 4)

<table>
<thead>
<tr>
<th>A1 FAILED °C</th>
<th>!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler 1 Temperature</td>
<td></td>
</tr>
</tbody>
</table>

Less than 200mm of chart remains.
This display 'flashes' with the operating display.
Replace the chart as detailed in Section 1.1.

Fig. 2.3 Warning Messages

2.2 Instrument Start-up – Fig 2.4
On power-up the instrument carries out an automatic test of the CPU, RAM and Configuration. On completion a 'PASS' or 'FAIL' message is displayed. If a 'FAIL' message occurs press the key to acknowledge the error and proceed as Table 2.1

Initialization Frame (recording stopped).
Lower line shows Software version

Fig. 2.4 Power-up Displays

<table>
<thead>
<tr>
<th>Message</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU:Fail</td>
<td>Contact the local service organisation</td>
</tr>
<tr>
<td>RAM:Fail</td>
<td>Power down and up. Press ACK* to clear the error.</td>
</tr>
<tr>
<td>CONFIG: Fail</td>
<td>If message still displayed check the instrument configuration.</td>
</tr>
<tr>
<td></td>
<td>If message still displayed contact the local service organisation.</td>
</tr>
</tbody>
</table>

Table 2.1 Start-up Error Messages
2.3 Operator Pages 1 and 2

Information. Operating pages 1 and 2 can be configured to display data from up to 12 analog inputs (A1 to D6, M1 to M8), the default setting is: Page 1 – A1 to A6, B1 to B6. Page 2 – C1 to C6, D1 to D6.

2.3.1 Viewing the Measured Values
Operator Pages 1 and 2 can be configured to display information in up to 5 different ways – see Section 3.6.3. In the normal, day-to-day mode of the instrument information for each channel is displayed sequentially (autoscroll). Press any key to interrupt the autoscroll sequence. To return to autoscroll, press the [] key.

OPERATOR PAGE 1
Boiler Room Number 3

A1 107.6 °C Boiler 1 Temperature

A2 99.3 °C

B3 50.2 l/h 00043689 litres

DB1 Digital Signal OFF

A3 107.6 °C A4 372.4 psi A5 999.9 °C

Date Tue 18 Mar 97 PRINT *
Time 15:53:16 ADJ #

Operating Page Tag
This frame can be disabled.
– see Section 3.6.3/ Operating Pages 1 and 2/ Operating Page Title.

Standard Display
Channel ID, measured value, units and channel tag.

Bargraph Display
Channel ID, measured value, units, and bargraph indicator.
The scale has major and minor divisions at 5% and 2.5% intervals respectively.

Totalizer Display
Channel ID assigned to total, measured value, units, total value and total value units.

Digital Signal Display
Digital signal ID, signal state and 20 character message. The message is assigned from the message block, one message per signal state – see Section 3.7.1/ Message Blocks Page/ Selecting a Message Block.

Multiple Display
Up to 3 channels can be displayed, showing the channel ID, value and engineering units.
2.3.2 Viewing the Date and Time

Press any key to interrupt the autoscroll sequence.

Press the [] key to select the Date/Time frame.

Date/Time
The current date and time are displayed.

Press the [] key to print the date and time on the chart.

Press the [] key to access the adjustment frame.

Adjusting the Date and Time
Use the [] and [] keys to adjust each parameter.

Press the [] key to advance to the next parameter.

Press the [] key to exit the adjustment frame.

1 The print facility is available only if enabled – see Section 3.6.1/ Operator Contents Page/ Operator Printing Enable.
2.3.3 Selecting the Chart Speed

Press the [1] key to select the Chart Speed frame.

Chart Speed and Remaining Chart
The chart speed and length of chart remaining are displayed.

Use the [▲] and [▼] keys to select the preset chart speed. The chart speeds are set up in the Configuration level – see Section 3.4.1/ Chart Control Page/ Setting the Chart Speed.

Press the [2] key to enter the selection.

Note. If CS0 is selected, 'Chart Stopped' is printed with the date and time. If another chart speed is selected and is set to 0mm/h (see Section 3.4.1/ Chart Control Page/ Setting the Chart Speed), 0mm/h is printed with the date and time.

Chart Advance
If required, the chart can be wound forward to create separation space, e.g. between batches.

Press and hold the [3] key to advance the chart.

• The 'Select Chart Speed' and 'Chart Advance' facilities are available only if enabled – see Section 3.4.1/ Chart Control Page/ Chart Speed Select or / Paper Advance.
2.3.4 Operator Messages

OPERATOR PAGE 1
Boiler Room Number 3

A1 107.6 °C Boiler 1 Temperature

XX 217.3 °C Boiler X Temperature

Date Fri 28 Jan 00 PRINT *
Time 15:53:16 ADJ #

Chart Speed: CS1: 20mm/hr ENTER *
Remaining Chart 20.0 m ADV #

Press the [] key to access the Operator Message frame.

Operator Message
The Operator Message is displayed.
Press the [] key to print the displayed message on the chart.
Press the [] key to edit the message – see front Fold-out.

•1 The print facility is available only if enabled – see Section 3.6.1/ Operator Contents Page/ Operator Printing Enable.
2.4 View Signals Page
This page can be disabled – see Section 3.6.1/ Operator Contents Page/View Signals Page.

Press the \[] key to access the View Signals Page.

Process Alarm Status
Displays the status of any process alarm PaA to PaZ and a 20 character alarm message.
Select the process alarm to be displayed.
Press the \[] key to advance to the next frame.

Alarm Equation Status
Displays the status of any alarm equation.
Select the alarm equation to be displayed.
Press the \[] key to advance to the next frame.

Real Time Alarm Status
Displays the status of any real time alarm.
Select the real time alarm to be displayed.
Press the \[] key to advance to the next frame.

Digital Input Status
Displays the status of the digital inputs.
Select the digital input to be displayed.
Press the \[] key to advance to the Logic Equations and Delay Timers Status frame.
2.4 View Signals Page

Logic Equations and Delay Timers Status
Displays the status of the Logic Equations and the Delay Timers.

Select the Logic Equation or Delay Timer to be displayed.

Press the key to advance to the next frame.

Analog Input/Math Result Values
Displays the current value, engineering units and channel tag for the analog inputs and math results.

Select the analog input/math result to be displayed.

Press the key to return to the top of the View Signals Page.

2.5 Totalizer Page
This page is NOT available if all the Totalizers are switched OFF – see Section 3.8.2/ Totalizer Set Up Page/ Totalizer Type.

Press the key to access the Totalizer Page.

Totalizer Value
Displays the current value, units and tag for each totalizer.

Select the totalizer to be displayed.

Press the key to reset the batch total.

Press the key to advance to the next parameter.

Press the key to select 'Stopped' or 'Running'.

Press the key to return to the top of the Totalizer Page.

If 'RESET' is disabled the key has no effect and 'RESET' is not displayed. If 'STOP/GO' is disabled the key has no effect and 'STOP' or 'GO' is not displayed – see Section 3.8.2/ Totalizer Set Up Page/ Front Panel Reset or Front Panel Stop/Go.
2.6 Viewing and Acknowledging Alarms

Individual alarms are viewed in the Alarm Acknowledge Page. This page is displayed only when active or unacknowledged alarms are present.

There are 3 types of alarm – Process, Real Time and Instrument.

2.6.1 Process Alarm

Process alarms can be assigned to any analog input and are activated when a pre-defined trip level is exceeded – see Section 3.3.1. Up to 24 alarms can be configured (PaA to PaZ excluding I and O).

There are five types of alarm state:

<table>
<thead>
<tr>
<th>Display State</th>
<th>Alarm Acknowledged</th>
<th>Alarm Condition Present</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>No</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Latched</td>
<td>No</td>
<td>No</td>
<td>Only if the acknowledge type is set to ‘Latched’.*</td>
</tr>
<tr>
<td>Unack</td>
<td>No</td>
<td>No</td>
<td>Only if the acknowledge type is set to ‘Normal’.*</td>
</tr>
<tr>
<td>Acknlg</td>
<td>Yes</td>
<td>Yes</td>
<td>–</td>
</tr>
<tr>
<td>Clear</td>
<td>Yes</td>
<td>No</td>
<td>Only if the alarm is displayed at the time it becomes inactive.</td>
</tr>
</tbody>
</table>

* See Section 3.3.3/ Alarm Acknowledge Page/ Acknowledge Type

2.6.2 Real-time Alarm

Four real-time alarms can be configured to activate at a pre-defined time – see Section 3.3.2/ Real Time Alarms Page. These alarms can be configured to activate on an hourly or daily basis.

2.6.3 Instrument Alarm

Instrument alarms are generated to indicate a failure (or impending failure) within the instrument system, e.g. Paper out, Paper low.
2.6.4 Alarm Acknowledgement

Press the [□] key to access the Alarm Acknowledge Page.

Process Alarms
Press the [□] key to display the first active or latched process alarm.

Press the [▼] key to acknowledge the displayed alarm or press [□] to acknowledge all active or latched process alarms. The alarm status changes to 'Acknlg' or 'Clear'.

Press [▲] or [▼] to display successive active or latched process alarms, if any.

Real-time Alarms
Press the [□] key to display the first active real-time alarm.

Note. Real-time alarms cannot be acknowledged.

Press [▲] or [▼] to display successive active or latched real-time alarms, if any.

Instrument Alarms
Press the [□] key to display the first or successive active instrument alarm.

Power Up following Power Failure
Press the [□] key to acknowledge the alarm.

Chart Paper Low
Less than 5 hours chart running time remaining. Replace the chart – see Section 1.1.

If there are no alarms the display returns to the top of the Alarm Acknowledge Page.

1. If there are no active process alarms the display shows the first active real-time or instrument alarm.
2. If there are no active real-time alarms, the display either shows any active instrument alarms or reverts to the Alarm Acknowledge Page.
3. Not displayed if the 'Power Failure Indication' parameter is selected 'Off' – see Section 3.3.4/ Power Failure Indication.
2.7 Security Access

Entry into the Memory Card Datalogging Page, Process Review Page and Print Messages Page is protected by Security Access Codes – see Fig. 2.5.

The Security Access Codes are set in the Configuration level – see Section 3.6.2/ Security Page.

Fig. 2.5 Security Access

Fig. 2.6 Accessing Security-protected Pages

2.8 Memory Card Datalogging Page

This page is displayed only if a Memory Driver Board is fitted.

Enter the Security Access Code and advance to the Memory Card Datalogging Page – See Fig. 2.6.

Press the [] key to access the page.

Volume Label
The card name is displayed.
If the card has no name 'NO VOLUME LABEL' is displayed.
To edit the card name see Section 3.10.2/ Memory Card Formatting/ Volume Label.

Press the [] key to advance to the next frame.

Datalogging Status 1
The current datalogging status, % card space remaining and file name are displayed.

Datalog:ACTIVE - To stop datalogging and advance to the channel set up parameters press the [] key.

Datalog:STOPPED - Datalogging was previously active and has been stopped. Press the [] key to restart datalogging.

Datalog:INACTIVE - Datalogging has not been started.

Press the [] key to advance to the next frame.

Datalogging Filename
Enter the datalog file name.

Press the [] key to edit the file name – see front fold out. A name of up to 8 characters can be set.

Press the [] key to advance to the next frame.

The card database is searched automatically to verify the file name.

Press the [] key and edit the name.

Processing Displays
If there is an error when searching the card for the filename an error message is displayed – see Table 3.10/ Section 3.10.3

Opening New File – Displayed whilst a new file is created.

Appending File – Displayed whilst an existing file is amended. Data is added after the last entry in the existing file.

*1 Not displayed if datalogging status is 'ACTIVE'.

Number of Channels to Log
2.8 Memory Card Datalogging Page

No. Of Channels To Log: 24
Scan Interval: 3600Secs

Memory Card Channel: A1

Scan Interval
Set the logging interval required (3 to 3600 secs if 12 channels or less selected above, 6 to 3600 secs if more than 12 channels selected) in 1 second increments.

If an unacceptable combination of channels/scan time is selected ‘CHANGE VALUES’ is displayed.

Press the \[\] key to advance to the next frame.

Memory Card Channel

Select the memory card channel to be set.

Press the \[\] key to enter the selected channel ID tag onto the card.

Press the \[\] key to advance to the next parameter.

Channel Source
Select the source to be assigned to the channel.
Analog inputs – A1 to D6.
Math blocks – M1 to M8.
Totalizer – T01 to T12.

Press the \[\] key to set up the next channel.
Press the \[\] key to advance to the next frame.

Datalogging Status 2
The current datalogging status, remaining card hours and file name are displayed – see Datalogging Status 1.

Press the \[HOME \] key to return to the Operating Page. Press the \[\] key to advance to the next frame.

Datalog Digital Sources
Select the digital source to start datalogging – see Section 3.3.3/ Table 3.4.

Press the \[\] key to advance to the next parameter.

Select the digital source to stop datalogging – see Section 3.3.3/ Table 3.4.

Press the \[\] key to return to the Datalogging menu.
2.9 Process Review Page
This page can be disabled – see Section 3.6.1/Operator Contents Page/Process Review and Print Messages.

Enter the Security Access Code and advance to the Process Review Page – see Fig. 2.6.

Press the ▲ key to access the page.

Alarm Buffer
The 10 latest process and real-time alarms are buffered.

Select the buffered alarm to be viewed.
The alarm identifier, time of occurrence and alarm message are displayed.

Press the ▼ key to stop recording and rewind the chart to the place the alarm occurred.

Press the ▲ key to advance to the next frame.

Cue/Review
Historical data can be viewed using the Cue/Review facility.
Press the ▲ and ▼ keys to stop recording and cue/review the chart.

Note. No more than 3 complete rewinds should be performed on a chart to avoid damage to the chart paper.

'Active' – Cue/Review not active.
'Halt - Trace End' – The chart is wound further than the last recorded information.
'Halt - Time Out' – Use of the Cue/Review facility is not recommended for long periods. The facility automatically times out after approximately 5 minutes of continuous operation.

Press the ▲ key to return to the top of the Process Review Page.
Press the ▼ (HOME) key to return to the top of Operating Page 1.

•1 If a new chart is loaded, the alarms that occurred when the previous chart was in use are buffered and can be viewed as normal. However since the chart has been replaced, the ‘SEARCH’ facility is not available.

•2 When Cue/Review is terminated, the chart is wound forward approximately 10mm and the current date and time is printed. Channel data is not buffered during Cue/Review and cannot printed when recording is resumed.
2.10 Print Messages Page
This page can be disabled – see Section 3.6.1/ Operator Contents Page/ Process Review and Print Messages.

Enter the Security Access Code and advance to the Print Messages Page – see Fig. 2.6.

Press the key to access the page.

Printing Values Groups
Press the key to print values group A
Press the key to print values group B
Press the key to advance to the next frame.

Printing Channel Data
Press the key to print the channel data values.
Press the key to advance to the next frame.

Printing Total Values
Select the totalizer value to be printed, T01 to T12 or ALL.
Press the key to print the values on the chart.
Press the key to return to the Operator Level menu.

•1 ‘PRINT’ changes to ‘WAIT’ whilst the print request is acknowledged. The display reverts to ‘PRINT’ when printing of the selected parameter is commenced.

•2 See section 3.7.2 for assignment of channels to groups.
2.11 Chart Format – Fig. 2.7

In addition to displaying up to 24 traces, text messages can be printed on the chart at regular intervals such as date/time and scale, or as events occur such as process alarms.

Note. When less than 2m (78.7 in.) of unused chart remains a colored stripe is visible along the left-hand edge of the chart. When the instrument has calculated that less than 200mm (7.87 in.) of unused chart remains, tracing of input channel values is suspended until a new chart has been fitted. The remaining chart is used for printing of alarm messages.

<table>
<thead>
<tr>
<th>Time</th>
<th>Channel ID</th>
<th>Channel Value and Units</th>
<th>Alarm Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:35</td>
<td>A1</td>
<td>18.3°C</td>
<td>A2 30.7°C</td>
</tr>
<tr>
<td>07:34</td>
<td>A2</td>
<td>43.2°C</td>
<td>B2 55.7°C</td>
</tr>
<tr>
<td>07:34</td>
<td>A3</td>
<td>10.0°C</td>
<td>D6 25.0°C</td>
</tr>
<tr>
<td>09:30</td>
<td>A1</td>
<td>70.0</td>
<td>A1 High Temperature</td>
</tr>
</tbody>
</table>

Alarm Message – prints process alarm tag.

Trace Identifiers – not printed above 240mm/h

Event Marker

Operator Message – printed on demand from the Operator Page or via a digital signal

Totalizer Value – printed on demand from the Print Messages Page, via digital signal or at preset time intervals

Values Group – printed on demand from the Print Messages Page, via digital signal or at preset time intervals

Channel Data – printed on demand from the Print Messages Page

Fig. 2.7 Chart Format
2.11.1 Using ‘Easy View’ – Fig. 2.8
‘Easy View’ allows the operator to view the most recently printed area of the chart. To use the ‘Easy View’ facility, the autoscroll sequence must first be interrupted by pressing any key. With autoscroll interrupted, press the [▼] key. The chart is wound forward for a short distance and returns automatically to its original position a few seconds later. Channel values and text messages are buffered during ‘Easy View’ and are printed out when recording is resumed. To return to autoscroll, press the [] key.

Note.
- The ‘Easy View’ facility can be disabled – see Section 3.4.1/ Chart Control Page/ Easy View.
- ‘Easy View’ operates only when autoscroll is inactive – press any key to interrupt autoscroll. Press the [▼] key to return to autoscroll.
- ‘Easy View’ operates only at chart speeds of 120mm/h or less.
- ‘Easy View’ operates only in the Operator Pages.

Fig. 2.8 Using ‘Easy View’
3 CONFIGURATION

3.1 Introduction – Fig. 3.1
This Section contains information on the Configuration Level programming of the instrument. An overview of the configuration level pages is contained on the back fold-out. Configuration via a computer can be achieved using the PC configurator package.

3.1.1 Entering Changes
Tags and messages are entered at set parameters within the Configuration Level pages – see front fold-out. Changes to parameter values are saved automatically by advancing to the next frame.

![Fig. 3.1 Configuration Level Overview](image)

![Fig. 3.2 Accessing the Configuration Level](image)
3.2 Analog Inputs

3.2.1 Input Set Up Page
To set up the analog inputs carry out the appropriate procedures detailed in Table 3.1.

Where two or more channels use the same set up data, the Channel Copy facility can be used to configure multiple channels simultaneously – see Section 3.2.2/ Input Copy Page.

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Make Input Connections</th>
<th>Fit Shunt Resistor</th>
<th>Set Links</th>
<th>Select Input Type</th>
<th>Set Linearizer</th>
<th>Set Electrical Range</th>
<th>Set Engineering Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD</td>
<td>✓</td>
<td>✗</td>
<td>98</td>
<td>99</td>
<td>✓</td>
<td>✓</td>
<td>—</td>
</tr>
<tr>
<td>T/C</td>
<td>✓</td>
<td>✗</td>
<td>99</td>
<td>26</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ω</td>
<td>✓</td>
<td>✗</td>
<td>26</td>
<td>26</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>V</td>
<td>✓</td>
<td>✗</td>
<td>26</td>
<td>26</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>mA</td>
<td>✓</td>
<td>✓</td>
<td>26</td>
<td>26</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>mV</td>
<td>✓</td>
<td>✗</td>
<td>26</td>
<td>26</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OFF</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>✓</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

✓* = Optional procedure

Table 3.1 Input Set Up Requirements
...3 CONFIGURATION

...3.2.1 Input Set Up Page

Press the \[\text{key} \] to select 'Input Set Up' from the Analog Inputs menu.

Press the \[\text{key} \] to access the page.

Input Set Up

Channel Selection

Select the channel to be set.

Press the \[\text{key} \] to advance to the next parameter.

Input Type

Select the Input Type required.

(‘Off’ is not applicable to channel A1)

Note. For thermocouple applications using an external fixed cold junction, select ‘mV’ input type.

Press the \[\text{key} \] to advance to the next parameter.

Linearizer Type

Select the Linearizer Type required.

Press the \[\text{key} \] to advance to the next parameter.

Electrical Input Range Low and High – Table 3.2

Press the \[\text{key} \] to set the number of decimal places, (low and high values are set simultaneously).

Set the minimum (Lo) value of the electrical input signal within limits – see Table 3.2.

Press the \[\text{key} \] to advance to the next parameter.

Set the maximum (Hi) value of the electrical input signal within limits – see Table 3.2.

Press the \[\text{key} \] to set the next channel.

Press the \[\text{key} \] to advance to the next frame.

Not displayed if input type RTD or T/C are selected.
3.2.1 Input Set Up Page

Channel Tag
Select the channel to be set.

Press the key to advance to the next parameter.

Engineering Range Low and High Values – Table 3.3

Press the key to set the number of decimal places. (Low and high values are set simultaneously).

Enter the values which represent the minimum and maximum process input signals, within the limits specified in Table 3.3.

Example – for an input range of 4.0 to 20.0 mA, representing a pressure range of 50 to 250 bar, set the ‘Eng Lo’ value to 50.0 and the ‘Eng Hi’ value to 250.0.

![Diagram of Electrical Range and Engineering Range](image)

Press the key to advance to the next parameter.

Engineering Units

Press the key to enter the engineering units of the displayed value e.g. °C, l/h, bar.

Units of up to six characters can be set – see front fold-out.

Press the key to set the next channel. Press the key to advance to the next frame.

Table 3.3 – Limits of Engineering Ranges

<table>
<thead>
<tr>
<th>THC /RTD Type</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type B</td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td></td>
<td>–18</td>
<td>1800</td>
</tr>
<tr>
<td>Type E</td>
<td>–100</td>
<td>900</td>
</tr>
<tr>
<td>Type J</td>
<td>–100</td>
<td>900</td>
</tr>
<tr>
<td>Type K</td>
<td>–100</td>
<td>1300</td>
</tr>
<tr>
<td>Type L</td>
<td>–100</td>
<td>900</td>
</tr>
<tr>
<td>Type N</td>
<td>–200</td>
<td>1300</td>
</tr>
<tr>
<td>Type R & S</td>
<td>–18</td>
<td>1700</td>
</tr>
<tr>
<td>Type T</td>
<td>–250</td>
<td>300</td>
</tr>
<tr>
<td>Pt100</td>
<td>–200</td>
<td>600</td>
</tr>
</tbody>
</table>

Linear: –999 to +9999

Note: Power 5/2, Power 3/2, SqRoot, Linear types.

...3 CONFIGURATION

...3.2.1 Input Set Up Page

Channel Tag

Press \(\square \) to enter a description of the quantity being measured, e.g., system pressure. Up to twenty characters can be used – see front fold-out.

Press the [A] key to advance to the next frame.

Broken Sensor Drive

In the event of a fault being detected on the input, the recorder can be set to drive upscale, downscale or in the direction of failure.

Select the channel to be set up.

Press the [A] key to advance to the next parameter.

Select the direction required:

- **UPSCALE** – Channel value driven beyond Full Scale.
- **NONE** – Driven in direction of failure.
- **DOWNSCALE** – Channel value driven below zero.

Press the [A] key to advance to the next parameter.

Fault Detection Level

A fault tolerance level can be set to allow for deviations above or below the input span.

Set the value required, between 0 and 100% of the display range in 1% increments (default setting = 10%).

Example – setting the fault detection level to 10% on an input range of 50 to 250 bar, causes a fault to be detected below 30 and above 270 bar. The resulting ‘Analog Input Failure’ signal can then be allocated to an alarm – see Section 3.3.3/ Alarm Acknowledge Page/ Table 3.4.

Press the [A] key to set the next channel.
Press the [A] key to advance to the next frame.
3.2.1 Input Set Up Page

Filter Time

The input filter averages the process variable input values over the time period set.

Enter the time required, (5 to 60 seconds) or 'Off'.

Press the key to advance to the next parameter.

Press the key to set the next channel.

Press the key to return to the Analog Inputs menu.

Channel Selection

Select the channel to be set up.

Press the key to advance to the next parameter.
3.2.2 Input Copy Page

The Input Copy facility allows the configuration data and channel tag for any channel to be copied to any other analog input channel.

Press the \textbf{[A]} key to select the 'Input Copy' from the Analog Inputs menu.

Press the \textbf{[A]} key to access the page.

\textbf{Copying the Configuration}

\textbf{Copy Source Channel}
Select the channel configuration to be copied.

Press the \textbf{[A]} key to advance to the next parameter.

\textbf{Copy Destination Channel}
Select the channel to which the configuration is to be copied (or the lowest channel number in a range).

Press the \textbf{[A]} key to advance to the next parameter.

Select the highest channel number to which the configuration is to be copied.

Press the \textbf{[A]} key to activate the copy sequence.

The 'Active' frame is displayed for a short time whilst the copy sequence is carried out.

Press the \textbf{[A]} key to return to Analog Inputs menu.

3.2.3 Line Filter Page

The Line Filter is used to reject mains frequency pick-up on the input lines.

Press the \textbf{[A]} key to select the 'Line Filter' from the Analog Inputs menu.

Press the \textbf{[A]} key to access the page.

\textbf{Line Filter Frequency}
Select the rejection frequency required, 50 or 60 Hz.

Press the \textbf{[A]} key to return to Analog Inputs menu.
3.2.4 Input Adjust Page

Information.
- Enables fine tuning and calibration of the input.
- System offset errors – removed using Offset Adjustment.
- System scale errors – removed using Span Adjustment.
- Offset/Span Adjustment – used to carrying out a spot calibration.
- Reset – removes any previously programmed offset or scale adjustment settings.
- Analog inputs do not require re-calibrating when the input type or range is changed.

Calibration
a) Switch off the power supply to the instrument.
b) Remove the analog input to be adjusted and connect an accurate signal source, suitable for simulation over the entire input range.

c) Switch on the power supply to the instrument.
d) Select the spot calibration point. As a general rule use:
 - Offset Adjustment for a spot calibration at < 50% of engineering range span.
 - Span Adjustment for a spot calibration at > 50% of engineering range span.

Fine Tuning
Use the Offset and Span adjustments to tune the instrument until the required value is displayed.

Note. For thermocouple inputs, connect the millivolt source using appropriate compensating cable – see Section 4.5, Table 4.1. For 2-lead resistance thermometers, connect the resistance box at the sensor end of the leads or the resistance must be added to the calibration values.
3.2.4 Input Adjust Page

Press the [perverse] key to select 'Input Adjust' from the Analog Inputs menu.

Press the [] key to access the page.

Calibration

Channel Selection
Select the channel to be adjusted (A1 to D6 depending on the number of inputs fitted).

On entry the default is 'A1'.

Adjusting the Input Signal
Press the [] key to reset the input offset and input span readings to their nominal values.

Electrical and resistance thermometer input
Apply an input signal corresponding to the spot calibration required.
For RTD inputs, use resistance values obtained from standard tables.

Thermocouple input
a) Measure the ambient temperature at the output terminals of the input signal source.
b) Using thermocouple tables, look up the millivolt equivalent of this temperature (1), and of the spot calibration temperature (2).
c) Subtract (1) from (2) and set the input signal source to this value.

Press the [;] key to advance to the next parameter.

Offset Adjustment
Apply the input value corresponding to the spot calibration point and adjust the display to read the spot calibration point.

Example – If the display range is 0°C to 1000°C and a spot calibration is required at 200°C, set the input source equivalent to 200°C and adjust the display to read 200°C.

Press the [;] key to advance to the next parameter.

Span Adjustment
Apply the input value corresponding to the spot calibration point and adjust the display to read the spot calibration point.

Example – If the display range is 0°C to 1000°C and a spot calibration is required at 800°C, set the input source equivalent to 800°C and adjust the display to read 800°C.

Press the [;] key to return to the Analog Inputs menu.
3.3 Alarm Configuration

3.3.1 Process Alarms Page

Information.
- 24 Process alarms – identified PaA to PaZ (excluding I and O).
- High/low process alarms.
- Alarms assignable to any analog input.
- Adjustable level and time hysteresis values – to prevent oscillation of alarm state.
- 20-Character alarm tags can be printed on the chart as the alarm becomes active.

Press the \[\text{key} \] to select 'Process Alarms' from the Alarms menu.

Press the \[\text{key} \] to access the page.

Process Alarms Set Up

Select Alarm
Select the process alarm to configure. Up to 24 alarms (PaA to PaZ, excluding I and O) can be configured.

Press the \[\text{key} \] to advance to the next parameter

Alarm Type
- \text{Off} – Sets alarm to OFF.
- \text{Low Prc} – Low Process, activated when input signal falls below trip level.
- \text{High Prc} – High Process, activated when input signal rises above trip level.

Press the \[\text{key} \] to advance to the next parameter.

Alarm Source
Select the alarm source from analog inputs A1 to D6 and math blocks M1 to M8 (depending on the options fitted).

Press the \[\text{key} \] to advance to the next parameter.

Trip Level
Set the trip level.

The engineering units are set in the Input Set Up Page – see Section 3.2.1/ Input Set Up Page/ Engineering Units.

Press the \[\text{key} \] to set up the next alarm.
Press the \[\text{key} \] to advance to the **Hysteresis** frame.
...3.3.1 Process Alarms Page

Hysteresis Set Up

Select Alarm Hysteresis
Select the alarm to configure.
Press the [] key to advance to the next parameter.

Hysteresis
Set the hysteresis value in engineering units. The alarm is activated at the trip level but is only de-activated after the signal has moved into the safe region by an amount equal to the hysteresis value.

Use the [] key to advance to the next parameter.

Time Hysteresis
Set the hysteresis value between 0 and 9999 seconds. The alarm is activated when the input signal has been in an alarm condition continuously for a time greater than the ‘Time Hysteresis’ value.
The alarm is de-activated as soon as the input signal moves into the safe region – the time hysteresis value has no effect during alarm de-activation.

Press the [] key to set up the next alarm.
Press the [] key to advance to the next frame.

Process Alarm Tag
Select the alarm to configure.
Set an alarm description of up to 20 characters – see front fold-out.

Press the [] key to set up the next alarm.
Press the [] key to return to the Alarms menu.
3.3.2 Real Time Alarms Page

Information.

• Four programmable real-time alarms.
• Programmable start times and durations.

Press the → key to select 'Real Time Alarms' from the Alarms menu.

Press the ↓ key to access the page.

Real-time Alarms

Alarm To Configure
Up to four alarms (RT1 to RT4) can be configured, each being assigned 'On' days, 'On' time and duration. Press the → key to advance to the next parameter.

Alarm On Days
Select which days the alarm is required to be active. Press the → key to move between days. Press the → key to set up the next alarm. Press the → key to advance to the next frame.

Alarm On Time and Duration
The last alarm to be configured is displayed.

Select Alarm
Select alarm to configure.

Press the → key to advance to the next parameter.

Alarm On Time
Set the alarm on time between 00:00 and 23:59. Alternatively, hours can be set to ** allowing the alarm to be activated at a specific minute each hour.

Example – to activate the alarm at 15 minutes past each hour set Alarm On Time to **:15.

Press the → key to advance to the next parameter.

Alarm Duration
Set the alarm duration between 00:00 and 167:59 (hr:min).

Press the ↑ key to set up the next alarm. Press the → key to advance to the next frame.

Real-time Alarm Tag
The last alarm to be configured is displayed.

Select Alarm
Press the ↑ and ↓ keys to select Alarm Tag to edit.

Real-time Alarm Tag
Press the → key to enter an alarm description of up to 20 characters – see front fold-out. Press the ↑ and ↓ keys to set up the next alarm or Press the → key to return to the Alarms menu.
3.3.3 Alarm Acknowledge Page

Information.
- Three operator acknowledge options for Process alarms.
- Global alarm acknowledgement – from internal or external digital source.

Press the key to select ’Acknowledge’ from the Alarms menu.

Alarm Acknowledge

Acknowledge Type
Select the type of alarm acknowledge facility required:
- **Latch** – Alarm condition is latched and the alarm state remains active until acknowledged in the Operator Level Alarm Ack Page and the alarm condition is cleared.
- **Normal** – Alarm state remains active until the condition is removed. Acknowledge facility available.
- **None** – Alarm state remains active until the condition is removed. Acknowledge facility not available.

Press the key to advance to the next parameter.

Global Acknowledge Source
Select the source to be used to acknowledge all alarms – see Table 3.4.

Press the key to return to the Alarms menu.
3.3.3 Alarm Acknowledge Page

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Inputs *</td>
<td></td>
</tr>
<tr>
<td>"NONE"</td>
<td>–</td>
</tr>
<tr>
<td>"DA1"</td>
<td>DA1</td>
</tr>
<tr>
<td>"!DA1"</td>
<td>NOT DA1</td>
</tr>
<tr>
<td>"DB1"</td>
<td>DB1</td>
</tr>
<tr>
<td>"!DB1"</td>
<td>NOT DB1</td>
</tr>
<tr>
<td>"DC1"</td>
<td>DC1</td>
</tr>
<tr>
<td>"!DC1"</td>
<td>NOT DC1</td>
</tr>
<tr>
<td>"DD1"</td>
<td>DD1</td>
</tr>
<tr>
<td>"!DD1"</td>
<td>NOT DD1</td>
</tr>
<tr>
<td>"DE1"</td>
<td>DE1</td>
</tr>
<tr>
<td>"!DE1"</td>
<td>NOT DE1</td>
</tr>
<tr>
<td>"DE2"</td>
<td>DE2</td>
</tr>
<tr>
<td>"!DE2"</td>
<td>NOT DE2</td>
</tr>
<tr>
<td>To</td>
<td></td>
</tr>
<tr>
<td>"DG6"</td>
<td>DG6</td>
</tr>
<tr>
<td>"!DG6"</td>
<td>NOT DG6</td>
</tr>
</tbody>
</table>

* See Section 4.4 for input designation

Process Alarm Combinations – see Note 1

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"PaA+F"</td>
<td>OR of Process Alarms A, B, C, D, E, F</td>
</tr>
<tr>
<td>"!PaA+F"</td>
<td>NOR of Process Alarms A, B, C, D, E, F</td>
</tr>
<tr>
<td>"PaN+T"</td>
<td>OR of Process Alarms N, P, Q, R, S, T</td>
</tr>
<tr>
<td>"!PaN+T"</td>
<td>NOR of Process Alarms N, P, Q, R, S, T</td>
</tr>
<tr>
<td>"PaU+Z"</td>
<td>OR of Process Alarms U, V, W, X, Y, Z</td>
</tr>
<tr>
<td>"!PaU+Z"</td>
<td>NOR of all Process Alarms</td>
</tr>
<tr>
<td>"PaA+Z"</td>
<td>OR of Process Alarms U, V, W, X, Y, Z</td>
</tr>
<tr>
<td>"!PaA+Z"</td>
<td>NOR of all Process Alarms</td>
</tr>
</tbody>
</table>

Operator and Warning Messages

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"CS 0"</td>
<td>Chart speed 0 selected</td>
</tr>
<tr>
<td>"CS 1"</td>
<td>Chart speed 1 selected</td>
</tr>
<tr>
<td>"CS 2"</td>
<td>Chart speed 2 selected</td>
</tr>
<tr>
<td>"CS 3"</td>
<td>Chart speed 3 selected</td>
</tr>
<tr>
<td>"P Out"</td>
<td>Paper Out</td>
</tr>
<tr>
<td>"P Low"</td>
<td>Paper Low</td>
</tr>
<tr>
<td>"Pwr F"</td>
<td>Power Failed</td>
</tr>
<tr>
<td>"Clikbat"</td>
<td>Clock battery low</td>
</tr>
<tr>
<td>"MODBUS"</td>
<td>Modbus Digital Input</td>
</tr>
<tr>
<td>"Penlift"</td>
<td>Pen lift activated</td>
</tr>
</tbody>
</table>

Logic Equation Results

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"EQN 01"</td>
<td>L01</td>
</tr>
<tr>
<td>"EQN 02"</td>
<td>L02</td>
</tr>
<tr>
<td>"EQN 03"</td>
<td>L03</td>
</tr>
<tr>
<td>"EQN 04"</td>
<td>L04</td>
</tr>
<tr>
<td>To</td>
<td></td>
</tr>
<tr>
<td>"EQN 10"</td>
<td>L10</td>
</tr>
</tbody>
</table>

Delay Timer

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"DT 1"</td>
<td>DT1</td>
</tr>
<tr>
<td>"DT 2"</td>
<td>DT2</td>
</tr>
<tr>
<td>"DT 3"</td>
<td>DT3</td>
</tr>
<tr>
<td>"DT 4"</td>
<td>DT4</td>
</tr>
</tbody>
</table>

Totalizer Wrap Pulse

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"TW 01"</td>
<td>T01</td>
</tr>
<tr>
<td>"TW 02"</td>
<td>T02</td>
</tr>
<tr>
<td>"TW 03"</td>
<td>T03</td>
</tr>
<tr>
<td>"TW 04"</td>
<td>T04</td>
</tr>
<tr>
<td>To</td>
<td></td>
</tr>
<tr>
<td>"TW 12"</td>
<td>T12</td>
</tr>
</tbody>
</table>

Totalizer Count Pulse

(only assignable to digital output, relay or totalizer)

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"TC 01"</td>
<td>T01</td>
</tr>
<tr>
<td>"TC 02"</td>
<td>T02</td>
</tr>
<tr>
<td>"TC 03"</td>
<td>T03</td>
</tr>
<tr>
<td>"TC 04"</td>
<td>T04</td>
</tr>
<tr>
<td>To</td>
<td></td>
</tr>
<tr>
<td>"TC 12"</td>
<td>T12</td>
</tr>
</tbody>
</table>

Modbus

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"MDB-01"</td>
<td>Modbus Digital I/P 01</td>
</tr>
<tr>
<td>To</td>
<td></td>
</tr>
<tr>
<td>"MDB-24"</td>
<td>Modbus Digital I/P 24</td>
</tr>
</tbody>
</table>

Notes.

1. Process alarms set to OFF are not included in the combination when the equation is calculated.
2. Displayed when the output exceeds the engineering span by ±10%.
3.3.4 Power Failure Page
This page allows the power failure indication to be displayed in the Operator Pages.

Use the key to select 'Power Failure' from the Alarms menu.

Power Failure Indication

Select 'On' to enable display of the Power Failure alarm in the Alarm Acknowledge Page and an instrument alarm in the Operating Pages.

Press the key to return to the Alarms menu.
3.4 Chart Level

3.4.1 Chart Control Page

Information.
- Set up to three independent chart speeds (plus chart speed 0 – stopped) – selectable from Operating Level or by digital signal.
- Enable/disable printing of text, enable/disable alarm printing.
- Selectable text print speed, fast or slow.
- Auto pen-drop – returns the pen capsule to an operating state after a 5 minute delay to ensure recording is not inadvertently left disabled.
- 'Easy View' feature – allows quick access of latest printed information.

![Chart Level Diagram](image)

Table 3.5 Text Printing Options

<table>
<thead>
<tr>
<th>Print Mode</th>
<th>Chart Speed (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 240</td>
<td>241 to 500</td>
</tr>
<tr>
<td>A – Continuous trace, no text</td>
<td>Auto print: OFF</td>
</tr>
<tr>
<td>B – Continuous traces, text overwrites trace</td>
<td>Print speed: Slow</td>
</tr>
<tr>
<td>C – Continuous trace, text breaks trace</td>
<td>Print speed: Fast</td>
</tr>
<tr>
<td>D – Dotted trace, text breaks trace</td>
<td>—</td>
</tr>
<tr>
<td>E – Dotted trace, no text</td>
<td>—</td>
</tr>
</tbody>
</table>

Fig. 3.3 Examples of Text/Trace Printing
...3 CONFIGURATION

...3.4.1 Chart Control Page

Press the [] key to select 'Chart Control' from the Chart menu.

Press the [] key to access the page.

Chart Control Page

Selecting the Chart Speed
Select a chart speed (CS0, CS1, CS2 or CS3).

Note. Chart speed CS0 is preset to 0mm/h. If CS0 is selected, 'Chart Stopped' is printed on the chart with the date and time.

Press the [] key to advance to the next parameter.

Setting the Chart Speed
Set a speed between 0 and 1500mm/hr.

Note. If the selected chart speed (other than CS0) is set to 0mm/hr, then 0mm/h is printed on the chart with the date and time.

Press the [] key to advance to the next parameter.

Chart Speed Source
Select the source required to initiate a change to the chart speed set above – see Section 3.3.3/Table 3.4.

Press the [] key to advance to the Text Printing frame.

Example.
If a chart speed of 120mm/h is required when digital input DA1 is active, and at all other times, the required chart speed is 20mm/h:

- Set chart speed 1 to 20mm/h
- Set chart speed 1 source to ' !DA1 ' (NOT DA1)
- Set chart speed 2 to 120mm/h
- Set chart speed 2 source to ' DA1 '

Select chart speed 1 and start recording. When DA1 becomes active the chart speed changes to 120 mm/h. When DA1 becomes inactive the chart speed returns to 20mm/h.
3.4.1 Chart Control Page

Auto Print: On Alarm Print: Off Print Speed: Slow

Text Printing

Auto Print
Select the Auto Print mode required:
On – Enables automatic printing of time/date, chart speeds, scales and channel Identifiers.
Off – Disables automatic printing.

Press the key to advance to the next parameter.

Alarm Print
Select ‘On’ to enable the printing of alarm messages.

Press the key to advance to the next parameter.

Alarm and Operator Message Print Speed
With chart speeds ≤240mm/h the selections have the following effect:
Fast – Interrupts chart traces to print alarms or operator message.
Slow – Prints alarms or operator message during chart traces.

Print speed options.

<table>
<thead>
<tr>
<th>Parameter to Print</th>
<th>Chart Speed (mm/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 240</td>
<td>241 - 1500</td>
</tr>
<tr>
<td>Process Alarms</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td>Real Time Alarms</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td>Scales (Test Print)</td>
<td>Fast</td>
</tr>
<tr>
<td>Operator Message</td>
<td>Slow/Fast</td>
</tr>
<tr>
<td></td>
<td>Fast</td>
</tr>
</tbody>
</table>

The print speed for messages in autoprint (i.e. Time, Date, Scales, Chart speed change and Trace Identifiers) is predefined and cannot be selected, ie.
Slow ≤ 240mm/h.
Fast > 240 mm/h.

Trace identifiers are not printe’d at speeds >240mm/h.

Press the key to advance to the Chart Cassette Type frame.
...3 CONFIGURATION

...3.4.1 Chart Control Page

Chart Settings
The Chart type, length and number of divisions is displayed.

Chart Length
Enter the required chart length in 1m increments. For roll chart cassettes, the standard length is 25m.

Press the key to advance to the next parameter.

Divisions
Select the number of divisions on the chart width.

Press the key to advance to the next frame.

Chart Functions

Time Alignment
After loading a new chart, the Time Alignment function allows the chart to be advanced to a time line before commencing recording.
Select 'Enabled' to display the Time Alignment function in the Chart Page – see Section 1.1/ Time Alignment.

Press the key to advance to the next parameter.

'Easy View'
'Easy View' winds the chart forward a small distance to allow the latest information to be viewed. The chart is then returned automatically to the recording position where any buffered data is printed.
Select 'Enabled' to display the 'Easy View' function in the Operator Page – see Section 2.11.1

Note. 'Easy View' operates only with print speeds of ≤120mm/h.

Press the key to advance to the Chart Speed Select frame.
3 CONFIGURATION...

...3.4.1 Chart Control Page

<table>
<thead>
<tr>
<th>Chart Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart Speed Select : Enabled</td>
</tr>
<tr>
<td>Paper Advance : Enabled</td>
</tr>
<tr>
<td>Chart Speed Select : Enabled</td>
</tr>
<tr>
<td>Paper Advance : Enabled</td>
</tr>
<tr>
<td>Chart Speed Select : Enabled</td>
</tr>
<tr>
<td>Paper Advance : Enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pen Lift/Drop Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen Lift : Enabled</td>
</tr>
<tr>
<td>Auto Pen Drop : Enabled</td>
</tr>
<tr>
<td>Pen Lift : Enabled</td>
</tr>
<tr>
<td>Auto Pen Drop : Enabled</td>
</tr>
<tr>
<td>Pen Lift : Enabled</td>
</tr>
<tr>
<td>Auto Pen Drop : Enabled</td>
</tr>
</tbody>
</table>

Chart Speed Select
Select 'Enabled' to allow the chart speed to be selected in the operator pages.

Press the [] key to advance to the next parameter.

Paper Advance
Select 'Enabled' to allow the chart to be wound forward manually in the operator pages.

Press the [] key to advance to the next frame.

Pen Lift/Drop Settings

Pen Lift
Select 'Enabled' to allow use of the [] key on the front panel (Pen lift).

Press the [] key to advance to the next parameter.

Auto Pen Drop
The Auto Pen Drop facility returns the pen capsule to an operating state approximately five minutes after the pen lift has been activated.

Select 'Enabled' to activate the Auto Pen Drop facility.

Press the [] key to return to the Chart menu.
3.4.2 Pen Alignment Page

Information.
- Allows accurate adjustment of pen position on the chart.
- Can be used to remove the effect of inconsistencies in chart manufacture.

Press the [chart] key to select 'Pen Alignment' from the Chart menu.

Press the [a] key to access the page.

Pen Alignment Settings
On accessing the Pen Alignment Page...

...is displayed momentarily.

Set Pen Zero
When the Pen Alignment Page is selected the chart will advance at 'fast' speed and the magenta pen will mark the chart at its zero position.

Use the [▲] and [▼] keys to adjust the pen to the zero position. A 'Set Zero' displacement figure between –10 and +10 is displayed.

Press the [+] key to advance to the next parameter.

Set Pen Span
The chart continues to advance at 'fast' speed and the pen moves to its full scale position.

Use the [▲] and [▼] keys to adjust the pen to the full scale position. A 'Set Span' displacement figure between –10 and +10 is displayed.

Press the [a] key to return to the Chart menu...

...is displayed momentarily and the time that recording was stopped is printed on the chart.
3.4.3 Chart Record Page

Information.

- Two pen function options, Trend or Event.
 - Trend – chart trace represents analog input or math result.
 - Event – 3-position event marker.
- Ten programmable zones.
- Trace can be set to change color when a digital input or alarm is active.

Press the [.] key to select 'Chart Record' from the Chart menu.

Press the [D] key to access the page.

Trace Primary Color

Select Trace
Select the trace to be set.

Press the [D] key to advance to the next parameter.

Trace Primary Color
Select the primary color of the pen.

Traces 1 to 6 can be allocated any single color, traces 7 to 24 can be allocated any single color or their designated Z-trace color – see Table 3.6.

Caution. On multi-channel applications, consideration should be given when allocating trace colors. If one color is used significantly more than others, the ink is used more quickly.

Press the [X] key to set up the next pen or the [R] key to advance to the next frame.

<table>
<thead>
<tr>
<th>Trace Number</th>
<th>Z-trace color</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Z-trace</td>
</tr>
<tr>
<td>02</td>
<td>not available</td>
</tr>
<tr>
<td>03</td>
<td>Magenta/Red</td>
</tr>
<tr>
<td>04</td>
<td>Black/Green</td>
</tr>
<tr>
<td>05</td>
<td>Blue/Brown</td>
</tr>
<tr>
<td>06</td>
<td>Red/Black</td>
</tr>
<tr>
<td>07</td>
<td>Green/Blue</td>
</tr>
<tr>
<td>08</td>
<td>Magenta/Brown</td>
</tr>
<tr>
<td>09</td>
<td>Black/Red</td>
</tr>
<tr>
<td>10</td>
<td>Blue/Green</td>
</tr>
<tr>
<td>11</td>
<td>Red/Black</td>
</tr>
<tr>
<td>12</td>
<td>Green/Blue</td>
</tr>
<tr>
<td>13</td>
<td>Magenta/Green</td>
</tr>
<tr>
<td>14</td>
<td>Blue/Red</td>
</tr>
<tr>
<td>15</td>
<td>Black/Brown</td>
</tr>
<tr>
<td>16</td>
<td>Magenta/Black</td>
</tr>
<tr>
<td>17</td>
<td>Black/Blue</td>
</tr>
<tr>
<td>18</td>
<td>Brown/Green</td>
</tr>
<tr>
<td>19</td>
<td>Green/Red</td>
</tr>
<tr>
<td>20</td>
<td>Magenta/Blue</td>
</tr>
<tr>
<td>21</td>
<td>Red/Brown</td>
</tr>
<tr>
<td>22</td>
<td>Red/Black/Green/Magenta</td>
</tr>
<tr>
<td>23</td>
<td>Blue/Brown/Magenta/Red</td>
</tr>
<tr>
<td>24</td>
<td>Black/Green/Blue/Brown</td>
</tr>
</tbody>
</table>

Table 3.6 Z-trace Colors
...3.4.3 Chart Record Page

Trace Secondary Color
This feature allows the trace color to be changed when a digital input is active or an alarm condition occurs. When the source is active the secondary color is selected.

Pen Selection
Select the pen to be set.

Press the [↑] key to advance to the next parameter.

Trace Secondary Color
Select the secondary color of the pen.

Traces 1 to 6 can be allocated any single color, traces 7 to 24 can be allocated any single color or their designated Z-trace color – see Table 3.4.

Caution. On multi-channel applications, consideration should be given when allocating trace colors. If one color is used significantly more than others, the ink is used more quickly.

Secondary Color Source
Select the source to initiate the color change – see Section 3.3.3/ Table 3.4.

Press the [↑] key to set up the next pen or the [↓] key to advance to the Trace Function frame.
...3.4.3 Chart Record Page

Trace Function

Trace Selection
Select the trace to be set.

Press the key to advance to the next parameter.

Trace Function Selection
Select the trace function.

Press the key to advance to the next parameter.

Zone Set Up – Fig. 3.4
Select the zone to be set.
Zone 0 is preset and uses the full 250mm recording width.

To set zones 1 to 10 press the key.
The margins are set in chart divisions (steps of 10).

Left margin maximum = No of chart divisions – 10
ie. 90 on a 100 division chart
140 on a 150 division chart.

Right margin minimum = 10 + left margin.

Note. The number of divisions on the chart is set in Section 3.4.1/ Chart Control Page/ Chart Settings.

Press the key to return to the Trace Function frame.
Press the key to advance to the next frame.

Notes.

Trend traces recorded in zone 0 use the full 250mm recording width, where the left division represents the chart Lo and the right division the chart Hi – see Chart Scale Lo/Hi in the Trend Source frame.

Trend traces recorded in zones 1 to 10 use only the portion of the chart dictated by the margin settings, where the left margin represents the chart Lo and the right margin the chart Hi.

Event traces recorded in zone 0 are positioned at 10.4mm intervals across the chart width according to the trace number, starting 5.2mm from the left edge. If an event source is active the trace deflects approximately 3mm in the relevant direction.

Event traces recorded in zone 1 to 10 are positioned centrally between the left and right margin positions. If an event source is active the trace deflects approximately 3mm in the relevant direction.

Fig 3.4 Zones
...3.4.3 Chart Record Page

Trend Source
Displayed if the Trace function 'Trend' is selected in the Trace Function frame.

Trace Selection
Select the trace to be set.

Press the [] key to advance to the next parameter.

Trend Source
Select the channel to be recorded on the selected trace.

Press the [] key to advance to the next parameter.

Chart Scale Lo/Hi
Set the Lo (minimum) and Hi (maximum) values of the chart scale.

This range can be different from the engineering range of the signal being recorded (within limits –999 to +9999).

The decimal point position is determined by the setting for the analog signal being recorded.

Press the [] key to advance to the next frame.

Printing the Trace Scale

Note. Scales are not printed in zones less than 10 divisions wide.

Trace Scale Print
Select 'On' to enable automatic printing of the trace scale.

Press the [] key to print a test sample of the scale on the chart.

Press the [] key to advance to the next parameter.

Scale Print Source
Select the source to initiate a test scale print – see Section 3.3.3/ Table 3.4.

•1 Not displayed if 'Event' or 'Off' is selected in the Trace Function frame.
3 CONFIGURATION...

...3.4.3 Chart Record Page

From Trace Function Frame

1

<table>
<thead>
<tr>
<th>01 Event -> Source: DE1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event <- Source: DE2</td>
</tr>
</tbody>
</table>

Trace Event Source
Displayed if the Trace function 'Event' is selected in the Trace Function frame.

Upscale Event Mark
Select the source to initiate an upscale event mark – see Section 3.3.3/Table 3.4.

Press the ➔ key to advance to the next parameter.

Downscale Event Mark
Select the source to initiate a downscale event mark – see Section 3.3.3/Table 3.4.

Note. If both upscale and downscale event sources are active, the downscale source takes priority.

Press the ➔ key to advance to the next frame.

Trace Scale
Displayed to indicate that the Trace Scale frame is not available for event markers.

Press the ➔ key to advance to the Scale Print Interval frame.

From Trace Function Frame

2

<table>
<thead>
<tr>
<th>01 Scale Print</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available – Event</td>
</tr>
</tbody>
</table>

Trace Off
Displayed if the Trace function is selected 'Off' in the Trace Function frame.

Trace Scale
Displayed to indicate that the Trace Scale frame is not available if the Trace Function is set to 'Off'.

Press the ➔ key to advance to the Scale Print Interval frame.

Scale Print Interval
The scale is printed on the chart at preset intervals. Set the distance between scale prints in mm. (OFF or 20 to 240 mm to disable automatic scale printing).

Press the ➔ key to return to the Chart menu.

•1 Not displayed if ‘Trend’ or ‘Off’ is selected in the Trace Function frame.

•2 Not displayed if ‘Trend’ or ‘Event’ is selected in the Trace Function frame.
3.5 Output Modules

Information.
- Module types – 3 Relay, 6 Relay, Transmitter PSU or Modbus serial link.
- Automatic detection of module type fitted.
- Programmable sources and polarity of relay outputs.

3.5.1 Relay Output Module Page

Select Module Position
Press the key to select the module to be configured.

The type of module fitted in each position is displayed automatically:
- None – No module fitted (No configuration required).
- 3Rly – 3-relay outputs.
- 6Rly – 6-relay outputs.
- Txps – Transmitter PSU (No configuration required).
- MBus – Modbus serial communications
 - see IM/SR250–MOD
- Hybd – Hybrid digital input/output and analog outputs.

Press the key to configure the module in the selected position.

Select Relay Output
Select the relay output to be configured (1 to 3 or 1 to 6, depending on the module fitted.

Press the key to advance to the next parameter.

Select Output Source
Select the digital source which activates the relay output – see Section 3.3.3/ Table 3.4.

Note. If the relay is used to provide a totalizer count pulse, the maximum pulse frequency is 1.33Hz. Consideration should also be given to the mechanical life of the relay.

Press the key to advance to the next parameter.

Select Output Polarity
The relay output can be set to energize for either an active or inactive digital signal:

Polarity:Positive – If digital source is active, the output is energized.
Polarity:Negative – If digital source is inactive, the output is energized.

Press the key to set up the next relay output.
Press the key to return to the Modules menu.
3.5.2 Hybrid Output Module Page

Hybrid Module
Press the [] key to select the module position to be configured.
Press the [] key to access the page.

Digital Outputs

Select Digital Output
Select the digital output to be configured (F1 to F6).
Press the [] key to advance to the next parameter.

Select Output Source
Select the source which will activate the digital output:
– see Section 3.3.3/ Table 3.4.

Note. If the digital output is used to provide a totalizer count pulse, the maximum pulse frequency is 0.667 Hz.
Press the [] key to advance to the next parameter.

Select Output Polarity
The digital output can be set to energize for either an active or inactive digital signal:

Polarity:Positive – If digital source is active, the output is energized.
Polarity:Negative – If digital source is inactive, the output is energized.

Press the [] key to advance to the next frame.
...3 CONFIGURATION

...3.5.2 Hybrid Output Module Page

Analog Outputs

Select Analog Output
Select the Analog Output to be configured (F1 or F2).
Press the [] key to advance to the next parameter.

Select Analog Output Source
Select the source required to activate the analog output. The source is selected from analog inputs A1 to D6 and math blocks M1 to M8 (depending on the options fitted). If no analog output is required, select 'None'.
Press the [] key to advance to the next frame.

Engineering Range Set Up

Channel Selection
Select the analog output to be configured (F1 or F2).
Press the [] key to advance to the next parameter.

Engineering Lo and Hi

Note. The Lo/Hi values set in this frame are independent of those in Section 3.2.1/ Input Set Up Page.
Enter the zero value of the analog output range (within limits –999 to +9999).
(The decimal point position is set according to the analog O/P source).
Press the [] key to advance to the next parameter.
Enter the full scale value of the analog output range.
Press the [] key to advance to the next parameter.

Output Current
Enter the output current value corresponding to zero output range (within limits 0 to 20 mA).
Press the [] key to advance to the next parameter.
Enter the output current value corresponding to full scale output range (within limits 0 to 20 mA).
Press the [] key to return to the Modules menu.
3.6 Operator Set Up Level

3.6.1 Operator Contents Page

Information.
- English, French or German language options.
- Operator Level Pages which are not required can be turned off.

Press the [] key to select ‘Operator Contents’ from the Operator menu.
Press the [] key to access the page.

Operator Page

User Language
Select the language to be displayed.
Press the [] key to advance to the next parameter.

View Signals Page
Select ‘On’ to enable the View Signals Page in the Operator Level.
Press the [] key to advance to the next frame.

Process Review and Print Messages

Note. Disabling the Process Review Page will also disable the Cue/Review facility.
Select ‘On’ to enable the Process Review Page in the Operator Level.
Press the [] key to advance to the next parameter.
Select ‘On’ to enable the Print Messages Page in the Operator Level.
Press the [] key to advance to the next frame.

Operator Printing Enable/Disable

Select ‘Enabled’ to allow the Operator Message to be set up and printed (the message is set up in the Operator Level), and allow the operator to activate printing of the date and time.
Press the [] key to advance to the next parameter.

Operator Message Source
Select the source required to activate printing of the Operator Message – see Section 3.3.3/Table 3.4.
Press the [] key to return to the Operator menu.
3.6.2 Security Page

This page is used to set the passwords for access to chart loading, datalogging, process review, message printing and configuration functions.

Press the [] key to select 'Security' from the Operator menu.

Press the [] key to access the Page.

Set Level 1 and Level 2 Security Code

Set the Level 1 Security Code to any number between 0000 and 9999.
(Setting 0000 disables the security and allows unrestricted access to the Load Chart and Datalogging Pages).

Set the Level 2 Security Code to any number between 0000 and 9999.
(Setting 0000 disables the security and allows unrestricted access to the Level 1 Pages, the Print Messages and Process Review Pages).

Press the [] key to advance to the next frame.

Set Configuration Security Code

The Configuration Security Code allows access to the Load Chart and Datalogging Pages (Level 1), the Print Messages and Process Review Pages (Level 2) and the Configuration Level (Level 3).

Set the Code to any number between 0000 and 9999.
(Setting 0000 disables the security and allows unrestricted access to all levels).

Press the [] key to return to the Operator menu.

Security Page Navigation

- SECURITY PASSWORD
- LOAD CHART and DATALOGGING
- PRINT MESSAGES and PROCESS REVIEW
- CONFIGURATION LEVEL

No Setting (0000)

Level 1

Level 2

Configuration Password

Fig. 3.5 Security Codes
3.6.3 Operator Pages 1 and 2

Information:
- Two operating pages, each with 12 individually configured frames.
- 5 frame display options
- Operator Page 2 is not displayed if all the frames are set to 'Off'.

Press the key to select 'Op-Page 1' or 'Op-Page 2' from the Operator menu.

Press the key to access the page.

Operating Page Title
A title frame can be displayed at the start of the operating page.

Operating Page Tag
Select 'On' to enable the title frame to be displayed.

Press the key to edit the 20 character message.

Press the key to advance to the next frame.

Operating Page Frame Set Up
Select the Operating Page Frame to be set up.

Press the key to advance to the next parameter.

Frame Type
Select the Frame Type required. ('Off' is not available on the 1st frame of Op–Page 1).

Press the key to set up the next Operating Page Frame.
Press the key to advance to the set up frames.
...3 CONFIGURATION

...3.6.3 Operator Pages 1 and 2

Standard/Bargraph Type
Displays the Analog Input information – see Section 2.3.1.

Selecting the Input Source
Select the Analog Input to be displayed.

Press the key to return to the Operator menu.

Totalizer Type
Displays a totalizer result – see Section 2.3.1.

Selecting the Input Source
Select the totalizer to be displayed.

Press the key to return to the Operator menu.
3 CONFIGURATION...

3.6.3 Operator Pages 1 and 2

Digital Type
The frame is allocated to a digital source. The messages displayed are selected from the message blocks – see Section 3.7.1/ Message Blocks Page.

Select the Digital source to be displayed – see Section 3.3.3/ Table 3.4.

Press the key to advance to the next parameter.

ON/OFF Messages
Select the message block to be displayed when the source is active.

Press the key to advance to the next parameter.

Select the message block to be displayed when the source is inactive.

Press the key to return to the Operator menu.

Multiple Type
Displays 3 Analog input channels and/or Math results – see Section 2.3.1.

Select the source to be displayed as source 1. A1 to D6, M1 to M8.

Press the key to advance to the next parameter.

Select the source to be displayed as source 2. A1 to D6, M1 to M8.

Press the key to advance to the next parameter.

Select the source to be displayed as source 3. A1 to D6, M1 to M8.

Press the key to return to the Operator menu.
3.7 Printing Menu

3.7.1 Message Blocks Page

Information.
- Twenty four, 20-character Operator messages.
- Message printing can be triggered by internal or external digital signals.
- Programmable color of message.
- Time stamping for message.

Press the [] key to select 'Message Blocks' from the Printing menu.

Press the [] key to access the page.

Message Set Up

Selecting a Message Block
Select the message to be set.

Press the [] key to advance to the next parameter.

Message
Enter a message of up to 20 characters – see front fold-out.

Press the [] key to set up the next message.
Press the [] key to advance to the next frame.

Message Block Set Up

Selecting a Message Block
Select the message to be set.

Press the [] key to advance to the next parameter.

Message Block Source
Select the source to activate printing of the message – see Section 3.3.3/ Table 3.4.

Press the [] key to advance to the next parameter.

Color
Select the color required for the printing of the message.

Press the [] key to set up the next message.
Press the [] key to return to the printing menu.
3.7.2 Print Values Page

Information.
- Instantaneous values of the analog inputs and math results can be printed on the chart.
- Two channel value groups are available with independent print sources and automatic print times.
- Each analog signal can be assigned to either or both groups.

Analog input channel values and math block results can be assigned to a ‘Values Group’. The instantaneous values of the channels in the group can then be printed, on demand, from the Operator Level – see Section 2.10/ Print Messages Page/ Printing Values Groups.

Press the [] key to select the Print Values Page from the Printing menu.

Press the [] key to access the page.

Print Values Group Set Up

Channel Selection
Select the channel to be assigned to a print values group. A1 to D6 or M1 to M8.

Press the [] key to advance to the next parameter.

Print Values Group
Select the Print Values Group to which the channel is assigned.

Press the [] key to advance to the next parameter.

Color
Select the color of the printed value.

Press the [] key to advance to the next frame.
...3.7.2 Print Values Page

Setting the Print Group A

Print Interval Group A
Select the time interval required between each set of printed values. The time interval is selectable from the following values:

- 5 Min – On the hour then every 5 minutes
- 10 Min – On the hour then every 10 minutes
- 15 Min – On the hour then every 15 minutes
- 20 Min – On the hour then every 20 minutes
- 30 Min – On the hour then every 30 minutes
- 60 Min – On the hour every hour
- 120 Min – Every 2 hours (ie. 02:00, 04:00 ...24:00)
- 180 Min – Every 3 hours (ie. 03:00, 06:00 ...24:00)
- 240 Min – Every 4 hours (ie. 04:00, 08:00 ...24:00)
- 480 Min – Every 8 hours (ie. 08:00, 16:00 and 24:00)
- 720 Min – Midday and midnight
- 1440 Min – Midnight
- OFF – Disable Group A printing

Press the [] key to advance to the next parameter.

Print Source Group A
Select the source required to initiate printing group A – see Section 3.3.3/ Table 3.4.

Press the [] key to advance to the next frame.

Setting the Print Group B

Print Interval Group B
Select the time interval required between each set of printed values – see group A above.

Press the [] key to advance to the next parameter.

Print Source Group B
Select the source required to initiate printing group B – see Section 3.3.3/ Table 3.4.

Press the [] key to return to the printing menu.
3.8 Totalizer Level

3.8.1 Introduction to Totalization

Information.
- Twelve, 8-digit totalizers which can be assigned as analog integrators to any channel or math result, or as digital counters assigned to any digital signal.
- Count up or count down.
- Count rates – from 0.001 to 99.999 counts/second.
- External counter pulse – can be used to energize relays or digital outputs.
- Wrap function – with external wrap pulse used to energize relays or digital outputs.
- Programmable preset and predetermined count values – for (batch) flow total.
- Adjustable cut-off values.
- Operator Level reset and stop/go.
- Digital signal reset and stop/go.

The totalizer option provides integration of flow rates from input signals with linear, square law or power law characteristics. More than one totalizer can be allocated to a channel and these may be switched on or off as required.

The flow total for any channel can be viewed on the digital display and reset using the front panel switches and/or a digital signal. An additional internal ‘Secure’ total is also provided which can only be reset after gaining access to the **CONFIGURATION LEVEL**.

External counters with their own power supplies can be driven using relay and digital output module options.

- External counter pulses up to 1.3 counts/sec can be assigned to any relay O/P – pulse duration 50mS
- External counter pulses up to 0.6 counts/sec can be assigned to any digital O/P – pulse duration 750mS

Converting the Engineering Flow Rate – Example A and B

To calculate the count rate high, the engineering flow rate high must first be converted into units per second. The engineering range (display range) value is limited to 9999. In some circumstances the engineering flow rate high value may be greater than 9999 and the engineering range must therefore be scaled. In the calculation of units/second the actual engineering flow rate high value must be used.

\[
\text{Max. flow rate in Units/Second} = \frac{\text{Actual Engineering Flow Rate High}}{\text{Engineering Range Units (in seconds)}}
\]

Calculating the Count Rate High – Example A and B

The totalized decimal point allows the totals to be scaled between \(10^4\) and \(10^7\) ie. .00000000 and 00000000 with multiplication factors of \(x \ 10\) and \(x \ 100\) giving 00000000 and 0000000000, the latter two increases in increments of tens or hundreds respectively.

\[
\text{Count Rate High} = \frac{\text{units/second}}{\text{counter factor}} \quad \text{Must be within the limits of 99.999 to 0.001 pulse per second}
\]
...3.8.1 Introduction to Totalization

Example A – Setting up:
- an engineering range of 0 to 1500 representing a range of 0 to 150,000 litres per hour
- measuring effluent discharge
- count every 0.01 m³
- wrap function ON, front panel total automatically reset to 0 and continues counting when predetermined value is reached.

\[
\text{Range} = 150,000 \text{ l/h} = 150 \text{m}^3/\text{h}
\]
\[
\text{Units/second} = \frac{150}{3600} = 0.0417 \text{m}^3/\text{s}
\]
\[
\text{Totalizer count full scale} = \frac{0.0417}{0.01} = 4.17 \text{ pulses/s} \text{ (OK, maximum is 99.999)}
\]

Example B – Setting up:
- an engineering range of 0 to 2500 representing a range of 0 to 2.5 million gallons per hour.
- filling a storage tank with a capacity of 5 million gallons.
- least significant digit of 1 gallon shown on totalizer display (viewed in the Operator Level, Totalizer Page).
- wrap function OFF, 1 second wrap pulse generated at predetermined value and combined in a logic equation to stop flow.

\[
\text{Range} = 2.5 \text{ million gal/h}
\]
\[
\text{Units/second} = \frac{2.5 \times 10^6}{3600} = 694 \text{ gal/s}
\]
\[
\text{Totalizer count full scale} = \frac{694}{1} = 694 \text{ (too high, maximum is 99.999)}
\]
\[
\text{Increasing count to every 10 gallons} = \frac{694}{10} = 69.4 \text{ (OK)}
\]

Set totalizer decimal point to x10 position to increment totalizer in 10 gallon steps.
3.8.2 Totalizer Set Up Page

Press the key to select the ‘Totalizer Set Up’ from the Totalizer menu.

Press the key to access the page.

Totalizer Selection

Selecting a Totalizer
Select the totalizer to be set.

Press the key to advance to the next parameter.

Totalizer Type
Select the totalizer type.

Analog – to integrate an analog signal.
Digital – to count digital pulses.

Note. If counting digital pulses, the maximum count frequency is 2.0 Hz for DA1 to DD1, 0.667 Hz for DE1 to DG6.

Off – totalizer not selected.
Press the key to advance to the next parameter.

Totalizer Source
Select the input source for the totalizer.
A1 to D6 for analog types, M1 to M8 for math blocks.
See Table 3.4 for digital types.

Press the key to set up another totalizer.
Press the key to advance to the next frame.

Analog Integrator Count Control

Selecting a Totalizer
Select the totalizer to be set.

Press the key to advance to the next parameter.

Count Rate
Set the count rate (pulses/second) corresponding to full scale input. This is programmable from 0.001 to 99.999 in 0.001 increments.

Press the key to advance to the next parameter.

Count Cut-off
Set the lowest flow value at which the totalizer is to stop counting. Set in engineering units, the decimal point is set automatically according to the analog source.

Press the key to advance to the next frame.

Count Direction Frame

*1 Not relevant to Digital Counter.
3.8.2 Totalizer Set Up Page

Count Direction

Selecting a Totalizer
Select the totalizer to be set.

Press the [▲] key to advance to the next parameter.

Count Direction
Select either an incremental (UP) or decremental (DOWN) count.

Press the [▲] key to advance to the next parameter.

Wrap-around
When wrap-around is enabled, the total is automatically reset to the pre-set value once the pre-determined value is reached. When wrap-around is not enabled, the count is stopped when the pre-determined value is reached.

Select 'YES' to enable wrap-around.

Note. The wrap pulse, has a duration of 750mS and occurs when the total reaches the predetermined count, irrespective of 'Wrap Enable' setting. The pulse can be assigned to a relay, digital output or digital counter.

Press the [▲] key to set up another totalizer.
Press the [▲] key to advance to the next frame.

Batch Total Reset Control

Selecting a Totalizer
Select the totalizer to be set.

Press the [▲] key to advance to the next parameter.

Front Panel Reset
When front panel reset is enabled the flow total can be reset to the preset value from the Totalizer Page in the Operating Level.

Select 'YES' to enable the reset.

Press the [▲] key to advance to the next parameter.

Reset Source
Select the source required to automatically activate the totalizer reset – see Section 3.3.3/ Table 3.4.

Press the [▲] key to set up another totalizer.
Press the [▲] key to advance to the next frame.
3 CONFIGURATION...

...3.8.2 Totalizer Set Up Page

Totalizer Stop/Go Control

Selecting a Totalizer
Select the totalizer to be set.

Press the key to advance to the next parameter.

Front Panel Stop/Go
When front panel stop/go is enabled the flow total counter can be started and stopped from the Totalizer Page in the Operator Level.
Select ‘YES’ to enable stop/go.

Press the key to advance to the next parameter.

Stop/Go Source
Select the digital source required to automatically stop and start the totalizer – see Section 3.3.3/Table 3.4.

Source activated – Chart Go.
Source de-activated – Chart Stop.

Press the key to set up another totalizer.
Press the key to advance to the next frame.

Setting the Totalizer Units

Selecting a Totalizer
Select the totalizer to be set.

Press the key to advance to the next parameter.

Totalizer Units
Units of up to six characters can be set.
Press the key to edit the units – see front fold out.

Press the key to set up another totalizer.
Press the key to advance to the next frame.
...3.8.2 Totalizer Set Up Page

Setting the Totalizer Tag
A totalizer name of up to 20 characters can be set.

Selecting a Totalizer
Select the totalizer to be set.

Totalizer Tag
Press the key to edit the totalizer name – see front fold-out.
Press the key to advance to the next frame.

Secure Total
The secure total is independent of the displayed flow total and can comprise up to eight digits.

Selecting a Totalizer
Select the totalizer to be set.
Press the key to adjust the decimal point position in the batch and secure totals, the preset and predetermined counts.
(The DP can be positioned between limits 10^{-8} and 10^2).
Press the key to reset the secure total.
Resets to 0 if counting up or 99999999 if counting down.
Press the key to set up another totalizer.
Press the key to advance to the next frame.

Totalizer Preset Value
Set the value to which the total reverts when it is reset. Begin with the first digit indicated by the cursor (_). Pressing the key stores the digit value and advances the cursor to the next digit. Repeat for all digits to be set.

Totalizer Predetermined Value
Set the value required to cause a reset of the total if wrap is set on, or the value at which the totalizer is to stop counting. Setting is as for Totalizer Preset Value above.
Repeat for all digits to be set.

Note. For standard continuous counting set Preset Value to 00000000, Predetermined Value to 99999999 and wrap to ‘YES’.

Totalizer Value
Displays the current value, units and tag for each totalizer.

Select the totalizer to be displayed.
Press the key to reset the batch total.
Press the key to advance to the next parameter.
Press the key to select ‘Stopped’ or ‘Running’.

Press the key to return to the Totalizer menu.
3.8.3 Totalizer Print Page

Information.
- Printing of totalizer identity, value and tag.
- Printing of individual values triggered from internal or external digital signal.
- Values can be printed via digital signal or at pre-configured time intervals.

Note. Totalizer values are always 'fast' printed.

Press the \[key to select 'Totalizer Print' from the Totalizer menu.
Press the \[key to access the page.

Selecting a Totalizer
Select the totalizer to be set.

Press the \[key to advance to the next parameter.

Print Color
The totalizers can be printed in any of the available colors except Z-trace.

Press the \[key to advance to the next parameter.

Print Pen Source
Select the source required to initiate printing – see Section 3.3.3/ Table 3.4.

Press the \[key to set up another totalizer.
Press the \[key to advance to the next frame.
...3.8.3 Totalizer Print Page

Setting the Print Totals Interval

Print Totals Interval
Select the time interval required between each set of printed values. The time interval is selectable from the following values:

- 5 Min – On the hour then every 5 minutes
- 10 Min – On the hour then every 10 minutes
- 15 Min – On the hour then every 15 minutes
- 20 Min – On the hour then every 20 minutes
- 30 Min – On the hour then every 30 minutes
- 60 Min – On the hour every hour
- 120 Min – Every 2 hours (i.e. 02:00, 04:00 …24:00)
- 180 Min – Every 3 hours (i.e. 03:00, 06:00 …24:00)
- 240 Min – Every 4 hours (i.e. 04:00, 08:00 …24:00)
- 480 Min – Every 8 hours (i.e. 08:00, 16:00 and 24:00)
- 720 Min – Midday and midnight
- 1440 Min – Midnight

Press the ➤ key to advance to the next parameter.

Print Totals Source
Select the source required to initiate printing of all of the 12 totalizers – see Section 3.3.3/ Table 3.4.

Press the ⬇ key to return to the Totalizer menu.

•1 Totalizers that are set to OFF are NOT printed – see Section 3.8.2/ Totalizer Set Up Page/ Totalizer Type.
3.9 Math Level

3.9.1 Math Blocks Page

Information.
- 8 programmable math blocks.
- Each math block can be configured for any math function, (i.e. relative humidity, mass flow, arithmetic (Standard), Fvalue, Time Average, Maximum or Minimum hold).
- Programmable engineering units and result tag for each block.

Note. The fault detection level on the math block result is preset to 10%, irrespective of the level set in the Input Setup Page – see Section 3.2.1

Press the key to select 'Math Blocks' from the Math menu.

Press the key to access the page.

Math Block Selection

Selecting a Math Block
Select a math block to configure.

Press the key to advance to the next parameter.

Math Function Type
Select the math function required:
- Standard – Arithmetic operations
- RH – Relative humidity
- Mass Fl 1 – from volume flow
- Mass Fl 2 – from differential pressure
- F-Val – Fvalues from temperature
- Time Avg – Time average
- Max Hold – Maximum value held
- Min Hold – Minimum value held

Press the key to advance to the next frame.

The next frame displayed is dependent upon the math function selected.
...3.9.1 Math Blocks – Standard
The standard math block consists of a series of up to 4 operands and 3 operators.

Operands can be any of the following:
- an analog input (A1 to D6),
- a math result (M1 to M8),
- a user definable constant (K1 to K16).

Operators can be any of the following:
- + (addition),
- – (subtraction),
- x (multiplication),
- / (division),
- H (high select)
- L (low select)
- M (median)
- End (equation terminator)

Note.
The L and H functions return the lowest and highest input variable respectively and require at least 2 operands to be entered.
The M function returns the median of the input variables and requires 3 operands to be entered. The second operator is automatically set to M when using this function.
The ‘End’ function is an equation terminator and is entered when the equation does not require the full range of parameters.

Example 1
To evaluate the equation: \(A1 + A2 \) \(K1 - A3 \) proceed as follows:
Enter math block 1 as \(M1 = A1 + A2 / M2 \)
Enter math block 2 as \(M2 = K1 - A3 \)
3 CONFIGURATION...

...3.9.1 Math Blocks – Standard

Equation and Constant

Setting the Operand
Select the first operand.
If a constant is required press the key.
Select the constant to be set.
Press the key to advance to the next parameter.
Set the constant value required.
Press the key to set the decimal point.
Press the key to exit the constant set up frame.
Press the key to advance to the next parameter.

Setting the Operator
Select the first operator.
Press the key to advance to the next parameter.
Set the remaining parameters as above.
Press the key to advance to the Eng Lo/Hi frame.
...3.9.1 Math Blocks – Relative Humidity (RH)
The relative humidity calculation requires two inputs, one from a wet bulb sensor and one from a dry bulb sensor. Both of these inputs are configured as variables. RH tables are based on the use of an aspirated pyrochrometer having an air velocity of at least 11.5 feet per second or 3.5 meters per second across the bulb sensors.

Inputs used for wet and dry bulb measurement must be in the ranges 0 to 100°C or 32 to 212°F. The result must be set to 0 to 100.0% RH.

Setting the RH Sensors

Wet Bulb Sensor
Select the input source to be assigned to the wet bulb sensor. The source is selected from analog inputs A1 to D6 or math functions M1 to M8.

Press the ▲ key to advance to the next parameter.

Dry Bulb
Select the input source to be assigned to the wet bulb sensor. The source is selected from analog inputs A1 to D6 or math functions M1 to M8.

Press the ▼ key to advance to the Eng Lo/Hi frame.
3.9.1 Math Blocks – Mass Flow 1 and 2

There are two types of mass flow calculations available.

Mass Flow 1 – uses a volume flow input as the basis for the calculation

The standard formula for mass flow 1 is as follows:

\[
\text{Mass Flow 1} = k \cdot V \cdot \frac{P}{Pr} \cdot \frac{T}{Tr}
\]

where:
- \(k\) = Scaling constant
- \(V\) = Input a (input from volume flow source)
- \(P\) = Pressure (pressure input source)
- \(T\) = Temperature (temperature input source)
- \(Tr\) = Reference temperature (set as a constant)
- \(Pr\) = Reference pressure (set as a constant).

The temperature units used by the input source must be specified as all calculations use absolute temperatures and conversion is made if the input uses °C or °F.

Mass Flow 2 – uses a differential pressure (dp) input as the basis for the calculation.

The formula used for mass flow 2 is as follows:

\[
\text{Mass Flow 2} = k \cdot \sqrt{h} \cdot \frac{P}{Pr} \cdot \frac{T}{Tr}
\]

where:
- \(h\) = differential pressure head

Some differential pressure (dp) sensors incorporate a square root linearizer and therefore produce an output linear to flow. In these instances no additional linearization within the instrument is required. Where the input from the dp sensor is linear to dp head the square root linearizer must be used – see Section 3.2.1/ Input Set Up Page/ Linearizer Type.

The formula used internally is:

\[
M = k \cdot a \cdot \sqrt{\frac{P}{Pr} \cdot \frac{T}{Tr}}
\]

where:
- \(a\) = linearized flow signal.

The linearized flow signal is produced by the transmitter or derived from the signal linearized within the advanced process recorder.

When using mass flow, care must be taken in sizing the differential transmitter. Variations in pressure and temperature affect the dp developed across the flow device. In its basic form:

\[
m = \sqrt{h \cdot \frac{P}{T}}
\]

Note. As pressure \(P\) decreases, the dp \((h)\) increases. Likewise, as temperature \(T\) increases this also causes an increase in dp \((h)\). If the variation in temperature/pressure is sufficient to cause the dp to exceed the range of the dp transmitter, then errors occur in calculating the mass flow. It is therefore generally recommended to size the flow system on minimum pressure and maximum temperature conditions to ensure the dp transmitter remains within its calibrated range.
Example A – calculating the mass flow of water from the volume flow.

At a temperature of 60°F (520°F) and an absolute pressure of 14.696 p.s.i.a., 1 gallon (US) of water has a mass of 8.334 lbs.

To calculate the mass flow of water from the volume flow the following settings are used:

- A1 – volume flow of water (gal/min)
- A2 – temperature of water (°F)
- A3 – pressure of water (p.s.i.a.)
- M2 – result of math block 2 (lb/min)

\[
\text{Mass Flow 1} = k \frac{P}{Pr} \frac{Tr}{T}
\]

therefore the equation is:

\[
\text{Mass Flow 1 (lb/min)} = 8.334 \times \text{Volume (gal/min)} \times \frac{\text{measured pressure (psi)}}{14.696 \text{ p.s.i.a.}} \times \frac{520^\circ R}{\text{measured temperature } ^\circ R}
\]

The example below shows the construction of Math block 2 with the following selected:

- Math block function – Mass Flow 1
- Display range –
- Flow source – A1
- Temp source – A2
- Temp units – °F
- Temp ref – 60 (60°F = 520°F)
- Pressure source – A3
- Ref pressure – 14.70 p.s.i.a.
- Scaling constant – 8.334
3.9.1 Math Blocks – Mass Flow 1 and 2

Mass Flow 1 or 2

Flow Input Source
Select the source assigned to the flow input, A1 to D6 or M1 to M8.
Press the [F] key to advance to the next parameter.

Scaling Constant
Set the value which represents the scaling constant (k), between 0 and +9999.
Press the [P] key to set the decimal point.
Press the [E] key to advance to the next frame.

Temperature Setup

Temperature Input Source
Select the source assigned to the temperature input, A1 to D6 or M1 to M8.
Press the [F] key to advance to the next parameter.

Temperature Units
Select the input source temperature units.
(The calculation is performed in Absolute units. If the Temp Source is in °F or °C an internal correction factor is applied automatically).
Press the [E] key to advance to the next parameter.

Reference Temperature
Set the value (in the same units as the Temp Source) which represents the reference temperature, between 0 and +9999.
Press the [P] key to set the decimal point.
Press the [E] key to advance to the next frame.

Continued on next page.
...3.9.1 Math Blocks – Mass Flow 1 and 2

Pressure Set Up

Pressure Input Source
Select the source assigned to the pressure input, A1 to D6 or M1 to M8.

Press the [] key to advance to the next parameter.

Reference Pressure Units
Select the input source pressure units.

Press the [] key to advance to the next parameter.

Reference Pressure
Set the value (in the same units as the pressure source) which represents the reference pressure, between 0 and +9999.

Press the [] key to set the decimal point.

Press the [] key to advance to the Eng Lo/Hi frame.
...3.9.1 Math Blocks – Fvalue
The application of Fvalue measurement enables sterilizing cycles to be shortened, relative to the traditional time versus temperature cycles commonly adopted.

The ability of heat to kill micro-organisms varies with the type of organism and increases exponentially with rising temperature. By definition, steam sterilization has a target temperature of 121.1°C and dry heat sterilization 170°C.

Therefore, the time taken in sterilization is reduced if the temperature is increased.

Example – An increase in temperature from 121°C to 122°C reduces the time to kill an equal number of organisms by a factor of 26%.

The Fvalue calculation gives an equivalent time (in minutes) at a target temperature taking account of the time taken to approach and the time exceeding the target sterilization temperature.

The Fvalue is calculated using the general formula:

\[
F_{\text{val}(t)} = F_{\text{val}(t-1)} + \frac{(T - T_{\text{ref}})}{60} \cdot 10^z
\]

Where

- \(F_{\text{val}(t)} \) = Current Fvalue
- \(F_{\text{val}(t-1)} \) = Fvalue at last sample
- \(T \) = Actual temperature
- \(T_{\text{ref}} \) = Target temperature
- \(z \) = Z-factor (ie. the temperature interval representing a factor of 10 reduction in killing efficiency)

Example – A typical steam sterilizing cycle – Fig. 3.6

The period AB is the chamber evacuation part of the cycle, when the chamber is evacuated and purged to remove the air. The ramp up to final sterilizing temperature starts at B. The thermal conductivity of the load determines the time taken to achieve point D, but is typically 30% of the total cycle time. It is in the area CD and EF that Fvalues make their contribution to shortening sterilization time, by accumulating credit for time spent approaching and receding from the sterilizing temperature.
...3 CONFIGURATION

...3.9.1 Math Blocks – Fvalue

Information.
- User configurable variables – analog inputs or math results.
- Internal and external digital start and end calculation signals.
- Sample time of 720ms resulting in an accuracy of within 2%.

Fvalue

Temperature Source
Select the source on which to perform the calculation, A1 to D6 or M1 to M8.

Press the ▼ key to advance to the next parameter.

Target
Set the target sterilization temperature.

Press the ▼ key to set the decimal point.

Note. The temperature units are automatically selected dependent upon the units assigned to the input on which the calculation is being performed.

Press the ▼ key to advance to the next frame.

Z-factor
The Z-factor represents a factor of 10 reduction in the death rate of an organism and is unique to each organism.

Set the Z-factor.

Press the ▼ key to set the decimal point.

Sampling Interval
Select the digital source to start the calculation – see Section 3.3.3/ Table 3.4.

Example – Set process alarm PaA to start the calculation when the measured temperature (A1) reaches 100°C.

Press the ▼ key to advance to the next parameter.

Select the digital source to reset the calculation – see Section 3.3.3/ Table 3.4.

Example – Set process alarm PaB to reset the calculation when the math result (M1) reaches 10 Fvalue units and also activate an alarm relay to give an audible signal.

Press the ▼ key to advance to the Eng Lo/Hi frame.
3.9.1 Math Blocks – Time Average

Information.
- The time average function averages out a continually varying input over a set time period.
- User configurable variables – analog inputs or math results.
- Reset to the current input value by internal or external reset signals.
- Output updated to average value at the end of the time period and held at that value until the end of the next time period.

Input Source
Select the input source to be averaged, A1 to D6 or M1 to M8.

Press the key to advance to the next parameter.

Time
Set the time period (1 to 1440 minutes) over which the input source is to be averaged.

Press the key to advance to the next parameter.

Reset Signal
Select the source signal to reset the result – see Section 3.3.3/Table 3.4.

Press the key to advance to the Eng Lo/Hi frame.
3.9.1 Math Blocks – Maximum and Minimum Hold

Information
- Holds the maximum and minimum values of the input since the last reset.
- Output set to the current input value on reset.

Hold Maximum Value

Input Source
Select the input source to be held at maximum, A1 to D6 or M1 to M8.

Press the \(\rightarrow \) key to advance to the next parameter.

Reset Signal
Select the source signal to reset the result – see Section 3.3.3/ Table 3.4.

Press the \(\rightarrow \) key to advance to the Eng Lo/Hi frame.

Note. When reset signal is active, output can change if inputs vary.

Hold Minimum Value

Input Source
Select the input source to be held at minimum, A1 to D6 or M1 to M8.

Press the \(\rightarrow \) key to advance to the next parameter.

Reset Signal
Select the source signal to reset the result – see Section 3.3.3/ Table 3.4.

Press the \(\rightarrow \) key to advance to the Eng Lo/Hi frame.

Note. When reset signal is active, output can change if inputs vary.
...3.9.1 Math Blocks – Engineering Lo and Hi

Engineering Lo and Hi Values
The values are set in units relevant to the Math Block Function type i.e. Fvalue, RH etc.

Setting the Engineering Lo and Hi values
Set the lower limit for the engineering value (within limits –999 to +9999).

Press the \text{key to advance to the next parameter.}

Set the upper limit for the engineering value.
(within limits –999 to +9999).

\text{Note.} If the math block output exceeds the engineering span limits by \(\pm \) 10\% a math block failure signal is generated which can be assigned to an alarm – see Section 3.3.3/ Alarm Acknowledge Page/ Table 3.4.

Press the \text{key to set the decimal point.}
Press the \text{key to advance to the next parameter.}

Engineering Units
Press the \text{key to edit the engineering units –see front fold out.}

Press the \text{key to advance to the next frame.}

Math Result Tag
Press the \text{key to edit the result tag.}

Press the \text{key to return to the Math menu.}
3.9.2 Logic Equations Page

Information.
- 10 programmable logic (Boolean) equations.
- Up to 9 elements (5 operands) per equation.
- Equations can combine internal and external digital signals, e.g. alarms, digital inputs, other logic equation results, real-time alarms etc.
- Equations can be used to activate many instrument functions, e.g. alarm acknowledgements, pen events, changes of chart speeds, value printing and relay outputs, etc.

Press the [Enter] key to select 'Logic Equations' from the Math menu.

Press the [Esc] key to access the page.

Logic Equation Set Up

Logic Equation Number
Select the logic equation to be set.

Logic Equation Construction
Select the digital source to appear in the equation – see Section 3.3.3/Table 3.4.

Select the required Boolean expression – see Table 3.7.

<table>
<thead>
<tr>
<th>Input State</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3.7 Boolean Expression Results
3.9.3 Custom Linearizer Page

Information.
- Two custom linearizers.
- 20 breakpoints per linearizer.
- Variable spacing on x and y axis to allow optimization of breakpoints.

Press the [] key to select 'Custom' from the Math menu.

Press the [] key to access the page.

Linearizer 1

Setting the Linearizer Breakpoints
Select the breakpoint to be set.

Press the [] key to advance to the next parameter.

Setting the x and y co-ordinates
Set the value of the co-ordinates as % of span (0.0% to 100.0%).

Press the [] key to set another breakpoint.
Press the [] key to advance to the next parameter.

Linearizer
Set linearizer 2 in a similar way to linearizer 1.

Press the [] key to return to the Math menu.

% Linear output
Yn 100%
where n = breakpoint 2 to 20

% Non-linear input
Select up to 20 breakpoints to create the curve required

% Non-linear input
Yn 100%
where n = breakpoint 2 to 20

Fig. 3.7 Setting Breakpoints
3.9.4 Delay Timer Page

Information.
- Four independent timers.
- Timer is triggered on the positive-going edge of the trigger source.
- Trigger source must remain stable for a minimum of 250ms to guarantee recognition.
- Once triggered, a timer cannot be retriggered until it has timed out.

Press the [+] key to select ‘Delay Timer’ from the Math menu.

Press the [] key to access the page.

Setting the Delay Timer

Channel to be Set
Select the timer to be set.

Press the [] key to advance to the next parameter.

Timer Source
Select the source used to trigger the timer – see Section 3.3.3/ Table 3.4

Press the [] key to advance to the next parameter.

Timer Duration
Set the length of time that the timer is active. 0 to 9999 seconds.

Press the [] key to advance to the next parameter.

Timer Delay
Set the length of time between the trigger being recognized and the timer becoming active, 0 to 9999 seconds.

Press the [] key to return to the Math menu.

![Fig. 3.8 Delay Timer](image-url)
3.10 Memory Card Level
The Memory Card option allows datalogging and instrument configuration storage using the following memory cards:

<table>
<thead>
<tr>
<th>Card Type</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>64K</td>
</tr>
<tr>
<td>SRAM</td>
<td>128K</td>
</tr>
<tr>
<td>SRAM</td>
<td>256K</td>
</tr>
<tr>
<td>SRAM</td>
<td>512K</td>
</tr>
<tr>
<td>SRAM</td>
<td>1M</td>
</tr>
<tr>
<td>SRAM</td>
<td>2M</td>
</tr>
<tr>
<td>SRAM</td>
<td>4M</td>
</tr>
</tbody>
</table>

Information.
- Allows configuration storage and datalogging in a form which can be imported directly onto a PC-based spreadsheet.
- Allows datalogging and instrument configurations to be stored on the same card.
- Up to 32 files can be stored (including any volume label).
- Files can only be deleted by reformatting the card.

Note.
The advanced process recorder does not work with Flash EPROM, ROM or EPROM cards.

Cards should be formatted on the instrument or on a PC using the following procedure.

3.10.1 Using a PC to Format Memory Cards
Memory cards can be formatted on PCs that have been fitted with certain types of PCMCIA card reader. This method is faster than using the instrument and does not require data logging to be interrupted for longer than is absolutely necessary.

Note. Memory cards cannot be formatted using a PC unless the format image from a blank card of the same capacity has first been created on the PC.

Information. Not all memory card readers and associated driver software have the facility to transfer card format images between memory card and PC. An external memory card reader, part no. B11173, is available from the Company.

The following notes apply to memory card reader part number B11173. For information on using other card readers to format memory cards, refer to the manufacturer's instructions.

1) Ensure that the memory card reader and associated software is installed and running on a PC.
2) Insert a newly-formatted advanced process recorder memory card into the card reader.
3) Create an image of the memory card format on the PC by typing: `COUT <filename.ext> /L = <size>` at the DOS prompt. `<filename.ext>` is any appropriate DOS-compatible filename and `<size>` is an alphanumeric expression determined by the memory card capacity – see Table 3.8.

 For example, to create a format image of a 1Mb memory card, type: `COUT form1mb.crd /L = 0X100000`.
4) To format another memory card on the PC for use in the instrument, first insert the card requiring formatting into the card reader installed on the PC.
5) At the DOS prompt type `CIN <filename.ext>`, where `<filename.ext>` is the name of an existing format image file created from a newly-formatted card of the same capacity. For example, to format a 1Mb card using the format image created in the previous example, type `<CIN form1mb.crd>` at the DOS prompt.

<table>
<thead>
<tr>
<th>Card Capacity</th>
<th>64k</th>
<th>128k</th>
<th>256k</th>
<th>512k</th>
<th>1M</th>
<th>2M</th>
<th>4M</th>
</tr>
</thead>
<tbody>
<tr>
<td><size></td>
<td>0X10000</td>
<td>0X20000</td>
<td>0X40000</td>
<td>0X80000</td>
<td>0X100000</td>
<td>0X200000</td>
<td>0X400000</td>
</tr>
</tbody>
</table>

Table 3.8 Determining Card Capacity for Format Image Parameters
3.10.2 Memory Card Formatting
This page is displayed only if a Memory Driver Board is fitted.

Information.
- All memory cards must be formatted before they can be used.
- **DOS format** allows configuration storage and datalogging in a form which can be imported directly onto a PC-based spreadsheet.
- The memory card's name (volume label in DOS) can be edited.
- The memory card's size is required to successfully format the card. Sizes available are 64kB, 128kB, 256kB, 512kB, 1MB, 2MB and 4MB.
- Formatting can only take place when datalogging is not active.

Note.
A memory card can be formatted only if datalogging is stopped or invalid. Before installing the card, note its memory size.

Format ○ **Datalog** ○ **Database**

Memory Card Size: 2MByte
To Format Card Press # **FORMAT** #

Press the [>] key to select ‘Format’ from the Memory Card menu.

Press the [a] key to access the page.

Formatting a Memory Card

Memory Card Size and Format
Select the required card size.
Press the [<] key to format the card.

Memory Card Format
ACTIVE

Once formatting is complete, the display reverts automatically to the **Memory Card Size** frame.

Press the [a] key to advance to the next frame.

Volume Label
A card name of up to 11 characters can be set.
Press the [a] key to edit the card name – see front fold out.

Press the [a] key to return to the Memory Card menu.
Error Messages
The following error messages may be displayed during the formatting procedure.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Error Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Card Error CARD ABSENT</td>
<td>The card is absent or not inserted properly.</td>
<td>Fit the memory card correctly.</td>
</tr>
<tr>
<td>Memory Card Error CARD WRITE PROTECTED</td>
<td>The card is write protected.</td>
<td>Move the write protect tab to the unlocked position.</td>
</tr>
<tr>
<td>Memory Card Error CARD NOT FORMATTED</td>
<td>The card is not formatted.</td>
<td>Format the card.</td>
</tr>
<tr>
<td>Memory Card Error XXXX</td>
<td>Hardware communication problem. Failure to read the card filename. Failure to read the card directory.</td>
<td>Check that the memory card driver board PL1 is seated firmly on the digital processor board SK4. Repeat the procedure. If the fault is still apparent return the instrument to the company for repair.</td>
</tr>
<tr>
<td>Memory Card Error CARD FULL</td>
<td>The card has no file space left (i.e. 32 files already stored) or insufficient memory space available.</td>
<td>Remove the card and fit a card with sufficient memory space available.</td>
</tr>
</tbody>
</table>

Table 3.9 Error Messages

Memory Card Capacity
The data storage capacity is dependent on the memory card size and the scan time. Use the following formula to calculate the running time of a memory card for a given scan time.

Card Running Time (hrs) = \[
\frac{\text{scan interval (secs) x useable bytes}}{(13 + \text{[No. of channels x 7]}) x 3600} \]
hrs

Where:
- Scan interval = 3 to 3600 seconds
- Usable bytes = number of bytes usable for data logging – see Table 3.10
- No. of channels = 1 to 24.

<table>
<thead>
<tr>
<th>Card Size</th>
<th>Useable Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>64k</td>
<td>63,488</td>
</tr>
<tr>
<td>128k</td>
<td>129,024</td>
</tr>
<tr>
<td>256k</td>
<td>260,096</td>
</tr>
<tr>
<td>512k</td>
<td>521,216</td>
</tr>
<tr>
<td>1M</td>
<td>1,045,504</td>
</tr>
<tr>
<td>2M</td>
<td>2,092,032</td>
</tr>
<tr>
<td>4M</td>
<td>4,186,112</td>
</tr>
</tbody>
</table>

Table 3.10 Usable Bytes

Note. The above calculations are only applicable if alarms are set to OFF – see Section 3.3.1/Process Alarms
3.10.3 Datalog Page

Information.
- Data formatted for direct viewing on spreadsheet.
- Recording of up to 24 channels (analog inputs, math results or totalizer results).
- Recording of process alarm states.
- Date and time stamping of data.
- Channel tags and units recorded for each channel.
- Scan times variable from 3 to 3600 seconds.

File names
Logged data is saved to a unique filename. The filename comprises eight or less characters.
All files are automatically given the extension ‘PRx’ where ‘x’ is initially ‘1’. The instrument provides a default filename which is in the following form:

Example:*

<table>
<thead>
<tr>
<th>Default file</th>
<th>File created on 14th January 2000 = SR140100</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRddmmyy</td>
<td>2000 January 14th</td>
</tr>
</tbody>
</table>

The default filename may be edited by the user. The instrument searches the card directory to ensure that the filename selected is unique and then opens a new file with this name. An error message is displayed if this name already exists.

Some spreadsheets are limited to files of 8192 rows. In order to meet this requirement the instrument automatically starts a new file when 8192 rows of data are exceeded. The new file has the same filename as before but the extension is incremented, e.g. PR1 becomes PR2. If the instrument is powered-down then powered-up again while datalogging is active, datalogging automatically resumes but the data is stored onto a new file. This file has the same filename as before but the extension is incremented e.g. PR1 becomes PR2.

If datalogging is stopped, the card can be removed to be viewed on a PC, and then returned to the instrument where datalogging can be resumed onto the same file. However, if a new filename is created data cannot then be appended to any existing files. The number of channels and the channel sources are fixed on creation of the file and cannot be edited later. In order to store different channel data a new file has to be created. The scan interval may be changed at any time without creating a new file.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Error Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Card Error CARD ABSENT</td>
<td>The card is absent or not inserted properly.</td>
<td>Fit the memory card correctly.</td>
</tr>
<tr>
<td>Memory Card Error CARD WRITE PROTECTED</td>
<td>The card is write protected.</td>
<td>Move the write protect tab to the unlocked position.</td>
</tr>
<tr>
<td>Memory Card Error CARD NOT FORMATTED</td>
<td>The card is not formatted.</td>
<td>Format the card.</td>
</tr>
<tr>
<td>Memory Card Error XXXX</td>
<td>The card has no file space left (i.e. 32 files already stored) or insufficient memory available.</td>
<td>Remove the card and fit a card with sufficient memory space available.</td>
</tr>
<tr>
<td>Memory Card Error FILE EXISTS</td>
<td>The file name is already used.</td>
<td>Choose another file name.</td>
</tr>
</tbody>
</table>

Table 3.11 Error Messages
3 CONFIGURATION...

...3.10.3 Datalog Page
This page is displayed only if a memory Card is fitted.

Press the [] key to select 'Datalog' from the Memory Card menu.

Press the [] key to access the page.

Volume Label
The card name is displayed.
If the card has no name 'NO VOLUME LABEL' is displayed.
To edit the card name see Section 3.10.2./ Memory Card Formatting/ Volume Label.

Press the [] key to advance to the next frame.

Datalogging Status 1
The current datalogging status, % card space remaining and file name are displayed.

Datalog:ACTIVE – To stop datalogging and advance to the channel set up parameters press the [] key.

Datalog:STOPPED – Datalogging was previously active and has been stopped. Press the [] key to restart datalogging.

Datalog:INACTIVE – Datalogging has not been started.

Press the [] key to advance to the next frame.

Datalogging Filename
Enter the datalog file name.

Press the [] key to edit the file name – see front fold out.
A name of up to 8 characters can be set.

Press the [] key to advance to the next frame.
The card database is searched automatically to verify the file name.
Press the [] key and edit the name.

Processing Displays
If there is an error when searching the card for the filename an error message is displayed – see Table 3.11/ Section 3.10.3

Opening New File – Displayed whilst a new file is created.

Appending File – Displayed whilst an existing file is amended. Data is added after the last entry in the existing file.
...3 CONFIGURATION

...3.10.3 Datalog Page

Setting the Number of Channels

Number of Channels to Log
Select the number of channels to be logged on the card.

Press the key to advance to the next parameter.

Scan Interval
Set the logging interval required (3 to 3600 secs if 12 channels or less selected above, 6 to 3600 secs if more than 12 channels selected) in 1 second increments.

If an unacceptable combination of channels/scan time is selected 'CHANGE VALUES' is displayed.

Press the key to advance to the next frame.

Memory Card Channel
Select the memory card channel to be set.

Press the key to enter the selected channel ID tag onto the card.

Press the key to advance to the next parameter.

Channel Source
Select the source to be assigned to the channel.

Analog inputs – A1 to D6.
Math blocks – M1 to M8.
Totalizer – T01 to T12.

Press the key to set up the next channel.
Press the key to advance to the next frame.

Datalogging Status 2
The current datalogging status, remaining card hours and file name are displayed – see Datalogging Status 1.

Press the (HOME) key to return to the Operating Page.

Press the key to advance to the next frame.

Datalog Digital Sources
Select the digital source to start datalogging – see Section 3.3.3/ Table 3.4.

Press the key to advance to the next parameter.

Select the digital source to stop datalogging – see Section 3.3.3/ Table 3.4.

Press the key to return to the Memory Card menu.
3.10.4 Database Set Up Page

Information.
- Allows storage of the instrument's configuration onto a memory card.
- Configuration stored as a DOS-compatible file.
- Allows data to be downloaded to any advanced process recorder fitted with the memory card option.
- Configuration files on the memory card can also be backed-up onto hard or floppy disk using a PC.
- Up to 32 files can be stored on a card.
- Configuration files and DOS format datalogging files can be stored on the same drive.

Filename Restrictions

Information.
- Any DOS compatible filename of up to eight characters can be entered by the user.
- Each file is automatically given the extension '.CFG' (Configuration).
- Existing filenames cannot be re-used or deleted (unless card is re-formatted).

Note. Datalogging must be stopped in the Memory Card Datalog Page before entry to this page is enabled.
...3.10.4 Database Set Up Page
This page is displayed only if a memory Card is fitted.

Press the \[key to select ‘Database’ from the Memory Card menu.

Press the \[key to access the page.

Database Function

Select the database function required.
If the card has not been formatted the only option is NONE.

Downloading the Database from the Card
The current database filename is displayed.

Press the \[and \[keys to choose a file from the card directory.

Press the \[key to download the chosen file.
If the chosen file cannot be downloaded, ‘DOWNLOAD *’ is not displayed.

Processing Displays
If an error is encountered whilst searching the card for the filename, an error message is displayed – see Section 3.10.3/ Table 3.10

Displayed while data is downloaded from the card.

Displayed once download is complete.

Press the \[key to download another file.

Continued on next page.
...3.10.4 Database Set Up Page

From previous page

<table>
<thead>
<tr>
<th>Database Filename</th>
<th>UPLOAD *</th>
<th>EDIT #</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXXXXX.CFG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Upload Database: 0% Complete
Searching Card

Upload Database: 0% Complete
ACTIVE

Upload Database: 100% Complete

Uploading the Database to the Card

Press the [] key to edit the database file name.

Press the [] key to upload the database to the card.

Displayed during search of card (ie. for valid file name, sufficient space etc.)

Displayed while data is uploaded to the memory card.

Displayed once upload is complete.

Error Messages

If an error is encountered whilst searching the card an error message is displayed – see Section 3.10.3/ Table 3.11.
4 INSTALLATION

EC Directive 89/336/EEC
In order to meet the requirements of the EC Directive 89/336/EEC for EMC regulations, this product must not be used in a non-industrial environment.

Warning. Before making any connections, ensure that the power supply, any powered control circuits and high common mode voltages connected to the instrument are switched off.

4.1 Siting – Figs. 4.1 and 4.2

A – Close to Sensor

B – At Eye-level Location

C – Avoid Vibration

Fig. 4.1 General Requirements

A – Within Temperature Limits

B – Within Humidity Limits

C – Environmental Limits

D – Use Screened Cable

Fig. 4.2 Environmental Requirements

Caution. Select a location away from strong electrical and magnetic fields. If this is not possible, particularly in applications where mobile communications equipment is expected to be used, screened cables within earthed metal conduit must be used.
4.2 Mounting – Figs. 4.3 and 4.4

Dimensions in mm (in.)

Panel Cut-out

Note. Maximum mounting angle 30° from vertical.

Fig. 4.3 Overall Dimensions
...4 INSTALLATION

...4.2 Mounting – Figs. 4.3 and 4.4

Information. For IP65 protection, a minimum panel thickness of 3mm (0.12 in.) is recommended.

![Fig. 4.4 Mounting](image)

1. Cut a hole in the panel (see Fig. 4.3 for dimensions)
2. Loosen the retaining screw on each panel clamp
3. Lift the retaining screws and remove the panel clamp anchors
4. Remove the panel clamps
5. Insert the instrument into the panel cut-out
6. Refit the panel clamps to the case, ensuring that the panel clamp anchors are located correctly in their slots
7. Secure the instrument by tightening the panel clamp retaining screws – see **Caution**

Caution. The clamp must fit flat on the instrument casing. If the clamp is bowed, the securing screw is overtight and sealing problems may occur.

Note. The portable case is supplied with the panel hole already cut, otherwise the fitting procedure is the same.

4.3 Access to Terminals and Connections – Fig. 4.5

![Fig. 4.5 Access to Terminals](image)

1. Remove screws
2. Remove the backplate

Information. The terminal compartment extension used for anchoring cable conduits is an optional fitting.

![Relay Outputs, Hybrid or 2-wire Transmitter DC Power Supply (E, F or G)](image)

- Power Supply
- Ground Stud
- Standard Analog Input Connector
- Optional Analog Input Connectors
4 INSTALLATION...

4.4 Electrical Connections – Fig. 4.6
See Certification Information in Section 6

Note.
- Always route signal leads and power cables separately, preferably in grounded metal conduit.
- It is strongly recommended that, for signal inputs and relay connections, screened cable is used, with the screen connected to the ground stud.
- The terminals accept cables up to 2.5mm² cross-section.

![Diagram showing electrical connections]

Fig. 4.6 Electrical Connections
4.5 Analog Input Connections

4.5.1 Current and Voltage – Fig 4.7

![Diagram of Analog Input Connections]

Caution. Under no circumstances must the spare input terminal be linked to the negative.

Note. Refer also to Fig. 4.6 for terminal numbers.

Table 4.1 Thermocouple Compensating Cable

<table>
<thead>
<tr>
<th>Type of Thermocouple</th>
<th>BS1843</th>
<th>ANSI MC 96.1</th>
<th>DIN 43714</th>
<th>BS4937 Part No.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Cr/Ni-Al (K)</td>
<td>+ Brown, Blue, Red</td>
<td>+ Yellow, Red, Yellow</td>
<td>+ Red, Green, Green</td>
<td>+ Green, White, Green</td>
</tr>
<tr>
<td>Ni-Cr/Cu-Ni (E)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Violet, White, Violet</td>
</tr>
<tr>
<td>NicrNi/NiNi (N)</td>
<td>+ Orange, Blue, Orange</td>
<td>+ Orange, Red, Orange</td>
<td>+ Red, Green, Green</td>
<td>+ Pink, White, Pink</td>
</tr>
<tr>
<td>Pt/Pt-Rh (R and S)</td>
<td>+ White, Blue, Green</td>
<td>+ Black, Red, Green</td>
<td>+ Red, White, White</td>
<td>+ Orange, White, Orange</td>
</tr>
<tr>
<td>Pt-Rh/Pt-Rh (B)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Grey, White, Grey</td>
</tr>
<tr>
<td>Fe/Con (J)</td>
<td>+ Yellow, Blue, Black</td>
<td>+ White, Red, Black</td>
<td>+ Red, Blue, Blue</td>
<td>+ Black, White, Black</td>
</tr>
<tr>
<td>Fe/Con (DIN 43710)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>- Blue/red, Blue, Blue</td>
</tr>
</tbody>
</table>

* Case Blue for intrinsically safe circuits

4.5.2 Thermocouple – Fig. 4.7

Use the correct compensating cable between the thermocouple and the terminals – see Table 4.1.

Automatic cold junction compensation (ACJC) is incorporated but an independent cold (reference) junction may be used.

4.5.3 Resistance Thermometer (RTD) – Fig. 4.7

On applications requiring long leads it is preferable to use a 3-lead resistance thermometer.

If 2-lead resistance thermometers are used, each input must be calibrated to take account of the lead resistance.
4.5.4 Accessing the Analog Input links – Fig. 4.8
To gain access to the analog input links the chassis must be removed.

1. Open the door
2. Press the lower catch...
3. ...and lift the display
4. Lift the upper catch...
5. ...and remove the chart unit
6. Remove the chassis

Fig. 4.8 Removing the Chassis

4.5.5 Setting Analog Input links – Fig. 4.9
The analog inputs must be set up for the input type required – See Fig 4.9

Caution. Static electricity can seriously damage components. Wear an earth strap and/or use an anti-static bench when dismantling the instrument.

1. Remove the tie-bar
2. Remove the Input PCB
3. Set link positions for input types required

Fig. 4.9 Selecting the Analog Input Type
4.6 Transmitter Power Supply Connections – Fig. 4.10

Information. The power supply board provides a 24V supply capable of driving two 2-wire transmitters. Two additional 24V power supplies are provided on the transmitter power supply module boards, each of which is capable of driving two 2-wire transmitters.

Fig. 4.10 Transmitter Power Supply

4.7 Digital Input Connections – Fig. 4.11

One digital input is provided on each analog input board. A further six digital inputs are provided on the Hybrid option board.

<table>
<thead>
<tr>
<th>Input State</th>
<th>Logic State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Input (volt-free)</td>
<td>Logic Input (TTL)</td>
</tr>
<tr>
<td>-</td>
<td>0V</td>
</tr>
<tr>
<td>-</td>
<td>5V</td>
</tr>
</tbody>
</table>

Fig. 4.11 Digital Input

4.8 Digital Output Connections – Fig. 4.12

Six digital outputs are provided on the Hybrid option board.

Information. Voltage level 5V. Load min. 450Ω max. 15kΩ

Note. Refer to Fig. 4.6 for terminal numbers.

Fig. 4.12 Digital Output

4.9 Relay Output Connections – Fig. 4.12

Note.
- The maximum total combined current flowing through the relays is 36A. The maximum individual relay current is 5A.
- The polarity is set up in the Relay Output Module Page – see Section 3.5.1/ Select Output Polarity.

4.10 Power Supply Connections

4.10.1 AC Mains Connections – Fig. 4.13

Caution.
Use fuse rating – 1A (max.) type T

Fig. 4.13 AC Mains

4.10.2 24V AC/DC Supply Connections – Fig. 4.14

Caution.
Use fuse rating – 3A (max.) type T

Fig. 4.14 24V AC/DC Supply
4.11 500V Protected Input Board Connections

Information.
- No RTD or resistance measurements.
- Maximum millivolt range 200mV.
- All standard current and thermocouple ranges apply.

Note. The input circuitry withstands up to 500V transient voltage between input channels. There is no galvanic isolation between the inputs and other instrument circuitry.

Information. The resistor is supplied in the accessories pack.

Note. Refer to Fig. 4.6 for terminal numbers.

Fig. 4.15 500V Protected Input Board Connections
5 SPARES LIST

5.1 Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll Chart</td>
<td></td>
</tr>
<tr>
<td>80 division</td>
<td>PR250–9007R</td>
</tr>
<tr>
<td>100 division</td>
<td>PR250–9006R</td>
</tr>
<tr>
<td>120 division</td>
<td>PR250–9008R</td>
</tr>
<tr>
<td>140 division</td>
<td>PR250–9009R</td>
</tr>
<tr>
<td>150 division</td>
<td>PR250–9010R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pen Capsule</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Six color</td>
<td>PR100–0211</td>
</tr>
<tr>
<td>Six color (high temperature)</td>
<td>PR100–0230</td>
</tr>
</tbody>
</table>
6 CERTIFICATION INFORMATION

6.1 Certification Information

Fuse Type T (antisurge), 3 Amps (max).

VA Rating 35VA max.

Cleaning Only clean the front panel. Use warm water and a light detergent.

Battery Varta type CR1/2AACD or Saft type LS3CNA Lithium cell 3 to 3.6 V non-rechargeable.

Installation Insulation Category 2

 If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

 The final installation should meet the requirements of IEC 61010 for accessible parts e.g. rear terminals and vents.

 Remove all power from supply and relay circuits before accessing the connections.

 All connections to secondary circuits must have basic insulation.

 Terminals for external circuits are for use only with equipment with no live parts which are accessible.

 The type of equipment which may be connected to the terminals e.g. connection of equipment complies with IEC safety standards.

 A disconnecting device conforming to IEC 61010 must be fitted to the final installation.

 For permanently installed equipment where the switch is not part of the equipment, a switch or circuit breaker shall be included in the build installation. It shall be in close proximity to the equipment and within easy reach of the operator, and shall be marked as the disconnection device for the equipment.

 Connect the communication terminals to IEC 60950 instruments only.

 Relay circuits must be suitably fused depending on the current being switched. Max load 5A/240V a.c.
INDEX

<table>
<thead>
<tr>
<th>M</th>
<th>Math Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Lo and Hi</td>
<td>81</td>
</tr>
<tr>
<td>Function Type</td>
<td>69</td>
</tr>
<tr>
<td>Fvalue</td>
<td>77</td>
</tr>
<tr>
<td>Mass Flow 1 and 2</td>
<td>73</td>
</tr>
<tr>
<td>Max. and Min. Values</td>
<td>80</td>
</tr>
<tr>
<td>Relative Humidity (RH)</td>
<td>72</td>
</tr>
<tr>
<td>Standard</td>
<td>70</td>
</tr>
<tr>
<td>Time Average</td>
<td>79</td>
</tr>
</tbody>
</table>

Memory Card	85
Size and Format	86
Message Blocks	58
Mounting	95

O	Offset Adjustment	32
Operating Displays	7	
Operating Page Tag	9	
Operator Contents Page	53	
Operator Messages	12	
Print Speed	41	
Operator Pages 1 and 2		
Frame Type	9, 56	
Set Up	55	
Operator Printing		
Enable/Disable	53	
Output Modules		
Hybrid	51	
Relay	50	

| P | Paper Advance | 43 |
| Pen |
Alignment	44
Capsule Fitting	6
Lift	43
Span	44
Zero	44
Power Failure Page	38
Power Supply Connections	100
Power-up Displays	8, 17
Print Messages Page	21
Print Values Group Assignment	59
Printing	
Channel Data	21
Scales	48
Total Values	21
Values Groups	21

| Process Alarms |
Acknowledging	15
Alarm Status	13
Alarm Tag	34
Configuring	33
Hysteresis	34
Trip Level	33
Process Review	20, 53

R	Real Time Alarms
Alarm Status	13
Configuring	35
Relay Output Connections	100
Relay Output Module	50
Resistance Thermometer (RTD)	98

S	Scale Printing	48
Scan Interval	19, 90	
Security Access	3, 17, 24	
Security Page	54	
Siting	94	
Span Adjustment	32	

T	Tags and Messages. See Front Fold-out
Terminals and Connections	96
Text Printing	41
Thermocouple	25, 98
Time Alignment	4, 42
Time Setting	10
Totalizer	
Analog Integrator Count Control	63
Batch Total Reset	64
Count Cut-off	63
Count Rate	63
Print	67
Set Up	63
Stop/Go	65
Totalizer Tag	66
Type	56, 63
Units	65
Viewing	14
Wrap-around	64

| Trace |
Event	49
Function	47
Primary Color	45
Scale	49
Secondary Color	46
Trend	48
Transmitter Power Supply	100

| U | User Language | 53 |
| Using a PC to Format |
| Memory Cards | 85 |

V	View Signals Page	13, 53
Viewing the Date and Time	10	
Viewing the Measured Values	9	

| W | Warning Messages | 8 |

| Z | Z-factor | 78 |
| Z-traces | 45 |
OPERATOR LEVEL OVERVIEW

OPERATING DISPLAYS (Section 2.1)

- Channel reading, tag & units
- Remaining chart
- System date & time
- Operator message
- Chart speed

ALARMS PAGES (Section 2.6)

- Displays all active alarms.
- Individual/global process alarm acknowledge

SECURITY ACCESS (Section 2.7)

- Protected access to:
 - Chart page and Datalogging Page (Level 1)
 - Process Review Page and Print Messages Page (Level 2)

CONFIGURATION (see overleaf)

- Analog input configuration
- Alarm configuration
- Chart control
- Output module configuration
- Operator set up
- Message printing set-up
- Totalizer set up
- Math function configuration
- Memory Card set up

CHART PAGE (Section 1.1)

- Chart reload
- Automatic/manual rewind
- Time line advance
- Advance chart

DATALOGGING PAGE (Section 2.8)

- Logging of channel data on a memory card

PROCESS REVIEW PAGE (Section 2.9)

- Alarm Buffer
- Cue and Review

PRINT MESSAGES PAGE (Section 2.10)

- Selectable printing of:
 - Values groups
 - Channel data values
 - Totalizer results
CONFIGURATION LEVEL OVERVIEW

SELECT LEVEL

Operator
Analog inputs
Alarms
Chart
Output Modules
Operator Set-up
Printing
Totalizer
Maths
Memory Card

- Analog input set up
- Copy input configuration
- Noise rejection filter
- Channel adjustments

- Process alarm set up
- Real-time alarm set up
- Acknowledge set up
- Power failure

- Chart set up
- Pen alignment/set up
- Trace set up

- Relay set up
- Modbus (Optional)
- Digital input set up

- Operator message control
- Security Code set up
- Operator page 1 set up
- Operator page 2 set up

- Message Block set up
- Print Values set up

- Totalizer set up
- Totalizer Print set up

- Math Block set up
- Logic Equation set up
- Delay Timer set up

- Format Memory Card
- Datalog file set up
- Database set up
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC Motors to 1kV
- Drive Systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart and Strip Chart Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, Conductivity and Dissolved Oxygen Transmitters and Sensors
- Ammonia, Nitrate, Phosphate, Silica, Sodium, Chloride, Fluoride, Dissolved Oxygen and Hydrazone Analyzers
- Zirconia Oxygen Analyzers, Katharometers, Hydrogen Purity and Purge-gas Monitors, Thermal Conductivity

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1480 475321
Fax: +44 (0)1480 217948

United States of America
ABB Inc.
Tel: +1 215 674 6000
Fax: +1 215 674 7183

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company’s published specification.

Periodic checks must be made on the equipment’s condition. In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.