COURSE DESCRIPTION

T146e - Failure Mode & Effects Analysis (FMEA)
Incorporating FMECA and FMEDA in the context of IEC 61508

The application of IEC 61508 / 61511 requires a detailed understanding of FMEA. This course focuses on FMEA in the context of these two international standards. FMEA is a vital compliance requirement for the design and engineering of a safety product and/or Safety Instrumented System (SIS).

Course goal
The goal of this course is to understand the principles of FMEA, FMECA, FMEDA, in the context of IEC 61508, including the process and practices to perform an FMEA study.

Whilst the systems integration will be undertaken to meet the compliance requirements of IEC 61511 these elements or devices will have been designed to meet the requirements of IEC 61508.

Learning objectives
Upon completion of this course, participants will:

- Gain an understanding of FMEA in the context IEC 61508
- Be able to understand, at a basic level, a third party manufacturers data sheet developed by an FMEA process
- With technical support, be able to undertake an FMEA for a low complexity element / device (e.g. electromechanical contactor or relay)
- Be able to act as an intelligent observer when participating in a team undertaking an FMEA on a complex element / device
- Understand the relationship between the device FMEA and its integration into sub-systems and systems
- Be able to detail the FMEA process, specifically for use in demonstrating compliance to IEC 61508. (See IEC 61508-2, Annex D - Safety manual for compliant items)
- Understand the sources of failure rate, failure mode and diagnostic coverage values

Participant profile
This training is targeted at control and systems engineers, application engineers, especially those involved in executing safety system application projects.

Prerequisites and recommendations
Delegates should have knowledge of and experience in working on automation, control and safety applications, and systems. This includes selection and engineering of complex and non-complex elements / sub systems.

Course duration
The course is expected to be completed in full within 12 weeks of course licence activation. Course material can be accessed for 12 months for reference purposes.
Course type
This is an e-learning training course. Delegates will be able to access the course modules and complete the course to fit in with their day to day workload. The modules include a series of multiple-choice worked examples. In addition a number of modules feature multiple choice and multiple response tests. Successful completion of the tests, allows the delegate to progress to the next module. The tests can be undertaken several times with feedback given each time a test is undertaken.

Course outline
Details of the training course content are found in the table below, each module covering a specific topic.

<table>
<thead>
<tr>
<th>Module 1 Introduction and basic concepts</th>
<th>Module 2 Fundamentals of FMEA and FMECA</th>
<th>Module 3 Undertaking an FMEA</th>
<th>Module 4 Component failure rate data</th>
<th>Module 5 FMEA outputs</th>
<th>Module 6 Team structure</th>
<th>Module 7 Worked examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Course objective and scope</td>
<td>- Failure Mode Effect Analysis (FMEA)</td>
<td>- Sub-dividing the system into appropriate function blocks</td>
<td>- Sources of failure rate data</td>
<td>- FMEA outputs for specific applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Underpinning definitions and concepts</td>
<td>- Failure Mode Effect and Criticality Analysis (FMECA)</td>
<td>- Defining the application scenarios</td>
<td>- Selecting failure rate data</td>
<td>- Functional blocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Relationship with IEC 61508</td>
<td>- Failure Mode Effect and Diagnostic Analysis (FMEDA)</td>
<td>- Identifying the failure modes</td>
<td>- Determining failure mode distribution</td>
<td>- Failure modes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Abbreviations</td>
<td>- FMEA and compliance to IEC 61508</td>
<td>- Identifying the effects of different modes of failures</td>
<td>- Failure modes of redundant components</td>
<td>- Effect of each failure mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- References</td>
<td></td>
<td>- Identifying detection methods</td>
<td>- Failure modes of communication channels</td>
<td>- Failure rates for different types of failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Assigning failure rates</td>
<td></td>
<td>- Diagnostic coverage and method</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- Safe Failure Fraction (SFF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to order
Please contact ABB University as listed below for either attendance at any open course being planned in your region or if you would like to run a training course specific to your organisation.

For on-site training, a fixed price training proposal will be issued to you for your approval to proceed.

ABB University
https://new.abb.com/service/abb-university
ABB University Course Code - T146e