Rack-based I/O

I/O System

The rack-based I/O system consists of a central rack and one or two 19 inch expansion racks intended for double size Euro boards. Each rack is equipped with a power supply unit PSF.

For a SattCon 35 system the control unit CU45 is connected to the central rack.

For a Series 200 system connected to a central rack-based I/O, a rack adapter board 200-RANN is mounted in the central rack. This board communicates with the Series 200 CPU via the system bus.

For a Series 200 system connected to a remote rack-based I/O, a rack adapter board 200-RACN is mounted in the central rack. This board communicates with the Series 200 via the ControlNet ${ }^{\mathrm{TM}}$ network.

Two expansion racks can be connected to the central rack in a central I/O system and one in a remote I/O system. Each expansion rack is equipped with a bus decoder board PBAD, which communicates with CU45, 200-RANN or 200-RACN in the central rack through a parallel bus cable.

The rack-based system is intended for industrial use and meets the EMC directive 89/336/EEC and the Low Voltage Directive, LVD, 73/23/EEG.

The rack-based I/O has the following main features:

- High density I/O system
- Replacement with power on
- Large number of I/O boards and accessories
- Central or Remote I/O
- Compatible with both SattCon 35 and Series 200
- Digital and analogue I/O boards are galvanically separated
- Easy connection of shielded cables
- Simple upgrading of older I/O systems

Bus decoders
 PBAD

Bus decoder board including bus interconnection socket XPIOS. Handles analogue and digital communication between the central rack and the expansion rack. Also supervises the expansion rack's internal bus.
The board is powered by +12 V DC from the power supply unit PSF.
Two LEDs on the front indicate power and error.
Two switches on the front are intended for fault diagnosis in the system. The Run/Reset switch resets all the outputs in the expansion rack. The Enable/Disable switch disconnects a faulty rack for diagnostics without shutting down the rest of the system.
A DIP switch on the side of the board determines the identity of connected expansion racks.

200-RANN

Rack adapter board for Series 200 system. Handles the communication between system Series 200 and central rack-based I/O system, and controls the scanning of digital and analogue I/O signals on the local I/O bus.

Each 200-RANN can handle three racks - the central rack where it is installed and two expansion racks.
The board is powered from two sources. Series 200 powers the onboard CPU, memory and related logic whereas the PSF powers the interface between the CPU part of the board and the local I/O bus.
Three LEDs on the front indicate fail, power and disabled I/O copy (stop).

200-RANN/A

Rack adapter board 200-RANN with analogue to digital converter, ADSF, included.

200-RACN

Rack adapter board for Series 200 system. Handles the communication between system Series 200 and remote rack-based I/O system, and controls the scanning of digital and analogue I/O signals on the local I/O bus.

Each 200-RACN can handle two racks - the central rack where it is installed and one expansion rack.
The board is powered from the PSF power supply.

Five LEDs on the front indicate fail, power, disabled I/O copy (stop) and communication status.

Two connectors and the "MODE" rotary switch on the front are used for test and service purposes only.
The other two rotary switches on the front are used to set the network node address.

200-RACN/A

Rack adapter board 200-RACN with analogue to digital converter, ADSF, included.

Power supply
 PSF

Power supply unit for the PIOS35 rack. One is required in each rack.

The board is powered either from 230 V AC mains or from a separate 24 V DC power unit and produces 5 VDC and 12 V DC , together with a power failure signal.

Maximum load is 50 W when supplied with 230 V AC and 70 W at 24 V DC.

Four LEDs on the front panel indicate supply for $+5 \mathrm{~V},+5 \mathrm{VL},+12 \mathrm{~V}$ and power failure.

Four sockets for test purposes are located next to the LEDs.
Mains supply selection 110, 220/230 or 240 V is made with a switch on the side of the board.
The mains supply is protected by a fuse fitted in the front for easy access.

The secondary side of the mains transformer and the 24 V DC source are also protected by fuses, located on the side of the board.

I/O boards

General information

Boards can be replaced during operation. The switch on the front panel should be set in the " 0 " position, where the input status is frozen in the central unit and the outputs are set to zero. During normal operation, the switch should be in the " 1 " position.

LEDs on the front of the board indicate input/output status. The octal address of the input/output is marked beside each LED.

IDPG24 / IDPG48

Digital input board with 32 direct current inputs using positive logic. The inputs are galvanically isolated with optocouplers. The board is available in two versions for signal levels of 24 and 48 V.

IDPG may be used in applications where the plant 0 V is not connected to the system 0 V , or where there is a special requirement for galvanic signal isolation. IDPG is used to interface signals from devices such as limit switches, photocells etc.

IAPG 230
Digital input board with 16 AC inputs (230 V) using positive logic. The inputs are galvanically isolated with optocouplers.

IAPG 230 is used to interface signals from devices such as power switches, relay contacts etc.

ODPG. 8

Digital output board for DC voltage with 32 optocoupled outputs, divided into four separate groups of eight. The maximum output capacity is 0.8 A per output, subject to maximum 3.2 A per group and 8 A for the entire board.

ODPG. 8 is designed for supply voltages between $10-60 \mathrm{~V}$. Since the four groups are completely separated from each other, it is possible to use four different supply voltages for the same board.
Several outputs can be connected to the same load if they are fed from the same voltage source. If not, they need to have a protective diode in series with the output.

ORG24

Digital output board with 16 relay outputs. The relays have single-pole change-over contacts and are provided with varistor protection.
Maximum relay contact current is 2 A and maximum relay contact voltage is 250 V AC alternatively 120 V DC.
The supply voltage to the relay coils (24 V DC) is connected to a terminal located on the rear side of the rack.

ODSG

Digital short-circuit proof output board with two groups of 16 optocoupled outputs powered by an external supply (+19-30 V DC). Each group is monitored by an overload/short circuit detection bistable. The maximum load is 0.8 A for each output and 16 A for the complete board.
ODSG is intended for loads such as lamps, relays, solenoid valves etc.
When an overload or short circuit condition occurs, the output is switched off and the LED for the corresponding channel dims. If the Man/Auto input is active, a yellow LED for that group lights.

IPA4

IPA4 is a digital input board designed to count pulses. The maximum pulse frequency is 10 kHz .
IPA4 has four inputs, each with an 8 -bit counter, capable of counting up to 255 pulses. The inputs can be combined in pairs to make two 16-bit counters
with a capacity of up to 65535 pulses.
To suppress electrical interference, transmitters with complementary signals should be used.
Phase displaced pulse trains can be used for up/down-counting. The counters can be started, stopped and reset individually.
The common signal reference voltage level can be adjusted and detection of positive and/or negative-going edges can be selected individually for each input.
IPA4 can be used in applications for pulse counting, quantity counting, positioning and speed calculation.

16 LEDs on the front panel show the four counter channels, each with two inputs A and B . The inputs A and B can be combined in different ways, to measure motion in two directions, for instance.
Three sockets for test purposes are located on the front.
The counter channels also have gate inputs to start and stop the counting, and clear inputs to reset the respective counter.
All the input circuits are provided with comparators for transmitters with complementary signals, a means to effectively suppress electrical noise.

IBA

Analogue input board with eight inputs. IBA can either be used on its own or with associated modules. The plug-in modules are for galvanic isolation (MCVG), differential input (MCV200), temperature measurement (MP, MN) or resistance measurement (MR).
When IBA is used without associated modules, the following inputs can be connected: $0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$, $0-5 \mathrm{~V}$ and $1-5 \mathrm{~V}$. Each channel is individually selectable by straps, located on the board.
IBA has high flexibility, very high repeatability and high temperature stability.
If the LED input (current) is used, the intensity of the LED varies with the value of the input signal.

OCAHG
Analogue output board with four channels for voltage signals $0-10 \mathrm{~V}$ and current signals $0-20$ or $4-20 \mathrm{~mA}$, selectable with straps on the board. The resolution is 8 bits.

The analogue circuits are electrically isolated from the digital control logic and the control system. The channels are not galvanically separated from each other.

OCAHG generates analogue signals to control devices, instruments, etc. By means of the signals DDC and MAN, control can either be automatic (from the control system) or manual via the INCREASE/DECREASE inputs.

Manual control can be executed from a hand module, push-buttons or a digital output board.

OCAHG retains its output values in the event of a CPU failure.

OCVA

Analogue output board with two channels for current signals $0-20 \mathrm{~mA}$ or $4-20 \mathrm{~mA}$ and voltage signals $\pm 10 \mathrm{~V}$ or $0-10 \mathrm{~V}$. The various ranges are selected using connections in the process connector cable.

Each channel can supply both current and voltage output signals at the same time. When using a current output the corresponding voltage range must be set to $0-10 \mathrm{~V}$.

The analogue circuits are electrically isolated from the digital control logic and the control system. The channels are not galvanically separated from each other.

OCVA can be set up so that the outputs either go to zero or remain at the selected safety state values during CPU shut down.

The board has 12-bit resolution for the $\pm 10 \mathrm{~V}$ ranges and 11-bit resolution for the other current and voltage ranges.

Order codes	Function	Order codes	Function
PIOS/R	Basic rack PIOS35 with address panel, power supply PSF and 200-RANN.	Modules for IBA	Five accessory modules for analogue input board IBA:
PIOS/RA	Basic rack PIOS35 with address panel, power supply PSF and 200-RANN/A.	MCV200	Analogue module which permits up to 200 VDC common-mode voltage for each channel, individually.
		MCVG	Analogue module which provides individual galvanic isolation of up to 750 VDC per channel.
PIOS/RC	Basic rack PIOS35 with address panel, power supply PSF and 200-RACN.	MP	Measures temperature with a Pt100 sensor. MP is linearized. Six ranges.
PIOS/RCA	Basic rack PIOS35 with address panel, power supply PSF and 200-RACN/A.	MN	Measures temperature with a Ni1000 sensor. MN is not linearized.
		MR	Measures resistance and is used for position sensing, pressure measurement etc. Three ranges.
PIOS/P	Basic rack PIOS35 with address panel, power supply PSF, bus interconnection socket XPIOS and bus decoder board, PBAD (also includes screws and mounting devices).	PTU2	Two ready wired I/O connectors with cables and screw terminal blocks mounted on an aluminium profile.
PIOS35	Empty basic rack (for use as expansion or central rack).	200-MOUNTKIT	Mounting kit for mounting Series 200 central system in a 19" rack.
XPIOS	Bus interconnection socket. To be mounted on the rear part of the rack to enable connection of two bus cables to PBAD. Always included with PBAD.	PTC	Digital simulation board with a panel which has 32 switches for simulation of digital signals.
ADSF	Central A/D converter. To be mounted on rack adapter board 200-RANN.	IVAPOT	Analogue simulation board with eight potentiometers for simulation of analogue signals.
IOC351.0M	Assembly kit with the following parts: an expansion cable (1 metre) connecting the central rack to the first expansion rack, a bus extension unit XPBAD, a connector and a cover.		
IOC352.5M	D:o 2.5 metre.		
CPIOS1.0M	Cable (1 metre) for parallel bus connection between two expansion racks.		
CPIOS2.5M	D:o 2.5 metre.		
200-CBR/R600	Cable (0.6 metre) for connecting the Series 200 system to the rack adapter board 200-RANN located in a central rack.		
200-CBR/R1000	D:o 1 metre.		

Configuration

The central and the expansion racks are of a common type called PIOS35.
The rack has space for 16 I/O boards and all input/output boards fit in any slot intended for I/O boards.
The I/O boards are connected to the rack via two different connectors. The lower connector (X2) is used for connecting the rack's internal bus and power supply. The upper connector (X1) is used for connection of input/ output signals for the process using crimp sleeves.
For more detailed information, see the manual "Rack-based I/O, Installation and Maintenance".

Bus system

The signals between the racks are distributed via parallel bus cables. Two expansion racks can be connected to the parallel bus. If RACN or RACN/A is used, only one expansion rack may be connected.
There are two lengths of the cables to be used between the central rack and the expansion rack, or between the expansion racks. Their lengths are 1 and 2.5 metres, although only one 2.5 metres cable may be connected in a system.

Mains supply

Each rack contains a power supply PSF, located at the right hand side of the rack. It can be supplied via the mains or 24 V DC. Filters and mains connections are fitted at rear of the rack.

General		200-RACN	
Temperature Operating Non-operating	$+5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (max. mean temperature over 24 hours is $50^{\circ} \mathrm{C}$) $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Number of channels Communication protocol Serial interface	1 ControlNet Separated via a signal trans-
Humidity	Max. 90\%, non-condensing		former
Protection class	IP20	Speed of transfer	$5 \mathrm{Mbit} / \mathrm{sec}$.
Design standard	Fulfils the EMC directive 89/336/ EEC and the Low Voltage Directive, LVD, $73 / 23 / E E G$ for industrial environments	Power supply Current consumption 200-RACN 200-RACN/A	From Power supply unit PSF $400 \mathrm{~mA} /+5 \mathrm{~V} \text {; max. } 100 \mathrm{~mA} /+12 \mathrm{~V}$
Rated current for crimp sleeves	5 A	ControlNet connector	$\text { BNC } 75 \Omega$
Board type Order code Manual "Rack-based I/O Installation and Maintenance"	Double size Euro board	Dimensions (incl. panel)	H $262 \times$ W $60 \times$ D 190 mm
	RACKIO-IME	Order codes	$\begin{aligned} & \text { 200-RACN } \\ & \text { 200-RACN/A } \end{aligned}$
		PSF	
PBAD		Supply voltage Mains supply	
The inaccuracy of bus decoder board PBAD is insignificantly low compared with that of the analogue boards and A/D converters, i.e. the board has no influence on the overall technical specification			110/220/240 V AC +15/-10\% selectable, 220 V AC accepts also 230 V AC $+10 /-15 \%$ $50 \mathrm{~Hz} \pm 5 \%$ or $60 \mathrm{~Hz} \pm 5 \%$ $24 \vee D C+20 /-15 \%$ excl. ripple Peak 5\% of nominal voltage
Current consumption from PSF Dimensions (incl. panel)	Max. 50 mA H $262 \times$ W $20 \times$ D 190 mm	Ripple on 24 V DC Current consumption (nominal input voltage)	
Order code		230 V AC mains 24 V DC supply Output voltages ${ }^{\text {a }}$ $+5 \mathrm{~V} \mathrm{DC,}+5 \mathrm{VL}$ Max. current output Min. current output +12 V DC	Typ. 0.5 A for max. load 50 W Typ. 3.5 A for max. load 70 W 5.1 V DC +0.1/-0.3 V DC during normal operation 4 A (+5 V DC and +5 VL combined) 0.2 A 12.5 V DC ± 5 V DC max. 4 A , \min. 0.2 A
200-RANN		Output power Mains supply 24 V DC	$\begin{aligned} & \text { Max. } 50 \mathrm{~W} \\ & \text { Max. } 70 \mathrm{~W} \end{aligned}$
Current consumption fro $\begin{aligned} & \text { 200-RANN } \\ & \text { 200-RANN/A } \end{aligned}$	400 mA 600 mA	Continuous working voltage Isolation test voltage	$240 \text { V AC }$
Current consumption from PSF Dimensions (incl. panel) Order codes	$\begin{aligned} & \text { Max. } 100 \mathrm{~mA} \\ & \text { H } 262 \times \text { W } 60 \times \text { D } 190 \mathrm{~mm} \\ & \text { 200-RANN } \\ & \text { 200-RANN/A } \end{aligned}$	Isolation test voltage Front panel temperature Dimensions (incl. panel) Order code a. (the total output power	1776 V AC for one second, between mains input and protective ground and DC side. $<40^{\circ} \mathrm{C}$ above ambient H $262 \times$ W $40 \times$ D 190 mm PSF n limit the current)

IDPG24 / IDPG48		Load current	Max. 0.8 A per output Max. 3.2 A per group Max. 8 A per board
Number of inputs	32	Surge current	Max. 2 A for 50 ms
Input voltages		Leakage current	Max. 2 mA typ. $<0.5 \mathrm{~mA}$
IDPG24	24 V DC +20/-25\%	Recommended external fuses	Max. 2 mA typ. $<0.5 \mathrm{~mA}$
IDPG48	48 V DC +20/-25\%		3.2 A fast-blow per group
Overvoltage rating	220 V AC max. 10 s .	Voltage drop, output	Max. 2.5 V DC typ. < 1 V DC
Input current "1" level	Typ. 10 mA (+20/-25\%)	Activation time	Max. $10 \mu \mathrm{styp} .5 \mu \mathrm{~s}$
Filter time constant	Typ. 10 ms	Deactivation time	Max. $400 \mu \mathrm{styp}$. $200 \mu \mathrm{~s}$
Logical levels		Continuous working voltage Isolation test voltage	$<75 \mathrm{~V}$ DC relative to system ground
IDPG48	$\begin{aligned} & 0<5 \vee D C, 1>16 \vee D C \\ & 0<10 \vee D C, 1>32 \vee D C \end{aligned}$		500 V DC for one minute, betweeen each group and system logic
Continuous working voltage	$<75 \mathrm{~V}$ DC relative to system logic		
Isolation test voltage	500 V DC (one minute)	Current consumption	30 mA (internal +12 V DC) 2-7 mA/active output (+5 VL). Totally 60-230 mA, typ. 140 mA
Current consumption	40 mA (internal +12 V DC)		
System power	$4 \mathrm{~mA} /$ active input +5 VL ($=$ typ. 130 mA , max. $190 \mathrm{~mA}+5 \mathrm{VL}$)	Dimensions (incl. panel) Order code	H $262 \times$ W $20 \times$ D 190 mm ODPG. 8
Miscellaneous	Galvanic isolation in pairs with one common connection		
Dimensions (incl. panel)	H $262 \times$ W $20 \times$ D 190 mm		
Order codes	$\begin{aligned} & \text { IDPG24 } \\ & \text { IDPG4 } \end{aligned}$		
		ORG24	
		Number of outputs	16
		Relay coil supply	24 V DC
IAPG230		Current drawn from relay supply (VR) per energized relay coil	$17-25 \mathrm{~mA}$ at 24 V DC (VR = 24 V DC, $+20 /-15 \%$)
Number of inputs Input voltage Overvoltage rating	16 optocoupled	Contact voltage ratings	
	230 V AC +10/-15\%	Cont	250 V max.
	500 V AC max. 10 s .	DC	120 V max.
Input current for activated input	$\begin{aligned} & 6.5-14 \mathrm{~mA} \text {, typ. } 10 \mathrm{~mA} \\ & (230 \mathrm{~V} \mathrm{AC}+10 /-15 \%, 47-63 \mathrm{~Hz}) \end{aligned}$	Contact current ratings (resistive load)	
Frequency range	$47-63 \mathrm{~Hz}$	AC	2 A max.
Filter time constant	Typ. 20 ms Typ. $0<70$ V DC, $1>130$ V DC	DC	2 A max. (24 V DC +20\%) 0.6 A max. (48 V DC +20\%)
Logical levels Continuous working voltage Isolation test voltage			Internal varistor for surge sup-
			pression. External overload protection required for all loads and
	230 V AC 1752 V AC for one second, between inputs and between any system logic and front panel.		external surge suppression for inductive loads
		Min. contact current	100 mA at 12 V DC
Current consumption System power	20 mA (internal +12 V DC)	Relay operating time	$15 \mathrm{~ms} \mathrm{max.}, \mathrm{typ}$.
	$5-15 \mathrm{~mA}$ /active input +5 VL (typ.	Relay release time	10 ms , typ. 4 ms
	160 mA , tot. max. 80-240 mA)	Contact bounce period	2.5 ms max .
Dimensions (incl. panel) Order code	$\begin{aligned} & \text { H } 262 \times \text { W } 20 \times \text { D } 190 \mathrm{~mm} \\ & \text { IAPG230 } \end{aligned}$	Relay working life (resistive load)	
		DC	2 A: 1500000 operations
		AC	$2 \mathrm{~A}: 800000$ operations
		Continuous working voltage	250 V AC max.
		Isolation test voltage	1800 V AC for one second, between each individual relay contact and between any relay contact and system logic or front panel.
ODPG. 8		Current consumption	20 mA (+12 V DC). $5-15 \mathrm{~mA} /$ active output, typ. 10 mA (+5 VL). Totally $80-240 \mathrm{~mA}$, typ. 160 mA
Number of outputs	32 optocoupled		
Number of separate groups		Dimensions (incl. panel)	H 262 x W $20 \times$ D 190 mm
Supply voltage	$10-60 \mathrm{~V}$ DC. The groups can have common or separate supplies	Order code	ORG24
Peak voltage	75 V DC (mean value), max. 60 V DC as above		

ODSG		IBA	
Number of outputs	32 optocoupled and 2 optocoupled error bistables	Number of inputs Input impedance	8
Number of inputs	2 optocoupled 24 V DC. 10 mA reset signals	Current Voltage	$\begin{aligned} & 250 \Omega \text { without LED } \\ & 300 \mathrm{k} \Omega \end{aligned}$
External supply voltage Voltage limit	19-30 V DC Max. 50 V DC for 1 min . $\left(25^{\circ} \mathrm{C}\right)$	Voltage drop	Max. 5 V DC without LED Max. 8 V with LED
Load current	Max. 0.8 A per output Max. 16 A per board	Accuracy Temperature stability	$\pm 0.2 \%$ FS at $25^{\circ} \mathrm{C}$ $\pm 0.002 \%$ FS per ${ }^{\circ} \mathrm{C}$
Short circuit current	Typ. 4 A , max. 10 A , fuse trip delay $\leq 20 \mathrm{~ms}\left(25^{\circ} \mathrm{C}\right)$	Max. permanent permissible overload	
Leakage current	Max. $100 \mu \mathrm{~A}$, typ. $10 \mu \mathrm{~A}$. Typical value for a short circuited output is 10 mA	Current Voltage Input type	$30 \text { V DC }$ Single-ended common type
Recommended external fuses	16 A (slow) per board	Input filter (time to 63% of FS)	$70 \mathrm{~ms} \pm 10 \%$ filter of first order. Breaking point at $\approx 2.3 \mathrm{~Hz}$
Resistance	Typ. 0.4Ω, max. 0.6Ω at 0.5 A . Typ. 0.6Ω at $0.8 \mathrm{~A}\left(25^{\circ} \mathrm{C}\right)$	Input connector Crosstalk between	Harting, crimp-pin
Activation time	Typ. $10 \mu \mathrm{~s}$	channels	79 dB attenuation
Deactivation time	Typ. $150 \mu \mathrm{~s}$	Non-linearity	0.02\% FS
Current consumption		Repeating accuracy	0.001\% FS
System (12 V DC) LED (5 VL)	40 mA $7 \mathrm{~mA} /$ active output, typ. 140 mA	RFI immunity	Error of less than 0.8% of FS at $10 \mathrm{~V} / \mathrm{m}, 27-1000 \mathrm{MHz}$
Continuous working voltage Isolation test voltage	$<75 \mathrm{~V}$ DC relative to system ground 500 V DC for one minute, between I/O and system logic	Current consumption	Typ. $90 \mathrm{~mA}(+12 \mathrm{~V}$ DC) for the board. When modules are used, the current consumption increases
Dimensions (incl. panel) Order code	$\begin{aligned} & \text { H } 262 \times \text { W } 20 \times \text { D } 190 \mathrm{~mm} \\ & \text { ODSG } \end{aligned}$	Dimensions (incl. panel) Order code	H 262 x W $20 \times$ D 190 mm IBA
IPA4		IBA-module MCV200	
Number of inputs	4 (with 8-bit counter) 2 (with 16-bit counter)	Common mode suppression	72 dB attenuation with $0-10 \mathrm{~V}$ $\pm 5 \mathrm{~V}$ DC, otherwise 66 dB
Galvanic isolation Input impedance	No $1 \mathrm{k} \Omega \text { or } \approx 90 \Omega$	Continuous working voltage	$<75 \mathrm{~V}$ DC relative to system ground
Power dissipation	Max. 0.25 W across connected terminating resistor	 relative to ground Impedance	Max. 200 V DC (by design)
Max. pulse amplitude, complementary inputs	33 V DC (1 k Ω input impedance) or 10 V DC (90Ω impedance)	Common mode Differential mode	$\begin{aligned} & 400 \mathrm{k} \Omega \\ & 800 \mathrm{k} \Omega \end{aligned}$
Max. pulse amplitude, non-complementary inputs	24 V DC	Temperature stability Current consumption	Max. $\pm 0.003 \%$ FS per ${ }^{\circ} \mathrm{C}$ $4 \mathrm{~mA}(+12 \mathrm{~V}$ DC) per module
Input voltage difference	Min. 1 V DC rel. inverted input or rel. transition level	Miscellaneous	All other technical data are the same as for the IBA
Max pulse frequency	10 kHz	Dimensions	H $107 \times$ W $18 \times$ D 13 mm
Process cabling	Twisted-pair cable with individual shielding for each pair of wires	Order code	MCV200
Current consumption Reference voltage level Dimensions (incl. panel) Order code	$150 \mathrm{~mA}(+12 \mathrm{~V}$ DC, 1.8 W) 0-10.5 V DC, adjustable H $262 \times$ W $20 \times \mathrm{D} 190 \mathrm{~mm}$ IPA4		

IBA-module MCVG		Input filter (time to 63\% of FS)	Second order filter $\pm 20 \%$, first breakpoint
Continuous working voltage	$<75 \mathrm{~V}$ DC relative to system ground	MP100 MP130	$500 \mathrm{~ms}$ $300 \mathrm{~ms}$
Common mode voltage relative to ground	750 V DC without LEDs (by design) 250 V DC with LEDs (by design)	MP160	300 ms
		MP200	300 ms
		MP400	200 ms
Common mode		MP600	180 ms
	94 dB attenuation	MN80	200 ms
Leakage current	$220 \mathrm{~V}, 50 \mathrm{~Hz}, 2 \mu \mathrm{~A}$ typ.	MR100	200 ms
Accuracy	$\pm 0.3 \%$ FS at $25^{\circ} \mathrm{C}$	MR140	200 ms
Temperature stability	Max. $\pm 0.002 \%$ FS per ${ }^{\circ} \mathrm{C}$	MR1000	150 ms
Non-linearity	Max. 0.1\% FS	All	Second breakpoint at 3.4 Hz
Current consumption	18 mA (+12 V DC) per module	Cabling	
Miscellaneous	All other technical data are the same as for the IBA		Max. conductor resistance 50Ω. Uniform length
Dimensions	H $107 \times$ W $18 \times$ D 13 mm	Non-linearity	
Order code	MCVG	MP	Max. 0.3\% FS
		MN	See curve above
		MR	Max. 0.3\% FS
		Current consumption	+12 V DC.
		MP160 with transmitter	24 mA
		MP160 without transmitter	34 mA . Note that with MP160 it is not possible to have more than 14 boards in a rack, each with 8 MP160 modules.
IBA-modules MP, MN and MR		Other with transmitter	20 mA
		Other without transmitter	30 mA
Input impedance	Min. $10 \mathrm{M} \Omega$	Miscellaneous	All other technical data are the
Accuracy at $25^{\circ} \mathrm{C}$			same as for the IBA
MP100-MP400	$\begin{aligned} & \pm 0.4 \% \text { FS, DIN 43760, } \\ & \alpha=0.00385 \end{aligned}$	Dimensions	H $107 \times$ W $18 \times$ D 13 mm
		Order codes	MP100
MP600	$\pm 0.6 \%$ FS, DIN 43760,		MP200
	$\alpha=0.00385$		MP400
MN80	Follows the curve, $\pm 0.4 \%$ FS		MP600
	Indicated error ${ }^{\circ} \mathrm{C}$		MP130 MP160
	${ }^{5}+\square-$		MN80
	${ }_{2}^{3}-$		MR100
	${ }_{0}^{1} \times \sim$ -		MR140
	$-1-30-19-8314253647586980{ }^{\circ} \mathrm{C} \text { C }$		MR1000
	$\begin{aligned} & 1000 \Omega=0^{\circ} \mathrm{C} \\ & 871.7 \Omega=-30^{\circ} \mathrm{C} \\ & 1390.1 \Omega=80^{\circ} \mathrm{C} \end{aligned}$		
MR100-MR1000	$\pm 0.5 \%$ FS		
Temperature stability Influence of conductor	Max. $\pm 0.01 \%$ FS per ${ }^{\circ} \mathrm{C}$	OCAHG	
		OCAHG	
resistance	Max. $\pm 0.1 \%$ FS per 10Ω	Number of outputs	4
Sensor current (typical)	4 mA	Supply voltage	20-30 V DC
MN80	0.5 mA	Supply current	Max. 200 mA at 24 V DC (except
MR1000	0.5 mA		
Other	3 mA	Analogue outputs (time to 63% of FS in DDC	
Measuring ranges		mode)	$\approx 150 \mathrm{~ms}$
MP100	± 0 to $+100^{\circ} \mathrm{C}$	Load current for voltage	
MP130	-30 to $+130^{\circ} \mathrm{C}$	outputs	Max. 7 mA per output
MP160	± 0 to $+160^{\circ} \mathrm{C}$	Load resistance for	
MP200	± 0 to $+200^{\circ} \mathrm{C}$	current outputs	Max. 750Ω
MP400	± 0 to $+400^{\circ} \mathrm{C}$	MAN/DDC indication	Max. 50 mA per output
MP600	± 0 to $+600^{\circ} \mathrm{C}$	Accuracy	$\pm 0.5 \%$ of FS within the tempera-
MN80	-30 to $+80^{\circ} \mathrm{C}$		ture range +5 to $+55^{\circ} \mathrm{C}$
MR100	0 to 100Ω	Resolution	8 bits
MR140	0 to 140Ω	Current consumption	1 mA (+12 V DC)
MR1000	0 to 1000Ω	Continuous working voltage	$<75 \mathrm{~V}$ DC relative to system ground
		Common mode voltage relative to ground	500 V DC
		Dimensions (incl. panel)	H $262 \times$ W $20 \times \mathrm{D} 190 \mathrm{~mm}$
		Order code	OCAHG

OCVA

Number of outputs 2
Supply voltage 24 V DC +20 to -10%
Max. ripple
Supply current
Response time to 63\%
of FS of output
Load current for voltage outputs
Load resistance for current outputs
Max. recommended
cable length
Accuracy
Temperature stability
Linearity error

Offset
Resolution
-10 V - +10 V DC
$0-10$ V DC 11 bits
$4-20 \mathrm{~mA} \quad 11$ bits
$0-20 \mathrm{~mA} \quad 11$ bits
Current consumption $45 \mathrm{~mA}(+12 \mathrm{~V}$ DC)
$70 \mathrm{~mA}(+5 \mathrm{VL})$
Continuous working voltage
Common mode voltage relative to ground
$<75 \mathrm{~V}$ DC relative to system ground
relative to ground 500 V DC
Dimensions (incl. panel) H $262 \times \mathrm{W} 20 \times \mathrm{D} 190 \mathrm{~mm}$
Order code
OCVA

