

Electrical installation handbook Volume 1
$4^{\text {th }}$ edition

Protection and
 control devices

Electrical installation handbook

Volume 1
Protection and control devices

March 2006

First edition 2003
Second edition 2004 Third edition 2005 Fourth edition 2006

Published by ABB SACE via Baioni, 35-24123 Bergamo (Italy)

All rights reserved

Index

Introduction.
Standards
1.1 General aspects

2.1 Circuit-breaker nameplates ... 22
2.2 Main definitions
2.2 Main definitions ...

3 General characteristics
3.1 Electrical characteristics of circuit breakers ... 40

3.3 Limitation curves ... 130

3.7 Electrical characteristics of switch disconnectors .. 226

4 Protection coordination
4.1 Protection coordination .. 232
4.2 Discrimination tables .. 241
4.3 Back-up tables ...
Coordination tables between circuit breakers and
4.4 Coordination tables between circuit breakers and switch disconnecto.. 270

5 Special applications
5.1 Direct current networks ... 274

5.31000 Vdc and 1000 Vac networks ... 314
5.4

6 Switchboards
6.1 Electrical switchboards ... 323
6.2 MNS switchboards ... 331
6.3 ArTu distribution switchboards ... 332

Annex A: Protection against short-circuit effects insi... 335
Annex B: Temperature rise evaluation
according to IEC 60890
Annex C: Application examples:
with PR123/P and PR333/P releases
. 344

Introduction

Scope and objectives

The scope of this electrical installation handbook is to provide the designer and user of electrical plants with a quick reference, immediate-use working tool. This is not intended to be a theoretical document, nor a technical catalogue, but, in addition to the latter, aims to be of help in the correct definition of equipment, in numerous practical installation situations.

The dimensioning of an electrical plant requires knowledge of different factors relating to, for example, installation utilities, the electrical conductors and other components; this knowledge leads the design engineer to consult numerous documents and technical catalogues. This electrical installation handbook, however, aims to supply, in a single document, tables for the quick definition of the main parameters of the components of an electrical plant and for the selection of the protection devices for a wide range of installations. Some application examples are included to aid comprehension of the selection tables.

Electrical installation handbook users

The electrical installation handbook is a tool which is suitable for all those who are interested in electrical plants: useful for installers and maintenance technicians through brief yet important electrotechnical references, and for sales engineers through quick reference selection tables.

Validity of the electrical installation handbook

Some tables show approximate values due to the generalization of the selection process, for example those regarding the constructional characteristics of electrical machinery. In every case, where possible, correction factors are given for actual conditions which may differ from the assumed ones. The tables are always drawn up conservatively, in favour of safety; for more accurate calculations, the use of DOCWin software is recommended for the dimensioning of electrical installations.

1 Standards

1.1 General aspects

In each technical field, and in particular in the electrical sector, a condition sufficient (even if not necessary) for the realization of plants according to the "status of the art" and a requirement essential to properly meet the demands of customers and of the community, is the respect of all the relevant laws and technical standards.
Therefore, a precise knowledge of the standards is the fundamental premise for a correct approach to the problems of the electrical plants which shall be designed in order to guarantee that "acceptable safety level" which is never absolute.

J uridical Standards
These are all the standards from which derive rules of behavior for the juridical persons who are under the sovereignty of that State.

Technical Standards
These standards are the whole of the prescriptions on the basis of which machines, apparatus, materials and the installations should be designed manufactured and tested so that efficiency and function safety are ensured. The technical standards, published by national and international bodies, are circumstantially drawn up and can have legal force when this is attributed by a legislative measure.

	Application fields		
	Electrotechnics and Electronics	Telecommunications	Mechanics, Ergonomics and Safety
International Body	IEC	ITU	ISO
European Body	CENELEC	ETSI	CEN
	This technical collection takes into consideration only the bodies dealing with electrical and electronic technologies.		

EC Intemational Electrotechnical Commission

The International Electrotechnical Commission (IEC) was officially founded in 1906, with the aim of securing the international co-operation as regards standardization and certification in electrical and electronic technologies. This association is formed by the International Committees of over 40 countries all over the world.
The IEC publishes international standards, technical guides and reports which are the bases or, in any case, a reference of utmost importance for any national and European standardization activity.
EC Standards are generally issued in two languages: English and French. In 1991 the IEC has ratified co-operation agreements with CENELEC (European standardization body), for a common planning of new standardization activities and for parallel voting on standard drafts.

1 Standards

CENELEC European Committee for Electrotechnical Standardization

The European Committee for Electrotechnical Standardization (CENELEC) was set up in 1973. Presently it comprises 29 countries (Austria, Belgium, Cyprus, Ezech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Portugal, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland United Kingdom) and cooperates with 8 affiliates (Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Former Yugoslav Republic of Macedonia, Serbia and Montenegro, Turkey, Ukraine) which have first maintained the nationa documents side by side with the CENELEC ones and then replaced them with the Harmonized Documents (HD).
There is a difference between EN Standards and Harmonization Documents HD): while the first ones have to be accepted at any level and without addition or modifications in the different countries, the second ones can be amended to meet particular national requirements.
EN Standards are generally issued in three languages: English, French and German.
From 1991 CENELEC cooperates with the IEC to accelerate the standards preparation process of International Standards
CENELEC deals with specific subjects, for which standardization is urgently required.
When the study of a specific subject has already been started by the IEC, the European standardization body (CENELEC) can decide to accept or, wheneve necessary, to amend the works already approved by the Internationa standardization body

EC DIRECTIVES FOR ELECTRICAL EQUIPMENT

Among its institutional roles, the European Community has the task of promulgating directives which must be adopted by the different member states and then transposed into national law.
Once adopted, these directives come into juridical force and become a reference or manufacturers, installers, and dealers who must fulfill the duties prescribed by law.
Directives are based on the following principles:
harmonization is limited to essential requirements

- only the products which comply with the essential requirements specified by the directives can be marketed and put into service;
the harmonized standards, whose reference numbers are published in the Official Journal of the European Communities and which are transposed into the national standards, are considered in compliance with the essential requirements;
- the applicability of the harmonized standards or of other technical specifications is facultative and manufacturers are free to choose other technical solutions which ensure compliance with the essential requirements;
a manufacturer can choose among the different conformity evaluation proce dure provided by the applicable directive
The scope of each directive is to make manufacturers take all the necessany steps and measures so that the product does not affect the safety and health of persons, animals and property.

1 Standards

Low Voltage" Directive 73/23/CEE - 93/68/CEE

The Low Voltage Directive refers to any electrical equipment designed for use at a rated voltage from 50 to 1000 V for alternating current and from 75 to 1500 V for direct current
n particular, it is applicable to any apparatus used for production, conversion, transmission, distribution and use of electrical power, such as machines, transformers, devices, measuring instruments, protection devices and wiring materials.
The following categories are outside the scope of this Directive:

- electrical equipment for use in an explosive atmosphere
- electrical equipment for radiology and medical purposes
electrical parts for goods and passenger lifts;
electrical energy meters;
plugs and socket outlets for domestic use;
electric fence controllers;
radio-electrical interference
- specialized electrical equipment, for use on ships, aircraft or railways, which complies with the safety provisions drawn up by international bodies in which the Member States participate

Directive EMC 89/336/EEC ("Electromagnetic Compatibility")

The Directive on electromagnetic compatibility regards all the electrical and electronic apparatus as well as systems and installations containing electrica and/or electronic components. In particular, the apparatus covered by this Directive are divided into the following categories according to their characteristics:

- domestic radio and TV receivers;
- industrial manufacturing equipment;
mobile radio equipment;
mobile radio and commercial radio telephone equipment
- medical and scientific apparatus;
information technology equipment (ITE);
- domestic appliances and household electronic equipment;
- aeronautical and marine radio apparatus;
- educational electronic equipment;
telecommunications networks and apparatus;
- radio and television broadcast transmitters,
lights and fluorescent lamps.
The apparatus shall be so constructed that:
a) the electromagnetic disturbance it generates does not exceed a level allowing radio and telecommunications equipment and other apparatus to operate as intended;
b) the apparatus has an adequate level of intrinsic immunity to electromagnetic disturbance to enable it to operate as intended
An apparatus is declared in conformity to the provisions at points a) and b) when the apparatus complies with the harmonized standards relevant to its product family or, in case there aren't any, with the general standards.

1 Standards

CE conformity marking

The CE conformity marking shall indicate conformity to all the obligations imposed on the manufacturer, as regards his products, by virtue of the European Community directives providing for the affixing of the CE marking.

$$
c \in
$$

When the CE marking is affixed on a product, it represents a declaration of the manufacturer or of his authorized representative that the product in question conforms to all the applicable provisions including the conformity assessment procedures. This prevents the Member States from limiting the marketing and putting into service of products bearing the CE marking, unless this measure is justified by the proved non-conformity of the product.

Flow diagram for the confomity assessment procedures established by the Directive 73/23/EEC on electrical equipment designed for use within particular voltage range:

Technical file

The manufacturer draw up the technical covering the des manufacture and operation of the product

Naval type approval

The environmental conditions which characterize the use of circuit breakers for on-board installations can be different from the service conditions in standard industrial environments; as a matter of fact, marine applications can require installation under particular conditions, such as:
environments characterized by high temperature and humidity, including saltmist atmosphere (damp-heat, salt-mist environment);

- on board environments (engine room) where the apparatus operate in the presence of vibrations characterized by considerable amplitude and duration.

In order to ensure the proper function in such environments, the shipping registers require that the apparatus has to be tested according to specific type approval tests, the most significant of which are vibration, dynamic inclination, humidity and dry-heat tests.

1 Standards

ABB SACE circuit-breakers (Isomax-Tmax-Emax) are approved by the following shipping registers:

RINA	Registro Italiano Navale	Italian shipping register
DNV	Det Norske Veritas	Norwegian shipping register
BV	Bureau Veritas	French shipping register
GL	Germanischer Lloyd	German shipping register
LRs	Lloyd's Register of Shipping	British shipping register
ABS	American Bureau of Shipping	American shipping register

t is always advisable to ask ABB SACE as regards the typologies and the performances of the certified circuit-breakers or to consult the section certificates in the website http://bol.it.abb.com

Marks of conformity to the relevant national and intemational Standards

The international and national marks of conformity are reported in the following table, for information only:

COUNTRY	Symbol	Mark designation	Applicability/Organization
EUROPE		-	Mark of compliance with the harmonized European standards listed in the ENEC Agreement.
AUSTRALIA		Electrical and non-electrical products. It guarantees compliance with SAA (Standard Association of Australia).	
AUSTRALIA		Standards Association of Australia (S.A.A.). The Electricity Authority of New South Wales Sydney Australia	
AUSTRIA		Austrian Test Mark	Installation equipment and materials

1 Standards

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
CROATIA		KONKAR	Electrical Engineering Institute
DENMARK		DEMKO Approval Mark	Low voltage materials. This mark guarantees the compliance of the product with the requirements (safety) of the "Heavy Current Regulations"
FINLAND		Safety Mark of the Elektriska Inspektoratet	Low voltage material. This mark guarantees the compliance of the product with the requirements (safety) of the "Heavy Current Regulations"
FRANCE	$\begin{aligned} & \text { CONTRÔLE NF } \\ & \text { LIMITĖA À LA SĖCURITĖ } \end{aligned}$	ESC Mark	Household appliances
FRANCE		NF Mark	Conductors and cables Conduits and ducting Installation materials
FRANCE	$\square \square^{\text {anemen }}$	NF Identification Thread	Cables
FRANCE		NF Mark	Portable motor-operated tools
FRANCE		NF Mark	Household appliances

1 Standards

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
ITALY		IMQ Mark	Mark to be affixed on electrical material for non-skilled users; it certifies compliance with the European Standard(s).
NORWAY		Norwegian Approval Mark	Mandatory safety approval for low voltage material and equipment
NETHERLANDS	KEMA KEMA-KEUR	KEMA-KEUR	General for all equipment
POLAND		KWE	Electrical products
RUSSIA	P	Certification of Conformity	Electrical and non-electrical products. It guarantees compliance with national standard (Gosstandard of Russia)
SINGAPORE		SISIR	Electrical and non-electrical products
SLOVENIA		SIQ	Slovenian Institute of Quality and Metrology
SPAIN		AEE	Electrical products. The mark is under the control of the Asociación Electrotécnica Española(Spanish Electrotechnical Association)

1 Standards

COUNTRY	Mark designation	Applicability/Organization	
SPAIN		Asociación Española de Normalización y Certificación. Spanish Standarization and Certification Association)	
SWEDEN		SEMKO Mark	Mandatory safety approval for low voltage material and equipment.
SWITZERLAND		Safety Mark	Swiss low voltage material subject to mandatory approval (safety).
SWITZERLAND			
SWITZERLAND			SEV Safety Mark

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
UNITED KINGDOM		BEAB Safety Mark	Compliance with the "British Standards" for household appliances
UNITED KINGDOM		BSI Safety Mark	Compliance with the "British Standards"
UNITED KINGDOM		BEAB Kitemark	Compliance with the relevant "British Standards" regarding safety and performances
U.S.A.		UNDERWRITERS LABORATORIES Mark	Electrical and non-electrical products
U.S.A.		UNDERWRITERS LABORATORIES Mark	Electrical and non-electrical products
U.S.A.		UL Recognition	Electrical and non-electrical products
CEN		CEN Mark	Mark issued by the European Committee for Standardization (CEN): it guarantees compliance with the European Standards.
CENELEC	$\langle\mathrm{HAR}\rangle$	Mark	Cables

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
CENELEC		Harmonization Mark	Certification mark providing assurance that the harmonized cable complies with the relevant harmonized CENELEC Standards -identification thread
EC		Ex EUROPEA Mark	Mark assuring the compliance with the relevant European Standards of the products to be used in environments with explosion hazards
CEEEl		CEEel Mark	Mark which is applicable to some household appliances (shavers, electric clocks, etc).

EC - Declaration of Conformity

The EC Declaration of Conformity is the statement of the manufacturer, who declares under his own responsibility that all the equipment, procedures or services refer and comply with specific standards (directives) or other normative documents.
The EC Declaration of Conformity should contain the following information:

- name and address of the manufacturer or by its European representative;
description of the product,
- reference to the harmonized standards and directives involved;
- any reference to the technical specifications of conformity;
- the two last digits of the year of affixing of the CE marking;
- identification of the signer.

A copy of the EC Declaration of Conformity shall be kept by the manufacturer or by his representative together with the technical documentation.

1 Standards

1.2 IEC Standards for electrical
installation

STANDARD	YEAR	TITLE
IEC 60027-1	1992	Letter symbols to be used in electrical technology - Part 1: General
IEC 60034-1	2004	Rotating electrical machines - Part 1: Rating and performance
IEC 60617-DB-12M	2001	Graphical symbols for diagrams - 12month subscription to online database comprising parts 2 to 11 of IEC 60617
IEC 61082-1	1991	Preparation of documents used in electrotechnology - Part 1: General requirements
IEC 61082-2	1993	Preparation of documents used in electrotechnology - Part 2: Functionoriented diagrams
IEC 61082-3	1993	Preparation of documents used in electrotechnology - Part 3: Connection diagrams, tables and lists
IEC 61082-4	1996	Preparation of documents used in electrotechnology - Part 4: Location and installation documents
IEC 60038	2002	IEC standard voltages
IEC 60664-1	2002	Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests
IEC 60909-0	2001	Short-circuit currents in three-phase a.c. systems - Part 0: Calculation of currents
IEC 60865-1	1993	Short-circuit currents - Calculation of effects - Part 1: Definitions and calculation methods
IEC 60781	1989	Application guide for calculation of shortcircuit currents in low-voltage radial systems
IEC 60076-1	2000	Power transformers - Part 1: General
IEC 60076-2	1993	Power transformers - Part 2: Temperature rise
IEC 60076-3	2000	Power transformers - Part 3: Insulation levels, dielectric tests and external clearances in air
IEC 60076-5	2006	Power transformers - Part 5: Ability to withstand short circuit
IEC/TR 60616	1978	Terminal and tapping markings for power transformers
IEC 60076-11	2004	Power transformers - Part 11: Dry-type transformers
IEC 60445	1999	Basic and safety principles for manmachine interface, marking and identification - Identification of equipment terminals and of terminations of certain designated conductors, including general rules for an alphanumeric system

1 Standards

STANDARD	YEAR	TITLE
IEC 60073	2002	Basic and safety principles for man- machine interface, marking and identification - Coding for indicators and actuators
IEC 60446	Basic and safety principles for man- machine interface, marking and identification - Identification of conductors by colours or numerals	
IEC 60447	Basic and safety principles for man- machine interface, marking and identification - Actuating principles	
IEC 60947-1	Low-voltage switchgear and controlgear - Part 1: General rules	
IEC 60947-2	2004	Low-voltage switchgear and controlgear - Part 2: Circuit-breakers
IEC 60947-3	Low-voltage switchgear and controlgear - Part 3: Switches, disconnectors, switch- disconnectors and fuse-combination units	
IEC 60947-4-1	2003	Low-voltage switchgear and controlgear -
Part 4-1: Contactors and motor-starters -		
Electromechanical contactors and motor-		
starters		

1 Standards

STANDARD	YEAR	TITLE
IEC 60947-5-6	1999	Low-voltage switchgear and controlgear Part 5-6: Control circuit devices and switching elements - DC interface for proximity sensors and switching amplifiers (NAMUR)
IEC 60947-6-1	2005	Low-voltage switchgear and controlgear Part 6-1: Multiple function equipment Automatic transfer switching equipment
IEC 60947-6-2	2002	Low-voltage switchgear and controlgear Part 6-2: Multiple function equipment Control and protective switching devices (or equipment) (CPS)
IEC 60947-7-1	2002	Low-voltage switchgear and controlgear Part 7: Ancillary equipment - Section 1: Terminal blocks for copper conductors
IEC 60947-7-2	2002	Low-voltage switchgear and controlgear Part 7: Ancillary equipment - Section 2: Protective conductor terminal blocks for copper conductors
IEC 60439-1	2004	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies
IEC 60439-2	2005	Low-voltage switchgear and controlgear assemblies - Part 2: Particular requirements for busbar trunking systems (busways)
IEC 60439-3	2001	Low-voltage switchgear and controlgear assemblies - Part 3: Particular requirements for low-voltage switchgear and controlgear assemblies intended to be installed in places where unskilled persons have access for their use Distribution boards
IEC 60439-4	2004	Low-voltage switchgear and controlgear assemblies - Part 4: Particular requirements for assemblies for construction sites (ACS)
IEC 60439-5	1998	Low-voltage switchgear and controlgear assemblies - Part 5: Particular requirements for assemblies intended to be installed outdoors in public places Cable distribution cabinets (CDCs) for power distribution in networks
IEC 61095	2000	Electromechanical contactors for household and similar purposes

1 Standards

STANDARD	YEAR	TITLE
IEC/TR 60890	1987	A method of temperature-rise assessmen by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear
IEC/TR 61117	1992	A method for assessing the short-circuit withstand strength of partially type-tested assemblies (PTTA)
IEC 60092-303	1980	Electrical installations in ships. Part 303: Equipment - Transformers for power and lighting
IEC 60092-301	1980	Electrical installations in ships. Part 301: Equipment - Generators and motors
IEC 60092-101	2002	Electrical installations in ships - Part 101: Definitions and general requirements
IEC 60092-401	1980	Electrical installations in ships. Part 401: Installation and test of completed installation
IEC 60092-201	1994	Electrical installations in ships - Part 201: System design - General
IEC 60092-202	1994	Electrical installations in ships - Part 202: System design - Protection
IEC 60092-302	1997	Electrical installations in ships - Part 302: Low-voltage switchgear and controlgear assemblies
IEC 60092-350	2001	Electrical installations in ships - Part 350: Shipboard power cables - General construction and test requirements
IEC 60092-352	2005	Electrical installations in ships - Part 352: Choice and installation of electrical cables
IEC 60364-5-52	2001	Electrical installations of buildings - Part 5-52: Selection and erection of electrical equipment - Wiring systems
IEC 60227		Polyvinyl chloride insulated cables of rated voltages up to and including 450/ 750 V
	1998	Part 1: General requirements
	2003	Part 2: Test methods
	1997	Part 3: Non-sheathed cables for fixed wiring
	1997	Part 4: Sheathed cables for fixed wiring
	2003	Part 5: Flexible cables (cords)
	2001	Part 6: Lift cables and cables for flexible connections
	2003	Part 7: Flexible cables screened and unscreened with two or more conductors
IEC 60228	2004	Conductors of insulated cables
IEC 60245		Rubber insulated cables - Rated voltages up to and including 450/750 V
	2003	Part 1: General requirements
	1998	Part 2: Test methods
	1994	Part 3: Heat resistant silicone insulated cables
	1994	Part 4: Cords and flexible cables

1 Standards

STANDARD	YEAR	TITLE
	2004	Part 4: Cord and flexible cables
	1994	Part 5: Lift cables
	1994	Part 6: Arc welding electrode cables
	1994	Part 7: Heat resistant ethylene-vinyl acetate rubber insulated cables
	2004	Part 8: Cords for applications requiring high flexibility
IEC 60309-2	2005	Plugs, socket-outlets and couplers for industrial purposes - Part 2: Dimensional interchangeability requirements for pin and contact-tube accessories
IEC 61008-1	2002	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs) Part 1: General rules
IEC 61008-2-1	1990	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB's). Part 2-1: Applicability of the general rules to RCCB's functionally independent of line voltage
IEC 61008-2-2	1990	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB's). Part 2-2: Applicability of the general rules to RCCB's functionally dependent on line voltage
IEC 61009-1	2003	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs) Part 1: General rules
IEC 61009-2-1	1991	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's) Part 2-1: Applicability of the general rules to RCBO's functionally independent of line voltage
IEC 61009-2-2	1991	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's) Part 2-2: Applicability of the general rules to RCBO's functionally dependent on line voltage
IEC 60670-1	2002	Boxes and enclosures for electrical accessories for household and similar fixed electrical installations - Part 1: General requirements
IEC 60669-2-1	2002	Switches for household and similar fixed electrical installations - Part 2-1: Particular requirements - Electronic switches
IEC 60669-2-2	2002	Switches for household and similar fixed electrical installations - Part 2: Particular requirements - Section 2: Remote-control switches (RCS)
IEC 60669-2-3	1997	Switches for household and similar fixed electrical installations - Part 2-3: Particular requirements - Time-delay switches (TDS)

1 Standards

STANDARD	YEAR	TITLE
IEC 60079-10	2002	Electrical apparatus for explosive gas atmospheres - Part 10: Classification of hazardous areas
IEC 60079-14	2002	Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines)
IEC 60079-17	2002	Electrical apparatus for explosive gas atmospheres - Part 17: Inspection and maintenance of electrical installations in hazardous areas (other than mines)
IEC 60269-1	2005	Low-voltage fuses - Part 1: General requirements
IEC 60269-2	1986	Low-voltage fuses. Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application)
IEC 60269-3-1	2004	Low-voltage fuses - Part 3-1: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) Sections I to IV: Examples of types of standardized fuses
IEC 60127-1/10		Miniature fuses -
	2003	Part 1: Definitions for miniature fuses and general requirements for miniature fuse-links
	2003	Part 2: Cartridge fuse-links
	1988	Part 3: Sub-miniature fuse-links
	2005	Part 4: Universal Modular Fuse-Links (UMF) Through-hole and surface mount types
	1988	Part 5: Guidelines for quality assessment of miniature fuse-links
	1994	Part 6: Fuse-holders for miniature cartridge fuse-links
	2001	Part 10: User guide for miniature fuses
IEC 60730-2-7	1990	Automatic electrical controls for household and similar use. Part 2-7: Particular requirements for timers and time switches
EC 60364-1	2005	Low-voltage electrical installations Part 1: Fundamental principles, assessment of general characteristics, definitions
IEC 60364-4-41	2005	Low-voltage electrical installations Part 4-41: Protection for safety Protection against electric shock
IEC 60364-4-42	2001	Electrical installations of buildings Part 4-42: Protection for safety Protection against thermal effects
IEC 60364-4-43	2001	Electrical installations of buildings Part 4-43: Protection for safety Protection against overcurrent

1 Standards

STANDARD	YEAR	TITLE
IEC 60364-4-44	2003	Electrical installations of buildings Part 4-44: Protection for safety Protection against voltage disturbances and electromagnetic disturbances
IEC 60364-5-51	2005	Electrical installations of buildings Part 5-51: Selection and erection of electrical equipment Common rules
IEC 60364-5-52	2001	Electrical installations of buildings Part 5-52: Selection and erection of electrical equipment Wiring systems
IEC 60364-5-53	2002	Electrical installations of buildings Part 5-53: Selection and erection of electrical equipment Isolation, switching and control
IEC 60364-5-54	2002	Electrical installations of buildings Part 5-54: Selection and erection of electrical equipment Earthing arrangements, protective conductors and protective bonding conductors
IEC 60364-5-55	2002	Electrical installations of buildings Part 5-55: Selection and erection of electrical equipment Other equipment
IEC 60364-6-61	2001	Electrical installations of buildings Part 6-61: Verification - Initial verification
IEC 60364-7	1984... 2005	Electrical installations of buildings Part 7: Requirements for special installations or locations
IEC 60529	2001	Degrees of protection provided by enclosures (IP Code)
IEC 61032	1997	Protection of persons and equipment by enclosures - Probes for verification
IEC/TR 61000-1-1	1992	Electromagnetic compatibility (EMC) Part 1: General - Section 1: application and interpretation of fundamental definitions and terms
IEC/TR 61000-1-2	2001	Electromagnetic compatibility (EMC) Part 1-2: General - Methodology for the achievement of the functional safety of electrical and electronic equipment with regard to electromagnetic phenomena
IEC/TR 61000-1-3	2002	Electromagnetic compatibility (EMC) Part 1-3: General - The effects of highaltitude EMP (HEMP) on civil equipment and systems

2.1 Circuit-breaker nameplates

Moulded-case circuit-breaker: Tmax

2 Protection and control devices

2 Protection and control devices

2.2 Main definitions

 Air circuit-breaker: Emax

The main definitions regarding LV switchgear and controlgear are included in the intemational Standards IEC 60947-1, IEC 60947-2 and IEC 60947-3.

Main characteristics

Circuit-breaker

A mechanical switching device, capable of making, camying and breaking currents under nomal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnormal circuit conditions such as those of short-circuit.

Current-limiting circuit-breaker

A circuit-breaker with a break-time short enough to prevent the short-circuit current reaching its otherwise attainable peak value.

Plug-in circuit-breaker

A circuit-breaker which, in addition to its interupting contacts, has a set of contacts which enable the circuit-breaker to be removed

Withdrawable circuit-breake

A circuit-breaker which, in addition to its intemupting contacts, has a set of isolating contacts which enable the circuit-breaker to be disconnected from the main circuit, in the withdrawn position, to achieve an isolating distance in accordance with specified requirements.

Moulded-case circuit-breaker

A circuit-breaker having a supporting housing of moulded insulating material forming an integral part of the circuit-breaker.

Disconnector

A mechanical switching device which, in the open position, complies with the requirements specified for the isolating function
Release
A device, mechanically connected to a mechanical switching device, which releases the holding means and permits the opening or the closing of the switching device.

Fault types and currents

Overload

Operating conditions in an electrically undamaged circuit which cause an over current.

Short-circuit

The accidental or intentional connection, by a relatively low resistance or impedance, of two or more points in a circuit which are normally at different voltages.

Residual current (I_{Δ})

It is the vectorial sum of the currents flowing in the main circuit of the circuit breaker.

2 Protection and control devices

Rated performances

Voltages and frequencies

Rated operational voltage (U_{e})

A rated operational voltage of an equipment is a value of voltage which combined with a rated operational current, determines the application of the equipment and to which the relevant tests and the utilization categories are referred to.
Rated insulation voltage ($\mathbf{U}_{\mathbf{i}}$)
The rated insulation voltage of an equipment is the value of voltage to which dielectric tests voltage and creepage distances are referred. In no case the maximum value of the rated operational voltage shall exceed that of the rated insulation voltage.
Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$)
The peak value of an impulse voltage of prescribed form and polarity which the equipment is capable of withstanding without failure under specified conditions of test and to which the values of the clearances are referred

Rated frequency

The supply frequency for which an equipment is designed and to which the other characteristic values correspond.

Currents

Rated uninterrupted current ($\mathbf{I}_{\mathbf{u}}$)

The rated unintermpted current of an equipment is a value of current, stated by the manufacturer, which the equipment can camy in unintemupted duty Rated residual operating current ($\mathbf{I}_{\Delta n}$)
It is the r.m.s. value of a sinusoidal residual operating current assigned to the CBR by the manufacturer, at which the CBR shall operate under specified conditions.

Performances under short-circuit conditions

Rated making capacity

The rated making capacity of an equipment is a value of current, stated by the manufacturer, which the equipment can satisfactorily make under specified making conditions

Rated breaking capacity

The rated breaking of an equipment is a value of current, stated by the manufacturer, which the equipment can satisfactorily break, under specified breaking conditions.

2 Protection and control devices

Rated ultimate short-circuit breaking capacity ($\mathbf{l c u}_{\text {cu }}$)

The rated ultimate short-circuit breaking capacity of a circuit-breaker is the maximum short-circuit current value which the circuit-breaker can break twice (in accordance with the sequence $\mathrm{O}-\mathrm{t}-\mathrm{CO}$), at the corresponding rated perational voltage. After the opening and closing sequence the circuit-breaker is not required to carry its rated current

Rated senvice short-circuit breaking capacity (\mathbf{I}_{cs})

The rated service short-circuit breaking capacity of a circuit-breaker is the maximum short-circuit current value which the circuit-breaker can break three times in accordance with a sequence of opening and closing operations ($\mathrm{O}-\mathrm{t}$ CO - $\mathrm{t}-\mathrm{CO}$) at a defined rated operational voltage $\left(\mathrm{U}_{\mathrm{e}}\right)$ and at a defined power factor. After this sequence the circuit-breaker is required to cary its rated current.

Rated short-time withstand current (I_{cw})

The rated short-time withstand current is the current that the circuit-breaker in the closed position can camy during a specified short time under prescribed conditions of use and behaviour; the circuit-breaker shall be able to carry this current during the associated short-time delay in order to ensure discrimination between the circuit-breakers in series.

Rated short-circuit making capacity (\mathbf{I}_{cm})

The rated short-circuit making capacity of an equipment is the value of short circuit making capacity assigned to that equipment by the manufacturer for the rated operational voltage, at rated frequency, and at a specified power-factor for ac.

Utilization categories

The utilization category of a circuit-breaker shall be stated with reference to whether or not it is specifically intended for selectivity by means of an intentional time delay with respect to other circuit-breakers in series on the load side under short-circuit conditions (Table 4 IEC 60947-2).

Category A - Circuit-breakers not specifically intended for selectivity under short-circuit conditions with respect to other short-circuit protective devices in series on the load side, i.e. without a short-time withstand current rating

Category B - Circuit-breakers specifically intended for selectivity under short circuit conditions with respect to other short-circuit protective devices in series on the load side, i.e. with and intentional short-time delay provided for selectivity under short-circuit conditions. Such circuit-breakers have a short-time withstand current rating

2 Protection and control devices

A circuit-breaker is classified in category B if its I_{cw} is higher than (Table 3 IEC 60947-2):
2. In or 5 kA , whichever is the greater
for $\ln \leq 2500$ A
30 kA
for In $>2500 \mathrm{~A}$

Electrical and mechanical durability

Mechanical durability

The mechanical durability of an apparatus is expressed by the number of no oad operating cycles (each operating cycle consists of one closing and opening operation) which can be effected before it becomes necessary to service or replace any of its mechanical parts (however, normal maintenance may be permitted).

Electrical durability

The electrical durability of an apparatus is expressed by the number of on-load operating cycles and gives the contact resistance to electrical wear under the service conditions stated in the relevant product Standard.

2.3 Types of releases

A circuit-breaker must control and protect, in case of faults or malfunctioning the connected elements of a plant. In order to perform this function, after detection of an anomalous condition, the release intervenes in a definite time by opening the intemupting part
The protection releases fitted with ABB SACE moulded-case and air circuitbreakers can control and protect any plant, from the simplest ones to those

2 Protection and control devices

with particular requirements, thanks to their wide setting possibilities of both hresholds and tripping times.
Among the devices sensitive to overcurrents, the following can be considered
thermomagnetic releases and magnetic only releases
microprocessor-based releases,
residual current devices.
he choice and adjusting of protection releases are based both on th equirements of the part of plant to be protected, as well as on the coordination with other devices; in general, discriminating factors for the selection are the required threshold, time and curve characteristic.

2.3.1 THERMOMAGNETIC RELEASES AND MAGNETIC ONLY RELEASES

The thermomagnetic releases use a bimetal and an electromagnet to detect verloads and short-circuits; they are suitable to protect both alternating and direct current networks.

The following table shows the available rated currents and the relevant magnetic settings.

*Note: TMD Thermomagnetic release with adjustable thermal and fixed magnetic threshold
TMA Thermomagnetic release with adjustable thermal and magnetic threshold
TMG Thermomagnetic release for generator protection
MA Adjustable magnetic only release
MF Fixed magnetic only releases

2 Protection and control devices

For example, a circuit-breaker type T2, with rated current In equal to 2.5 A , is available in two versions:
thermomagnetic with adjustable thermal current I_{1} from 1.8 up to 2.5 A and fixed magnetic current I_{3} equal to 25 A ;
fixed magnetic only releases (MF) with I_{3} equal to 33 A .

2.3.2 ELECTRONIC RELEASES

These releases are connected with current transfomers (three or four according to the number of conductors to be protected), which are positioned inside the circuit-breaker and have the double functions of supplying the power necessary to the proper functioning of the release (self-supply) and of detecting the value of the current flowing inside the live conductors; therefore they are compatible with alternating current networks only.
The signal coming from the transformers and from the Rogowsky coils is processed by the electronic component (microprocessor) which compares it with the set thresholds. When the signal exceeds the thresholds, the trip of the circuit-breaker is operated through an opening solenoid which directly acts on the circuit-breaker operating mechanism.
In case of auxiliary power supply in addition to self-supply from the current transformers, the voltage shall be $24 \mathrm{Vdc} \pm 20 \%$.

2 Protection and control devices

Besides the standard protection functions, releases provide: measuraments of currents (PR222, PR232, PR331, PR121);
measurament of currents,voltage,frequency,power,energy,power factor (PR223,PR332,PR122) and moreover for PR333 and PR123, the measurement of harmonic distortions is available;
serial comunication with remote control for a complete management of the plant (PR212, PR222, PR223, PR232, PR331, PR332, PR333, PR121, PR122, PR123).

CURRENT TRANSFORMER SIZE

Rated curren] \rightarrow	10	25	63	100	160	250	320	400	630	800	1000	1250	1600
Circuit-breaker	$\mathrm{lu}[\mathrm{A}]$													
T2	160	-	-		-	-								
T4	250				\square	\square	\square							
	320				-	-	\square	-						
T5	400							-	,					
	630							-	1	-				
T6	630									-				
	800										-			
	1000											-		
77	800								\square	-	-			
	1000								\square	\square	\square	\square		
	1250								\square	\square	-	\square	\square	
	1600								\square	\square	\square	\square	\square	-
S7	1250											-	-	
	1600													-

Rated Current In		10	25	63	100	160	200	250	320	400	630	800	1000	1250	1600
	PR221	4.10	10-25	25-63	40-100	64-160		100-250	128-320	160-400	252-630	320-80	400-1000		
	PR222				40-100	64-160		100-250	128-320	160-400	252-630	320-800	400-1000		
	PR223				18-100	28.8-160		45-250	57.6-320	72-400	113.4630	$144-800$	180-1000		
	PR231									160-400	252-630	320-800	400-1000	500-1250	640-1600
L	PR232									160-400	252-630	320-800	400-1000	$500-1250$	640-1600
function	PR331									160-400	252-630	320-800	400-1000	500-1250	640-1600
	PR332									160-400	252-630	320-800	400-1000	500-1250	640-1600
	PR211/PR212												400-1000	500-1250	640-1600
	PR222/MP				40-100	64-160	80-200		128-320	160-400	252-630				
	PR212/MP												400-1000		
	PR221	10-100	25-250	63-630	100-1000	160-1600		250-2500	320-3200	400-4000	630-6300	800-8000	1000-10000		
	PR222				60-1000	96-1600		150-2500	192-3200	240-4000	378.6300	480-8000	600-10000		
	PR223				60-1000	96-1600		150-2500	192-3200	240-4000	378.6300	$480-8000$	600-10000		
s	PR231									400-4000	$630-6300$	800-8000	1000-10000	1250-12500	1600-16000
function	PR232									240-4000	378.6300	$480-8000$	600-10000	750-12500	960-16000
	PR331									240-4000	378.6300	$480-8000$	600-10000	750-12500	960-16000
	PR332									240-4000	378-6300	480-8000	600-10000	750-12500	960-16000
	PR211/PR212												1000-10000	1250-12500	1600-16000
	PR221	10-100	25-250	63-630	100-1000	160-1600		250-2500	320-3200	400-4000	630-6300	800-8000	1000-10000		
	PR222				150-1200	240-1920		375-3000	480-3840	600-4800	945-7560	1200-9600	1500-12000		
	PR223				150-1200	240-1920		375-3000	480-3840	600-4800	945-7560	1200-9600	1500-12000		
	PR231									400-4800	630-7560	800-9600	1000-12000	1250-15000	1600-19200
1	PR232									600-4800	945-7560	1200-9600	1500-12000	1875-15000	2400-19200
function	PR331									600-6000	945-9450	1200-12000	1500-15000	1875-15000	2400-19200
	PR332									600-6000	945-9450	1200-12000	1500-15000	1875-15000	2400-19200
	PR211/PR212													2875-15000	2400-19200
	PR222/MP				600-1300	960-2080	1200-2600		1920-4160	2400-5200	3780-8190		6000-13000		
	PR212/MP												6000-13000		

2 Protection and control devices

CURRENT TRANSFORMER SIZE

2 Protection and control devices

2.3.2.1 PROTECTION FUNCTIONS OF ELECTRONIC RELEASES

The protection functions available for the electronic releases are:

- Overload protection with inverse long time delay

Function of protection against overloads with inverse long time delay and constant specific let-through energy; it cannot be excluded.
L - Overload protection in compliance with Std. IEC 60255-3
Function of protection against overloads with inverse long time delay and trip curves complying with IEC 60255-3; applicable in the coordination with fuse and with medium voltage protections
S - Short-circuit protection with adjustable delay
unction of protection against short-circuit currents with adjustable delay; thank to the adjustable delay, this protection is particularly useful when it is necessary to obtain selective coordination between different devices.
$\mathbf{S}_{\mathbf{2}}$ - Double \mathbf{S}
This function allows two thresholds of protection function S to be set independently and activated simultaneously, selectivity can also be achieved under highly critical conditions.

- Directional short-circuit protection with adjustable delay

The directional protection, which is similar to function S , can intervene in a different way according to the direction of the short-circuit current; particularly suitable in meshed networks or with multiple supply lines in paralle.

- Short-circuit protection with instantaneous trip

Function for the instantaneous protection against short-circuit.
EFDP - Early Fault Detection and Prevention
Thanks to this function, the release is able to isolate a fault in shorter times than the zone selectivities currently available on the market

Rc - Residual current protection

This function is particularly suitable where low-sensitivity residual curren protection is required and for high-sensitivity applications to protect people gainst indirect contact.
G - Earth fault protection with adjustable delay
Function protecting the plant against earth faults.
\mathbf{U} - Phase unbalance protection
Protection function which intervenes when an excessive unbalance between the currents of the single phases protected by the circuit-breaker is detected.

Rated current in $[\mathrm{A}] \rightarrow$		400	630	800$320 \div 800$	1000	1250	1600	2000	2500	3200	4000	5000	6300
$\begin{gathered} \hline \mathbf{L} \\ \text { Function } \end{gathered}$	PR121/PR122/PR123 PR331/PR332/PR333	$160 \div 400$	252 630		1000	500 $\div 1250$	640 $\div 1600$	800 2000	1000 -2500	1280 -3200	1600 $\div 4000$	2000 -5000	2520 -6300
S	PR121	400 $\div 4000$	630 $\div 6300$	800 $\div 8000$	1000 $\div 10000$	1250 $\div 12500$	1600 $\div 16000$	2000 $\div 20000$	2500 -25000	3200 $\div 32000$	4000 $\div 40000$	5000 $\div 50000$	6300 -63000
Function	PR122/PR123 PR331/PR332/PR333	240 $\div 4000$	378 $\div 6300$	480 $\div 8000$	600 $\div 10000$	750 $\div 12500$	960 -16000	1200 -20000	1500 $\div 25000$	1920 $\div 32000$	2400 $\div 40000$	3000 $\div 50000$	3780 $\div 63000$
$\begin{gathered} \hline \text { I } \\ \text { Function } \\ \hline \end{gathered}$	PR121/PR122/PR123 PR331/PR332/PR333	600 6000	945 $\div 9450$	1200 12000	$1500 \div 15000$	1875 -18750	2400 24000	3000 $\div 30000$	3750 37500	4800 $\div 48000$	6000 $\div 60000$	7500 75000	9450 944500

2 Protection and control devices

OT - Self-protection against overtemperature
Protection function controlling the opening of the circuit-breaker when the tem perature inside the release can jeopardize its functioning.

UV - Undervoltage protection

Protection function which intervenes when the phase voltage drops below the preset threshold.

OV - Overvoltage protection
rotection function which intervenes when the phase voltage exceeds the prese threshold.
RV - Residual voltage protection
Protection which identifies anomalous voltages on the neutral conductor. RP - Reverse power protection
Protection which intervenes when the direction of the active power is opposite o normal operation.
UF - Under frequency protection
This frequency protection detects the reduction of network frequency above the adjustable threshold, generating an alarm or opening the circuit.
OF - Overfrequency protection
This frequency protection detects the increase of network frequency above the adjustable threshold, generating an alarm or opening the circuit

M - Thermal memory

Thanks to this function, it is possible to take into account the heating of a component so that the tripping is the quicker the less time has elapsed since the last one.
R - Protection against rotor blockage
unction intervening as soon as conditions are detected, which could lead to the block of the rotor of the protected motor during operation.
linst - Very fast instantaneous protection against short-circuit
This particular protection function has the aim of maintaining the integrity of the circuit-breaker and of the plant in case of high currents requiring delays lower than those guaranteed by the protection against instantaneous short-circuit This protection must be set exclusively by ABB SACE and cannot be excluded.

Dual setting

With this function it is possible to program two different sets of parameters (LSIG) and, through an extemal command, to switch from one set to the other K - Load contro
Thanks to this function, it is possible to engage/disengage individual loads on the load side before the overload protection L trips.

2 Protection and control devices

The following table summarizes the types of electronic release and the functions hey implement:

O Only with PR120/V for Emax and PR330/V for X1

2 Protection and control devices

2.3.3 RESIDUAL CURRENT DEVICES

The residual current releases are associated with the circuit-breaker in order to obtain two main functions in a single device:
protection against overloads and short-circuits;
protection against indirect contacts (presence of voltage on exposed conductive parts due to loss of insulation).
 deriving from the evolution of small fault or leakage currents which are not rload
are also used as a means for additional protection ant not exceeding 30 mA Their logic is based on the detection of the vectorial sum of the line currents through an intemal or external toroid
This sum is zero under service conditions or equal to the earth fault current (I in case of earth fault.

When the release detects a residual current different from zero, it opens the circuit-breaker through an opening solenoid.

As we can see in the picture the protection conductor or the equipotential conductor have to be installed outside the eventual external toroid

Generic distribution system (IT, TT, TN)

The operating principle of the residual current release makes it suitable for the distribution systems TT, IT (even if paying particular attention to the latter) and TN-S, but not in the systems TN-C. In fact, in these systems, the neutral is used also as protective conductor and therefore the detection of the residual current would not be possible if the neutral passes through the toroid, since the vectorial sum of the currents would always be equal to zero.

2 Protection and control devices

One of the main characteristics of a residual current release is its minimum rated residual current $\mathrm{I}_{\Delta \mathrm{r}}$. This represents the sensitivity of the release
According to their sensitivity to the fault current, the residual current circuitbreakers are classified as:
type AC: a residual current device for which tripping is ensured in case of residual sinusoidal altemating current, in the absence of a dc component whether suddenly applied or slowly rising:
type A: a residual current device for which tripping is ensured for residua sinusoidal altemating currents in the presence of specified residual pulsating direct currents, whether suddenly applied or slowly rising.
type B residual current device for which tripping is ensured for residua sinusoidal alternating currents in presence of specified residual pulsanting direct currents whether suddenly applied or slowy rising, for residual directs may result from rectifying circuits

	Form of residual current	Correct functioning of residual current devices Type		
Sinusoidal ac	$\bigcap_{\text {slowly rising }}^{\text {suddenly applied }}$	AC $+$	A	B
Pulsating dc	suddenly applied $\xrightarrow[\text { with or without } \uparrow \text { 0,006A }]{\Omega}$ $\underbrace{\Omega \Omega}_{\text {slowiy nising }}$		+	+
Smooth dc				+

In presence of electrical apparatuses with electronic components (computers photocopiers, fax etc.) the earth fault current might assume a non sinusoidal shape but a type of a pulsating unidirectional dc shape. In these cases it is necessary to use a residual current release classified as type A.
In presence of rectifying circuits (i.e. single phase connection with capacitive oad causing smooth direct current, three pulse star connection or six pulse bridge connection, two pulse connection line-to-line) the earth fault current might assume a unidirectional dc shape

2 Protection and control devices

In this case it is necessary to use a residual current release classified as type B The following table shows the main characteristics of ABB SACE residual curren devices; they can be mounted both on circuit-breakers as well as on switch disconnectors (in case of fault currents to earth lower than the apparatus breaking capacity), are type A devices and they do not need auxiliary supply since they are self-supplied.

	RC221		RC222	
Suitable for circuit-breaker type	T1-T2-T3	T1-T2-T3	T4	T5
	T1D-T3D	T1D-T3D	T4D	T5D
Primary service voltage [V]	85-500	85-500	85-500	85-500
Rated service current [A]	250	250	250	400
Rated residual current trip $I \Delta_{\mathrm{n}}$ [A]	$\begin{gathered} 0.03-0.1-0.3- \\ 0.5-1-3 \end{gathered}$	$\begin{gathered} \hline 0.03-0.05-0.1- \\ 0.3-0.5-1 \end{gathered}$	$\begin{gathered} 0.03-0.05-0.1- \\ 0.3-0.5-1 \end{gathered}$	$\begin{gathered} 0.03-0.05-0.1- \\ 0.3-0.5-1 \end{gathered}$
		3-5-10	3-5-10	3-5-10
Time limit for non-trip (at $2 \times 1 \Delta_{\mathrm{n}}$) [s]	Instantaneous	Inst.-0.1-0.2-	Inst.-0.1-0.2-	Inst.-0.1-0.2-
		0.3-0.5-1-2-3	0.3-0.5-1-2-3	0.3-0.5-1-2-3
Tolerance over trip times [\%]		± 20	± 20	± 20

Note: for detailed information, please consult the relevant technical catalogues
Emax air circuit-breakers can be equipped with a toroid fitted on the back of he circuit-breaker so as to ensure protection against earth faults. In particular, the electronic release types able to perform this function are
PR122/P LSIRc-PR332/P LSIRc with homopolar toroid
PR122/P LSIG-PR332/P LSIG with "Measuring module" and homopolar toroid - PR123/P LSIG-PR333/P LSIG with homopolar toroid
which can all be provided for the following types of circuit-breakers: X1-E2 and E3, both three and four pole version, and E4 (three pole version).
Along with the family of residual current releases illustrated previously, ABB SACE is developing the RC223 (B type) residual current release, which can only be combined with the Tmax T4 four-pole circuit-breaker in the fixed or plug-in version. It is characterized by the same types of reference as the RC222 (S and AE type) release, but can also boast conformity with type B operation which guarantees sensitivity to residual fault currents with alternating, alternating pulsating and direct current components.
Apart from the signals and settings typical of the RC222 residual current release the RC223 also allows selection of the maximum threshold of sensitivity to the residual fault frequency (3 steps: $400-700-1000 \mathrm{~Hz}$). It is therefore possible to adapt the residual current device to the different requirements of the industrial plant according to the prospective fault frequencies generated on the load side of the release.

2 Protection and control devices

ABB SACE moulded-case circuit-breakers series Isomax ${ }^{1}$ and Tmax and air ircuit-breakers series Emax ${ }^{1}$ can be combined with the switchboard residual current relay type RCQ, type A, with separate toroid (to be installed extemally on the line conductors)
up to 2000 A rated currents

RCQ		
Power supply voltage ac	[V]	$80 \div 500$
dc	[V]	48 125
Trip threshold adjustements $I_{\Delta n}$ 1st range of adjustements	[A]	$0.03-0.05-0.1-0.3-0.5$
2nd range of adjustements	[A]	1-3-5-10-30
Trip time adjustement	[s]	$\begin{gathered} 0-0.1-0.2-0.3-0.5- \\ 0.7-1-2-3-5 \end{gathered}$
Tolerance over Trip times	[\%]	± 20

olerance over Trip times [\%] ± 20
Note: for detailed information, please consult the relevant technical catalogues.
The versions with adjustable trip times allow to obtain a residual current protection system coordinated from a discrimination point of view, from the main switchboard up to the ultimate load.

3 General characteristics

SACE Isomax moulded-case circuit-breakers

3 General characteristics

KEY TO TERMINALS
$\mathrm{F}=$ Front
$\mathrm{EF}=\mathrm{Extended}$ front
ES = Extended spreaded front

3 General characteristics
Tmax moulded-case circuit-breakers for motor protection

| | Protection | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | |

3 General characteristics

3 General characteristics

SACE Isomax moulded-case circuit-breakers for motor protection

Rated uninterupted, lu		[A]
Rated current, In		[A]
Poles		No
Rated operational voltage (ac) $50-60 \mathrm{~Hz}$, Ue		[${ }^{\text {] }}$
Rated impulse withstand voltage, Uimp		[kV]
Rated insulation voltage, Ui		[V]
Test voltage at industrial frequency for 1 minute		[V]
Rated ultimate short-circuit braking capacity, Icu		
(ac) $50-60 \mathrm{~Hz} 220 / 230 \mathrm{~V}$		[kA]
(ac) $50-60 \mathrm{~Hz} \mathrm{380/415V}$		[kA]
(ac) $50-60 \mathrm{~Hz} 440 \mathrm{~V}$		[kA]
(ac) $50-60 \mathrm{~Hz} 500 \mathrm{~V}$		[kA]
(ac) $50-60 \mathrm{~Hz} 690 \mathrm{~V}$		[kA]
Rated service short-circuit braking capacity, lcs		[\%1cu]
Rated short-circuit making capacity (415Vac), Icm		[kA]
Opening time (415Vac at Icu)		
Utilization category (EN 60947-2)		
linsulation behaviour		
Reference standard		
IEC 60947-2, EN60947-2		
IEC 60947-4-1, EN60947-4-1		
Microprocessor-based release		
Interchangeability		
Versions		
Terminals		
Fixed		
Plug-in		
Withdrawable		
Mechanical life	[N o. of operations]	
	[Operations per hour]	
	L[mm]	
	D [mm]	
Basic dimensions, fixed 3 poles $\mathrm{H}[\mathrm{mm}]$		
	3 poles fixed [kg]	
	3 poles plug-in [kg]	
Weight	3 poles withdrawable [kg]	
KEY TO VERSIONS	KEY TO TERMINALS	FC CuAl = Front for copper
$\mathrm{F}=$ Fixed	$\mathrm{F}=$ Front	or aluminium cables
$\mathrm{P}=$ Plug-in	EF $=$ Extended front	$\mathrm{R}=$ Rear threaded
W= Withdrawable	$\mathrm{ES}=$ Extended spreaded	

3 General characteristics

3 General characteristics

3 General characteristics

Performance levels		
Currents: rated uninterrupied current (at $40^{\circ} \mathrm{C}$) L	[A]	
	[A]	
Neutral pole currentcaraning capacity for 3 .pole CBs	[\%/u]	
Rated dutimate breaking capacity under shortcticicit cu		
2202301380400415 V -	[kA]	
440 V -	[kA]	
$500522 \mathrm{~V} \sim$	[kA]	
660690 V -	[kA]	
Rated senicie breaking capacity under shor-c-ircuitl cs		
2202303380400415 V -	[ka]	
440 V -	[ka]	
$500525 \mathrm{~V} \sim$	[kA]	
660690 V ~	[ka]	
Ratee shortitime wihtstand curenentcw	${ }^{[k A]}$	
	[kA]	
Rated making capacity under short-cicuitit (peak value) lcm		
2202303880400415 V ~	[kA]	
440 V -	[kA]	
500525 V	[kA]	
660690 V -	[kA]	
Uutilistion category (acoording to CEI EN 60947 -2)		
Isolation behaviour (according to CEI EN 60947-2)		
Overcurrent protection		
Electronic releases for AC appliciaions		
Operating times		
Closing time (max)	[ms]	
Breaking time for K klew (max) ${ }^{\text {(1) }}$	[ms]	
Breaking fine for $\$ low (max) & [ms] \hline \multicolumn{2}{\|l	}{Overall dimensions} \hline F xed: $\mathrm{H}=418 \mathrm{~mm} \cdot \mathrm{D}=302 \mathrm{mmL}$ L 34 poles)	[mm]
W thrawable: $\mathrm{H}=461 \mathrm{~mm} \cdot \mathrm{D}=39.5 \mathrm{mmL}$ (34 poles)	[mm]	
Weights (circuitrbeaker complete with reeases and CTs, including accessoies)		
Fixed 34 poles	[kg]	
W thrawable 344 poles (including fixed part)	[kg]	

SACE Emax air circuit-breakers		X1			E1 B-N		
Rated uninterrupted current (at $40^{\circ} \mathrm{C}$) lu	[A]	800	1250	1600	800	1000-1250	1600
Mechanical life with regular ordinary maintenance	[No. operations x 1000]	12.5	12.5	12.5	25	25	25
Operation frequency	[Operations/hour]	60	60	60	60	60	60
Electrical life $\quad 16$	$440 \mathrm{~V} \sim$) [No. operations x 1000]	6	4	3	10	10	10
	$690 \mathrm{~V} \sim$ [[No. operations x 1000]	3	2	1	10	8	8
Operation frequency	[Operations/hour]	30	30	30	30	30	30

X1			E1		E2				E3					E4			E6	
B	N	L	B	,	B	N	s	L	N	5	H	,	L	S	H	,	H	V
630	630	630	800	800	1600	1000	800	1250	2500	1000	800	800	2000	4000	3200	3200	4000	3200
800	800	800	1000	1000	2000	1250	1000	1600	3200	1250	1000	1250	2500		4000	4000	5000	4000
1000	1000	1000	1250	1250		1600	1250			1600	1250	1600					6300	5000
1250	1250	1250	1600	1600		2000	1600			2000	160	2000						6300
1600	1600						2000			2500	200	2500						
										3200	250	3200						
											3200							
100	100	100	100	100	100	100	100	100	100	100	100	100	100	50	50	50	50	50
42	65	150	42	50	42	65	85	130	65	75	100	130	130	75	100	150	100	150
42	65	130	42	50	42	65	85	110	65	75	100	130	110	75	100	150	100	150
42	50	100	42	50	42	55	65	85	65	75	100	100	85	75	100	130	100	130
42	50	60	42	50	42	55	65	85	65	75	859	100	85	75	$85^{2 /}$	100	100	100
42	50	150	42	50	42	65	85	130	65	75	85	100	130	75	100	125	100	125
42	50	130	42	50	42	65	85	110	65	75	85	100	110	75	100	125	100	125
42	42	100	42	50	42	55	65	65	65	75	85	85	65	75	100	130	100	100
42	42	45	42	50	42	55	65	65	65	75	85	85	65	75	85	100	100	100
42	42	15	42	50	42	55	65	10	65	75	75	85	15	75	100	100	100	100
			36	36	42	42	42	-	65	65	65	65	-	75	75	75	85	25
$\begin{array}{\|l} \hline 88.2 \\ \hline 88.2 \\ \hline \end{array}$	143	330	88.2	105	88.2	143	187	286	143	165	220	286	286	165	220	330	220	330
	143	286	88.2	105	88.2	143	187	242	143	165	220	286	242	165	220	330	220	330
88.2	121	220	75.6	75.6	84	121	143	187	143	165	187	220	187	165	220	286	220	286
88.2	121	132	75.6	75.6	84	121	143	187	143	165	187	220	187	165	187	220	220	220
${ }^{\text {B }}$	B	A	B	B	B	B	-	A	B	8	B	B	A	B	B	B	B	B
	■	■	■	\square	■	■	■	■	\square	\square	\square	\square	\square	\square	■	\square	\square	\square
\square	\square	\square	\square	\square	\square	■	\square											
80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70	70
	30	12	30	30	30	30	30	12	30	30	30	30	12	30	30	30	30	30
30	$\frac{210280}{284354}$			63886		2963	6386				404530				566656			
			324414		324414					432558				594684			810936	
$11 / 14$			4554	4554	5061	50615	5061	5263	6680	6680	6680	6680	7283	97/117	977117	97/117	140160	140160
3242.6			7082	7082	7893	78937	7893	88095	104125	104125	104125	104125	110127	1471/165	147165	1471/165	210260	210240

E2 B-N-S E2L E3 N-S-H-V E3L E4 S-H-V E6 H-V

| $8001000-125016002000$ | 1250 | 1600 | 800 | $1000-1250$ | 1600 | 2000 | 2500 | 3200 | 2000 | 2500 | 3200 | 4000 | 320040005000 | 6300 |
| :--- |

25	25	25	25	20	20	20	20	20	20	20	20	15	15	15	15	12	12	12	12
60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60	60
15	15	12	10	4	3	12	12	10	9	8	6	2	1.8	7	5	5	4	3	2
15	15	10	8	3	2	12	12	10	9	7	5	1.5	1.3	7	4	5	4	2	1.5
30	30	30	30	20	20	20	20	20	20	20	20	20	20	10	10	10	10	10	10

3 General characteristics

SACE Emax air circuit-breakers with full-size neutral conductor

		E4S/f	E4H/f	E6H/f
Rated uninterrupted current (at $40{ }^{\circ} \mathrm{C}$) lu	[A]	4000	3200	4000
	[A]		4000	5000
				6300
Number of poles		4	4	4
Rated operational voltage Ue	[V ~]	690	690	690
Rated ultimate short-circuit breaking capacity Icu				
220/230/380/400/415 V ~	[kA]	80	100	100
440 V ~	[kA]	80	100	100
$500 / 525 \mathrm{~V}$ ~	[kA]	75	100	100
660/690 V ~	[kA]	75	100	100
Rated service short-circuit breaking capacity Ics				
220/230/380/400/415 V ~	[kA]	80	100	100
440 V ~	[kA]	80	100	100
$500 / 525 \mathrm{~V}$ ~	[kA]	75	100	100
660/690 V ~	[kA]	75	100	100
Rated short-time withstand current Icw				
(1s)	[kA]	75	85	100
(3s)	[kA]	75	75	85
Rated short-circuit making capacity Icm				
220/230/380/400/415 V ~	[kA]	176	220	220
440 V ~	[kA]	176	220	220
$500 / 525 \mathrm{~V}$ ~	[kA]	165	220	220
660/690 V ~	[kA]	165	220	220
Utilization category (in accordance with IEC 60947-2)		B	B	B
Isolation behavior (in accordance with IEC 60947-2)		\square	\square	\square
Overall dimensions				
Fixed: $\mathrm{H}=418 \mathrm{~mm}-\mathrm{D}=302 \mathrm{~mm} \mathrm{~L}$	[mm]	746	746	1034
Withdrawable: $\mathrm{H}=461-\mathrm{D}=396.5 \mathrm{~mm} \mathrm{~L}$	[mm]	774	774	1062
Weight (circuit-breaker complete with releases and CT, not including accessories)				
Fixed	[kg]	120	120	165
Withdrawable (including fixed part)	[kg]	170	170	250

3 General characteristics

3.2 Trip curves

3.2.1 Trip curves of thermomagnetic and magnetic only releases

The overload protection function must not trip the breaker in 2 hours for current values which are lower than 1.05 times the set current, and must trip within 1.3 imes the set current. By "cold trip conditions", it is meant that the overload occurs when the circuit-breaker has not reached normal working temperature no curent flows through the circuit-breaker before the anomalous condition occurs); on the contrary "hot trip conditions" refer to the circuit-breaker having reached the normal working temperature with the rated current flowing through before the overload current occurs. For this reason "cold trip conditions" times re always greater than "hot trip conditions" times
the protection function against short-circuit is represented in the time-curren urve by a vertical line, corresponding to the rated value of the trip threshold 13 In accordance with the Standard IEC 60947-2, the real value of this threshold is within the range $0.8 \cdot 13$ and $1.2 \cdot 13$. The trip time of this protection varies ccording to the electrical characteristics of the fault and the presence of other evices. it is notpossible to represent the envelope of all the possible situation a sufficiently clear way in this curve; therefore it is better to use a single straight line, parallel to the current axis. All the information relevant to this trip area and useful for the sizing and coordination of the plant are represented in the limitation curve and in the curves for the specific let-through energy of the circuit-breaker under short-circuit conditions.

3 General characteristics

Trip curve
thermomagnetic
release
T1 160 TMD

In $=16 \div 63 \mathrm{~A}$
t [s]

Trip curve
thermomagnetic
release
T1 160 TMD
$\mathrm{In}=16 \div 63 \mathrm{~A}$

3 General characteristics

3 General characteristics
Trip curve thermomagnetic release T1 160 TMD ln $=80 \div 160 \mathrm{~A}$
t [s]

3 General characteristics

Trip curve thermomagnetic
release
T2 160 TMD

In $=1.6 \div 100 \mathrm{~A}$
t [s]

3 General characteristics
Trip curve
thermomagnetic
release
T2 160
TMD
$\mathrm{In}=125 \div 160 \mathrm{~A}$

Trip curve thermomagnetic
release
T2 160 TMG
In $=16 \div 160 \mathrm{~A}$

3 General characteristics
Trip curve thermomagnetic
release
T3 250
TMD
$\mathrm{ln}=63 \div 250 \mathrm{~A}$
t [s]

3 General characteristics

Trip curve

 thermomagnetic release T3 250 TMGIn $=63 \div 250 \mathrm{~A}$

3 General characteristics

3 General characteristics
Trip curve thermomagnetic
release
T4 250/320
TMA
In $=80 \div 250 \mathrm{~A}$

3 General characteristics
Trip curve thermomagnetic release T5 400/630 TMA
In $=320 \div 500 \mathrm{~A}$
t[s]

3 General characteristics
Trip curve thermomagnetic release
T5 400/630 TMG
In $=320 \div 500 \mathrm{~A}$

3 General characteristics

3 General characteristics
Trip curve thermomagnetic release T6 800 TMA
$\mathrm{In}=800 \mathrm{~A}$

3 General characteristics

thermomagnetic
release
T2 160
MF
$t[s]$
10^{2}

10
10^{-1}
10^{-2}
1
10

3 General characteristics
Trip curve
thermomagnetic
release
T2 160/T3 250 MA
$\mathrm{I}_{3}=6 \ldots 12 \times \mathrm{In}$
$t[s]$

3 General characteristics
Trip curve
thermomagnetic
release
T4 250
MA
$I_{3}=6 \ldots 14 \times \mathrm{ln}$
t [s]

3 General characteristics

Example of thermomagnetic release setting

Consider a circuit-breaker type T1 160 In 160 and select, using the trimmer for themal regulation, the current threshold, for example at 144 A ; the magnetic nip threshold, fixed at $10 \cdot \mathrm{In}$, is equal to 1600 A .
Note that, according to the conditions under which the overload occurs, that is either with the circuit-breaker at full working temperature or not, the trip of the themal release varies considerably. For example, for an overload current of 600 A , the trip time is between 1.2 and 3.8 s for hot trip, and between 3.8 and
14.8 s for cold trip.

For fault current values higher than 1600 A, the circuit-breaker trips instantaneously through magnetic protection.

T1 160-in 160 Time-Current curves

3 General characteristics

3.2.2 Trip curves of electronic releases

Introduction
The following figures show the curves of the single protection functions available in the electronic releases. The setting ranges and resolution are referred to
LFUNCTION(overloadprotection)

3 General characteristics

	11	t1
PR221	(0.4...1) x In with step $0.04 \times \mathrm{ln}$	3s-6s (@6x11) for T2 and 12s for T4-T5-T6
PR231		3s-12s (@6x11)
PR232		3s-6s-12s-185 (@6x11)
PR222	(0.4 ...1) \times In with step $0.02 \times \mathrm{ln}$	$3 s-65-9 s-18 s^{11)}(@ 6 \times 11)$
PR223	(0.18...1) $\times 1 \mathrm{ln}$ with $\mathrm{step} 0.01 \times \mathrm{ln}$	$3 . . .18 \mathrm{~s}$ with step $0.5^{\text {2) }}$
PR211	(0.4-0.5-0.0-0.7-0.8-0.0.-0.95-1) $\times 1 \mathrm{ln}$	
PR212	$\begin{aligned} & \hline(0.4-0.5-0.55-0.6-0.65-0.7-0.75-0.8- \\ & 0.85-0.875-0.9-0.925-0.95-0.975-1) \\ & \hline \end{aligned}$	$A=35 ; B=6 s ; C=12 s ; D=185$ (@6x11)
PR331	(0.4...1) \times In with step $0.025 \times \mathrm{ln}$	3s-12s-24s-36s-48s-72s-108s-144s (@3x11)
PR121		
PR332	(0.4...1) \times In with step $0.01 \times \mathrm{ln}$	3...144s with step 3s (@3x11)
PR333		
PR122		
PR123		

${ }^{\text {(1) }}$ for $74 \mathrm{In}=320 \mathrm{~A}$ and $\mathrm{T} 5 \mathrm{In}=630 \mathrm{At}=12 \mathrm{~s}$

3 General characteristics

3 General characteristics

	12	t2
PR221	(1-1.5-2-2.5-3-3.5-4.4-5.5-6.6-7-7.7.-8-8.5-9-10) xn	0.1s-0.25s (@8xin with $\mathrm{Pt}=\mathrm{k})$
PR231		0.1s-0.25s (@10xin with $\mathrm{Pt}=\mathrm{k})$
PR232	(0.6-0.8-1.2-1.8-2.4-3-3.6-4.2-5-5.8-6.6-7.4-8.2-9-10) xn	0.1s-0.25s-0.5s-0.8s (@10xin with 1 tek)
		$0.15 \mathrm{-} 0.25 \mathrm{~s}-0.55-0.85$ (with $\mathrm{t} k$)
PR222	(0.6-10) xln with step $0.6 \times \mathrm{ln}$	$0.055-0.15-0.255-0.5 \mathrm{~s}$ (@8x\|n with R $\mathrm{t}=$, and $\mathrm{t}=\mathrm{k}$)
PR223	(0.6...10) ln with step $0.1 \times \mathrm{ln}$	0.05...0.5s step 0.01s (@8xin with Pt (k, and $\mathrm{t}=\mathrm{k}$)
PR211	(1-2-3-4-4-8-8-10) ln	
PR212		$A=0.055 ; B=0.15 ; C=0.255 ; D=0.55$ (@bx12 with $f t=$, and $t=k)$
PR331	(0.6-0.8-1.1.2-1.8-2.4-3-3.6-4.2-5-5.8-6.6-7.4-8.2-9-10) xln	0.15...0.85 (@10x\|n with Pt*k)
PR121	(1-1.5-2-2.5-3-3.3.5-4.5-6-7.-8-8.5-9-9.9.5-10) x/n	0.1s...0.8s (@>12 with $t=k)$
PR332	(0.6...1) \times In with $\operatorname{step} 0.1 \times \mathrm{ln}$	0.05 ... 0.8 s with step 0.01 s (@10xin with ${ }^{1 t}=k$) $0.05 \ldots 0.8$ s with step 0.01 s (@>12x\|n with $t=k$)
PR333		
PR122		
PR123		

3 General characteristics

3 General characteristics

3 General characteristics

3 General characteristics

	14	t4
PR222	(0.2-0.25-0.45-0.55-0.75-0.8-1) x1n	0.1s up to $3.15 \times 14 ; 0.2 \mathrm{~s}$ up to $2.25 \times 14 ; 0.45$ up to $1.6 \times 14 ; 0.8 \mathrm{~s}$ up to 1.10×14
PR223	(0.2..1) $\times 1 \mathrm{l}$ with step $0.1 \times 1 \mathrm{n}$	0.1...0.8 x ln with step 0.01 s
PR212	(0.2-0.3-0.4-0.6-0.8-0.9-1) $\times 1 \mathrm{n}$	$A=0.15 ; B=0.25 ; C=0.4 s ; D=0.85$ (@4x/4)
PR331	(0.2-0.3-0.4-0.6-0.8-0.9-1) x\|n	$\begin{aligned} & 0.1 \mathrm{~s} \text { up to } 4.47 \times 14 ; 0.2 \mathrm{~s} \text { up to } 3.16 \times 14 ; 0.4 \mathrm{~s} \text { up to } 2.24 \times 14 ; 0.80 \mathrm{~s} \text { up to } 1.58 \times 14 \\ & \left.\frac{\left(1^{2} \mathrm{t}=\mathrm{k}\right)}{} 0.1 \mathrm{~s}-0.2 \mathrm{~s}-0.4 \mathrm{~s}-0.80 \mathrm{~s} \text { (with } \mathrm{t}=\mathrm{k}\right)\end{aligned}$
PR121	(0.2-0.3-0.4-0.6-0.8-0.9-1) $\times 1 \mathrm{ln}$	$\frac{0.1-0.2-0.4-0.8 \mathrm{~s}(@)=4 \times \mathrm{ln} \text { with } \mathrm{Pt}=\mathrm{k})}{0.1-0.2-0.4-0.8 \mathrm{~s}(@)>4 \times \mathrm{n} \text { with } t=k)}$
PR121	(0.2-0.3-0.4-0.6-0.8-0.9-1) xn	
PR122	2. 1) xln with step 0.02	0 0.1..1s with step 0.05 s (@=4x\|n with $\mathrm{P}^{\text {t }}$ (k)
PR123	(0.2...1) xin with step $0.02 \times \mathrm{x}$	
PR332		$0.1 \ldots . .1 \mathrm{~s}$ with step $0.05 \mathrm{~s}\left(1=4 \times 1 \mathrm{l}\right.$ with $\left.\mathrm{l}^{\mathrm{t}} \mathrm{t=k}\right)$
PR333	(0.2...1) \times n with step 0.02xin	$0.1 . . .1 \mathrm{~s}$ with step 0.05 s ($1>14 \times \mathrm{ln}$ with t) ${ }^{\text {a }}$
	Here below the tolerances:	
	14	t4
$\frac{\text { PR222 }}{\text { PR223 }}$	$\pm 10 \%$	$\pm 15 \%$
PR212		$\pm 20 \%$
PR331	$\pm 20 \%$	
PR121		$\begin{aligned} & \pm 15 \% \text { (12t-k) } \\ & \text { the better of the two data: } \pm 10 \% \text { or } 40 \mathrm{~ms} \text { (with } \mathrm{t}=\mathrm{k} \text {) } \end{aligned}$
PR122		
PR123	$\pm 7 \%$	
PR332		
PR333		

3 General characteristics

Trip curve
electronic releases

T2 160
PR221DS
L-I Functions

3 General characteristics

Trip curve
electronic releases

T2 160

PR221DS
L-S Functions
t [s]

Trip curve
electronic releases

T4 250/320

T5 400/630
T6 630/800/1000 PR221DS

L-I Functions
t[s]

3 General characteristics
electronic releases
T4 250/320
T5 400/630
T6 630/800/1000 PR221DS

L-S Functions
t[s]

3 General characteristics

Trip curve
electronic releases
T4 250/320
T5 400/630
T6 630/800/1000 PR222DS/P

PR223DS
L-S-I Functions ${ }_{(12 t}$ const $\left.=O N\right)_{t[s]}$

Note:

The dotted curve of function L corresponds to the maximum delay ((t) which can be set at 6×1, in the case where 320 ACTs are used for T4 and 630 A for T5. For all the CT izes $t=18 \mathrm{~s}$, except with $320 \mathrm{ACT}(\mathrm{T} 4)$ and $630 \mathrm{~A}($ T5) where $\mathrm{t}=12 \mathrm{~s}$.
For T4 $\mathrm{In}=320 \mathrm{~A}, \mathrm{~T} 5 \mathrm{In}=630 \mathrm{~A}$ and $\mathrm{T} 6 \mathrm{In}=1000 \mathrm{~A} \Rightarrow \mathrm{I}, \max =8.8 \times \mathrm{In}$,
$1_{3} \max =9,5 \times \ln$
${ }^{(1)}$ For PR223DS the L protection function can be set to $I_{1}=0,18 \ldots 1 \times \ln$

3 General characteristics
Trip curve
electronic releases

4 250/320

T5 400/630
T6 630/800/1000 PR222DS/P PR222DS/

L-S-I Functions
(1^{12} t const $=\mathrm{OF}$
$\mathrm{t}[\mathrm{s}]$

Note:

The dotted curve of function L corresponds to the maximum delay (t)) which can be set at $6 \mathrm{xl}_{1}$, in the case where 320 A CTs are used for T4 and 630 A for T . For all the CT sizes $t_{1}=18 \mathrm{~s}$, except with 320 A CT (T4) and $630 \mathrm{~A}(\mathrm{~T} 5)$ where $t_{1}=12 \mathrm{~s}$.
max $=9,5 \times$ In
${ }^{11)}$ For PR223DS the L protection function can be set to $I_{1}=0,18 \ldots 1 \times \mathrm{In}$

3 General characteristics

Trip curve
electronic releases
T4 250/320
55 400/630
T6 630/800/1000

R222DS/PD PR223DS/EF

G Function
t [s]

Note:
For PR223DS and PR223EF the electronic settings only are available.

Trip curve
electronic releases
T4L 250/320

5L 400/630

T6L 630/800/1000

PR223EF

-S-EF Functions
(12t const $=\mathrm{ON}$) (12t const $=$ OFF)

3 General characteristics

Note:
The dotted curve for functional corresponds to the maximum delay (t) wich can be set at 6×1, in the case where 320A CTS are used for T4 and 630A for T5
For all the CT sizes the maximum delay t is equal to 18 s , except for $320 \mathrm{ACT}(\mathrm{T} 4)$ and $630 \mathrm{~A}(\mathrm{~T} 5)$ where $\mathrm{t}_{1}=12 \mathrm{~s}$
For $\mathrm{T} 4 \mathrm{In}=320 \mathrm{~A}, \mathrm{~T} 5 \mathrm{In}=630 \mathrm{~A}$ and $\mathrm{T} 6 \mathrm{In}=630 \mathrm{~A} \Rightarrow \mathrm{I}_{2} \max =8 \cdot 8 \times \mathrm{In}$,
max $=9,5 \times \mathrm{ln}$
Only the electronic settings are available.

3 General characteristics

Trip curve
electronic releases

T4L 250/320

5L 400/630

T6L 630/800/1000
PR223EF
Vaux OFF
L-S-EF Functions
(${ }^{12}$ t const $=\mathrm{ON}$) (12t const $=$ OFF)

For all the CT sizes the maximum delay t is equal to 18s, except for 320 ACT (T4) and
630 A (T5) where $\mathrm{t}_{1}=12 \mathrm{~s}$
Only the ele

Trip curve
electronic releases

77
800/1000/1250/1600
PR231/P
L-I Functions
t[s]

3 General characteristics
nip curve
electronic releases
17
800/1000/1250/1600
PR231/P
L-S Functions
t[s]

3 General characteristics

Trip curve
electronic releases

77
800/1000/1250/1600
PR232/P
L-S-I Functions
t [s]

3 General characteristics

Trip curve
electronic releases
77
800/1000/1250/1600
PR331/P
L-S-I Functions
t[s]

For $77 \mathrm{In}=1250 \mathrm{~A}, 1600 \mathrm{~A} \Rightarrow \mathrm{I}, \max =12 \times \mathrm{ln}$

3 General characteristics

Trip curve
electronic releases
77
800/1000/1250/1600 PR331/P
Functions
t [s]

3 General characteristics
nip curve
electronic releases
T7
800/1000/1250/1600
PR332/P
L-I Functions
t[s]

Note
For $77 \mathrm{In}=1250 \mathrm{~A}, 1600 \mathrm{~A} \Rightarrow \mathrm{I}_{\mathrm{mmax}}=12 \times \mathrm{ln}$

3 General characteristics

Trip curve
electronic releases
77
800/1000/1250/1600
PR332/P
L-S-I Functions
t [s]

Note:
For $77 \mathrm{In}=1250 \mathrm{~A}, 1600 \mathrm{~A} \Rightarrow \mathrm{I}_{\mathrm{max}}=12 \times \mathrm{ln}$

3 General characteristics

Trip curve
electronic releases
T7
800/1000/1250/1600 PR332/P
G Functions

3 General characteristics

Trip curve
electronic releases
77
800/1000/1250/1600
PR332/P
Rc Functions
t [s]

3 General characteristics

Trip curve
electronic releases

T2 160 PR221DS-I
Function
t [s]

nip curve
electronic releases
T4 250/320 T5 400/630
T6 630/800/1000 PR221DS-I

Function

3 General characteristics

Trip curve
electronic releases

17 800/1000/1250
PR231/P-I
Function

3 General characteristics
electronic releases
T4 250
T5 400
T6 800
PR222MP 105
L Function
hot and cold trip)

	11	t1
PR222MP	(0.4 $\div 1) \times$ In with step $0.01 \times$ In	4-8-16-24s
	11 Here the tolerances	t1
PR222MP	According to IEC 60947-4-1	According to IEC 60947-4-1

3 General characteristics

PR222MP	11	t1
	(0.4 $\div 1) \times$ In with step $0.01 \times$ In	4-8-16-24s
	11 Here the tolerances	t1
PR222MP	$\pm 15 \%$	$\pm 15 \%$

3 General characteristics

3 General characteristics
Trip curve
electronic releases

PR211/P

Note: for PR211/P-I releases, consider the curves relevant to function I only.

3 General characteristics

Trip curve
electronic releases

S7

PR212/P

-S-I Functions
inverse short
delay
10^{3}
t [s]

3 General characteristics

Trip curve
electronic releases
S7

PR212/P

L-S-I Functions,
S inverse short
delay
(t=constant)

3 General characteristics

3 General characteristics
Trip curve
electronic releases
S7
PR212/MP
L Function
(hot and cold trip)

	11	t1
PR212/MP	(0.4 $\div 1) \times$ In with step $0.01 \times$ In	4-8-16-24s
	Here the tolerances	
	11	t1
PR212/MP	According to IEC 60947-4-1	According to IEC 60947-4-1

3 General characteristics

Tip curve
electronic releases
57

PR212/MP

L Function
(hot trip with one or two phases supplied)

3 General characteristics

57

PR212/MP

R-U Functions
t [s]

R	15	t5
PR212/MP	(3-4-5-6-7-8-10-OFF) $\times 11$	1-4-7-10s
U	16	t6
PR212/MP	0.4×11	4 s
	Here the tolerances	
R	15	t5
PR212/MP	$\pm 10 \%$	± 20 \%
U	16	t6
PR212/MP	± 20 \%	$\pm 20 \%$

3 General characteristics

$\overline{\text { PR212/MP }} \frac{13}{(6-7-8-9-10-11-12-13-\text { OFF }) \times \operatorname{In}}$
The tolerances are according to IEC 60947-4-1.

Trip curve
electronic releases
Emax
PR121/P
PR331/P
L- I Functions

3 General characteristics

Trip curve
electronic releases

Emax

PR121/P
PR331/P

L-S-I Functions,
S inverse short time delay ($1^{1} \mathrm{t}=$ const.)
$t[s]$

3 General characteristics

Trip curve
electronic releases

max

PR121/P

PR331/P
L-S-I Functions,
S indipendent
time delay
($\mathrm{t}=$ constant)

3 General characteristics

Trip curve
electronic releases
Emax
PR121/P
PR331/P

G Function

3 General characteristics
Trip curve
electronic releases
Emax
PR122/P
PR332/P
L-I Functions

3 General characteristics
Trip curve
electronic releases

max

PR122/P-PR123/P PR332/P- PR333/P
-S-I Functions
S inverse short time delay ($1^{1} \mathrm{t}=$ const.)

3 General characteristics

Trip curve

electronic releases
Emax
PR122/P-PR123/P PR332/P- PR333/P

L-S-I Functions S indipendent time delay
($\mathrm{t}=$ constant)
t [s]

3 General characteristics

Trip curve electronic releases

max

PR122/P-PR123/P PR332/P- PR333/P

Function
t [s]

3 General characteristics

PR123/P release - Function L in compliance with Std

 IEC 60255-3The following three curves refer to the protection function L complying with Std. IEC 60255-3 and integrate the standard one; they are applicable in coordination with fuses and MV circuit-breakers.

$\mathrm{k}=0.14$ alfa $=0.02$

electronic releases
Emax

PR123/P PR332/P- PR333/P

Tmax
t [s]

PR332|

L Function
(IEC 60255-3)

	11	t1
PR123/P PR332/P-PR333/P	(0.4...1) \times In with step $0.01 \times \mathrm{ln}$	t1=3s...144s with step 3s (1) (@I=3×Un)
	Here below the tolerances 11	
PR123/P PR332/P-PR333/P	1.05...1.2 \times In	$\begin{aligned} & \pm 20 \% \mathrm{I}_{9}>5 \times \mathrm{I}_{1} \\ & \pm 30 \% 2 \times \mathrm{I}_{1} \leq \mathrm{I}_{\mathrm{g}} \leq 5 \times \mathrm{I}_{1} \mathrm{In} \end{aligned}$

3 General characteristics

3 General characteristics

Trip curve electronic releases

Emax

PR123/P PR332/P- PR333/P

Tmax
PR332/P

L Function
(IEC 60255-3)
$t[s]{ }^{10}$

	11	t1
PR123/P PR332/P-PR333/P	(0.4...1) \times In with step $0.01 \times$ In	$\begin{aligned} & \mathrm{t} 1=3 \mathrm{~s} \ldots 144 \mathrm{~s} \text { with step } 3 \mathrm{~s}(1) \\ & (@ \mathrm{I}=3 \times \mathrm{Un}) \end{aligned}$
	Here below the tolerances:	
PR123/P PR332/P-PR333/P	1.05...1.2 \times In	$\begin{aligned} & \pm 20 \% I_{g}>5 \times I_{1} \\ & \pm 30 \% 2 \times I_{1} \leq I_{g} \leq 5 \times I_{1} \ln \end{aligned}$

3 General characteristics

Trip curve
electronic releases
PR 122/PR123 release - Other protection functions
The following curves refer to the particular protection functions provided for PR122/PR123/PR332/PR333.

PR123/P

PR333/P
Function D
t [s]

3 General characteristics
Trip curve
electronic releases

Emax

PR332/P-PR33/P PR122/P-PR123/P

Tmax
PR332/P
unction U
t [s]

	16	t6
PR122/P-PR123/P PR332/P-PR333/P	(5\% ...90\% - OFF) with step 5\%	$0.5 \ldots 60 \mathrm{~s}$ with step 0.5 s
	Here below the tolerances: 16	t6
PR122/P-PR123/P PR332/P-PR333/P	$\pm 10 \%$	The better of the two figures: $\pm 20 \%$ or $\pm 100 \mathrm{~ms}$

3 General characteristics

Trip curve
electronic releases
Emax
PR332/P*-PR333/P
PR122/P**-PR123/P PR122/P**-PR123/P

Tmax PR332/P*
Function UV *with PR330/V *with PR120/V

	U8	t8
PR122/P-PR123/P PR332/P-PR333/P	(0.5 ... 0.95 - OFF) \times Un with step $0.01 \times$ Un	with $\mathrm{U} \mathrm{U}_{8}$ $0.1 \ldots 5 \mathrm{~s}$ with step 0.1 s
	Here below the tolerances: U8	t8
PR122/P PR332/P-PR333/P	$\pm 5 \%$	The better of two figures: $\pm 20 \%$ or $\pm 100 \mathrm{~ms}$
PR123/P	$\pm 5 \%$	The better of two figures: $\pm 20 \%$ or $\pm 40 \mathrm{~ms}$

3 General characteristics

Trip curve
electronic releases
Emax
PR332/P*-PR333/P PR122/P**-PR123/P

Tmax PR332/P*
Function OV *with PR330/V **with PR120/V

	U9	t9
PR122/P-PR123/P PR332/P-PR333/P	(1.05 ... 1.2 - OFF) x Un with step $0.01 \times$ Un	with $\mathrm{U} \mathrm{U}_{9}$ $0.1 \mathrm{~s} . . .5$ s with step 0.1 s
	Here below the tolerances: $U 9$	$t 9$
$\begin{aligned} & \hline \text { PR122/P } \\ & \text { PR332/P-PR333/P } \end{aligned}$	± 5 \%	The better of two figures: $\pm 20 \%$ or $\pm 100 \mathrm{~ms}$
PR123/P	$\pm 5 \%$	The better of two figures: $\pm 20 \% \text { or } \pm 40 \mathrm{~ms}$

3 General characteristics

Trip curve

 electronic releases
Emax

 R332/P*-PR333/P PR122/P**-PR123/PTmax PR332/P*

Function RV
with PR330/V
t [s] *with PR120/V

$\overline{\text { PR122/P PR123/P }}$ (0.1 \qquad $\frac{\text { t10 }}{\text { with Uব }}$
PR332/P PR333/P
$\frac{(0.1 \ldots 0.4 \text { - OFF) } \times \text { Un with step } 0.05 \times \text { Un }}{\text { Here below the tolerances: }}$
u10 with step 0.5 s

$\mathbf{U 1 0}$
$\pm 5 \%$ the better of the two figures:
PR332/P \qquad

3 General characteristics
Trip curve
electronic releases
Emax

	P11	t11
$\begin{aligned} & \hline \text { PR122/P } \\ & \text { PR123/P } \end{aligned}$	(-0.3 ... -0.1- OFF) \times Pn with step $0.02 \times$ Pn	with $\mathrm{P} \subset \mathrm{P}_{11}$ $0.1 \ldots 25$ s with step 0.1 s
	Here below the tolerances: P11	t11
PR122/P-PR332/P	$\pm 5 \%$	the better of the two figures:
PR123/P-PR333/P	10\%	$\pm 10 \%$ or $\pm 100 \mathrm{~ms}$

3 General characteristics

Example of electronic release setting

Considering a circuit-breaker type E1B1000 fitted with a PR121/P LSI release and with a rating plugs of 1000 , it is supposed that for the system requirements, the protection functions are regulated according to the following settings:

The trip curve of the release is represented in the following figure (continuous lines): it can be seen that:

- for function L, the curve is represented by the mean value between the tolerances given by the Standard (the overload protection function must not trip for current values lower than $1.05 \cdot \mathrm{In}$, and must trip within $1.3 \cdot \mathrm{In}$), therefore corresponding to $1.175 \cdot$ In (around 700 A);
- graphically, point $\mathbf{1}$ is obtained at the intersection of the vertical part of function L and the horizontal segment $\left(C_{0.41 \mathrm{n}}-\mathrm{C}_{11 n}\right)$ which connects the points relevant to the same t 1 , taken from the curves with setting $0.4 \cdot \mathrm{In}$ and $1 \cdot \mathrm{In}$;
- corresponding to point $2(4000 \mathrm{~A})$, the function S takes the place of function L , as the trip time of function S is lower than the trip time of function L ;
in the same way as for point $\mathbf{2}$, for point $\mathbf{3}(8000 \mathrm{~A})$ and beyond, function S is substituted by function I.

3 General characteristics
t [s]

3 General characteristics

3.3 Limitation curves

A circuit-breaker in which the opening of the contacts occurs after the passag of the peak of the short-circuit current, or in which the trip occurs with the natural passage to zero, allows the system components to be subjected to high stresses, of both themal and dynamic type. To reduce these stresses current-limiting circuit-breakers have been designed (see Chapter 2.2 "Main definitions'), which are able to start the opening operation before the short-circut urrent has reached its first peak, and to quickly extinguish the arc between the contacts; the following diagram shows the shape of the waves of both the prospective short-circit current as well as of the limited short-circuit curent

The following diagram shows the limit curve for Tmax T2L160, In160 circuit-breaker. The x-axis shows the effective values of the symmetrical prospective short-circu current, while the y-axis shows the relative peak value. The limiting effect can eraled by compang, at equal vaies of symmetrical fault cument the be evaluated by comparing, at equar values of syminelrical faut current, the the limited peak value (curve B)

3 General characteristics

Circuit-breaker T2L 160 with thermomagnetic release $\operatorname{In} 160$ at 400 V for a fault current of 40 kA , limits the short-circuit peak to 16.2 kA only, with a reduction of about 68 kA compared with the peak value in the absence of limitation (84 kA).

Considering that the electro-dynamic stresses and the consequent mechanica stresses are closely connected to the current peak, the use of current limiting circuit-breakers allows optimum dimensioning of the components in an electrical plant. Besides, current limitation may also be used to obtain back-up protection between two circuit-breakers in series.
In addition to the advantages in terms of design, the use of current-limiting

3 General characteristics

circuit-breakers allows, for the cases detailed by Standard IEC 60439-1, the voidance of short-circuit withstand verifications for switchboards. Clause 8.2.3.1 of the Standard "Circuits of ASSEMBLIES which are exempted from the verification of the short-circuit withstand strength" states that:
"A verification of the short-circuit withstand strength is not required in the following cases..
or ASSEMBLIES protected by current-limiting devices having a cut-off current not exceeding 17 kA at the maximum allowable prospective short-circuit current at the terminals of the incoming circuit of the ASSEMBLY..."

The example in the previus page included among those considered by the Standard: if the circuit-breaker was used as a main breaker in a switchboard to be installed in a point of the plant where the prospective short-circuit current is 40 kA , it would not be necessary to cary out the verification of short-circuit withstand.

Limitation curves

T1 160

230 V

3 General characteristics

- 10

3 General characteristics

3 General characteristics
Limitation curves
T3 250
230 V

3 General characteristics

3 General characteristics

Limitation curves

T5 400/630

230 V

3 General characteristics

Limitation curves

T6 630/800/1000 230 V

Ip [kA]
10^{1}
$\mathbf{I m s}_{\mathrm{ms}}[\mathrm{kA}]$

Limitation curves
T7
800/1000/1250/1600
230 V
3 General characteristics

3 General characteristics

3 General characteristics
Limitation curves
T2 160
400-440 V

Ip [kA]

3 General characteristics

Limitation curves

T4 250/320

$400-440 \mathrm{~V}$

3 General characteristics

Ip [kA]

3 General characteristics

Limitation curves
T5 400/630
400-440 V

Limitation curves T6 630/800/1000 $400-440$ V

3 General characteristics

77
300/1000/1250/1600 $400-440$ V

Limitation curves
T1 160
500 V

3 General characteristics

3 General characteristics

Limitation curves
T3 250
500 V
Ip [kA]

3 General characteristics
Limitation curves
T4 250/320

Limitation curves
T5 400/630
500 V

3 General characteristics

Limitation curves
T7
800/1000/1250/1600 500 V

3 General characteristics

Limitation curves T2 160 690 V

3 General characteristics

Ip [KA]

3 General characteristics

Limitation curves

T4 250/320

690 V

3 General characteristics

Limitation curves T6 630/800/1000 690 V

3 General characteristics

Ip [kA]

3 General characteristics
Limitation curves
77
800/1000/1250/1600
690 V

Limitation curves
T4 250
T5 400/630
1000 V

3 General characteristics

3 General characteristics

Limitation curves

S7
230 V

3 General characteristics
Limitation curves
$\mathbf{S 7}$
$400-440$ V

3 General characteristics

3 General characteristics
Limitation curves
XIL

$$
\begin{aligned}
& 690 \text { V ~ } \\
& 380 / 415 \text { V }
\end{aligned}
$$

3 General characteristics

Limitation curves
E3L
690 V ~
$380 / 415 \mathrm{~V}$ ~
Ip [kA]

3 General characteristics

3.4 Specific let-through energy curves

In case of short-circuit, the parts of a plant affected by a fault are subjected to hermal stresses which are proportional both to the square of the fault current as well as to the time required by the protection device to break the current The energy let through by the protection device during the trip is termed "specific let-through energy" $(12 \mathrm{t})$, measured in $\mathrm{A}^{2} \mathrm{~s}$. The knowledge of the value of the specific let-through energy in various fault conditions is fundamental for the dimensioning and the protection of the various parts of the installation. The effect of limitation and the reduced trip times influence the value of the specific let-through energy. For those current values for which the tripping of the circuit-breaker is regulated by the timing of the release, the value of the specific let-through energy is obtained by multiplying the square of the effective fault current by the time required for the protection device to trip; in other cases the value of the specific let-through energy may be obtained from the following diagrams.

The following is an example of the reading from a diagram of the specific let through energy curve for a circuit-breaker type T3S $250 \ln 160$ at 400 V . The x-axis shows the symmetrical prospective short-circuit current, while the y-axis shows the specific let-through energy values, expressed in MA²s Corresponding to a short-circuit current equal to 20 kA , the circuit-breaker lets through a value of 12 t equal to $1.17 \mathrm{MA}^{2} \mathrm{~s}\left(1170000 \mathrm{~A}^{2} \mathrm{~s}\right)$.

Specific let-through energy curves

1160

230 V
${ }^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics
Specific let-through
energy curves
T2 160
230 V

3 General characteristics
Specific let-through energy curves

T3 250
230 V

3 General characteristics
Specific let-through energy curves

T4 250/320
230 V

3 General characteristics
Specific let-through energy curves

T5 400/630
230 V

3 General characteristics
Specific let-through
energy curves

3 General characteristics
Specific let-through
energy curves
T7
800/1000/1250/1600
230 V
$1^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics
Specific let-through energy curves

T1 160
$400-440 \mathrm{~V}$

3 General characteristics
Specific let-through energy curves

T2 160
$400-440$ V
$1^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics

Specific let-through energy curves

T4 250/320

 400-440 V

3 General characteristics
Specific let-through energy curves

3 General characteristics

Specific let-through

energy curves

T6 630/800/1000

 $400-440 \mathrm{~V}$

3 General characteristics

Specific let-through
energy curves

T7

800/1000/1250/1600 10
$400-440 \mathrm{~V}$
$1^{2} t\left[10^{6} A^{2} s\right]$

Specific let-through energy curves

T1 160
500 V

3 General characteristics
Specific let-through
energy curves
T2 160

3 General characteristics
Specific let-through energy curves

T3 250
500 V

3 General characteristics
Specific let-through energy curves

T4 250/320
500 V

3 General characteristics
Specific let-through
energy curves
T5 400/630
500 V
$\operatorname{Pt}\left[10^{6} A^{2} s\right]$

3 General characteristics
Specific let-through
energy curves
T6 630/800/1000

3 General characteristics
Specific let-through
energy curves
77
800/1000/1250/1600 500 V
$1^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics

T1 160

Specific let-through energy curves

T2 160
690 V
$1^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics

R[10
10^{-1}

3 General characteristics

Specific let-through
energy curves
T3 250
690 V

3 General characteristics
Specific let-through energy curves

T4 250/320
690 V

3 General characteristics
Specific let-through energy curves

T5 400/630
690 V

3 General characteristics

3 General characteristics

Specific let-through
energy curves
77
800/1000/1250/1600
690 V
$1^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics
Specific let-through energy curves
T4 250
T5 400/630 10
1000 V
$1^{2} t\left[10^{6} A^{2} s\right]$

3 General characteristics

3 General characteristics

Specific let-through
energy curves
$400-440 \mathrm{~V}$
$1^{2} t\left[10^{6} A^{2} s\right]$

10
10^{1}

1
${ }^{10^{-1}}$
Irms [kA]

3 General characteristics

Specific let-through energy curves

X1L 690 V~ $380 / 415 \mathrm{~V} \sim$

3 General characteristics

Specific let-through energy curves

E3L
690 V~ 380/415 V~ $\operatorname{Pe}^{\text {Pt }\left[10^{6} A^{2} s\right]}$

102

3 General characteristics

3.5 Temperature derating

Standard IEC 60947-2 states that the temperature rise limits for circuit-breakers
working at rated current must be within the limits given in the following table:

Table 1 - Temperature rise limits for terminals and accessible parts

Description of part*		Temperature rise limits K
- Terminal for external connections		80
Manual operating	metallic	25
means:	non metallic	35
- Parts intended to be touched but not hand-held:	metallic	40
	non metallic	50
Parts which need not be touched for normal operation:	$\underline{\text { metallic }}$	50
	non metallic	60

No value is specified for parts other than

These values are valid for a maximum reference ambient temperature of $40^{\circ} \mathrm{C}$ as stated in Standard IEC 60947-1, clause 6.1.1.
Whenever the ambient temperature is other than $40^{\circ} \mathrm{C}$, the value of the current which can be carried continuously by the circuit-breaker is given in the following tables:

Circuit-breakers with themmomagnetic release

Tmax T1 and T1 1P (*)

	$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
In [A]	MIN	MAX												
16	13	18	12	18	12	17	11	16	11	15	10	14	9	13
20	16	23	15	22	15	21	14	20	13	19	12	18	11	16
25	20	29	19	28	18	26	18	25	16	23	15	22	14	20
32	26	37	25	35	24	34	22	32	21	30	20	28	18	26
40	32	46	31	44	29	42	28	40	26	38	25	35	23	33
50	40	58	39	55	37	53	35	50	33	47	31	44	28	41
63	51	72	49	69	46	66	44	63	41	59	39	55	36	51
80	64	92	62	88	59	84	56	80	53	75	49	70	46	65
100	81	115	77	110	74	105	70	100	66	94	61	88	57	81
125	101	144	96	138	92	131	88	125	82	117	77	109	71	102
160	129	184	123	176	118	168	112	160	105	150	98	140	91	130

only the column corresponding to the maximum adjustment of the TMD releases.

3 General characteristics

Tmax $\mathbf{T} 2$

	$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
$\ln [\mathrm{A}]$	MIN	MAX												
1	0.8	1.1	0.8	1.1	0.7	1.1	0.7	1.0	0.7	0.9	0.6	0.9	0.6	0.8
1.6	1.3	1.8	1.2	1.8	1.2	1.7	1.1	1.6	1.0	1.5	1.0	1.4	0.9	1.3
2	1.6	2.3	1.5	2.2	1.5	2.1	1.4	2.0	1.3	1.9	1.2	1.7	1.1	1.6
2.5	2.0	2.9	1.9	2.8	1.8	2.6	1.8	2.5	1.6	2.3	1.5	2.2	1.4	2.0
3.2	2.6	3.7	2.5	3.5	2.4	3.4	2.2	3.2	2.1	3.0	1.9	2.8	1.8	2.6
4	3.2	4.6	3.1	4.4	2.9	4.2	2.8	4.0	2.6	3.7	2.4	3.5	2.3	3.
5	4.0	5.7	3.9	5.5	3.7	5.3	3.5	5.0	3.3	4.7	3.0	4.3	2.8	4.0
6.3	5.1	7.2	4.9	6.9	4.6	6.6	4.4	6.3	4.1	5.9	3.8	5.5	3.6	5.1
8	6.4	9.2	6.2	8.8	5.9	8.4	5.6	8.0	5.2	7.5	4.9	7.0	4.5	6.5
10	8.0	11.5	7.7	11.0	7.4	10.5	7.0	10.0	6.5	9.3	6.1	8.7	5.6	8.1
12.5	10.1	14.4	9.6	13.8	9.2	13.2	8.8	12.5	8.2	11.7	7.6	10.9	7.1	10.1
16	13	18	12	18	12	17	11	16	10	15	10	14	9	13
20	16	23	15	22	15	21	14	20	13	19	12	17	11	16
25	20	29	19	28	18	26	18	25	16	23	15	22	14	20
32	26	37	25	35	24	34	22	32	21	30	19	28	18	26
40	32	46	31	44	29	42	28	40	26	37	24	35	23	32
50	40	57	39	55	37	53	35	50	33	47	30	43	28	40
63	51	72	49	69	46	66	44	63	41	59	38	55	36	51
80	64	92	62	88	59	84	56	80	52	75	49	70	45	65
100	80	115	77	110	74	105	70	100	65	93	61	87	56	81
125	101	144	96	138	92	132	88	125	82	117	76	109	71	101
160	129	184	123	178	118	168	112	160	105	150	97	139	90	129

Tmax 13
$10^{\circ} \mathrm{C} \quad 20^{\circ} \mathrm{C} \quad 30^{\circ} \mathrm{C} \quad 40^{\circ} \mathrm{C} \quad 50^{\circ} \mathrm{C} \quad 60^{\circ} \mathrm{C} \quad 70^{\circ} \mathrm{C}$

In [A] MIN MAX \begin{tabular}{lllllllllllllll}
63 \& 51 \& 72 \& 49 \& 69 \& 46 \& 66 \& 44 \& 63 \& 41 \& 59 \& 38 \& 55 \& 35 \& 51

\hline 0 \& 64 \& 92 \& 62 \& 88 \& 59

80 \& 64 \& 92 \& 62 \& 88 \& 59 \& 84 \& 56 \& 80 \& 52 \& 75 \& 48 \& 69 \& 45 \& 64

\hline 100 \& 80 \& 115 \& 77 \& 110 \& 74 \& 105 \& 70 \& 100 \& 65 \& 93 \& 61 \& 87 \& 56 \& 80

\hline

125 \& 101 \& 144 \& 96 \& 138 \& 92 \& 132 \& 88 \& 125 \& 82 \& 116 \& 76 \& 108 \& 70 \& 100

\hline
\end{tabular}

160	129	184	123	176	118	168	112	160	104	149	97	139	90	129
200	161	230	154	220	147	211	140	200	130	186	121	173	112	161
250	201	287	193	278	184	263	175	250	163	233	152	216	141	201

3 General characteristics

Tmax T4

	$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
$\ln [\mathrm{A}]$	MIN	MAX	MIN	MA										
20	19	27	18	24	16	23	14	20	12	17	10	15	8	13
32	26	43	24	39	22	36	19	32	16	27	14	24	11	21
50	37	62	35	58	33	54	30	50	27	46	25	42	22	39
80	59	98	55	92	52	86	48	80	44	74	40	66	32	58
100	83	118	80	113	74	106	70	100	66	95	59	85	49	75
125	103	145	100	140	94	134	88	125	80	115	73	105	63	95
160	130	185	124	176	118	168	112	160	106	150	100	104	90	130
200	162	230	155	220	147	210	140	200	133	190	122	175	107	160
250	200	285	193	275	183	262	175	250	168	240	160	230	150	22

Tmax

	$10^{\circ} \mathrm{C}$		20°		30°		40°		50°		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
$\ln [\mathrm{A}]$	MIN	MAX												
320	260	368	245	350	234	335	224	320	212	305	200	285	182	263
400	325	465	310	442	295	420	280	400	265	380	250	355	230	325
500	435	620	405	580	380	540	350	500	315	450	280	400	240	345

Tmax $\mathbf{T} 6$

In [A] MIN MAX MIN MAX MIN CAX MIN MAX MIN $\mathbf{~ M A X ~} 60^{\circ} \mathrm{C} \quad 70^{\circ} \mathrm{C}$ \begin{tabular}{lllllllllllllll}
$\ln [A]$ \& MIN \& MAX

\hline 630 \& 520 \& 740 \& 493 \& 705 \& 462 \& 660 \& 441 \& 630 \& 405 \& 580 \& 380 \& 540 \& 350 \& 500

\hline 600 \& 685 \& 965 \& 640 \& 05 \& 605 \& 855 \& 560 \& 800 \& 520 \& 74 \& 47 \& 670 \& 420 \& 6

800 \& 685 \& 965 \& 640 \& 905 \& 605 \& 855 \& 560 \& 800 \& 520 \& 740 \& 470 \& 670 \& 420

\hline
\end{tabular}

3 General characteristics

Circuit-breakers with electronic release

F =Front flat teminals; EF =Front extended teminals; ES =Front extended spread terminals;
CCu =Front teminals for copper cables; FC CuAl = Front teminals for CuAl cables; $\mathrm{R}=$ Rear teminals

Tmax $T 2160$

Plug-in
lug-in

$$
\operatorname{upt~to~}_{\substack{\text { max } \\ A D}}
$$

	$\mathbf{1 4 4}$	0.9	138	0.84	126	0.8	112	0.68
EF	$\mathbf{1 4 4}$	0.9	138	0.84	126	0.8	112	0.68
ES	$\mathbf{1 4 4}$	0.9	138	0.84	126	0.8	112	0.68
FC Cu	$\mathbf{1 4 4}$	0.9	138	0.84	126	0.8	112	0.68
FC Cu	144	0.9	138	0.84	126	0.8	112	0.68
	144	0.9	138	0.84	126	0.8	112	0.68

144	0.9	138	0.84	126	0.8	112	0.68

Tmax 14250

Plug-in - Withdrawable								
$F C$	$\mathbf{2 5 0}$	1	250	1	240	0.96	220	0.88
F	$\mathbf{F 5 0}$	1	250	1	240	0.96	220	0.88
HR	$\mathbf{2 5 0}$	1	250	1	230	0.92	210	0.84
VR	$\mathbf{2 5 0}$	1	250	1	230	0.92	210	0.84
$F C$								

| 250 | | 230 | | 0.92 | | 210 | | 0.84 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

F $=$ Front teminals for cables: $F=$ Front flat teminals; $H R=$ Rear flat horizontal teminals; VR $=$ Rear

Tmax T4 320	up							
Fixed	1 max [A]	I_{1}	$\operatorname{lmax}^{\text {a }}$ A]	I_{1}	$\mathrm{Imax}^{\text {[}}$] $]$	I_{1}	$l_{\text {max }}[$ A]	1
FC	320	1	307	0.96	281	0.88	256	. 80
F	320	1	307	0.96	281	0.88	256	0.80
HR	320	1	294	0.92	269	0.84	243	0.76
VR	320	1	294	0.92	269	0.84	243	0.76
Plug-in - Withdrawable								
FC	320	1	294	0.92	268	0.84	242	0.76
F	320	1	307	0.96	282	0.88	256	0.80
HR	320	1	294	0.92	268	0.84	242	0.76
VR	320	1	294	0.92	268	0.84	242	0.76

3 General characteristics

3 General characteristics

3 General characteristics

Tmax T7 1250 (S-H-L versions)

Fixed	up to $40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$1 \mathrm{max}[\mathrm{A}]$	1_{1}	1 max [A]	1	1 max [A]	I_{1}	1 max [A]	1
VR	1250	1	1250	1	1250	1	1118	0,89
EF-HR	1250	1	1250	1	1118	0,89	980	0,78
Withdrawable								
VR	1250	1	1250	1	1141	0,91	1021	0,82
EF-HR	1250	1	1250	1	1118	0,89	980	0,78

$\mathrm{EF}=$ extended front; $\mathrm{HR}=$ Rear flat horizontal; $\mathrm{VR}=$ Rear flat vertical
Tmax T7 1600 (S-H-L versions)

Fixed	up to $40^{\circ} \mathrm{C}$		$50^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$	
	$\operatorname{Imax}[\mathrm{A}]$	I_{1}	$1 \mathrm{max}[\mathrm{A}]$	I_{1}	$1 \mathrm{max}[\mathrm{A}]$	I_{1}	$\operatorname{Imax}[\mathrm{A}]$	1
VR	1600	1	1537	0,96	1403	0,88	1255	0,78
EF-HR	1600	1	1481	0,93	1352	0,85	1209	0,7

Withdrawable								
VR	1600	1	1481	0,93	1352	0,85	1209	0,76
EF-HR	1600	1	1280	0,8	1168	0,73	1045	0,65

$\mathrm{EF}=$ extended front; $\mathrm{HR}=$ Rear flat horizontal; $\mathrm{VR}=$ Rear flat vertical

Plug-in - Withdrawable 1600 Rear vertical fial bar 1600
 $440 \quad 0.9$

$80 \quad 0.8$

\qquad | 1120 | 0.7 | 906 | 0.6 |
| :--- | :--- | :--- | :--- |

3 General characteristics

Emax X1 with horizontal rear terminals										
Temperature [${ }^{\circ} \mathrm{C}$]	X1 630		X1 800		X1 1000		X1 1250		X1 1600	
	\%	[A]								
10	100	630	100	800	100	1000	100	1250	100	1600
20	100	630	100	800	100	1000	100	1250	100	1600
30	100	630	100	800	100	1000	100	1250	100	1600
40	100	630	100	800	100	1000	100	1250	100	1600
45	100	630	100	800	100	1000	100	1250	100	1600
50	100	630	100	800	100	1000	100	1250	97	1550
55	100	630	100	800	100	1000	100	1250	94	1500
60	100	630	100	800	100	1000	100	1250	93	1480

Emax X1 with vertical rear terminals

Temperature [${ }^{\circ} \mathrm{C}$]	X1 630		X1800		X1 1000		X1 1250		X1 1600	
	\%	[A]								
10	100	630	100	800	100	1000	100	1250	100	1600
20	100	630	100	800	100	1000	100	1250	100	1600
30	100	630	100	800	100	1000	100	1250	100	1600
40	100	630	100	800	100	1000	100	1250	100	1600
45	100	630	100	800	100	1000	100	1250	100	1600
50	100	630	100	800	100	1000	100	1250	100	1600
55	100	630	100	800	100	1000	100	1250	98	1570
60	100	630	100	800	100	1000	100	1250	95	15

Emax E1								
Temperature [${ }^{\circ} \mathrm{C}$]	E1 800		E1 1000		E1 1250		E1 1600	
	\%	[A]	\%	[A]	\%	[A]	\%	[A]
10	100	800	100	1000	100	1250	100	1600
20	100	800	100	1000	100	1250	100	1600
30	100	800	100	1000	100	1250	100	1600
40	100	800	100	1000	100	1250	100	1600
45	100	800	100	1000	100	1250	98	1570
50	100	800	100	1000	100	1250	96	1530
55	100	800	100	1000	100	1250	94	1500
60	100	800	100	1000	100	1250	92	1470
65	100	800	100	1000	99	1240	89	1430
70	100	800	100	1000	98	1230	87	1400

3 General characteristics

Emax E2										
[${ }^{\text {C] }}$	\%	[A]	\%	[A]	\%	[A]	\%	A]	\%	[A]
10	100	800	100	1000	100	1250	100	1600	100	2000
20	100	800	100	1000	100	1250	100	1600	100	2000
30	100	800	100	1000	100	1250	100	1600	100	2000
40	100	800	100	1000	100	1250	100	1600	100	2000
45	100	800	100	1000	100	1250	100	1600	100	2000
50	100	800	100	1000	100	1250	100	1600	97	1945
55	100	800	100	1000	100	1250	100	1600	94	1885
60	100	800	100	1000	100	1250	98	1570	91	1825
65	100	800	100	1000	100	1250	96	1538	88	1765
70	100	800	100	1000	100	1250	94	1510	85	1705

Emax E3

Temperature E3 800 E3 1000 E3 1250 E3 1600 E3 2000 E3 2500 E3 3200 [Cํ
\qquad \% [A] \% [A] \% [A] \% $10 \quad 100800100100010012501001600100200010025001003200$ 100800100100010012501001600100200010025001003200
40 100 100800100100010012501001600100200010025001003200

45 100800100100010012501001600100200010025001003200 100800100100010012501001600100200010025001003200
\qquad 10080010010001001250100160010020001002500973090 1008001001000100125010016001002000100250093297 1008001001000100125010016001002000100250089286 $65 \quad 100800100100010012501001600100200097 \quad 242586 \quad 2745$ 1008001001000100125010016001002000942350822630

3 General characteristics

Emax E 4				
Temperature		3200	E4	4000
[${ }^{\text {C }}$]	\%	[A]	\%	[A]
10	100	3200	100	4000
20	100	3200	100	4000
30	100	3200	100	4000
40	100	3200	100	4000
45	100	3200	100	4000
50	100	3200	98	3900
55	100	3200	95	3790
60	100	3200	92	3680
65	98	3120	89	3570
70	95	3040	87	3460

Emax E6

Temperature	E6 3200		E6 4000		E6 5000		E66300	
[${ }^{\text {C }}$]	\%	[A]	\%	[A]	\%	[A]	\%	[A]
10	100	3200	100	4000	100	5000	100	6300
20	100	3200	100	4000	100	5000	100	6300
30	100	3200	100	4000	100	5000	100	6300
40	100	3200	100	4000	100	5000	100	6300
45	100	3200	100	4000	100	5000	100	6300
50	100	3200	100	4000	100	5000	100	6300
55	100	3200	100	4000	100	5000	98	6190
60	100	3200	100	4000	98	4910	96	6070
65	100	3200	100	4000	96	4815	94	5850
70	100	3200	100	4000	94	4720	92	5600

3 General characteristics

The following table lists examples of the continuous current carrying capacity for circuit-breakers installed in a switchboard with the dimensions indicated below. These values refer to withdrawable switchgear installed in non segregated switchboards with a protection rating up to IP31, and following dimensions: $2000 \times 400 \times 400(H \times L \times D)$ for X1, 2300×800x900 (HxLxD) for X1 - E1 - E2 - E3 $2300 \times 1400 \times 1500(H \times L \times D)$ for E4 - E6.
The values refer to a maximum temperature at the terminals of $120^{\circ} \mathrm{C}$.
For withdrawable circuit-breakers with a rated current of 6300 A , the use of vertical rear teminals is recommended.

For switchboards with the following dimensions (mm): $2000 \times 400 \times 400$

Type	Vertical terminals					Horizontal and front terminals			
	$\begin{aligned} & \text { lu } \\ & {[A]} \end{aligned}$	Continuous capacity			Busbars section [mm^{2}]	Continuous capacity			Busbars section [mm]
		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	
X1BNL 06	630	630	630	630	2x(40x5)	630	630	630	2x(40x5)
X1BNL 08	800	800	800	800	2x(50x5)	800	800	800	2x(50x5)
$\overline{\mathrm{X} 1 \mathrm{~B} / \mathrm{N} / 10}$	1000	1000	1000	1000	2x(50x8)	1000	1000	1000	$2 \times(50 \times 10)$
X1L 10	1000	1000	1000	960	$2 \times(50 \times 8)$	1000	950	890	$2 \times(50 \times 10)$
X1B/N/12	1250	1250	1250	1250	$2 \times(50 \times 8)$	1250	1250	1200	$2 \times(50 \times 10)$
$\overline{\mathrm{XLL} 12}$	1250	1250	1205	1105	$2 \times(50 \times 8)$	1250	1125	955	$2 \times(50 \times 10)$
X1BN16	1600	1520	1440	1340	$2 \times(50 \times 10)$	1400	1330	1250	$3 \times(50 \times 8)$

For switchboards with the following dimensions (mm): $2300 \times 800 \times 900$

Type	Vertical terminals					Horizontal and front terminals			
	$\underset{\text { [A] }}{\text { IU }}$	Continuous capacity			Busbars section$\left[m m^{4}\right]$	ous			$\underset{\substack{\text { Busbars section } \\[m m]}}{ }$
							[A]		
		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$		$5^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	
X1BNL 06	630	630	630	630	2x(40x5)	630	630	630	2x(40x5)
X1BNL 08	800	800	800	800	$2 \times(50 \times 5)$	800	800	800	$2 \times(50 \times 5)$
X1BNL 10	1000	1000	1000	1000	2x(50x8)	1000	1000	1000	$2 \times(50 \times 10)$
X1L 10	1000	1000	1000	1000	$2 \times(50 \times 8)$	1000	960	900	$2 \times(50 \times 10)$
X1BNL 12	1250	1250	1250	1250	$2 \times(50 \times 8)$	1250	1250	1200	$2 \times(50 \times 10)$
X1L 12	1250	1250	1250	1110	$2 \times(50 \times 8)$	1250	1150	960	$2 \times(50 \times 10)$
X1B/ 16	1600	1600	1500	1400	$2 \times(50 \times 10)$	1460	1400	1300	$3 \times(50 \times 8)$

3 General characteristics

Type	$\begin{aligned} & \text { lu } \\ & {[A]} \end{aligned}$	Verical terminals				Horizontal and front terminals			
		Continuous capacity			$\begin{gathered} \text { Busbars section } \\ \left.\left[m m^{2}\right]\right] \end{gathered}$	Continuous capacity			Busbars section [mm^{2}]
		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$		$35^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	
E1BN 08	800	800	800	800	1x(60x10)	800	800	800	1x(60x10)
E1BN 10	1000	1000	1000	1000	$1 \times(80 \times 10)$	1000	1000	1000	2x(60x8)
E1BN 12	1250	1250	1250	1250	$1 \times(80 \times 10)$	1250	1250	1200	$2 \times(60 \times 8)$
E1BN 16	1600	1600	1600	1500	$2 \times(60 \times 10)$	1550	1450	1350	$2 \times(60 \times 10)$
E2S 08	800	800	800	800	$1 \times(60 \times 10)$	800	800	800	1x(60x 10)
E2N/S 10	1000	1000	1000	1000	$1 \times(60 \times 10)$	1000	1000	1000	$1 \times(60 \times 10)$
E2NS 12	1250	1250	1250	1250	$1 \times(60 \times 10)$	1250	1250	1250	1x(60x 10)
E2BN/S 16	1600	1600	1600	1600	$2 \times(60 \times 10)$	1600	1600	1530	$2 \times(60 \times 10)$
E2BNS 20	2000	2000	2000	1800	$3 \times(60 \times 10)$	2000	2000	1750	$3 \times(60 \times 10)$
E2L 12	1250	1250	1250	1250	$1 \times(60 \times 10)$	1250	1250	1250	$1 \times(60 \times 10)$
E2L 16	1600	1600	1600	1500	$2 \times(60 \times 10)$	1600	1500	1400	$2 \times(60 \times 10)$
EЗHV 08	800	800	800	800	1×(60x10)	800	800	800	1x(60x10)
E3S/H 10	1000	1000	1000	1000	$1 \times(60 \times 10)$	1000	1000	1000	1x(60x 10$)$
E3SHV 12	1250	1250	1250	1250	$1 \times(60 \times 10)$	1250	1250	1250	$1 \times(60 \times 10)$
E3SHV 16	1600	1600	1600	1600	1×(100x10)	1600	1600	1600	1x(100x10)
E3SHV 20	2000	2000	2000	2000	$2 \times(100 \times 10)$	2000	2000	2000	$2 \times(100 \times 10)$
E3NSSHV 25	2500	2500	2500	2500	2x(100x10)	2500	2450	2400	$2 \times(100 \times 10)$
E3NSSHV 32	3200	3200	3100	2800	$3 \times(100 \times 10)$	3000	2880	2650	$3 \times(100 \times 10)$
E3L 20	2000	2000	2000	2000	2x(100x10)	2000	2000	1970	2x(100x10)
E3L 25	2500	2500	2390	2250	2x(100x10)	2375	2270	2100	$2 \times(100 \times 10)$
E4HV 32	3200	3200	3200	3200	$3 \times(100 \times 10)$	3200	3150	3000	$3 \times(100 \times 10)$
E4S/HV 40	4000	4000	3980	3500	4x(100x10)	3600	3510	3150	$6 \times(60 \times 10)$
E6V 32	3200	3200	3200	3200	$3 \times(100 \times 10)$	3200	3200	3200	$3 \times(100 \times 10)$
E6H/V 40	4000	4000	4000	4000	$4 \times(100 \times 10)$	4000	4000	4000	$4 \times(100 \times 10)$
E6HV 50	5000	5000	4850	4600	6x(100x10)	4850	4510	4250	$6 \times(100 \times 10)$
E6HV 63	6300	6000	5700	5250	$7 \times(100$				

Note: the reference temperature is the ambient temperature

Examples:

Selection of a moulded-case circuit-breaker, with themmomagnetic release, fo load current of 180 A , at an ambient temperature of $60^{\circ} \mathrm{C}$.
From the table refering to Tmax circuit-breakers (page 205), it can be seen that the most suitable breaker is the $T 3$ In 250, which can be set from 152 A to 216 A.

Selection of a moulded-case circuit-breaker, with electronic release, in withdrawable version with rear flat horizontal bar terminals, for a load current equal to 720 A , with an ambient temperature of $50^{\circ} \mathrm{C}$.
rom the table refering to Tmax circuit-breakers (page 209), it can be seen that the most suitable breaker is the T6 800, which can be set from 320 A to 760 A .

Selection of an air circuit-breaker, with electronic release, in withdrawable version with vertical terminals, for a load current of 2700 A , with a temperature outsid f the IP31 switchboard of $55^{\circ} \mathrm{C}$
From the tables referring to the current carrying capacity inside the switchboard for Emax circuit-breakers (see above), it can be seen that the most suitable breaker is the E3 3200, with busbar section $3 \times(100 \times 10) \mathrm{mm}^{2}$, which can be set from 1280 A to 2800 A .

3 General characteristics

The following tables show the maximum settings for L protection (against overload) for electronic releases, according to temperature, version and terminals.

Tmax T2 In $=160 \mathrm{~A}$	Fixed	Plug-in
	PR221	
	All terminals	
40	1	0.9
45	0.98	0.88
50	0.96	0.84
55	0.92	0.8
60	0.88	0.76
65	0.84	0.72
70	0.8	0.68

$\begin{aligned} & \hline \text { Tmax T4 } \\ & I n=250 A \end{aligned}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC - F	HR - VR						
≤ 40	1	1	1	1	1	1	1	1
45								
50								
55								
60					0.96	0.92	0.96	0.92
65	0.96	0.92	0.96	0.94	0.92	0.88	0.92	0.88
70	0.92	0.88	0.92	0.88	0.88	0.84	0.88	0.84

Tmax 74$\mathrm{In}=320 \mathrm{~A}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC - F	HR - VR	FC - F	HR - VR	F	FC-HR-VR	F	FC-HR-VR
≤ 40	1	1	1	1	1	1	1	1
45						0.96		0.96
50	0.96	0.92	0.96	0.92	0.96	0.92	0.96	0.92
55	0.92	0.88	0.92	0.88	0.92	0.88	0.92	0.88
60	0.88	0.84	0.88	0.84	0.88	0.84	0.88	0.84
65	0.84	0.8	0.84	0.8	0.84	0.80	0.84	0.80
70	0.8	0.76	0.8	0.76	0.8	0.76	0.8	0.76

FC =Front terminals for cables; F = Front flat terminals; HR = Rear flat horizontal erminals; $\mathrm{VR}=$ Rear flat vertical terminals.

3 General characteristics

Tmax T5$\ln =400 \mathrm{~A}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC - F	HR - VR						
≤ 40	1	1	1	1	1	1	1	1
45								
50								
55					0.96	0.96	0.98	0.96
60						0.92	0.96	0.92
65	0.96	0.92	0.96	0.94	0.92	0.88	0.92	0.88
70	0.92	0.88	0.92	0.88	0.88	0.84	0.88	0.84

Tmax 75$\ln =630 \mathrm{~A}$	Fixed				Plug-in - Withdrawable			
	PR221		PR222/PR223		PR221		PR222/PR223	
	FC - F	HR - VR	FC - F	HR - VR	F	HR-VR	F	HR-VR
≤ 40	1	1	1	1	1	1	1	1
45								
50	0.96	0.92	0.96	0.92	0.96	0.92	0.96	0.92
55	0.92	0.88	0.92	0.88	0.92	0.84	0.92	0.86
60	0.88	0.84	0.88	0.84	0.88	0.8	0.88	0.82
65	0.84	0.8	0.84	0.8	0.8	0.76	0.8	0.76
70	0.8	0.76	0.8	0.76	0.76	0.72	0.76	0.72

FC $=$ Front terminals for cables; $F=$ Front flat terminals; $H R=$ Rear flat horizontal terminals: VR $=$ Rear flat vertical terminals.

Tmax T6$\ln =630 A$	Fixed						Withdrawable			
	PR221			PR222/PR223			PR221		PR222/PR223	
	F	FC	R	F	FC	R	EF-VR	HR	EF-VR	HR
≤ 40	1	1	1	1	1	1	1	1	1	1
45								0.96		0.96
50								0.92		0.94
55		0.96	0.92		0.96	0.94	0.96	0.92	0.96	0.92
60		0.92	0.88		0.94	0.9	0.92	0.88	0.94	0.9
65	0.96	0.92	0.84	0.96	0.92	0.84	0.92	0.84	0.92	0.84
70	0.92	0.88	0.8	0.94	0.9	0.8	0.88	0.8	0.9	0.8

F = Front flat teminals; $\mathrm{HR}=$ Rear flat horizontal terminals; VR = Rear flat vertical terminals; FC = Fron terminals for cables; $R(H R)=$ Rear terminals onented in horizontal; $R(V R)=$ Rear terminals oriented in vertical; $\mathrm{ES}=$ Spreaded extended front terminals; $\mathrm{R}=$ Rear terminals; $\mathrm{EF}=$ Front extended.

3 General characteristics

Tmax $\mathbf{T 6}$In = 800A	Fixed						Withdrawable			
	PR221			PR222/PR223			PR221		PR222/PR223	
	F	FC	R	F	FC	R	EF-VR	HR	EF-VR	HR
≤ 40	1	1	1	1	1	1	1	1	1	1
45								0.96		0.96
50								0.92		0.94
55		0.96	0.92		0.96	0.94	0.96	0.92	0.96	0.92
60		0.92	0.88		0.94	0.9	0.92	0.88	0.94	0.9
65	0.96	0.92	0.84	0.96	0.92	0.84	0.92	0.84	0.92	0.84
70	0.92	0.88	0.8	0.94	0.9	0.8	0.88	0.8	0.9	0.8

$\begin{aligned} & \text { Tmax } \mathbf{~ T 6} \\ & \text { In = 1000A } \end{aligned}$	Fixed							
	PR221				PR222/PR223			
	FC	R (HR)	R (VR)	ES	FC	R (HR)	R (VR)	ES
≤ 40	1	1	1	1	1	1	1	1
45		0.96		0.92		0.96	1	0.94
50		0.92	0.96	0.88		0.92	0.96	0.9
55	0.92	0.88	0.88	0.84	0.92	0.88	0.9	0.84
60		0.84		0.8		0.84	0.88	0.82
65	0.84	0.76	0.8	0.76	0.84	0.78	0.82	0.76
70	0.8	0.76	0.76	0.72	0.8	0.76	0.78	0.72

$\begin{gathered} \hline \text { Tmax T7 V } \\ \text { In }=1000 \end{gathered}$	Fixed						Withdrawable					
	PR231/PR232		PR331		PR332		PR231/PR232		PR331		PR332	
	VR	EF-HR										
≤ 40	1	1	1	1	1	1	1	1	1	1	1	1
45												
50												
55		0.92		0.925		0.94	0.92	0.92	0.95	0.925	0.95	0.94
60		0.88		0.875		0.89	0.88	0.88	0.9	0.875	0.9	0.89
65	0.92	0.8	0.95	0.825	0.95	0.83	0.84	0.8	0.85	0.825	0.86	0.83
70	0.88	0.76	0.875	0.775	0.89	0.78	0.8	0.76	0.8	0.775	0.81	0.78

$\begin{gathered} \hline \mathbf{T m a x} \mathbf{T 7} \mathbf{S}, \mathbf{H}, \mathbf{L} \\ \mathrm{In}=1250 \end{gathered}$	Fixed						Withdrawable					
	PR231/PR232		PR331		PR332		PR231/PR232		PR331		PR332	
	VR	EF-HR										
≤ 40	1	1	1	1	1	1	1	1	1	1	1	1
45												
50												
55		0.92		0.925		0.94	0.92	0.92	0.95	0.925	0.95	0.94
60		0.88		0.875		0.89	0.88	0.88	0.9	0.875	0.91	0.89
65	0.92	0.84	0.925	0.825	0.94	0.84	0.84	0.84	0.85	0.825	0.86	0.84
70	0.88	0.76	0.875	0.775	0.89	0.78	0.8	0.76	0.8	0.775	0.81	0.78

3 General characteristics

$\begin{gathered} \text { Tmax T7 V } \\ \text { In }=1250 \end{gathered}$	Fixed						Withdrawable					
	PR231/PR232		PR331		PR332		PR231/PR232		PR331		PR332	
	VR	EF-HR										
≤ 40	1	1	1	1	1	1	1	1	1	1	1	1
45		0.96		0.95		0.96	0.96	0.88	0.95	0.9	0.96	0.9
50	0.96	0.92	0.95	0.925	0.96	0.92	0.92	0.8	0.925	0.8	0.92	0.8
55	0.88	0.88	0.9	0.875	0.91	0.88	0.88	0.76	0.875	0.75	0.88	0.76
60	0.84	0.84	0.85	0.825	0.87	0.84	0.84	0.72	0.825	0.725	0.84	0.73
65	0.8	0.76	0.8	0.775	0.82	0.79	0.76	0.68	0.775	0.675	0.79	0.69
70	0.76	0.72	0.775	0.75	0.78	0.75	0.72	0.64	0.75	0.65	0.75	0.65

$\begin{gathered} \hline \mathbf{T m a x} \mathbf{T 7 ~ S}, \mathbf{H}, \mathbf{L} \\ \mathrm{In}=1600 \end{gathered}$	Fixed						Withdrawable					
	PR231/PR232		PR331		PR332		PR231/PR232		PR331		PR332	
	VR	EF-HR										
≤ 40	1	1	1	1	1	1	1	1	1	1	1	1
45		0.96		0.95		0.96	0.96	0.88	0.95	0.9	0.96	0.9
50	0.96	0.92	0.95	0.925	0.96	0.92	0.92	0.8	0.925	0.8	0.92	0.8
55	0.88	0.88	0.9	0.875	0.91	0.88	0.88	0.76	0.875	0.75	0.88	0.76
60	0.84	0.84	0.875	0.825	0.87	0.84	0.84	0.72	0.825	0.725	0.84	0.73
65	0.8	0.76	0.825	0.775	0.83	0.79	0.8	0.68	0.8	0.675	0.8	0.67
70	0.76	0.72	0.775	0.75	0.78	0.75	0.72	0.64	0.75	0.65	0.75	0.65

$\mathrm{F}=$ Front flat terminals; $\mathrm{HR}=$ Rear flat horizontal terminals; VR $=$ Rear flat vertical terminals; $\mathrm{FC}=$ Fron terminals for cables; $R(H R)=$ Rear terminals oriented in horizontal; $R(N R)=$ Rear teminals oriented in
vertical: $\mathrm{ES}=$ Spreaded extended front terminals; $\mathrm{R}=$ Rear terminals; $\mathrm{EF}=$ Front extended.

$\begin{aligned} & \text { Isomax S7 } \\ & \text { In } \leq 1250 \mathrm{~A} \end{aligned}$	Front flat bar Rear vertical flat bar PR211 FP		Front flat bar Rear vertical flat bar PR212		Front for cables		Rear horizontal flat bar PR211		$\begin{gathered} \text { Rear horizontal } \\ \text { flat bar } \\ \hline \end{gathered}$			
			PR211	PR212								
	F	w			F	W	F	F	F	W	F	w
≤ 40	1	1	1				1		1			
45				1	1	1		1		1		
50												
55		0.95		0.975	0.95	0.975		0.95		0.95		
60				0.95		0.95		0.9		0.9		
65	0.95	0.9	0.975	0.975	0.9	0.925	0.95	0.8	0.95	0.85		
70			0.95	0.9		0.9	0.9		0.9	0.8		

Isomax $\mathbf{S 7}$In = 1600A	Front flat bar Rear vertical flat bar		Front flat bar Rear vertical flat bar		Rear horizontal flat bar		Rear horizontal flat bar	
	PR211		PR212		PR211		PR212	
	F	W	F	W	F	W	F	W
≤ 40	1	1	1	1	1	1	1	1
45	0.95	0.95	0.975	0.95	0.95	0.9	0.95	0.9
50		0.9	0.95	0.9	0.9	0.8	0.9	0.8
55	0.9	0.8	0.925	0.85	0.8	0.7	0.85	0.75
60			0.9	0.8			0,8	0.7
65	0.95	0.7	0.85	0.75	0.7	0.6	0.75	0.65
70			0.8	0.7			0.7	0.6

3 General characteristics

Emax x1	630 A	
	PR331	PR332/PR333
≤ 40		
45	1	1
50		
55		
60		

Emax X1	800 A	
	PR331	PR332/PR333
≤ 40		
45		1
50	1	
55		
60		

Emax X1	1000 A	
	PR331	PR332/PR333
≤ 40		
45	1	1
50		
55		
60		

Emax X1	1250 A	
	PR331	PR332/PR333
≤ 40		
$y n n$		
45	1	1
50		
55		
60		

Emax X1*	1600 A	
	PR331	PR332/PR333
≤ 40	1	1
45		0.96
50	0.95	0.93
55	0.925	0.92
60	0.925	

Emax X1**	1600 A	
	PR331	PR332/PR333
≤ 40		1
45	1	
50		0.98
55	0.975	0.95
60	0.95	0

* with horizontal rear termainals
** with vertical rear termainals

3 General characteristics

Emax E1	800 A	
	PR121	PR122/PR123
40		
45		
50	1	1
55		
60		
65		
70		

Emax E1	1000 A	
	PR121	PR122/PR123
≤ 40		
$y n n$		
$y n n$	1	1
$y n n$		
55		
60		
65		
70		

Emax E1	1250A	
	PR121	PR122/PR123
≤ 40		
45		1
50		
55		
60		0.975
65	0.975	
70		0.98

Emax E1	1600 A	
	PR121	PR122/PR123
≤ 40	1	1
45	0.975	0.98
50	0.95	0.95
55	0.925	0.93
60	0.9	0.91
65	0.875	0.89
70	0.85	0.87

Emax E2	800/1000/1250 A	
	PR121	PR122/PR123
≤ 40		
45		
50	1	1
55		
60		
65		
70		

Emax E2	1600 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		0.98
60	0.975	0.96
65	0.95	0.92
70	0.925	0.94

Emax E2	2000A	
	PR121	PR122/PR123
≤ 40	1	1
45		0.97
50	0.95	0.94
55	0.925	0.91
60	0.9	0.88
65	0.875	0.85
70	0.85	

Emax E3	$800 / 1000 / 1250 / 1600 / 2000 \mathrm{~A}$	
	PR121	PR122/PR123
≤ 40		
45		
50		
55	1	
60		
65		
70		

3 General characteristics

Emax E3	2500 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		
60	0.95	0.97
65	0.925	0.94
70		

Emax E3	3200 A	
	PR121	PR122/PR123
≤ 40	1	1
45	0.95	0.96
50	0.9	0.92
55	0.875	0.89
60	0.85	0.85
65	0.8	0.82
70		

Emax E4	3200 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		
60	0.975	0.97
65	0.95	0.95
70		

Emax E4	4000 A	
	PR121	PR122/PR123
≤ 40	1	1
45		0.97
50	0.975	0.94
55	0.95	0.92
60	0.875	0.89
65	0.85	0.86
70		

Emax E6	$3200 / 4000$ A	
	PR121	PR122/PR123
≤ 40		
$y n n$		
45	1	1
50		
55		
60		
65		
70		

Emax E6	5000 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55		0.98
60	0.975	0.96
65	0.95	0.94
70	0.925	

Emax E6	6300 A	
	PR121	PR122/PR123
≤ 40		
45	1	1
50		
55	0.975	0.98
60	0.95	0.96
65	0.9	0.92
70	0.875	0.88

	Vertical teminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR331	PR332/PR333	PR331	PR332/PR333	PR331	PR332/PR333
X1B/N/L 06	1	1	1	1	1	1
X1B/N/L 08						
X1B/N 10						
XIL 10					0.95	0.96
X1B/N 12					1	1
X1L 12			0.95	0.96	0.875	0.88
X1B/N 16			0.9	0.9	0.825	0.83

	Horizontal and front temminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR331	PR332/PR333	PR331	PR332/PR333	PR331	PR332/PR333
X1B/N/L 06	1	1	1	1	1	1
X1B/N/L 08						
X18/N 10						
X1L 10			0.95	0.95	0.875	0.89
X18/N 12			1	1	0.95	0.96
X1L 12			0.9	0.9	0.75	0.76
x18/N 16	0.875	0.87	0.825	0.83	0.775	0.78

For switchiboards with the following dimensions (mm):2300×900×800 (HxLxD)

	Vertical temminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR331	PR332/PR333	PR331	PR332/PR333	PR331	PR332/PR333
X1B/N/L 06	1	1	1	1	1	1
x1B/N/L 08						
X1B/N 10						
XIL 10						
x1B/N 12						
XIL 12					0.875	0.88
X1B/N 16			0.925	0.93	0.875	0.87

	Horizontal and front temminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR331	PR332/PR333	PR331	PR332/PR333	PR331	PR332/PR333
X1B/N/L 06	1	1	1	1	1	1
x1B/N/L 08						
X1B/N 10						
XIL 10			0.95	0.96	0.9	0.9
X1B/N 12			1	1	0.95	0.96
X1L 12			0.9	0.92	0.75	0.76
X1B/N 16	0.9	0.91	0.875	0.87	0.8	0.81

3 General characteristics

	Vertical Terminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR121	PR122/PR123	PR121	PR122/PR123	PR121	PR122/PR123
E1B/N 08	1	1	1	1	1	1
E1B/N 10	1	1	1	1	1	1
E1B/N 12	1	1	1	1	1	1
E1B/N 16	1	1	1	1	0.925	0.93
E2S 08	1	1	1	1	1	1
E2N/S 10	1	1	1	1	1	1
E2N/S 12	1	1	1	1	1	1
E2B/N/S16	1	1		1	1	1
E2B/N/S20	1	1	1	1	0.9	0.9
E2L 12	1	1	1	1	1	1
E2L 16	1	1	1	1	0.925	0.93
E3H/V 08	1	1	1	1	1	1
E3S/V10	1	1	1	1	1	1
E3S/H/V 12	1	1	1	1	1	1
E3S/H/V 16	1	1	1	1	1	1
E3S/H/V20	1	1	1	1	1	1
E3N/S/H/ V25	1	1	1	1	1	1
E3N/S/H/ V32	1	1	0.95	0.96	0.875	0.87
E3L 20	1	1	1	1	1	1
E3L 25	1	1	0.95	0.95	0.9	0.9
E4H/V32	1	1	1	1	1	1
E4S/H/V40	1	1	0.975	0.99	0.875	0.87
E6V 32	1	1	1	1	1	1
E6H/V 40	1	1	1	1	1	1
E6H/V50	1	1	0.95	0.97	0.9	0.92
E6H/V 63	0.95	0.95	0.9	0.9	0.825	0.83

	Horizontal and front Terminals					
	$35^{\circ} \mathrm{C}$		$45^{\circ} \mathrm{C}$		$55^{\circ} \mathrm{C}$	
	PR121	PR122/PR123	PR121	PR122/PR123	PR121	PR122/PR123
E1B/N 08						

E1B/N 10 E1B/N 12 E1B/N 16 E2S 08 E2N/S 10 E2B/N/S16 E2B/N/S20 E2L 12 E2L 16 $\mathrm{E} 3 \mathrm{H} / \mathrm{V} 08$
$\mathrm{E} 3 \mathrm{~S} / \mathrm{H} 10$ E3S/H 10 E3S/H/V12 E3S/H/ V16 E3S/H/V2O E3N/S// $\mathrm{E} / \mathrm{V} 25$ E3L 20 E3L 25 E4H/V32 E4S/H/V40 E6V 32 $\mathrm{E} 6 \mathrm{H} / \mathrm{V} 40$ E6H/V 50
$\mathrm{E} 6 \mathrm{H} / \mathrm{V} 63$

3 General characteristics

3.6 Altitude derating

For installations camied out at altitudes of more than 2000 m above sea level, the performance of low voltage circuit-breakers is subject to a decline Basically there are two main phenomen

- the reduction of air density causes a lower efficiency in heat transfer. The
allowable heating conditions for the various parts of the circuit-breaker can only be followed if the value of the rated unintemupted current is decreased
the rarefaction of the air causes a decrease in dielectric rigidity, so the usua isolation distances become insufficient. This leads to a decrease in the maximum rated voltage at which the device can be used.

The correction factors for the different types of circuit-breakers, both moulded- case and air circuit-breakers, are given in the following table:

	Altitude	Rated operational voltage Ue [V]			
		2000[m]	3000[m]	4000[m]	5000[m]
Tmax*		690	600	500	440
Isomax		690	600	500	440
Emax		690	600	500	440
		Rated uninterrupted current lu [A]			
	Altitude	2000[m]	3000[m]	4000[m]	5000[m]
Tmax		100\%	98\%	93\%	90\%
Isomax		100\%	95\%	90\%	85\%
Emax		100\%	98\%	93\%	90\%

*Excluding Tmax T1P

3 General characteristics

3.7 Electrical characteristics of switch disconnectors

A switch disconnector as defined by the standard IEC 60947-3 is a mechanica switching device which, when in the open position, carries out a disconnecting function and ensures an isolating distance (distance between contacts) sufficien to guarantee safety. This safety of disconnection must be guaranteed and verified by the positive operation: the operating lever must always indicate the actual position of the mobile contacts of the device
The mechanical switching device must be able to make, carry and break currents in normal circuit conditions, including any overload cuments in nomal service and to cary, for a specified duration, currents in abnormal circuit conditions, such as, for example, short-circuit conditions.

Switch disconnectors are often used as:
main sub-switchboard devices;

- switching and disconnecting devices for lines, busbars or load units
bus-tie.
The switch disconnector shall ensure that the whole plant or part of it is not live, safely disconnecting from any electrical supply. The use of such a switch disconnector allows, for example, personnel to carry out work on the plant without nisks of electrical nature.
Even if the use of a single pole devices side by side is not forbidden, the standards recommend the use of multi-pole devices so as to guarantee the simultaneous isolation of all poles in the circuit.
The specific rated characteristics of switch disconnectors are defined by the standard IEC 60947-3, as detailed below:
- Icw [KA]: rated short-time withstand current:
is the current that a switch is capable of carying, without damage, in the closed position for a specific duration
Icm [kA]: rated short-circuit making capacity
is the maximum peak value of a short-circuit current which the switch disconnector can close without damages. When this value is not given by the manufacturer it must be taken to be at least equal to the peak current corresponding to Icw. It is not possible to define a breaking capacity Icu [KA] since switch disconnectors are not required to break short-circuit currents utilization categories with alternating current AC and with direct current DC:
define the kind of the conditions of using which are represented by two letters to indicate the type of circuit in which the device may be installed (AC for alternating current and DC for direct current), with a two digit number for the type of load which must be operated, and an additional letter (A or B) which represents the frequency in the using
With reference to the utilization categories, the product standard defines the uith relce thich the switch discon, the podust urrent values which the switch disconnector must be able to break and make under abnomal conditions.

3 General characteristics

The characteristics of the utilization categories are detailed in Table 1 below. The most demanding category in altemating current is AC23A, for which the device must be capable of connecting a current equal to 10 times the rated current of the device, and of disconnecting a current equal to 8 times the rated urrent of the device

From the point of view of construction, the switch disconnector is a very simple levice. It is not fitted with devices for overcurrent detection and the consequen automatic intemuption of the current. Therefore the switch disconnector canno be used for automatic protection against overcurrent which may occur in the case of failure, protection must be provided by a coordinated circuit-breaker The combination of the two devices allows the use of switch disconnectors in systems in which the short-circuit current value is greater than the electrical parameters which define the performance of the disconnector (back-up protection see Chapter 4.4. This is valid only for Isomax and Tmax switch disconnectors. For the Emax/MS air disconnectors, it must be verified that the values for Icw and Icm are higher to the values for short-circuit in the plant and correspondent peak, respectively.

Tablel: Utilization categories

Nature of current	Utilization categories		
	Utilization category		Typical applications
	Frequent operation	Non-frequent operation	
Alternating Current	AC-20A	AC-20B	Connecting and disconnecting under no-load conditions
	AC-21A	AC-21B	Switching of resistive loads including moderate overloads
	AC-22A	AC-22B	Switching of mixed resistive and inductive loads, including moderate overload
	AC-23A	AC-23B	Switching of motor loads or other highly inductive loads
Direct Current	DC-20A	DC-20B	Connecting and disconnecting under no-load conditions
	DC-21A	DC-21B	Switching of resistive loads including moderate overloads
	DC-22A	DC-22B	Switching of mixed resistive and inductive loads, including moderate overload (e.g. shunt motors)
	DC-23A	DC-23B	Switching of highly inductive loads

3 General characteristics

Tables 2, 3 and 4 detail the main characteristics of the disconnectors.

3 General characteristics

Rated short-circuit making
capacity (peak value) Icm

Note: the breaking capacity 1 , at the maximum rated use voltage, by means of extemal
protection relay, with 500 ms maximum timing, is equal to the value of I_{cw} (1s).

3 General characteristics

Conventional thermal current at $40^{\circ} \mathrm{C}$, Ith		[A]
Number of poles		Nr .
Rated operational voltage, Ue	(ac) $50-60 \mathrm{~Hz}$	[N]
	(dc)	[-]
[A]		
		[kV]
Rated insulation voltage, Ui		[V]
Test voltage at industrial frequency for 1 min .		[V]
Rated short-circuit making capacity (415 V), Icm		[kA]
Rated short-time withstand current for 1 s , Icw		[KA]
Isolation behaviour		
IEC 60947-3		
Versions		
Terminals fixed		
plug-in		
withdrawable		
Mechanical life [No . of operations / operation per hour]		
Basic dimensions, fixed	L (3/4 poles)	[mm]
	D	[mm]
	H	[mm]
Weight, fixed	3/4 poles	[kg]

		X1B/MS	E1B/MS	E1N/MS	E2B/MS	E2N/MS	E2S/MS	E3N/MS	E3S/MS	E3V/MS	E4S/MS	E4H/fMS	E4H/MS	E6H/MS	E6H/f MS
Rated uninterrupted current (a $40^{\circ} \mathrm{C}$) Iw	nt [A]	1000	800	800	1600	1000	1000	2500	1000	800	4000	3200	3200	4000	4000
	[A]	1250	1000	1000	2000	1250	1250	3200	1250	1250		4000	4000	5000	5000
	[A]	1600	1250	1250		1600	1600		1600	1600				6300	6300
	[A]		1600	1600		2000	2000		2000	2000					
	[A]							2500	2500						
	[A]							3200	3200						
Rated operational voltage Ue	[[~]	690	690	690	690	690	690	690	690	690	690	690	690	690	690
	[V-]	250	250	250	250	250	250	250	250	250	250	250	250	250	250
Rated insulation voltage Ui Rated impulse withstand voltage Uimp	[V ~]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	[kV]	12	12	12	12	12	12	12	12	12	12	12	12	12	12
Rated short-time withstand current Icw	(1s) [kA]	42	42	$50^{(1)}$	42	55	65	65	75	85	75	85	$100^{(2)}$	100	100
	(3s) [kA]		36	36	42	42	42	65	65	65	75	75	75	85	85

Table 4: Emax switch disconnectors

$\mathrm{I}_{\mathrm{w}}=36 \mathrm{KA} @ 690 \mathrm{~V}$

ABB SACE - Protection and control devices

4 Protection coordination

1 Protection coordination

The design of a system for protecting an electric network is of fundamenta mportance both to ensure the correct economic and functional operation of the installation as a whole and to reduce to a minimum any problem caused by anomalous operating conditions and/or malfunctions.
The present analysis discusses the coordination between the different devices dedicated to the protection of zones and specific components with a view to:

- guaranteeing safety for people and installation at all times:
- identifying and rapidly excluding only the zone affected by a problem, instead of taking indiscriminate actions and thus reducing the energy available to the rest of the network;
containing the effects of a malfunction on other intact parts of the network (voltage dips, loss of stability in the rotating machines);
- reducing the stress on components and damage in the affected zone;
- ensuring the continuity of the service with a good quality feeding voltage;
- guaranteeing an adequate back-up in the event of any malfunction of the protective device responsible for opening the circuit;
- providing staff and management systems with the information they need to restore the service as rapidly as possible and with a minimal disturbance to the rest of the network;
achieving a valid compromise between reliability, simplicity and cost effectiveness.

To be more precise, a valid protection system must be able to:

- understand what has happened and where it has happened, discriminating between situations that are anomalous but tolerable and faults within a given zone of influence, avoiding unnecessary tripping and the consequent unjustified disconnection of a sound part of the system;
- take action as rapidly as possible to contain damage (destruction, accelerated ageing, ...), safeguarding the continuity and stability of the power supply. The most suitable solution derives from a compromise between these two pposing needs - to identify precisely the fault and to act rapidly - and is defined in function of which of these two requirements takes priority

Over-current coordination

Influence of the network's electrical parameters (rated current and short circuit current)

The strategy adopted to coordinate the protective devices depends mainly on the rated current $\left(I_{n}\right)$ and short-circuit current $\left(l_{k}\right)$ values in the considered point of network.
Generally speaking, we can classify the following types of coordination:

- current discrimination,
- time (or time-current) discrimination;
- zone (or logical) discrimination;
- energy discrimination
- back-up.

4 Protection coordination

Definition of discrimination

The over-current discrimination is defined in the Standards as "coordination of the operating characteristics of two or more over-current protective devices such that, on the incidence of over-currents within stated limits, the device intended to operate within these limits does so, while the others do not opera te" (IEC 60947-1, def. 2.5.23
It is possible to distinguish between:

- total discrimination, which means "over-current discrimination such that, in the case of two over-current protective devices in series, the protective device on the load side provides protection without tripping the other protective device (IEC 60947-2, def. 2.17.2);
- partial discrimination which means "over-current discrimination such that, in the case of two over-current protective devices in series, the protective device on the load side provides protection up to a given over-current limit without tripping the other" (IEC 60947-2, def. 2.17.3); this over-current threshold is called "discrimination limit current I_{s} " (IEC 60947-2, def. 2.17.4).

Current discrimination

This type of discrimination is based on the observation that the closer the fault comes to the network's feeder, the greater the short-circuit current will be. We can therefore pinpoint the zone where the fault has occurred simply by calibrating he instantaneous protection of the device upstream to a limit value higher than the fault current which causes the tripping of the device downstream.
We can normally achieve total discrimination only in specific cases where the fault current is not very high (and comparable with the device's rated current) or where a component with high impedance is between the two protective devices (e.g. a transformer, a very long or small cable...) giving rise to a large difference between the short-circuit current values.

This type of coordination is consequently feasible mainly in final distribution hetworks (with low rated current and short-circuit current values and a high impedance of the connection cables).
The devices' time-current tripping curves are generally used for the study. This solution is:
rapid;
easy to implement

- and inexpensive.

On the other hand:
the discrimination limits are normally low

- increasing the discrimination levels causes a rapid growing of the device sizes.

The following example shows a typical application of current discrimination based n the different instantaneous tripping threshold values of the circuit-breakers considered.

4 Protection coordination

With a fault current value at the defined point equal to 1000 A , an adequate coordination is obtained by using the considered circuit-breakers as verified in he tripping curves of the protection devices
The discrimination limit is given by the minimum magnetic threshold of the circuit-breaker upstream, T1B160 In160.

This type of discrimination is an evolution from the previous one. The setting strategy is therefore based on progressively increasing the current thresholds and the time delays for tripping the protective devices as we come closer to the power supply source. As in the case of current discrimination, the study is based on a comparison of the time-current tripping curves of the protective devices.
This type of coordination:

- is easy to study and implement;
- is relatively inexpensive;
- enables to achieve even high discrimination levels, depending on the I_{cw} of the upstream device;
- allows a redundancy of the protective functions and can send valid information to the control system

but has the following disadvantages:

- the tripping times and the energy levels that the protective devices (especially those closer to the sources) let through are high, with obvious problems conceming safety and damage to the components even in zones unaffected by the fault;

4 Protection coordination

- it enables the use of current-limiting circuit-breakers only at levels hierarchically lower down the chain; the other circuit-breakers have to be capable of withstanding the thermal and electro-dynamic stresses related to the passage of the fault current for the intentional time delay. Selective circuit-breakers, often air type, have to be used for the various levels to guarantee a sufficiently high short-time withstand current:
- the duration of the disturbance induced by the short-circuit current on the power supply voltages in the zones unaffected by the fault can cause problems with electronic and electro-mechanical devices (voltage below the electromagnetic releasing value);
the number of discrimination levels is limited by the maximum time that the network can stand without loss of stability.

The following example shows a typical application of time discrimination obtained by setting differently the tripping times of the different protection devices

Electronic release:	L (Long delay)	S (Short delay)	1 (IST)
E4S 4000 PR121-LSI In4000	Setting: 0.9	Setting: 8.5	Off
	Curve: 12 s	Curve: 0.5s	
E3N 2500 PR121-LSI In2500	Setting: 1	Setting: 10	Off
	Curve: 3 s	Curve: 0.3 s	
S7H 1600 PR211-LI In1600	Setting: 1		Setting: 10
	Curve: A		

4 Protection coordination

Zone (or logical) discrimination

The zone discrimination is available with MCCB (T4 L-T5 L-T6 L with PR223 EF) and ACB (with PR332/P - PR333/P - PR122 - PR 123).
This type of coordination is implemented by means of a dialogue between current measuring devices that, when they ascertain that a setting threshold has been exceeded, give the correct identification and disconnection only of the zone affected by the fault.
In practice, it can be implemented in two ways:

- the releases send information on the preset current threshold that has been exceeded to the supenvisor system and the latter decides which protective device has to trip;
- in the event of current values exceeding its setting threshold, each protective device sends a blocking signal via a direct connection or bus to the protective device higher in the hierarchy (i.e. upstream with respect to the direction of the power flow) and, before it trips, it makes sure that a similar blocking signal has not arrived from the protective device downstream; in this way, only the protective device immediately upstream of the fault trips.

The first mode foresees tripping times of about one second and is used mainly ine case of not particularly high short-circuit currents where a power flow is not uniquely defined
The second mode enables distinctly shorter tripping times: with respect to a time discrimination coordination, there is no longer any need to increase the intentional time delay progressively as we move closer to the source of the power supply. The maximum delay is in relation to the time necessary to detect any presence of a blocking signal sent from the protective device downstream. Advantages:

- reduction of the tripping times and increase of the safety level;
- reduction of both the damages caused by the fault as well of the disturbances in the power supply network;
reduction of the themal and dynamic stresses on the circuit-breakers and on the components of the system;
large number of discrimination levels;
- redundancy of protections: in case of malfunction of zone discrimination, the tripping is ensured by the settings of the other protection functions of the circuit-breakers. In particular, it is possible to adjust the time-delay protection functions against short-circuit at increasing time values, the closer they are to the network's feeder.

Disadvantages:

- higher costs;
greater complexity of the system (special components, additional wiring, auxiliary power sources, ...).

This solution is therefore used mainly in systems with high rated current and high short-circuit current values, with precise needs in terms of both safety and continuity of service: in particular, examples of logical discrimination can be often found in primary distribution switchboards, immediately downstream of transformers and generators and in meshed networks.

4 Protection coordination
Zone selectivity with Emax

The example above shows a plant wired so as to guarantee zone selectivity with Emax CB equipped with PR332/P-PR333/P-PR122/P-PR123/P releases Each circuit-breaker detecting a fault sends a signal to the circuit-breake mmediately on the supply side through a communication wire; the circuit-breaker that does not receive any communication from the circuit-breakers on the load side shall launch the opening command.
In this example, with a fault located in the indicated point, the circuit-breakers D and E do not detect the fault and therefore they do not communicate with the circuit-breaker on the supply side (circuit-breaker B), which shall launch the opening command within the selectivity time set from 40 to 200 ms .

To actuate correctly zone selectivity, the following settings are suggested:
S
G
Selectivity time

4 Protection coordination

Zone selectivity for circuit-breakers type Tmax (T4L-T5L-T6L) with

 PR223 EF releasesThe example above shows a plant wired through an interlocking protocol (Interlocking, IL), so as to guarantee zone selectivity through PR223 EF release. In case of short-circuit, the circuit-breaker immediately on the supply side of the fault sends through the bus a block signal to the protection device hierarchically higher and verifies, before tripping, that an analogous block signal has not been sent by the protection on the load side
In the example in the figure, the circuit-breaker C , immediately on the supply side of the fault, sends a block signal to the circuit-breaker A, which is hierarchically higher. If, as in the given example, no protection on the load side is present, the circuit-breaker C shall open in very quick times since it has received no block signal.
Everything occurs in shorter times (10 to 15 ms) than in the case of zone selectivity with the Emax series air circuit-breaker (40 to 200ms), thus subjecting the plant to lower electrodynamic stresses, and with a consequent cost reduction for the plant.

4 Protection coordination

Energy discrimination

Energy coordination is a particular type of discrimination that exploits the current limiting characteristics of moulded-case circuit-breakers. It is important to remember that a current-limiting circuit-breaker is "a circuit-breaker with a break ime short enough to prevent the short-circuit current reaching its otherwise attainable peak value" (IEC 60947-2, def. 2.3).
In practice, ABB SACE moulded-case circuit-breakers of Isomax and Tmax series, under short-circuit conditions, are extremely rapid (tripping times of about some milliseconds) and therefore it is impossible to use the time-current curves for the coordination studies.
The phenomena are mainly dynamic (and therefore proportional to the square of the instantaneous current value) and can be described by using the specific et-through energy curves.
In general, it is necessary to verify that the let-through energy of the circuitbreaker downstream is lower than the energy value needed to complete the opening of the circuit-breaker upstream.
This type of discrimination is certainly more difficult to consider than the previous ones because it depends largely on the interaction between the two devices placed in series and demands access to data often unavailable to the end user. Manufacturers provide tables, rules and calculation programs in which the minimum discrimination limits are given between different combinations of circuit breakers.
Advantages: fast breaking

- reduction of the damages caused by the fault (thermal and dynamic stresses) of the disturbances to the power supply system, of the costs.
- the discrimination level is no longer limited by the value of the short-time withstand current I_{cw} which the devices can withstand;
- large number of discrimination levels;
- possibility of coordination of different current-limiting devices (fuses, circuit-
breakers,..) even if they are positioned in intermediate positions along the chain.

Disadvantage:

- difficulty of coordination between circuit-breakers of similar sizes.

This type of coordination is used above all for secondary and final distribution networks, with rated currents below 1600A.

Back-up protection

The back-up protection is an "over-current coordination of two over-current protective devices in series where the protective device, generally but not necessarily on the supply side, effects the over-current protection with or without the assistance of the other protective device and prevents any excessive stress on the latter" (IEC 60947-1, def. 2.5.24)
Besides, IEC 60364-4-43, 434.5.1 states: "... A lower breaking capacity is admitted if another protective device having the necessary breaking capacity is installed on the supply side. In that case, characteristics of the devices, must be co-ordinated so that the energy let through by these two devices does not exceed that which can be withstood without damage by the device on the load side and the conductors protected by these devices."

4 Protection coordination

Advantages:

- cost-saving solution;
- extremely rapid tripping

Disadvantages:

- extremely low discrimination values
- low service quality, since at least two circuit-breakers in series have to trip.

Coordination between circuit-breaker and switch disconnector

The switch disconnector

The switch disconnectors derive from the corresponding circuit-breakers, of which they keep the overall dimensions, the fixing systems and the possibility of mounting all the accessories provided for the basic versions. They are devices which can make, carry and break currents under nomal service conditions of the circuit.
They can also be used as general circuit-breakers in sub-switchboards, as bus-ties, or to isolate installation parts, such as lines, busbars or groups of oads
Once the contacts have opened, these switches guarantee isolation thanks to their contacts, which are at the suitable distance to prevent an arc from striking in compliance with the prescriptions of the standards regarding aptitude to isolation.

Protection of switch disconnectors

Each switch disconnector shall be protected by a coordinated device which safeguards it against overcurrents, usually a circuit-breaker able to limit the short-circuit current and the let-through energy values at levels acceptable for the switch-disconnector.
As regards overload protection, the rated current of the circuit-breaker shall be ower than or equal to the size of the disconnector to be protected.
Regarding Isomax and Tmax series switch disconnectors the coordination tables show the circuit-breakers which can protect them against the indicated prospective short-circuit currents values.
Regarding Emax series switch disconnectors it is necessary to verify that the short-circuit current value at the installation point is lower than the short-time withstand current I_{cw} of the disconnector, and that the peak value is lower than the making current value (I_{cm}).

4 Protection coordination

2 Discrimination tables

The tables below give the selectivity values of short-circuit currents (in KA) between pre-selected combinations of circuit-breakers, for voltages from 380 o 415 V , according annex A of IEC 60947-2. The tables cover the possible and Tmax moulded-case circuit-breakers series and the series of ABB modula ircuit-breakers. The values are obtained following particular nules which, if not espected, may give selectivity values which in some cases may be much lower than those given. Some of these guidelines are generally valid and are indicated elow; others refer exclusively to particular types of circuit-breakers and will be subject to notes below the relevant table.

General rules:

the function I of electronic releases of upstream breakers must be excluded (13 in OFF);

- the magnetic trip of thermomagnetic (TM) or magnetic only (MA-MF) breakers positioned upstream must be $\geq 10 \cdot I_{n}$ and set to the maximum threshold;
- it is fundamentally important to verify that the settings adopted by the user for the electronic and themomagnetic releases of breakers positioned either upstream or downstream result in time-current curves properly spaced.

Notes for the comect reading of the coordination tables:

The limit value of selectivity is obtained considering the lower among the given value, the breaking capacity of the CB on the supply side and the breaking capacity of the CB on the load side
The letterT indicates total selectivity for the given combination, the corresponding value in KA is obtained considering the lower of the downstream and upstream circuit-breakers' breaking capacities (Icu).

The following tables show the breaking capacities at 415Vac for SACE Emax, Isomax and Tmax circuit-breakers.

4 Protection coordination

Example:

rom the selectivity table on page 265 it can be seen that breakers E2N1250 and T5H400, correctly set, are selective up to 55kA (higher than the short-circuit current at the busbar).
From the selectivity table on page 258 it can be seen that, between T5H400 and T1N160 In125, the total sectivity is granted; as aleady specified on page 241 this means selectivity up to the breaking capacity of T1N and therefore up to 36 kA (higher than the short-circuit current at the busbar).

From the curves it is evident that between breakers E2N1250 and T5H400 time discrimination exists, while between breakers T5H400 and T1N160 there is energy discrimination.

4 Protection coordination

Discrimination tables MCB-MCB

MCB-s2. B @ 415V

MCB - S2.. C @ 415V

ABB SACE - Protection and control devices

Discrimination tables MCB-MCB

MCB-s2 D@415V

MCB-S2. Z @ 415V

MCB - S2.. K @ 415V

Discrimination tables MCB/МССB - S500

ШСВ/MCCB-S500@415V

			Version			B, C, N, S, H, L, V																			B, C, N, S, H, L, V									
			Release			TM																							EL					
			Supply s.	S290 D		T2	T1-T2						T1-T2-T3					T3		T4									T2					$\mathbf{T} 4-\mathrm{T5}$ $100 \div$ 630
Load s.	Char.	$\mathrm{Icu}[\mathrm{kA}]$	$\ln [\mathrm{A}]$	80	100	12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	$\begin{array}{r} 200 \div \\ 250 \\ \hline \end{array}$	10	25	63	100	160	
5500	B, C	50	6	6	10	4.5	5.5	5.5	5.5	5.5	5.5	5.5	10.5	15	20	25	36	36	36	7.5	7.54)	7.5	7.5	16	T	T	T	T		36	36	36	36	T
			10	6	10			4.5 ${ }^{\text {(1) }}$	4.5	4.5	4.5	4.5	8	10	20	25	36	36	36	6.5	6.54)	6.5	6.5	11	T	T	T	T		36	36	36	36	T
			13	6	10			$4.5{ }^{(1)}$		4.5	4.5	4.5	7.5	10	15	25	36	36	36	6.5	$5{ }^{44}$	6.5	6.5	11	T	T	T	T		36	36	36	36	T
			16	6	10					4.51)	4.5	4.5	7.5	10	15	25	36	36	36		5^{44}	6.5	6.5	11	T	T	T	T			36	36	36	T
			20	6	7.5					4.50)		4.5	7.5	10	15	25	36	36	36		44)	6.5	6.5	11	T	T	T	T			36	36	36	T
			25	4.5	6							$4.5{ }^{\text {(1) }}$	6	10	15	20	36	36	36				6.5	11	T	T	T	T			36	36	36	T
			32		6							$4.5{ }^{(1)}$		7.5	10	20	36	36	36				6.5	8	T	T	T	T			36	36	36	T
			40											5()	10	20	36	36	36				5^{44}	6.5	T	T	T	T				36	36	T
			50											5()	7.52)	15	36	36	36					5^{44}	7.5	T	T	T				36	36	T
			63												$5{ }^{22}$	$6^{(3)}$	36	36	36						$5^{(4)}$	7	T	T					36	T
	D	50	6	6	10	4.5	5.5	5.5	5.5	5.5	5.5	5.5	10.5	15	20	25	36	36	36	7.5	7.54)	7.5	7.5	16	T	T	T	T		36	36	36	36	T
			10	6	10			4.50)	4.5	4.5	4.5	4.5	8	10	20	25	36	36	36	6.5	6.54)	6.5	6.5	11	T	T	T	T		36	36	36	36	T
			13	6	10			4.51)		4.5	4.5	4.5	7.5	10	15	25	36	36	36		5^{44}		6.5	11	T	T	T	T		36	36	36	36	T
			16	6	10					4.51)	4.5	4.5	7.5	10	15	25	36	36	36				6.5	11	T	T	T	T			36	36	36	T
			20	6	7.5					$4.5{ }^{\text {(1) }}$		4.5	7.5	10	15	25	36	36	36				$6.5{ }^{\text {4 }}$	11	T	T	T	T			36	36	36	T
			25	4.5	6							4.51)	6	10	15	20	36	36	36				6.54	11	T	T	T	T			36	36	36	T
			32		6							4.51)		7.5	10	20	36	36	36					8	T	T	T	T			36	36	36	T
			40											$5^{\text {(1) }}$	10	20	36	36	36					$6.5{ }^{54}$	T ${ }^{(4)}$	T	T	T				36	36	T
			50											5 ${ }^{\text {(1) }}$	7.52)	15	36	36	36						7.54)	$T^{(4)}$	T	T				36	36	T
			63												$5{ }^{2(2)}$	$6^{(8)}$	36	36	36							7^{44}	T ${ }^{44}$	T					36	T
	K	50	≤ 5.8	T	T	36	36	36	36	36	36	36	36	36	36	36	50	T	T	40	$40^{(4)}$	40	40	40	T	T	T	T	50	50	50	50	50	T
			5.3... 8	10	T	4.51)	5.5	5.5	5.5	5.5	5.5	5.5	10.5	36	36	36	50	T	T	6	6^{44}	6	6	40	T	T	T	T		50	50	50	50	T
			7.3...11	7.5	T			4.54)	4.5	4.5	4.5	4.5	8	36	36	36	50	T	T		5^{44}	5	5	40	T	T	T	T		50	50	50	50	T
		30	10...15	4.5	10			$4.5{ }^{\text {(1) }}$		4.5	4.5	4.5	7.5	10	15	T	T	T	T		5^{44}		5	12	T	T	T	T		T	T	T	T	T
			14... 20	4.5	6					4.5 ${ }^{\text {(1) }}$	4.5	4.5	7.5	10	15	T	T	T	T				5	12	T	T	T	T			T	T	T	T
			18... 26		4.5					$4.5{ }^{\text {(1) }}$		4.5	7.5	10	15	T	T	T	T				5^{44}	12^{44}	T	T	T	T			T	T	T	T
			23... 32									$4.5{ }^{\text {(1) }}$	6	10	15	20	T	T	T				5^{44}	$12^{(4)}$	T^{4}	T	T	T			T	T	T	T
			29... 37									$4.5{ }^{(1)}$		7.5	10	20	T	T	T				54)	8^{44}	T ${ }^{4}$	T ${ }^{(4)}$	T	T				T	T	T
			34... 41											5(1)	10	20	T	T	T					6^{64}	T^{44}	$T^{(4)}$	T	T				T	T	T
			38... 45											5(1)	7.52)	15	T	T	T					6^{64}	8^{44}	$T^{(4)}$	T ${ }^{49}$	T				T	T	T

(2) Value for the supply side magnetic only T2 circuit-breaker.
${ }^{\text {2) }}$) Value for the supply side magnetic only T T-T3 circuit-breake
(3) Value for the supply side magnetic only T3 circuit-breaker.
(4) Value for the supply side magnetic only T4 circuit-breaker.

Discrimination tables MCCB - S2.

MCCB - S2. B @ 415V

						Version			B, C,	N, S,														B, C,	N, S,	H, L, V													
						Release Supply s. $\ln [\mathrm{A}]$	TM T2 T1-T2							тм																		EL							
	Char.	Icu [kA]												T1-T2-T3					T3		T4										T5	12					T4		T5 $320-$ 630
		6	10	15	25		12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{array}{\|c\|} \hline 320 \div \\ 500 \end{array}$	10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \end{array}$	$\begin{aligned} & \hline 250 \\ & 320 \end{aligned}$	
	B	-	-	-	-	≤ 2																																	
		-	-	-	-	3																																	
		-	-	-	-	4																																	
		-	S200	S200M	S200P	6	$5.5^{(1)}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	10			$3^{\text {11) }}$	3	3	3	4.5	7.5	8.5	17	T	T	T	T	5	54)	5	6.5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	13			311)		3	3	4.5	7.5	7.5	12	20	T	T	T		54)	5	6.5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	16					$3{ }^{17}$	3	4.5	5	7.5	12	20	T	T	T		$3^{4(4)}$	5	6.5	8	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	20					$3^{\text {i1) }}$		3	5	6	10	15	T	T	T				5	7.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	25							317)	5	6	10	15	T	T	T				5	7.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	32							$3^{(11)}$		6	7.5	12	T	T	T				5^{44}	7.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	40									$5.5{ }^{514}$	7.5	12	T	T	T					6.5	T	T	T	T	T	T				T	T	T	T	T
		-	S200	S200M-S200P	-	50									$3^{(1)}$	52)	7.5	10.5	T	T					5^{44}	T	T	T	T	T	T				10.5	10.5	T	T	T
		-	S200	S200M-S200P	-	63										$5{ }^{22}$	$6^{(3)}$	10.5	T	T						$\mathrm{T}^{(4)}$	T(4)	T	T	T	T					10.5	T	T	T
		-	-	-	-	80																																	
		-	-	-	-	100																																	
		-	-	-	-	125																																	

[^0]
Discrimination tables MCCB - S2.

mCCB-s2. C @ 415V

						Version			B, C,	N, S,														B, C,	N, S,	H, L,V													
						Release	TM																M									EL							
	Char.	$\mathrm{Icu}[\mathrm{KA}]$				Supply s.	T2	T1-T2						T1-T2-T3					T3		T4										T5	12					T4		$\begin{array}{\|c\|} \hline \text { T5 } \\ \hline 320 \div \\ 630 \\ \hline \end{array}$
			10	15	25	$\ln [\mathrm{A}]$	12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{array}{r} 320 \div \\ 500 \end{array}$	10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \end{array}$	$\begin{aligned} & 250 \\ & 320 \\ & \hline \end{aligned}$	
$\left\lvert\, \begin{aligned} & \dot{\circ} \\ & \stackrel{0}{0} \\ & \hline 9 \end{aligned}\right.$	C	-	S200	S200M	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T^{44}	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$T^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$T^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		S200L	S200	S200M	S200P	6	$5.5^{(1)}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		S200L	S200	S200M	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		S200L	S200	S200M	S200P	10			317)	3	3	3	4.5	7.5	8.5	17	T	T	T	T	5	54)	5	6.5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		S200L	S200	S200M	S200P	13			$3^{\text {(1) }}$		3	3	4.5	7.5	7.5	12	20	T	T	T		5^{44}	5	6.5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
		S200L	S200	S200M	S200P	16					$3{ }^{(1)}$	3	4.5	5	7.5	12	20	T	T	T		$3{ }^{44}$	5	6.5	8	T	T	T	T	T	T			T	T	T	T	T	T
		S200L	S200	S200M	S200P	20					$3{ }^{(1)}$		3	5	6	10	15	T	T	T				5	7.5	T	T	T	T	T	T			T	T	T	T	T	T
		S200L	S200	S200M	S200P	25							$3^{(1)}$	5	6	10	15	T	T	T				5	7.5	T	T	T	T	T	T			T	T	T	T	T	T
		S200L	S200	S200M-S200P	-	32							$3^{(1)}$		6	7.5	12	T	T	T				5^{44}	7.5	T	T	T	T	T	T			T	T	T	T	T	T
		S200L	S200	S200M-S200P	-	40									5.5110	7.5	12	T	T	T					6.5	T	T	T	T	T	T				T	T	T	T	T
		-	S200	S200M-S200P	-	50									$3^{(1)}$	52)	7.5	10.5	T	T					$5{ }^{44}$	T	T	T	T	T	T				10.5	10.5	T	T	T
		-	S200	S200M-S200P	-	63										$5{ }^{22}$	$6^{(3)}$	10.5	T	T						T(4)	$\mathrm{T}^{(4)}$	T	T	T	T					10.5	T	T	T
		-	-	S290	-	80												$4^{(3)}$	10	15								5	11	T	T					4	$T^{\text {5 }}$	T	T
		-	-	S290	-	100												$4^{(3)}$	7.5.3)	15								5^{44}	8	T	T					4	$12^{(4)}$	T	T
		-	-	S290	-	125													$7.5{ }^{33}$										8^{44}	12	T					4		T	T

1) Value for the supply side magnetic only 72 circuit-breaker.
2) Value for the supply side magnetic only T 2 -T3 circuit-breaker.
${ }^{3}$) Value for the supply side magnetic only T3 circuit-breake
Value for the supply side T4 In160 circuit-breaker.

Discrimination tables MCCB - S2.

MCCB - S2. D @ 415V

						Version			B, C,	N, S,														B, C,	N, S,	H, L, V													
							TM T2 T1-T2							TM																		EL							
	Char.	Icu [kA]				Supply s.								T1-T2-T3					T3		T4										T5	12					T4		T5 $320 \div$ 630
		6	10	15	25	$\ln [\mathrm{A}]$	12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{aligned} & 320 \div \\ & 500 \end{aligned}$	10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 320 \\ \hline \end{array}$	
$\begin{aligned} & \dot{\infty} \\ & \stackrel{0}{0} \end{aligned}$	D	-	S200	S200M	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	6	$5.5^{\text {(1) }}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	12	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	10			3(1)	3	3	3	3	5	8.5	17	T	T	T	T	5	54)	5	5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	13					2^{11}	2	2	3	5	8	13.5	T	T	T		5^{44}		4	5.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	16					$2^{\text {(1) }}$	2	2	3	5	8	13.5	T	T	T					5.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	20					$2^{\text {(1) }}$		2	3	4.5	6.5	11	T	T	T				44)	5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	25							$2^{\text {(1) }}$	2.5	4	6	9.5	T	T	T				44)	4.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	32									4	6	9.5	T	T	T					4.54)	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	40									$3^{(1)}$	5	8	T	T	T					4.54)	T^{4}	T	T	T	T	T				T	T	T	T	T
		-	S200	S200M-S200P	-	50									2^{11}	322	5	9.5	T	T						$\mathrm{T}^{(4)}$	T ${ }^{4}$	T	T	T	T				9.5	9.5	T	T	T
		-	S200	S200M-S200P	-	63										$3{ }^{22}$	$5^{(3)}$	9.5	T	T							T ${ }^{(4)}$	T^{44}	T	T	T					9.5	T	T	T
		-	-	S290	-	80												$4{ }^{(3)}$	10	15								5	11	T	T					4	$T^{\text {(}}$ (T	T
		-	-	S290	-	100												$4^{(3)}$	7.5^{33}	15									8	T	T					4	12^{56}	T	T
		-	-	-	-	125																																	

${ }^{\text {(1) }}$ Value for the supply side magnetic only T2 circuit-breaker.
${ }^{3}$) Value for the supply side magnetic only T3 circuit-breake
(4) Value for the supply side magnetic only T4 circuit-breake.
${ }^{55}$ Value for the supply side T4 $\operatorname{In} 160$ circuit-breaker.

MCCB - S2.

MCCB - S2.. K @ 415V

						Version			B, C,	N, S,															N, S,	H, L, V													
						Release Supply S $\ln [A]$				тM				TM																		EL							
	Char.	$\mathrm{Icu}[\mathrm{KA}]$					T2	T1-T2						T1-T2-T3					T3		T4										T5	T2					T4		$\begin{array}{\|c\|} \hline \text { T5 } \\ \hline 320 \div- \\ 630 \\ \hline \end{array}$
		6	10	15 25			12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{aligned} & 320 \div \\ & 500 \end{aligned}$	10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 320 \end{array}$	
	K	-	S200	S200M	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{4} 4$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T(4)	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T ${ }^{4}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	S200M	S200P	6	$5.5{ }^{\text {(1) }}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	12	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	10			$3{ }^{11}$	3	3	3	3	6	8.5	17	T	T	T	T		544	5	5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	-	-	S200P	13					$2^{(1)}$	3	3	5	7.5	10	13.5	T	T	T		5^{54}	5	5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	S200M	S200P	16					$2^{(1)}$	3	3	4.5	7.5	10	13.5	T	T	T		$5^{(4)}$		5	8	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	20					$2^{(1)}$		3	3.5	5.5	6.5	11	T	T	T				5	6	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M	S200P	25							$2^{(1)}$	3.5	5.5	6	9.5	T	T	T				5^{44}	6^{44}	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	32									4.5	6	9,5	T	T	T				5^{44}	6^{44}	T^{4}	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200M-S200P	-	40									3^{11}	5	8	T	T	T					$5.5{ }^{44}$	T ${ }^{4}$	T^{44}	T	T	T	T				T	T	T	T	T
		-	S200	S200M-S200P	-	50									$2^{11)}$	$3{ }^{22}$	6	9.5	T	T					54)	T^{4}	$\mathrm{T}^{(4)}$	T^{4}	T	T	T				9.5	9.5	T	T	T
		-	S200	S200M-S200P	-	63										32)	$5.5{ }^{(3)}$	9.5	T	T						T4)	$\mathrm{T}^{(4)}$	$\mathrm{T}^{(4)}$	T^{4}	T	T					9.5	T	T	T
		-	-	S290	-	80												$4^{(3)}$	10	15								5	11	T	T					4	$T^{\text {(6) }}$	T	T
		-	-	S290	-	100												$4^{(3)}$	$7.5{ }^{30}$	15								5^{44}	\bigcirc	T	T					4	12^{65}	T	T
		-	-	-	-	125																																	

[^1]5) Value for the supply side T4 In160 circuit-breaker.

Discrimination tables MCCB - S2.

mCCB-s2. Z@400V

						Version			B, C,	N, S,														B, C,	N, S,	H, L, V													
						Release Supply s. $\ln [A]$	тм							TM																		EL							
	Char.	Icu [kA]					T2	T1-T2						T1-T2-T3					T3		T4										T5	T2					T4		T5 $320 \div$ 630
		6	10	15	25		12.5	16	20	25	32	40	50	63	80	100	125	160	200	250	20	25	32	50	80	100	125	160	200	250	$\begin{array}{\|c\|} \hline 320- \\ 500 \\ \hline \end{array}$	10	25	63	100	160	$\begin{array}{\|l\|} \hline 100 \\ 160 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 250 \\ 320 \\ \hline \end{array}$	
$$	z	-	S200	-	S200P	≤ 2	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	-	S200P	3	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	-	S200P	4	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	$\mathrm{T}^{(4)}$	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
		-	S200	-	S200P	6	$5.5^{\text {(1) }}$	5.5	5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	8			5.5	5.5	5.5	5.5	5.5	10.5	T	T	T	T	T	T	7.5	7.54)	7.5	7.5	T	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	10			$3^{\text {(1) }}$	3	3	3	4.5	8	8.5	17	T	T	T	T	5	5^{44}	5	6.5	9	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	-	-	S200P	13			$3{ }^{\text {(1) }}$		3	3	4.5	7.5	7.5	12	20	T	T	T		54)	5	6.5	8	T	T	T	T	T	T		T	T	T	T	T	T	T
		-	S200	-	S200P	16					$3^{(1)}$	3	4.5	5	7.5	12	20	T	T	T		5^{44}	4.5	6.5	8	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	-	S200P	20					$3^{(1)}$		3	5	6	10	15	T	T	T				5	6.5	T	T	T	T	1	T			T	T	T	T	T	T
		-	S200	-	S200P	25							$3^{(1)}$	5	6	10	15	T	T	T				5	6.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200P	-	32							$3^{\text {(1) }}$		6	7.5	12	T	T	T				54)	6.5	T	T	T	T	T	T			T	T	T	T	T	T
		-	S200	S200P	-	40									$5.5{ }^{517}$	7.5	12	T	T	T					5	T	T	T	T	T	T				T	T	T	T	T
		-	S200	S200P	-	50									$4{ }^{(1)}$	52)	7.5	10.5	T	T					3.54)	T	T	T	T	T	T				10.5	10.5	T	T	T
		-	S200	S200P	-	63										5^{22}	$6^{(3)}$	10.5	T	T						$\mathrm{T}^{(4)}$	T	T	T	T	T					10.5	T	T	T
		-	-	-	-	80																																	
		-	-	-	-	100																																	
		-	-	-	-	125																																	

(1) Value for the supply side magnetic only T2 circuit-breaker.
(2) Value for the supply side magnetic only T2-T3 circuit-breaker.
(3)
${ }^{4}$) Value for the supply side magnetic only T4 circuit-breaker.

Discrimination tables MCCB - MCCB

MCCB - T1 @ 415V

$*$ Value for the supply side magnetic only circuit-breaker.
$* *$ Values valid only with PR232/P, PR331/P and PR332/P electronic releases
${ }^{* * *}$ Available only with lu $\leq 1250 \mathrm{~A}$

Discrimination tables MCCB - MCCB

MCCB T2 @ 415V

* Value for the supply side magnetic only circuit-breake
**Values valid only with PR232/P, PR331/P and PR332/P electronic releases
${ }^{* * *}$ Available only with lu $\leq 1250 \mathrm{~A}$

Discrimination tables MCCB - MCCB

MCCB-T3 @ 415V

				pply s.	T1			T2				3						T4					T					T5						T6					7			S7	
	Version				P, B, C, N	N,S,H,L					N,S		N,S,H,H,V									N,S,H,H,V				N,S,H,L,V						N,S,H,L					S,H,L, , V***				S,H,L		
	Release				TM	TM, M	EL				TM.M		TM.M									EL				TM			EL			TM,M		EL			EL				EL		
		${ }_{4}[\mathrm{~A}]$			160	160		160			25	50					250						250		320			630	400		630	630	800	630	800	1000	800	1000	1250	1600	115		1600
Load s.				$\mathrm{I}_{\mathrm{n}}[\mathrm{A}]$	160	160	25	63100	10016	16016	16020	0025	20	25	32	50	8010	100125	160	200	250	100	160	250	320	320	400	500	320	400	630	630	800	630	800	1000	800*	1000^{*}	1250	1600	1000	1250	1600
T3		TM	160	63							4	$4{ }^{4} 5$						7^{*}	7	7	7	7	7	7	7	25	25	25	25	25	25	T	T	T	T	T	T	T	T	T	T	T	T
				80							$3^{*}{ }^{*} 4$	4							7^{*}	7	7		7	7	7	25	25	25	25	25	25	T	T	T	T	T	T	T	T	T	T	T	T
				100								4^{*}							7^{*}	7^{*}	7		7	7	7	25	25	25	25	25	25	40	T	40	T	T	T	T	T	T	T	T	T
				125																7^{*}				7	7	20	20	20	20	20	20	36	T	36	T	T	T	T	T	T	T	T	T
				160																				7	7			20	20	20	20	36	T	36	T	T	T	T	T	T	T	T	T
				200																					7				20	20	20	30	T	30	T	T	T	T	T	T	T	T	T
				250																									20	20	20	30	40	30	40	40	T	T	T	T	T	T	T

Value for the supply side magnetic only circuit-breaker. ${ }^{* * * A v a i l a b l e ~ o n l y ~ w i t h ~ l u \leq 1250 A ~}$

MCCB-T4 @ 415V

				pply s				5						T6						7			57	
	Versio						N,S,H	H,L,						S, H ,						, L, , V**			S.H,L	
		Releas					M			EL			M,M			EL				EL			EL	
			$1_{u}[A]$				630		400		630				308	800	1000	800	1000		1600		250	1600
Loads.				In_{n} [A]	320	400	500	32		400	630	630	380	63	30	800	1000	$80{ }^{*}$	100**	1250	1600		1250	1600
T4	$\begin{aligned} & \mathrm{N} . \\ & \mathrm{S} . \\ & \mathrm{H} . \\ & \mathrm{L} . \\ & \mathrm{V} \end{aligned}$	тм	250	20	T	T	T	T		T	T	T	T		T	T	T	T	T	T	T	T	T	T
				25	T	T	T	T		T	T	T	T		T	T	T	T	T	T	T	T	T	T
				32	T	T	T	T		T	T	T	T	T	T	T	T	T	T	T	T	T	T	T
				50	T	T	T	T		T	T	T	T		T	T	T	T	T	T	T	T	T	T
				80	T	T	T	T		T	T	T	T		T	T	T	T	T	T	T	T	T	T
				100		50	50	50		50	50	T	T		T	T	T	T	T	T	T	T	T	T
				125			50	50		50	50	T	T		T	T	T	T	T	T	T	T	T	T
				160				50		50	50	T	T	T	T	T	T	T	T	T	T	T	T	T
				200				50		50	50	T	T		T	T	T	T	T	T	T	T	T	T
				250						50	50	T	T		T	T	T	T	T	T	T	T	T	T
		EL	250	100	50	50	50	50		50	50	T	T		T	T	T	T	T	T	T	T	T	T
				160	50	50	50	50		50	50	T	T		T	T	T	T	T	T	T	T	T	T
				250			50			50	50	T	T		T	T	T	T	T	T	T	T	T	T
			320	320							50	T	T		T	T	T	T	T	T	T	T	T	T

*Values valid only with PR232/P, PR331/P and PR332/P electronic releases

4 Protection coordination

Discrimination tables MCCB - MCCB

MCCB-T5@415V

**Values valid only with PR232/P, PR331/P and PR332/P electronic releases

MCCB - T6 @ 415V

*Available only with lu $\leq 1250 \mathrm{~A}$, maximum selectivity values is 15 kA
**Values valid only with PR232/P, PR331/P and PR332/P electronic releases

4 Protection coordination

Discrimination tables ACB - MCCB

ACB - MCCB @ 415V

Table valid for Emax circuit-breaker only with PR121/P, PR122/P and PR123/P release Emax L ciruit-
$*$ Available only with lu $\leq 1250 \mathrm{~A}$

4 Protection coordination
4.3 Back-up tables

The tables shown give the short-circuit current value (in KA) for which the backup protection is verified for the chosen circuit-breaker combination, at voltages from 380 up to 415 V . These tables cover all the possible combinations between ABB SACE moulded-case circuit-breakers Isomax and Tmax and those between the above mentioned circuit-breakers and ABB MCBs.

Notes for a correct interpretation of the coordination

 tables:| Tmax @ 415V ac | |
| :--- | :---: |
| Version | $\mathrm{Icu}[\mathrm{kA}]$ |
| B | 16 |
| C | 25 |
| N | 36 |
| S | 50 |
| H | 70 |
| L (for T2) | 85 |
| L (for T4-T5) | 120 |
| L (for T6) | 100 |
| V (for T7) | 150 |
| V | 200 |

Emax $@$ 415V ac	
Version	ICu [kA]
B	42
N	65^{*}
S	$75^{* *}$
H	100
L	$130^{* * *}$
V	$150^{* * *}$

Keys

```
For MCCB (Moulded-case circuit-breaker)
ACB (Air circuit-breaker)
TM =thermomagnetic releas
    TMD (Tmax)
    -T Tadjustable M adjustable (Isomax)
M = magnetic only release
    - MF (Tmax)
EL = elettronic release
```

For MCB (Miniature circuit-breaker)
$\mathrm{B}=$ charaterisicic trip ($(3 \mathrm{~B}=\mathrm{B} . .5 \mathrm{In})$
$\mathrm{C}=$ charateristic
tip
$\mathrm{C}=$ charateristic trip $(13=3=5 . . .10 \mathrm{In})$

$\mathrm{Z}=$ charatenstic trip (13=2...3n)

4 Protection coordination

xample:

From the coordination table on page 269 the following conclusion is derived the circuit-breakers type T5H and T1N are coordinated in back-up protection up to a value of 65 kA (higher than the shot-circuit curent measured at the up to a value of 65 kA (higher than the short-circuit current measured at the instan moreaking capacity of T1N, at 415 V , is 36 kA.

			Supply s.	S 200L	S200	s200m			S280	S290	S500
	Char.			c	B-C	B-C	B-C	B-C	B-C	C	B-C
Loads.		Icu [kA]		10	20	25	40	40	20	25	100
			In [A]	6.40	0.5.63	0.5.63	0.5.25	32.63	80, 100	80.125	$6 . .63$
S931 N	C	4.5	2.40	10	20	25	40	25	15	15	100
S941 N	B,C	6	2.40	10	20	25	40	25	15	15	100
S951 N	B,C	10	2.40	10	20	25	40	25	15	15	100
S971 N	B,C	10	2.40	10	20	25	40	25	15	15	100
S200L	c	10	6.40		20	25	40	25	15	15	100
S200	B,C,K,Z	20	0.5.63			25	40	25			100
S200M	B,C,D	25	0.5..63				40				100
S200P	B, $\mathrm{B}, \mathrm{C}, \mathrm{Z}$	40	0.5.. 25								100
		25	32.63								100
S280	B,C	20	80, 100								
S290	C, D	25	$80 . .125$								
S500	B,C,D		$6 . .63$								

			Supply s.	S200L	S200	s200m			S280	S290	5500
	Char.			C	B-C	B-C	B-C	B-C	B-C	c	B-C
Load s.		Icu [kA]		6	10	15	25	15	6	15	50
			$\ln [\mathrm{A}]$	6.40	0.5.63	0.5.63	0.5.25	32.63	80, 100	80.125	6.63
S200L	C	6	6.40		10	15	25	15		15	50
S200	B,C,K,z	10	0.5..63			15	25	15		15	50
S200M	B,C, D	15	0.5..63				25				50
S200P	$\begin{array}{\|c\|} \hline \mathrm{B}, \mathrm{C} \\ \mathrm{D}, \mathrm{~K}, \mathrm{Z} \\ \hline \end{array}$	25	0.5.. 25								50
		15	32.63								
S280	B,C	6	80, 100								
S290	C, D	15	80.125								
S500	B,C,D	50	6.63								

		Supply s.		T1 T2	T2 ${ }^{\text {T3 }}$	T3 T4	4 ${ }^{\text {T5 }}$	T6		T3 ${ }^{\text {T4 }}$	T4 T5	T6	17	57	T2 1 T	T4 ${ }^{\text {T5 }}$	T6	T7	S7	T2	T4 T5		T7			4 T5
		Version	c			N					s						H			L	L		L			v
Load side	Version	$\mathrm{Icu}[\mathrm{KA}]$				36					50					70			65	85	120		100			200
T1	B	16	25	3636	3636	3630	O 30	30	50	5036	3636	36			7040	40	40			85	$50 \mid 50$	50				55
T1	c	25		3636	3636	3636	6 36	36	50	5040	4040	50	50	50	7065	6565	65	50	50	85	8585	70	50	50		30100
T1									505	5050	5050	50	50	50	7065	6565	65	50	50	85	100100	70	50	50		120
T2									505	5050	5050	50	50	50	7065	6565	65	65	65	85	100100	85	85	85		120
T3	N									5050	5050	50	50	50		6565	65	50	50		100100	100	050	50		00120
T4											5050	50	50	50		6565	65	50	50		100100	65	65	65		120
T5											50	50	50	50		65	65	50	50		100	85	65	65		120
T6												50	40	40			65	40	40			70	50	50		
T2																7070	70	70	65	85	1001100	05	85	85		
T3																7070	70				100100	0100				
T4	s	50														7070	70	70	65		100100	85	85	85		
T5																70	70	70	65		100	085	85	85		150
T6																	70					85	85	85		
T2																				85		285	85	85		- 150
T4	H	70																			120120	20100	00100	0100	200	00150
T5																					120	1100	00100	0100		150
T6																						100	0 85	85		
T2		85																			120120				200	- 180
T4	L																									200
T5		120																								

*120 kA for T7

4 Protection coordination

4.4 Coordination tables between circuit-

 breakers and switch disconnectorsThe tables shown give the values of the short-circuit current (in KA) for which back-up protection is verified by the pre-selected combination of circuit-breaker and switch disconnector, for voltages between 380 and 415 V . The tables cover the possible combinations of moulded-case circuit-breakers in the ABB SACE Isomax and Tmax series, with the switch disconnectors detailed above.

4 Protection coordination

Notes for the correct reading of the coordination tables:

Tmax @ 415V ac		Isomax @ 415V ac	
Version	Icu [kA]	Version	Icu [kA]
B	16	S	50
C	25	H	65
N	36	L	100
S	50		
H	70		
L (for T2)	85		
L (for T4-T5)	120		
L (for T6)	100		
V (for T7)	150		
V	200		

* for T4 250 or T4 320 only with 11 setting at 250 A.

4 Protection coordination

xample:

rom the coordination table on page 270-271 it can be seen that circuit-breaker T2S160 is able to protect the switch disconnector T1D160 up to a short-circuit current of 50 kA (higher than the short-circuit current at the installation point) Overload protection is also verified, as the rated curent of the breaker is not higher than the size of the disconnector.

4 Protection coordination

Example:
For the correct selection of the components, the disconnector must be protected from overloads by a device with a rated current not greater than the size of the disconnector, while in short-circuit conditions it must be verified that:
$\mathrm{I}_{\mathrm{cw}} \geq \mathrm{I}_{\mathrm{k}}$
$\mathrm{cm}_{\mathrm{cm}} \geq \mathrm{I}_{\mathrm{p}}$.
Therefore, with regard to the electrical parameters of the single devices, max E2N1250/MS disconnector is selected, and a E2N1250 breaker That is:
$\mathrm{kw}(\mathrm{E} 2 \mathrm{~N} / \mathrm{MS})=55 \mathrm{kA}>45 \mathrm{kA}$
$\mathrm{I}_{\mathrm{cm}}(\mathrm{E} 2 \mathrm{~N} / \mathrm{MS})=143 \mathrm{kA}>100 \mathrm{kA}$

5 Special applications

1 Directcument netws
 Main applications of direct current:

- Emergency supply or auxiliary services:
the use of direct current is due to the need to employ a back-up energy source which allows the supply of essential services such as protection services, emergency lighting, alarm systems, hospital and industrial services, data-processing centres etc., using accumulator batteries, for example.
Electrical traction:
the advantages offered by the use of dc motors in terms of regulation and of single supply lines lead to the widespread use of direct current for railways, underground railways, trams, lifts and public transport in general
- Particular industrial installations:
there are some electrolytic process plants and applications which have a particular need for the use of electrical machinery.
Typical uses of circuit-breakers include the protection of cables, devices and the operation of motors.

Considerations for the interruption of direct current

Direct current presents larger problems than alternating current does in terms of the phenomena associated with the interruption of high currents. Alternating currents have a natural passage to zero of the current every half-cycle, which corresponds to a spontaneous extinguishing of the arc which is formed when the circuit is opened
This characteristic does not exist in direct currents, and furthermore, in order to extinguish the arc, it is necessary that the current lowers to zero.
The extinguishing time of a direct current, all other conditions being equal, is proportional to the time constant of the circuit $T=L / R$.
It is necessary that the interruption takes place gradually, without a sudden switching off of the current which could cause large over-voltages. This can be carried out by extending and cooling the arc so as to insert an ever higher esistance into the circuit.
The energetic characteristics which develop in the circuit depend upon the voltage level of the plant and result in the installation of breakers according to connection diagrams in which the poles of the breaker are positioned in series to increase their performance under short-circuit conditions. The breaking capacity of the switching device becomes higher as the number of contacts which open the circuit increases and, therefore, when the arc voltage applied is arger.
This also means that when the supply voltage of the installation rises, so must the number of current switches and therefore the poles in series.

5 Special applications

Calculation of the short-circuit current of an accumulator battery The short-circuit current at the terminals of an accumulator battery may be supplied by the battery manufacturer, or may be calculated using the following formula:

$$
\mathrm{I}_{\mathrm{k}}=\frac{\mathrm{U}_{\mathrm{Max}}}{\mathrm{R}_{\mathrm{i}}}
$$

where:

- UMax is the maximum flashover voltage (no-load voltage);
- R_{i} is the internal resistance of the elements forming the battery

The internal resistance is usually supplied by the manufacturer, but may be calculated from the discharge characteristics obtained through a test such as detailed by IEC 60896-1 or IEC 60896-2.
or example, a battery of 12.84 V and internal resistance of 0.005Ω gives a short-circuit current at the terminals of 2568 A.
Under short-circuit conditions the current increases very rapidly in the initial moments, reaches a peak and then decreases with the discharge voltage of the battery. Naturally, this high value of the fault current causes intense heating inside the battery, due to the internal resistance, and may lead to explosion. Therefore it is very important to prevent and / or minimize short-circuit currents in direct currents systems supplied by accumulator batteries.

Criteria for the selection of circuit-breakers

For the correct selection of a circuit-breaker for the protection of a direct current hetwork, the following factors must be considered:
1.the load current, according to which the size of the breaker and the setting for the thermo-magnetic over-current release can be determined;
2.the rated plant voltage, according to which the number of poles to be connected in series is determined, thus the breaking capacity of the device can also be increased;
3.the prospective short-circuit current at the point of installation of the breaker influencing the choice of the breaker;
4.the type of network, more specifically the type of earthing connection.

Note: in case of using of four pole circuit-breakers, the neutral must be at 100%

Direct current network types

Direct current networks may be carried out:

- with both polarities insulated from earth;
- with one polarity connected to earth;
- with median point connected to earth

5 Special applications

Network with both polarities insulated from earth

- Fault a: the fault, without negligible impedance, between the two polarities sets up a short-circuit current to which both polarities contribute to the full voltage, according to which the breaking capacity of the breaker must be selected.
- Fault b: the fault between the polarity and earth has no consequences from the point of view of the function of the installation.
- Fault c: again, this fault between the polarity and earth has no consequences from the point of view of the function of the installation.
In insulated networks it is necessary to install a device capable of signalling the presence of the first earth fault in order to eliminate it. In the worst conditions, when a second earth fault is verified, the breaker may have to interrupt the short-circuit current with the full voltage applied to a single polarity and therefore with a breaking capacity which may not be sufficient.
In networks with both polarities insulated from earth it is appropriate to divide the number of poles of the breaker necessary for interruption on each polarity (positive and negative) in such a way as to obtain separation of the circuit.

The diagrams to be used are as follows:

Diagram A

Three-pole breaker with one pole per polarity

5 Special applications

Diagram B

Three-pole breaker with two poles in series for one polarity and one pole for the other polarity (${ }^{(1)}$

Diagram G

Four-pole breaker with two poles in parallel per polarity

Diagram E

Four-pole breaker with three poles in series on one polarity and one pole on the remaining polarity (1)

It is not advisable to divide the poles of the breaker unequally as, in this type of network second earth fault may lead to the single pole working under fault conditions at full earth fault or the loss of insulation of one polarity.

5 Special applications

Diagram F

Four-pole breaker with two poles in series per polarity

Network with one polarity connected to earth

- Fault a: the fault between the two polarities sets up a short-circuit current to which both polarities contribute to the full voltage U , according to which the breaking capacity of the breaker is selected
- Fault b: the fault on the polarity not connected to earth sets up a current which involves the over-current protection according to the resistance of the ground.
- Fault c: the fault between the polarity connected to earth and earth has no consequences from the point of view of the function of the installation.
In a network with one polarity connected to earth, all the poles of the breaker necessary for protection must be connected in series on the non-earthed polarity. If isolation is required, it is necessary to provide another breaker pole on the earthed polarity.

5 Special applications

Diagrams to be used with circuit isolation are as follows:

Diagram A

Three-pole breaker with one pole per polarity

Diagram B

Three-pole breaker with two poles in series on the polarity not connected to earth, and one pole on the remaining polarity

Diagram G

Four-pole breaker with two poles in parallel per polarity

5 Special applications

Diagram E

Four-pole breaker with three poles in series on the polarity not connected to earth, and one pole on the remaining polarity

Diagrams to be used without circuit isolation are as follows:

Diagram C

Three-pole breaker with three poles in series

Diagram H

Four-pole breaker with series of two poles in paralle

5 Special applications

Diagram D

Four-pole breaker with four poles in series on the polarity not connected to earth

Network with the median point connected to earth

- Fault a: the fault between the two polarities sets up a short-circuit current to which both polarities contribute to the full voltage U , according to which the breaking capacity of the breaker is selected
-Fault b: the fault between the polarity and earth sets up a short-circuit current less than that of a fault between the two polarities, as it is supplied by a voltage equal to 0.5 U .
-Fault c: the fault in this case is analogous to the previous case, but concerns the negative polarity
With network with the median point connected to earth the breaker must be inserted on both polarities.

Diagrams to be used are as follows:

Diagram A

Three-pole breaker with one pole per polarity

5 Special applications

Diagram G

Four-pole breaker with two poles in parallel per polarity

Diagram F

Four-pole breaker with two poles in series per polarity

Use of switching devices in direct current

Parallel connection of breaker poles

According to the number of poles connected in parallel, the coefficients detailed the following table must be applied:

Table 1: Correction factor for poles connected in parallel

number of poles in parallel	2	3	4 (neutral 100%)
reduction factor of dc carrying capacity	0.9	0.8	0.7
breaker current carrying capacity	$1.8 \times \ln$	$2.4 \times 1 n$	$2.8 \times 1 \mathrm{ln}$

The connections which are external from the breaker terminals must be carried out by the user in such a way as to ensure that the connection is perfectly balanced.

5 Special applications

Example:

Using a Tmax T6N800 In800 circuit-breaker with three poles in parallel, a coefficient equal to 0.8 must be applied, therefore the maximum carrying curren will be $0.8 \cdot 3 \cdot 800=1920 \mathrm{~A}$.

Behaviour of themal releases

As the functioning of these releases is based on thermal phenomena arising from the flowing of current, they can therefore be used with direct current, their trip characteristics remaining unaltered

Behaviour of magnetic release

The values of the trip thresholds of ac magnetic releases, used for direct current, must be multiplied by the following coefficient $\left(k_{m}\right)$, according to the breaker and the connection diagram:

Table 2: \mathbf{k}_{m} coefficient

	diagram	diagram Circuit-breaker	A	diagram \mathbf{B}	diagram \mathbf{D}	diagram \mathbf{E}	diagram \mathbf{F}	diagram \mathbf{G}
$\mathbf{T 1}$	1.3	1	1	-	-	-	-	-
$\mathbf{T 2}$	1.3	1.15	1.15	-	-	-	-	-
$\mathbf{T 3}$	1.3	1.15	1.15	-	-	-	-	-
$\mathbf{T 4}$	1.3	1.15	1.15	1	1	1	-	-
$\mathbf{T 5}$	1.1	1	1	0.9	0.9	0.9	-	-
$\mathbf{T 6}$	1.1	1	1	0.9	0.9	0.9	1.1	1

Example

Data:

- Direct current network connected to earth;

Rated voltage Ur = 250 V ;
Short-circuit current Ik = 32 kA

- Load current lb=230 A

Using Table 3, it is possible to select the Tmax T3N250 In = 250 A three pole breaker, using the connection shown in diagram B (two poles in series for the polarity not connected to earth and one poles in series for the polarity connected to earth)
rom Table 2 corresponding to diagram B, and with breaker Tmax T3, it risults $k_{m}=1.15$; therefore the nominal magnetic trip will occur at 2875 A (taking into account the tolerance, the trip will occur between 2300 A and 3450 A).

5 Special applications

The following table summarizes the breaking capacity of the various circuit breakers available for direct current. The number of poles to be connected in series to guarantee the breaking capacity is given in brackets.

Table 3: Breaking capacity in direct current according to the voltage

Circuit-breaker	Ratedcurrent [A]	Breaking capacity [kA]			
		$\leq 125 \mathrm{~V}^{1}$	250 M	500 V]	750 M]
T1B160	$16 \div 160$	16 (1P)	20 (3P) - 16 (2P)	16 (3P)	
T1C160	$25 \div 160$	25 (1P)	30 (3P) - 25 (2P)	25 (3P)	
T1N160	$32 \div 160$	36 (1P)	40 (3P) - 36 (2P)	36 (3P)	
T2N160	$1.6 \div 160$	36 (1P)	40 (3P) - 36 (2P)	36 (3P)	
T2S160	$1.6 \div 160$	50 (1P)	55 (3P) - 50 (2P)	50 (3P)	
T2H160	$1.6 \div 160$	70 (1P)	85 (3P) - 70 (2P)	70 (3P)	
T2L160	$1.6 \div 160$	85 (1P)	100 (3P) - 85 (2P)	85 (3P)	
T3N250	$63 \div 250$	36 (1P)	40 (3P) - 36 (2P)	36 (3P)	
T3S250	$63 \div 250$	50 (1P)	55 (3P) - 50 (2P)	50 (3P)	
T4N250/320	$20 \div 250$	36 (1P)	36 (2P)	25 (2P)	16 (3P)
T4S250/320	$20 \div 250$	50 (1P)	50 (2P)	36 (2P)	25 (3P)
T4H250/320	$20 \div 250$	70 (1P)	70 (2P)	50 (2P)	36 (3P)
T4L250/320	$20 \div 250$	100 (1P)	100 (2P)	70 (2P)	50 (3P)
T4V250/320	$20 \div 250$	100 (1P)	100 (2P)	100 (2P)	70 (3P)
T5N400/630	$320 \div 500$	36 (1P)	36 (2P)	25 (2P)	16 (3P)
T5S400/630	$320 \div 500$	50 (1P)	50 (2P)	36 (2P)	25 (3P)
T5H400/630	$320 \div 500$	70 (1P)	70 (2P)	50 (2P)	36 (3P)
T5L400/630	$320 \div 500$	100 (1P)	100 (2P)	70 (2P)	50 (3P)
T5V400/630	$320 \div 500$	100 (1P)	100 (2P)	100 (2P)	70 (3P)
T6N630/800	630-800	36 (1P)	36 (2P)	20 (2P)	16 (3P)
T65630/800	630-800	50 (1P)	50 (2P)	35 (2P)	20 (3P)
T6H630/800	630-800	70 (1P)	70 (2P)	50 (2P)	36 (3P)
T6L630/800	630-800	100 (1P)	100 (2P)	65 (2P)	50 (3P)

Minimum allowed voltage 24 Vd .

5 Special applications

5.2 Networks at particular frequencies: 400 Hz and $162 / 3 \mathrm{~Hz}$

Standard production breakers can be used with alternating currents with frequencies other than $50 / 60 \mathrm{~Hz}$ (the frequencies to which the rated perfor mance of the device refer, with alternating current) as appropriate derating coefficients are applied.

5.2 .1400 Hz networks

At high frequencies, performance is reclassified to take into account phenomena uch as:
the increase in the skin effect and the increase in the inductive reactance directly proportional to the frequency causes overheating of the conductors or the copper components in the breaker which normally carry current
the lengthening of the hysteresis loop and the reduction of the magnetic saturation value with the consequent variation of the forces associated with the magnetic field at a given current value.
n general these phenomena have consequences on the behaviour of both thermo-magnetic releases and the current interrupting parts of the circuitbreaker.

The following tables refer to circuit-breakers with thermomagnetic releases with a breaking capacity lower than 36 kA . This value is usually more than sufficient for the protection of installations where such a frequency is used normally characterized by rather low short-circuit currents.
As can be seen from the data shown, the tripping threshold of the therma element $\left(l_{n}\right)$ decreases as the frequency increases because of the reduced conductivity of the materials and the increase of the associated therma phenomena; in general, the derating of this performance is generally equal to 10%. Vice versa, the magnetic threshold $\left(I_{3}\right)$ increases with the increase in frequency: for this reason it is recommended practice to use a $5 . I_{n}$ version

5 Special applications

Table 1: Tmax performance T1 16-63 A TMD

		$11(400 \mathrm{~Hz})$			13		
T1B 160		MIN	MED	MAX	13 (50Hz)	K ${ }_{\text {m }}$	13 (400 Hz)
T1C 160	In16	10	12	14	500	2	1000
T1N 160	$\ln 20$	12	15	18	500	2	1000
	In25	16	19	22	500	2	1000
	In32	20	24.5	29	500	2	1000
	In40	25	30.5	36	500	2	1000
	In50	31	38	45	500	2	1000
	In63	39	48	57	630	2	1260

$\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves
thermomagnetic release
T1 B/C/N 160
In 16 to 63 A
TMD

5 Special applications

Table 2: Tmax performance T1 80 A TMD

		$11(400 \mathrm{~Hz})$			13		
T1B 160		MIN	MED	MAX	13 (50Hz)	Km	13 (400Hz)
T1C 160	In80	50	61	72	800	2	1600

$k_{m}=$ Muttiplier factor of 13 due to the induced magnetic fields

Trip curves
thermomagnetic release

T1 B/C/N 160

5 Special applications
Table 3: Tmax performance T2 1.6-80 A TMD

		11 (400Hz)			13		
T2N 160		MIN	MED	MAX	13 (50Hz)	K_{m}	13 (400Hz)
	In1. 6	1	1.2	1.4	16	1.7	27.2
	In2	1.2	1.5	1.8	20	1.7	34
	$\ln 2.5$	1.5	1.9	2.2	25	1.7	42.5
	In3.2	2	2.5	2.9	32	1.7	54.4
	In4	2.5	3	3.6	40	1.7	68
	In5	3	3.8	4.5	50	1.7	85
	In6.3	4	4.8	5.7	63	1.7	107.1
	In8	5	6.1	7.2	80	1.7	136
	In10	6.3	7.6	9	100	1.7	170
	$\ln 12.5$	7.8	9.5	11.2	125	1.7	212.5
	In16	10	12	14	500	1.7	850
	$\ln 20$	12	15	18	500	1.7	850
	$\ln 25$	16	19	22	500	1.7	850
	In32	20	24.5	29	500	1.7	850
	$\ln 40$	25	30.5	36	500	1.7	850
	In50	31	38	45	500	1.7	850
	In63	39	48	57	630	1.7	1071
	In80	50	61	72	800	1.7	1360

Trip curves
thermomagnetic release
T2N 160
In 1.6 to 80 A
TMD
TMD
ts]

5 Special applications

Table 4: Tmax performance T2 16-160 A TMG

		$11(400 \mathrm{~Hz})$			13		
T2N 160		MIN	MED	MAX	13 (50Hz)	K_{m}	13 (400Hz)
	In16	10	12	14	160	1,7	272
	In25	16	19	22	160	1,7	272
	In40	25	30,5	36	200	1,7	340
	In63	39	48	57	200	1,7	340
	In80	50	61	72	240	1,7	408
	In100	63	76,5	90	300	1,7	510
	In125	79	96	113	375	1,7	637,5
	In160	100	122	144	480	1,7	816

Trip curves
thermomagnetic release
T2N 160
In 16 to 160 A
TMG

5 Special applications

Table 5: Tmax performance T3 63-250 A TMG

		$11(400 \mathrm{~Hz}$)			13 (Low magnetic setting)		
T3N 250		MIN	MED	MAX	13 (50Hz)	Km	13 (400 Hz)
	In63	39	48	57	400	1.7	680
	In80	50	61	72	400	1.7	680
	$\ln 100$	63	76.5	90	400	1.7	680
	$\ln 125$	79	96	113	400	1.7	680
	In160	100	122	144	480	1.7	816
	$\ln 200$	126	153	180	600	1.7	1020
	$\ln 250$	157	191	225	750	1.7	1275

$\mathrm{K}_{\mathrm{m}}=$ Multiplier factor of l 3 due to the induced magnetic fields

Trip curves

thermomagnetic release
T3N 250
In 63 to 250 A
TMG
t[s]

5 Special applications

Table 6: Tmax performance T3 63-125 A TMD

		$11(400 \mathrm{~Hz}$)			13		
T3N 250		MIN	MED	MAX	13 (50Hz)	K m	13 (400Hz)
	In63	39	48	57	630	1.7	1071
	In80	50	61	72	800	1.7	1360
	In100	63	76.5	90	1000	1.7	1700
	In125	79	96	113	1250	1.7	2125

$K_{m}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves
hermomagnetic release
T3N 250
n 63 to 125 A
TMD
[s]

5 Special applications

$K_{m}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves
thermomagnetic release
T4N 250

In 20 to 50 A TMD
t [s]
100

10

1
0.1
0.1
0.1

1

100
1000
$\mathbf{1 1}$

5 Special applications

Table 8: Tmax performance T4N 80-250 A TMA

	$11(400 \mathrm{~Hz})$			13 setting (MIN=5xin)		
T4N 250/320	MIN	MED	MAX	13 @ $5 \times \ln (50 \mathrm{~Hz})$	K ${ }_{\text {m }}$	$13 @ 5 \times 1 \mathrm{ln}(400 \mathrm{~Hz})$
In80	50	61	72	400	1.7	680
In100	63	76.5	90	500	1.7	850
In125	79	96	113	625	1.7	1060
In160	100	122	144	800	1.7	1360
In200	126	153	180	1000	1.7	1700
In250	157	191	225	1250	1.7	2125

$K_{m}=$ Multiplier factor of 13 due to the induced magnetic fields

Trip curves

thermomagnetic release
T4N 250/320
In 80 to 250 A
TMA

$K_{m}=$ Multiplier factor of I 3 due to the induced magnetic fields

Trip curves

thermomagnetic release
T5 N 400/630 10000
In 320 to 500 A
TMA
t [s]

5 Special applications

table 10: Tmax performance T5N 320-500 A TMG

$\mathrm{K}_{m}=$ Multiplier factor of 13 due to the induced magnetic field

Trip curves
hemomagnetic release
T5N 400/630
n 320 to 500 A TMG

5 Special applications

Table 11: Tmax performance T6N 630 A TMA

		$11(400 \mathrm{~Hz})$			$13=5 \div 101 \mathrm{n}$ (set 13-5in)		
T6N630	In630	MIN	MED	MAX	13 (50Hz)	K_{m}	13 (400Hz)
	1630	397	482	567	3150	1.5	4725

thermomagnetic release
T6N 630
10^{4}
In 630
TMA
10^{3}
t [s]
10^{2}
10^{1}

1
10^{-1}

10-2

5 Special applications

Table 12: Tmax performance T6N 800 A TMA

Trip curves
thermomagnetic release

T6N 800

 10000
n 800 A

TMA

5 Special applications

$522162 / 3 \mathrm{~Hz}$ networks

Single phase distribution with a frequency of $162 / 3 \mathrm{~Hz}$ was developed for electrical traction systems as an alternative to three phase 50 Hz systems, and o direct current systems.
At low frequencies the thermal tripping threshold is not subject to any derating, while the magnetic threshold requires a correction coefficient k_{m}, as detailed in able 2.
The Isomax and Tmax series thermomagnetic moulded-case circuit-breakers are suitable for use with frequencies of $162 / 3 \mathrm{~Hz}$; the electrical performance and the relevant connection diagrams are shown below.

Table 1: Breaking capacity [KA]

		250 V	500 V	750 V	$1000 \mathrm{~V}^{(1)}$
In [A]					
T1B160	$16 \div 160$	16 (2P) 20 (3P)	16 (3P)	-	-
T1C160	$25 \div 160$	25 (2P) 30 (3P)	25 (3P)	-	-
T1N160	$32 \div 160$	36 (2P) 40 (3P)	36 (3P)	-	-
T2N160	$1.6 \div 160$	36 (2P) 40 (3P)	36 (3P)	-	-
T2S160	$1.6 \div 160$	50 (2P) 55 (3P)	50 (3P)	-	-
T2H160	$1.6 \div 160$	70 (2P) 85 (3P)	70 (3P)	-	-
T2L160	$1.6 \div 160$	85 (2P) 100 (3P)	85 (3P)	$50\left(4 \mathrm{P}\right.$) ${ }^{(2)}$	-
T3N250	$63 \div 250$	36 (2P) 40 (3P)	36 (3P)	-	-
T3S250	$63 \div 250$	50 (2P) 55 (3P)	50 (3P)	-	-
T4N250/320	$20 \div 250$	36 (2P)	25 (2P)	16 (3P)	-
T4S250/320	$20 \div 250$	50 (2P)	36 (2P)	25 (3P)	-
T4H250/320	$20 \div 250$	70 (2P)	50 (2P)	36 (3P)	-
T4L250/320	$20 \div 250$	100 (2P)	70 (2P)	50 (3P)	-
T4V250/320	$20 \div 250$	150 (2P)	100 (2P)	70 (3P)	-
T4V250	$32 \div 250$				40 (4P)
T5N400/630	$320 \div 500$	36 (2P)	25 (2P)	16 (3P)	-
T5S400/630	$320 \div 500$	50 (2P)	36 (2P)	25 (3P)	-
T5H400/630	$320 \div 500$	70 (2P)	50 (2P)	36 (3P)	-
T5L400/630	$320 \div 500$	100 (2P)	70 (2P)	50 (3P)	-
T5V400/630	$320 \div 500$	150 (2P)	100 (2P)	70 (3P)	-
T5V400/630	$400 \div 500$				40 (4P)
T6N630/800	$630 \div 800$	36 (2P)	20 (2P)	16 (3P)	-
T6S630/800	$630 \div 800$	50 (2P)	35 (2P)	20 (3P)	-
T6H630/800	$630 \div 800$	70 (2P)	50 (2P)	36 (3P)	-
T6L630/800	$630 \div 800$	100 (2P)	70 (2P)	50 (3P)	40 (4P)

[^2]Circuit-breakers with neutral at 100%.

5 Special applications

Table 2: \mathbf{k}_{m} factor

	Diagram A	Diagram B-C	Diagram D-E-F
$\mathbf{T 1}$	1	1	-
$\mathbf{T 2}$	0.9	0.9	0.9
$\mathbf{T 3}$	0.9	0.9	-
$\mathbf{T 4}$	0.9	0.9	0.9
$\mathbf{T 5}$	0.9	0.9	0.9
$\mathbf{T 6}$	0.9	0.9	0.9

Table 3: Possible connections according to the voltage, the type of distribution and the type of fault

| $\begin{array}{c}\text { Neutral not } \\ \text { grounded }\end{array}$ | $\begin{array}{c}\text { Neutral } \\ \text { grounded* }\end{array}$ | |
| :---: | :---: | :---: | :---: |
| L-N fault $\mathbf{L - E}$ fault | | |$]$

In the case of the only possible faults being L N or L-E ($\mathrm{E}=\mathrm{Earth}$) with non-significant
impedance, use the
diagrams shown. If
both faults are possible use the diagrams valid for L-E fault.
** T1, T2, T3 only
*** T2 only

Connection diagrams

Diagram A1

Configuration with two poles in series (without neutral connected to earth)

- Interruption for phase to neutral fault: 2 poles in series

Interruption for phase to earth fault: not considered earth fault negligible)

Diagram A2

Configuration with two poles in series (with neutral connected to earth)

- Interruption for phase to neutral fault: 2 poles in series
- Interruption for phase to earth fault: single pole (same capacity as two poles in series, but limited to 125 V)

5 Special applications

Diagram B1

Configuration with three poles in series (without neutral connected to earth) - Interruption for phase to neutral fault: 3 poles in series

- Interruption for phase to earth fault: not considered
(The installation method must be such as to make the probability of a second earth fault negligible)

Diagram B2

Configuration with three poles in series (with neutral connected to earth and interrupted)

- Interruption for phase to neutral fault: 3 poles in series
- Interruption for phase to earth fault: 2 poles in series

Diagram C

Configuration with three poles in series (with neutral connected to earth but not interrupted)

- Interruption for phase to neutral fault: 3 poles in series
- Interruption for phase to earth fault: 3 poles in series

5 Special applications

Diagram E-F

Configuration with four poles in series (without neutral connected to earth)

- Interruption for phase to neutral fault: 4 poles in series
- Interruption for phase to earth fault: not considered
(The installation method must be such as to make the probability of a second earth fault negligible)

Diagram D

Configuration with four poles in series, on one polarity (with neutral connected earth and not interrupted)

- Interruption for phase to neutral fault: 4 poles in series
- Interruption for phase to earth fault: 4 poles in series

Diagram E1

nterruption with four poles in series (with neutral connected to earth and interrupted)

- Interruption for phase to neutral fault: 4 poles in series
- Interruption for phase to earth fault: 3 poles in series

5 Special applications

Example:

Network data:
Rated voltage 250 V
Rated frequency $162 / 3 \mathrm{~Hz}$
Load current 120 A
Phase to neutral short-circuit current 45 kA
Neutral connected to earth
Assuming that the probability of a phase to earth fault is negligible, Table 3 shows that connections A2, B2 or B3 may be used.
Therefore it is possible to choose a Tmax T2S160 $\ln 125$ circuit-breaker, which with the connection according to diagram A2 (two poles in series) has a breaking capacity of 50 kA , while according to diagrams B2 or B3 (three poles in series) he breaking capacity is 55 kA (Table 1). To determine the magnetic trip, see actor k_{m} in Table 2. The magnetic threshold will be:
$3_{3}=1250 \cdot 0.9=1125 \mathrm{~A}$
If it is possible to have an earth fault with non significant impedance, the diagrams to be considered (Table 3) are only B2 or B3. In particular, in diagram B2 it can be seen that only 2 poles are working in series, the breaking capacity will be 50 kA (Table 1), while with diagram B3, with 3 poles working in series, the breaking capacity is 55 kA .

5.3 $\mathbf{1 0 0 0}$ Vdc and 1000 Vac networks

The Tmax, SACE Isomax and Emax /E 1000 V and 1150 V circuit-breakers are particularly suitable for use in installations in mines, petrochemical plants and services connected to electrical traction (tunnel lighting)

5.3.1 1000 V dc networks

1000 Vdc Moulded case circuit-breakers

General Characteristics

The range of Tmax and SACE Isomax S moulded-case circuit-breakers for use in installations with rated voltage up to 1000 Vdc comply with internationa standard IEC 60947-2. The range is fitted with adjustable thermo-magnetic releases and is suitable for all installation requirements and has a range of vailable settings from 32 A to 800 A . The four-pole version circuit-breakers allow high performance levels to be reached thanks to the series connection of he poles.
The circuit breakers in the Tmax and SACE Isomax S 1000 V range maintain the same dimensions and fixing points as standard circuit breakers.
These circuit-breakers can also be fitted with the relevant range of standard accessories, with the exception of residual current releases for Tmax and mechanical interlocks for SACE Isomax.
In particular it is possible to use conversion kits for removable and withdrawable moving parts and various terminal kits.

5 Special applications

Connection diagrams

Possible connection diagrams with reference to the type of distribution system in which they can be used follow.

Networks insulated from earth

The following diagrams can be used (the polarity may be inverted).

A) $3+1$ poles in series (1000 Vdc)

5 Special applications

B) $2+2$ poles in series $(1000 \mathrm{Vdc})$

It is assumed that the risk of a double earth fault in which the first fault is downstream of the breaker on one polarity and the second is upstream of the same switching device on the opposite polarity is null.
In this condition the fault current, which can reach high values, effects only some of the 4 poles necessary to ensure the breaking capacity.
It is possible to prevent the possibility of a double earth fault by installing a device which signals the loss of insulation and identifies the position of the first earth fault, allowing it to be eliminated quickly.

Networks with one polarity connected to earth

As the polarity connected to earth does not have to be interrupted (in the example it is assumed that the polarity connected to earth is negative, although the following is also valid with the polarity inverted), the diagram which shows the connection of 4 poles in series on the polarity not connected to earth may be used.

C) 4 poles in series (1000 Vdc)

5 Special applications

Example

o ensure the protection of a user supplied with a network having the following characteristics:
Rated voltage
Short-circuit current

$$
\begin{aligned}
& U_{r}=1000 \mathrm{Vdc} \\
& \mathrm{I}_{\mathrm{k}}=18 \mathrm{kA}
\end{aligned}
$$

Load current
Network with both polarities insulated from earth.
From the table of available settings, the circuit-breaker to be used is:
$5 \mathrm{~V} 630 \mathrm{I}_{\mathrm{n}}=500$ four-pole $\mathrm{I}_{\text {cu }} @ 1000 \mathrm{Vdc}=40 \mathrm{kA}$
Thermal trip threshold adjustable from (0.7-1) x I_{n} therefore from 350 A to 500 A o be set at 0.84 .
Magnetic trip threshold adjustable from (5-10) $\times I_{n}$ which with correction facto $k_{m}=0.9$ gives the following adjustment range: 2250 A to 4500 A . The magnetic threshold will be adjusted according to any conductors to be protected The connection of the poles must be as described in diagrams A or B. A device which signals any first earth fault must be present.
With the same system data, if the network is carried out with a polarity connected to earth, the circuit-breaker must be connected as described in diagram C.

5 Special applications

1000 Vdc air switch disconnectors

The air switch disconnectors derived from the Emax air breakers are identified by the standard range code together with the code "/E MS"
These comply with the international Standard IEC 60947-3 and are especially suitable for use as bus-ties or principle isolators in direct current instalations, for example in electrical traction applications.
The overall dimensions and the fixing points remain unaltered from those of tandard breakers, and they can be fitted with various terminal kits and all the accessories for the Emax range; they are available in both withdrawable and fixed versions, and in three-pole version (up to 750 Vdc) and four-pole (up to 1000 Vdc).
The withdrawable breakers are assembled with special version fixed parts for applications of $750 / 1000 \mathrm{Vdc}$.
The range covers all installation requirements up to $1000 \mathrm{Vdc} / 3200 \mathrm{~A}$ or up to $750 \mathrm{Vdc} / 4000 \mathrm{~A}$.
A breaking capacity equal to the rated short-time withstand current is attributed to these breakers when they are associated with a suitable external relay.

The following table shows the available versions and their relative electrica performance:

Rated current (at $40^{\circ} \mathrm{C}$) lu												
		[A]	800		1250		1250		3200		5000	
		[A]	1250		1600		1600		4000		6300	
		[A]			2000		2000					
		[A]					2500					
		[A]					3200					
Poles			3	4	3	4	3	4	3	4	3	4
Rated service voltage Ue		[V]	750	1000	750	1000	750	1000	750	1000	750	1000
Rated insulation voltage Ui		[V]	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Rated impulse withstand voltage Uimp		[kV]	12	12	12	12	12	12	12	12	12	12
Rated short-time withstand current Icw (1s)		[kA]	20	$20^{(1)}$	25	$25^{(4)}$	40	40 (1)	65	65	65	65
Rated making capacity lcm	750VDC	[kA]	20	20	25	25	40	40	65	65	65	65
	1000 V D		-	20	-	25	-	40	-	65	-	65

Note: The breaking capacity Icu, by means of external protection relay, with 500 ms maximum timing, is equal to the value of Icw (1s).

1) The performances at 750 V are
or E1B/EMS Icw = 25 kA ,
Or E2N/EMSICW $=40 \mathrm{kA}$ a

5 Special applications

Connection diagrams

Connection diagrams to be used according to the type of distribution system ollow.

The risk of a double earth fault on different poles is assumed to be zero, that is, the fault current involves only one part of the breaker poles.

Networks insulated from earth

The following diagrams may be used (the polarity may be inverted)

E) $3+1$ poles in series (1000 Vdc)

5 Special applications

G) $2+1$ poles in series (750 Vdc)

Networks with one polarity connected to earth

The polarity connected to earth does not have to be interrupted (in the examples it is assumed that the polarity connected to earth is negative):

H) 4 poles in series (1000 Vdc)

I) 3 poles in series $(750 \mathrm{Vdc})$

Only four-pole breakers may be used as in the configuration shown in diagram F).

5 Special applications

5.3.2 1000 Vac network

Moulded-case circuit-breakers up to 1150 Vac

General characteristics

The circuit-breakers in the Tmax range up to 1150 V comply with the internationa standard IEC 60947-2.
These circuit breakers can be fitted with thermo-magnetic releases (for the smaller sizes) and with electronic releases. All installation requirements can be met with a range of available settings from 32 A to 800 A and with breaking capacity up to 20 kA at 1150 Vac .

5 Special applications

The circuit-breakers in the range up to 115 V maintain the same dimensions as tandard circuit breakers.
These circuit-breakers can also be fitted with the relevant range of standard accessories, with the exception of residual current releases.

The following tables show the electrical characteristics of the range:

ABB SACE - Protection and control devices

5 Special applications

The following tables show the available releases.

Circuit-breakers with electronic release for alternating currents

	In100	In250	In320	In400	In630	In800
T4 250	\square	\square	-	-	-	-
T5 400	-	-	\square	\square	-	-
T5 630	-	-	-	-	\square	-
T6L 630	-	-	-	-	\square	-
T6L 800	-	-	-	-	-	\square
$\mathrm{I}_{3}(1 \div 10 \mathrm{x} \ln)[\mathrm{A}]^{(1)}$	100 1000	250-2500	320:3200	400 4000	630 6300	800:8000
$\mathrm{I}_{3}(1.5 \div 12 \times \mathrm{ln})[\mathrm{A}]^{(2)}$	150:1200	375:3000	480:3840	600:4800	945-7560	1200:9600

(2) PR222

Circuit-breakers with thermomagnetic release for alternating currents

$\ln [A]$	32^{11}	$50^{\prime \prime}$	80^{22}	$100{ }^{2 /}$	$125{ }^{27}$	160^{27}	$200{ }^{2}$	$250{ }^{2}$	$320{ }^{2}$	$400{ }^{2}$	$500{ }^{2}$	630^{12}	$800{ }^{2}$
T4V250	\square	-	-	-	-	-							
T5V 400	-	-	-	-	-	-	-	-	\square	\square	-	-	-
T5V 630	-	-	-	-	-	-	-	-	-	-	\square	-	-
T6L630	-	-	-	-	-	-	-	-	-	-	-	\square	-
T6L800	-	-	-	-	-	-	-	-	-	-	-	-	\square
$\underline{1}_{3}=(10 x\|n\|[A]$	320	500	-	-	-	-	-	-	-	-	-	-	-

${ }^{(1)}$ Thermal threshold adjustable from 0.7 and $1 \times \mathrm{In}$; fixed magnetic threshold
${ }^{(2)}$ Thermal threshold adjustable from 0.7 and $1 \times \mathrm{In}$; magnetic threshold adjustable between 5 and $10 \times \mathrm{In}$.

Air circuit-breakers and switch disconnectors up tol150 Vac

For 1150 V alternating current applications, the following devices are available: - Circuit-breakers in compliance with Standard IEC 60947-2.

The special version breakers up to 1150 Vac are identified by the standard range code together with the suffix "/E", and are derived from the correspondent Emax standard breakers and retain the same versions, accessories and overall dimensions.
The Emax range of breakers is available in both withdrawable and fixed versions with three and four poles, and can be fitted with accessories and equipped with the full range of electronic releases and microprocessors (PR332/P-PR333/P-PR121-PR122-PR123),

- Switch disconnectors in compliance with Standard IEC 60947-3.

These breakers are identified by the code of the standard range, from which they are derived, together with the suffix "/E MS". Three-pole and four-pole versions are available in both withdrawable and fixed versions with the same dimensions, accessory characteristics and installation as the standard switch disconnectors.

5 Special applications

5.4 Automatic Transfer Switche

n the electrical plants, where a high reliability is required from the power supply source because the operation cycle cannot be interrupted and the risk of a ack of power supply is unacceptable, an emergency line supply is indispensable o avoid the loss of large quantities of data, damages to working processes, plant stops etc.
For these reasons, transfer switch devices are used mainly for:
power supply of hotels and airports;

- surgical rooms and primary services in hospitals
- power supply of UPS groups;
databanks, telecommunication systems, PC rooms
- power supply of industrial lines for continuous processes.

ATS010 is the solution offered by ABB: it is an automatic transfer switch system with micro-processor based technology which allows switching of the supply from the normal line (N -Line) to the emergency line (E-Line) in case any of the following anomalies occurs on the main network:
overvoltages and voltage dips;

- lack of one of the phases;
- asymmetries in the phase cycle
frequency values out of the setting range.
Then, when the network standard parameters are recovered, the system switches again the power supply to the main network (N-Line)

ATS010 is used in systems with two distinct supply lines connected to the same busbar system and functioning independently ("island condition"): the first one is used as normal supply line, the second is used for emergency powe supply from a generator system. It is also possible to provide the system with a device to disconnect the non-priority loads when the network is supplied from he E-Line

The following scheme shows a plant having a safety auxiliary power supply:

5 Special applications

TS010 device is interfaced by means of appropriate terminals:
with the protection circuit-breakers of the N -Line and of the E-Line, motorized and mechanically interlocked, to detect their status and send opening and closing commands according to the set time delays;
with the control card of the Gen set to control its status and send start and stop commands
with any further signals coming from the plant in order to block the switching logic;
with the N -Line to detect any possible anomaly and with the E-Line to verify the voltage presence;

- with an additional device to disconnect non-priority loads;
with an auxiliary power supply at 24 Vdc $\pm 20 \%$ (or 48 Vdc $\pm 10 \%$). This supply source shall be present also in case of lack of voltage on both lines (N Line and E-Line).

The circuit-breakers used to switch from the N -line to the E -line shall have all the necessary accessories and shall be properly interlocked in order to quarantee the correct working of the plant. The following accessories are required:

Moulded-case circuit-breakers Tmax (T4-T5-T6-T7) and SACE Isomax (S7)

motor operator from 48 V to 110 V dc or up to 250 V ac
trip signaling contact;
open/closed signaling contact
racked-in signaling contact in case of plug-in or withdrawable circuit-breakers mechanical interlock between two circuit-breakers.

Air circuit-breakers Emax

- charging spring motor
shunt opening release
shunt closing release;
trip signaling contact:
open/closed signaling contacts;
- racked-in signaling contact in case of withdrawable circuit-breakers
- mechanical interlock between two circuit-breakers.

Switching strategies

According to the application where ATS010 device is used, two different switching strategies can be chosen.
Strategy 1: this strategy is used when an auxiliary supply source is available for the supply of the motor operators of the circuit-breakers; the switching sequence is as follows:
normal line anomaly detection;

- normal line circuit-breaker opening and Gen Set starting;
waiting for presence of Gen Set voltage and emergency circuit-breaker closing

5 Special applications

For example, strategy 1 is used for systems in which a redundant 110 V auxiliary power supply is available (MV/LV substations); the plant is designed so that the auxiliary voltage is always present even when neither the normal line nor the Gen Set are active. In this case, the auxiliary power supply can be used to feed the motor operators and/or the shunt opening and closing releases of the circut breakers. ATS010 operates the circuit-breakers regardless of the presence of the network and of the Gen Set.

Strategy 2: this strategy is absolutely necessary when the power supply fo the auxiliary accessories of the circuit-breakers is directly derived from the network and the Gen Set, since a safety auxiliary power supply is not available in this case, before operating the circuit-breakers, ATS010 waits for availability of normal line or emergency line voltage: normal line or Gen Set. The switching sequence is as follows:
normal line anomaly detection

- Gen Set starting;
waiting for presence of Gen Set voltage and normal line circuit-breaker opening Gen Set circuit-breaker closing.

Note: in both strategies, it is necessary to provide an auxiliary power supply for ATS010.

Operating modes

By using the front selector it is possible to choose one of the following six perating modes:

TEST:

This operating mode is useful to test the Gen Set start and therefore to test the emergency line power supply status without disconnecting normal line power supply.

AUTOMATIC:

The transfer switch logic is ON and checks both the circuit-breakers as well as the generator. In case of normal line anomalies, the transfer switch procedure begins from normal to energency line and viceversa when normal line voltage become available again.

5 Special applications

MANUAL

The MANUAL mode offers a choice between the following possibilities:

1. Normal ON

The emergency line circuit-breaker is forced to open and the normal line circuit breaker is forced to close; the Gen Set is stopped and the transfer switch logic is disabled
This selector position guarantees that the emergency line is not closed and that the Gen Set is not running; this position is useful when the user wants to carry out maintenance on the emergency line or on the Gen Set (in these cases it is advisable to install mechanical lock in open position for the emergency line circuit-breaker)

2. Normal - Emergency OFF (maintenance)

Both circuit-breakers (N -Line and E -Line) are forced in open position. It is useful when all loads are to be disconnected from the power supply sources, for example to carry out maintenance on the plant (in these cases, it is advisable to mechanically lock both circuit-breakers in the open position)

3. Gen Set START

The START command of the Gen Set has been activated through the proper output. The circuit-breakers are not operated and the transfer switch logic is disabled
When emergency line voltage is present and switching is enabled, it is possible to switch the selector to 'Emergency ON' position in order to force supply from the emergency line.

4. Emergency ON

Power supply is forced from the emergency line. Before switching to this position, 'Gen-Set START' operating mode is activated and shall be present until switching is enabled as previously described.

5 Special applications

Setting of parameters

All the parameters for the functioning of ATS010 can be simply adjusted through dip-switches or trimmers.

Rated voltage for three-phase or single-phase plant
The following parameters of the N-Line can be set through dip-switches:
network rated voltage value (from 100 V up to 500 V)

- power supply type (three-phase or single-phase);
frequency value (50 Hz or 60 Hz):
type of strategy.
Note: Voltages higher than 500 V can be reached by using VTs (voltage transformers); in this case the setting of the voltage value shall consider the transformation ratio.

$$
\begin{array}{r}
6: O F F=1 \\
O N=3 \sim
\end{array}
$$

7: OFF=50Hz
 ON=60Hz

8: OFF=Strategy1 ON=Strategy2

The figure below shows all the possible voltage values which can be set by the dip-switches from 1 to 4.

5 Special applications

Note: the black square shows the dip-switch position

5 Special applications

Overvoltage threshold

According to the load characteristics, it is possible to set the voltage range outside which the N -Line supply cannot be accepted and switching to the ELine is necessary.

Transfer switch delay configuration

ransfer switch delays can be set through special trimmers. Setting times and relevant purposes are reported below:

T1 $=\mathbf{0} \div \mathbf{3 2}$ s CB-N open

Delay time from net anomaly detection to N-Line CB opening. It is used to avoid transfer switching in case of short voltage dips

T2 = $\mathbf{0} \div \mathbf{3 2} \mathbf{s}$ GEN-SET START

Delay time from net anomaly detection to Gen set start command. It is used to prevent from transfer switching in case of short voltage dips.

GEN-SET START

5 Special applications

T3=0 $\mathbf{\div} \mathbf{2 5 4}$ s GEN-SET STOP

Delay time from N-Line return to Gen set stop command. It is used when the Generator needs a cooling time after the disconnection of the load (opening of the E-Line circuit-breaker).

$4=\mathbf{0} \div \mathbf{2 5 4}$ s BACK TO NORMAL LINE OK

Delay time necessary for N -Line voltage to establish, before inverse switching procedure is started

$$
T 4 \underbrace{254 s}_{0} \text { BACK TO NORMAL }
$$

T5 $=\mathbf{0} \div \mathbf{3 2}$ s CB-E CLOSE

Delay time to allow the gen-set voltage to stabilize: after starting the generato and detecting a voltage on the emergency line, the ATS010 unit waits for a time 5 before considering this voltage stable.
In Strategy 1, after detecting the gen-set voltage, the ATS010 unit waits for time $T 5$ before closing CB-E.
n strategy 2, the ATS010 unit cannot open or close the breakers unless there is a stable voltage source. Therefore, the unit waits for a time T5 before opening CB-N. If, however, a time delay T1 since voltage loss has not elapsed, the ATS010 unit waits until T1 has elapsed, and only then opens CB-N.

5 Special applications

Check on the plant and on the circuit-breakers

ATS010 can be used in plants with the following characteristics:
-the Gen set shall function independently ("island" condition);

- rated voltage and frequency of the plants are included within the given ranges;
- ATS010 supply is guaranteed even if N -Line and E -Line voltages are missing

The two circuit-breakers controlled by ATS are to be:

- mechanically interlocked;
- of the prescribed type and size:
- equipped with the prescribed accessories.

References Standards

EN 50178 (1997): "Electronic equipment for use in power installations"
Compliance with "Low Voltage Directive" (LVD) no. 73/23/EEC and
"Electromagnetic Compatibility Directive" (EMC) no. 89/336/EEC.
Electromagnetic compatibility: EN 50081-2, EN 50082-2
Environmental conditions: IEC 60068-2-1, IEC 60068-2-2, IEC 60068-2-3.

ATSO1O - main technical characteristics	
Rated power supply voltage (galvanically isolated from the ground)	$24 \mathrm{Vdc} \pm 20 \%$ $48 \mathrm{Vdc} \pm 10 \%$ (maximum ripple $\pm 5 \%$)
Maximum power consumption	$5 \mathrm{~W} @ 24 \mathrm{Vdc}$
	$10 \mathrm{~W} @ 48 \mathrm{Vdc}$
Rated power	$1,8 \mathrm{~W} @ 24 \mathrm{Vdc}$
(N-Line voltage present and CBs not operated)	$4,5 \mathrm{~W} @ 48 \mathrm{Vdc}$
Operating temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Maximum humidity	90% without condensation
Storing temperature	$-20^{\circ} \mathrm{C} \ldots .+80^{\circ} \mathrm{C}$
Degree of protection	IP 54 (front panel)
Dimensions $(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$	$144 \times 144 \times 85$
Weight $[\mathrm{kg}]$	0,8

Normal line voltage sensor
Normal line rated voltage
$100 . . .500 \mathrm{Vac}$ with direct connection
Rated frequency
$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$

Rated frequency
Impulse withstand voltage on L1, L2, L3 inputs

6 kV

Motor operators - shunt opening/closing releases

Tmax T4-T5-T6 Isomax S7
Up to 250 Vac
Emax

Emax	Up to 250 Vac From 24 Vdc to 110 Vdc

6 Switchboards

By "partially type-tested assemblies" (PTTA), it is meant a low voltage and controlgear assembly, tested only with a part of the type-tests; some tests may be substituted by extrapolation which are calculations based on experimenta esults obtained from assemblies which havepassed the type-tests. Verification through simplified measurements or calculations, allowed as an alternative to ype tests, concem heating, short circuit withstand and insulation.

Standard IEC 60439-1 states that some steps of assembly may take place outside the factory of the manufacturer, provided the assembly is performed in accordance with the manufacturer's instructions.
The installer may use commercial assembly kits to realize a suitable switchboard configuration.
The same Standard specifies a division of responsibility between the manufacturer and the assembler in Table 7 : "List of verifications and tests to be performed on TTA and PTTA" in which the type-tests and individual tests to be carried out on the assembly are detailed.
The type-tests verify the compliance of the prototype with the requirements of the Standard, and are generally under the responsibility of the manufacturer who must also supply instructions for the production and assembly of the switchboard. The assembler has responsibility for the selection and assembly of components in accordance with the instructions supplied and must confim compliance with the Standards through the previously stated checks in the case of switchboards that deviate from a tested prototype. Routine tests must also be carried out on every example produced.

The distinction between TTA and PTTA switchgear and controlgear assemblies has no relevance to the declaration of conformity with Standard IEC 60439-1 in so far as the switchboard must comply with this Standard

6 Switchboards

Degrees of protection

The degree of protection IP indicates a level of protection provided by the assembly against access to or contact with live parts, against ingress of solid oreign bodies and against the ingress of liquid. The IP code is the system used for the identification of the degree of protection, in compliance with the requirements of Standard IEC 60529 . Unless otherwise specified by the manufacturer, the degree of protection applies to the complete switchboard assembled and installed for normal use (with door closed).
The manufacturer shall also state the degree of protection applicable to particular configurations which may arise in service, such as the degree of protection with the door open or with devices removed or withdrawn

Element	Numerials or letters	Meaning for the protection of equipment	Meaning for the protection of persons	Ref.
Code letters	IP			
First characteristic numeral		$\overline{\text { Against ingress of the solid }}$ foreign objects	Against access to hazardous parts with	$\overline{\mathrm{Cl} .5}$
	0	(non-protected)	(non-protected)	
	1	$\geq 50 \mathrm{~mm}$ diameter	back of hand	
	2	$\geq 12.5 \mathrm{~mm}$ diameter	finger	
	3	$\geq 2.5 \mathrm{~mm}$ diameter	tool	
	4	$\geq 1.0 \mathrm{~mm}$ diameter	wire	
	5	dust-protected	wire	
	6	dust-tight	wire	
Second characteristic		Against ingress of water with harmful effects		CI. 6
	0	(non-protected)		
	1	vertically dripping		
	2	dripping (15° tilted)		
	3	spraying		
	4	splashing		
	5	jetting		
	6	powerful jetting		
	7	temporary immersion		
	8	continuous immersion		
Additional letter (optional)			Against access to hazardous parts with	CI. 7
	A		back of hand	
	B		finger	
	C		tool	
	D		wire	
Supplementary letter (optional		Supplemetary information specific to:		CI. 8
	A	Hight voltage apparatus		
	B	Motion during water test		
	C	Stationary during water test		
	D	Weather conditions		

6 Switchboards

Form of separation and classification of switchboards

Forms of internal separation

By form of separation it is meant the type of subdivision provided within the switchboard. Separation by means of barriers or partitions (metallic or insulating) may have the function to:

- provide protection against direct contact (at least IPXXB) in the case of access to a part of the switchboard which is not live, with respect to the rest of the switchboard which remains live;
reduce the risk of starting or propagating an intemal arc;
impede the passage of solid bodies between different parts of the switchboard (degree of protection of at least IP2X).

A partition is a separation element between two parts, while a barrier protects the operator from direct contact and from arcing effects from any interruption devices in the nomal access direction.
The following table from Standard IEC 60439-1 highlights typical forms of separation which can be obtained using bariers or partitions:

Main criteria	Subcriteria	Form
No separation		Form 1
Separation of busbars from the functional units	Terminals for extemal conductors not separated from busbars	Form 2a
	Terminals for extemal conductors separated from busbars	Form 2b
Separation of busbars from the functional units and separation of all functional units from one another. Separation of the terminals for external conductors from the functional units, but not from each other	Terminals for extemal conductors not separated from busbars	Form 3a
	Terminals for extemal conductors separated from busbars	Form 3b
Separation of busbars from the functional units and separation of all functional units from one another, including the terminals for extemal conductors which are an integral part of the functional unit	Terminals for extemal conductors in the same compartment as the associated functional unit	Form 4a
	Terminals for external conductors not in the same compartment as the associated functional unit, but in individual, separate, enclosed protected spaces or compartments	Form 4b

6 Switchboards

Classification

Different classifications of electrical switchboard exist, depending on a range of factors.

Based on construction type, Standard IEC 60439-1 firstly distinguishes between open and enclosed assemblies.
A switchboard is enclosed when it comprises protective panels on all sides, providing a degree of protection against direct contact of at least IPXXB. Switchboards used in normal environments must be enclosed.

Open switchboards, with or without front covering, which have the live parts accessible. These switchboards may only be used in electrical plants.

With regard to external design, switchboards are divided into the following categories:

- Cubicle-type assembly

Used for large scale control and distribution equipment; multi-cubicle-type assembly can be obtained by placing cubicles side by side.

6 Switchboards

Desk-type assembly

Used for the control of machinery or complex systems in the mechanical, iron and steel, and chemical industries.

Box-type assembly

Characterized by wall mounting, either mounted on a wall or flush-fitting; these switchboards are generally used for distribution at department or zone level in industrial environments and in the tertiary sector.

Multi-box-type assembly

Each box, generally protected and flanged, contains a functional unit which may be an automatic circuit-breaker, a starter, a socket complete with locking switch or circuit-breaker

With regard to the intended function, switchboards may be divided into the following types:

- Main distribution boards

Main distribution boards are generally installed immediately downstream of MV/LV transformers, or of generators; they are also termed power centres. Main distribution boards comprise one or more incoming units, busbar connectors, and a relatively smaller number of output units.

- Secondary distribution boards

Secondary distribution boards include a wide range of switchboards for the distribution of power, and are equipped with a single input unit and numerous output units

- Motor operation boards

Motor control boards are designed for the control and centralised protection of motors: therefore they comprise the relative coordinated devices for operation and protection, and auxiliary control and signalling devices.

Control, measurement and protection boards

Control, measurement and protection boards generally consist of desks containing mainly equipment for the control, monitoring and measurement of industrial processes and systems.

Machine-side boards

Machine-side boards are functionally similar to the above; their role is to provide an interface between the machine with the power supply and the operator.

Assemblies for construction sites (ASC)

Assemblies for construction sites may be of different sizes, from a simple plug and socket assembly to true distribution boards with enclosures of meta or insulating material. They are generally mobile or, in any case, transportable

6 Switchboards

Method of temperature rise assessment by extrapolation for partially tested assemblies (PTTA)

For PTTA assemblies, the temperature rise can be determined by laboratory tests or calculations, which can be camied out in accordance with Standard EC 60890. The formulae and coefficients given in this Standard are deduced from measurements taken from numerous switchboards, and the validity of the method has been checked by comparison with the test results.
This method does not cover the whole range of low voltage switchgear and controlgear assemblies since it has been developed under precise hypothese which limit the applications; this can however be correct, suited and integrated with other calculation procedures which can be demonstrated to have a technica basis
Standard IEC 60890 serves to determine the temperature rise of the air inside the switchboard caused by the energy dissipated by the devices and conductors installed within the switchboard
To calculate the temperature rise of the air inside an enclosure, once the requirements of the Standard have been met, the following must be considered

Dimensions of the enclosure.
Type of installation:

enclosure open to air on all sides;

- wall-mounted enclosure;
- enclosure designed for mounting in extremities - enclosure in an intemal position in a multicompartment switchboard
Any ventilation openings, and their dimensions.
Number of horizontal internal separators;
Power losses from the effective current flowing through any device and conductor installed within the switchboard or compartment

The Standard allows the calculation of temperature rise of the air at mid-height and at the highest point of the switchboard. Once the values are calculated, it must be evaluated if the switchboard can comply with the requirements relating to the set limits at certain points within the same switchboard.
The Annex B explains the calculation method described in the Standard ABB supplies the client with calculation software which allows the temperature rise inside the switchboard to be calculated quickly.

6 Switchboards

6 MNS switchboards

MNS systems are suitable for applications in all fields concerning the generation distribution and use of electrical energy, e. g., they can be used as :
main and sub-distribution boards
motor power supply of MCCs (Motor Control Centres)
automation switchboards.
The MNS system is a framework construction with maintenance-free bolted connections which can be equipped as required with standardized components and can be adapted to any application. The consistent application of the mo dular principle both in electrical and mechanical design permits optional selection of the structural design, interior arrangement and degree of protection according the operating and environmental conditions.

The design and material used for the MNS system largely prevent the occurrence of electric arcs, or provide for arc extinguishing within a short time. The MNS System complies with the requirements laid down in VDE0660 Part 500 as wel as IEC 61641 and has furthermore been subjected to extensive accidental arc tests by an independent institute.

The MNS system offers the user many alternative solutions and notable advantages in comparison with conventional-type installations:
compact, space-saving design,
back-to-back arrangement;

- optimized energy distribution in the cubicles;
- easy project and detail engineering through standardized components;
comprehensive range of standardized modules;
- various design levels depending on operating and environmental conditions easy combination of the different equipment systems, such as fixed and withdrawable modules in a single cubicle;
- possibility of arc-proof design (standard design with fixed module design); possibility of earthquake-, vibration- and shock-proof design;
easy assembly without special tools;
easy conversion and retrofit
largely maintenance-free
high operational reliability;
The basic elements of the frame are C -sections with holes at 25 mm intervals in compliance with Standard DIN 43660 . All frame parts are secured maintenance free with tapping screws or ESLOK screws. Based on the basic grid size of 25 mm frames can be constructed for the various cubicle types without any specia ools. Single or multi-cubicle switchgear assemblies for front or front and rea perations are possible.
Different designs are available, depending on the enclosure required
single equipment compartment door;
uble equipment compa
equipment and cable compartment doo
and cable compartment door
 ind plates, Doors and opening, roof plates can eprovided with metallic grid (IP 30 - IP40) or with ventilation chimney (IP 40, 41, 42)

6 Switchboards

Depending on the requirements, a frame structure can be subdivided into the following compartments (functional areas)
equipment compartment;
busbar compartment
The equipment compartment holds the equipment modules, the busbar compartment contains the busbars and distribution bars, the cable compartment houses the incoming and outgoing cables (optionally from above and from below) with the wiring required for connecting the modules as well as the supporting devices (cable mounting rails, cable connection parts, paralle connections, wiring ducts, etc). The functional compartments of a cubicle as ell as the cubicles themselves can be separated by partitions. Horizontal partitions with or without ventilation openings can also be inserted between the compartments.
All incoming/outgoing feeder and bus coupler cubicles include one switching device. These devices can be fixed-mounted switch disconnectors, fixedmounted or withdrawable air or moulded-case circuit-breakers.
This type of cubicles is subdivided into equipment and busbar compartments; their size $(H \times W)$ is $2200 \mathrm{~mm} \times 400 \mathrm{~mm} / 1200 \mathrm{~mm} \times 600 \mathrm{~mm}$, and the depth depends on the dimensions of the switchgear used.
ubicles with air circuit-breakers up to 2000 A can be built in the reduced dimensioned version ($\mathrm{W}=400 \mathrm{~mm}$).
It is possible to interconnect cubicles to form optimal delivery units with maximum width of 3000 mm

6.3 ArTu distribution switchboard

The range of ABB SACE ArTu distribution switchboards provides a complete and integrated offer of switchboards and kit systems for constructing primary and secondary low voltage distribution switchboards.
With a single range of accessories and starting from simple assembly kits, the ArTu switchboards make it possible to assembly a wide range of configurations mounting modular, moulded-case and air circuit-breakers, with any interna separation up to Form 4.
ABB SACE offers a series of standardized kits, consisting of pre-drilled plates and panels for the installation of the whole range of circuit-breakers type System pro M, Isomax, Tmax and Emax X1, E1, E2, E3, E4 without the need of additiona drilling operations or adaptations.
Special consideration has been given to cabling requirements, providing specia seats to fix the plastic cabling duct horizontally and vertically.
Standardization of the components is extended to internal separation of the switchboard: in ArTu switchboards, separation is easily carried out and it does not require either construction of "made-to-measure" switchboards or any additional sheet cutting, bending or drilling work.

ArTu switchboards are characterized by the following features:
integrated range of modular metalwork structures up to 4000 A with common accessories;
possibility of fulfilling all application requirements in terms of installation (wallmounting, floor-mounting, monoblock and cabinet kits) and degree of protection (IP31, IP41, IP43, IP65);
structure made of hot-galvanized sheet;

6 Switchboards

maximum integration with modular devices and ABB SACE moulded-case and air circuit-breakers;
minimum switchboard assembly times thanks to the simplicity of the kits, the standardization of the small assembly items, the self-supporting elements and the presence of clear reference points for assembly of the plates and panels;
separations in kits up to Form 4
The range of ArTu switchboards includes four versions, which can be equipped with the same accessories

arTu L series

ArTu L series consists of a range of modular switchboard kits, with a capacity 24 modules per row and degree of protection IP31 (without door) or IP43 (basic version with door). These switchboards can be wall- or floor-mounted: wall-mounted ArTu L series, with heights of $600,800,1000$ and 1200 mm depth 200 mm , width 700 mm . Both System pro M modular devices and moulded-case circuit-breakers Tmax T1-T2-T3 are housed inside thi switchboard series;

- floor-mounted ArTu L series, with heights of 1400, 1600, 1800 and 2000 mm , depth 240 mm , width 700 mm . System pro M modular devices, moulded case circuit-breakers type Tmax T1-T2-T3-T4-T5-T6 (fixed version with fron terminals) are housed inside this switchboard series.

rTu M series

ArTu M series consists of a modular range of monoblock switchboards for wallmounted (with depths of 150 and 200 mm with IP65 degree of protection) or floor-mounted (with depth of 250 mm and IP31 or IP65 degrees of protection) installations, in which it is possible to mount System pro M modular devices TMaxT1-T2-T3 moulded-case circuit-breakers on a DIN rail ArTu M series of floor-mounted switchboards can be equipped with Tmax series.

ArTu K series

ArTu K series consists of a range of modular switchboard kits for floor-mounted installation with four different depths (250, 350, 600, 800 and 1000 mm) and with degree of protection IP31 (without front door), IP41 (with front door and ventilated side panels) or IP65 (with front door and blind side panels), in which is possible to mount System pro M modular devices, the whole range of is cose circut-breakers Tmax and Isomax, and Emax circlit-breakers X1, E1, E2, E3 and E4.
ArTu switchboards have three functional widths:
400 mm , for the installation of moulded-case circuit-breakers up to 630 A (T5); 600 mm , which is the basic dimension for the installation of the appa (15) 800 mm , for the creation of the side cable container within the structure of the floor-mounted switchboard or for the use of panels with the same width

The available internal space varies in height from 600 mm (wall-mounted L series) to 2000 mm (floor-mounted M series and K series), thus offering a possibl solution for the most varied application requirements.

6 Switchboards

ArTu PB Series (Panelboard and Pan Assembly)

The ArTu line is now upgraded with the new ArTu PB Panelboard solution The ArTu PB Panelboard is suitable for distribution applications with an incomer up to 800A and outgoing feeders up to 250A.
The ArTu PB Panelboard is extremely sturdy thanks to its new designed framework and it is available both in the wall-mounted version as well as in the floor-mounted one.
ArTu PB Panelboard customisation is extremely flexible due to the smart design based on configurations of 6,12 and 18 outgoing ways and to the new ABB plug-in system that allows easy and fast connections for all T 1 and T 3 versions. Upon request, extension boxes are available on all sides of the structure, for metering purposes too
The vertical trunking system is running behind the MCCB's layer allowing easy access to every accessory wiring (SR's, UV's, AUX contacts)
The ArTu PB Panelboard, supplied as a standard with a blind door, is available with a glazed one as well.

Annex A: Protection againstshort-circuit effects inside low-voltage switchboards

The Std. IEC 60439-1 specifies that ASSEMBLIES (referred to hereafter as switchboards) shall be constructed so as to be capable of withstanding the hermal and dynamic stresses resulting from short-circuit currents up to the rated values.

Furthemore, switchboards shall be protected against short-circuit currents by means of circuit-breakers, fuses or a combination of both, which may either be ncorporated in the switchboard or arranged upstream.
When ordering a switchboard, the user shall specify the short-circuit conditions at the point of installation.

This chapter takes into consideration the following aspects:
The need, or not, to carry out a verification of the short-circuit withstand strength of the switchboard.
The suitability of a switchboard for a plant as a function of the prospective short-circuit current of the plant and of the short-circu parameters of the switchboard.
The suitability of a busbar system as a function of the short-circuit current and of the protective devices.

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Verification of short-circuit withstand strength

The verification of the short-circuit withstand strength is dealt with in the Standard EC 60439-1, where, in particular, the cases requiring this verification and the different types of verification are specified
The verification of the short-circuit withstand strength is not required if the following conditions are fulfilled

- For switchboards having a rated short-time current (Icw) or rated conditional current (IK) not exceeding 10 kA .
- For switchboards protected by current limiting devices having a cut-off current not exceeding 17 KA at the maximumallowable prospective short-circuit current at the terminals of the incoming circuit of the switchboard.
- For auxiliary circuits of switchboards intended to be connected to transformers whose rated power does not exceed 10 kVA for a rated secondary voltage of not less than 110 V , or 1.6 kVA for a rated secondary voltage less than 110 V , and whose short-circuit impedance is not less than 4%.
- For all the parts of switchboards (busbars, busbar supports, connections to busbars, incoming and outgoing units, switching and protective devices, etc.) which have already been subjected to type tests valid for conditions in the switchboard.

Therefore, from an engineering point of view, the need to verify the short-circuit withstand strength may be viewed as follows

As regards the details of the test performance, reference shall be made directly to the Standard IEC 60439-1.

Annex A: Protection against short-circuit effect

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Short-circuit current and suitability of the switchboard

for the plant

The verification of the short-circuit withstand strength is based on two values stated by the manufacturer in altemative to each other
the rated short-time current Icw
the rated conditional short-circuit current Ik
Based on one of these two values, it is possible to determine whether the switchboard is suitable to be installed in a particular point of the system.

It shall be necessary to verify that the breaking capacities of the apparatus inside the switchboard are compatible with the short-circuit values of the system

The rated short-time withstand current Icw is a predefined r.m.s. value of tes current, to which a determined peak value applied to the test circuit of the witchboard for a specified time (usually 1s) corresponds. The switchboard
 rom thi test (if passed) it is possibl to obtain the specific let the system rom this test (fl passed) it is possible obtain the specinic let-through energy (2t) which can be carried by

$$
\mathrm{I}^{2} \mathrm{t}=\mathrm{Icw} \mathrm{w}^{2} \mathrm{t}
$$

The test shall be carried out at a power factor value specified below in the Table 4 of the Std. IEC 60439-1. A factor " n " corresponding at this $\cos \varphi$ value allows determine the peak value of the short-circuit current withstood by the switchboard through the following formula:

Table 4
lp = Icw • n
power factor

r.m.s. value of short-circuit current	$\cos \varphi$	n
$1 \leq 5 \mathrm{kA}$	0.7	1.5
$5 \triangleleft \leq 10 \mathrm{kA}$	0.5	1.7
$10 \triangleleft \leq 20 \mathrm{kA}$	0.3	2
$20 \triangleleft \leq 50 \mathrm{kA}$	0.25	2.1
$50 \triangleleft$	0.2	2.2

The values of this table represent the majority of applications. In special locations, for
xample in the vicinity of transformers or generators, lower values of power factor may example in whe vicinity of transformers or geterators, lower values of power factor may value instead of the rms , value of the shot-circuit current

The conditional short-circuit current is a predetermined r.m.s. value of test current to which a defined peak value corresponds and which can be withstand by the switchboard during the operating time of a specified protective device. This devices is usually the main circuit-breaker of the switchboard

By comparing the two values Icw and Ip with the prospective short-circuit current of the plant, it is possible to establish whether the switchboard is suitable to be installed at a specified point of the system.
The following diagrams show the method to determine the compatibility of the switchboard with the plant

Annex A: Protection against short-circuit effects

Annex A: Protection against short-circuit effects inside low-voltage switchboards

The breaking capacities of the apparatus inside the switchboard shall be verified to be compatible with the short-circuit values of the plant.

Annex A: Protection against short-circuit effects

Annex A: Protection againstshort-circuit effects inside low-voltage switchboards

Example

$\begin{array}{ll}\text { Plant data: } & \text { Rated voltage } \mathrm{Ur}=400 \mathrm{~V} \\ & \text { Rated frequency } \mathrm{fr}=50 \mathrm{~Hz} \\ & \text { Sho }\end{array}$
Short-circuit current $\mathrm{Ik}=35 \mathrm{kA}$
Assume that in an existing system there is a switchboard with Icw equal to 35kA and that, at the installation point of the switchboard, the prospective short-circuit current is equal to 35 kA .

Now assume that an increase in the power supply of a plant is decided and that the short-circuit value rises to 60 kA .
Plant data after the increase:
Rated voltage $\mathrm{Ur}=400 \mathrm{~V}$
Rated frequency $\mathrm{fr}=50 \mathrm{~Hz}$ Short-circuit current $1 \mathrm{k}=60 \mathrm{kA}$

Since the Icw of the switchboard is lower than the short-circuit current of the system, in order to verify that the actual switchboard is still compatible, it is necessary to:
determine the I 2 t and Ip values let-through by the circuit-breaker on the supply side of the switchboard
verify that the protective devices installed inside the switchboard have a sufficient breaking capacity (separately or in back-up)

$\mathrm{cw}=35 \mathrm{kA}$ from which

${ }^{2} \mathrm{t}$ switchboard $=35^{2} \times 1=1225 \mathrm{MA}^{2}$ s
$1 \mathrm{p}_{\text {switchboard }}=73.5 \mathrm{kA}$ (according to Table 4)
Assuming that on the supply side of the switchboard a circuit-breaker type Tmax T5H (Icu=70kA@415V) is installed
${ }^{2} \mathrm{t}_{\mathrm{CB}}<4 \mathrm{MA}^{2} \mathrm{~s}$
$\mathrm{p}_{\mathrm{CB}}<40 \mathrm{kA}$
since
$12 \mathrm{t}_{\text {switchboard }}>1^{2} \mathrm{t}_{\mathrm{CB}}$
$\mathrm{P}_{\text {switchboard }}>\mathrm{Ip}_{\mathrm{CB}}$
it results that the switchboard (structure and busbar system) is suitable.
Assume that the circuit-breakers installed inside the switchboard are circuit breakers type T1, T2 and T3 version N with $\mathbf{I c u}=\mathbf{3 6 k A} @ 415 V$. From the back ip tables (see Chapter 4.3), it results that the circuit-breakers inside the switchboard are suitable for the plant, since their breaking capacity is increased to 65 kA thanks to the circuit-breaker type T 5 H on the supply side.

Annex A: Protection against short-circuit effects

Annex A: Protection against short-circuit effects

 inside low-voltage switchboards
Selection of the distribution system in relation to shortcircuit withstand strength

The dimensioning of the distribution system of the switchboard is obtained by taking into consideration the rated current flowing through it and the prospective short-circuit current of the plant.
The manufacturer usually provides tables which allow the choice of the busbar cross-section as a function of the rated current and give the mounting distances of the busbar supports to ensure the short-circuit withstand strength.

To select a distribution system compatible with the short-circuit data of the plant, one of these procedures shall be followed:

- If the protective device on the supply side of the distribution system is known
From the Icw value of the distribution system it results:
$\mathrm{Ik}_{\text {syst }}=\mathrm{lcw} \cdot \mathrm{n}$ where n is the factor deduced from the Table 4
$\mathrm{R}^{2} \mathrm{~s}_{\text {syst }}=\mathrm{lcw}^{2} \cdot \mathrm{t}$ where t is equal to 1 s
In correspondence with the prospective short-circuit current value of the plant he following values can be determined:
the cut-off curent of the circuit-breaker
the specific let-through energy of the circuit-breaker
If $\mathrm{Ip}_{\mathrm{CB}} \& \mathrm{p}_{\text {syst }}$ and $\mathrm{I}^{2} \mathrm{t}_{\mathrm{CB}}<12 \mathrm{t}_{\text {syst }}$, then the distribution system is suitable.

- If the protective device on the supply side of the distribution system is not known

The following condition must be fulfilled:
Ik (prospective) < Icw (system)

Annex A: Protection against short-circuit effects

Annex A: Protection againstshort-circuit effects inside low-voltage switchboards

Example

Plant data: Rated voltage $U r=400 \mathrm{~V}$
Rated frequency $\mathrm{fr}=50 \mathrm{~Hz}$
Short-circuit current $\mathrm{k}=65 \mathrm{kA}$

By considering the need of using a system of 400 A busbars with shaped form n the ABB SACE catalogue "ArTu distribution switchboards" the following choice s possible:
BA0400 $\mathrm{In}=400 \mathrm{~A}$ (IP65) $\mathrm{Icw}=35 \mathrm{kA}$.
By assuming to have on the supply side of the busbar system a moulded-case circuit-breaker type

ABB SACE Tmax T5400 In400
from the Icw of the busbar system, it derives:
$p_{\text {syst }}=\mathrm{lcw} \cdot \mathrm{n}=35 \cdot 2.1=73.5 \quad[\mathrm{kA}]$
${ }^{12 t_{\text {syst }}}=\mathrm{lcw}^{2} \cdot \mathrm{t}=35^{2} \cdot 1=1225\left[(\mathrm{kA})^{2} \mathrm{~s}\right]$
From the curves

- at page 144

1) 65kA
corresponds at about $\mathrm{Ip}_{\mathrm{CB}}=35 \mathrm{kA}$

Ik 65kA
corresponds at about $\quad{ }^{2} \mathrm{t}_{\mathrm{CB}}=4\left[(k A)^{2} \mathrm{~s}\right]=4\left[\mathrm{MA}^{2} \mathrm{sec}\right]$

Thus, since
$\mathrm{Ip}_{\mathrm{CB}}<\mathrm{lp}_{\text {syst }}$
and
${ }^{2} \mathrm{t}_{\mathrm{CB}}<12 \mathrm{t}_{\text {syst }}$
it results that the busbar system is compatible with the switchboard.

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Selection of conductors on the supply side of the protective devices

The Standard IEC 60439-1 prescribes that in a switchboard, the active conductors (distribution busbars included) positioned between the main busbars and the supply side of the single functional units, as well as the constructional components of these units, can be dimensioned according to the reduced shortcircuit stresses which occur on the load side of the short-circuit protective device of the unit.

This may be possible if the conductors are installed in such a way throughout the switchboard that, under normal operating conditions, an intemal short-circuit between phases and/or between phase and earth is only a remote possibility. It is advisable that such conductors are of solid rigid manufacture.
As an example, this Standard gives conductortypes and installation requirements which allow to consider a short-circuit between phases and/or between phase and earth only a remote possibility.

Type of conductor
Bare conductors or single-core conductors w to IEC 60227-3.
Single-core conductors with basic insulation and a maximum permissible conductoroperating temperature above $90^{\circ} \mathrm{C}$, for example cables according to IEC 60245-3, or heatresistant PVC insulated cables according to IEC 60227-3.
Conductors with basic insulation, for example cables according to IEC 60227-3, having additional secondary insulation, for example individually covered cables with shrink sleeving or individually run cables in plastic conduits. Conductors insulated with a very high mechanical strength material, for example FTFE insulation, or double-insulated conductors with an enhanced outer sheath rated for use up to 3 kV , for example cables according to IEC 60502. Single or multi-core sheathed cables, for example cables according to IEC 60245-4 or 60227-4.

Requirements
Mutual contact or contact with conductive parts shall be avoided, for example by use of spacers.

Mutual contact or contact with conductive parts is permitted where there is no applied extemal pressure. contact with sharp edges must be avoided. There must be no nisk of mechanical damage.
These conductors may only be loaded such that an operating temperature of $70^{\circ} \mathrm{C}$ is not exceeded.
,

No additional requirements if there is no risk of mechanical damage.

Under these conditions or if anyway the integral short-circuit may be considered a remote possibility, the above described procedure shall be used to verify the suitability of the distribution system to the short-circuit conditions, when these are determined as a function of the characteristics of the circuit-breakers on the load side of the busbars.

Annex A: Protection against short-circuit effects inside low-voltage switchboards

Example

Plant data:
Rated voltage Ur=400 V
Rated frequency $\mathrm{fr}=50 \mathrm{~Hz}$
Short-circuit current $1 \mathrm{k}=45 \mathrm{kA}$
In the switchboard shown in the figure, the vertical distribution busbars are derived from the main busbars. These are 800 A busbars with shaped ection and with the followin characteristics:
in (IP65) $=800 \mathrm{~A}$
lcw max $=35 \mathrm{kA}$
Since it is a "rigid" system with spacers, according to the Std. IEC 60439-1 short-circuit between busbars is a re-
 mote possibility.
Anyway, a verification that the stresses reduced by the circuit-breakers on the load side of the system are compatible with the system is required. Assuming that in the cubicles there are the following circuit-breakers:
ABB SACE T3S250
ABB SACE T2S160
it is necessary to verify that, in the case of a short-circuit on any outgoing conductor, the limitations created by the circuit-breaker are compatible with the busbar system; to comply with this requirement, at the maximum allowable prospective short-circuit current, the circuit-breaker with higher cut-off curren and let-through energy must have an adequate current limiting capability for the busbar system

In this case the circuit-breaker is type ABB SACE T3S250 $\ln 250$. The verification shall be carried out as in the previous paragraph:

From the Icw of the busbar system, it derives
$\begin{array}{ll}\mathrm{Ip}_{\text {syst }}=\mathrm{lcw} \cdot \mathrm{n}=35 \cdot 2.1=73.5 & {[\mathrm{KA}]} \\ 12 \mathrm{t} \mathrm{syyst}=\mathrm{lcw} 2 \cdot \mathrm{t}=35^{2} \cdot 1=1225 & {\left[(\mathrm{kA})^{2} \mathrm{~s}\right]}\end{array}$
From the limitation and let-through energy curves
at page 142
$\mathrm{k}=45 \mathrm{kA} \quad$ corresponds at about $\quad \mathrm{lp}_{\mathrm{CB}}=30 \mathrm{kA}$
at page 179
$1 \mathrm{k}=45 \mathrm{kA}$
corresponds at about $\quad 12 \mathrm{t}_{\mathrm{CB}}=2\left[(\mathrm{KA})^{2} \mathrm{~s}\right]$
Thus, since
$1 p_{\mathrm{CB}} \triangleleft \mathrm{p}_{\text {syst }}$
and
${ }^{12 t_{C B}}<12 \mathrm{t}_{\text {syst }}$
it results that the busbar system is compatible with the switchboard.

Annex B：Temperature rise evaluation according to IEC 60890

Annex B：Temperature rise evaluation according to IEC 60890

The calculation method suggested in the Standard IEC 60890 makes it possible to evaluate the temperature rise inside an assembly（PTTA）；this method is applicable only if the following conditions are met：
－there is an approximately even distribution of power losses inside the enclosure －the installed equipment is arranged in a way that air circulation is only slightly impeded；
the equipment installed is designed for direct current or altemating current up to and including 60 Hz with the total of supply currents not exceeding 3150 A ； conductors carying high currents and structural parts are arranged in a way that eddy－current losses are negligible：
－for enclosures with ventilating openings，the cross－section of the air outlet openings is at least 1.1 times the cross－section of the air inlet openings；
－there are no more than three horizontal partitions in the PTTA or a section of it
－where enclosures with extemal ventilation openings have compartments，the surface of the ventilation openings in each horizontal partition shall be at least 50% of the horizontal cross section of the compartment．

The data necessary for the calculation are
dimensions of the enclosure：height，width，depth；
－the type of installation of the enclosure（see Table 8）；
presence of ventilation openings；
number of internal horizontal partitions；
the power loss of the equipment installed in the enclosure（see Tables 13 and 14）； the power loss of the conductors inside the enclosure，equal to the sum of the power loss of every conductor，according to Tables 1， 2 and 3.

For equipment and conductors not fully loaded，it is possible to evaluate the power loss as：

$$
P=P_{n}\left(\frac{I_{b}}{I_{n}}\right)^{2}(1)
$$

where：

is the actual power loss；
P_{n} is the rated power loss（at I_{r} ）；
b_{b} is the actual current
n is the rated current．

Table 1：Operating current and power losses of insulated conductors

Maximum permissible conductor temperature $70^{\circ} \mathrm{C}$

Cross－ section （Cu）	Maximum permissible conductor temperature $70{ }^{\circ} \mathrm{C}$											
						$\stackrel{d}{8}$	\mathscr{O}			d		
	Air temperature inside the enclosure around the conductors											
		ล	$\underset{\tilde{\varrho}}{\stackrel{r}{9}}$	入	ت	ล	$\stackrel{\rightharpoonup}{g}$	入	$\stackrel{\text { ! }}{\square}$	ล	$\stackrel{\text { ! }}{9}$	ล
	䟵	$\underset{i}{\text { ® }}$	$\frac{5}{5}$	$\underset{\sim}{\text { y }}$	E	む	$\frac{5}{3}$	y	$\frac{y}{3}$	$\underset{\sim}{4}$	$\frac{y}{3}$	¢
	은	岣	O	合	은	品	읃	亗	$$	苟	$\begin{aligned} & \text { ou } \\ & \end{aligned}$	－
	\％	$\stackrel{亠 幺}{\otimes}$	黄	$\bar{\vdots}$	$\frac{\text { 学 }}{}$		$\begin{aligned} & \text { 龷 } \\ & 0 \end{aligned}$	$\bar{\vdots}$	\％	¢	$\begin{aligned} & \text { 䜭 } \\ & 0 \end{aligned}$	¢
	흥	各	$\frac{\overline{0}}{\circ}$	zo	흥	$\begin{aligned} & \text { zo } \\ & \text { 2 } \end{aligned}$	흥	吅	흥	z	흥	2
mm^{2}	A	W／m										
1.5	12	2.1	8	0.9	12	2.1	8	0.9	12	2.1	8	0.9
2.5	17	2.5	11	1.1	20	3.5	12	1.3	20	3.5	12	1.3
4	22	2.6	14	1.1	25	3.4	18	1.8	25	3.4	20	2.2
6	28	2.8	18	1.2	32	3.7	23	1.9	32	3.7	25	2.3
10	38	3.0	25	1.3	48	4.8	31	2.0	50	5.2	32	2.1
16	52	3.7	34	1.6	64	5.6	42	2.4	65	5.8	50	3.4
25					85	6.3	55	2.6	85	6.3	65	3.7
35					104	7.5	67	3.1	115	7.9	85	5.0
50					130	7.9	85	3.4	150	10.5	115	6.2
70					161	8.4	105	3.6	175	9.9	149	7.2
95					192	8.7	125	3.7	225	11.9	175	7.2
120					226	9.6	147	4.1	250	11.7	210	8.3
150					275	11.7	167	4.3	275	11.7	239	8.8
185					295	10.9	191	4.6	350	15.4	273	9.4
240					347	12.0	225	5.0	400	15.9	322	10.3
300					400	13.2	260	5.6	460	17.5	371	11.4

Conductors for auxiliary circuits

					Diam．
0.12	2.6	1.2	1.7	0.5	0.4
0.14	2.9	1.3	1.9	0.6	-
0.20	3.2	1.1	2.1	0.5	-
0.22	3.6	1.3	2.3	0.5	0.5
0.30	4.4	1.4	2.9	0.6	0.6
0.34	4.7	1.4	3.1	0.6	0.6
0.50	6.4	1.8	4.2	0.8	0.8
0.56		1.6		0.7	-
0.75	8.2	1.9	5.4	0.8	1.0
1.00	9.3	1.8	6.1	0.8	-

1）Any arrangement desired with the values specified referring to six cores in a multi－core bundle with a simultaneous load 100%
2）single length

Annex B: Temperature rise evaluation according to IEC 60890

Table 2: Operating current and power losses of bare conductors, in vertical arrangement without direct connections to apparatu

Annex B: Temperature rise evaluation

 according to IEC 60890Table 3: Operating current and power losses of bare conductors used as connections between apparatus and busbars

Annex B: Temperature rise evaluation according to IEC 60890

Where enclosures without vertical partitions or individual sections have an effective cooling surface greater than about 11.5 m or a width grater than about 1.5 m , they should be divided for the calculation into fictitious sections, whose dimensions approximate to the foregoing values.

The following diagram shows the procedure to evaluate the temperature rise.

Annex B: Temperature rise evaluation according to IEC 60890

Table 4: Surface factor b according to the type of installation

Type of installation	Surface factor b
Exposed top surface	1.4
Covered top surface, e.g. of built-in enclosures	0.7
Exposed side faces, e.g. front, rear and side walls	0.9
Covered side faces, e.g. rear side of wall-mounted enclosures	0.5
Side faces of central enclosures	0.5
Floor surface	Not taken into account

Fictitious side faces of sections which have been introduced only for calculation purposes re not taken into account

Table 5: Factor d for enclosures without ventilation openings and with an effective cooling surface $A_{e}>1.25 \mathbf{m}^{2}$

Number of horizontal partitions \mathbf{n}	Factor \mathbf{d}
0	1
1	1.05
2	1.15
3	1.3

Table 6: Factor d for enclosures with ventilation openings and with an effective cooling surface $A_{e}>1.25 \mathbf{m}^{2}$

Number of horizontal partitions \mathbf{n}	Factor \mathbf{d}
0	1
1	1.05
2	1.1
3	1.15

Table 7: Enclosure constant k for enclosures without ventilation openings, with an effective cooling surface $A>1.25 \mathbf{~ m}^{2}$

$\mathbf{A}_{\mathbf{e}}\left[\mathbf{m}^{\mathbf{2}}\right]$	\mathbf{k}	$\mathbf{A}_{\mathbf{e}}\left[\mathbf{m}^{\mathbf{2}} \mathbf{]}\right.$	\mathbf{k}
1.25	0.524	6.5	0.135
1.5	0.45	7	0.13
2	0.35	7.5	0.125
2.5	0.275	8	0.12
3	0.225	8.5	0.115
3.5	0.2	9	0.11
4	0.185	9.5	0.105
4.5	0.17	10	0.1
5	0.16	10.5	0.095
5.5	0.15	11	0.09
6	0.14	11.5	0.085

Annex B: Temperature rise evaluation according to IEC 60890

Table 8: Temperature distribution factor c for enclosures without ventilation openings, with an effective cooling surface $A_{e} \boldsymbol{> 1 . 2 5} \mathbf{m}^{2}$

$f=\frac{h^{1.35}}{A_{b}}$	Type of installation				
	1	2	3	4	5
0.6	1.225	1.21	1.19	1.17	1.113
1	1.24	1.225	1.21	1.185	1.14
1.5	1.265	1.245	1.23	1.21	1.17
2	1.285	1.27	1.25	1.23	1.19
2.5	1.31	1.29	1.275	1.25	1.21
3	1.325	1.31	1.295	1.27	1.23
3.5	1.35	1.33	1.315	1.29	1.255
4	1.37	1.355	1.34	1.32	1.275
4.5	1.395	1.375	1.36	1.34	1.295
5	1.415	1.395	1.38	1.36	1.32
5.5	1.435	1.415	1.4	1.38	1.34
6	1.45	1.435	1.42	1.395	1.355
6.5	1.47	1.45	1.435	1.41	1.37
7	1.48	1.47	1.45	1.43	1.39
7.5	1.495	1.48	1.465	1.44	1.4
8	1.51	1.49	1.475	1.455	1.415
8.5	1.52	1.505	1.49	1.47	1.43
9	1.535	1.52	1.5	1.48	1.44
9.5	1.55	1.53	1.515	1.49	1.455
10	1.56	1.54	1.52	1.5	1.47
10.5	1.57	1.55	1.535	1.51	1.475
11	1.575	1.565	1.549	1.52	1.485
11.5	1.585	1.57	1.55	1.525	1.49
12	1.59	1.58	1.56	1.535	1.5
12.5	1.6	1.585	1.57	1.54	1.51

where h is the height of the enclosure, and A_{b} is the area of the base or "Type of installation"

| Type of installation \mathbf{n}° | | |
| :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | Separate enclosure, detached on all sides | |
| $\mathbf{2}$ | First or last enclosure, detached type | |
| $\mathbf{3}$ | Separate enclosure for wall-mounting | |
| | Central enclosure, detached type | |
| $\mathbf{4}$ | First or last enclosure, wall-mounting type | |
| | Central enclosure for wall-mounting and with covered top surface | |
| $\mathbf{5}$ | Central enclosure, wall-mounting type | |

Annex B: Temperature rise evaluation according to IEC 60890

Table 9: Enclosure constant k for enclosures with ventilation openings and an effective cooling surface $A_{e}>1.25 \mathrm{~m}^{2}$

Ventilation opening in $\mathbf{~ m ~}^{2}$	$\mathbf{1}$	$\mathbf{1 . 5}$	$\mathbf{2}$	$\mathbf{2 . 5}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{A} \mathbf{\mathbf { A } _ { \mathbf { e } }} \mathbf{[\mathbf { m } ^ { 2 }]}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$
50	0.36	0.33	0.3	0.28	0.26	0.24	0.22	0.208	0.194	0.18	0.165	0.145	0.135
100	0.293	0.27	0.25	0.233	0.22	0.203	0.187	0.175	0.165	0.153	0.14	0.128	0.119
150	0.247	0.227	0.21	0.198	0.187	0.173	0.16	0.15	0.143	0.135	0.123	0.114	0.107
200	0.213	0.196	0.184	0.174	0.164	0.152	0.143	0.135	0.127	0.12	0.11	0.103	0.097
250	0.19	0.175	0.165	0.155	0.147	0.138	0.13	0.121	0.116	0.11	0.1	0.095	0.09
300	0.17	0.157	0.148	0.14	0.133	0.125	0.118	0.115	0.106	0.1	0.093	0.088	0.084
350	0.152	0.141	0.135	0.128	0.121	0.115	0.109	0.103	0.098	0.093	0.087	0.082	0.079
400	0.138	0.129	0.121	0.117	0.11	0.106	0.1	0.096	0.091	0.088	0.081	0.078	0.075
450	0.126	0.119	0.111	0.108	0.103	0.099	0.094	0.09	0.086	0.083	0.078	0.074	0.07
500	0.116	0.11	0.104	0.1	0.096	0.092	0.088	0.085	0.082	0.078	0.073	0.07	0.067
550	0.107	0.102	0.097	0.093	0.09	0.087	0.083	0.08	0.078	0.075	0.07	0.068	0.065
600	0.1	0.095	0.09	0.088	0.085	0.082	0.079	0.076	0.073	0.07	0.067	0.065	0.063
650	0.094	0.09	0.086	0.083	0.08	0.077	0.075	0.072	0.07	0.068	0.065	0.063	0.061
700	0.089	0.085	0.08	0.078	0.076	0.074	0.072	0.07	0.068	0.066	0.064	0.062	0.06

Table 10: Temperature distribution factor \mathbf{c} for enclosures with ventilation openings and an effective cooling surface $A_{e}>1.25 \mathbf{~ m}^{2}$

Ventilation opening in $\mathbf{~ m ~}^{2}$	$\mathbf{1 . 5}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{\mathbf { A } _ { \mathbf { b } }}$				
50	1.3	1.35	1.43	1.5	1.57	1.63	1.68	1.74	1.78	1.83
100	1.41	1.46	1.55	1.62	1.68	1.74	1.79	1.84	1.88	1.92
150	1.5	1.55	1.63	1.69	1.75	1.8	1.85	1.9	1.94	1.97
200	1.56	1.61	1.67	1.75	1.8	1.85	1.9	1.94	1.97	2.01
250	1.61	1.65	1.73	1.78	1.84	1.88	1.93	1.97	2.01	2.04
300	1.65	1.69	1.75	1.82	1.86	1.92	1.96	2	2.03	2.06
350	1.68	1.72	1.78	1.85	1.9	1.94	1.97	2.02	2.05	2.08
400	1.71	1.75	1.81	1.87	1.92	1.96	2	2.04	2.07	2.1
450	1.74	1.77	1.83	1.88	1.94	1.97	2.02	2.05	2.08	2.12
500	1.76	1.79	1.85	1.9	1.95	1.99	2.04	2.06	2.1	2.13
550	1.77	1.82	1.88	1.93	1.97	2.01	2.05	2.08	2.11	2.14
600	1.8	1.83	1.88	1.94	1.98	2.02	2.06	2.09	2.12	2.15
650	1.81	1.85	1.9	1.95	1.99	2.04	2.07	2.1	2.14	2.17
700	1.83	1.87	1.92	1.96	2	2.05	2.08	2.12	2.15	2.18

Annex B: Temperature rise evaluation

 according to IEC 60890Table 11: Enclosure constant k for enclosures without ventilation openings and with an effective cooling surface $A_{e} \leq 1.25 \mathbf{~ m}^{2}$

$\mathbf{A}_{\mathbf{e}}\left[\mathbf{m}^{\mathbf{2}}\right]$	\mathbf{k}	$\mathbf{A}_{\mathbf{e}} \mathbf{[} \mathbf{m}^{\mathbf{2}} \mathbf{]}$	\mathbf{k}
0.08	3.973	0.65	0.848
0.09	3.643	0.7	0.803
0.1	3.371	0.75	0.764
0.15	2.5	0.8	0.728
0.2	2.022	0.85	0.696
0.25	1.716	0.9	0.668
0.3	1.5	0.95	0.641
0.35	1.339	1	0.618
0.4	1.213	1.05	0.596
0.45	1.113	1.1	0.576
0.5	1.029	1.15	0.557
0.55	0.960	1.2	0.540
0.6	0.9	1.25	0.524

Table 12: Temperature distribution factor c for enclosures without ventilation openings and with an effective cooling surface $A_{e} \leq 1.25 \mathbf{~ m}^{2}$

\mathbf{g}	\mathbf{c}	\mathbf{g}	\mathbf{c}
0	1	1.5	1.231
0.1	1.02	1.6	1.237
0.2	1.04	1.7	1.24
0.3	1.06	1.8	1.244
0.4	1.078	1.9	1.246
0.5	1.097	2	1.249
0.6	1.118	2.1	1.251
0.7	1.137	2.2	1.253
0.8	1.156	2.3	1.254
0.9	1.174	2.4	1.255
1	1.188	2.5	1.256
1.1	1.2	2.6	1.257
1.2	1.21	2.7	1.258
1.3	1.22	2.8	1.259
1.4	1.226		

where g is the ratio of the height and the width of the enclosure.

Annex B: Temperature rise evaluation according to IEC 60890

Table 14: Emax power losses

Total (3/4 poles) power loss in W	X1-BN		x1-L		E1B-N		E2B-N-S		E2L		E3N-S-H-V		E3L		E4S-H-V		E6H-V	
	F	w	F	w	F	w	F	w	F	w	F	w	F	w	F	w	F	w
ln=630	31	60	61	90														
In=800	51	104	99	145	65	95	29	53			22	36						
$\mathrm{ln}=1000$	79	162	155	227	96	147	45	83			38	58						
$\mathrm{ln}=1250$	124	293	242	354	150	230	70	130	105	165	60	90						
In=1600	209	415			253	378	115	215	170	265	85	150						
$\mathrm{ln}=2000$							180	330			130	225	215	330				
$\mathrm{ln}=2500$											205	350	335	515				
In=3200											330	570			235	425	170	290
$\mathrm{ln}=4000$															360	660	265	445
In $=5000$																	415	700
$\mathrm{ln}=6300$																	650	1100

Example

Hereunder an example of temperature rise evaluation for a switchboard with the following characteristics

- enclosure without ventilation openings
no internal segregation
- separate enclosure for wall-mounting
one main circuit-breaker
5 circuit-breakers for load supply
busbars and cable systems

Enclosure

Circuit diagram

Annex B: Temperature rise evaluation according to IEC 60890

The power losses from each component of the above switchboard are evaluated hereunder.
For the circuit-breakers, the power losses are calculated as $\mathrm{P}=\mathrm{Pn}\left(\frac{\mathrm{lb}}{\mathrm{In}}\right)^{2}$, with In and Pn given in the Tables 14 and 15 .
The table below shows the values relevant to each circuit-breaker of the switchboard in question

Circuit-breakers		In CB [A]	$\begin{aligned} & \mathbf{l b} \\ & {[\mathrm{A}]} \\ & \hline \end{aligned}$	Power losses [W]
IG	E2 1600 EL	1600	1340	80.7
11	T5 400 EL	400	330	33.7
12	T5 400 EL	400	330	33.7
13	T5 400 EL	400	330	33.7
14	T3 250 TMD	250	175	26.2
15	T3 250 TMD	250	175	26.2
Total power loss of circuit-breakers [W]				234

For the busbars, the power losses are calculated as $\mathrm{P}=\mathrm{Pn}\left(\frac{\mathrm{lb}}{\ln }\right)^{2} \cdot(3 \cdot$ Length $)$
with In and Pn given in the Table 2 .
The table below shows the power losses of busbars:

Busbars	Cross-section $\mathrm{n} \mathrm{\times[mm}] \times[\mathrm{mm}]$	Length $[\mathrm{m}]$	Ib $[\mathrm{A}]$	Power losses $[\mathrm{W}]$
\mathbf{A}	$2 \times 60 \times 10$	0.393	1340	47.2
\mathbf{B}	80×10	0.332	1340	56
\mathbf{C}	80×10	0.300	1010	28.7
\mathbf{D}	80×10	0.300	680	13
\mathbf{E}	80×10	0.300	350	3.5
\mathbf{F}	80×10	0.300	175	0.9
Total power loss of busbars $[\mathbf{W}]$			$\mathbf{1 4 9}$	

For the bare conductors connecting the busbars to the circuit-breakers, the power losses are calculated as $P=P n\left(\frac{1 \mathrm{l}}{\mathrm{In}}\right)^{2} \cdot(3 \cdot$ Length $)$, with In and Pn given in the Table 2. Here below the values for each section:

Connection bare conductors	Cross-section $\mathrm{n} \mathrm{\times}[\mathrm{~mm}] \times[\mathrm{mm}]$	Length $[\mathrm{m}]$	$\mathbf{I b}$ $[\mathrm{A}]$	Power losses $[\mathrm{W}]$
$\mathbf{I g}$	$2 \times 60 \times 10$	0.450	1340	54
$\mathbf{1 1}$	30×10	0.150	330	3.8
$\mathbf{1 2}$	30×10	0.150	330	3.8
$\mathbf{1 3}$	30×10	0.150	330	3.8
$\mathbf{1 4}$	20×10	0.150	175	1.6
$\mathbf{1 5}$	20×10	0.150	175	1.6
Total power loss of bare conductors [W]			$\mathbf{6 8}$	

Annex B: Temperature rise evaluation according to IEC 60890

For the cables connecting the circuit-breakers to the supply and the loads, the power losses are calculated as $P=\operatorname{Pn}\left(\frac{\mathrm{lb}}{\mathrm{ln}}\right)^{2} \cdot(3 \cdot$ Length $)$, with In and Pn given in the Table 4.
Here below the power losses for each connection:

Cables	Cross-section	Length	Ib	Power losses
	$[\mathrm{n}] \times \mathrm{mm}^{2}$	$[\mathrm{~m}]$	$[\mathrm{A}]$	$[\mathrm{W}]$
$\mathbf{I G}$	4×240	1.0	1340	133.8
$\mathbf{1 1}$	240	2.0	330	64.9
$\mathbf{1 2}$	240	1.7	330	55.2
$\mathbf{1 3}$	240	1.4	330	45.4
$\mathbf{1 4}$	120	1.1	175	19
$\mathbf{1 5}$	120	0.8	175	13.8
Total power loss of cables [W]			$\mathbf{3 3 2}$	

Thus, the total power loss inside the enclosure is: $\mathbf{P}=\mathbf{7 8 4}[\mathbf{W}]$
From the geometrical dimensions of the switchboard, the effective cooling surface $A e$ is determined below

	Dimensions $[\mathrm{m}] \times[\mathrm{m}]$	$\mathrm{A}_{0}\left[\mathrm{~m}^{2}\right]$	b factor	A_{0}
Top	0.840×1.44	1.21	1.4	1.69
Front	2×1.44	1.64	0.9	2.59
Rear	2×1.44	1.64	0.5	1.44
Left-hand side	2×0.840	1.68	0.9	1.51
Right-hand side	2×0.840	1.68	0.9	1.51
			Ae $=\Sigma\left(\mathrm{A}_{0} \cdot \mathrm{~b}\right)$	8.75

Making reference to the procedure described in the diagram at page 348, it is possible to evaluate the temperature rise inside the switchboard.

Annex B: Temperature rise evaluation according to IEC 60890

From Table 7, k results 0.112 (value interpolated)
Since $x=0.804$, the temperature rise at half the height of the enclosure is
$\Delta \mathrm{t}_{0.5}=\mathrm{d} \cdot \mathrm{k} \cdot \mathrm{P}^{\mathrm{X}}=1 \cdot 0.112 \cdot 7840.804=23.8 \mathrm{k}$
For the evaluation of the temperature rise at the top of the enclosure, it is necessary to determine the c factor by using the f factor
$f=\frac{h^{1.35}}{A_{b}}=\frac{21.35}{1.44 \cdot 0.84}=2.107 \quad\left(A_{b}\right.$ is the base area of the switchboard $)$
From Table 8, column 3 (separate enclosure for wall-mounting), c results to be equal tol. 255 (value interpolated).
$\Delta t_{1}=c \cdot \Delta t_{0.5}=1.255 \cdot 23.8=29.8 \mathrm{k}$
Considering $35^{\circ} \mathrm{C}$ ambient temperature, as prescribed by the Standard, the following temperatures shall be reached inside the enclosure:
$0.5=35+23.8 \approx 59^{\circ} \mathrm{C}$
$1=35+29.8 \approx 65^{\circ} \mathrm{C}$
Assuming that the temperature derating of the circuit-breakers inside the switchboard can be compared to the derating at an ambient temperature different from $40^{\circ} \mathrm{C}$, through the tables of Chapter 3.5 , it is possible to venify if the selected circuit-breakers can cary the required currents:

E 21600 at $65^{\circ} \mathrm{C} \quad \mathrm{In}=1538[\mathrm{~A}]>\lg =1340$ [A]
T5 400 at $65^{\circ} \mathrm{C} \quad \mathrm{In}=384[\mathrm{~A}]>11=12=13=330[\mathrm{~A}]$
T3 250 at $60^{\circ} \mathrm{C} \quad \mathrm{In}=216[\mathrm{~A}]>14=15=175[\mathrm{~A}]$

Annex C: Application examples
 Advanced protection functions with PR123/P and
 PR333/P releases

Dual Setting

Thanks to the new PR123 and PR333 releases, it is possible to program two different sets of parameters and, through an external command, to switch rom one set to the other
This function is useful when there is an emergency source (generator) in the system, only supplying voltage in the case of a power loss on the network side.

Example:

In the system described below, in the case of a loss of the normal supply on the network side, by means of ABB SACE ATSO10 automatic transfer switch, it is possible to switch the supply from the network to the emergency power unit and to disconnect the non-primary loads by opening the QS1 switch-disconnector
Under normal service conditions of the installation, the circuit-breakers C are set in order to be selective with both circuit-breaker A, on the supply side, as well as with circuit-breakers D on the load side.
By switching from the network to the emergency power unit, circuit-breaker B becomes the reference circuit-breaker on the supply side of circuit-breakers C . This circuit-breaker, being the protection of a generator, must be set to trip times shorter than A and therefore the setting values of the circuit-breakers on the load side might not guarantee the selectivity with B.
By means of the "dual setting" function of the PR123 and PR 333 releases, it is possible to switch circuit-breakers C from a parameter set which guarantees selectivity with A, to another set which make them selective with B.
However, these new settings could make the combination between circuit breakers C and the circuit-breakers on the load side non-selective.

The figure at the side shows the time-current curves of the installation under nomal senvice conditions.
onditions. he values set allow intec

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

Time curren curves

The figure at the side shows the situation in which, after switching, the power is supplied by the power unit
hrough circuit-breaker B. f the settings of circuitbreakers C are not modified, there will be no selectivity with the main circuit-breaker B.

This last figure shows how it is possible to switch to a set of parameters which guarantees selectivity of circuit-breakers C with B circuit-breakers C with setting" function.

Time curren curves

10kA
102kA

359

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

Double G

The Emax type circuit-breakers, equipped with the PR123 and PR333 electronic releases, allow two independent curves for protection G:
-one for the intemal protection (function G without extemal toroid)
one for the external protection (function G with external toroid)

A typical application of function double G consists in simultaneous protection both against earth fault of the secondary of the transformer and of its connection cables to the circuit-breaker terminals (restricted earth fault protection), as well as aginst earth faults on the load side of the circuit-breaker (outside the as against earth faults on the load side of the circuit-breaker (outside the restricted earth fault protection).

Example:

Figure 1 shows a fault on the load side of an Emax circuit-breaker: the fault current flows through one phase only and, if the vectorial sum of the currents detected by the four current transformers (CTs) results to be higher than the set threshold, the electronic release activates function G (and the circuit-breaker trips).

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

With the same configuration, a fault on the supply side of the circuit-breaker (Figure 2) does not cause intervention of function G since the fault current does not affect either the CT of the phase or that of the neutral.

The use of function "double G " allows installation of an extemal toroid, as shown in Figure 3, so that earth faults on the supply side of Emax CB can be detected as well. In this case, the alarm contact of the second G is exploited in order to trip the circuit-breaker installed on the primary and to ensure fault disconnection. Figure 3

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

If, with the same configuration as Figure 3 , the fault occurs on the load side of the Emax circuit-breaker, the fault current would affect both the toroid as well the curent transformers on the phases. To define which circuit-breaker is to the (MV or LV circuit-breaker), suitable coordination of the trip times is required particular, it is necessary to set the times so that LV circuit-breake亚 oming from the external toroid. Therefore thanks to the time-curren discrimination between the two G protection functions, before the MV circuit breaker on the primary of the transformer receives the trip command, the circuit breaker on the LV side is able to eliminate the earth fault.
Obviously, if the fault occurred on the supply side of the LV circuit-breaker, only the circuit-breaker on the MV side would trip.

The table shows the main characteristics of the range of toroids (available only in the closed version).

Characteristics of the toroid ranges

Rated current Outer dimensions of the tooid	$\mathbf{1 0 0 ~ A , 2 5 0 ~ A , ~ 4 0 0 ~ A , ~ 8 0 0 ~ A ~}$
Internal diameter of the toroid	$\varnothing=112 \mathrm{~mm}$

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

Double S

Thanks to the new PR123 and PR333 releases, which allows two thresholds of protection function S to be set independently and be activated simultaneously electivity can also be achieved under highly critical conditions.
Here is an example of how, by using the new release, it is possible to obtain a better selectivity level compared with the use of a release without "double S", This is the wiring diagram of the system under examination; in particular, attention must be focussed on
the presence, on the supply side, of a MV circuit-breaker, which, for selectivity reasons, imposes low setting values for the Emax circuit-breaker on the LV side
the presence of a LV/LV transformer which, due to the inrush currents, imposes high setting values for the circuit-breakers on its primary side

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

Solution with a release without "double S"

$10^{-1 \mathrm{kA}}$

Annex C: Application examples Advanced protection functions with PR123/P and PR333/P releases

Solution with the PR123 release with "double S"

Time current
curves

$10^{-1 \mathrm{kA}}$
1kA
10kA

		E2N 1250 PR123 LSIG R1250	TSV 630 PR222DS/P LSIG R630
\mathbf{L}	Setting	0.8	0.74
	Curve	108 s	12 s
\mathbf{S} t=constant Setting	3.5	4.2	
	Curve	0.5 s	0.25 s
$\mathbf{S 2} \mathrm{t}=$ constant Setting	5	-	
	Curve	0.05 s	-
	Setting	OFF	7

As evident, by means of the "double S " function, selectivity can be achieved both with the T5 circuit-breaker on the load side as well as with the MV circuitbreaker on the supply side
A further advantage obtained by using the "double S" function is the reduction in the time of permanence of high current values under short-circuit conditions, which results in lower thermal and dynamic stresses on the busbars and on the other installation components.

Due to possible developments of standards as well as of materials, the characteristics and dimensions specified in this document may only be considered binding after confirmation by ABB SACE.

ABB SACE S.p.A.
An ABB Group Company
L.V. Breakers

Via Baioni, 35
24123 Bergamo - Italy
Tel.: +39 035.395.111 - Telefax: +39 035.395.306-433

Electrical installation handbook
Volume 2
Electrical devices
$4^{\text {th }}$ edition

Electrical installation handbook

Volume 2

Electrical devices

$4^{\text {th }}$ edition
March 2006

First edition 2003
Second edition 2004 Third edition 2005 Fourth edition 2006

Published by ABB SACE via Baioni, 35-24123 Bergamo (Italy)

All rights reserved

Index
noduction
1 Standards1.1 General2 Protection IEf Standards fo
Installation and dimensioning of cables22
Install carrying capacity and methods of installation$\begin{array}{r}. .25 \\ +.25 \\ \hline .31\end{array}$
Installation not buried in the ground

 Intalation in bund in ground\(\begin{array}{r}. . . . \\ .44 \\ \hline\end{array}\)
 2.2.2 Voltage drop
 2.2.3 J oule-effect losses
 2.3 Protection against overload

Neutral and protective conductors ... 78
2.6 Busbar trunking systems .. 86
and 101
3.2 Protection and switching of generators ... 110
3.3 Protection and switching of motors .. 11
3.4 Protection and switching of transformers
Power factor correction150

$\begin{array}{ll}\text { 4.1 } & \text { General aspects............................ } \\ \text { 4.2 } & \text { Power factor correction method }\end{array}$
4.1 General aspects163
Protection of human beings
5. 1 General aspects: effects of current on human beings 166
5.3 Protection against both direct and indirect contact.. 172
5.3
5.4 Protection Ty
ITtem.172
. .175
.
.178
.. .181
.183

$$
\begin{array}{ll}
5.6 \text { T systen } \\
5.7 & \text { Residual current devices.. } \\
5 & \text { S }
\end{array}
$$

5.7 Residual current devices 183
ircuit current
204
$\begin{array}{ll}\text { 6.1 } & \text { General aspects } \\ \text { 6.2 } & \text { Fault typologies }\end{array}$ 204
 206power method" ...
6.3.1 Calculation of the short-circuit current
6.3.2 Calculation of the short-circuit power at the fault point 209

 6.3.3 Calculation of the short-circuit current 210Determination of the short-circuit current Ik downstream of a
 cable as a function of the upstream one 216
218
Algebra of sequences 218
6.5.2 Positive, negative and zero sequence systems 219
of sequences short-circuit currents with the algebra 220
6.5.4 Positive, negative and zero sequence short-circuit 223
.5.5 Formulas for the calculation of the fautit currents as a
226
226
6.6 Calculation of the peak value of the short-circuit current 229
Annex A: Calculation tools
A. 1 Slide rules 233
Annex B: Calculation of load current 1238
. .242
.246
Annex C: Parmonics.... Calculation of the coefficient k for the cables
Annex E: Main physical quantities and electrotechnical formulas 258

Introduction

Scope and objectives

The scope of this electrical installation handbook is to provide the designer and user of electrical plants with a quick reference, immediate-use working tool. This is not intended to be a theoretical document, nor a technical catalogue, but, in addition to the latter, aims to be of help in the correct definition of equipment, in numerous practical installation situations.

The dimensioning of an electrical plant requires knowledge of different factors relating to, for example, installation utilities, the electrical conductors and other components; this knowledge leads the design engineer to consult numerous documents and technical catalogues. This electrical installation handbook, however, aims to supply, in a single document, tables for the quick definition of the main parameters of the components of an electrical plant and for the selection of the protection devices for a wide range of installations. Some application examples are included to aid comprehension of the selection tables.

Electrical installation handbook users

The electrical installation handbook is a tool which is suitable for all those who are interested in electrical plants: useful for installers and maintenance technicians through brief yet important electrotechnical references, and for sales engineers through quick reference selection tables.

Validity of the electrical installation handbook

Some tables show approximate values due to the generalization of the selection process, for example those regarding the constructional characteristics of electrical machinery. In every case, where possible, correction factors are given for actual conditions which may differ from the assumed ones. The tables are always drawn up conservatively, in favour of safety; for more accurate calculations, the use of DOCWin software is recommended for the dimensioning of electrical installations.

1 Standards

1.1 General aspects

In each technical field, and in particular in the electrical sector, a condition sufficient (even if not necessary) for the realization of plants according to the "status of the art" and a requirement essential to properly meet the demands of customers and of the community, is the respect of all the relevant laws and technical standards.
Therefore, a precise knowledge of the standards is the fundamental premise for a correct approach to the problems of the electrical plants which shall be designed in order to guarantee that "acceptable safety leve!" which is never absolute.

J uridical Standards
These are all the standards from which derive rules of behavior for the juridical persons who are under the sovereignty of that State.

Technical Standards
These standards are the whole of the prescriptions on the basis of which machines, apparatus, materials and the installations should be designed manufactured and tested so that efficiency and function safety are ensured. The technical standards, published by national and international bodies, are circumstantially drawn up and can have legal force when this is attributed by a legislative measure.

	Application fields		
	Electrotechnics and Electronics	Telecommunications	Mechanics, Ergonomics and Safety
International Body	IEC	ITU	ISO
European Body	CENELEC	ETSI	CEN
	This technical collection takes into consideration only the bodies dealing with electrical and electronic technologies.		

EC Intemational Electrotechnical Commission

The International Electrotechnical Commission (IEC) was officially founded in 1906, with the aim of securing the international co-operation as regards standardization and certification in electrical and electronic technologies. This association is formed by the International Committees of over 40 countries all over the world.
The IEC publishes international standards, technical guides and reports which are the bases or, in any case, a reference of utmost importance for any national and European standardization activity.
IEC Standards are generally issued in two languages: English and French. In 1991 the IEC has ratified co-operation agreements with CENELEC (European standardization body), for a common planning of new standardization activities and for parallel voting on standard drafts.

1 Standards

CENELEC European Committee for Electrotechnical Standardization

The European Committee for Electrotechnical Standardization (CENELEC) was set up in 1973. Presently it comprises 29 countries (Austria, Belgium, Cyprus Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Portugal, Poland, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland United Kingdom) and cooperates with 8 affiliates (Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Former Yugoslav Republic of Macedonia, Serbia and Montenegro, Turkey, Ukraine) which have first maintained the nationa documents side by side with the CENELEC ones and then replaced them with the Harmonized Documents (HD).
There is a difference between EN Standards and Harmonization Documents (HD): while the first ones have to be accepted at any level and without additions or modifications in the different countries, the second ones can be amended to meet particular national requirements.
EN Standards are generally issued in three languages: English, French and German.
From 1991 CENELEC cooperates with the IEC to accelerate the standards preparation process of International Standards
CENELEC deals with specific subjects, for which standardization is urgently required.
When the study of a specific subject has already been started by the IEC, the European standardization body (CENELEC) can decide to accept or, whenever European standardization body (CENELEC) can decide to accept or, whenever standardization body

EC DIRECTIVES FOR ELECTRICAL EQUIPMENT

Among its institutional roles, the European Community has the task of promulgating directives which must be adopted by the different member states and then transposed into national law.
Once adopted, these directives come into juridical force and become a reference for manufacturers, installers, and dealers who must fulfill the duties prescribed by law.
Directives are based on the following principles
harmenization is limited to essential requirements;

- only the products which comply with the essential requirements specified by the directives can be marketed and put into service;
- the harmonized standards, whose reference numbers are published in the Official Journal of the European Communities and which are transposed into the national standards, are considered in compliance with the essential requirements
- the applicability of the harmonized standards or of other technical specifications is facultative and manufacturers are free to choose other technical solutions which ensure compliance with the essential requirements;
a manufacturer can choose among the different conformity evaluation proce dure provided by the applicable directive.
The scope of each directive is to make manufacturers take all the necessary steps and measures so that the product does not affect the safety and health of persons, animals and property.

1 Standards

Low Voltage" Directive 73/23/CEE - 93/68/CEE

The Low Voltage Directive refers to any electrical equipment designed for use at a rated voltage from 50 to 1000 V for alternating current and from 75 to 1500 V for direct current
n particular, it is applicable to any apparatus used for production, conversion, ransmission, distribution and use of electrical power, such as machines, ransformers, devices, measuring instruments, protection devices and wiring materials.
The following categories are outside the scope of this Directive:

- electrical equipment for use in an explosive atmosphere
- electrical equipment for radiology and medical purposes;
electrical parts for goods and passenger lifts;
- electrical energy meters;
- plugs and socket outlets for domestic use;
electric fence controllers;
radio-electrical interference;
- specialized electrical equipment, for use on ships, aircraft or railways, which complies with the safety provisions drawn up by international bodies in which the Member States participate

Directive EMC 89/336/EEC ("Electromagnetic Compatibility")

The Directive on electromagnetic compatibility regards all the electrical and electronic apparatus as well as systems and installations containing electrica and/or electronic components. In particular, the apparatus covered by this Directive are divided into the following categories according to their characteristics:
domestic radio and TV receivers,

- industrial manufacturing equipment;
mobile radio equipment;
-mobile radio and commercial radio telephone equipment;
- medical and scientific apparatus;
- information technology equipment (ITE);
- domestic appliances and household electronic equipment;
- aeronautical and marine radio apparatus;
- educational electronic equipment;
- telecommunications networks and apparatus;
- radio and television broadcast transmitters,
lights and fluorescent lamps.
The apparatus shall be so constructed that:
a) the electromagnetic disturbance it generates does not exceed a level allowing radio and telecommunications equipment and other apparatus to operate as intended;
b) the apparatus has an adequate level of intrinsic immunity to electromagnetic disturbance to enable it to operate as intended
An apparatus is declared in conformity to the provisions at points a) and b) when the apparatus complies with the harmonized standards relevant to its product family or, in case there aren't any, with the general standards.

1 Standards

CE conformity marking

The CE conformity marking shall indicate conformity to all the obligations imposed on the manufacturer, as regards his products, by virtue of the European Community directives providing for the affixing of the CE marking.

$$
c \in
$$

When the CE marking is affixed on a product, it represents a declaration of the manufacturer or of his authorized representative that the product in question conforms to all the applicable provisions including the conformity assessment procedures. This prevents the Member States from limiting the marketing and putting into service of products bearing the CE marking, unless this measure is justified by the proved non-conformity of the product.

Flow diagram for the confomity assessment procedures established by the Directive 73/23/EEC on electrical equipment designed for use within particular voltage range:

Technical file

The manufacturer draw up the technical covering the des manufacture and operation of the product

Naval type approval

The environmental conditions which characterize the use of circuit breakers for on-board installations can be different from the service conditions in standard industrial environments; as a matter of fact, marine applications can require installation under particular conditions, such as

- environments characterized by high temperature and humidity, including saltmist atmosphere (damp-heat, salt-mist environment);
- on board environments (engine room) where the apparatus operate in the presence of vibrations characterized by considerable amplitude and duration.

In order to ensure the proper function in such environments, the shipping registers require that the apparatus has to be tested according to specific type approval tests, the most significant of which are vibration, dynamic inclination, humidity and dry-heat tests.

1 Standards

ABB SACE circuit-breakers (Isomax-Tmax-Emax) are approved by the following shipping registers:

RINA	Registro Italiano Navale	Italian shipping register
DNV	Det Norske Veritas	Norwegian shipping register
BV	Bureau Veritas	French shipping register
GL	Germanischer Lloyd	German shipping register
LRs	Lloyd's Register of Shipping	British shipping register
ABS	American Bureau of Shipping	American shipping register

It is always advisable to ask ABB SACE as regards the typologies and the performances of the certified circuit-breakers or to consult the section certificates in the website http://bol.it.abb.com

Marks of conformity to the relevant national and intemational Standards

The international and national marks of conformity are reported in the following table, for information only:

COUNTRY	Symbol	Mark designation	Applicability/Organization
EUROPE		-	Mark of compliance with the harmonized European standards listed in the ENEC Agreement.
AUSTRALIA		Electrical and non-electrical products. It guarantees compliance with SAA (Standard Association of Australia).	
AUSTRALIA		Standards Association of Australia (S.A.A.). The Electricity Authority of New South Wales Sydney Australia	
AUSTRIA		Austrian Test Mark	Installation equipment and materials

1 Standards

1 Standards

COUNTRY	Symbol	Mark designation	Applicability/Organization
CROATIA		KONKAR	Electrical Engineering Institute
DENMARK		DEMKO Approval Mark	Low voltage materials. This mark guarantees the compliance of the product with the requirements (safety) of the "Heavy Current Regulations"
FINLAND		Safety Mark of the Elektriska Inspektoratet	Low voltage material. This mark guarantees the compliance of the product with the requirements (safety) of the "Heavy Current Regulations"
FRANCE	$\begin{aligned} & \text { CONTRÔLE NF } \\ & \text { LIMITĖA À LA SĖCURITĖ } \end{aligned}$	ESC Mark	Household appliances
FRANCE		NF Mark	Conductors and cables Conduits and ducting Installation materials
FRANCE	$\square \square^{\text {anemen }}$	NF Identification Thread	Cables
FRANCE		NF Mark	Portable motor-operated tools
FRANCE		NF Mark	Household appliances

1 Standards

1 Standards

COUNTRY	Mark designation	Applicability/Organization	
SPAIN		Asociación Española de Normalización y Certificación. Spanish Standarization and Certification Association)	
SWEDEN		SEMKO Mark	Mandatory safety approval for low voltage material and equipment.
SWITZERLAND		Safety Mark	Swiss low voltage material subject to mandatory approval (safety).
SWITZERLAND			
SWITZERLAND			SEV Safety Mark

COUNTRY	Symbol	Mark designation	Applicability/Organization
UNITED KINGDOM		BEAB Safety Mark	Compliance with the "British Standards" for household appliances
UNITED KINGDOM		BSI Safety Mark	Compliance with the "British Standards"
UNITED KINGDOM		BEAB Kitemark	Compliance with the relevant "British Standards" regarding safety and performances
U.S.A.		UNDERWRITERS LABORATORIES Mark	Electrical and non-electrical products
U.S.A.		UNDERWRITERS LABORATORIES Mark	Electrical and non-electrical products
U.S.A.		UL Recognition	Electrical and non-electrical products
CEN		CEN Mark	Mark issued by the European Committee for Standardization (CEN): it guarantees compliance with the European Standards.
CENELEC	$\langle\mathrm{HAR}\rangle$	Mark	Cables

COUNTRY	Symbol	Mark designation	Applicability/Organization
CENELEC		Harmonization Mark	Certification mark providing assurance that the harmonized cable complies with the relevant harmonized CENELEC Standards -identification thread
EC		Ex EUROPEA Mark	Mark assuring the compliance with the relevant European Standards of the products to be used in environments with explosion hazards
CEEEl	CEEel Mark	Mark which is applicable to some household appliances (shavers, electric clocks, etc).	

EC - Declaration of Conformity

The EC Declaration of Conformity is the statement of the manufacturer, who declares under his own responsibility that all the equipment, procedures or services refer and comply with specific standards (directives) or other normativ documents.
The EC Declaration of Conformity should contain the following information:

- name and address of the manufacturer or by its European representative;
description of the product,
- reference to the harmonized standards and directives involved,
- any reference to the technical specifications of conformity;
- the two last digits of the year of affixing of the CE marking;
- identification of the signer.

A copy of the EC Declaration of Conformity shall be kept by the manufacturer or by his representative together with the technical documentation.
1.2 IEC Standards for electrical installation

STANDARD	YEAR	TITLE
IEC 60027-1	1992	Letter symbols to be used in electrical technology - Part 1: General
IEC 60034-1	2004	Rotating electrical machines - Part 1: Rating and performance
IEC 60617-DB-12M	2001	Graphical symbols for diagrams - 12month subscription to online database comprising parts 2 to 11 of IEC 60617
IEC 61082-1	1991	Preparation of documents used in electrotechnology - Part 1: General requirements
IEC 61082-2	1993	Preparation of documents used in electrotechnology - Part 2: Functionoriented diagrams
IEC 61082-3	1993	Preparation of documents used in electrotechnology - Part 3: Connection diagrams, tables and lists
IEC 61082-4	1996	Preparation of documents used in electrotechnology - Part 4: Location and installation documents
IEC 60038	2002	IEC standard voltages
IEC 60664-1	2002	Insulation coordination for equipment within low-voltage systems - Part 1: Principles, requirements and tests
IEC 60909-0	2001	Short-circuit currents in three-phase a.c. systems - Part 0: Calculation of currents
IEC 60865-1	1993	Short-circuit currents - Calculation of effects - Part 1: Definitions and calculation methods
IEC 60781	1989	Application guide for calculation of shortcircuit currents in low-voltage radial systems
IEC 60076-1	2000	Power transformers - Part 1: General
IEC 60076-2	1993	Power transformers - Part 2: Temperature rise
IEC 60076-3	2000	Power transformers - Part 3: Insulation levels, dielectric tests and external clearances in air
IEC 60076-5	2006	Power transformers - Part 5: Ability to withstand short circuit
IEC/TR 60616	1978	Terminal and tapping markings for power transformers
IEC 60076-11	2004	Power transformers - Part 11: Dry-type transformers
IEC 60445	1999	Basic and safety principles for manmachine interface, marking and identification - Identification of equipment terminals and of terminations of certain designated conductors, including general rules for an alphanumeric system

1 Standards

STANDARD	YEAR	TITLE
IEC 60073	2002	Basic and safety principles for man- machine interface, marking and identification - Coding for indicators and actuators
IEC 60446	Basic and safety principles for man- machine interface, marking and identification - Identification of conductors by colours or numerals	
IEC 60447	Basic and safety principles for man- machine interface, marking and identification - Actuating principles	
IEC 60947-1	2099	Low-voltage switchgear and controlgear - Part 1: General rules
IEC 60947-2	Low-voltage switchgear and controlgear - Part 2: Circuit-breakers	
IEC 60947-3	Low-voltage switchgear and controlgear -	
Part 3: Switches, disconnectors, switch-		
disconnectors and fuse-combination		
units		

1 Standards

STANDARD	YEAR	TITLE
IEC 60947-5-6	1999	Low-voltage switchgear and controlgear Part 5-6: Control circuit devices and switching elements - DC interface for proximity sensors and switching amplifiers (NAMUR)
IEC 60947-6-1	2005	Low-voltage switchgear and controlgear Part 6-1: Multiple function equipment Automatic transfer switching equipment
IEC 60947-6-2	2002	Low-voltage switchgear and controlgear Part 6-2: Multiple function equipment Control and protective switching devices (or equipment) (CPS)
IEC 60947-7-1	2002	Low-voltage switchgear and controlgear Part 7: Ancillary equipment - Section 1: Terminal blocks for copper conductors
IEC 60947-7-2	2002	Low-voltage switchgear and controlgear Part 7: Ancillary equipment - Section 2: Protective conductor terminal blocks for copper conductors
IEC 60439-1	2004	Low-voltage switchgear and controlgear assemblies - Part 1: Type-tested and partially type-tested assemblies
IEC 60439-2	2005	Low-voltage switchgear and controlgear assemblies - Part 2: Particular requirements for busbar trunking systems (busways)
IEC 60439-3	2001	Low-voltage switchgear and controlgear assemblies - Part 3: Particular requirements for low-voltage switchgear and controlgear assemblies intended to be installed in places where unskilled persons have access for their use Distribution boards
IEC 60439-4	2004	Low-voltage switchgear and controlgear assemblies - Part 4: Particular requirements for assemblies for construction sites (ACS)
IEC 60439-5	1998	Low-voltage switchgear and controlgear assemblies - Part 5: Particular requirements for assemblies intended to be installed outdoors in public places Cable distribution cabinets (CDCs) for power distribution in networks
IEC 61095	2000	Electromechanical contactors for household and similar purposes

1 Standards

STANDARD	YEAR	TITLE
IEC/TR 60890	1987	A method of temperature-rise assessment by extrapolation for partially type-tested assemblies (PTTA) of low-voltage switchgear and controlgear
IEC/TR 61117	1992	A method for assessing the short-circuit withstand strength of partially type-tested assemblies (PTTA)
IEC 60092-303	1980	Electrical installations in ships. Part 303: Equipment - Transformers for power and lighting
IEC 60092-301	1980	Electrical installations in ships. Part 301: Equipment - Generators and motors
IEC 60092-101	2002	Electrical installations in ships - Part 101: Definitions and general requirements
IEC 60092-401	1980	Electrical installations in ships. Part 401: Installation and test of completed installation
IEC 60092-201	1994	Electrical installations in ships - Part 201: System design - General
IEC 60092-202	1994	Electrical installations in ships - Part 202: System design - Protection
IEC 60092-302	1997	Electrical installations in ships - Part 302: Low-voltage switchgear and controlgear assemblies
IEC 60092-350	2001	Electrical installations in ships - Part 350: Shipboard power cables - General construction and test requirements
IEC 60092-352	2005	Electrical installations in ships - Part 352: Choice and installation of electrical cable
IEC 60364-5-52	2001	Electrical installations of buildings - Part 5-52: Selection and erection of electrical equipment - Wiring systems
IEC 60227		Polyvinyl chloride insulated cables of rated voltages up to and including 450/ 750 V
	1998	Part 1: General requirements
	2003	Part 2: Test methods
	1997	Part 3: Non-sheathed cables for fixed wiring
	1997	Part 4: Sheathed cables for fixed wiring
	2003	Part 5: Flexible cables (cords)
	2001	Part 6: Lift cables and cables for flexible connections
	2003	Part 7: Flexible cables screened and unscreened with two or more conductors
IEC 60228	2004	Conductors of insulated cables
IEC 60245		Rubber insulated cables - Rated voltages up to and including 450/750 V
	2003	Part 1: General requirements
	1998	Part 2: Test methods
	1994	Part 3: Heat resistant silicone insulated cables
	1994	Part 4: Cords and flexible cables

1 Standards

STANDARD	YEAR	TITLE
	2004	Part 4: Cord and flexible cables
	1994	Part 5: Lift cables
	1994	Part 6: Arc welding electrode cables
	1994	Part 7: Heat resistant ethylene-vinyl acetate rubber insulated cables
	2004	Part 8: Cords for applications requiring high flexibility
IEC 60309-2	2005	Plugs, socket-outlets and couplers for industrial purposes - Part 2: Dimensional interchangeability requirements for pin and contact-tube accessories
IEC 61008-1	2002	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCBs) Part 1: General rules
IEC 61008-2-1	1990	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB's). Part 2-1: Applicability of the general rules to RCCB's functionally independent of line voltage
IEC 61008-2-2	1990	Residual current operated circuit-breakers without integral overcurrent protection for household and similar uses (RCCB's). Part 2-2: Applicability of the general rules to RCCB's functionally dependent on line voltage
IEC 61009-1	2003	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBOs) Part 1: General rules
IEC 61009-2-1	1991	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's) Part 2-1: Applicability of the general rules to RCBO's functionally independent of line voltage
IEC 61009-2-2	1991	Residual current operated circuit-breakers with integral overcurrent protection for household and similar uses (RCBO's) Part 2-2: Applicability of the general rules to RCBO's functionally dependent on line voltage
IEC 60670-1	2002	Boxes and enclosures for electrical accessories for household and similar fixed electrical installations - Part 1: General requirements
IEC 60669-2-1	2002	Switches for household and similar fixed electrical installations - Part 2-1: Particular requirements - Electronic switches
IEC 60669-2-2	2002	Switches for household and similar fixed electrical installations - Part 2: Particular requirements - Section 2: Remote-contro switches (RCS)
IEC 60669-2-3	1997	Switches for household and similar fixed electrical installations - Part 2-3: Particular requirements - Time-delay switches (TDS)

1 Standards

STANDARD	YEAR	TITLE
IEC 60079-10	2002	Electrical apparatus for explosive gas atmospheres - Part 10: Classification of hazardous areas
IEC 60079-14	2002	Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines)
IEC 60079-17	2002	Electrical apparatus for explosive gas atmospheres - Part 17: Inspection and maintenance of electrical installations in hazardous areas (other than mines)
IEC 60269-1	2005	Low-voltage fuses - Part 1: General requirements
IEC 60269-2	1986	Low-voltage fuses. Part 2: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application)
IEC 60269-3-1	2004	Low-voltage fuses - Part 3-1: Supplementary requirements for fuses for use by unskilled persons (fuses mainly for household and similar applications) Sections I to IV: Examples of types of standardized fuses
IEC 60127-1/10		Miniature fuses -
	2003	Part 1: Definitions for miniature fuses and general requirements for miniature fuse-links
	2003	Part 2: Cartridge fuse-links
	1988	Part 3: Sub-miniature fuse-links
	2005	Part 4: Universal Modular Fuse-Links (UMF) - Through-hole and surface mount types
	1988	Part 5: Guidelines for quality assessment of miniature fuse-links
	1994	Part 6: Fuse-holders for miniature cartridge fuse-links
	2001	Part 10: User guide for miniature fuses
IEC 60730-2-7	1990	Automatic electrical controls for household and similar use. Part 2: Particular requirements for timers and time switches
IEC 60364-1	2005	Low-voltage electrical installations Part 1: Fundamental principles, assessment of general characteristics, definitions
IEC 60364-4-41	2005	Low-voltage electrical installations Part 4-41: Protection for safety Protection against electric shock
IEC 60364-4-42	2001	Electrical installations of buildings Part 4-42: Protection for safety Protection against thermal effects

1 Standards

STANDARD	YEAR	TITLE
IEC 60364-4-43	2001	Electrical installations of buildings Part 4-43: Protection for safety Protection against overcurrent
IEC 60364-4-44	2003	Electrical installations of buildings Part 4-44: Protection for safety Protection against voltage disturbances and electromagnetic disturbances
IEC 60364-5-51	2005	Electrical installations of buildings Part 5-51: Selection and erection of electrical equipment Common rules
IEC 60364-5-52	2001	Electrical installations of buildings Part 5-52: Selection and erection of electrical equipment Wiring systems
IEC 60364-5-53	2002	Electrical installations of buildings Part 5-53: Selection and erection of electrical equipment Isolation, switching and control
IEC 60364-5-54	2002	Electrical installations of buildings Part 5-54: Selection and erection of electrical equipment Earthing arrangements, protective conductors and protective bonding conductors
IEC 60364-5-55	2002	Electrical installations of buildings Part 5-55: Selection and erection of electrical equipment Other equipment
IEC 60364-6-61	2001	Electrical installations of buildings Part 6-61: Verification - Initial verification
IEC 60364-7	1984...2005	Electrical installations of buildings Part 7: Requirements for special installations or locations
IEC 60529	2001	Degrees of protection provided by enclosures (IP Code)
IEC 61032	1997	Protection of persons and equipment by enclosures - Probes for verification
IEC/TR 61000-1-1	1992	Electromagnetic compatibility (EMC) Part 1: General - Section 1: application and interpretation of fundamental definitions and terms
IEC/TR 61000-1-2	2001	Electromagnetic compatibility (EMC) Part 1-2: General - Methodology for the achievement of the functional safety of electrical and electronic equipment with regard to electromagnetic phenomena
IEC/TR 61000-1-3	2002	Electromagnetic compatibility (EMC) Part 1-3: General - The effects of highaltitude EMP (HEMP) on civil equipment and systems

2 Protection of feeders

The following definitions regarding electrical installations are derived from the Standard IEC 60050

Characteristics of installations

Electrical installation (of a building) An assembly of associated electrica equipment to fulfil a specific purpose and having coordinated characteristics.

Origin of an electrical installation The point at which electrical energy is delivered to an installation

Neutal conductor (symbolN) A conductor connected to the neutral point of a system and capable of contributing to the transmission of electrical energy.

Protective conductor PE A conductor required by some measures for protection against electric shock for electrically connecting any of the following parts:
exposed conductive parts;
extraneous conductive parts;
main earthing terminal;
earth electrode;

- earthed point of the source or artificial neutral

PEN conductor An earthed conductor combining the functions of both protective conductor and neutral conductor

Ambient temperature The temperature of the air or other medium where the equipment is to be used

Voltages

Nominal voltage (of an installation) Voltage by which an installation or part of an installation is designated
Note: the actual voltage may differ from the nominal voltage by a quantity within permitted tolerances

Currents

Design current (of a circuit) The current intended to be carried by a circuit in nomal service.

Current-caryying capacity (of a conductor) The maximum current which can be carried continuously by a conductor under specified conditions without its steady-state temperature exceeding a specified value.

Overcurrent Any current exceeding the rated value. For conductors, the rated value is the current-carrying capacity

Overload current (of a circuit) An overcurrent occuring in a circuit in the absence of an electrical fault.

Short-circuit current An overcurrent resulting from a fault of negligible mpedance between live conductors having a difference in potential under nomal perating conditions

2 Protection of feeders

Conventional operating current (of a protective device) A specified value o the current which cause the protective device to operate within a specified ime, designated conventional time

Overcurrent detection A function establishing that the value of current in circuit exceeds a predetermined value for a specified length of time.
eakage current Electrical current in an unwanted conductive path other than a short circuit.

Fault current The current flowing at a given point of a network resulting from a fault at another point of this network.

Wiring systems

Wiring system An assembly made up of a cable or cables or busbars and the parts which secure and, if necessary, enclose the cable(s) or busbars.

Electrical circuits

lectrical circuit (of an installation) An assembly of electrical equipment of he installation supplied from the same origin and protected against overcurrents by the same protective device(s)

Distribution circuit (of buildings) A circuit supplying a distribution board.
Final circuit (of building) A circuit connected directly to current using quipment or to socket-outlets.

Other equipment

Electrical equipment Any item used for such purposes as generation onversion, transmission, distribution or utilization of electrical energy, such a machines, transformers, apparatus, measuring instruments, protective devices equipment for wiring systems, appliances.

Current-using equipment Equipment intended to convert electrical energy into another form of energy, for example light, heat, and motive power

Switchgear and controlgear Equipment provided to be connected to an ectrical circuit for the purpose of carying out one or more of the following functions: protection, control, isolation, switching.

Portable equipment Equipment which is moved while in operation or which can easily be moved from one place to another while connected to the supply

Hand-held equipment Portable equipment intended to be held in the hand during normal use, in which the motor, if any, forms an integral part of the equipment

Stationary equipment Either fixed equipment or equipment not provided with a carying handle and having such a mass that it cannot easily be moved.

Fixed equipmen
specific location

2 Protection of feeders

Installation dimensioning

The flow chart below suggests the procedure to follow for the correct dimensioning of a plant

2 Protection of feeders

2.2 Installation and dimensioning of cables

For a correct dimensioning of a cable, it is necessary to:
choose the type of cable and installation according to the environment;
choose the cross section according to the load current;

- verify the voltage drop

2.2.1 Current carrying capacity and methods of installation

Selection of the cable

The intemational reference Standard ruling the installation and calculation of the current carrying capacity of cables in residential and industrial buildings is EC 60364-5-52 "Electrical installations of buildings - Part 5-52 Selection and Erection of Electrical Equipment- Wiring systems"
The following parameters are used to select the cable type:
conductive material (copper or aluminium): the choice depends on cost dimension and weight requirements, resistance to corrosive environments (chemical reagents or oxidizing elements). In general, the carying capacity o a copper conductor is about 30% greater than the carring capacity of an ane sam coss secto An the same cross section has an electrical resistance about 60% higher and weight half to one third lower than a copper conducto
insulation material (none, PVC, XLPE-EPR): the insulation material affects the maximumtemperature under nomal and short-circuit conditions and therefore the exploitation of the conductor cross section [see Chapter 2.4 "Protection against short-circuit"].
the type of conductor (bare conductor, single-core cable without sheath, single core cable with sheath, multi-core cable) is selected according to mechanica resistance, degree of insulation and difficulty of installation (bends, joints along the route, barriers...) required by the method of installation.

Table 1 shows the types of conductors permitted by the different methods o installation.
Table 1: Selection of wiring systems
Method of installation
(including skirting
Cable ladder
\qquad ducting Cable tray

On in- Support

Conductors and cables		Without fixings	Clipped direct	Conduit	trunking, flush floor trunking)	Cable ducting	Cable ladder Cable tray Cable brackets	On insulators	Support wire
Bare conductors		-	-	-			-	+	
Insulated conductors		-	-	+	+	+	-	+	-
Sheathed cables (including armoured and mineral insulated)	Mult-core	+	$+$	+	+	+	+	0	+
	Single core	0	+	+	+	+	+	0	+

+ Permitted.
Not permitted.
Not applicable, or not normally used in practice

2 Protection of feeders

For industrial installations, multi-core cables are rarely used with cross section greater than $95 \mathrm{~mm}^{2}$.

Methods of installation

To define the current carying capacity of the conductor and therefore to identify the correct cross section for the load current, the standardized method of installation that better suits the actual installation situation must be identified among those described in the mentioned reference Standard
From Tables 2 and 3 it is possible to identify the installation identification number, the method of installation (A1, A2, B1, B2, C, D, E, F, G) and the tables to define the theoretical current carrying capacity of the conductor and any correction factors required to allow for particular environmental and installation situations.

Table 2: Method of installation

			Method of in	nstallation			
Without fixings	With fixings	Conduit	Cable trunking (including skirting trunking, flush floor trunking)	Cable ducting	Cable ladder Cable tray Cable brackets	$\begin{gathered} \text { On } \\ \text { insulators } \end{gathered}$	$\begin{gathered} \text { Support } \\ \text { wire } \\ \hline \end{gathered}$
$\begin{gathered} \hline 40,46, \\ 15,16 \end{gathered}$	0	15, 16	-	0	$\begin{gathered} 30,31, \\ 32,33,34 \end{gathered}$	-	-
56	56	54, 55	0	44	$\begin{gathered} \hline 30,31,32, \\ 33,34 \\ \hline \end{gathered}$	-	-
72, 73	0	70, 71	-	70, 71	0	-	-
57, 58	3	$\begin{gathered} \hline 1,2 \\ 59,60 \end{gathered}$	$\begin{gathered} 50,51,52, \\ 53 \end{gathered}$	44, 45	0	-	-
-	20, 21	4,5	$\begin{aligned} & 6,7,8,9 \\ & 12,13,14 \end{aligned}$	6, 7, 8, 9	$\begin{gathered} \hline 30,31, \\ 32,33,34 \\ \hline \end{gathered}$	36	-
-	-	0	10, 11	-	$30,31,32,$	36	35

The number in each box indicates the item number in Table 3.
Not permitted.
Not applicable or not normally used in practice.

2 Protection of feeders
Table 3: Examples of methods of installation

Methods of installation	Item n .	Description	Reference method of installation to be used to obtain current- carrying capacity
	1	Insulated conductors or single-core cables in conduit in a thermally insulated wall	A1
Room	2	Multi-core cables in conduit in a thermally insulated wall	A2
Room	3	Multi-core cable direct in a thermally insulated wall	A1
OOSOQ	4	cables in conduit on a wooden, or masonry wall or spaced less than 0.3 times conduit diameter from it	B1
	5	Multi-core cable in conduit on a wooden, or masonry wall or spaced less than 0.3 times conduit diameter from it	B2
	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	Insulated conductors or single-core cables in cable trunking on a wooden wall - run horizontally (6) - run vertically (7)	B1
$\begin{aligned} & \square \\ & \boxed{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	Insulated conductors or single-core cable in suspended cable trunking (8) Multi-core cable in suspended cable trunking (9)	B1 (8) or B2 (9)
~1	12	Insulated conductors or single-core cable run in mouldings	A1
	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	Insulated conductors or single-core cables in skirting trunking (13) Multi-core cable in skirting trunking (14)	$\begin{aligned} & \text { B1 (13) } \\ & \text { or } \\ & \text { B2 (14) } \end{aligned}$
	15	Insulated conductors in con or single-core or multi-core cable in architrave	A1
Were div	16	single-core or multi-core cable in window frames	A1
	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	Single-core or multi-core cables: - fixed on, or spaced less than 0.3 times (20) cable diameter from a wooden wall - fixed directly under a wooden ceiling (21)	C

2 Protection of feeders

Methods of installation	Item n .	Description	Reference method of installation to be used to obtain currentcarrying capacity
	30	On unperforated tray ${ }^{1}$	C
	31	On perforated tray ${ }^{1}$	E or F
	32	On brackets or on a wire mesh ${ }^{1}$	E or F
	33	Spaced more than 0.3 times cable diameter from a wall	E or F or G
	34	On ladder	E or F
	35	Single-core or multi-core cable suspended from or incorporating a support wire	E or F
	36	Bare or insulated conductors on insulators	G

2 Protection of feeders

Methods of installation	Item n .	Description	Reference method of installation to be used to obtain currentcarrying capacity
	40	Single-core or multi-core cable in a building void ${ }^{2}$	$\left\lvert\, \begin{gathered} 1.5 \mathrm{D}_{\mathrm{e}} \leq \mathrm{V}<20 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 2 \\ \mathrm{~V} \geq 20 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 1 \end{gathered}\right.$
	24	Insulated conductors in cable ducting in a building void ${ }^{2}$	$\begin{gathered} 1.5 D_{e} \leq V<20 D_{e} \\ B 2 \\ V \geq 20 D_{e} \\ B 1 \end{gathered}$
	44	Insulated conductors in cable ducting in masonry having a thermal resistivity not greater than $2 \mathrm{Km} / \mathrm{W}$	$\left\|\begin{array}{c} 1.5 \mathrm{De} \leq \mathrm{V}<5 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 2 \\ 5 \mathrm{D}_{\mathrm{e}} \leq \mathrm{V}<50 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 1 \end{array}\right\|$
	46	Single-core or multi-core cable: - in a ceiling void - in a suspended floor ${ }^{1}$	$\left\lvert\, \begin{gathered} 1.5 \mathrm{D}_{\mathrm{e}} \leq \mathrm{V}<5 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 2 \\ 5 \mathrm{D}_{\mathrm{e}} \leq \mathrm{V}<50 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 1 \end{gathered}\right.$
	50	Insulated conductors or single-core cable in flush cable trunking in the floor	B1
	51	Multi-core cable in flush cable trunking in the floor	B2
	$\begin{aligned} & 52 \\ & 53 \end{aligned}$	Insulated conductors or single-core cables in embedded trunking (52) Multi-core cable in embedded trunking (53)	$\begin{aligned} & \text { B1 (52) } \\ & \text { or } \\ & \text { B2 }(53) \end{aligned}$
$\underset{i}{D_{i}^{4}}$	54	Insulated conductors or single-core cables in conduit in an unventilated cable channel run horizontally or vertically ${ }^{2}$	$\begin{gathered} 1.5 \mathrm{D}_{\mathrm{e}} \leq \mathrm{V}<20 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 2 \\ \mathrm{~V} \geq 20 \mathrm{D}_{\mathrm{e}} \\ \mathrm{~B} 1 \end{gathered}$

ABB SACE - Electrical devices

2 Protection of feeders

Methods of installation	Item n.	Description	Reference method of installation to be used to obtain currentcarrying capacity
	55	Insulated conductors in conduit in an open or ventilated cable channel in the floor	B1
	56	Sheathed single-core or multi-core cable in an open or ventilated cable channel run horizontally or vertically	B1
	57	Single-core or multi-core cable direct in masonry having a thermal resistivity not greater than $2 \mathrm{Km} / \mathrm{W}$ Without added mechanical protection	C
	58	Single-core or multi-core cable direct in masonry having a thermal resistivity not greater than $2 \mathrm{Km} / \mathrm{W}$ With added mechanical protection	C
	59	Insulated conductors or single-core cables in conduit in masonry	B1
	60	Multi-core cables in conduit in masonry	B2
	70	Multi-core cable in conduit or in cable ducting in the ground	D
	71	Single-core cable in conduit or in cable ducting in the ground	D
	72	Sheathed single-core or multi-core cables direct in the ground - without added mechanical protection	D
	73	Sheathed single-core or multi-core cables direct in the ground - with added mechanical protection	D

${ }^{1}{ }^{2}{ }_{\mathrm{D}}$ is the extemal diameter of a mult-core cable: $_{-2.2 \times \text { the cable diameter }}$
De is the extemal diameter of a multi-core cable:
$-2.2 \times$ the cable diameter when three single core cables are bound in trefoil, or
$3 \times$ the cable diameter
$-3 \times$ the cable diameter when three single core cables are laid in flat formation
${ }_{2} \mathrm{D}$ is the extemal diameter of conduit or vertical depth of cable ducting.
D is the extemar diameter of conduit or vertical depth of cable ducting.
V is the smaller dimension or diameter of a masonry duct or void, or the vertical depth of a rectangular duct, floor or ceiling void. The depth of the channel is more important than the width.

2 Protection of feeders

Installation not buried in the ground: choice of the

 cross section according to cable carrying capacity and type of installationThe cable carying capacity of a cable that is not buried in the ground is obtained by using this formula.

$$
\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{0} \mathrm{k}_{1} \mathrm{k}_{2}=\mathrm{I}_{0} \mathrm{k}_{\mathrm{tot}}
$$

where:
I_{0} is the current carying capacity of the single conductor at $30^{\circ} \mathrm{C}$ reference ambient temperature;

- k_{1} is the correction factor if the ambient temperature is other than $30^{\circ} \mathrm{C}$;
- k_{2} is the correction factor for cables installed bunched or in layers or for cables installed in a layer on several supports.

Correction factor k

The current carying capacity of the cables that are not buried in the ground refers to $30^{\circ} \mathrm{C}$ ambient temperature. If the ambient temperature of the place of installation is different from this reference temperature, the correction factor k_{1} on Table 4 shall be used, according to the insulation material.

Table 4: Correction factor for ambient air temperature other than $30^{\circ} \mathrm{C}$

Insulation			
		Mineral (a)	
PVC	XLPE and EPR	PVC covered or bare and exposed to touch $70^{\circ} \mathrm{C}$	Bare not exposed to touch $105^{\circ} \mathrm{C}$
1.22	1.15	1.26	1.14
1.17	1.12	1.20	1.11
1.12	1.08	1.14	1.07
1.06	1.04	1.07	1.04
0.94	0.96	0.93	0.96
0.87	0.91	0.85	0.92
0.79	0.87	0.87	0.88
0.71	0.82	0.67	0.84
0.61	0.76	0.57	0.80
0.50	0.71	0.45	0.75
-	0.65	-	0.70
-	0.58	-	0.65
-	0.50	-	0.60
-	0.41	-	0.54
-	-	-	0.47
-	-	-	0.40
-	-	-	0.32

${ }^{(a)}$ For higher ambient temperatures, consult manufacturer.

2 Protection of feeders

Correction factor $\mathbf{k}_{\mathbf{2}}$

The cable current carrying capacity is influenced by the presence of other cables installed nearby. The heat dissipation of a single cable is different from that of the same cable when installed next to the other ones. The factor k_{2} is tabled according to the installation of cables laid close together in layers or bunches

Definition of layer or bunch
layer: several circuits constituted by cables installed one next to another, spaced or not, arranged horizontally or vertically. The cables on a layer are installed on a wall, tray, ceiling, floor or on a cable ladder;

Cables in layers: a) spaced; b) not spaced; c) double laye
bunch: several circuits constituted by cables that are not spaced and are not installed in a layer; several layers superimposed on a single support (e.g. tray) are considered to be a bunch.

2 Protection of feeders

The value of correction factor k_{2} is 1 when
the cables are spaced:

- two single-core cables belonging to different circuits are spaced when the
distance between them is more than twice the extemal diameter of the cable with the larger cross section;
two multi-core cables are spaced when the distance between them is at least the same as the external diameter of the larger cable;
- the adjacent cables are loaded less than 30% of their current carying capacity.

The correction factors for bunched cables or cables in layers are calculated by assuming that the bunches consist of similar cables that are equally loaded. A group of cables is considered to consist of similar cables when the calculation of the current carrying capacity is based on the same maximum allowed perating temperature and when the cross sections of the conductors is in the range of three adjacent standard cross sections (e.g. from 10 to $25 \mathrm{~mm}^{2}$), The calculation of the reduction factors for bunched cables with different cross sections depends on the number of cables and on their cross sections. These factors have not been tabled, but must be calculated for each bunch or laye.

2 Protection of feeders

The reduction factor for a group containing different cross sections of insulated conductors or cables in conduits，cable trunking or cable ducting is：

$$
\mathrm{k}_{2}=\frac{1}{\sqrt{\mathrm{n}}}
$$

where：
－ k_{2} is the group reduction factor；
n is the number of circuits of the bunch
The reduction factor obtained by this equation reduces the danger of overloading of cables with a smaller cross section，but may lead to under utilization of cables with a larger cross section．Such under utilization can be avoided if large and small cables are not mixed in the same group．

The following tables show the reduction factor $\left(k_{2}\right)$ ．
Table 5：Reduction factor for grouped cables

	Arrangement	Number of circuits or multi－core cables										To be used with current－carrying capacities，
Item	（cables touching）	1	2	3	4	5	6	7	8	9	1216	reference
1	Bunched in air，on a surface，embedded or enclosed	1.00	0.80	0.70	0.65	0.60	0.57	0.54	0.52	0.50	0.450 .41	Methods A to F
2	Single layer on wall， floor or unperforated tray	1.00	0.85	0.79	0.75	0.73	0.72	0.72	0.71	0.70		
3	Single layer fixed directly under a wooden ceiling	$\overline{0.95}$	$\overline{0.81}$	$\overline{0.72}$	0.68	$\overline{0.66}$	$\overline{0.64}$	0.63	$\overline{0.62}$	$\overline{0.61}$	$\begin{aligned} & \text { No further } \\ & \text { reduction } \\ & \text { factor for more } \end{aligned}$ than	Method C
4	Single layer on a perforated horizontal or vertical tray	1.00	0．88	0．82	0.77	$\overline{0.75}$	0．73	0.73	0．72	$\overline{0.72}$	nine circuits or multicore cables	
5	Single layer on ladder	1.00	0.87	0.82	0.80	0.80	0.79	0.79	0.78	0.78		Methods E and F

NOTE 1 These factors are applicable to uniform groups of cables，equally loaded
NOTE 2 Where horizontal clearances between adjacent cables exceeds twice their overall diameter，no reduction factor need be applied．
NOTE 3 The same factors are applied to： multi－core cables．
NOTE 4 If a system consists of both two－and three－core cables，the total number of cables is taken as the number of circuits，and the corresponding factor is applied to the tables for two loaded conductors for the two－core cables，and to the tables for three loaded conductors for the three－core cables．
NOTE 5 If a group consists of n single－core cables it may either be considered as $n / 2$ circuits of two loaded conductors or $n / 3$ circuits of three loaded conductors．

2 Protection of feeders

Table 6：Reduction factor for single－core cables with method of installation F

Method of installation in Table 3			Number of trays	Number of three－phase circuits（note 4）			Use as a multiplier to rating for	
			1	2	3			
$\begin{gathered} \text { Perforated } \\ \text { trays } \\ \text { (note 2) } \end{gathered}$	31	$\begin{aligned} & \quad \text { Touching } \\ & \qquad \begin{array}{l} \text { Q〇〇〇〇〇 } \\ \vdots 20 \mathrm{~mm} \end{array} \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.96 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.87 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.81 \\ & 0.78 \end{aligned}$	Three cables in horizontal formation
Vertical perforated trays （note 3）	31	Touching	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$	-	Three cables in vertical formation	
Ladder supports， cleats，etc． （note 2）	$\begin{aligned} & 32 \\ & 33 \\ & 34 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.98 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 0.93 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.89 \\ & 0.86 \end{aligned}$	Three cables in horizontal formation	
$\begin{gathered} \text { Perforated } \\ \text { trays } \\ \text { (note 2) } \end{gathered}$	31		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 1.00 \\ & 0.97 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.93 \\ & 0.92 \end{aligned}$	$\begin{aligned} & 0.96 \\ & 0.89 \\ & 0.86 \end{aligned}$		
Vertical perforated trays （note 3）	31		2	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.90 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.86 \end{aligned}$	Three cables in trefoil formation	
Ladder supports， cleats，etc （note 2）	$\begin{aligned} & 32 \\ & 33 \\ & 34 \end{aligned}$		$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.97 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.95 \\ & 0.94 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.93 \\ & 0.90 \end{aligned}$		

NOTE 1 Factors are given for single layers of cables（or trefoil groups）as shown in the table and do not apply when cables are installed in more than one layer touching each other．Values for such installations may be significantly lower and must be determined by an appropriate method．
NOTE 2 Values are given for vertical spacings between trays of 300 mm ．For closer spacing the factors should be reduced．
NOTE 3 Values are given for horizontal spacing between trays of 225 mm with trays mounted back to back and at
least 20 mm between the tray and any wall．For closer spacing the factors should be reduced． least 20 mm between the tray and any wall．For closer spacing the factors should be reduced．
NOTE 4 For circuits having more than one cable in parallel per phase，each three phase set of conductors should be considered as a circuit for the purpose of this table．

2 Protection of feeders

Table 7: Reduction factor for multi-core cables with method of installation E

Method of installation in Table 3			Number of trays	Number of cables						
			1	2	3	4	6	9		
Perforated trays (note 2)	31			$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.87 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.80 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.77 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.76 \\ & 0.73 \\ & 0.71 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.68 \\ & 0.66 \end{aligned}$
			$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.99 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.96 \\ & 0.95 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.92 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.87 \\ & 0.85 \end{aligned}$		
Vertical trays (note 3)	31		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.73 \\ & 0.71 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 0.70 \end{aligned}$	
			2	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.91 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 0.88 \end{aligned}$	$\begin{aligned} & 0.88 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	
Ladder supports, cleats, etc. (note 2)	$\begin{aligned} & 32 \\ & 33 \\ & 34 \end{aligned}$		$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0,86 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.80 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.78 \\ & 0.76 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.76 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.73 \\ & 0.70 \end{aligned}$	
			2	$\begin{aligned} & 1.00 \\ & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.99 \\ & 0.98 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.98 \\ & 0.97 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.97 \\ & 0.96 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 0.96 \\ & 0.93 \end{aligned}$		

NOTE 1 Factors apply to single layer groups of cables as shown above and do not apply when cables are installed in more than one layer touching each other. Values for such installations may be significantly lower and must be
determined by an appropriate method. determined by an appropriate method.
For closer spacing the factors should be reduced For closer spacing the factors should be reduced.
NOTE 3 values are given for horizontal spacing between trays of 225 mm with trays mounted back to back. For closer spacing the factors should be reduced.

2 Protection of feeders

To summarize:

The following procedure shall be used to determine the cross section of the cable:

1. from Table 3 identify the method of installation;
2. from Table 4 determine the correction factor k_{1} according to insulation material and ambient temperature;
3. use Table 5 for cables installed in layer or bunch, Table 6 for singlecore cables in a layer on several supports, Table 7 for multi-core cables in a layer on several supports or the formula shown in the case of groups of cables with different sections to determine the correction factor k_{2} appropriate for the numbers of circuits or multicore cables:
4. calculate the value of current I_{b} by dividing the load current I_{b} (or the rated current of the protective device) by the product of the correction factors calculated:

$$
\mathrm{I}_{\mathrm{b}}^{\prime}=\frac{\mathrm{I}_{\mathrm{b}}}{\mathrm{k}_{1} \mathrm{~K}_{2}}=\frac{\mathrm{I}_{\mathrm{b}}}{\mathrm{k}_{\mathrm{tot}}}
$$

5. from Table 8 or from Table 9, depending on the method of installation, on insulation and conductive material and on the number of live conductors, determine the cross section of the cable with capacity $\mathrm{I}_{0} \geq \mathrm{I}^{\prime} \mathrm{b}$
6. the actual cable current carrying capacity is calculated by $\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{0} \mathrm{k}_{1} \mathrm{k}_{2}$.

Table 8: Current carrying capacity of cables with PVC or EPR/XLPE insulation (method A-B-C)

	Installation method	E								F												G							
										$\begin{aligned} & *)_{0}^{\circ} \\ & \text { or } \\ & 0 \\ & 0 \end{aligned}$				\bigcirc				1000or00											
		Cu		Al		$\mathrm{Cu} \quad \mathrm{Al}$				Cu		Al		Cu		Al		Cu		Al		Cu				Al			
	Insulation	$\begin{gathered} \hline \text { XLPE } \\ \text { EPR } \\ \hline \end{gathered}$	PVC	$\begin{gathered} \hline \text { XLPE } \\ \text { EPR } \\ \hline \end{gathered}$	PVC	$\begin{gathered} \text { XLPE } \\ \text { EPR } \end{gathered}$	PVC	$\begin{array}{\|c\|} \hline \text { XLPE } \\ \hline \text { EPR } \\ \hline \end{array}$	PVC	$\begin{array}{\|c\|} \hline \text { XLPE } \\ \text { EPR } \\ \hline \end{array}$	PVC	$\begin{array}{\|c\|} \hline \text { XLPE } \\ \text { EPR } \end{array}$	PVC	$\begin{gathered} \text { XLPE } \\ \text { EPR } \end{gathered}$	PVC	$\begin{array}{\|c\|} \hline \text { XLPE } \\ \text { EPR } \end{array}$	PVC	$\begin{array}{\|c\|} \hline \text { XLPE } \\ \text { EPR } \end{array}$	PVC	$\begin{array}{\|c\|} \hline \text { XLPE } \\ \text { EPR } \end{array}$	PVC	EPR PVC				$\begin{gathered} \hline \text { XLPE } \\ \text { EPR } \\ \hline \end{gathered}$		PVC	
S[mm²]	Loaded conductors	2				3				2				3 3								3H	3 V	3H	3V	3H	3 V	3 H	3 V
1.5		26	22			23	18.5																						
2.5		36	30	28	23	32	25	24	19.5																				
4		49	40	38	31	42		32	26																				
6		63	51	49	39	54	43	42	33																				
10		86	70	67	54	75	60	58	46																				
16		115	94	91	73	100	80	77	61																				
25		149	119	108	89	127	101	97	78	161	131	121	98	135	110	103	84	141	114	107	87	182	161	146	130	138	122	112	99
35		185	148	135	111	158	126	120	96	200	162	150	122	169	137	129	105	176	143	135	109	226	201	181	162	172	153	139	124
50		225	180	164	135	192	153	146	117	242	196	184	149	207	167	159	128	216	174	165	133	275	246	219	197	210	188	169	152
70		289	232	211	173	246	196	187	150	310	251	237	192	268	216	206	166	279	225	215	173	353	318	281	254	271	244	217	196
95		352	282	257	210	298	238	227	183	377	304	289	235	328	264	253	203	342	275	264	212	430	389	341	311	332	300	265	241
120		410	328	300	244	346	276	263	212	437	352	337	273	383	308	296	237	400	321	308	247	500	454	396	362	387	351	308	282
150		473	379	346	282	399	319	304	245	504	406	389	316	444	356	343	274	464	372	358	287	577	527	456	419	448	408	356	327
185		542	434	397	322	456	364	347	280	575	463	447	363	510	409	395	315	533	427	413	330	661	605	521	480	515	470	407	376
240		641	514	470	380	538	430	409	330	679	546	530	430	607	485	471	375	634	507	492	392	781	719	615	569	611	561	482	447
300		741	593	543	439	621	497	471	381	783	629	613	497	703	561	547	434	736	587	571	455	902	833	709	659	708	652	557	519
400										940	754	740	600	823	656	663	526	868	689	694	552	1085	1008	852	795	856	792	671	629
500										1083	868	856	694	946	749	770	610	998	789	806	640	1253	1169	982	920	991	921	775	730
630										1254	1005	996	808	1088	855	899	711	1151	905	942	746	1454	1362	1138	1070	1154	1077	900	852

2 Protection of feeders
2 Protection of feeders
Table 9: Current carrying capacity of cables with mineral insulation

Note 1 For single-core cables the sheaths of the cables of the circuit are connected together at both ends.
Note 2 For bare cables exposed to touch, values should be multiplied by 0.9.
Note $3 \quad D_{\mathrm{e}}$ is the external diameter of the cable.
Note 4 For metallic sheath temperature $105^{\circ} \mathrm{C}$ no correction for grouping need to be applied.

2 Protection of feeders

Installation in ground: choice of the cross section according to cable carrying capacity and type of installation

The current carying capacity of a cable buried in the ground is calculated by using this formula:

$$
\mathrm{I}_{\mathrm{z}}=\mathrm{I}_{0} \mathrm{k}_{1} \mathrm{k}_{2} \mathrm{~K}_{3}=\mathrm{I}_{0} \mathrm{k}_{\mathrm{tot}}
$$

where:

- I_{0} is the current carrying capacity of the single conductor for installation in the ground at $20^{\circ} \mathrm{C}$ reference temperature;
- K_{1} is the correction factor if the temperature of the ground is other than $20^{\circ} \mathrm{C}$;
- k_{2} is the correction factor for adjacent cables:
- k_{3} is the correction factor if the soil themal resistivity is different from the reference value, $2.5 \mathrm{Km} / \mathrm{W}$.

Correction factor $\mathbf{k}_{\mathbf{1}}$

The current carying capacity of buried cables refers to a ground temperature of $20^{\circ} \mathrm{C}$. If the ground temperature is different, use the correction factor k_{1} shown in Table 10 according to the insulation material. han $20^{\circ} \mathrm{C}$

Ground temperature ${ }^{\circ} \mathrm{C}$	Insulation	
	PVC	XLPE and EPR
10	1.10	1.07
15	1.05	1.04
25	0.95	0.96
30	0.89	0.93
35	0.84	0.89
40	0.77	0.85
45	0.71	0.80
50	0.63	0.76
55	0.55	0.71
60	0.45	0.65
65	-	0.60
70	-	0.53
75	-	0.46
80	-	0.38

2 Protection of feeders

Correction factor \mathbf{k}_{2}

The cable current carrying capacity is influenced by the presence of other cables nstalled nearby. The heat dissipation of a single cable is different from that of he same cable installed next to the other ones.
The correction factor k_{2} is obtained by the formula

$$
\mathrm{k}_{2}=\mathrm{k}_{2}^{\prime} \cdot \mathrm{k}_{2}^{\prime \prime}
$$

Tables 11,12 , and 13 show the factor k_{2} ' values for single-core and multi-core cables that are laid directly in the ground or which are installed in buried ducts, according to their distance from other cables or the distance between the ducts.

Table 11: Reduction factors for cables laid directly in the ground

NOTE The given values apply to an installation depth of 0.7 m and a soil thermal resistivity of $2.5 \mathrm{Km} / \mathrm{W}$.

2 Protection of feeders

Table 12: Reduction factors for multi-core cables laid in single way
ducts in the ground

Number of circuits
2
3
4
5
6

Nil (cables touching)
0.85
0.75
0.70
0.65
0.60

Multi-core cables

NOTE The given values apply to an installation depth of 0.7 m and a soil thermal resistivity of $2.5 \mathrm{Km} / \mathrm{W}$.

Table 13: Reduction factors for single-core cables laid in single way ducts in the ground

NOTE The given values apply to an installation depth of 0.7 m and a soil thermal resistivity of $2.5 \mathrm{Km} / \mathrm{W}$.

2 Protection of feeders

for cables iaid directly in the ground or if there are not other conductors within the same duct, the value of $\mathrm{k}_{2}{ }^{\prime \prime}$ is 1 ;

- if several conductors of similar sizes are present in the same duct (for the meaning of "group of similar conductors", see the paragraphs above), k_{2} " is obtained from the first row of Table 5;
- if the conductors are not of similar size, the correction factor is calculated by using this formula:

$$
k_{2}^{\prime \prime}=\frac{1}{\sqrt{n}}
$$

where.

is the number of circuits in the duct

Correction factor k

Soil themal resistivity influences the heat dissipation of the cable. Soil with low hemal resistivity facilitates heat dissipation, whereas soil with high themal resistivity limits heat dissipation. IEC 60364-5-52 states as reference value for the soil themal resistivity $2.5 \mathrm{Km} / \mathrm{W}$.

Table 14: Correction factors for soil thermal resistivities other than $2.5 \mathrm{Km} / \mathrm{W}$

Thermal resistivities $\mathbf{K m} / \mathbf{W}$	1	1.5	2	2.5	3
Correction factor	1.18	1.1	1.05	1	0.96

Note 1: the overall accuracy of correction factors is within $\pm 5 \%$,
Note 2: the correction factors are applicable to cables drawn into buried ducts; for cables aid direct in the ground the correction factors for thermal resistivities less than $2.5 \mathrm{Km} / \mathrm{W}$ will be higher. Where more precise values are required they may be calculated by methods given in IEC 60287
Note 3: the correction factors are applicable to ducts buried at depths of up to 0.8 m .

2 Protection of feeders

To summarize:

Use this procedure to determine the cross section of the cable

1. from Table 10, determine the correction factor k_{1} according to the insulation material and the ground temperature
2. use Table 11, Table 12, Table 13 or the formula for groups of non-similar cables to determine the correction factor k_{2} according to the distance between cables or ducts;
3. fromTable 14 determine factor k_{3} corresponding to the soil themal resistivity;
4. calculate the value of the current I_{b} by dividing the load current l_{b} (or the rated current of the protective device) by the product of the correction factors calculated:

$$
I_{b}^{\prime}=\frac{I_{b}}{k_{1} k_{2} k_{3}}=\frac{I_{b}}{k_{\text {tot }}}
$$

5. from Table 15 , determine the cross section of the cable with $\mathrm{l}_{0} \geq \mathrm{l}^{\prime}$, according to the method of installation, the insulation and conductive material and the number of live conductors:
6. the actual cable current carrying capacity is calculated by

$$
I_{z}=I_{0} \mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}
$$

Table 15: Current carrying capacity of cables buried in the ground

	Installation method	D							
	Conductor	Cu				Al			
	Insulation	$\begin{aligned} & \text { XLPE } \\ & \text { EPR } \end{aligned}$		PVC		$\begin{aligned} & \hline \text { XLPE } \\ & \mathrm{EPR} \end{aligned}$		PVC	
S[mm²]	Loaded conductors	2	3	2	3	2	3	2	3
1.5		26	22	22	18				
2.5		34	29	29	24	26	22	22	18.5
4		44	37	38	31	34	29	29	24
6		56	46	47	39	42	36	36	30
10		73	61	63	52	56	47	48	40
16		95	79	81	67	73	61	62	52
25		121	101	104	86	93	78	80	66
35		146	122	125	103	112	94	96	80
50		173	144	148	122	132	112	113	94
70		213	178	183	151	163	138	140	117
95		252	211	216	179	193	164	166	138
120		287	240	246	203	220	186	189	157
150		324	271	278	230	249	210	213	178
185		363	304	312	258	279	236	240	200
240		419	351	361	297	322	272	277	230
300		474	396	408	336	364	308	313	260

2 Protection of feeders

2 Protection of feeders

Note on current carrying capacity tables and loaded conductor

Tables 8, 9 and 15 provide the current carying capacity of loaded conductors (current carying conductors) under normal service conditions.
In single-phase circuits, the number of loaded conductors is two.
In balanced or slightly unbalanced three-phase circuits the number of loaded conductors is three, since the current in the neutral conductor is negligible. In three-phase systems with high unbalance, where the neutral conductor in a multi-core cable caries current as a result of an unbalance in the phase currents the temperature rise due to the neutral current is offset by the reduction in the heat generated by one or more of the phase conductors. In this case the conductor size shall be chosen on the basis of the highest phase current. In all cases the neutral conductor shall have an adequate cross section.

Effect of harmonic currents on balanced three-phase systems: reduction factors for harmonic currents in fourcore and five-core cables with four cores carrying current

Where the neutral conductor carries current without a corresponding reduction in load of the phase conductors, the current flowing in the neutral conductor shall be taken into account in ascertaining the current-carying capacity of the circuit.
This neutral current is due to the phase currents having a harmonic content which does not cancel in the neutral. The most significant harmonic which does not cancel in the neutral is usually the third harmonic. The magnitude of the neutral current due to the third harmonic may exceed the magnitude of the power frequency phase current. In such a case the neutral current will have a significant effect on the current-carrying capacity of the cables in the circuit.

2 Protection of feeders

Equipment likely to cause significant harmonic currents are, for example, fuorescent lighting banks and dc power supplies such as those found in computers (for further information on harmonic disturbances see the IEC 61000), The reduction factors given in Table 16 only apply in the balanced three-phase circuits (the current in the fourth conductor is due to harmonics only) to cables where the neutral conductor is within a four-core or five-core cable and is of the same material and cross-sectional area as the phase conductors. These eduction factors have been calculated based on third hamonic currents. If significant, i.e. more than 10%, higher harmonics (e.g. 9 th, 12 th, etc.) are expected or there is an unbalance between phases of more than 50%, then ower reduction factors may be applicable: these factors can be calculated only by taking into account the real shape of the current in the loaded phases. Where the neutral current is expected to be higher than the phase current then the cable size should be selected on the basis of the neutral current.
Where the cable size selection is based on a neutral current which is not significantly higher than the phase current, it is necessary to reduce the tabulated current carrying capacity for three loaded conductors.
f the neutral current is more than 135% of the phase current and the cable size is selected on the basis of the neutral current, then the three phase conductors will not be fully loaded. The reduction in heat generated by the phase conductors If ets the heat generated by the neutral conductor to the extent that it is nor necessary to apply any reduction factor to the current carrying capacity for three loaded conductors.

Table 16: Reduction factors for harmonic currents in four-core and five-core cables
Third harmonic content

of phase current	Reduction factor			
\%	Size selection is based on phase current	Current to take in account for the cable selection $\mathbf{I b}^{\prime}$ '	Size selection is based on neutral current	Current to take in account for the cable selection I_{b} '
$0 \div 15$	1	$I_{\mathrm{b}}^{\prime}=\frac{\mathrm{I}_{\mathrm{b}}}{\mathrm{k}_{\mathrm{tot}}}$	-	-
$15 \div 33$	0.86	$I_{b}^{\prime}=\frac{I_{b}}{k_{\text {tot }} \cdot 0.86}$	-	-
$33 \div 45$	-	-	0.86	$I_{\mathrm{b}}^{\prime}=\frac{I_{N}}{0.86}$
>45	-	-	1	$I_{b}^{\prime}=I_{N}$

Where I_{N} is the current flowing in the neutral calculated as follows: $I_{N}=\frac{I_{b}}{k_{\text {tot }}} \cdot 3 \cdot \mathrm{k}_{\text {III }}$
I_{b} is the load current;
$k_{\text {tot }}$ is the total correction factor,
$\mathrm{k}_{\text {II }}$ is the third harmonic content of phase current;

2 Protection of feeders

Example of cable dimensioning in a balanced three phase circuit without harmonics

Dimensioning of a cable with the following characteristics

- conductor material:
copper
- insulation material:

PVC

- type of cable
multi-core
- installation
- load current:

100 A

Installation conditions:

- ambient temperature
$40^{\circ} \mathrm{C}$
- adjacent circuits with
a) three-phase circuit consisting of 4 single-core cables, $4 \times 50 \mathrm{~mm}^{2}$;
b) three-phase circuit consisting of one multi-core cable, $1 \times(3 \times 50) \mathrm{mm}^{2}$.
c) three-phase circuit consisting of 9 single-core (3 per phase) cables $9 \times 95 \mathrm{~mm}^{2}$
d) single-phase circuit consisting of 2 single-core cables, $2 \times 70 \mathrm{~mm}^{2}$

2 Protection of feeders

Procedure:

Type of installation
In Table 3, it is possible to find the reference number of the installation and the method of installation to be used for the calculations. In this example, the eference number is 31, which corresponds to method E (multi-core cable on tray).

Correction factor of temperature k_{1}
From Table 4, for a temperature of $40^{\circ} \mathrm{C}$ and PVC insulation material, $\mathrm{k}_{1}=$ 0.87.

$$
k_{1}=0.87
$$

Correction factor for adjacent cables k_{2}
For the multi-core cables grouped on the perforated tray see Table 5
As a first step, the number of circuits or multi-core cables present shall be determined; given that:

- each circuit a), b) and d) constitute a separate circuit;
circuit c) consists of three circuits, since it is composed by three cables in parallel per phase;
- the cable to be dimensioned is a multi-core cable and therefore constitutes a single circuit;

Refering to the row for the angement (cables bunched) and to the column for the number of circuits (7)

$$
\mathrm{k}_{2}=0.54
$$

After k_{1} and k_{2} have been determined, l_{b} is calculated by:

$$
I_{b}^{\prime}=\frac{I_{b}}{\mathrm{k}_{1} \mathrm{k}_{2}}=\frac{100}{0.87 \cdot 0.54}=212.85 \mathrm{~A}
$$

From Table 8, for a multi-core copper cable with PVC insulation, method of installation E, with three loaded conductors, a cross section with current carrying eapacity of $\mathrm{I}_{0} \geq \mathrm{r}_{\mathrm{b}}=212.85 \mathrm{~A}$, is obtained. A $95 \mathrm{~mm}^{2}$ cross section cable can cary, under Standard reference conditions, 238 A.
The current carying capacity, according to the actual conditions of installation s $\mathrm{I}_{\mathrm{z}}=238 \cdot 0.87 \cdot 0.54=111.81 \mathrm{~A}$

2 Protection of feeders

Example of dimensioning a cable in a balanced threephase circuit with a significant third-hammonic content

Dimensioning of a cable with the following characteristics:

- conductor material: : copper
- insulation material:

PVC

- type of cable:
multi-core
- installation:
layer on horizontal perforated tray
- load current:

115 A
nstallation conditions:
ambient temperature
$30^{\circ} \mathrm{C}$

- no adjacent circuits.

Procedure:

Type of installation
On Table 3, it is possible to find the reference number of the installation and the method of installation to be used for the calculations. In this example, the reference number is 31 , which corresponds to method E (multi-core cable on tray).

Temperature correction factor k
From Table 4, for a temperature of $30^{\circ} \mathrm{C}$ and PVC insulation materia

$$
\mathrm{k}_{1}=1
$$

Correction factor for adjacent cables k_{2}
As there are no adjacent cables, so

$$
k_{2}=1
$$

After k_{1} and k_{2} have been determined, l_{b} is calculated by:

$$
\mathrm{I}_{\mathrm{b}}^{\prime}=\frac{\mathrm{I}_{\mathrm{b}}}{\mathrm{k}_{1} \mathrm{k}_{2}}=115 \mathrm{~A}
$$

2 Protection of feeders

no hammonics are present, from Table 8, for a multi-core copper cable with PVC insulation, method of installation E, with three loaded conductors, a cros section with current carrying capacity of $\mathrm{I}_{0} \geq \mathrm{l}_{\mathrm{b}}=115 \mathrm{~A}$, is obtained. A $35 \mathrm{~mm}^{2}$ cross section cable can camy, under Standard reference conditions, 126 A. The current camying capacity, according to the actual conditions of installation, is still 126 A , since the value of factors k_{1} and k_{2} is 1 .

The third harmonic content is assumed to be 28%.
Table 16 shows that for a third harmonic content of 28% the cable must be dimensioned for the current that flows through the phase conductors, but a reduction factor of 0.86 must be applied. The current l'b becomes:

$$
I_{b}^{\prime}=\frac{I_{b}}{k_{1} \cdot k_{2} \cdot 0.86}=\frac{115}{0.86}=133.7 \mathrm{~A}
$$

From Table 8, a $50 \mathrm{~mm}^{2}$ cable with carying capacity of 153 A shall be selected.
the third hamonic content is 40%, Table 16 shows that the cable shall be dimensioned according to the current of the neutral conductor and a reduction factor of 0.86 must be applied.
The current in the neutral conductor is:

$$
I_{N}=\frac{I_{b}}{k_{\text {tot }}} \cdot 3 \cdot k_{\text {III }}=115 \cdot 3 \cdot 0.4=138 \mathrm{~A}
$$

and the value of current I_{b} is

$$
I_{b}^{\prime}=\frac{I_{N}}{0.86}=\frac{138}{0.86}=160.5 \mathrm{~A}
$$

From Table 8, a $70 \mathrm{~mm}^{2}$ cable with 196 A current carrying capacity shall be selected.
If the third harmonic content is 60%, Table 16 shows that the cable shall be dimensioned according to the current of the neutral conductor, but a reduction actor of 1 must be applied.
The current in the neutral conductor is:

$$
I_{N}=\frac{I_{b}}{k_{\text {tot }}} \cdot 3 \cdot k_{\text {III }}=115 \cdot 3 \cdot 0.6=207 \mathrm{~A}
$$

and current l_{b} is:

$$
I_{\mathrm{b}}^{\prime}=\mathrm{I}_{\mathrm{N}}=207 \mathrm{~A}
$$

rom Table 8, a $95 \mathrm{~mm}^{2}$ cable with current carying capacity of 238 A must be selected

2 Protection of feeders

2.2.2 Voltage drop

n an electrical installation it is important to evaluate voltage drops from the point of supply to the load
The performance of a device may be impaired if supplied with a voltage different from its rated voltage. For example:

- motors: the torque is proportional to the square of the supply voltage; therefore, if the voltage drops, the starting torque shall also decrease, making it more difficult to start up motors; the maximum torque shall also decrease;
- incandescent lamps: the more the voltage drops the weaker the beam becomes and the light takes on a reddish tone;
discharge lamps: in general, they are not very sensitive to small variations in voltage, but in certain cases, great variation may cause them to switch off; - electronic appliances: they are very sensitive to variations in voltage and that is why they are fitted with stabilizers;
- electromechanical devices: the reference Standard states that devices such as contactors and auxiliary releases have a minimum voltage below which their performances cannot be guaranteed. For a contactor, for example, the holding of the contacts becomes unreliable below 85% of the rated voltage

To limit these problems the Standards set the following limits:

- IEC 60364-5-52 "Electrical installations of buildings. Selection and erection of electrical equipment - Wiring systems" Clause 525 states that "in the absence of other considerations it is recommended that in practice the voltage drop between the origin of consumer's installation and the equipment should not be greater than 4% of the rated voltage of the installation. Other considerations include start-up time for motors and equipment with high innush current. Temporary conditions such as voltage transients and voltage variation due to abnormal operation may be disregarded".
IEC 60204-1"Safety of machinery-Electrical equipment of machines - General requirements" Clause 13.5 recommends that: "the voltage drop from the point of supply to the load shall not exceed 5% of the rated voltage under normal operating conditions",
- IEC 60364-7-714 "Electrical installations of buildings - Requirements for specia installations or locations - Extemal lighting installations" Clause 714.512 requires that "the voltage drop in normal service shall be compatible with the conditions arising from the starting current of the lamps".

2 Protection of feeders

Voltage drop calculation

For an electrical conductor with impedance Z, the voltage drop is calculated by the following formula:

$$
\begin{equation*}
\Delta \mathrm{U}=\mathrm{kZI} \mathrm{~b}_{\mathrm{b}}=\mathrm{kI}_{\mathrm{b}} \frac{\mathrm{~L}}{\mathrm{n}}(\mathrm{r} \cos \varphi+\mathrm{x} \sin \varphi)[\mathrm{V}] \tag{1}
\end{equation*}
$$

where

k is a coefficient equal to
2 for single-phase and two-phase systems

- $\sqrt{3}$ for three-phase systems;
$I_{b}[A]$ is the load current; if no information are available, the cable carrying capacity I_{z} shall be considered;
- $L[\mathrm{~km}]$ is the length of the conductor;
- n is the number of conductors in parallel per phase:
- $r[\Omega / \mathrm{km}]$ is the resistance of the single cable per kilometre;
$\cdot \times[\Omega / \mathrm{km}]$ is the reactance of the single cable per kilometre;
- $\cos \varphi$ is the power factor of the load: $\sin \varphi=\sqrt{1-\cos ^{2} \varphi}$.

Normally, the percentage value in relation to the rated value U_{r} is calculated by

$$
\begin{equation*}
\Delta u \%=\frac{\Delta U}{U_{r}} 100 \tag{2}
\end{equation*}
$$

Resistance and reactance values per unit of length are set out on the following able by cross-sectional area and cable formation, for 50 Hz ; in case of 60 Hz , the reactance value shall be multiplied by 1.2

2 Protection of feeders

Table 1: Resistance and reactance per unit of length of copper cables

$\begin{gathered} \mathbf{S} \\ {\left[\mathbf{m m}^{2}\right]} \end{gathered}$	single-core cable		two-core/three-core cable	
	$\begin{gathered} \mathrm{r}[\Omega / \mathrm{km}] \\ @ 80\left[{ }^{\circ} \mathrm{C}\right] \end{gathered}$	x[Ω / km]	$\begin{gathered} \mathrm{r}[\Omega / \mathrm{km}] \\ @ 80\left[{ }^{\circ} \mathrm{C}\right] \end{gathered}$	x[Ω / km]
1.5	14.8	0.168	15.1	0.118
2.5	8.91	0.156	9.08	0.109
4	5.57	0.143	5.68	0.101
6	3.71	0.135	3.78	0.0955
10	2.24	0.119	2.27	0.0861
16	1.41	0.112	1.43	0.0817
25	0.889	0.106	0.907	0.0813
35	0.641	0.101	0.654	0.0783
50	0.473	0.101	0.483	0.0779
70	0.328	0.0965	0.334	0.0751
95	0.236	0.0975	0.241	0.0762
120	0.188	0.0939	0.191	0.074
150	0.153	0.0928	0.157	0.0745
185	0.123	0.0908	0.125	0.0742
240	0.0943	0.0902	0.0966	0.0752
300	0.0761	0.0895	0.078	0.075

Table 2: Resistance and reactance per unit of length of aluminium cables

$\begin{gathered} \mathbf{s} \\ {\left[\mathrm{mm}^{2}\right]} \\ \hline \end{gathered}$	single-core cable		two-core/three-core cable	
	r[$\Omega / \mathrm{km}]$ @ $80\left[{ }^{\circ} \mathrm{C}\right]$	x[Ω / km]	r $[\Omega / \mathrm{km}]$ @ $80\left[{ }^{\circ} \mathrm{C}\right]$	x[Ω / km]
1.5	24.384	0.168	24.878	0.118
2.5	14.680	0.156	14.960	0.109
4	9.177	0.143	9.358	0.101
6	6.112	0.135	6.228	0.0955
10	3.691	0.119	3.740	0.0861
16	2.323	0.112	2.356	0.0817
25	1.465	0.106	1.494	0.0813
35	1.056	0.101	1.077	0.0783
50	0.779	0.101	0.796	0.0779
70	0.540	0.0965	0.550	0.0751
95	0.389	0.0975	0.397	0.0762
120	0,310	0.0939	0.315	0.074
150	0.252	0.0928	0.259	0.0745
185	0.203	0.0908	0.206	0.0742
240	0.155	0.0902	0.159	0.0752
300	0.125	0.0895	0.129	0.075

2 Protection of feeders

The following tables show the $\Delta \mathrm{U}_{\mathrm{x}}[\mathrm{V} /(\mathrm{A} \cdot \mathrm{km})]$ values by cross section and formation of the cable according to the most $\operatorname{common} \cos \varphi$ values.

Table 3: Specific voltage drop at $\cos \varphi=1$ for copper cables

S[mm ${ }^{2}$]	$\mathbf{c o s} \varphi=\mathbf{1}$ single-phase-core cable three-phase			two-core cable three-core cable single-phase
1.5	29.60	25.63	30.20	26.15
2.5	17.82	15.43	18.16	15.73
4	11.14	9.65	11.36	9.84
6	7.42	6.43	7.56	6.55
10	4.48	3.88	4.54	3.93
16	2.82	2.44	2.86	2.48
25	1.78	1.54	1.81	1.57
35	1.28	1.11	1.31	1.13
50	0.95	0.82	0.97	0.84
70	0.66	0.57	0.67	0.58
95	0.47	0.41	0.48	0.42
120	0.38	0.33	0.38	0.33
150	0.31	0.27	0.31	0.27
185	0.25	0.21	0.25	0.22
240	0.19	0.16	0.19	0.17
300	0.15	0.13	0.16	0.14

Table 4: Specific voltage drop at $\cos \varphi=0.9$ for copper cables
$\cos \varphi=0.9$
single-core cable

S[mm²]	$\begin{array}{r} \text { single- } \\ \text { single-phase } \end{array}$	re cable three-phase	two-core cable single-phase	three-core cable three-phase
1.5	26.79	23.20	27.28	23.63
2.5	16.17	14.01	16.44	14.24
4	10.15	8.79	10.31	8.93
6	6.80	5.89	6.89	5.96
10	4.14	3.58	4.16	3.60
16	2.64	2.28	2.65	2.29
25	1.69	1.47	1.70	1.48
35	1.24	1.08	1.25	1.08
50	0.94	0.81	0.94	0.81
70	0.67	0.58	0.67	0.58
95	0.51	0.44	0.50	0.43
120	0.42	0.36	0.41	0.35
150	0.36	0.31	0.35	0.30
185	0.30	0.26	0.29	0.25
240	0.25	0.22	0.24	0.21
300	0.22	0.19	0.21	0.18

2 Protection of feeders

Table 5: Specific voltage drop at $\cos \varphi=0.85$ for copper cables
$\cos \varphi=0.85$
single-core cabl

S[mm²]	Single-core cable single-phase three-phase	two-core cable single-phase	three-core cable three-phase	
1.5	25.34	21.94	25.79	22.34
2.5	15.31	13.26	15.55	13.47
4	9.62	8.33	9.76	8.45
6	6.45	5.59	6.53	5.65
10	3.93	3.41	3.95	3.42
16	2.51	2.18	2.52	2.18
25	1.62	1.41	1.63	1.41
35	1.20	1.04	1.19	1.03
50	0.91	0.79	0.90	0.78
70	0.66	0.57	0.65	0.56
95	0.50	0.44	0.49	0.42
120	0.42	0.36	0.40	0.35
150	0.36	0.31	0.35	0.30
185	0.30	0.26	0.29	0.25
240	0.26	0.22	0.24	0.21
300	0.22	0.19	0.21	0.18

2 Protection of feeders

Table 7: Specific voltage drop at $\cos \varphi=0.75$ for copper cables
$\cos \varphi=0.75$
single-core cable
two-core cable uree-core cable

S[mm ${ }^{\mathbf{2}]}$	single-core cable. three-phase	two-core cable three-core cable single-phase single-phase	three-phase	
1.5	22.42	19.42	22.81	19.75
2.5	13.57	11.75	13.76	11.92
4	8.54	7.40	8.65	7.49
6	5.74	4.97	5.80	5.02
10	3.52	3.05	3.52	3.05
16	2.26	1.96	2.25	1.95
25	1.47	1.28	1.47	1.27
35	1.10	0.95	1.08	0.94
50	0.84	0.73	0.83	0.72
70	0.62	0.54	0.60	0.52
95	0.48	0.42	0.46	0.40
120	0.41	0.35	0.38	0.33
150	0.35	0.31	0.33	0.29
185	0.30	0.26	0.29	0.25
240	0.26	0.23	0.24	0.21
300	0.23	0.20	0.22	0.19

Table 8: Specific voltage drop at $\cos \varphi=1$ for aluminium cables

S[mm²]	single-core cable single-phase three-phase	two-core cable single-phase	three-core cable three-phase	
1.5	48.77	42.23	49.76	43.09
2.5	29.36	25.43	29.92	25.91
4	18.35	15.89	18.72	16.21
6	12.22	10.59	12.46	10.79
10	7.38	6.39	7.48	6.48
16	4.65	4.02	4.71	4.08
25	2.93	2.54	2.99	2.59
35	2.11	1.83	2.15	1.87
50	1.56	1.35	1.59	1.38
70	1.08	0.94	1.10	0.95
95	0.78	0.67	0.79	0.69
120	0.62	0.54	0.63	0.55
150	0.50	0.44	0.52	0.45
185	0.41	0.35	0.41	0.36
240	0.31	0.27	0.32	0.28
300	0.25	0.22	0.26	0.22

2 Protection of feeders

Table 9: Specific voltage drop at $\cos \varphi=0.9$ for aluminium cables
$\cos \varphi=0.9$

$\mathbf{S [\mathbf { m m } ^ { 2 }]}$	Single-core cable single-phase three-phase	$\mathbf{c} \mathbf{c}$ two-core cable single-phase	three-core cable three-phase	
1.5	44.04	38.14	44.88	38.87
2.5	26.56	23.00	27.02	23.40
4	16.64	14.41	16.93	14.66
6	11.12	9.63	11.29	9.78
10	6.75	5.84	6.81	5.89
16	4.28	3.71	4.31	3.73
25	2.73	2.36	2.76	2.39
35	1.99	1.72	2.01	1.74
50	1.49	1.29	1.50	1.30
70	1.06	0.92	1.06	0.91
95	0.78	0.68	0.78	0.68
120	0.64	0.55	0.63	0.55
150	0.53	0.46	0.53	0.46
185	0.44	0.38	0.44	0.38
240	0.36	0.31	0.35	0.30
300	0.30	0.26	0.30	0.26

2 Protection of feeders

Table 11: Specific voltage drop at $\cos \varphi=0.8$ for aluminium cables

$$
\cos \varphi=0.8
$$

single-core cable
two-core cable three-core cable

S[mm²]	single-c	$\begin{aligned} & \cos \varphi=0.8 \\ & \text { re cable } \end{aligned}$	two-core cable	three-core cable three-phase
	single-phase	three-phase	single-phase	
1.5	39.22	33.96	39.95	34.59
2.5	23.67	20.50	24.07	20.84
4	14.85	12.86	15.09	13.07
6	9.94	8.61	10.08	8.73
10	6.05	5.24	6.09	5.27
16	3.85	3.34	3.87	3.35
25	2.47	2.14	2.49	2.16
35	1.81	1.57	1.82	1.57
50	1.37	1.18	1.37	1.18
70	0.98	0.85	0.97	0.84
95	0.74	0.64	0.73	0.63
120	0.61	0.53	0.59	0.51
150	0.51	0.45	0.50	0.44
185	0.43	0.38	0.42	0.36
240	0.36	0.31	0.34	0.30
300	0.31	0.27	0.30	0.26

Table 12: Specific voltage drop at $\cos \varphi=0.75$ for aluminium cables
$\cos \varphi=0.75$
single-core cable
two-core cable three-core cable

S[mm ${ }^{2}$]	single-core cable single-phase three-phase		two-core cable three-core cable	
single-phase	three-phase			
1.5	36.80	31.87	37.47	32.45
2.5	22.23	19.25	22.58	19.56
4	13.95	12.08	14.17	12.27
6	9.35	8.09	9.47	8.20
10	5.69	4.93	5.72	4.96
16	3.63	3.15	3.64	3.15
25	2.34	2.02	2.35	2.03
35	1.72	1.49	1.72	1.49
50	1.30	1.13	1.30	1.12
70	0.94	0.81	0.92	0.80
95	0.71	0.62	0.70	0.60
120	0.59	0.51	0.57	0.49
150	0.50	0.43	0.49	0.42
185	0.42	0.37	0.41	0.35
240	0.35	0.31	0.34	0.29
300	0.31	0.27	0.29	0.25

2 Protection of feeders

Example 1

o calculate a voltage drop on a three-phase cable with the following specifications:
rated voltage: 400 V ,

- cable length: 25 m ;
- cable formation: single-core copper cable, $3 \times 50 \mathrm{~mm}^{2}$
- load current l_{b} : 100 A ;
- power factor $\cos \varphi: 0.9$

From Table 4, for a $50 \mathrm{~mm}^{2}$ single-core cable it is possible to read that a $\Delta \mathrm{U}_{\mathrm{x}}$ voltage drop corresponds to $0.81 \mathrm{~V} /(\mathrm{A} \cdot \mathrm{km})$. By multiplying this value by the length in km and by the current in A , it results:

$$
\Delta \mathrm{U}=\Delta \mathrm{U}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{b}} \cdot \mathrm{~L}=0.81 \cdot 100 \cdot 0.025=2.03 \mathrm{~V}
$$

which corresponds to this percentage value

$$
\Delta u \%=\frac{\Delta U}{U_{r}} \cdot 100=\frac{2.03}{400} \cdot 100=0.51 \%
$$

Example 2

To calculate a voltage drop on a three-phase cable with the following specifications:
rated voltage: 690 V ,

- cable length: 50 m ;
- cable formation: multi-core copper cable, $2 \times(3 \times 10) \mathrm{mm}^{2}$
- load current $\mathrm{I}_{\mathrm{b}}: 50 \mathrm{~A}$;
- power factor $\cos \varphi$: 0.85

From Table 5, for a multi-core $10 \mathrm{~mm}^{2}$ cable it is possible to read that ΔU_{x} voltage drop corresponds to $3.42 \mathrm{~V} /(\mathrm{A} \cdot \mathrm{km})$. By multiplying this value by the length in km and by the current in A , and by dividing it by the number of cables in parallel, it results:

$$
\Delta \mathrm{U}=\Delta \mathrm{U}_{\mathrm{x}} \cdot \mathrm{I}_{\mathrm{b}} \cdot \frac{\mathrm{~L}}{2}=3.42 .50 \cdot \frac{0.05}{2}=4.28 \mathrm{~V}
$$

which corresponds to this percentage value:

$$
\Delta u \%=\frac{\Delta U}{U_{r}} \cdot 100=\frac{4.28}{690} \cdot 100=0.62 \%
$$

2 Protection of feeders

Method for defining the cross section

voltage drop in the case of long cables
the case of long cables, or if particular design specifications impose low limits for maximum voltage drops, the verification using as reference the cross section calculated on the basis of thermal considerations (calculation according o chapter 2.2.1 "Current carrying capacity and methods of installation") may have a negative result.
To define the correct cross section, the maximum $\Delta \mathrm{U}_{\mathrm{xmax}}$ value calculated by using the formula:

$$
\Delta \mathrm{U}_{\mathrm{x} \max }=\frac{\Delta \mathrm{u} \% \cdot \mathrm{U}_{\mathrm{r}}}{100 \cdot \mathrm{I}_{\mathrm{b}} \cdot \mathrm{~L}}
$$

is compared with the corresponding values on Tables $4 \div 12$ by choosing the smallest cross section with a ΔU_{x} value lower than $\Delta U_{x m a x}$

Example:

Supply of a three-phase load with $\mathrm{P}_{\mathrm{u}}=35 \mathrm{~kW}\left(\mathrm{U}_{\mathrm{r}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{r}}=50 \mathrm{~Hz}, \cos \varphi=0.9\right)$ with a 140 m cable installed on a perforated tray, consisting of a multi-core copper cable with EPR insulation.
Maximum permitted voltage drop 2%.
Load current l_{b} is:

$$
\mathrm{I}_{\mathrm{b}}=\frac{\mathrm{P}_{\mathrm{u}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}} \cdot \cos \varphi}=\frac{35000}{\sqrt{3} \cdot 400 \cdot 0.9}=56 \mathrm{~A}
$$

The Table 8 of Chapter 2.2 .1 shows $\mathrm{S}=10 \mathrm{~mm}^{2}$.
From Table 4, for the multi-core $10 \mathrm{~mm}^{2}$ cable it is possible to read that the voltage drop per A and per km is $3.60 \mathrm{~V} /(\mathrm{A} \cdot \mathrm{km})$. By multiplying this value by the ength in km and by the current in A , it results:

$$
\Delta U=3.60 \cdot I_{b} \cdot L=3.6 \cdot 56 \cdot 0.14=28.2 \mathrm{~V}
$$

which corresponds to this percentage value:

$$
\Delta \mathrm{u} \%=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{r}}} \cdot 100=\frac{28.2}{400} \cdot 100=7.05 \%
$$

This value is too high
Formula (3) shows:

$$
\Delta \mathrm{U}_{\mathrm{xmax}}=\frac{\Delta \mathrm{u} \% \cdot \mathrm{U}_{\mathrm{r}}}{100 \cdot \mathrm{I}_{\mathrm{b}} \cdot \mathrm{~L}}=\frac{2 \% \cdot 400}{100 \cdot 56 \cdot 0.14}=1.02 \mathrm{~V} /(\mathrm{A} \cdot \mathrm{~km})
$$

2 Protection of feeders

From Table 4 a cross section of $50 \mathrm{~mm}^{2}$ can be chosen
For this cross section $\Delta \mathrm{U}_{\mathrm{x}}=0.81<1.02 \mathrm{~V} /(\mathrm{A} \cdot \mathrm{km})$.
By using this value it results:

$$
\Delta U=\Delta U_{x} \cdot I_{b} \cdot L=0.81 \cdot 56 \cdot 0.14=6.35 \mathrm{~V}
$$

This corresponds to a percentage value of

$$
\Delta u \%=\frac{\Delta U}{U_{r}} \cdot 100=\frac{6.35}{400} \cdot 100=1.6 \%
$$

2.2.3 J oule-effect losses

J oule-effect losses are due to the electrical resistance of the cable
The lost energy is dissipated in heat and contributes to the heating of the conductor and of the environment
A first estimate of three-phase losses is

$$
P_{\mathrm{j}}=\frac{3 \cdot \mathrm{r} \cdot \mathrm{I}_{\mathrm{b}}^{2} \cdot \mathrm{~L}}{1000}[\mathrm{~W}]
$$

whereas single-phase losses are:

$$
\mathrm{P}_{\mathrm{j}}=\frac{2 \cdot \mathrm{r} \cdot \mathrm{I}_{\mathrm{b}}^{2} \cdot \mathrm{~L}}{1000}[\mathrm{~W}]
$$

where:
b_{b} is the load current [A]
r is the phase resistance per unit of length of the cable at $80^{\circ} \mathrm{C}[\Omega / \mathrm{km}]$ (see Table 1);
L is the cable length [m].
Table 1: Resistance values $[\Omega / \mathrm{km}]$ of single-core and multi-core cables in copper and aluminium at $80^{\circ} \mathrm{C}$

	Single-core cable		Two-core/three-core cable	
\mathbf{S} $\mathbf{[m m} \mathbf{2}^{2} \boldsymbol{~}$	$\mathbf{C u}$	$\mathbf{A l}$	$\mathbf{C u}$	$\mathbf{A l}$
1.5	14.8	24.384	15.1	24.878
2.5	8.91	14.680	9.08	14.960
4	5.57	9.177	5.68	9.358
6	3.71	6.112	3.78	6.228
10	2.24	3.691	2.27	3.740
16	1.41	2.323	1.43	2.356
25	0.889	1.465	0.907	1.494
35	0.641	1.056	0.654	1.077
50	0.473	0.779	0.483	0.796
70	0.328	0.540	0.334	0.550
95	0.236	0.389	0.241	0.397
120	0.188	0.310	0.191	0.315
150	0.153	0.252	0.157	0.259
185	0.123	0.203	0.125	0.206
240	0.0943	0.155	0.0966	0.159
300	0.0761	0.125	0.078	0.129

2 Protection of feeders

2.3 Protection against overload

The Standard IEC 60364-4-43 "Electrical installation of buildings - Protection against overcurrent" specifies coordination between conductors and overload protective devices (normally placed at the beginning of the conductor to be protected) so that it shall satisfy the two following conditions

$$
\begin{equation*}
\mathrm{I}_{\mathrm{b}} \leq \mathrm{I}_{\mathrm{n}} \leq \mathrm{I}_{\mathrm{z}} \tag{1}
\end{equation*}
$$

$\mathrm{I}_{2} \leq 1.45 \cdot \mathrm{I}_{\mathrm{z}}$
(2)

Where:

I_{b} is the current for which the circuit is dimensioned;

- I_{z} is the continuous current carying capacity of the cable;
- I_{n} is the rated current of the protective device; for adjustable protective releases, the rated current I_{n} is the set current;
I_{2} is the current ensuring effective operation in the conventional time of the protective device

According to condition (1) to correctly choose the protective device, it is necessary to check that the circuit-breaker has a rated (or set) current that is - higher than the load current, to prevent unwanted tripping;

- lower than the current carying capacity of the cable, to prevent cable overload The Standard allows an overload current that may be up to 45% greater than the current carrying capacity of the cable but only for a limited period (conventional trip time of the protective device).
The verification of condition (2) is not necessary in the case of circuit-breakers because the protective device is automatically tripped if
$I_{2}=1.3 \cdot I_{n}$ for circuit-breakers complying with IEC 60947-2 (circuit-breakers for industrial use);
$I_{2}=1.45 \cdot I_{n}$ for circuit-breakers complying with IEC 60898 (circuit-breakers for household and similar installations).
Therefore, for circuit-breakers, if $\mathrm{I}_{\mathrm{n}} \leq \mathrm{I}_{\mathrm{z}}$, the formula $\mathrm{I}_{2} \leq 1.45 \cdot \mathrm{I}_{\mathrm{z}}$ will also be verified.
When the protective device is a fuse, it is also essential to check formula (2) because IEC 60269-2-1 on "Low-voltage fuses" states that a $1.6 \cdot I_{n}$ current mustautomatically melt the fuse. In this case, formula (2) becomes $1.6 \cdot I_{n} \leq 1.45 \cdot I_{1}$ or $\mathrm{I}_{\mathrm{n}} \leq 0.9 . \mathrm{I}_{\mathrm{z}}$.

2 Protection of feeders

To summarize: to carry out by a fuse protection against overload, the following must be achieved:

$$
\mathrm{I}_{\mathrm{b}} \leq \mathrm{I}_{\mathrm{n}} \leq 0.9 \cdot \mathrm{I}_{\mathrm{z}}
$$

and this means that the cable is not fully exploited

Circuit-breaker: choice of rated current

Fuse: choice of rated current
Where the use of a single conductor per phase is not feasible, and the currents in the parallel conductors are unequal, the design current and requirements for overload protection for each conductor shall be considered individually.

Examples

Example 1

Load specifications
$\mathrm{P}_{\mathrm{r}}=70 \mathrm{~kW} ; \mathrm{U}_{\mathrm{r}}=400 \mathrm{~V} ; \cos \varphi=0.9$; three-phase load so $\mathrm{I}_{\mathrm{b}}=112 \mathrm{~A}$
Cable specifications
$\mathrm{I}_{\mathrm{z}}=134 \mathrm{~A}$
Protective device specification
T1B160 TMD $\mathrm{I}_{\mathrm{n}} 125$; set current $\mathrm{I} 1=125 \mathrm{~A}$

2 Protection of feeders

Example 2

Load specifications
$P_{r}=80 \mathrm{~kW} ; \cos \varphi=0.9 ; U_{r}=400 \mathrm{~V} ;$ three-phase load so $\mathrm{I}_{\mathrm{b}}=128 \mathrm{~A}$
Cable specifications
$\mathrm{I}_{\mathrm{z}}=171 \mathrm{~A}$
Protective device specifications
T2N160 PR221DS-LS $\mathrm{I}_{\mathrm{n}} 160$; set current $\mathrm{II}=0.88 \times \mathrm{I}_{\mathrm{n}}=140.8 \mathrm{~A}$

Example 3

Load specifications
$\mathrm{P}_{\mathrm{r}}=100 \mathrm{~kW} ; \cos \varphi=0.9 ; \mathrm{U}_{\mathrm{r}}=400 \mathrm{~V}$; three-phase load so $\mathrm{I}_{\mathrm{b}}=160 \mathrm{~A}$
Cable specifications
$\mathrm{I}_{\mathrm{z}}=190 \mathrm{~A}$
Protective device specifications
T3N250 TMD $\mathrm{I}_{\mathrm{n}} 200$; set current $\mathrm{I} 1=0.9 \times \mathrm{I}_{\mathrm{n}}=180 \mathrm{~A}$

Example 4

Load specifications
$P_{r}=25 \mathrm{~kW} ; \cos \varphi=0.9 ; U_{r}=230 \mathrm{~V} ;$ single-phase load so $\mathrm{I}_{\mathrm{b}}=121 \mathrm{~A}$

Cable specifications
$\mathrm{z}_{\mathrm{z}}=134 \mathrm{~A}$

Protective device specifications
T1B160 1P TMF In 125

2 Protection of feeders

2.4 Protection against short-circuit

A cable is protected against short-circuit if the specific let-through energy of the protective device $(12 \mathrm{t})$ is lower or equal to the withstood energy of the cable $\left(\mathrm{k}^{2} \mathrm{~S}^{2}\right)$:

$$
I^{2} t \leq k^{2} S^{2}(1)
$$

where

- 12t is the specific let-through energy of the protective device which can be read on the curves supplied by the manufacturer (see Electrical installation handbook, Vol. 1, Chapter 3.4 "Specific let-through energy curves") or froma direct calculation in the case of devices that are not limiting and delaying; - S is the cable cross section [mm^{2}]; in the case of conductors in parallel it is the cross section of the single conductor;
- k is a factor that depends on the cable insulating and conducting material The values of the most common installations are shown in Table 1; for a more detailed calculation, see Annex D.

2 Protection of feeders

Table 2 shows the maximum withstood energy for cables according to the cross section, the conductor material and the type of insulation, which are calculated by using the parameters of Table 1.

Table 2: Maximum withstood energy for cables $\mathbf{k}^{2} \mathbf{S}^{2}\left[(k A)^{2} s\right]$

			Cross section [mm ${ }^{\text {2 }}$]							
Cable		k	1.5	2.5	4	6	10	16	25	35
PVC	Cu	115	2.98.10 ${ }^{-2}$	8.27.10 ${ }^{-2}$	2.12.10-1	4.76.10-1	1.32	3.39	8.27	1.62 $\cdot 10^{1}$
	Al	76	$1.30 \cdot 10^{-2}$	$3.61 \cdot 10^{-2}$	$9.24 \cdot 10^{-2}$	$2.08 \cdot 10^{-1}$	$5.78 \cdot 10^{-1}$	1.48	3.61	7.08
EPR/XLPE	Cu	143	4.60.10 ${ }^{-2}$	1.28.10.1	$3.27 \cdot 10^{-1}$	$7.36 \cdot 10^{-1}$	2.04	5.23	1.28.10 ${ }^{1}$	2.51-10 ${ }^{1}$
	Al	94	1.99.10 ${ }^{-2}$	5.52.10 ${ }^{-2}$	$1.41 \cdot 10^{-1}$	$3.18 \cdot 10^{-1}$	$8.84 \cdot 10^{-1}$	2.26	5.52	1.08.10 ${ }^{1}$
Rubber	Cu	141	4.47.10 ${ }^{-2}$	1.24.10 ${ }^{-1}$	$3.18 \cdot 10^{-1}$	7.16.10 ${ }^{-1}$	1.99	5.09	1.24.10 ${ }^{\text {1 }}$	$2.44 \cdot 10^{1}$
	Al	93	1.95-10 ${ }^{\text {-2 }}$	$5.41 \cdot 10^{-2}$	1.38.10 ${ }^{-1}$	$3.11 \cdot 10^{-1}$	$8.65 \cdot 10^{-1}$	2.21	5.41	1.06.10 ${ }^{1}$

			Cross section [mm^{2}]							
Cable		k	50	70	95	120	150	185	240	300
PVC	Cu	115	$3.31 \cdot 10^{1}$	$6.48 \cdot 10^{1}$	1.19.10 ${ }^{2}$	$1.90 \cdot 10^{2}$	2.98.10 ${ }^{2}$	4.53.102	7.62.10 ${ }^{2}$	1.19.10 ${ }^{\text {3 }}$
	Al	76	1.44-10 ${ }^{1}$	$2.83 \cdot 10^{1}$	$5.21 \cdot 10^{1}$	$8.32 \cdot 10^{1}$	$1.30 \cdot 10^{2}$	1.98.10 ${ }^{2}$	3.33.10 ${ }^{2}$	$5.20 \cdot 10^{2}$
EPR/XLPE	Cu	143	$5.11 \cdot 10^{1}$	1.00.10 ${ }^{1}$	1.85-10 ${ }^{1}$	2.94.10 ${ }^{2}$	4.60.10 ${ }^{2}$	$7.00 \cdot 10^{2}$	1.18.10 ${ }^{3}$	1.84.10 ${ }^{\text {3 }}$
	Al	94	2.21-10 ${ }^{\text {² }}$	4.33-10 ${ }^{1}$	7.97-10 ${ }^{1}$	1.27.10 ${ }^{2}$	$1.99 \cdot 10^{2}$	3.02.10 ${ }^{2}$	5.09.10 ${ }^{2}$	7.95.102
G2	Cu	141	4.97.10 ${ }^{1}$	$9.74 \cdot 10^{1}$	1.79.10 ${ }^{\text { }}$	2.86-10 ${ }^{2}$	4.47.10 ${ }^{2}$	$6.80 \cdot 10^{2}$	1.15.10 ${ }^{3}$	1.79.10 ${ }^{\text {3 }}$
	Al	93	2.16-10 ${ }^{1}$	4.24-10 ${ }^{1}$	7.81-10 ${ }^{1}$	1.25.10 ${ }^{2}$	1.95.10 ${ }^{2}$	2.96.10 ${ }^{2}$	4.98.10 ${ }^{2}$	7.78.10 ${ }^{2}$

The formula (1) must be verified along the whole length of the cable. Due to the shape of the specific let-through energy curve of a circuit breaker, it is generally sufficient to verify formula (1) only for the maximum and minimum short-circuit current that may affect the cable. The maximum value is nomally the value of the three-phase short-circuit current at the beginning of the line, while the minimum value is the value of the phase to neutral short-circuit current (phase to phase if the neutral conductor is not distributed) or phase to earth at the end of the cable.

2 Protection of feeders

This verification can be simplified by comparing only the let-through energy value of the circuit-breaker at the maximum short-circuit current with the withstood energy of the cable and by ensuring that the circuit breaker trip instantaneously at the minimum short-circuit current: the threshold of the shor circuit protection (taking into consideration also the tolerances) shall therefor be lower than the minimum short-circuit current at the end of the conductor

2 Protection of feeders

Calculation of short-circuit cument at end of the conductor

mulas
$I_{\mathrm{kmin}}=\frac{0.8 \cdot \mathrm{U}_{\mathrm{r}} \cdot \mathrm{k}_{\mathrm{sec}} \cdot \mathrm{k}_{\mathrm{par}}}{1.5 \cdot \rho \cdot \frac{2 \mathrm{~L}}{\mathrm{~S}}}$ with non-distributed neutral conductor
$\mathrm{I}_{\mathrm{kmin}}=\frac{0.8 \cdot \mathrm{U}_{0} \cdot \mathrm{k}_{\mathrm{sec}} \cdot \mathrm{k}_{\mathrm{par}}}{1.5 \cdot \rho \cdot(1+\mathrm{m}) \cdot \frac{\mathrm{L}}{\mathrm{S}}} \quad$ with distributed neutral conductor
where:
$1_{k m i n}$ is the minimum value of the prospective short-circuit current [kA];

- U_{r} is the supply voltage $[\mathrm{V}$;
- U_{0} is the phase to earth supply voltage [V];
- ρ is the resistivity at $20^{\circ} \mathrm{C}$ of the material of the conductors in $\Omega \mathrm{mm}^{2} / \mathrm{m}$ and is: 0.018 for copper;
-0.027 for aluminium;
- L is the length of the protected conductor [m]
- S is the cross section of the conductor [mm^{2}
- $\mathrm{K}_{\mathrm{sec}}$ is the correction factor which takes into account the reactance of the cables with cross section larger than $95 \mathrm{~mm}^{2}$:

$\mathrm{S}\left[\mathrm{mm}^{2}\right]$	120	150	185	240	300
$\mathrm{k}_{\text {sec }}$	0.9	0.85	0.80	0.75	0.72

- $\mathrm{K}_{\mathrm{par}}$ is the correcting coefficient for conductors in parallel:

number of parallel conductors	2	3	4	5
$\mathrm{~K}_{\text {par }}{ }^{*}$	2	2.7	3	3.2

$k_{\text {par }}=4(n-1) / n$ where: $n=$ number of conductors in parallel per phase

- m is the ratio between the resistances of the neutral conductor and the phase conductor (if they are made of the same material m is the ratio between the cross section of the phase conductor and the cross section of the neutral conductor).
Afer calculating the minimum short-circuit curent, verify that

$$
I_{\mathrm{kmin}}>1.2 \cdot I_{3}(3)
$$

where:
I_{3} is the current that trips the magnetic protection of the circuit-breaker;

- 1.2 is the tolerance at the trip threshold.

2 Protection of feeders

Example

Choice of CB1
System data:
Rated voltage 400 V
$\mathrm{I}_{\mathrm{k}}=30 \mathrm{kA}$
Cable data:
Insulated copper conductor in PVC
Length $=150 \mathrm{~m}$
$\mathrm{S}=50 \mathrm{~mm}^{2}$
$\mathrm{I}_{\mathrm{z}}=134 \mathrm{~A}$

Protection against short-circuit at the beginning of the conductor
T1N160 In160 (breaking capacity 36 kA@400 V)
$12 \mathrm{t}(@ 30 \mathrm{kA})=7.510^{-1}(\mathrm{kA})^{2}$ s (for the curves of specific let-through energy, see Volume 1, Chapter 3.4)
$\mathrm{k}^{2} \mathrm{~S}^{2}=115^{2} \cdot 50^{2}=3.31 \cdot 10^{1}(\mathrm{kA})^{2} \mathrm{~S}$
The cable is therefore protected against short-circuit at the beginning of the conductor.

Protection against short-circuit at end of the conductor
The minimum short-circuit current at end of the conductor ($k_{\text {sec }}=1$ and $k_{\text {par }}=1$) is:

$$
\mathrm{I}_{\mathrm{k} \min }=\frac{0.8 \cdot \mathrm{U} \cdot \mathrm{k}_{\mathrm{sec}} \cdot \mathrm{k}_{\mathrm{par}}}{1.5 \cdot \rho \cdot \frac{2 \mathrm{~L}}{\mathrm{~S}}}=1.98 \mathrm{kA}
$$

The magnetic threshold of the circuit breaker T1N160 $\ln 160$ is set at 1600 A. If tolerance is 20%, the circuit breaker shall definitely trip if the values exceed 1920 A; the cable is therefore fully protected against short-circuit.

Maximum protected length

The formula (3), when solved for the length, enables the maximum length protected by the protective device to be obtained for a precise instantaneous trip threshold. In Table 3, the maximum protected length can be identified for a given cross section of the cable and for the setting threshold of the instantaneous protection of the circuit breaker against short-circuit:

- three-phase system, 400 V rated voltage;
non-distributed neutral;
copper conductor with resistivity equal to $0.018 \Omega \mathrm{~mm}^{2} / \mathrm{m}$
The values on the table below take into account the 20% tolerance coefficient for the magnetic trip value, the increase in cable resistivity due to heating caused by the short-circuit current and the reduction of voltage due to the fault.
The correction factors shown after the table must be applied if the system conditions are different from the reference conditions.

2 Protection of feeders

Table 3: Maximum protected length

section [mm ${ }^{\text {2 }}$]											95	120	150	185	240	300
$1_{3}[\mathrm{~A}]$	1.5	2.5	4	6	10	16	25	35	50	70						
20	370	617														
30	246	412	658													
40	185	309	494	741												
50	148	247	395	593												
60	123	206	329	494												
70	105	176	282	423	705											
80	92	154	246	370	617											
90	82	137	219	329	549											
100	74	123	197	296	494	790										
120	61	102	164	246	412	658										
140	52	88	141	211	353	564										
150	49	82	131	197	329	527										
160	46	77	123	185	309	494	772									
180	41	68	109	164	274	439	686									
200	37	61	98	148	247	395	617									
220	33	56	89	134	224	359	561	786								
250	29	49	79	118	198	316	494	691								
280	26	44	70	105	176	282	441	617								
300	24	41	65	98	165	263	412	576								
320	23	38	61	92	154	247	386	540	772							
350	21	35	56	84	141	226	353	494	705							
380	19	32	52	78	130	208	325	455	650							
400	18	30	49	74	123	198	309	432	617							
420	17	29	47	70	118	188	294	412	588							
450	16	27	43	65	110	176	274	384	549	768						
480	15	25	41	61	103	165	257	360	514	720						
500	14	24	39	59	99	158	247	346	494	691						
520	14	23	38	57	95	152	237	332	475	665						
550	13	22	35	53.	90	144	224	314	449	629						
580	12	21	34	51	85	136	213	298	426	596	809					
600	12	20	32	49	82	132	206	288	412	576	782					
620	11	19	31	47	80	127	199	279	398	558	757					
650	11	19	30	45	76	122	190	266	380	532	722					
680	10	18	29	43	73	116	182	254	363	508	690					
700	10	17	28	42	71	113	176	247	353	494	670	847				
750		16	26	39	66	105	165	230	329	461	626	790	840			
800		15	24	37	62	99	154	216	309	432	586	667	787			
850		14	23	34	58	93	145	203	290	407	552	627	741			
900		13	21	32	55	88	137	192	274	384	521	593	700			
950		13	20	31	52	83	130	182	260	364	494	561	663			
1000		12	19	29	49	79	123	173	247	346	469	533	630	731		
1250			15	23	40	63	99	138	198	277	375	427	504	585	711	
1500			13	19	33	53	82	115	165	230	313	356	420	487	593	
1600			12	18	31	49	77	108	154	216	293	333	394	457	556	667
2000				14	25	40	62	86	123	173	235	267	315	365	444	533
2500				11	20	32	49	69	99	138	188	213	252	292	356	427
3000					16	26	41	58	82	115	156	178	210	244	296	356
3200					15	25	39	54	77	108	147	167	197	228	278	333
4000					12	20	31	43	62	86	117	133	157	183	222	267
5000					10	16	25	35	49	69	94	107	126	146	178	213
6300						13	20	27	39	55	74	85	100	116	141	169
8000						10	15	22	31	43	59	67	79	91	111	133
9600							13	18	26	36	49	56	66	76	93	111
10000							12	17	25	35	47	53	63	73	89	107
12000							10	14	21	29	39	44	52	61	74	89
15000								12	16	23	31	36	42	49	59	71
20000									12	17	23	27	31	37	44	53
24000									10	14	20	22	26	30	37	44
30000										12	16	20	25	30	40	49

2 Protection of feeders

Correction factor for voltage other than $400 \mathrm{~V}: \mathrm{k}_{\mathrm{v}}$
Multiply the length value obtained from the table by the correction factor k_{v} :

$\left.\mathrm{U}_{\mathrm{r}} \mathrm{V}\right]$ (three-phase value)	K_{v}
$230^{(*)}$	0.58
400	1
440	1.1
500	1.25
690	1.73

230 V single-phase is the equivalent of a three-phase 400 V system with distributed neutral and with the cross section of the phase conductor the same as the cross section area of the neutral conductor, so that k_{v} is 0.58 .

Correction factor for distributed neutral: k_{d}
Multiply the length value obtained from the table by the correction factor k_{d} :

$$
\mathrm{k}_{\mathrm{d}}=\frac{2}{\sqrt{3}} \cdot \frac{1}{1+\frac{\mathrm{S}}{\mathrm{~S}_{\mathrm{N}}}}
$$

where

- S is the phase cross section $\left[\mathrm{mm}^{2}\right]$;
- S_{N} is the neutral cross section [mm2]

In particular:

$$
\begin{aligned}
& \text { if } S=S_{N} \rightarrow k_{d} \text { is } 0.58 ; \\
& \text { if } S=2 \cdot S_{N} \rightarrow k_{d} \text { is } 0.39
\end{aligned}
$$

Correction factor for aluminium conductors: k_{r}
If the cable is in aluminium, multiply the length value obtained from the table above by the correction factor $k_{r}=0.67$.

2 Protection of feeders

To summarize:

On the table, for the cross section and magnetic trip threshold it is possible to ead a maximum protected value L_{0}. This length shall then be multiplied, if necessary, by the correction factors in order to obtain a value that is compatible with the installation operating conditions

$$
\mathrm{L}=\mathrm{L}_{0} \mathrm{k}_{v} \mathrm{k}_{\mathrm{d}} \mathrm{k}_{r}
$$

Example 1

Neutral not distributed
Rated voltage $=400 \mathrm{~V}$
Protective device: T2N160 TMD In100
Magnetic threshold: $I_{3}=1000 \mathrm{~A}$
Phase cross section $=$ Neutral cross section $=70 \mathrm{~mm}^{2}$
The table shows that at $l_{3}=1000 \mathrm{~A}$, the $70 \mathrm{~mm}^{2}$ cable is protected up to 346 m

Example 2

Neutral distributed
Rated voltage $=400 \mathrm{~V}$
Protective device: T3S250 TMD $\ln 200$
Magnetic threshold: $I_{3}=2000 \mathrm{~A}$
Phase cross section $=300 \mathrm{~mm}^{2}$
Neutral cross section $=150 \mathrm{~mm}^{2}$
For $\mathrm{I}_{3}=2000 \mathrm{~A}$ and $\mathrm{S}=300 \mathrm{~mm}^{2}$, a protected length equivalent of $\mathrm{L}_{0}=533 \mathrm{~m}$ is obtained.

By applying the correction factor k_{d} required when the neutral is distributed:

$$
\mathrm{k}_{\mathrm{d}}=\frac{2}{\sqrt{3}} \cdot \frac{1}{1+\frac{\mathrm{S}}{\mathrm{~S}_{\mathrm{N}}}}=\frac{2}{\sqrt{3}} \cdot \frac{1}{1+\frac{300}{150}}=0.39
$$

$\mathrm{L}=\mathrm{L}_{\mathrm{o}} \cdot 0.39=533 \cdot 0.39=207.9 \mathrm{~m}$
This is the maximum protected length with neutral distributed.

2 Protection of feeders

2.5 Neutral and protective conductors

Neutral conductor

The neutral conductor is a conductor that is connected to the system neutral point (which generally but not necessarily coincides with the star centre of the secondary windings of the transformer or the windings of the generator); it is able to contribute to the transmission of electric power, thereby making available a voltage that is different from the phase to phase voltage. In certain cases and under specific conditions, the functions of neutral conductor and protective conductor can be combined in a single conductor (PEN).

Protection and disconnection of the neutral conductor

If fault conditions arise, a voltage to earth may occur on the neutral conductor. This may be caused by a phase to neutral short-circuit and by the disconnection of the neutral conductor due to accidental breaking or to tripping of single-pole devices (fuses or single-pole circuit breakers).
If the neutral conductor only is disconnected in a four-conductor circuit, the supply voltage to the single-phase loads may be altered so that they are supplied by a voltage different from the U_{0} phase to neutral voltage (as shown in Fig. 1). Therefore, all the necessary measures to prevent this type of fault shall be taken, e.g. by not protecting the neutral conductor with single-pole devices.

Figure 1: Disconnection of the neutral conductor
Moreover, in TN-C systems, voltage to earth arising on the neutral conductor constitutes a hazard for people; in fact, since this conductor is also a protective conductor, this voltage reaches the connected exposed conductive parts. For TN-C systems, the Standards specify minimum cross sections (see next clause) for the neutral conductor in order to prevent accidental breaking and they forbid the use of any device (single-pole or multi-pole) that could disconnect the PEN. The need for protection on the neutral conductor and the possibility of disconnecting the circuit depend on the distribution system:

2 Protection of feeders

Figure 3: Three-phase alternative power supply with non-suitable
3-pole switch

IT system:
The Standard advises against distributing the neutral conductor in IT systems. If the neutral conductor is distributed, the overcurrents must be detected on the neutral conductor of each circuit in order to disconnect all the live conductor neutral conductor of each circuit in order to disconnect all the live conductor protected and disconnected).
Overcurrents do not need to be detected on the neutral conductor in any of the following cases:

- the neutral conductor is protected against short-circuit by a protective device fitted upstream;
- the circuit is protected by a residual current device with rated residual current lower than 0.15 times the current carying capacity of the coresponding neutral conductor. This device must disconnect all the live conductors, the neutral conductor included.

For all distribution systems, whenever necessary, connection and disconnection of the neutral conductor, shall ensure that

- the neutral conductor is not disconnected before the phase conductor; - the neutral conductor is connected at the same moment or before the phase conductor.

2 Protection of feeders

2 Protection of feeders

Determination of the minimum cross section of the neutral conductor

The neutral conductor, if any, shall have the same cross section as the line conductor:

- in single-phase, two-wire circuits whatever the section;
- in polyphase and single-phase three-wire circuits, when the size of the line conductors is less than or equal to $16 \mathrm{~mm}^{2}$ in copper, or $25 \mathrm{~mm}^{2}$ in aluminium. ${ }^{1}$
The cross section of the neutral conductor can be less than the cross section of the phase conductor when the cross section of the phase conductor is greater than $16 \mathrm{~mm}^{2}$ with a copper cable, or $25 \mathrm{~mm}^{2}$ with an aluminium cable, if both the following conditions are met:
-the cross section of the neutral conductor is at least $16 \mathrm{~mm}^{2}$ for copper conductors and $25 \mathrm{~mm}^{2}$ for aluminium conductors;
- there is no high harmonic distortion of the load current. If there is high hamonic distortion (the harmonic content is greater than 10%), as for example in equipment with discharge lamps, the cross section of the neutral conductor cannot be less than the cross section of the phase conductors.

Table 1: Minimum cross sections of the neutral conductor

	Phase cross section $\mathbf{S}\left[\mathbf{m m}^{2}\right]$	Min. neutral cross section $\mathbf{S}_{\mathbf{N}}\left[\mathbf{m m}^{2}\right]$
Single-phase/two-phase circuits	Any	
Cu/Al	$\mathrm{S} \leq 16$	$\mathrm{~S}^{*}$
Three-phase circuits	$\mathrm{S}>16$	$\mathrm{~S}^{*}$
Cu	$\mathrm{S} \leq 25$	16
Three-phase circuits	$\mathrm{S}>25$	$\mathrm{~S}^{*}$
Al	25	

for TN-C systems, the Standards specify a minimum cross section of $10 \mathrm{~mm}^{2}$ for copper and $16 \mathrm{~mm}^{2}$ for aluminium conductors

The cross section of phase conductors shall be dimensioned in compliance with the instructions of the Chapter 2.2.1 "Current carying capacity and methods of installation"

2 Protection of feeders

Protective conductor

Determination of the minimum cross sections
The minimum cross section of the protective conductor can be determined by using the following table:

Table 2: Cross section of the protective conductor

Cross section of line conductor S [mm^{2}]	Minimum cross section of the corresponding protective conductor [mm^{2}]	
	If the protective conductor is of the same material as the line conductor	If the protective conductor is not of the same material as the line conductor
$\mathrm{S} \leq 16$	S	$\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}} \cdot \mathrm{~S}$
$16<\mathrm{S} \leq 35$	16^{*}	$\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}} \cdot 16$
$S>35$	$\frac{S^{*}}{2}$	$\frac{k_{1}}{k_{2}} \cdot \frac{\mathrm{~S}}{2}$
Where k_{1} is the value of k for the line conductor, selected from Table 1 Chapter 2.4 according to the materials of the conductor and insulation; k_{2} is the value of k for the protective conductor. *For a PEN conductor, the reduction of the cross section is permitted only in accordance with the rules for sizing of the neutral conductor		

For a more accurate calculation and if the protective conductor is subjected to adiabatic heating from an initial known temperature to a final specified tempe rature (applicable for fault extinction time no longer than 5 s), the minimum cros section of the protective conductor $S_{\text {PE }}$ can be obtained by using the following formula:

$$
\begin{equation*}
S_{P E}=\frac{\sqrt{l^{2} t}}{k} \tag{1}
\end{equation*}
$$

where:

- $\mathrm{S}_{\text {PE }}$ is the cross section of the protective conductor [mm^{2}];

I is the r.m.s. current flowing through the protective conductor in the event o a fault with low impedance [A];
t is the trip time of the protective device [s];

2 Protection of feeders

- k is a constant which depends on the material of the protective conductor, on the type of insulation and on initial and final temperature. The most common values can be taken from Tables 3 and 4 .

Table 3: Values of k for insulated protective conductors not incorporated in cables and not bunched with other cables

Conductor insulation	Temperature ${ }^{\circ} C^{b}$		Material of conductor		
			Copper	Aluminium	Steel
	Initial	Final	Values for k		
$70^{\circ} \mathrm{C} \mathrm{PVC}$	30	160/140 ${ }^{\text {a }}$	143/133 ${ }^{\text {a }}$	95/88 ${ }^{\text {a }}$	52/49 ${ }^{\text {a }}$
$90^{\circ} \mathrm{C}$ PVC	30	143/133 ${ }^{\text {a }}$	143/133 ${ }^{\text {a }}$	95/88 ${ }^{\text {a }}$	52/49 ${ }^{\text {a }}$
$90^{\circ} \mathrm{C}$ thermosetting	30	250	176	116	64
$60^{\circ} \mathrm{C}$ rubber	30	200	159	105	58
$85^{\circ} \mathrm{C}$ rubber	30	220	168	110	60
Silicon rubber	30	350	201	133	73

The lower value applies to PVC insulated conductors of cross section greater than $300 \mathrm{~mm}^{2}$. ${ }^{\mathrm{b}}$ Temperature limits for various types of insulation are given in IEC 60724.

2 Protection of feeders

Further values of k can be taken from the Tables in Annex D, which provides the formula for accurate calculation of the value of k.
f Table 2 or formula (1) do not provide a standardized cross section, a larger standardized cross section shall be chosen.

Regardless of whether Table 2 or formula (1) are used, the cross section of the protective conductor, which is not part of the supply cable, shall be at least: $2.5 \mathrm{~mm}^{2} \mathrm{Cu} / 16 \mathrm{~mm}^{2} \mathrm{Al}$, if a mechanical protection is provided
$4 \mathrm{~mm}^{2} \mathrm{Cu} / 16 \mathrm{~mm}^{2} \mathrm{Al}$, if no mechanical protection is provided
For current using equipment intended for permanent connection and with a protective conductor current exceeding 10 mA , reinforced protective conductors hall be designed as follows:

- either the protective conductor shall have a cross-sectional area of at least 10 mm^{2} Cu or $16 \mathrm{~mm}^{2}$ Al, through its total run
- or a second protective conductor of at least the same cross-sectional area as required for protection against indirect contact shall be laid up to a poin where the protective conductor has a cross-sectional area not less than 10 m^{2} Cuor $16 \mathrm{~mm}^{2}$ Al This require that the appliance has a separ and the appliance has a separate termina for a second protective conductor.

When overcurrent protective devices are used for protection against electric shock, the protective conductor shall be incorporated in the same wiring system as the live conductors or be located in their immediate proximity.

Table 4: Values of \mathbf{k} for protective conductors as a core incorporated in a cable or bunched with other cables or insulated conductors

Conductor insulation	Temperature ${ }^{\circ} C^{b}$		Material of conductor		
			Copper	Aluminium	Steel
	Initial	Final	Values for \mathbf{k}		
$70^{\circ} \mathrm{C} \mathrm{PVC}$	70	160/140 ${ }^{\text {a }}$	115/103 ${ }^{\text {a }}$	76/68 ${ }^{\text {a }}$	42/37 ${ }^{\text {a }}$
$90^{\circ} \mathrm{C} \mathrm{PVC}$	90	160/140 ${ }^{\text {a }}$	100/86 ${ }^{\text {a }}$	66/57 ${ }^{\text {a }}$	$36 / 31^{\text {a }}$
$90^{\circ} \mathrm{C}$ thermosetting	90	250	143	94	52
$60^{\circ} \mathrm{C}$ rubber	60	200	141	93	51
$85^{\circ} \mathrm{C}$ rubber	85	220	134	89	48
Silicon rubber	180	350	132	87	47

${ }^{\text {a }}$ The lower value applies to PVC insulated conductors of cross section greater than $300 \mathrm{~mm}^{2}$. ${ }^{\mathrm{b}}$ Temperature limits for various types of insulation are given in IEC 60724.

2 Protection of feeders

2.6 Busbar trunking systems (BTSs)

In electrical installations for industrial environments, busbar trunking systems (BTSs) optimize the power distribution despite the inevitable modifications that are caried out (additions, displacements, replacement of loads) and to facilitate maintenance work and safety verifications.
They are mainly used for:
supplying sources of light, safety and low power distribution;
lighting lines (medium power)

- power supply and distribution (medium and large power);
- supplying moving equipment (bridge cranes).

Busbar trunking systems are subject to the following Standards:
IEC 60439-1 "Low-voltage switchgear and controlgear assemblies - Part 1 Type-tested and partially type-tested assemblies"
IEC 60439-2 "Low-voltage switchgear and controlgear assemblies - Part 2: Particular requirements for busbar trunking systems (busways)".
BTSs consist of
conductors/busbars;
coupling: electrical and mechanical connecting elements for different elements; straight elements: base elements of the line for camying energy from the source to the loads;
routing elements: flexible joints for the creation of curves or overcoming obstacles, horizontal and vertical angles, tee joints and cross elements to create any type of route;
pull boxes: elements that enable lamps or operating machines to be supplied directly with integrated protection (fuses or circuit breakers);
suspensions/accessories: hanging and fixing elements for BTS and for any support required for special loads (lighting components, etc).

Dimensioning of a BTS

o dimension a BTS, the load current must be determined using the following data:

Power supply
General type of load supply

- single-phase
- three-phase.
- Type of BTS supply:
- from one end;
- from both ends;
- central power supply

Rated voltage

- Short-circuit current at the supply point

Ambient temperature
Loads
Number, distribution, power and $\cos \varphi$ and type of loads supplied by the same BTS

2 Protection of feeders

BTS geometry

- Type of installation:
- flat;
edge-on
- Length.

NOTE: B TS s shall be placed at a distance from the walls and the ceilings in such a way as to enable visual inspection of connections during assembly and to facilitate insertion of the branch units.
possible, it is preferable to install the BTS edge-on so as to improve mechanical resistance and reduce any possible deposit of powder and polluting substances that might affect the level of intemal insulation.

Load current calculation for three-phase system

Load current I_{b} for a three-phase system is calculated by the following formula

$$
\begin{equation*}
I_{b}=\frac{P_{t} \cdot b}{\sqrt{3} \cdot U_{r} \cdot \cos \varphi_{m}}[A] \tag{1}
\end{equation*}
$$

where:
P_{t} is the sum of the active power of all the installed loads [W];

- b is the supply factor, which is
- 1 if the BTS is supplied from one side only
$1 / 2$ if the BTS is supplied from the centre or from both ends simultaneously;
- U_{r} is the operating voltage $[\mathrm{V}]$
- $\cos \varphi_{m}$ is the average power factor of the loads.

Choice of BTS current carrying capacity

A BTS shall be chosen so that its current carrying capacity I_{z} complies with the following formula:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{b}} \leq \mathrm{I}_{\mathrm{zo}} \cdot \mathrm{k}_{\mathrm{t}}=\mathrm{I}_{\mathrm{z}} \tag{2}
\end{equation*}
$$

where:
$I_{z_{0}}$ is the current that the BTS can cary for an indefinite time at the reference temperature $\left(40^{\circ} \mathrm{C}\right)$
b_{b} is the load curent
k_{t} is the correction factor for ambient temperature values other than the reference ambient temperature shown on Table 1.

Table 1: Correction factor k for ambient temperature other than $40^{\circ} \mathrm{C}$

Ambient

Temperature $\left.{ }^{[} \mathrm{C}\right]$	15	20	25	30	35	40	45	50
k_{t}	1.2	1.17	1.12	1.08	1.05	1	0.95	0.85

2 Protection of feeders

Note: the following tables show typical parameters of the BTS present on the market

Table 2: Current carrying capacity $I_{\text {of }}$ of copper BTS

Size	Generic type	Number of conductors	$\begin{aligned} & \mathbf{l}_{\text {zo }} \\ & {[\mathrm{AD}} \end{aligned}$	$\begin{gathered} \mathbf{r}_{\mathrm{ph}}{ }^{*} \\ {[\mathbf{m} \Omega / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathbf{x}_{\mathrm{ph}} \\ {[\mathrm{~m} \Omega / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathbf{u}_{\mathbf{r}} \\ {[\mathbf{V}]} \\ \hline \end{gathered}$
25	25A 4 cond. Cu	4	25	6.964	1.144	400
25	25A 4 cond. Cu	4	25	6.876	1.400	400
25	25A 4+4 cond. Cu	4+4	25	6.876	1.400	400
40	40A 4 cond. Cu	4	40	3.556	0.792	400
40	40A 4 cond. Cu	4	40	3.516	1.580	400
40	40A 4+4 cond. Cu	4+4	40	3.516	1.580	400
40	40A 4 cond. Cu	4	40	2.173	0.290	400
63	63A 4 cond. Cu	4	63	1.648	0.637	400
100	100A 4 cond. Cu	4	100	0.790	0.366	400
160	160A 4 cond. Cu	4	160	0.574	0.247	400
160	160A 4 cond. Cu	4	160	0.335	0.314	500
160	160A 5 cond. Cu	5	160	0.335	0.314	500
250	250A 4 cond. Cu	4	250	0.285	0.205	1000
250	250A 5 cond. Cu	5	250	0.285	0.205	1000
250	250A 4 cond. Cu	4	250	0.194	0.205	500
250	250A 5 cond. Cu	5	250	0.194	0.205	500
315	315A 4 cond. Cu	4	315	0.216	0.188	1000
315	315A 5 cond. Cu	5	315	0.216	0.188	1000
350	350A 4 cond. Cu	4	350	0.142	0.188	500
350	350A 5 cond. Cu	5	350	0.142	0.188	500
400	400A 4 cond. Cu	4	400	0.115	0.129	1000
400	400A 5 cond. Cu	5	400	0.115	0.129	1000
500	500A 4 cond. Cu	4	500	0.092	0.129	500
500	500A 5 cond. Cu	5	500	0.092	0.129	500
630	630A 4 cond. Cu	4	630	0.073	0.122	1000
630	630A 5 cond. Cu	5	630	0.073	0.122	1000
700	700A 4 cond. Cu	4	700	0.077	0.122	500
700	700A 5 cond. Cu	5	700	0.077	0.122	500
700	700A 5 cond. Cu	5	700	0.077	0.122	500
700	700A 4 cond. Cu	4	700	0.077	0.122	500

2 Protection of feeders

Size	Generic type	Number of conductors	$\begin{aligned} & \mathrm{I}_{\mathrm{zo}} \\ & {[\mathrm{~A}]} \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{r}_{\mathrm{ph}}{ }^{*} \\ {[\mathbf{m} \Omega / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{x}_{\mathrm{ph}} \\ {[\mathrm{~m} \Omega / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{u}_{\mathbf{r}} \\ {[\mathbf{V}]} \\ \hline \end{gathered}$
800	800 A 4 cond. Cu	4	800	0.047	0.122	1000
800	800 A 5 cond. Cu	5	800	0.047	0.122	1000
800	800 A 4 cond. Cu	4	800	0.038	0.027	1000
800	800 A 4 cond. Cu	4	800	0.072	0.122	500
800	800 A 5 cond. Cu	5	800	0.072	0.122	500
1000	1000A 4 cond. Cu	4	1000	0.038	0.120	1000
1000	1000A 5 cond. Cu	5	1000	0.038	0.120	1000
1000	1000A 4 cond. Cu	4	1000	0.037	0.026	1000
1000	1000A 4 cond. Cu	4	1000	0.038	0.097	1000
1000	1000A 4 cond. Cu	4	1000	0.068	0.120	500
1000	1000A 5 cond. Cu	5	1000	0.068	0.120	500
1200	1200A 4 cond. Cu	4	1200	0.035	0.021	1000
1250	1250A 4 cond. Cu	4	1250	0.034	0.023	1000
1250	1250A 4 cond. Cu	4	1250	0.035	0.076	1000
1500	1500A 4 cond. Cu	4	1500	0.030	0.022	1000
1600	1600A 4 cond. Cu	4	1600	0.025	0.018	1000
1600	1600 A 4 cond. Cu	4	1600	0.034	0.074	1000
2000	2000A 4 cond. Cu	4	2000	0.020	0.015	1000
2000	2000A 4 cond. Cu	4	2000	0.025	0.074	1000
2400	2400A 4 cond. Cu	4	2400	0.019	0.012	1000
2500	2500A 4 cond. Cu	4	2500	0.016	0.011	1000
2500	2500A 4 cond. Cu	4	2500	0.019	0.040	1000
3000	3000A 4 cond. Cu	4	3000	0.014	0.011	1000
3000	3000A 4 cond. Cu	4	3000	0.017	0.031	1000
3200	3200A 4 cond. Cu	4	3200	0.013	0.009	1000
3200	3200A 4 cond. Cu	4	3200	0.015	0.031	1000
4000	4000A 4 cond. Cu	4	4000	0.011	0.007	1000
4000	4000A 4 cond. Cu	4	4000	0.011	0.026	1000
5000	5000A 4 cond. Cu	4	5000	0.008	0.005	1000
5000	5000A 4 cond. Cu	4	5000	0.008	0.023	1000

*phase resistance at I

2 Protection of feeders

Table 3: Current carrying capacity $\mathrm{I}_{\mathrm{z} 0}$ of aluminium BTS

Size	Generic type	Number of conductors	$\begin{aligned} & \mathrm{I}_{\mathrm{zo}} \\ & {[\mathrm{~A}]} \end{aligned}$	$\begin{gathered} \mathbf{r}_{\mathrm{ph}}{ }^{*} \\ {[\mathbf{m} \Omega / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{x}_{\mathrm{ph}} \\ {[\mathrm{~m} \Omega / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{u}_{\mathbf{r}} \\ \mathbf{N} \mathbf{V} \\ \hline \end{gathered}$
160	160A 4 cond. Al	4	160	0.591	0.260	1000
160	160A 5 cond. Al	5	160	0.591	0.260	1000
160	160A 4 cond. Al	4	160	0.431	0.260	500
160	160A 5 cond. Al	5	160	0.431	0.260	500
250	250A 4 cond. Al	4	250	0.394	0.202	1000
250	250A 5 cond. Al	5	250	0.394	0.202	1000
250	250A 4 cond. Al	4	250	0.226	0.202	500
250	250A 5 cond. Al	5	250	0.226	0.202	500
315	315A 4 cond. Al	4	315	0.236	0.186	1000
315	315A 5 cond. Al	5	315	0.236	0.186	1000
315	315A 4 cond. Al	4	315	0.181	0.186	500
315	315A 5 cond. Al	5	315	0.181	0.186	500
400	400A 4 cond. Al	4	400	0.144	0.130	1000
400	400A 5 cond. Al	5	400	0.144	0.130	1000
400	400A 4 cond. Al	4	400	0.125	0.130	500
400	400A 5 cond. Al	5	400	0.125	0.130	500
500	500A 4 cond. Al	4	500	0.102	0.127	500
500	500A 5 cond. Al	5	500	0.102	0.127	500
630	630A 4 cond. Al	4	630	0.072	0.097	1000
630	630A 5 cond. Al	5	630	0.072	0.097	1000
630	630A 4 cond. Al	4	630	0.072	0.029	1000
630	630A 4 cond. Al	4	630	0.073	0.097	500
630	630A 5 cond. Al	5	630	0.073	0.097	500
800	800A 4 cond. Al	4	800	0.062	0.096	1000

2 Protection of feeders

Size	Generic type	Number of conductors	$\begin{aligned} & \mathbf{l}_{\mathbf{z o}} \\ & {[A]} \end{aligned}$	$\begin{gathered} \mathbf{r}_{\mathrm{ph}} * \\ {[\mathrm{~m} \Omega / \mathrm{m}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{x}_{\mathrm{ph}} \\ {[\mathrm{~m} \Omega / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathbf{u}_{\mathbf{r}} \\ \mathbf{N}] \\ \hline \end{gathered}$
800	800A 5 cond. Al	5	800	0.062	0.096	1000
800	800A 4 cond. Al	4	800	0.067	0.027	1000
800	800A 4 cond. Al	4	800	0.071	0.096	500
800	800A 5 cond. Al	5	800	0.071	0.096	500
1000	1000A 4 cond. Al	4	1000	0.062	0.023	1000
1000	1000A 4 cond. Al	4	1000	0.068	0.087	1000
1200	1200A 4 cond. Al	4	1200	0.054	0.023	1000
1250	1250A 4 cond. Al	4	1250	0.044	0.021	1000
1250	1250A 4 cond. Al	4	1250	0.044	0.066	1000
1500	1500A 4 cond. Al	4	1500	0.041	0.023	1000
1600	1600A 4 cond. Al	4	1600	0.035	0.017	1000
1600	1600A 4 cond. Al	4	1600	0.041	0.066	1000
2000	2000A 4 cond. Al	4	2000	0.029	0.016	1000
2000	2000A 4 cond. Al	4	2000	0.034	0.053	1000
2250	2250A 4 cond. Al	4	2250	0.032	0.049	1000
2400	2400A 4 cond. Al	4	2400	0.028	0.012	1000
2500	2500A 4 cond. Al	4	2500	0.022	0.011	1000
2500	2500A 4 cond. Al	4	2500	0.022	0.034	1000
3000	3000A 4 cond. Al	4	3000	0.020	0.011	1000
3200	3200A 4 cond. Al	4	3200	0.017	0.009	1000
3200	3200A 4 cond. Al	4	3200	0.020	0.034	1000
4000	4000A 4 cond. Al	4	4000	0.014	0.008	1000
4000	4000A 4 cond. Al	4	4000	0.017	0.024	1000
4500	4500A 4 cond. Al	4	4500	0.014	0.024	1000

*phase resistance at I

2 Protection of feeders

BTS protection

Protection against overload

BTSs are protected against overload by using the same criterion as that used for the cables. The following formula shall be verified:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{b}} \leq \mathrm{I}_{\mathrm{n}} \leq \mathrm{I}_{\mathrm{z}} \tag{3}
\end{equation*}
$$

where:

- I_{b} is the current for which the circuit is designed;
- I_{n} is the rated current of the protective device; for adjustable protective devices, the rated current I_{n} is the set current;
- I_{z} is the continuous current carrying capacity of the BTS

NOTE - The protection
gainst short-circcit does not need to be checked if MCBs up to 63 A are used whenever correctly
dimensioned for overload protection. In such cases in fact, protection against both themal and
lectrodynamic effects is ertainly adequate
ecause of the energy and eak

Protection against short-circuit

The BTS must be protected against themal overload and electrodynamic effects due to the short-circuit current.

Protection against thermal overload
The following formula shall be fulfilled:

$$
\mathrm{I}^{2} \mathrm{t}_{\mathrm{CB}} \leq \mathrm{I}^{2} \mathrm{t}_{\mathrm{BTS}}
$$

wher.

- $12 \mathrm{t}_{\mathrm{CB}}$ is the specific let-through energy of the circuit-breaker at the maximum short-circuit current value at the installation point. This can be extrapolated from the curves shown in Volume 1 Chapter 3.4;
${ }^{1} \mathrm{t}_{\text {BTS }}$ is the withstood energy of the BTS and it is nomally given by the manufacturer (see Tables 4 and 5).

Protection against electrodynamic effects
The following formula shall be fulfilled:

$$
I_{\mathrm{kp} \mathrm{CB}} \leq I_{\mathrm{kp}} \mathrm{BTS} \text { (5) }
$$

where:

- I_{kDCB} is the peak limited by the circuit-breaker at the maximum short-circuit current value at the installation point. This can be extrapolated from the limitation curves shown in Volume 1, Chapter 3.3;
- I ${ }_{\mathrm{kp}}$ BTS is the maximum peak current value of the BTS (see Tables 4 and 5).

2 Protection of feeders

2 Protection of feeders
Table 4: Values of the withstood energy and peak current of copper BTS

Size	Generic type	$\begin{gathered} 12 t_{\text {ph }} \\ {\left[(k A)_{s}\right]} \end{gathered}$	$\begin{gathered} 12_{t_{N}} \\ {\left[(k A)^{2}\right]} \end{gathered}$	$\begin{gathered} 12 t_{\mathrm{PE}} \\ {[(k A) S]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{I}_{\text {peakph }}^{[\mathrm{kA}]} \end{gathered}$	$\begin{aligned} & \text { Ipeakn } \\ & \text { [kA] } \end{aligned}$
25	25A 4 cond. Cu	0.48	0.48	0.48	10	10
25	25A 4 cond. Cu	0.64	0.64	0.64	10	10
25	25A 4+4 cond. Cu	0.64	0.64	0.64	10	10
40	40 A 4 cond. Cu	0.73	0.73	0.73	10	10
40	40A 4 cond. Cu	1	1	1	10	10
40	40A 4+4 cond. Cu	1	1	1	10	10
40	40A 4 cond. Cu	7.29	7.29	7.29	10	10
63	63A 4 cond. Cu	7.29	7.29	7.29	10	10
100	100A 4 cond. Cu	20.25	20.25	20.25	10	10
160	160A 4 cond. Cu	30.25	30.25	30.25	10	10
160	160A 4 cond. Cu	100	60	60	17	10.2
160	160A 5 cond. Cu	100	100	100	17	10.2
160	160A 4 cond. Cu	100	100	100	17	10.2
250	250A 4 cond. Cu	312.5	187.5	187.5	52.5	31.5
250	250A 5 cond. Cu	312.5	312.5	312.5	52.5	31.5
250	250A 4 cond. Cu	169	101.4	101.4	26	15.6
250	250A 5 cond. Cu	169	169	169	26	15.6
250	250A 4 cond. Cu	169	169	169	26	15.6
315	315A 4 cond. Cu	312.5	187.5	187.5	52.5	31.5
315	315A 5 cond. Cu	312.5	312.5	312.5	52.5	31.5
350	350A 4 cond. Cu	169	101.4	101.4	26	15.6
350	350A 5 cond. Cu	169	169	169	26	15.6
350	350A 4 cond. Cu	169	169	169	26	15.6
400	400A 4 cond. Cu	900	540	540	63	37.8
400	400A 5 cond. Cu	900	900	900	63	37.8
500	500A 4 cond. Cu	756.25	453.75	453.75	58	34.8
500	500A 5 cond. Cu	756.25	756.25	756.25	58	34.8
500	500A 4 cond. Cu	756.25	756.25	756.25	58	34.8
630	630A 4 cond. Cu	1296	777.6	777.6	75.6	45.4
630	630A 5 cond. Cu	1296	1296	1296	75.6	45.4
700	700A 4 cond. Cu	756.25	453.75	453.75	58	34.8
700	700A 5 cond. Cu	756.25	756.25	756.25	58	34.8
700	700A 4 cond. Cu	756.25	756.25	756.25	58	34.8

2 Protection of feeders

Size	Generic type	$\begin{gathered} 12 t_{\text {ph }} \\ {\left[(k A)^{2}\right]} \end{gathered}$	$\begin{gathered} \begin{array}{c} 12 t_{\mathrm{v}} \\ {\left[(\mathrm{kA})^{2} \mathrm{~s}\right]} \end{array} \\ \hline \end{gathered}$		$\begin{aligned} & \text { I peakph } \\ & {[\mathrm{kA]}} \end{aligned}$	$\begin{aligned} & \mathbf{I}_{\text {peakan }} \\ & {[\mathrm{KAA]}} \end{aligned}$
800	800A 4 cond. Cu	1296	777.6	777.6	75.6	45.4
800	800A 5 cond. Cu	1296	1296	1296	75.6	45.4
800	800A 4 cond. Cu	3969	3969	2381.4	139	83.4
800	800A 4 cond. Cu	756.25	453.75	453.75	58	34.8
800	800A 5 cond. Cu	756.25	756.25	756.25	58	34.8
800	800A 4 cond. Cu	756.25	756.25	756.25	58	34.8
1000	1000A 4 cond. Cu	1296	777.6	777.6	75.6	45.4
1000	1000A 5 cond. Cu	1296	1296	1296	75.6	45.4
1000	1000A 4 cond. Cu	3969	3969	2381.4	139	83.4
1000	1000A 4 cond. Cu	1600	1600	960	84	50.4
1000	1000A 4 cond. Cu	1024	614.4	614.4	60	36
1000	1000A 5 cond. Cu	1024	1024	1024	60	36
1000	1000A 4 cond. Cu	1024	1024	1024	60	36
1200	1200A 4 cond. Cu	7744	7744	4646.4	194	116.4
1250	1250A 4 cond. Cu	7744	7744	4646.4	194	116.4
1250	1250A 4 cond. Cu	2500	2500	1500	105	63
1500	1500A 4 cond. Cu	7744	7744	4646.4	194	116.4
1600	1600 A 4 cond. Cu	7744	7744	4646.4	194	116.4
1600	1600A 4 cond. Cu	2500	2500	1500	105	63
2000	2000A 4 cond. Cu	7744	7744	4646.4	194	116.4
2000	2000A 4 cond. Cu	3600	3600	2160	132	79.2
2400	2400 A 4 cond. Cu	7744	7744	4646.4	194	116.4
2500	2500 A 4 cond. Cu	7744	7744	4646.4	194	116.4
2500	2500A 4 cond. Cu	4900	4900	2940	154	92.4
3000	3000A 4 cond. Cu	30976	30976	18585.6	387	232.2
3000	3000A 4 cond. Cu	8100	8100	4860	198	118.8
3200	3200A 4 cond. Cu	30976	30976	18585.6	387	232.2
3200	3200A 4 cond. Cu	8100	8100	4860	198	118.8
4000	4000A 4 cond. Cu	30976	30976	18585.6	387	232.2
4000	4000A 4 cond. Cu	8100	8100	4860	198	118.8
5000	5000A 4 cond. Cu	30976	30976	18585.6	387	232.2
5000	5000A 4 cond. Cu	10000	10000	6000	220	132

2 Protection of feeders

Table 5: Values of the withstood energy and peak current of aluminium BTS

Size	Generic type	$\begin{gathered} 12 t_{\text {ph }} \\ {\left[(k A)_{s}\right]} \end{gathered}$	$\begin{gathered} 12 t_{\mathrm{N}} \\ {\left[(k A)_{s}\right]} \end{gathered}$	$\begin{gathered} 12 \mathrm{t}_{\mathrm{PE}} \\ {\left[(\mathrm{kA})_{\mathrm{S}} \mathrm{~s}\right]} \end{gathered}$	$\begin{gathered} \mathbf{I}_{\text {peakph }} \\ {[\mathrm{kA}]} \end{gathered}$	$\begin{gathered} \mathbf{I}_{\text {peakN }} \\ {[\mathrm{kA}]} \end{gathered}$
160	160A 4 cond. Al	112.5	67.5	67.5	30	18
160	160A 5 cond. Al	112.5	112.5	112.5	30	18
160	160A 4 cond. Al	100	60	60	17	10.2
160	160A 5 cond. Al	100	100	100	17	10.2
160	160A 4 cond. Al	100	100	100	17	10.2
250	250A 4 cond. Al	312.5	187.5	187.5	52.5	31.5
250	250A 5 cond. Al	312.5	312.5	312.5	52.5	31.5
250	250A 4 cond. Al	169	101.4	101.4	26	15.6
250	250A 5 cond. Al	169	169	169	26	15.6
250	250A 4 cond. Al	169	169	169	26	15.6
315	315A 4 cond. Al	625	375	375	52.5	31.5
315	315A 5 cond. Al	625	625	625	52.5	31.5
315	315A 4 cond. Al	169	101.4	101.4	26	15.6
315	315A 5 cond. Al	169	169	169	26	15.6
315	315A 4 cond. Al	169	169	169	26	15.6
400	400A 4 cond. Al	900	540	540	63	37.8
400	400A 5 cond. Al	900	900	900	63	37.8
400	400A 4 cond. Al	625	375	375	52.5	31.5
400	400A 5 cond. Al	625	625	625	52.5	31.5
400	400A 4 cond. Al	625	625	625	52.5	31.5
500	500A 4 cond. Al	625	375	375	52.5	31.5
500	500A 5 cond. Al	625	625	625	52.5	31.5
500	500A 4 cond. Al	625	625	625	52.5	31.5
630	630A 4 cond. Al	1296	777.6	777.6	75.6	45.4
630	630A 5 cond. Al	1296	1296	1296	75.6	45.4
630	630A 4 cond. Al	1444	1444	866.4	80	48
630	630A 4 cond. Al	1024	614.4	614.4	67.5	40.5
630	630A 5 cond. Al	1024	1024	1024	67.5	40.5

2 Protection of feeders

Size	Generic type	$\begin{gathered} \begin{array}{c} 1 t_{\text {ph }} \\ {\left[(k A)^{2}\right]} \end{array} \end{gathered}$	$\begin{gathered} 1{ }^{1 t_{\mathrm{N}}} \\ {\left[(\mathrm{k} A)^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{gathered} { }^{12} \mathbf{t}_{\mathbf{P E}} \\ {\left[(\mathrm{k} A)^{2} \mathrm{~s}\right]} \end{gathered}$	$\begin{gathered} \text { I peakpp } \\ \text { [kAA] } \end{gathered}$	$\mathbf{I}_{\text {peakN }}$ [KA]
630	630A 4 cond. Al	1024	1024	1024	67.5	40.5
800	800A 4 cond. Al	1296	777.6	777.6	75.6	45.4
800	800A 5 cond. Al	1296	1296	1296	75.6	45.4
800	800A 4 cond. Al	1764	1764	1058.4	88	52.8
800	800A 4 cond. Al	1024	614.4	614.4	67.5	40.5
800	800A 5 cond. Al	1024	1024	1024	67.5	40.5
800	800A 4 cond. Al	1024	1024	1024	67.5	40.5
1000	1000A 4 cond. Al	6400	6400	3840	176	105.6
1000	1000A 4 cond. Al	1600	1600	960	84	50.4
1200	1200A 4 cond. Al	6400	6400	3840	176	105.6
1250	1250A 4 cond. Al	6400	6400	3840	176	105.6
1250	1250A 4 cond. Al	2500	2500	1500	105	63
1500	1500A 4 cond. Al	6400	6400	3840	176	105.6
1600	1600A 4 cond. Al	6400	6400	3840	176	105.6
1600	1600A 4 cond. Al	2500	2500	1500	105	63
2000	2000A 4 cond. Al	6400	6400	3840	176	105.6
2000	2000A 4 cond. Al	3600	3600	2160	132	79.2
2250	2250A 4 cond. Al	4900	4900	2940	154	92.4
2400	2400A 4 cond. Al	25600	25600	15360	352	211.2
2500	2500A 4 cond. Al	25600	25600	15360	352	211.2
2500	2500A 4 cond. Al	8100	8100	4860	198	118.8
3000	3000A 4 cond. Al	25600	25600	15360	352	211.2
3200	3200A 4 cond. Al	25600	25600	15360	352	211.2
3200	3200A 4 cond. Al	8100	8100	4860	198	118.8
4000	4000A 4 cond. Al	25600	25600	15360	352	211.2
4000	4000A 4 cond. Al	8100	8100	4860	198	118.8
4500	4500A 4 cond. Al	10000	10000	6000	220	132

2 Protection of feeders

Protection of the outgoing feeders

If the outgoing feeder, which generally consists of cable duct, is not already protected against short-circuit and overload by the device located upstream of the cable, the following measures shall be taken.
protection against short-circuit:
there is no need to protect the feeder against the short-circuit if simultaneously
a. the length does not exceed 3 metres;
b. the risk of short-circuit is minimized;
c. there is no inflammable material nearby

In explosive environments and environments with greater risk of fire, protection against short-circuit is always required;
protection against overload
the current carrying capacity of the feeder is generally lower than that of the BTS. It is therefore necessary to protect also the feeder against overload. The protection device against overload can be placed inside the pull box or on the incoming panel.
In the latter case, protection against overload can also be provided by the circuit-breakers protecting the single outgoing feeder from the panel only if the sum of their rated currents is lower or equal to the current carying capacity l_{z} of the outgoing feeder.
In locations with greater risk of fire, the overload protection device shall be installed at the outgoing point, i.e. inside the pull box

Voltage drop

If a BTS is particularly long, the value of the voltage drop must be verified. For three-phase systems with a power factor ($\cos \varphi_{m}$) not lower than 0.8 , the voltage drop can be calculated by using the following simplified formula

$$
\begin{equation*}
\Delta \mathrm{u}=\frac{\mathrm{a} \cdot \sqrt{3} \cdot \mathrm{I}_{\mathrm{b}} \cdot \mathrm{~L} \cdot\left(\mathrm{r}_{\mathrm{t}} \cdot \cos \varphi_{\mathrm{m}}+\mathrm{x} \cdot \sin \varphi_{\mathrm{m}}\right)}{1000}[\mathrm{~V}] \tag{6a}
\end{equation*}
$$

For single-phase BTS the formula is:

$$
\begin{equation*}
\Delta u=\frac{\mathrm{a} \cdot 2 \cdot \mathrm{l}_{\mathrm{b}} \cdot \mathrm{~L} \cdot\left(\mathrm{r}_{\mathrm{t}} \cdot \cos \varphi_{\mathrm{m}}+\mathrm{x} \cdot \sin \varphi_{\mathrm{m}}\right)}{1000}[\mathrm{~V}] \tag{6b}
\end{equation*}
$$

where:

- a is the current distribution factor, which depends on the circuit supply and the arrangement of the electric loads along the BTS, as shown in Table 6:

2 Protection of feeders

Table 6: Current distribution factor

Type of supply	Arrangement of loads	Current distribution factor
From one end only	Load concentrated at the end 1 Evenly distributed load 0.5 From both ends Evenly distributed load 0.25 Central Load concentrated at the ends 0.25 Evenly distributed load 0.125	

I_{b} is the load current [A];

- L is the BTS length [m]:
r_{t} is the phase resistance per unit of length of BTS, measured under themal steady-state conditions $[\mathrm{m} \Omega / \mathrm{m}]$
- x is the phase reactance per unit of length of $B T S[m \Omega / \mathrm{m}]$;
- $\cos \varphi_{\mathrm{m}}$ is average power factor of the loads.

Percentage voltage drop is obtained from:

$$
\begin{equation*}
\Delta u \%=\frac{\Delta u}{\mathrm{U}_{\mathrm{r}}} \cdot 100 \tag{7}
\end{equation*}
$$

where U_{r} is rated voltage.
To reduce the voltage drop in very long BTS the power can be supplied at an intermediate position rather than at the end (see Table 6).

Calculation of voltage drop for unevenly distributed loads

the loads cannot be considered to be evenly distributed, the voltage drop can

For the distribution of the three-phase loads shown in the figure, the voltage drop can be calculated by the following formula if the BTS has a constant cross section (as usual):
$\Delta u=\sqrt{3}\left[r_{t}\left(I_{1} L_{1} \cos \varphi_{1}+I_{2} L_{2} \cos \varphi_{2}+I_{3} L_{3} \cos \varphi_{3}\right)+x\left(I_{1} L_{1} \sin \varphi_{1}+I_{2} L_{2} \sin \varphi_{2}+I_{3} L_{3} \sin \varphi_{3}\right)\right]$

2 Protection of feeders

Generally speaking, this formula becomes

$$
\Delta u=\frac{\sqrt{3} r_{t} \cdot \sum \mathrm{t}_{\mathrm{i}} \cdot \mathrm{~L}_{\mathrm{i}} \cdot \cos \varphi_{\mathrm{mi}}+x \cdot \sum \mathrm{I}_{\mathrm{i}} \cdot \mathrm{~L}_{\mathrm{i}} \cdot \sin \varphi_{\mathrm{mi}}}{1000}[\mathrm{~V}]
$$

(8)

where:

- r_{t} is the phase resistance per unit of length of BTS, measured under themal steady-state conditions $[\mathrm{m} \Omega / \mathrm{m}]$
- x is the phase reactance per unit of length of $B T S[m \Omega / \mathrm{m}]$
- $\cos \varphi_{m}$ is average power factor of the i-th load;
l_{i} is i-th load current [A];
- L_{i} is the distance of the i-th load from the beginning of the BTS $[m]$

J oule-effect losses

J oule-effect losses are due to the electrical resistance of the BTS
The losses are dissipated in heat and contribute to the heating of the trunking and of the environment. Calculation of power losses is useful for correctly dimensioning the air-conditioning system for the building.
Three-phase losses are

$$
P_{j}=\frac{3 \cdot r_{t} \cdot I_{b}^{2} \cdot L}{1000}[W]
$$

while single-phase losses are:

$$
P_{\mathrm{j}}=\frac{2 \cdot r_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{b}}^{2} \cdot \mathrm{~L}}{1000}[\mathrm{~W}](9 \mathrm{~b})
$$

where:

- Ib is the current used [A];
- r_{t} is the phase resistance per unit of length of BTS measured under therma steady-state conditions $[\mathrm{m} \Omega / \mathrm{m}]$
- L is the length of BTS [m].

For accurate calculations, losses must be assessed section by section on the basis of the currents flowing through them; e.g. in the case of distribution of loads shown in the previous figure

	Length	Current	Losses
1° section	L_{1}	$\mathrm{I}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$	$\mathrm{P}_{1}=3 \mathrm{r}_{\mathrm{t}} \mathrm{L}_{1}\left(\mathrm{l}_{1}+\mathrm{H}_{2}+H_{3}\right)^{2}$
2° section	$\mathrm{L}_{2}-\mathrm{L}_{1}$	$\mathrm{I}_{2} \mathrm{H}_{3}$	$\left.\mathrm{P}_{2}=3 r_{\mathrm{t}}\left(\mathrm{L}_{2}-\mathrm{L}_{1}\right)()_{2}+H_{3}\right)^{2}$
3° section	$\mathrm{L}_{3}-\mathrm{L}_{2}$	I_{3}	$\left.\mathrm{P}_{3}=3 r_{\mathrm{t}}\left(\mathrm{L}_{3}-\mathrm{L}_{2}\right)()_{3}\right)^{2}$
Total losses in BTS			$\mathrm{P}_{\text {tot }}-P_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$

3 Protection of electrical equipment

3.1 Protection and switching of lighting

circuits

Introduction

Upon supply of a lighting installation, for a brief period an initial current exceeding the rated current (corresponding to the power of the lamps) circulates on the network. This possible peak has a value of approximately $15 \div 20$ times the ated curent and is present for a few milliseconds there may also be an inrush current with a value of approximately $1.5 \div 3$ times the rated current, lasting up to some minutes. The correct dimensioning of the switching and protection devices must take these problems into account.

The most commonly used lamps are of the following types
incandescent;
halogen;
high intensity discharge: mercury vapour, metal halide and sodium vapour.

ncandescent lamps

incandescent lamps are made up of a glass bulb containing a vacuum or inert gas and a tungsten filament. The current flows through this filament, heating it until light is emitted.
The electrical behaviour of these lamps involves a high peak current, equal to approximately 15 times the rated current; after a few milliseconds the current returns to the rated value. The peak is caused by the lamp filament which initially cold, presents a very low electrical resistance. Subsequently, due to the very fast heating of the element, the resistance value increases considerably causing the decrease in the current absorbed.

3 Protection of electrical equipment

Halogen lamps

Halogen lamps are a special type of incandescent lamp in which the gas contained within the bulb prevents the vaporized material of the tungsten filament from depositing on the surface of the bulb and forces re-deposition on the filament. This phenomenon slows the deterioration of the filament, improves the quality of the light emitted and increases the life of the lamp.
The electrical behaviour of these lamps is the same as that of incandescent amps.

Fluorescent lamps

Fluorescent lamps are a so-called discharge light source. The light is produced by a discharge within a transparent enclosure (glass, quartz, etc. depending on he type of lamp) which contains mercury vapour at low pressure
Once the discharge has started, the gas within the enclosure emits energy in the ultraviolet range which strikes the fluorescent material; in turn, this materia fransforms the ultraviolet radiation into radiation which has a wavelength within the visible spectrum. The colour of the light emitted depends upon the fluorescent matenal used.
The discharge is created by an appropriate peak in voltage, generated by a starter. Once the lamp has been switched on, the gas offers an ever lower resistance, and it is necessary to stabilize the intensity of the current, using a controller (reactor); this lowers the power factor to approximately $0.4 \div 0.6$; nomally a capacitor is added to increase the power factor to a value of more than 0.9
There are two types of controllers, magnetic (conventional) and electronic, which absorb from 10% to 20% of the rated power of the lamp. Electronic controllers offer specific advantages such as a saving in the energy absorbed, a lower dissipation of heat, and ensure a stable, flicker-free light. Some types of fluorescent lamps with electronic reactors do not need a starter.
Compact fluorescent lamps are made up of a folded tube and a plastic base which contains, in some cases, a conventional or electronic controller. The value of the inrush current depends upon the presence of a power factor correction capacitor
non PFC lamps have inrush currents equal to approximately twice the rated current and a turn-on time of about ten seconds
in PFC lamps, the presence of the capacitor allows the reduction of the turn on time to a few seconds, but requires a high peak current, determined by the charge of the capacitor, which can reach 20 times the rated current. If the lamp is fitted with an electronic controller, the initial transient current may lead to peak currents equal to, at maximum, 10 times the rated current.

3 Protection of electrical equipment

High intensity discharge lamps: mercury vapour, metal halide and sodium vapour

The functioning of high intensity discharge lamps is the same as that of fluorescent lamps with the difference that the discharge occurs in the presence of a gas at high pressure. In this case, the arc is able to vaporize the metallic elements contained in the gas, releasing energy in the form of radiation which is both ultraviolet and within the visible spectrum. The special type of bulb glass blocks the ultraviolet radiation and allows only the visible radiation to pass through. There are three main types of high intensity discharge lamps mercury vapour, metal halide and sodium vapour. The colour characteristics and the efficiency of the lamp depend upon the different metallic elements present in the gas, which are struck by the arc.
High intensity discharge lamps require a suitably sized controller and a heating period which can last some minutes before the emission of the rated light output. A momentary loss of power makes the restarting of the system and the heating necessary.
Non PFC lamps have inrush currents of up to twice the rated current for approximately 5 minutes.
PFC lamps have a peak current equal to 20 times the rated current, and an inrush current of up to twice the rated current for approximately 5 minutes.

Lamp type	Peak current	Inrush current	Turn-on time	
Incandescent lamps	$15 \ln$	-	-	
Halogen lamps	$15 \ln$	-	-	
Fluorescent	-	$2 \ln$	10 s	
lamp	Non PFC	201 n		$1 \div 6 \mathrm{~s}$
High intensity	PFC	-	$2 \ln$	$2 \div 8 \mathrm{~min}$
discharge lamps	Non PFC	PFC	$20 \ln$	21 ln

Protection and switching devices

EC 60947-4-1 identifies two specific utilization categories for lamp contro contactors:
-AC-5a switching of electric discharge lamps;

- AC-5b switching of incandescent lamps

The documentation supplied by the manufacturer includes tables for contacto selection, according to the number of lamps to be controlled, and to their type.

3 Protection of electrical equipment

or the selection of a protection device the following verifications shall be carried out:
the trip characteristic curve shall be above the turning-on characteristic curve of the lighting device to avoid unwanted trips; an approximate example is shown in Figure1;
coordination shall exist with the contactor under short-circuit conditions (lighting installations are not generally characterized by overloads).

With reference to the above verification criteria, the following tables show the maximum number of lamps per phase which can be controlled by the combination of ABB circuit-breakers and contactors for some types of lamps, according to their power and absorbed current $\left.\mathrm{l}_{\mathrm{b}}{ }^{(}\right)$, for three phase installations with a rated voltage of 400 V and a maximum short-circuit current of 15 kA .

For calculation see Annex B Calculation of load current I_{b}

3 Protection of electrical equipment

Figure 1: Approximate diagram for the coordination of lamps with protection and switching devices

Table 1: Incandescent and halogen lamps

$U_{\text {r }}=400 \mathrm{~V}$	$\mathrm{k}=15 \mathrm{kA}$											
Incandescent/halogen lamps												
Circuit-breaker type		S200M D20 S	S200M D20	S200M D25	S200M D32	S200M D50	T2N160 In63	T2N160 In63	T2N160 In100	T2N160 In100	T2N160 In100	T2N160 In160
Setting PR221 DS		----	----	----	----	----	$\mathrm{L}=0.68-\mathrm{A} \mathrm{S}=8-\mathrm{B}$	$\mathrm{L}=0.92-\mathrm{AS}=10-\mathrm{B}$	$\mathrm{L}=0.68-\mathrm{AS}=8-\mathrm{B}$	$\mathrm{L}=0.76-\mathrm{A} \mathrm{S}=8-\mathrm{B}$	L=1-A S = $10-\mathrm{B}$	$\mathrm{L}=0.68-\mathrm{A} \mathrm{S}=7-\mathrm{B}$
Contactor type		A26	A26	A26	A26	A30	A40	A50	A63	A75	A95	A110
Rated Power [W]	Rated current $\mathrm{lo}_{6}[\mathrm{~A}]$	N° lamps per phase										
60	0.27	57	65	70	103	142	155	220	246	272	355	390
100	0.45	34	38	42	62	85	93	132	147	163	210	240
200	0.91	17	19	20	30	42	46	65	73	80	105	120
300	1.37	11	12	13	20	28	30	43	48	53	70	80
500	2.28	6	7	8	12	16	18	26	29	32	42	48
1000	4.55	3	4	4	6	8	9	13	14	16	21	24

$U_{\text {U }}=400 \mathrm{~V}$	$\mathrm{l}_{\mathrm{k}}=15 \mathrm{kA}$											
Fluorescent lamps non PFC												
Circuit-breaker type		S200M D16	S200M D20	S200M D20	S200M D32	S200M D40	S200M D50	S200M D63	T2N160 In100	T2N160 In100	T2N160 In100	T2N160 In160
Setting PR221 DS									$\mathrm{L}=0.68-\mathrm{AS}=10-\mathrm{B}$	$\mathrm{L}=0.76-\mathrm{AS}=10-\mathrm{B}$	$\mathrm{L}=0.96-\mathrm{A}-\mathrm{S}=10-\mathrm{B}$	$\mathrm{S}=0.68-\mathrm{A} S=10-\mathrm{B}$
Contactor type		A26	A26	A26	A26	A30	A40	A50	A63	A75	A95	A110
Rated Power [W]	Rated current $\mathrm{lo}_{6}[\mathrm{~A}]$	N° lamps per phase										
20	0.38	40	44	50	73	100	110	157	173	192	250	278
40	0.45	33	37	42	62	84	93	133	145	162	210	234
65	0.7	21	24	27	40	54	60	85	94	104	135	150
80	0.8	18	21	23	35	47	52	75	82	91	118	132
100	1.15	13	14	16	24	33	36	52	57	63	82	92
110	1.2	12	14	15	23	31	35	50	55	60	79	88

$\mathrm{U}_{\mathrm{r}}=400 \mathrm{~V}$		$\mathrm{k}=15 \mathrm{kA}$										
Fluorescent lamps PFC												
Circuit-breaker type			S200M D25	S200M D25	S200M D32	S200M D40	S200M D63	T2N160 In63	T2N160 In63	T2N160 In100	T2N160 In100	T2N160 In100
Setting PR221 DS			---	---	---	---	---	$\mathrm{L}=0.68-\mathrm{A} \mathrm{S}=8-\mathrm{B}$	L=1-AS $=10-\mathrm{B}$	$\mathrm{L}=0.68-\mathrm{AS}=10-\mathrm{B}$	$\mathrm{L}=0.76-\mathrm{AS}=10-\mathrm{B}$	$\mathrm{L}=0.96-\mathrm{AS}=10-\mathrm{B}$
Contactor type			A26	A26	A26	A26	A30	A40	A50	A63	A75	A95
Rated Power [W]	Rated current $\mathrm{lo}_{0}[\mathrm{~A}]$	Capacitor [$[\mathrm{F}$]	N° lamps per phase									
20	0.18	5	83	94	105	155	215	233	335	360	400	530
40	0.26	5	58	65	75	107	150	160	230	255	280	365
65	0.42	7	35	40	45	66	92	100	142	158	173	225
80	0.52	7	28	32	36	53	74	80	115	126	140	180
100	0.65	16	23	26	29	43	59	64	92	101	112	145
110	0.7	18	21	24	27	40	55	59	85	94	104	135

3 Protection of electrical equipment

$U_{\text {U }}=400 \mathrm{~V}$	$\mathrm{l}_{\mathrm{k}}=15 \mathrm{kA}$											
Fluorescent lamps non PFC												
Circuit-breaker type		S200M D16	S200M D20	S200M D20	S200M D32	S200M D40	S200M D40	S200M D50	S200M	T2N160 In100	T2N160 In100	T2N160 In160
Setting PR221 DS										$\mathrm{L}=0.8-\mathrm{BS}=6.5-\mathrm{B}$	L=1-BS=8-B	$\mathrm{L}=0.8-\mathrm{BS}=6.5-\mathrm{B}$
Contactor type		A26	A26	A26	A26	A30	A40	A50	A63	A75	A95	A110
Rated Power [W]	Rated current $\mathrm{lo}[\mathrm{A}]$	N° lamps per phase										
150	1.8	6	7	8	11	15	17	23	26	29	38	41
250	3	4	4	5	7	9	10	14	16	17	23	25
400	4.4	3	3	3	4	6	7	9	10	12	15	17
600	6.2	1	2	2	3	4	5	7	8	8	11	12
1000	10.3	-	1	1	2	3	3	4	5	5	6	7

xample:

Switching and protection of a lighting system, supplied by a three phase network at 400 V 15 kA , made up of 55 incandescent lamps, of 200 W each, per phase In Table 1, on the row corresponding to 200 W , select the cell showing the number of controllable lamps immediately above the number of lamps per phase present in the installation. In the specific case, corresponding to the cell for 65 lamps per phase the following equipment are suggested:
ABB Tmax T2N160 In63 circuit-breaker with PR221/DS type electronic release with protection L set at 0.92 , curve A and protection S set at 10 , curve B; A50 contactor

3 Protection of electrical equipment

3.2 Protection and switching of generator

The need to guarantee an ever greater continuity of service has led to an increase in the use of emergency supply generators, either as an alternative to, or in parallel with the public utility supply network.

Typical configurations include:

- "Island supply" (independent functioning) of the priority loads in the case of a lack of energy supply through the public network;
- supply to the user installation in parallel with the public supply network.

Unlike the public supply network, which has a constant contribution, in case of short-circuit, the current supplied by the generator is a function of the parameters of the machine itself, and decreases with time; it is possible to dentify the following successive phases:

1. a subtransient phase: with a brief duration ($10 \div 50 \mathrm{~ms}$), characterized by the subtransient reactance $X^{\prime \prime}$ ($5 \div 20 \%$ of the rated impedance value) and by the subtransient time constant T "d ($5 \div 30 \mathrm{~ms}$);
2. a transitory phase: may last up to some seconds ($0.5 \div 2.5 \mathrm{~s}$), and is characterized by the transitory reactance $X^{\prime}{ }_{d}(15 \div 40 \%$ of the rated impedance value), and by the transitory time constant $\mathrm{T}^{\prime}(0.03 \div 2.5 \mathrm{~s})$
3. a synchronous phase: may persist until the tripping of extemal protection, and is characterized by the symchmonous reactance $X_{d}(80 \cdot 300 \%$ the rated impedance value).

3 Protection of electrical equipment

As a first approximation, it can be estimated that the maximum value of the short-circuit current of a generator, with rated power S_{rg}, at the rated voltage of he installation U_{r}, is equal to:

$$
I_{\mathrm{kg}}=\frac{\mathrm{I}_{\mathrm{rg}} \cdot 100}{X_{\mathrm{d}}^{*} \%}
$$

where
g is the rated current of the generator:

$$
I_{\mathrm{rg}}=\frac{S_{\mathrm{rg}}}{\sqrt{3} \cdot U_{\mathrm{r}}}
$$

The circuit-breaker for the protection of the generator shall be selected according to the following criteria:

- the set current higher than the rated current of the generator: $\mathrm{I}_{1} \geq \mathrm{I}_{\mathrm{rg}}$;
breaking capacity I_{cu} or I_{cs} higher than the maximum value of short-circuit current at the installation point
- in the case of a single generator: $I_{c u}\left(I_{c s}\right) \geq I_{\mathrm{kg}}$
in the case of n identical generators in parallel: $I_{\mathrm{cu}}\left(I_{\mathrm{cs}}\right) \geq I_{\mathrm{kg}} \cdot(n-1)$
in the case of operation in parallel with the network: $I_{\mathrm{cu}}\left(I_{c s}\right) \geq I_{k N e t}$, as the short-circuit contribution from the network is nommally greater than the contribution from the generator;
- for circuit-breakers with themomagnetic releases: low magnetic trip threshold $I_{3}=2.5 / 3 \cdot I_{n}$;
for / brekers with electronic releases
trip threshold of the delayed short-circuit protection function (S), set between 1.5 and 4 times the rated current of the generator, in such a way as to "intercept" the decrement curve of the generator:
$I_{2}=(1.5 \div 4) \cdot I_{\mathrm{rg}}$; if the function S is not present, function I can be set t the indicated values $I_{3}=(1.5 \div 4) \cdot \mathrm{I}_{\mathrm{rg}}$
trip threshold of the instantaneous short-circuit protection function $\left(1_{3}\right)$ set at a value greater than the rated short-circuit current of the generator, so as to achieve discrimination with the devices installed downstream, and to allow fast tripping in the event of a short-circuit upstream of the device (working in parallel with other generators or with the network):

$I_{3} \geq I_{\mathrm{kg}}$

The following tables give ABB SACE suggestions for the protection and switching of generators; the tables refer to 400 V (Table 1), 440 V (Table 2), 500 V (Table 3) and 690 V (Table 4). Molded-case circuit-breakers can be equipped with both thermomagnetic (TMG) as well as electronic releases

$\mathrm{Stg}_{\text {Ig }}$ [KVA]	MCB	мсСв	ACB
4	S200 B6	T2 160	
6	S200 B10		
9	S200 B13		
11	S200 B16		
14	S200 B25		
17			
21	S200 B32		
22			
28	S200 B50		
31	S200 B50		
35			
38 42	S200 B63		
42 44			
48	S280 B80		
55			
69	S280 B100		
80			
87			
$\begin{aligned} & 100 \\ & 111 \end{aligned}$			
138		T3 250	
159		T4 250	
173			
180			
190 208		T4320	
218			
242		T5 400	
277			
308			
$\begin{aligned} & 311 \\ & 346 \end{aligned}$		T5 630	X1 630
381			
415			
$\begin{aligned} & 436 \\ & 484 \end{aligned}$		T6 800	X1 800*
554		T7 1000	
692		T1000	X1 1000**
$\begin{aligned} & 72727 \\ & 865 \end{aligned}$		T7 1250*	X1 1250**
1107		T7 1600*	X1 1600**
1730			E32500
2180			E3 3200
2250 2500			E4 4000
$\begin{aligned} & 2500 \\ & 2800 \end{aligned}$			E6 5000
3150			E6 5000
3500			E6 6300

*also Isomax CB type $\mathrm{S7}$ can be used for this application
**also Emax CB type E1 can be used for this application

ABB SACE - Electrical devices

	мСв	мссв	АСВ
4			
6			
7			
11			
14			
17			
19			
21			
22			
28			
31			
35		T2 160	
$\begin{aligned} & 38 \\ & 42 \end{aligned}$			
44			
48			
55			
69			
80			
87			
100			
111			
138			
159			
173			
180			
190			
208		T3 250	
242		T4 250	
277			
308			
311		T4 320	
346 381			
415			
436		T5 400	
484			
554		T5 630	X1 630
692			X1630
727			
865		T6 800	X1 800**
1107		T7 1000	X1 1000**
1730		T7 1600*	X1 1600**
2180			
2214			E2 2000
2250			
2500			E3 2500
$\begin{aligned} & 2800 \\ & 3150 \end{aligned}$			
3500			E3 3200

** also Emax CB type E1 can be used for this application
ABB SACE - Electrical devices

3 Protection of electrical equipment

Example:

Protection of a generator with $\mathrm{S}_{\mathrm{rg}}=100 \mathrm{kVA}$, in a system with a rated voltage of 440 V .
The generator parameters are:
$\mathrm{U}_{\mathrm{r}}=440 \mathrm{~V}$
$\mathrm{S}_{\mathrm{rg}}=100 \mathrm{kVA}$
$\mathrm{f}=50 \mathrm{~Hz}$
$=131.2 \mathrm{~A}$
$\mathrm{r}_{\mathrm{rg}}=131.2 \mathrm{~A}$
$\mathrm{X}_{\mathrm{d}}=6.5 \%$ (subtransient reactance)
$X_{d}=17.6 \%$ (transient reactance)
$x_{d}-17.6 \%$ (synchous
X_{d} " 23.5 ms (subtransis reactance)
$\mathrm{T}^{\prime}{ }_{\mathrm{d}}=39.3 \mathrm{~ms}$ (transient time constant)
From table 2, an ABB SACE T2N160 circuit-breaker is selected, with $I_{n}=160$ A, with electronic release PR221-LS. For correct protection of the generator the following settings are selected
function L: $0.84-\mathrm{A}$, corresponding to 134.4 A , value greater than I_{rg} function I: 1.5

3 Protection of electrical equipment

3 Protection and switching of motors

Electromechanical starter

The starter is designed to

- start motors;
ensure continuous functioning of motors
disconnect motors from the supply line;
guarantee protection of motors against working overloads.
The starter is typically made up of a switching device (contactor) and an overload protection device (thermal release)
The two devices must be coordinated with equipment capable of providing protection against short-circuit (typically a circuit-breaker with magnetic release only), which is not necessarily part of the starter.

The characteristics of the starter must comply with the international Standard EC 60947-4-1, which defines the above as follows:

Contactor: a mechanical switching device having only one position of rest, perated otherwise than by hand, capable of making, carrying and breaking currents under nomal circuit conditions including operating overload conditions

Thermal release: thermal overload relay or release which operates in the case of overload and also in case of loss of phase.

Circuit-breaker: defined by IEC 60947-2 as a mechanical switching device capable of making, carrying and breaking currents under normal circuit conditions and also making, carrying for a specified time and breaking currents under specified abnomal circuit conditions.

The main types of motor which can be operated and which determine the characteristics of the starter are defined by the following utilization categories:

Table 1: Utilization categories and typical applications

Current type	Utilization categories	Typical applications
	AC-2	Slip-ring motors: starting, switching off
Alternating Current ac	AC-3	Squirrel-cage motors: starting, switching off during running(1)
	AC-4	Squirrel-cage motors: starting, plugging, inching

3 Protection of electrical equipment

The choice of the starting method and also, if necessary, of the type of motor to be used depends on the typical resistant torque of the load and on the short circuit power of the motor supplying network.

With alternating current, the most commonly used motor types are as follows: asynchronous three-phase squirrel-cage motors (AC-3): the most widespread type due to the fact that they are of simple construction, economical and sturdy; they develop high torque with short acceleration times, but require elevated starting currents;
slip-ring motors (AC-2): characterized by less demanding starting conditions, and have quite a high starting torque, even with a supply network of low power.

Starting methods

The most common starting methods for asynchronous squirrel-cage motor are detailed below:

Direct starting

With direct starting, the DOL (Direct On Line) starter, with the closing of line contactor KL , the line voltage is applied to the motor terminals in a single peration. Hence a squirrel-cage motor develops a high starting torque with relatively reduced acceleration time. This method is generally used with smal and medium power motors which reach full working speed in a short time. These advantages are, however, accompanied by a series of drawbacks, including, for example:
high current consumption and associated voltage drop which may cause damages to the other parts of the system connected to the network;
violent acceleration which has negative effects on mechanical transmission components (belts, chains and mechanical joints), reducing working life.

3 Protection of electrical equipment

Other types of starting for squirrel-cage motors are accomplished by reducing he supply voltage of the motor: this leads to a reduction in the starting curren and of the motor torque, and an increase in the acceleration time.

Star-Delta starter

The most common reduced voltage starter is the Star-Delta starter $(\gamma-\Delta)$, in which:
on starting, the stator windings are star-connected, thus achieving the reduction of peak inrush current;
once the normal speed of the motor is nearly reached, the switchover to delta is carried out.
After the switchover, the current and the torque follow the progress of the curves associated with normal service connections (delta).

As can be easily checked, starting the motor with star-connection gives a voltage reduction of $\sqrt{3}$, and the current absorbed from the line is reduced by $1 / 3$ compared with that absorbed with delta-connection.
The start-up torque, proportional to the square of the voltage, is reduced by 3 times, compared with the torque that the same motor would supply when del-a-connected.
This method is generally applied to motors with power from 15 to 355 kW , but intended to start with a low initial resistant torque.

Starting sequence

By pressing the start button, contactors KL and KY are closed. The timer starts to measure the start time with the motor connected in star. Once the set time has elapsed, the first contact of the timer opens the KY contactor and the second contact, delayed by approximately 50 ms , closes the $\mathrm{K} \Delta$ contactor With this new configuration, contactors KL and K Δ closed, the motor becomes delta-connected.

3 Protection of electrical equipment

The thermal release TOR, inserted in the delta circuit, can detect any $3^{\text {ra }}$ harmonic currents, which may occur due to saturation of the magnetic pack and by adding to the fundamental current, overload the motor without involving the line.

With reference to the connection diagram, the equipment used for a Star/Delta starter must be able to cary the following currents:
$\frac{I_{r}}{\sqrt{3}}$
$K L$ line contactor and $K \Delta$ delta contactor
$\frac{I_{r}}{3}$
KY star contactor
$\frac{I_{r}}{\sqrt{3}}$ overload protection release
where I_{r} is the rated current of the motor.

Starting with autotransformers

Starting with autotransformers is the most functional of the methods used for reduced voltage starting, but is also the most expensive. The reduction of the supply voltage is achieved by using a fixed tap autotransformer or a more expensive multi tap autotransformer.
Applications can be found with squirrel-cage motors which generally have a power from 50 kW to several hundred kilowatts, and higher power doublecage motors.

The autotransformer reduces the network voltage by the factor K ($K=1.25 \div 1.8$), and as a consequence the start-up torque is reduced by K2 times compared with the value of the full rated voltage
On starting, the motor is connected to the taps of the autotransformer and the contactors K2 and K1 are closed.

3 Protection of electrical equipment

Therefore, the motor starts at a reduced voltage, and when it has reached approximately 80% of its normal speed, contactor K1 is opened and main ontactor K3 is closed. Subsequently, contactor K2 is opened, excluding the autotransformer so as to supply the full network voltage

Starting with inductive reactors or resistors

This type of starting is used for simple or double-cage rotors. The reduction of the supply voltage is achieved by the insertion of inductive reactors or resistors, in series to the stator. On start-up, the current is limited to $2.5 \div 3.5$ times the rated value.
On starting, the motor is supplied via contactor K2; once the normal speed is eached, the reactors are short-circuited by the closing of contactor K1, and are then excluded by the opening of contactor K2
is possible to achieve exclusions by step of the resistors or reactors with ime-delayed commands, even for motors with power greater than 100 kW . The use of reactors notably reduces the power factor, while the use of resistor causes the dissipation of a high power (J oule effect), even if limited to the starting phase.
For a reduction $K(0.6 \div 0.8)$ of the motor voltage, the torque is reduced by K^{2} times $(0.36 \div 0.64)$.

In compliance with the above mentioned Standard, starters can also be classified according to tripping time (trip classes), and according to the type of coordination achieved with the short-circuit protection device (Type 1 and Type 2),

3 Protection of electrical equipment

Trip classes

The trip classes differentiate between the themal releases according to their trip curve.
The trip classes are defined in the following table 2 :
Table 2: Trip class

Trip Class	Tripping time in seconds (Tp)
10 A	$2<\operatorname{Tp} \leq 10$
10	$4<\operatorname{Tp} \leq 10$
20	$6<\operatorname{Tp} \leq 20$
30	$9<\operatorname{Tp} \leq 30$

where $T p$ is the cold trip time of the themal release at 7.2 times the set current value (for example: a release in class 10 at 7.2 times the set current value must not trip within 4 s , but must trip within 10 s).
It is normal procedure to associate class 10 with a nommal start-up type, and class 30 with a heavy duty start-up type.

Coordination type

Type 1
It is acceptable that in the case of short-circuit the contactor and the themal release may be damaged. The starter may still not be able to function and must be inspected; if necessary, the contactor and/or the themal release must be replaced, and the breaker release reset.

Type 2

In the case of short-circuit, the thermal release must not be damaged, while the welding of the contactor contacts is allowed, as they can easily be separated (with a screwdriver, for example), without any significant deformation.

In order to clearly determine a coordination type, and therefore the equipment necessary to achieve it, the following must be known:

- power of the motor in KW and type:
rated system voltage
rated motor current:
- short-circuit current at installation point;
- starting type: DOL or Y/A - nomal or heavy duty - Type 1 or Type 2.

The requested devices shall be coordinated with each other in accordance with the prescriptions of the Standard.
For the most common voltages and short-circuit values ($400 \mathrm{~V}-440 \mathrm{~V}-500 \mathrm{~V}$ - $690 \mathrm{~V} 35 \mathrm{kA}-50 \mathrm{kA}$) and for the most frequently used starting types, such as direct starting and Star/Delta starting, for asynchronous squirrel-cage motor (AC-3), ABB supplies solutions with:

- magnetic circuit-breaker - contactor - themal release:
thermomagnetic circuit-breaker - contactor;
- thermomagnetic circuit-breaker with PR222 MP electronic release - contactor.

3 Protection of electrical equipment
The following is an example of the type of tables available:
Table 3: 400 V 50 kA DOL Nomal Type 2
(Tmax - Contactor - TOR)

Motor		MCCB		Contactor	Thermal Overload Release		
		Type	$\begin{aligned} & I_{3} \\ & {[\mathrm{~A}]} \end{aligned}$	Type	Type	Current setting	
P_{e}	$I_{\text {r }}$					min.	max.
[kW]	[A]					[A]	[A]
0.37	1.1	T2S160 MF 1.6	21	A9	TA25DU1.4	1	1.4
0.55	1.5	T2S160 MF 1.6	21	A9	TA25DU1.8	1.3	1.8
0.75	1.9	T2S160 MF 2	26	A9	TA25DU2.4	1.7	2.4
1.1	2.8	T2S160 MF 3.2	42	A9	TA25DU4	2.8	4
1.5	3.5	T2S160 MF 4	52	A16	TA25DU5	3.5	5
2.2	5	T2S160 MF 5	65	A26	TA25DU6.5	4.5	6.5
3	6.6	T2S160 MF 8.5	110	A26	TA25DU8. 5	6	8.5
4	8.6	T2S160 MF 11	145	A30	TA25DU11	7.5	11
5.5	11.5	T2S160 MF 12.5	163	A30	TA25DU14	10	14
7.5	15.2	T2S160 MA 20	210	A30	TA25DU19	13	19
11	22	T2S160 MA 32	288	A30	TA42DU25	18	25
15	28.5	T2S160 MA 52	392	A50	TA75DU42	29	42
18.5	36	T2S160 MA 52	469	A50	TA75DU52	36	52
22	42	T2S160 MA 52	547	A50	TA75DU52	36	52
30	56	T2S160 MA 80	840	A63	TA75DU80	60	80
37	68	T2S160 MA 80	960	A75	TA75DU80	60	80
45	83	T2S160 MA 100	1200	A95	TAllodulio	80	110
55	98	T35250 MA 160	1440	Al10	TAl10DU110	80	110
75	135	T35250 MA 200	1800	A145	TA200DU175	130	175
90	158	T35250 MA 200	2400	A185	TA200DU200	150	200
110	193	T45320 PR221-I In320	2720	A210	E320DU320	100	320
132	232	T55400 PR221-I In400	3200	A260	E320DU320	100	320
160	282	T5S400 PR221-I In400	4000	A300	E320DU320	100	320
200	349	T55630 PR221-I In630	5040	AF400	E500DU500	150	500
250	430	T65630 PR221-I In630	6300	AF460	E500DU500	150	500
290	520	T65800 PR221-I In800	7200	AF580	E800DU800	250	800
315	545	T65800 PR221-I In800	8000	AF580	E800DU800	250	800
355	610	T65800 PR221-I In800	8000	AF750	E800DU800	250	800

MF:
MF: fixed magnetic only release

3 Protection of electrical equipment
Table 4: 400 V 50 kA DOL Heavy duty Type 2
(Tmax - Contactor - TOR)

Motor		MCCB		Contactor	Thermal Overload Release			
$\begin{gathered} \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \end{gathered}$	Type	$\begin{aligned} & \mathrm{I}_{3} \\ & {[\mathrm{~A}]} \end{aligned}$	Type	Type**	No. of turns of the CT primary coil	$\begin{gathered} \hline \text { Cur } \\ \text { set } \\ \text { min. } \\ \text { min. } \\ \text { [A] } \end{gathered}$	$\begin{aligned} & \hline \text { ment } \\ & \text { tting } \\ & \left\lvert\, \begin{array}{c} \text { max. } \\ {[\mathrm{A}]} \end{array}\right. \\ & \hline \end{aligned}$
0.37	1.1	T2S160 MF 1.6	21	A9	TA25DU1.4*		1	1.4
0.55	1.5	T2S160 MF 1.6	21	A9	TA25DU1.8*		1.3	1.8
0.75	1.9	T2S160 MF 2	26	A9	TA25DU2.4*		1.7	2.4
1.1	2.8	T2S160 MF 3.2	42	A9	TA25DU4*		2.8	4
1.5	3.5	T2S160 MF 4	52	A16	TA25DU5*		3.5	5
2.2	5	T2S160 MF 5	65	A26	TA25DU6.5*		4.5	6.5
3	6.6	T2S160 MF 8.5	110	A26	TA25DU8.5*		6	8.5
4	8.6	T2S160 MF 11	145	A30	TA25DU11*		7.5	11
5.5	11.5	T2S160 MF 12.5	163	A30	TA450SU60	4	10	15
7.5	15.2	T2S160 MA 20	210	A30	TA450SU60	3	13	20
11	22	T2S160 MA 32	288	A30	TA450SU60	2	20	30
15	28.5	T2S160 MA 52	392	A50	TA450SU80	2	23	40
18.5	36	T2S160 MA 52	469	A50	TA450SU80	2	23	40
22	42	T2S160 MA 52	547	A50	TA450SU60		40	60
30	56	T2S160 MA 80	840	A63	TA450SU80		55	80
37	68	T2S160 MA 80	960	A95	TA450SU80		55	80
45	83	T2S160 MA 100	1200	A110	TA450SU105		70	105
55	98	T35250 MA 160	1440	A145	TA450SU140		95	140
75	135	T35250 MA 200	1800	A185	TA450SU185		130	185
90	158	T3S250 MA 200	2400	A210	TA450SU185		130	185
110	193	T45320 PR221-I In320	2720	A260	E320DU320		100	320
132	232	T55400 PR221-I In400	3200	A300	E320DU320		100	320
160	282	T5S400 PR221-I In400	4000	AF400	E500DU500		150	500
200	349	T55630 PR221-I In630	5040	AF460	E500DU500		150	500
250	430	T65630 PR221-I In630	6300	AF580	E500DU500***		150	500
290	520	T65800 PR221-I In800	7200	AF750	E8000 ${ }^{\text {cos }}$		250	800
315	545	T65800 PR221-I In800	8000	AF750	E800DU800		250	800
355	610	T65800 PR221-I In800	8000	AF750	E8000 ${ }^{\text {a }}$ 800		250	800

Provide a by-pass contactor of the same size during motor start-up
For type E releases choose tripping class 30
MA: magnetic only adjustable release
MF: fixed magnetic only release

3 Protection of electrical equipment

Table 5: 400 V 50 kA Y/ Δ Normal Type 2
Tmax - Contactor - TOR)

Motor		мССВ		Contactor			Thermal Overload Release	
P_{e} $[\mathrm{kW}]$	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \\ \hline \end{gathered}$	Type	$\begin{aligned} & \mathrm{I} 3 \\ & {[\mathrm{~A}]} \end{aligned}$	$\begin{aligned} & \text { LINE } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \text { DELTA } \\ \text { Type } \\ \hline \end{gathered}$	$\begin{aligned} & \text { STAR } \\ & \text { Type } \end{aligned}$	Type	Current setting [A]
18.5	36	T2S160 MA52	469	A50	A50	A26	TA75DU25	18-25
22	42	T2S160 MA52	547	A50	A50	A26	TA75DU32	22-32
30	56	T2S160 MA80	720	A63	A63	A30	TA75DU42	29-42
37	68	T2S160 MA80	840	A75	A75	A30	TA75DU52	36-52
45	83	T2S160 MA100	1050	A75	A75	A30	TA75DU63	45-63
55	98	T2S160 MA100	1200	A75	A75	A40	TA75DU63	45-63
75	135	T35250 MA160	1700	A95	A95	A75	TAllodu90	66-90
90	158	T35250 MA200	2000	Al10	Al10	A95	TAllodulio	80-110
110	193	T35250 MA200	2400	A145	A145	A95	TA200DU135	100-135
132	232	T4S320 PR221-I In320	2880	A145	A145	A110	E200DU200	60-200
160	282	T55400 PR221-I In400	3600	A185	A185	A145	E200DU200	60-200
200	349	T55630 PR221-I In630	4410	A210	A210	A185	E320DU320	100-320
250	430	T55630 PR221-I In630	5670	A260	A260	A210	E320DU320	100-320
290	520	T65630 PR221-I In630	6300	AF400	AF400	A260	E500DU500	150-500
315	545	T65800 PR221-I In800	7200	AF400	AF400	A260	E500DU500	150-500
355	610	T65800 PR221-I In800	8000	AF400	AF400	A260	E500DU500	150-500

MA: magnetic only adjustable release
Table 6: $\mathbf{4 0 0} \mathbf{V} 50$ kA DOL Nomal and Heavy duty Type 2
(Tmax with MP release-Contactor)

Motor		мсСв			Contactor	Group
$\begin{gathered} \mathrm{Pe}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \end{gathered}$	$\begin{gathered} I_{r} \\ {[A]} \end{gathered}$	Type	$\mathrm{I}_{1} * \text { range }$ $[\mathrm{A}]$	$\begin{gathered} 13 \\ {[A]} \end{gathered}$	Type	[A]
30	56	T4S250 PR222MP In100	40-100	600	A95	95
37	68	T4S250 PR222MP In100	40-100	700	A95	95
45	83	T4S250 PR222MP In100	40-100	800	A95	95
55	98	T4S250 PR222MP In160	64-160	960	A145	145
75	135	T4S250 PR222MP In160	64-160	1280	A145	145
90	158	T4S250 PR222MP In200	80-200	1600	A185	185
110	193	T5S400 PR222MP In320	128-320	1920	A210	210
132	232	T5S400 PR222MP In320	128-320	2240	A260	260
160	282	T5S400 PR222MP In320	128-320	2560	AF400**	320
200	349	T5S400 PR222MP In400	160-400	3200	AF400	400
250	430	T65800 PR222MP In630	252-630	5040	AF460	460
290	520	T65800 PR222MP In630	252-630	5670	AF580	580
315	545	T65800 PR222MP In630	252-630	5670	AF580	580
355	610	T65800 PR222MP In630	252-630	5670	AF750	630

()$^{\prime}$ for heavy-duty start set the electronic release tripping class to class 30
${ }^{(* *)}$) in case of normal start use AF300

3 Protection of electrical equipment
Table 7: 440 V 50 kA DOL Normal Type 2
(Tmax - Contactor - TOR)

Motor		МССВ		Contactor	Thermal Overload Release		
$\begin{gathered} \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \end{gathered}$	Type	$\begin{aligned} & \mathrm{I} 3 \\ & {[\mathrm{~A}]} \end{aligned}$	Type	Type	$\begin{gathered} \mathrm{C} \\ \mathrm{se} \\ \mathrm{~min} . \\ {[\mathrm{A}]} \end{gathered}$	nt ng max. [A]
0.37	1	T2H160 MF 1	13	A9	TA25DU1.4	1	1.4
0.55	1.4	T2H160 MF 1.6	21	A9	TA25DU1.8	1.3	1.8
0.75	1.7	T2H160 MF 2	26	A9	TA25DU2.4	1.7	2.4
1.1	2.2	T2H160 MF 2.5	33	A9	TA25DU3.1	2.2	3.1
1.5	3	T2H160 MF 3.2	42	A16	TA25DU4	2.8	4
2.2	4.4	T2H160 MF 5	65	A26	TA25DU5	3.5	5
3	5.7	T2H160 MF 6.5	84	A26	TA25DU6. 5	4.5	6.5
4	7.8	T2H160 MF 8.5	110	A30	TA25DU11	7.5	11
5.5	10.5	T2H160 MF 11	145	A30	TA25DU14	10	14
7.5	13.5	T2H160 MA 20	180	A30	TA25DU19	13	19
11	19	T2H160 MA 32	240	A30	TA42DU25	18	25
15	26	T2H160 MA 32	336	A50	TA75DU32	22	32
18.5	32	T2H160 MA 52	469	A50	TA75DU42	29	42
22	38	T2H160 MA 52	547	A50	TA75DU52	36	52
30	52	T2H160 MA 80	720	A63	TA75DU63	45	63
37	63	T2H160 MA 80	840	A75	TA75DU80	60	80
45	75	T2H160 MA 100	1050	A95	TAllodu90	65	90
55	90	T4H250 PR221-I In160	1200	A110	TAllodulio	80	110
75	120	T4H250 PR221-I In250	1750	A145	E200DU200	60	200
90	147	T4H250 PR222-I In250	2000	A185	E2000 2000	60	200
110	177	T4H250 PR221-I In250	2500	A210	E320DU320	100	320
132	212	T5H400 PR221-I In320	3200	A260	E320DU320	100	320
160	260	T5H400 PR221-I In400	3600	A300	E3200U320	100	320
200	320	T5H630 PR222-I In630	4410	AF 400	E500DU500	150	500
250	410	T6H630 PR221-I In630	5355	AF 460	E5000 4500	150	500
290	448	T6H630 PR221-I In630	6300	AF 580	E500DU500*	150	500
315	500	T6H800 PR221-I In800	7200	AF 580	E8000 4800	250	800
355	549	T6H800 PR221-I In800	8000	AF 580	E800DU800	250	800

* Connection kit not available. To use the connection kit, replace with relay E800DU800.

MA: magnetic only adjustable release
MF: fixed magnetic only release

3 Protection of electrical equipment

Table 8: 440 V 50 kA DOL Heavy duty Type 2
(Tmax - Contactor - TOR)

Motor		MCCB		Contactor Type	Thermal Overload Release			
Pe_{e} $[\mathrm{kW}]$	Ir [A]	Type	13 [A]		Type**	No. of turns of the CT primary coil		rent ing max. [A]
0.37	1	T2H160 MF 1	13	A9	TA25DU1.4*		1	1.4
0.55	1.4	T2H160 MF 1.6	21	A9	TA25DU1.8*		1.3	1.8
0.75	1.7	T2H160 MF 2	26	A9	TA25DU2.4*		1.7	2.4
1.1	2.2	T2H160 MF 2.5	33	A9	TA25DU3.1*		2.2	3.1
1.5	3	T2H160 MF 3.2	42	A16	TA25DU4*		2.8	4
2.2	4.4	T2H160 MF 5	65	A26	TA25DU5*		3.5	5
3	5.7	T2H160 MF 6.5	84	A26	TA25DU6.5*		4.5	6.5
4	7.8	T2H160 MF 8.5	110	A30	TA25DU11*		7.5	11
5.5	10.5	T2H160 MF 11	145	A30	TA25DU14*		10	14
7.5	13.5	T2H160 MA 20	180	A30	TA450SU60	4	10	15
11	19	T2H160 MA 32	240	A30	TA450SU80	3	18	27
15	26	T2H160 MA 32	336	A50	TA450SU60	2	20	30
18.5	32	T2H160 MA 52	469	A50	TA450SU80	2	28	40
22	38	T2H160 MA 52	547	A50	TA450SU80	2	28	40
30	52	T2H160 MA 80	720	A63	TA450SU60		40	60
37	63	T2H160 MA 80	840	A95	TA450SU80		55	80
45	75	T2H160 MA 100	1050	A110	TA450SU105		70	105
55	90	T4H250 PR221-I In160	1200	A145	E200DU200		60	200
75	120	T4H250 PR221-I In250	1750	A185	E200DU200		60	200
90	147	T4H250 PR221-I In250	2000	A210	E320DU320		100	320
110	177	T4H250 PR221-I In250	2500	A260	E320DU320		100	320
132	212	T5H400 PR221-I In320	3200	A300	E320DU320		100	320
160	260	T5H400 PR221-I In400	3600	AF400	E500DU500		150	500
200	320	T5H630 PR221-I In630	4410	AF460	E500DU500		150	500
250	410	T6H630 PR221-I In630	5355	AF580	E500DU500**********)		150	500
290	448	T6H630 PR221-I In630	6300	AF750	E500DU500***********)		150	500
315	500	T6H800 PR221-I In800	7200	AF 750	E800DU800		250	800
355	549	T6H800 PR221-I In800	8000	AF 750	E800DU800		250	800

* Provide a by-pass contactor of the same size during motor start-up
${ }^{* * *}$ Connecting kit not available. To use the connecting kit, replacement with release E800DU800 is necessary
MA: magnetic only adjustable release
MF: fixed magnetic only release

3 Protection of electrical equipment

Table 9: 440 V 50 KA Y/ Δ Normal Type 2
(Tmax - Contactor - TOR)

Motor		мсСв		Contactor			Thermal Overload Release	
$\begin{gathered} \hline \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \\ \hline \end{gathered}$	Type	$\begin{aligned} & 13 \\ & {[A]} \end{aligned}$	$\begin{aligned} & \hline \text { LINE } \\ & \text { Type } \end{aligned}$	$\begin{gathered} \hline \text { DELTA } \\ \text { Type } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { STAR } \\ & \text { Type } \end{aligned}$	Type	Current setting
18.5	32	T2H160 MA52	392	A 50	A 50	A 16	TA75DU25	18-25
22	38	T2H160 MA52	469	A 50	A 50	A 26	TA75DU25	18-25
30	52	T2H160 MA80	720	A 63	A 63	A 26	TA75DU42	29-42
37	63	T2H160 MA80	840	A 75	A 75	A 30	TA75DU42	29-42
45	75	T2H160 MA80	960	A 75	A 75	A30	TA75DU52	36-52
55	90	T2H160 MA100	1150	A 75	A 75	A40	TA75DU63	45-63
75	120	T4H250 PR221-I In250	1625	A95	A95	A75	TA80DU80	60-80
90	147	T4H250 PR221-I In250	1875	A95	A95	A75	TAl10DU110	80-110
110	177	T4H250 PR221-I In250	2250	A145	A145	A95	E200DU200	60-200
132	212	T4H320 PR221-I In320	2720	A145	A145	A110	E2000U200	60-200
160	260	T5H400 PR221-I In400	3200	A185	A185	A145	E2000U200	60-200
200	320	T5H630 PR221-I In630	4095	A210	A210	A185	E320DU320	100-320
250	410	T5H630 PR221-I In630	5040	A260	A260	A210	E320DU320	100-320
290	448	T6H630 PR221-I In630	5670	AF400	AF400	A260	E500DU500	150-500
315	500	T6H630 PR221-I In630	6300	AF400	AF400	A260	E500DU500	150-500
355	549	T6H800 PR221-I In800	7200	AF400	AF400	A260	E500DU500	150-500

MA : Magnetic only adjustable release

Table 10: 440 V 50 kA DOL Normal and Heavy duty Type 2
(Tmax with MP release-Contactor)

Motor		мсСв			Contactor	Group
P_{e} [kW]	$\begin{aligned} & \mathrm{I}_{\mathrm{r}} \\ & {[\mathrm{~A}]} \end{aligned}$	Type	$\mathrm{I}_{1} * \text { range }$ [A]	$\begin{aligned} & 13 \\ & {[A]} \end{aligned}$	Type	[A]
30	52	T4H250 PR222MP In100	40-100	600	A95	93
37	63	T4H250 PR222MP In100	40-100	700	A95	93
45	75	T4H250 PR222MP In100	40-100	800	A95	93
55	90	T4H250 PR222MP In160	64-160	960	A145	145
75	120	T4H250 PR222MP In160	64-160	1120	A145	145
90	147	T4H250 PR222MP In200	80-200	1400	A185	185
110	177	T5H400 PR222MP In320	128-320	1920	A210	210
132	212	T5H400 PR222MP In320	128-320	2240	A260	240
160	260	T5H400 PR222MP In320	128-320	2560	AF400**	320
200	320	T5H400 PR222MP In400	160-400	3200	AF400	400
250	370	T6H800 PR222MP In630	252-630	4410	AF460	460
290	436	T6H800 PR222MP In630	252-630	5040	AF460	460
315	500	T6H800 PR222MP In630	252-630	5040	AF580	580
355	549	T6H800 PR222MP In630	252-630	5670	AF580	580

(*) for heavy-duty start set the electronic release tripping class to class 30
${ }^{(* *)}$ in case of normal start use AF300

3 Protection of electrical equipment

table 11: 500 V 50 kA DOL Normal Type 2
Tmax - Contactor - TOR)

Motor		MCCB		ContactorType	Thermal Overload Release		
		Type	13 [A]		Type	Current setting	
[kW]	[A]					min. [A]	max. [A]
0.37	0.88	T2L160 MF 1	13	A9	TA25DU1.0	0.63	1
0.55	1.2	T2L160 MF 1.6	21	A9	TA25DU1.4	1	1.4
0.75	1.5	T2L160 MF 1.6	21	A9	TA25DU1.8	1.3	1.8
1.1	2.2	T2L160 MF 2.5	33	A9	TA25DU3. 1	2.2	3.1
1.5	2.8	T2L160 MF 3.2	42	A16	TA25DU4	2.8	4
2.2	4	T2L160 MF 4	52	A26	TA25DU5	3.5	5
3	5.2	T2L160 MF 6.5	84	A26	TA25DU6.5	4.5	6.5
4	6.9	T2L160 MF 8.5	110	A30	TA25DU8. 5	6	8.5
5.5	9.1	T2L160 MF 11	145	A30	TA25DU11	7.5	11
7.5	12.2	T2L160 MF 12.5	163	A30	TA25DU14	10	14
11	17.5	T2L160 MA 20	240	A30	TA25DU19	13	19
15	23	T2L160 MA 32	336	A50	TA75DU25	18	25
18.5	29	T2L160 MA 52	392	A50	TA75DU32	22	32
22	34	T2L160 MA 52	469	A50	TA75DU42	29	42
30	45	T2L160 MA 52	624	A63	TA75DU52	36	52
37	56	T2L160 MA 80	840	A75	TA75DU63	45	63
45	67	T2L160 MA 80	960	A95	TA80DU80	60	80
55	82	T2L160 MA 100	1200	Al10	TAllodu90	65	90
75	110	T4H250 PR221-I In160	1440	A145	E200DU200	60	200
90	132	T4H250 PR221-I In250	1875	A145	E200DU200	60	200
110	158	T4H250 PR221-I In250	2250	A185	E200DU200	60	200
132	192	T4H320 PR221-I In320	2720	A210	E320DU320	100	320
160	230	T5H400 PR221-I In400	3600	A260	E320DU320	100	320
200	279	T5H400 PR221-I In400	4000	A300	E320DU320	100	320
250	335	T5H630 PR221-I In630	4725	AF 400	E 5000 3500	150	500
290	394	T6L630 PR221-I In630	5040	AF 460	E 5000 5500	150	500
315	440	T6L630 PR221-I In630	6300	AF 580	E 5000 ${ }^{\text {5 }}$ 50**	150	500
355	483	T6L630 PR221-I In630	6300	AF 580	E 800DU800	250	800

* Connection kit not available. To use the connection kit, replace with relay E800DU800

MA: magnetic only adjustable release
MF: fixed magnetic only release

3 Protection of electrical equipment

table 12: 500 V 50 kA DOL Heavy duty Type
Tmax - Contactor - TOR)

Motor		MCCB		Contactor Type	Thermal Overload Release			
P_{e} $[\mathrm{kWl}$	[A]	Type	13 [A]		Type**	No. of turns of the CT primary coil		ent ng max [A]
0.37	0.88	2L160 MF 1	13	A9	A25DU1.0*		0.63	1
0.55	1.2	T2L160 MF 1.6	21	A9	TA25DU1.4*		1	1.4
0.75	1.5	T2L160 MF 1.6	21	A9	TA25DU1.8*		1.3	1.8
1.1	2.2	T2L160 MF 2.5	33	A9	TA25DU3.1*		2.2	3.1
1.5	2.8	T2L160 MF 3.2	42	A16	TA25DU4*		2.8	4
2.2	4	T2L160 MF 4	52	A26	TA25DU5*		3.5	5
3	5.2	T2L160 MF 6.5	84	A26	TA25DU6.5*		4.5	6.5
4	6.9	T2L160 MF 8.5	110	A3	TA25DU8.5*		6	8.5
5.5	9.1	T2L160 MF 11	145	A30	TA25DU11*		7.5	11
7.5	12.2	T2L160 MF 12.5	163	A30	TA450SU60	4	10	15
11	17.5	T2L160 MA 20	240	A30	TA450SU60	3	13	20
15	23	T2L160 MA 32	336	A50	TA450SU60	2	20	30
18.5	29	T2L160 MA 52	392	A50	TA450SU80	2	27.5	40
22	34	T2L160 MA 52	469	A50	TA450SU80	2	27.5	40
30	45	T2L160 MA 52	624	A63	TA450SU60		40	60
37	56	T2L160 MA 80	840	A75	TA450SU60		40	60
45	67	T2L160 MA 80	960	A95	TA450SU80		55	80
55	82	T2L160 MA 100	1200	A145	TA450SU105		70	105
75	110	T4H250 PR221-I In160	1440	A145	E200DU200		60	200
90	132	T4H250 PR221-I In250	1875	A185	E2000 200		60	200
110	158	T4H250 PR221-I In250	2123	A210	E3200U320		100	320
132	192	T4H320 PR221-I In320	2720	A260	E320DU320		100	320
160	230	T5H400 PR221-I In400	3200	A300	E320DU320		100	320
200	279	T5H400 PR221-I In400	3600	AF400	E500DU500		150	500
250	335	T5H630 PR221-I In630	4725	AF460	E500DU500		150	500
290	394	T6L630 PR221-I In630	5040	AF580	E500DU500***		150	500
315	440	T6L630 PR221-I In630	6300	AF750	E500DU500***		150	500
355	483	T6L630 PR221-I In630	6300	AF750	E5000U500		150	500

*Provide a by-pass contactor of the same size during motor start-up
rerne ling kot hoose the class 30
MA: magntic only adjustable release
MF: fixed magnetic only release

3 Protection of electrical equipment

Table 13: 500 V 50 kA Y/ Δ Normal Type 2
Tmax - Contactor - TOR)

Motor		МССВ		Contactor			Thermal Overload Release	
$\begin{gathered} \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \end{gathered}$	Type	$\begin{aligned} & 13 \\ & {[A]} \end{aligned}$	$\begin{aligned} & \text { LINE } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { DELTA } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { STAR } \\ & \text { Type } \end{aligned}$	Type	Current setting
22	34	T2L160 MA52	430	A 50	A 50	A 16	TA75DU25	18-25
30	45	T2L160 MA52	547	A 63	A 63	A 26	TA75DU32	22-32
37	56	T2L160 MA80	720	A 75	A 75	A 30	TA75DU42	29-42
45	67	T2L160 MA80	840	A 75	A 75	A30	TA75DU52	36-52
55	82	T2L160 MA100	1050	A 75	A 75	A30	TA75DU52	36-52
75	110	T4H250 PR221-I In250	1375	A95	A95	A50	TA80DU80	60-80
90	132	T4H250 PR221-I In250	1750	A95	A95	A75	TAllodu90	65-90
110	158	T4H250 PR221-I In250	2000	A110	A110	A95	TA110DU110	80-110
132	192	T4H320 PR221-I In320	2560	A145	A145	A95	E200DU200	60-200
160	230	T4H320 PR221-I In320	2880	A145	A145	A110	E200DU200	60-200
200	279	T5H400 PR221-I In400	3400	A210	A210	A145	E320DU320	100-320
250	335	T5H630 PR221-I In630	4410	A210	A210	A185	E320DU320	100-320
290	394	T5H630 PR221-I In630	5040	A260	A260	A210	E320DU320	100-320
315	440	T6L630 PR221-I In630	5760	AF400	AF400	A210	E500DU500	150-500
355	483	T6L630 PR221-I In630	6300	AF400	AF400	A260	E500DU500	150-500

MA: magnetic only adjustable release

mal and Heavy duty Type 2

Tmax with MP release-Contactor)

Motor		мсСв			Contactor	Group
$\begin{gathered} \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \end{gathered}$	Type	$I_{1} *$ range [A]	$\begin{gathered} 13 \\ {[\mathrm{~A}]} \end{gathered}$	Type	[A]
30	45	T4H250 PR222MP In100	40-100	600	A95	80
37	56	T4H250 PR222MP In100	40-100	600	A95	80
45	67	T4H250 PR222MP In100	40-100	700	A145	100
55	82	T4H250 PR222MP In100	40-100	800	A145	100
75	110	T4H250 PR222MP In160	64-160	1120	A145	145
90	132	T4H250 PR222MP In160	64-160	1280	A145	145
110	158	T4H250 PR222MP In200	80-200	1600	A185	170
132	192	T5H400 PR222MP In320	128-320	1920	A210	210
160	230	T5H400 PR222MP In320	128-320	2240	A260	260
200	279	T5H400 PR222MP In400	160-400	2800	AF400**	400
250	335	T5H400 PR222MP In400	160-400	3200	AF400	400
290	395	T6H800 PR222MP In630	252-630	5040	AF460	460
315	415	T6H800 PR222MP In630	252-630	5040	AF460	460
355	451	T6H800 PR222MP In630	252-630	5670	AF580	580

for heavy duty start set the electronic release tripping class to class 30
(**) in case of normal start use AF300

3 Protection of electrical equipment

Table 15: 690 V 50kA DOL Normal Type 2
(Tmax-Contactor-CT-TOR)

Motor		MCCB		Contactor Type	CT		Thermal overload Relay		
$\begin{gathered} \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \end{gathered}$	I_{e} [A]	Type	13 [A]		KORC	N° of primary turns	Type	curr setti min. [A]	t gax. [A]
0.37	0.6	T2L160 MF1	13	A9			TA25DU0.63	0.4	0.63
0.55	0.9	T2L160 MF1	13	A9			TA25DU1	0.63	1
0.75	1.1	T2L160 MF1.6	21	A9			TA25DU1.4	1	1.4
1.1	1.6	T2L160 MF1.6	21	A9			TA25DU1.8	1.3	1.8
1.5	2	T2L160 MF2.5	33	A9			TA25DU2.4	1.7	2.4
2.2	2.9	T2L160 MF3.2	42	A9			TA25DU3.1*	2.2	3.1
3	3.8	T2L160 MF4	52	A9			TA25DU4*	2.8	4
4	5	T2L160 MF5	65	A9			TA25DU5*	3.5	5
5.5	6.5	T2L160 MF6.5	84	A9			TA25DU6.5*	4.5	6.5
		T4L250 PR221-I In 100	150	A95	4L185R/4	13**	TA25DU2.4	6	8.5
7.5	8.8	T4L250 PR221-I In 100	150	A95	4L185R/4	10**	TA25DU2.4	7.9	11.1
11	13	T4L250 PR221-I In 100	200	A95	4L185R/4	${ }^{7 *}$	TA25DU2.4	11.2	15.9
15	18	T4L250 PR221-I In 100	250	A95	4L185R/4	7**	TA25DU3. 1	15.2	20.5
18.5	21	T4L250 PR221-I In 100	300	A95	4L185R/4	6	TA25DU3.1	17.7	23.9
22	25	T4L250 PR221-I In 100	350	A95	4L185R/4	6	TA25DU4	21.6	30.8
30	33	T4L250 PR221-I In 100	450	A145	4L185R/4	6	TA25DU5	27	38.5
37	41	T4L250 PR221-I In 100	550	A145	4L185R/4	4	TA25DU4	32.4	46.3
45	49	T4L250 PR221-I In 100	700	A145	4L185R/4	4	TA25DU5	40.5	57.8
55	60	T4L250 PR221-I In 100	800	A145	4L185R/4	3	TA25DU5	54	77.1
75	80	T4L250 PR221-I In 160	1120	A145			E2000U200	65	200
90	95	T4L250 PR221-I In 160	1280	A145			E2000U200	65	200
110	115	T4L250 PR221-I In 250	1625	A145			E2000U200	65	200
132	139	T4L250 PR221-I In 250	2000	A185			E2000U200	65	200
160	167	T4L250 PR221-I In 250	2250	A185			E2000U200	65	200
200	202	T5L400 PR221-I In 320	2720	A210			E3200U320	105	320
250	242	T5L400 PR221-I In 400	3400	A300			E3200U320	105	320
290	301	T5L630 PR221-I In 630	4410	AF400			E5000U500	150	500
315	313	T5L630 PR221-I In 630	4410	AF400			E500DU500	150	500
355	370	T5L630 PR221-I In 630	5355	AF580			E5000U500***	150	500

ut the KORK, please see the "brochure KORK 1GB00-04" catalogue
*) Type 1 coordination
tol to $4 \mathrm{~mm}^{2}$
${ }^{(* * *)}$ No mounting kit to contactor is available;to use mounting kit provide E800DU800

3 Protection of electrical equipment

able 16. Contactor - TOR

Motor		MCCB		Contactor Type	Thermal overload Relay			
$\begin{gathered} \mathrm{P}_{\mathrm{e}} \\ {[\mathrm{~kW}]} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{r}} \\ & {[\mathrm{~A}]} \end{aligned}$	Type	$\begin{aligned} & 13 \\ & {[\mathrm{~A}]} \end{aligned}$		Type	$\begin{aligned} & \mathrm{N}^{\circ} \text { of } \\ & \text { primary } \\ & \text { turns } \end{aligned}$	Current setting	
							min.	max.
							[A]	[A]
0.37	0.6	T2L160 MF1	13	A9	TA25DU0.63()		0.4	0.63
0.55	0.9	T2L160 MF1	13	A9	TA25DU1(X)		0.63	1
0.75	1.1	T2L160 MF1.6	21	A9	TA25DU1.4(X)		1	1.4
1.1	1.6	T2L160 MF1.6	21	A9	TA25DU1.8(X)		1.3	1.8
1.5	2	T2L160 MF2.5	33	A9	TA25DU2.4(X)		1.7	2.4
2.2	2.9	T2L160 MF3.2	42	A9	TA25DU3.1* \times (2.2	3.1
3	3.8	T2L160 MF4	52	A9	TA25DU4 *(X)		2.8	4
4	5	T2L160 MF5	65	A9	TA25DU5 * () $^{\text {a }}$		3.5	5
55	6.5	T2L160 MF6.5	84	A9	TA25DU6.5*(x)		4.5	6.5
		T4L250 PR221-I In 100	150	A95	TA450SU60	7**	5.7	8.6
7.5	8.8	T4L250 PR221-I In 100	150	A95	TA450SU60	5**	8	12
11	13	T4L250 PR221-I In 100	200	A95	TA450SU60	4**	10	15
15	18	T4L250 PR221-I In 100	250	A95	TA450SU60	3**	13	20
18.5	21	T4L250 PR221-I In 100	300	A95	TA450SU80	3	18	27
22	25	T4L250 PR221-I In 100	350	A95	TA450SU60	2	20	30
30	33	T4L250 PR221-I In 100	450	A145	TA450SU80	2	27.5	40
37	41	T4L250 PR221-I In 100	550	A145	TA450SU60		40	60
45	49	T4L250 PR221-I In 100	700	A145	TA450SU60		40	60
55	60	T4L250 PR221-I In 100	800	A145	TA450SU80		55	80
75	80	T4L250 PR221-I In 160	1120	A145	TA450SU105		70	105
90	95	T4L250 PR221-I In 160	1280	A145	TA450SU105		70	105
110	115	T4L250 PR221-I In 250	1625	A185	TA450SU140		95	140
132	139	T4L250 PR221-I In 250	2000	A210	E3200U320		105	320
160	167	T4L250 PR221-I In 250	2250	A210	E3200U320		105	320
200	202	T5L400 PR221-I In 320	2720	A260	E3200U320		105	320
250	242	T5L400 PR221-I In 400	3400	AF400	E5000U500		150	500
290	301	T5L630 PR221-I In 630	4410	AF400	E5000U500		150	500
315	313	T5L630 PR221-I In 630	4410	AF460	E5000U500		150	500
355	370	T5L630 PR221-I In 630	5355	AF580	E5000DU500********)		150	500

*) Type 1 coordination
解
${ }^{(* *)}$) No mounting kit to contactor is available;to use mounting kit provide E800DU800
(X) Provide by-pass contactor during motor start-up

3 Protection of electrical equipment

Table 17: 690 V 50 kA Y $/ \Delta$ Normal Type 2
(Tmax - Contactor - CT - TOR

Motor		MCCB		Contactor			CT		Overload Release	
P_{e} [kW]	I_{r} [A]	Type	$\begin{aligned} & 13 \\ & {[\mathrm{~A}]} \end{aligned}$	$\begin{aligned} & \text { Line } \\ & \text { Type } \end{aligned}$	Delta Type	Star Type	KORC	$\begin{gathered} \text { No of } \\ \text { primary } \\ \text { turns } \end{gathered}$	Type	Current setting [A]
5.5	6.5*	T4L250PR221-I In100	150	A95	A95	A26	4L185R/4**	13	TA25DU2.4**	6-8.5
7.5	8.8*	T4L250PR221-I In100	150	A95	A95	A26	4L185R/4**	10	TA25DU2.4**	7.9-11.1
11	13*	T4L250PR221-I In100	200	A95	A95	A26	4L185R/4**	7	TA25DU2.4**	11.2-15.9
15	18*	T4L250PR221-I In100	250	A95	A95	A26	4L185R/4**	7	TA25DU3.1**	15.2-20.5
18.5	21	T4L250PR221-I In100	300	A95	A95	A30	4L185R/4**	6	TA25DU3.1**	17.7-23.9
22	25	T4L250PR221-I In100	350	A95	A95	A30	4L185R/4**	6	TA25DU4**	21.6-30.8
30	33	T4L250PR221-I In100	450	A145	A145	A30	4L185R/4**	6	TA25DU5*	27-38.5
37	41	T4L250PR221-I In100	550	A145	A145	A30			TA75DU52**	36-52
45	49	T4L250PR221-I In100	650	A145	A145	A30			TA75DU52**	36-52
55	60	T4L250PR221-I In100	800	A145	A145	A40			TA75DU52**	36-52
75	80	T4L250PR221-I In160	1120	A145	A145	A50			TA75DU52	36-52
90	95	T4L250PR221-I In160	1280	A145	A145	A75			TA75DU63	45-63
110	115	T4L250PR221-I In160	1600	A145	A145	A75			TA75DU80	60-80
132	139	T4L250PR221-I In250	1875	A145	A145	A95			TA2000U110	80-110
160	167	T4L250PR221-I In250	2125	A145	A145	A110			TA2000U110	80-110
200	202	T4L320PR221-1 In320	2720	A185	A185	A110			TA2000U135	100-135
250	242	T5L400PR221-IIn400	3200	AF400	AF400	A145			E5000U500	150-500
290	301	TSL400PR221-I In400	4000	AF400	AF400	A145			E500DU500	150-500
315	313	T5L630PR221-III630	4410	AF400	AF400	A185			E5000U500	150-500
355	370	T5L630PR221-IIn630	5040	AF400	AF400	A210			E5000U500	150-500
400	420	T5L630PR221-III630	5670	AF460	AF460	A210			E500DU500	150-500
450	470	T5L630PR221-I In630	6300	AF460	AF460	A260			E5000U500	150-500

For further information about the KORK, please see the "brochure KORK 1GB00-04" catalogue
(*) Cable cross section equal to $4 \mathrm{~mm}^{2}$
(**) Connect the overload/relay upstream the line-delta node

3 Protection of electrical equipment

Table 18: 690 V 50 kA DOL Normal and Heavy duty Type 2
(Tmax with MP release-Contactor)

Motor		мССВ			Contactor	Group
P_{e} [kW]	$\begin{gathered} \mathrm{I}_{\mathrm{r}} \\ {[\mathrm{~A}]} \end{gathered}$	Type	$\mathrm{I}_{1} * \text { range }$ [A]	$\begin{aligned} & 13 \\ & {[A]} \end{aligned}$	Type	[A]
45	49	T4L250 PR222MP In100	40-100	600	A145	100
55	60	T4L250 PR222MP In100	40-100	600	A145	100
75	80	T4L250 PR222MP In100	40-100	800	A145	100
90	95	T4L250 PR222MP In160	64-160	960	A145	120
110	115	T4L250 PR222MP In160	64-160	1120	A145	120
132	139	T4L250 PR222MP In160	64-160	1440	A185	160
160	167	T4L250 PR222MP In200	80-200	1600	A185	170
200	202	T5L400 PR222MP In320	128-320	1920	A210	210
250	242	T5L400 PR222MP In320	128-320	2240	A300	280
290	301	T5L400 PR222MP In400	$160-400$	2800	AF400	350
315	313	T5L400 PR222MP In400	160-400	3200	AF400	350

(*) for heavy duty start set the electronic release tripping class to class 30

Example:

For a Y/ Δ Normal starting Type 2, of a three phase asynchronous squirrel-cage
motor with the following data:
rated voltage $U_{r}=400 \mathrm{~V}$
short-circuit current $I_{k}=50 \mathrm{kA}$
rated motor power $\mathrm{P}_{\mathrm{e}}=200 \mathrm{~kW}$
from Table 5, on the relevant row, the following information can be found:

- Ir (rated current): 349 A ;
- short-circuit protection device: circuit-breaker T5S630 PR221-I In630
- magnetic trip threshold: $I_{3}=4410 \mathrm{~A}$;
- line contactor: A210;
- delta contactor: A210
- star contactor: A185;
- thermal release E320DU320, setting range $100 \div 320 \mathrm{~A}$
(to be set at $\frac{\mathrm{I}_{r}}{\sqrt{3}}=202 \mathrm{~A}$).

For a DOL heavy-duty starting Type 2 with MP protection of a three phase asynchronous squirel-cage motor with the following data:
rated voltage $\mathrm{Ur}=400 \mathrm{~V}$
short-circuit current $1 \mathrm{k}=50 \mathrm{kA}$
rated motor power $\mathrm{Pe}=55 \mathrm{~kW}$
from Table 6, on the relevant row, the following information can be found:

- Ir (rated current): 98 A;
- short-circuit protection device: circuit breaker T4S250 PR222MP* In160
- magnetic trip threshold: $13=960 \mathrm{~A}$;
- contactor: A145;
*for heavy-duty start set the electronic release tripping class to class 30

3.4 Protection and switching of

transformers

General aspects

Transformers are used to achieve a change in the supply voltage, for both medium and low voltage supplies
The choice of the protection devices must take into account transient insertion phenomena, during which the current may reach values higher than the rated full load current; the phenomenon decays in a few seconds.
The curve which represents these transient phenomena in the time-current diagram, termed "inrush current IO", depends on the size of the transformer and can be evaluated with the following formula (the short-circuit power of the network is assumed to be equal to infinity)

$$
I_{0}=\frac{K \cdot I_{r 1} \cdot e^{(-t / \tau)}}{\sqrt{2}}
$$

where:
K ratio between the maximum peak inrush current value (I_{0}) and the rated current of the transformer ($I_{1 r}$): $\left(K=I_{0} / I_{1 r}\right)$;
τ time constant of the innush current;
$1_{1 r}$ rated current of the primary;
time.
The table below shows the indicative values for t and K parameters referred to rated power Sr for oil transformers.

Further to the above consideration, the follwing diagram shows the inrush current curve for a $20 / 0.4 \mathrm{kV}$ of 400kVA transformer. This transformer has an inrush current during the very first moments equal to about 8 times the rated current; this transient phenomenon stops after a few tenths of a second.

3 Protection of electrical equipment

The transformer protection devices must also guarantee that the transfomer cannot operate above the point of maximum thermal overload under shortcircuit conditions; this point is defined on the time-current diagram by the value of short-circuit current which can pass through the transformer and by a time equal to 2 s , as stated by Standard IEC 60076-5. The short-circuit current $\left(l_{k}\right)$ flowing for a fault with low impedance at the LV terminals of the transformer is calculated by using the following formula:

$$
\begin{equation*}
I_{k}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{\text {Net }}+Z_{t}\right)}[A] \tag{1}
\end{equation*}
$$

where:

- U_{r} is the rated voltage of the transformer [V];
- $\mathrm{Z}_{\text {Net }}$ is the short-circuit impedance of the network $[\Omega]$
- Z_{t} is the short-circuit impedance of the transformer; from the rated power of the transformer ($\mathrm{S}_{\mathrm{r}}[\mathrm{VA}]$) and the percentage short-circuit voltage $\left(\mathrm{u}_{\mathrm{k}} \%\right)$ it is equal to

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{t}}=\frac{\mathrm{u}_{\mathrm{k}} \%}{100} \cdot \frac{U_{\mathrm{r}}^{2}}{\mathrm{~S}_{\mathrm{r}}}[\Omega] \tag{2}
\end{equation*}
$$

Considering the upstream short-circuit power of the network to be infinite ($\mathrm{Z}_{\text {Net }}=0$), formula (1) becomes:

$$
\begin{equation*}
I_{k}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{r}\right)}=\frac{U_{r}}{\sqrt{3} \cdot\left(\frac{U_{k} \%}{100} \cdot \frac{U_{r}^{2}}{S_{r}}\right)}=\frac{100 \mathrm{~S}_{r}}{\sqrt{3} \cdot U_{k} \% \cdot U_{r}} \text { [A] } \tag{3}
\end{equation*}
$$

The diagram below shows the inrush current curve for a $20 / 0.4 \mathrm{kV}$ of 400 kVA transformer ($u_{k} \%=4 \%$) and the point referred to the themal ability to withstand the short-circuit current ($(\mathrm{Ik} ; 2 \mathrm{sec}$.).

3 Protection of electrical equipment

In summary: for the correct protection of the transformer and to avoid unwanted trips, the trip curve of the protection device must be above the inrush curren curve and below the overload point.
The diagram below shows a possible position of the time-current curve of an upstream protection device of a $690 / 400 \mathrm{~V}, 250 \mathrm{kVA}$ transformer with $\mathrm{u}_{\mathrm{k}} \%=4 \%$.

Criteria for the selection of protection devices

For the protection at the LV side of MV/LV transformers, the selection of a ircuit-breaker shall take into account:

- the rated current at LV side of the protected transformer (this value is the - reference value for the rated current of the circuit-breaker and the setting of the protections);
- the maximum short-circuit current at the point of installation (this value determines the minimum breaking capacity $\left(\mathrm{I}_{\mathrm{cu}} / \mathrm{l}_{\mathrm{cs}}\right)$ of the protection device).

MV/LV unit with single transformer
The rated current at the LV side of the transformer $\left(I_{r}\right)$ is determined by the following formula:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{r}}=\frac{1000 \cdot \mathrm{~S}_{\mathrm{r}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r} 20}}[\mathrm{~A}] \tag{4}
\end{equation*}
$$

where:

- S_{r} is the rated power of the transformer [kVA];
- $\mathrm{U}_{\mathrm{r} 20}$ is the rated LV no-load voltage of the transformer [V].

3 Protection of electrical equipment

The full voltage three-phase short-circuit current ($\left(_{k}\right.$), at the LV terminals of the transformer, can be expressed as (assuming that the short-circuit power of the network is infinite

$$
\mathrm{I}_{\mathrm{k}}=\frac{100 \cdot \mathrm{I}_{\mathrm{r}}}{\mathrm{u}_{\mathrm{k}} \%}[\mathrm{~A}]
$$

(5)
where:
$u_{k} \%$ is the short-circuit voltage of the transformer, in \%.
The protection circuit-breaker must have: *)
n I_{r};
$\mathrm{I}_{\mathrm{cu}}\left(\mathrm{I}_{\mathrm{cs}}\right) \geq \mathrm{I}_{\mathrm{k}}$.
the short-circuit power of the upstream network is not infinite and cable or busbar connections are present, it is possible to obtain a more precise value for I_{k} by using formula (1), where $Z_{\text {Net }}$ is the sum of the impedance of the network and of the impedance of the connection.

MV/LV substation with more than one transformer in paralle For the calculation of the rated current of the transformer, the above applies (formula 4).

The breaking capacity of each protection circuit-breaker on the LV side shall be higher than the short-circuit current equivalent to the short-circuit current of each equal transformer multiplied by the number of them minus one
As can be seen from the diagram below, in the case of a fault downstream of a transformer circuit-breaker (circuit-breakerA), the short-circuit current that flows hrough the circuit-breaker is equal to the contribution of a single transforme In the case of a fault upstream of the same circuit-breaker, the short-circuit current that flows is equal to the contribution of the other two transfomers in parallel.

To carry out correct protection against overload it is advisable to use thermometric equipment or other protection devices able to monitor temperature inside ransformers

3 Protection of electrical equipment

For a correct dimensioning, a circuit-breaker with a breaking capacity higher than twice the short-circuit current of one of the transformers must be chosen (assuming that all the transformers are equal and the loads are passive).

The circuit-breakers positioned on the outgoing feeders (circuit-breakers B) shall have a breaking capacity higher than the sum of the short-circuit currents of the three transformers, according to the hypothesis that the upstream network short-circuit power is 750 MVA and the loads are passive.

3 Protection of electrical equipment

Selection of the circuit-breaker

The following tables show some possible choices of ABB SACE circuit-breakers, according to the characteristics of the transformer to be protected.

Table 1: Protection and switching of $\mathbf{2 3 0} \mathbf{V}$ transformers

Transformer				Circuit-breaker "A" (LV side)				Busbar l_{k}				
S_{r}	u_{k}	Trafo I_{r}	Busbar I_{b}		ABB SACE Circuit-breaker	Release						
[$\mathrm{KVA}{ }^{\text {a }}$	[\%]	[A]	[A]	feeder I_{k}		size	minimum setting	[kA]	32A 63 A	$125 \mathrm{~A} \mid 160 \mathrm{~A}$	250 A	400 A
1×63		158	158	3.9	T18160*	In=160	1	3.9	5200	T18160		
2×63	4	158	316	3.9	T18160*	$\mathrm{ln}=160$	1	7.9	5200	T18160	T3N250	
1×100	4	251	251	6.3	T4N320	In=320	0.79	6.3	5200	T1B160		
2×100		251	502	6.2	T4N320	In=320	0.79	12.5	5200	T1B160	T3N250	T5N400
1×125	4	314	314	7.8	T5N400	$\mathrm{I}=400$	0.79	7.8	5200	T18160	T3N250	
2×125		314	628	7.8	T5N400	In=400	0.79	15.6	5200	T1B160	T3N250	TSN400
1×160	4	402	402	10.0	T5N630	In=630	0.64	10.0	5200	T1B160	T3N250	
2×160		402	803	9.9	T5N630	In=630	0.64	19.9	5200	T1B160	T3N250	TSN400
1×200	4	502	502	12.5	T5N630	In=630	0.8	12.5	5200	T18160	T3N250	TSN400
2×200		502	1004	12.4	T5N630	In=630	0.8	24.8		160	T3N250	TSN400
1×250	4	628	628	15.6	T5N630	In=630	1	15.6	5200	T18160	T3N250	TSN400
2×250		628	1255	15.4	T5N630	In=630	1	30.9		T1C160	T3N250	TSN400
1×315	4	791	791	19.6	T6N800	In=800	1	19.6		T18160	T3N250	TSN400
2×315		791	1581	19.4	T6N800	In=800	1	38.7		T1C160	T3N250	TSN400
1×400	4	1004	1004	24.8	T7S1250/X181250**	$\mathrm{ln}=1250$	0.81	24.8		T18160	T3N250	T5N400
2×400		1004	2008	24.5	T7S1250/X181250**	In=1250	0.81	48.9		T11160	T3N250	TSN400
1×500	4	1255	1255	30.9	T7S1600/X181600**	$\mathrm{ln}=1600$	0.79	30.9		T1C160	T3N250	T5N400
2×500		1255	2510	30.4	T7S1600/X181600*	$\mathrm{ln}=1600$	0.79	60.7		T2N160	T35250	TSN400
1×630	4	1581	1581	38.7	T7S1600/X181600**	$\mathrm{ln}=1600$	1	38.7		T1C160	T3N250	TSN400
2×630		1581	3163	37.9	T7S1600/X181600**	$\mathrm{ln}=1600$	1	75.9		T2S160	T35250	T5S400
3×630		1581	4744	74.4	T71600/E2S1600	$\mathrm{ln}=1600$	1	111.6		T2L160	T4L250	T5L400
1×800	5	2008	2008	39.3	E3N2500	$\mathrm{ln}=2500$	0.81	39.3		T1C160	T3N250	T5N400
2×800		2008	4016	38.5	E3N2500	In=2500	0.81	77.0		T25160	T35250	T5S400
3×800		2008	6025	75.5	E3H2500	$\mathrm{ln}=2500$	0.81	113.2		T2L160	T4L250	T5L400
1 $\times 1000$	5	2510	2510	48.9	E3N3200	In=3200	0.79	48.9		T1N160	T3N250	T5N400
2×1000		2510	5020	47.7	E3N3200	In=3200	0.79	95.3		T2H160	T4H250	T5H400
3×1000		2510	7531	93.0	E3H3200	In $=3200$	0.79	139.5		T4L250	T4L250	T5L400
1×1250	5	3138	3138	60.7	E3N3200	In=3200	1	60.7		T2N160	T33250	T5N400
2×1250		3138	6276	58.8	E3N3200	In=3200	1	117.7		T2L160	T4L250	T5L400
3×1250		3138	9413	114.1	E4V3200	In=3200	1	171.2		T4L250	T4L250	T5L400

*also Tmax series CBs equipped with elctronic releases can be used for this application
** also Isomax CB type S7 and Emax type E1 can be used for this application

Table 2: Protection and switching of $\mathbf{4 0 0} \mathbf{V}$ transfomers

Transformer				Circuit-breaker "A" (LV side)				Busbar ${ }_{k}$				
S_{r}	u_{k}	Trafo I_{r}	Busbar I_{b}	$\begin{array}{\|c\|} \hline \text { Trafo } \\ \text { feeder } I_{k} \end{array}$	ABB SACE Circuit-breaker	Release						
[kVA]	[\%]	[A]	[A]			size	minimum setting	[KA$]^{\text {a }}$	32 A 63 A	125 A 160 A	250 A	400 A
1×63	4	91	91	2.2	T1B*	$\mathrm{ln}=100$	0.92	2.2	S200			
2×63		91	182	2.2	T1B*	$\mathrm{ln}=100$	0.92	4.4	5200	T18160		
1 $\times 100$	4	144	144	3.6	T1B*	$\mathrm{ln}=160$	0.91	3.6	5200	T18160		
2×100		144	288	3.6	T1B*	$\mathrm{ln}=160$	0.91	7.2	5200	T18160		
1×125	4	180	180	4.5	T3N250*	In=200	0.73	4.5	5200	T18160		
2×125		180	360	4.4	T3N250*	In=200	0.73	8.8	5200	T18160		
1×160	4	231	231	5.7	T3N250*	In=250	0.93	5.7	5200	T18160		
2×160		231	462	5.7	T3N250*	In=250	0.93	11.4	S200M	T18160	T3N250	
1 $\times 200$	4	289	289	7.2	T4N320	In=320	0.91	7.2	5200	T18160	T3N250	
2×200		289	578	7.1	T4N320	In=320	0.91	14.2	S200M	T1B160	T3N250	T5N400
1×250	4	361	361	8.9	T5N400	$\mathrm{ln}=400$	0.91	8.9	5200	T18160	T3N250	
2×250		361	722	8.8	T5N400	$\mathrm{ln}=100$	0.91	17.6		11160	T3N250	T5N400
1×315	4	455	455	11.2	T5N630	In=630	0.73	11.2	S200M	T18160	T3N250	T5N400
2×315		455	910	11.1	T5N630	In=630	0.73	22.2		1 C 160	T3N250	T5N400
1×400	4	577	577	14.2	T5N630	In=630	0.92	14.2	S200M	T1B160	T3N250	T5N400
2×400		577	1154	14	T5N630	In=630	0.92	28		1 1160	T3N250	T5N400
1 $\times 500$	4	722	722	17.7	T6N800	In=800	0.91	17.7		1160	T3N250	T5N400
2×500		722	1444	17.5	T6N800	In=800	0.91	35.9		1 1160	T3N250	T5N400
1×630	4	909	909	22.3	T7S1000/X1B1000**	$\mathrm{In}=1000$	0.91	22.3		1160	T3N250	T5N400
2×630		909	1818	21.8	T7S1000/X181000**	$\mathrm{ln}=1000$	0.91	43.6		25160	T35250	T55400
3x630		909	2727	42.8	T7S1000/X1N1000**	$\mathrm{ln}=1000$	0.91	64.2		2 H 160	T4H250	T5H400
1×800	5	1155	1155	22.6	T7S1250/X181250**	$\mathrm{ln}=1250$	0.93	22.6		1160	T3N250	T5N400
2×800		1155	2310	22.1	T7S1250/X181250**	$\mathrm{ln}=1250$	0.93	44.3		25160	T35250	T55400
3×800		1155	3465	43.4	T7S1250/X1N1250**	$\mathrm{In}=1250$	0.93	65		2H160	T4H250	T5H400
1 $\times 1000$	5	1443	1443	28.1	T7S1600/X181600**	$\mathrm{ln}=1600$	0.91	28.1		1 N160	T3N250	T5N400
2×1000		1443	2886	27.4	T7S1600/X181600**	$\mathrm{ln}=1600$	0.91	54.8		2H160	T4H250	T5H400
3×1000		1443	4329	53.5	T7H1600/E2N1600	$\mathrm{ln}=1600$	0.91	80.2		21160	T4L250	T5L400
1×1250	5	1804	1804	34.9	E282000	In=2000	0.91	34.9		1 1160	T3N250	T5N400
2×1250		1804	3608	33.8	E2B2000	$\mathrm{ln}=2000$	0.91	67.7		2H160	T4H250	T5H400
3×1250		1804	5412	65.6	E2S2000	In=2000	0.91	98.4		4L250	T4L250	T5L400
1 $\times 1600$	6.25	2309	2309	35.7	E3N2500	$\mathrm{In}=2500$	0.93	35.7		1 1160	T3N250	TSN400
2x1600		2309	4618	34.6	E3N2500	In=2500	0.93	69.2		2H160	T4H250	T5H400
3×1600		2309	6927	67	E352500	$\mathrm{ln}=2500$	0.93	100.6		4L250	T4L250	T5L400
1 $\times 2000$	6.25	2887	2887	44.3	E3N3200	In=3200	0.91	44.3		25160	T35250	T55400
2×2000		2887	5774	42.6	E3N3200	In=3200	0.91	85.1		4 L250	T4L250	T5L400
3×2000		2887	8661	81.9	EЗH3200	In=3200	0.91	122.8		4V250	T4V250	T5V400
1×2500	6.25	3608	3608	54.8	E454000	$\mathrm{ln}=4000$	0.91	54.8		2H160	T4H250	T5H400
1×3125	6.25	4510	4510	67.7	E6H5000	In=5000	0.91	67.7		2H160	T4H250	T5H400

application
** also Isomax CB type S7 and Emax type E1 can be used for this application

Table 3: Protection and switching of $\mathbf{4 4 0} \mathbf{V}$ transformers

Transformer				Circuit-breaker "A" (LV side)				Busbar ${ }_{k}$						
S_{r}		Trafo I_{r}	Busbar Ib_{b}	$\begin{gathered} \text { Trafo } \\ \text { feeder } I_{k} \\ \hline \end{gathered}$	ABB SACE Circuit-breaker	Release								
[$\mathrm{kVA}{ }^{\text {] }}$	[\%]	[A]	[A]	[kA]		size	$\underset{\substack{\text { minimum } \\ \text { setting }}}{ }$	[kA]	32A 63 A	125 A	160 A	250 A	400 A	
1×63		83	83	2.1	T18160*	$\mathrm{ln}=100$	0.83	2.1	5200					
2×63	4	83	165	2.1	T18160*	$\mathrm{In}=100$	0.83	4.1	5200	T1B160				
1×100		131	131	3.3	T18160*	$\mathrm{ln}=160$	0.82	3.3	5200					
2×100	4	131	262	3.3	T18160*	$\mathrm{ln}=160$	0.82	6.5		T18160				
1×125		164	164	4.1	T3N250*	$\mathrm{In}=200$	0.82	4.1	5200	\|T18160				
2×125	4	164	328	4.1	T3N250*	In=200	0.82	8.1		T18160		T3N250		
1×160		210	210	5.2	T3N250*	In=250	0.84	5.2	5200	T1B16				
2×160	4	210	420	5.2	T3N250*	In=250	0.84	10.4		T1C160		T3N250		
1 $\times 200$		262	262	6.5	T4N320	in=320	0.82	6.5		T18160				
2×200	4	262	525	6.5	T4N320	In=320	0.82	12.9		T1C160		T3N250	T5N400	
1×250		328	328	8.1	T5N400	$\mathrm{ln}=400$	0.82	8.1		T18160		T3N250		
2×250	4	328	656	8.1	T5N400	$\mathrm{In}=400$	0.82	16.1		T1N160		T3N250	T5N400	
1×315		413	413	10.2	T5N630	$\mathrm{ln}=630$	0.66	10.2		T1C160		T3N250		
2×315	4	413	827	10.1	T5N630	In=630	0.66	20.2		T1N160		T3N250	T5N400	
1×400		525	525	12.9	T5N630	In=630	0.83	12.9		T1C160		T3N250	T5N400	
2×400	4	525	1050	12.8	T5N630	In=630	0.83	25.6		T2N160		T35250	T5N400	
1×500		656	656	16.1	T6N800	$\mathrm{ln}=800$	0.82	16.1		T1N160		T3N250	T5N400	
2×500	4	656	1312	15.9	T6N800	In=800	0.82	31.7		T25160		T35250	T55400	
1×630		827	827	20.2	T751000/ $\times 181250 \times$	$\mathrm{In}=1000$	0.83	20.2		T11160		T3N250	T5N400	
2×630	4	827	1653	19.8	T751000/X181250**	$\mathrm{In}=1000$	0.83	39.7		T2S160		T35250	T55400	
3×630		827	2480	38.9	T751000/ $\times 181250 \times$	$\mathrm{In}=1000$	0.83	58.3		T2L160		T4H250	T5H400	
1×800		1050	1050	20.6	T751250/X181250**	$\mathrm{In}=1250$	0.84	20.6		T1N160		T3N250	T5N400	
2×800	5	1050	2099	20.1	T7S1250/X181250*	$\mathrm{In}=1250$	0.84	40.3		T2S160		T4H250	T5H400	
3×800		1050	3149	39.5	T7S1250/X181250*	$\mathrm{In}=1250$	0.84	59.2		T2L160		T4H250	T5H400	
1 $\times 1000$		1312	1312	25.6	T7S1600/X181600**	$\mathrm{In}=1600$	0.82	25.6		T2N160		T35250	T5N400	
2×1000	5	1312	2624	24.9	T7S1600/X181600*	$\mathrm{In}=1600$	0.82	49.8		T2H160		T4H250	T5H400	
3×1000		1312	3936	48.6	T7H1600/X1N1600*	$\mathrm{In}=1600$	0.82	72.9		T2L160		T4L250	T5L400	
1×1250		1640	1640	31.7	E2B2000	In=2000	0.82	31.7		T25160		T35250	T55400	
2×1250	5	1640	3280	30.8	E282000	$\mathrm{In}=2000$	0.82	61.5		T2L160		T4H250	T5H400	
3×1250		1640	4921	59.6	E2N2000	In=2000	0.82	89.5		T4L250		T4L250	T5L400	
1 $\times 1600$		2099	2099	32.5	E3N2500	$\mathrm{In}=2500$	0.84	32.5		T2S160		T35250	T5S400	
2×1600	6.25	2099	4199	31.4	E3N2500	$\mathrm{In}=2500$	0.84	62.9		T2L160		T4H250	T5H400	
3×1600		2099	6298	60.9	E3N2500	$\mathrm{In}=2500$	0.84	91.4		T4L250		T4L250	T5L400	
1×2000		2624	2624	40.3	E3N3200	In=3200	0.82	40.3		T25160		T4H250	T5H400	
2 2000	6.25	2624	5249	38.7	E3N3200	In=3200	0.82	77.4		T4L250		T4L250	T5L400	
3×2000		2624	7873	74.4	E353200	In=3200	0.82	111.7		T4V250		T4V250	T5V400	
1×2500	6.25	3280	3280	49.8	E4S4000	$\mathrm{In}=4000$	0.82	49.8		T2H160		T4H250	T5H400	
1×3125	6.25	4100	4100	61.5	E6H5000	In=5000	0.82	61.5		T2L160		T4H250	T5H400	

*also max senes CBs equipped witcteronic releases can be used for this application
** also Isomax CB type S7 and Emax type E1 can be used for this application

Circuit	aker 'B" (Feed	ircuit-breaker)						
Feeder circuit-breaker type and rated current								
630 A	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
T5N630								
T5N630								
T55630	T65800/X18800							
T5N630								
T55630	T65800/X18800	T751000/X181000	T751250/X181250					
T5H630	T6L800/X1N800	T7H1000/X1N1000	T7H1250/X1N1250	T7H1600/X1N1600	E2N2000			
T5N630	T6N800/X18800							
T5H630	T65800/X18800	T751000/X181000	T7S1250/X181250	T751600/X181600				
T5H630	T6L800/X1N800	T7H1000/X1N1000	T7H1250/X1N1250	T7H1600/X1N1600	E2N2000	E3N2500	E3N3200	E4S4000
T5N630	T6N800/X18800							
T5H630	T6H800/E1N800	T7S1000/X1N1000	T7S1250/X1N1250	T7S1600/X1N1600	E2N2000			
T5L630	T6L800/E2S800	T7L1000/E2S1000	T7L1250/E2S1250	T7L1600/E2S1600	E352000	E352500	E353200	
T55630	T65800/X18800	T7S1000/X181000	T751250/X181250					
T5H630	T6L800/X1N800	T7H1000/X1N1000	T7H1250/XN1250	T7H1600/X1N1600	E2N2000	E3N2500		
T5L630	T7L800/E3H800	T7L1000/E3H1000	T7L1250/E3H1250	T7L1600/E3H1600	E3H2000	E3H2500	ЕзН3200	E4H4000
T55630	T65800/X18800	T751000/X181000	T751250/X181250	T7S1600/X181600				
T5H630	T6L800/X1N800	T7H1000/X1N1000	T7H1250/X1N1250	T7H1600/X1N1600	E2N2000	E3N2500	E3N3200	
T5L630	T7L800/E3H800	T7L1000/E3H1000	T7L1250/E3H1250	T7L1600/E3H1600	E3H2000	E3H2500	E3H3200	E4H4000
T5H630	T65800/118800	T751000/X181000	T751250/X181250	T751600/X181600	E282000			
T5L630	T6L800/E2S800	T7L1000/E2S1000	T7L1250/E2S1250	T7L1600/E2S1600	E3H2000	E3H2500	E3H3200	E4H4000
$\begin{aligned} & \text { T5V630 } \\ & \hline \text { T5H630 } \\ & \hline \end{aligned}$	T7V800/E3V800	T7V1000/E3V1000	T7V1250/E3V1250	E3V1600	E3V2000	E3V2500	E3V3200	E4V4000
	T6H800/X1N800	T751000/X1N1000	T7S1250/X1N1250	T7S1600/X1N1600	E2N2000	E3N2500		
$\begin{aligned} & \frac{15 H 630}{75 H} \\ & \hline \end{aligned}$	T6L800/X1N800	T7H1000/X1N1000	T7H1250/X1N1250	T7H1600/X1N1600	E2N2000	E3N2500	E3N3200	

3 Protection of electrical equipment
Table 4: Protection and switching of $\mathbf{6 9 0}$ V transfomers

Transformer				Cirrcuit-breaker "A" (LV side)				Busbar I_{k}						
S_{r}	u_{k}	Trafo $\mathrm{I}_{\mathbf{r}}$	Busbar l_{b}	$\begin{array}{\|c} \hline \text { Trafo } \\ \text { feeder } I_{k} \\ \hline \end{array}$	ABB SACE Circuit-breaker	Release								
[kVA]		$\begin{aligned} & \hline[\mathrm{A}] \\ & \hline 53 \end{aligned}$	[A]			size	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { minimum } \\ \text { setting } \end{array} \\ \hline \end{array}$	[kA]	32 A	63 A	125 A	160 A	250 A	400 A
1×63	[\%]		53	1.3	T1B*	In=63	0.84	1.3	T18160					
2×63		53	105	1.3	T1B*	In=63	0.84	2.6	T1B1					
1×100	4	84	84	2.1	T1B*	$\mathrm{ln}=100$	0.84	2.1	TiB1					
2×100		84	167	2.1	T1B*	$\mathrm{ln}=100$	0.84	4.2		T1N160				
1×125	4	105	105	2.6	T1B*	$\mathrm{ln}=125$	0.84	2.6	T1B1	60				
2×125		105	209	2.6	T1B*	$\mathrm{In}=125$	0.84	5.2		TiN1	160			
1×160	4	134	134	3.3	T1C*	$\mathrm{I}=160$	0.84	3.3	T1C1	60				
2×160		134	268	3.3	T1C*	$\mathrm{ln}=160$	0.84	6.6		T2S1	160			
1 $\times 200$	4	167	167	4.2	T3N250*	$\mathrm{In}=200$	0.84	4.2		T1N160				
2×200		167	335	4.1	T3N250*	In=200	0.84	8.3		T2L1	160		T4N250	
1×250	4	209	209	5.2	T35250*	$\mathrm{ln}=250$	0.84	5.2		T1N1	160			
2×250		209	418	5.1	T35250*	In=250	0.84	10.3		T4N2	250		T4N250	
1 $\times 315$	4	264	264	6.5	T4N320	In=320	0.82	6.5		T2S1	160			
2×315		264	527	6.5	T4N320	In=320	0.82	12.9		T4N2	250		T4N250	T5N400
1×400	4	335	335	8.3	T5N400	$\mathrm{In}=400$	0.84	8.3		T2L1	160		T4N250	
2×400		335	669	8.2	T5N400	$\mathrm{ln}=400$	0.84	16.3		T4N2	250		T4N250	T5N400
1×500	4	418	418	10.3	T5N630	In=630	0.66	10.3		T4N2	250		T4N250	
2×500		418	837	10.1	T5N630	In=630	0.66	20.2		T452	250		T45250	T55400
1×630	4	527	527	12.9	T5N630	In=630	0.84	12.9		T4N2	250		TAN250	T5N400
2×630		527	1054	12.6	T5N630	In=630	0.84	25.3		T4H2	250		T4H250	T5H400
3×630		527	1581	24.8	T55630	In=630	0.84	37.2		T4H2	250		THH250	T5H400
1×800	5	669	669	13.1	T6N800	In=800	0.84	13.1		T4N2	250		T4N250	TSN400
2×800		669	1339	12.8	T6N800	$\mathrm{In}=800$	0.84	25.7		T4H2	250		T4H250	T5H400
3×800		669	2008	25.2	T6L800	In=800	0.84	37.7		T4H2	250		T4H250	T5H400
1 $\times 1000$	5	837	837	16.3	T7S1000/X181000**	$\mathrm{ln}=1000$	0.84	16.3		T4N2	250		T4N250	TSN400
2×1000		837	1673	15.9	T7S1000/X181000**	$\mathrm{In}=1000$	0.84	31.8		T4H2	250		THH250	T5H400
3×1000		837	2510	31.0	T7H1000/X181000*	$\mathrm{ln}=1000$	0.84	46.5		T4L2	250		T4L250	T5L400
1 $\times 1250$	5	1046	1046	20.2	T7S1250/X181250*	$\mathrm{ln}=1250$	0.84	20.2		T452	250		T45250	T55400
2×1250		1046	2092	19.6	T7S1250/X181250*	$\mathrm{ln}=1250$	0.84	39.2		T4H2			T4H250	T5H400
3×1250		1046	3138	38.0	T7H1250/X181250*	In=1250	0.84	57.1		T4L2	250		T4L250	T5L400
1 $\times 1600$	6.25	1339	1339	20.7	T7S1600/X1B1600*	$\mathrm{ln}=1600$	0.84	20.7		T452	250		T45250	T55400
2×1600		1339	2678	20.1	T751600/X181600**	$\mathrm{ln}=1600$	0.84	40.1		T4L2	250		T4L250	T5L400
3×1600		1339	4016	38.9	T7H1600/X181600**	$\mathrm{ln}=1600$	0.84	58.3		T4L2	250		T4L250	T5L400
1×2000	6.25	1673	1673	25.7	E2B2000	$\mathrm{ln}=2000$	0.84	25.7		T4H2	250		T4H250	T5H400
2×2000		1673	3347	24.7	E282000	$\mathrm{ln}=2000$	0.84	49.3		T4L2	250		T4L250	T5L400
3×2000		1673	5020	47.5	E2N2000	$\mathrm{In}=2000$	0.84	71.2		T4V2	250		T4V250	T5V400
1 $\times 2500$	6.25	2092	2092	31.8	E3N2500	$\mathrm{ln}=2500$	0.84	31.8		T4H2	250		T4H250	T5H400
1×3125	6.25	2615	2615	39.2	E3N3200	In=3200	0.82	39.2		T4H2	250		T4H250	T5H400

ronic releases can be used for this application
** also Isomax CB type S7 and Emax type E1 can be used for this application

Circuit-breaker "B" (Feeder circuit-breaker)								
Feeder circuit-breaker type and rated current								
630 A	800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
T55630								
T5H630								
T5H630	T7H800/X18800	T7H1000/X181000	T7H1250/X181250					
T5H630	T6L800/X18800							
T5H630	T74800/X1N800	T7H1000/X1N1000	T7H1250/X1N1250	T7H1600/X1N1600				
T5N630								
T5H630	T7H800/X18800	T7H1000/X181000	T7H1250/X181250					
T5L630	T7L800/X1N800	T7L1000/X1N1000	T7L1250/X1N1250	T7L1600/X1N1600	E2N2000			
T55630	T65800/X18800							
T5H630	T7H800/X18800	T7H1000/X181000	T7H1250/X181250	T7H1600/X1N1600				
T56630	T7V800/E2S800	T7V1000/E251000	T7V1250/ES21250	E2S1600	E2S2000			
T55630	T65800/X18800	T7S1000/X181000						
T56630	T74800/X18800	T7H1000/X181000	T7H1250/X181250	T7H1600/X181600	E282000			
T56630	T7V800/E2S800	TTV1000/X181000	T7V1250/ES221250	E2S1600	E2S2000	E3N2500	E3N3200	
T5H630	T6L800/X1N800	T7S1000/E2S1000	T751250/X111250					
T5L630	T7L800/X1N800	T7L1000/X1N1000	T7L1250/X1N1250	T7L1600/X1N1600	E2N2000	E3N2500		
T5V630			E3S1250	E3S1600	E352000	E352500	E3S3200	E454000
T5H630	T7H800/X18800	T7H1000/X181000	T7H1250/X181250	T7H1600/X181600				
T5H630	T7H800/X18800	T7H1000/X181000	T7H1250/X181250	T7H1600/X181600	E282000			

3 Protection of electrical equipment

NOTE

The tables refer to the previously specified conditions; the information for the selection of circuit-breakers is supplied only with regard to the current in use and the prospective short-circuit current. For a correct selection, other factor such as selectivity, back-up protection, the decision to use limiting circuitbreakers etc. must also be considered. Therefore, it is essential that the design engineers carry out precise checks.
It must also be noted that the short-circuit currents given are determined using the hypothesis of 750 MVA power upstream of the transformers, disregarding the impedances of the busbars or the connections to the circuit-breakers

Example:

Supposing the need to size breakers A1/A2/A3, on the LV side of the three transformers of $630 \mathrm{kVA} 20 / 0.4 \mathrm{kV}$ with $\mathrm{u}_{\mathrm{k}} \%$ equal to 4% and outgoing feeder circuit-breakers B1/B2/B3 of $63-400-800 \mathrm{~A}$:

3 Protection of electrical equipment

From Table 2, corresponding to the row relevant to $3 \times 630 \mathrm{kVA}$ transformers, it can be read that:

evel A circuit-breakers (LV side of transformer)

- Trafo $\mathrm{I}_{\mathrm{r}}(909 \mathrm{~A})$ is the current that flows through the transformer circuit-breakers - Busbar $\mathrm{I}_{\mathrm{b}}(2727 \mathrm{~A})$ is the maximum current that the transformers can supply - Trafo Feeder $I_{k}(42.8 \mathrm{kA})$ is the value of the short-circuit current to consider for the choice of the breaking capacity of each of the transformer circuit-breakers T7S1000 or X1N1000 is the size of the transformer circuit-breaker;
- In $(1000 \mathrm{~A})$ is the rated current of the transformer circuit-breaker (electronic release chosen by the user):
The minimum value 0.91 indicate the minimum settings of the L function of the electronic releases for CBs T7S1000 and X1N1000

Level B circuit-breakers (outgoing feeder)

- Busbar $\mathrm{I}_{\mathrm{k}}(64.2 \mathrm{kA})$ is the short-circuit current due to the contribution of al three transformers;
corresponding to 63 A , read circuit-breaker B1 Tmax T2H160
corresponding to 400 A , read circuit-breaker B2 Tmax T5H400
- corresponding to 400 A , read circuit-breaker B2 Tmax T5H400; Emax X1N800
The choice made does not take into account discrimination/back-up requirements. Refer to the relevant chapters for selections appropriate to the various cases

4 Power factor correction

.1 General aspects

In alternating current circuits, the current absorbed by the user can be epresented by two components:

the active component I_{R}, in phase with the supply voltage, is directly correlated to the output (and therefore to the part of electrical energy transformed into energy of a different type, usually electrical with different characteristics, mechanical, light and/or thermal)
the reactive component I_{Q}, in quadrature to the voltage, is used to produce the flow necessary for the conversion of powers through the electric or magnetic field. Without this, there could be no flow of power, such as in the core of a transformer or in the air gap of a motor.
In the most common case, in the presence of ohmic-inductive type loads, the total current (I) lags in comparison with the active component I_{R}.
In an electrical installation, it is necessary to generate and transmit, other than the active power P, a certain reactive power Q , which is essential for the conversion of electrical energy, but not available to the user. The complex of the power generated and transmitted constitutes the apparent power S.

Power factor $(\cos \varphi)$ is defined as the ratio between the active component I_{R} and the total value of the current $l ; \varphi$ is the phase shifting between the voltage U and the current I.
It results:

$$
\cos \varphi=\frac{I_{R}}{I}=\frac{P}{S}
$$

The reactive demand factor ($\tan \varphi)$ is the relationship between the reactive power and the active power:

$$
\tan \varphi=\frac{Q}{P}(2)
$$

4 Power factor correction

Table 1 shows some typical power factors:

Table 1: Typical power factor

Load	$\cos \varphi$ power factor	tan φ reactive demand factor
Transformers (no load condition)	$0.1 \div 0.15$	$9.9 \div 6.6$
Motor (full load)	$0.7 \div 0.85$	$1.0 \div 0.62$
Motor (no load)	0.15	6.6
Metal working apparatuses:	$0.35 \div 0.6$	$2.7 \div 1.3$
Arc welding	$0.7 \div 0.8$	$1.0 \div 0.75$
Arc welding compensated	$0.4 \div 0.6$	$2.3 \div 1.3$
- Resistance welding:	$0.75 \div 0.9$	$0.9 \div 0.5$
Arc melting furnace		
Fluorescent lamps	0.9	0.5
- compensated	$0.4 \div 0.6$	$2.3 \div 1.3$
- uncompensated	0.5	1.7
Mercury vapour lamps	$0.65 \div 0.75$	$1.2 \div 0.9$
Sodium vapour lamp	$0.6 \div 0.95$	$1.3 \div 0.3$
AC DC converters	$0.4 \div 0.75$	$2.3 \div 0.9$
DC drives	$0.95 \div 0.97$	$0.33 \div 0.25$
AC drives	1	0
Resistive load		

The power factor correction is the action increasing the power factor in a specific section of the installation by locally supplying the necessary reactive power, so as to reduce the current value to the equivalent of the power required, and herefore the total power absorbed from the upstreamside. Thus, both the lin as well as the supply generator can be sized for a lower apparent power value equired by the load
In detail, as shown by Figure 1 and Figure 2, increasing the power factor of the oad:
decreases the relative voltage drop $u_{p p}$ per unit of active power transmitted; increases the transmittable active power and decreases the losses, the other dimensioning parameters remaining equal.

4 Power factor correction

Figure 1: Relative voltage drop

Voltage drop per unit of active power transmitted

Load power factor

Figure 2: Transmittable active power

4 Power factor correction

The distribution authority is responsible for the production and transmission of the reactive power required by the user installations, and therefore has a series of further inconveniences which can be summarized as:

- oversizing of the conductors and of the components of the transmission lines;
oversizing of the conductors and of the components of the transmission ines;
- higher J oule-effect losses and higher voltage drops in the components and lines.
The same inconveniences are present in the distribution installation of the final user. The power factor is an excellent index of the size of the added costs and is therefore used by the distribution authority to define the purchase price of the energy for the final user.
The ideal situation would be to have $\operatorname{a} \cos \varphi$ slightly higher than the set reference so as to avoid payment of legal penalties, and at the same time not to risk having, with a $\cos \varphi$ too close to the unit, a leading power factor when the power factor corrected device is working with a low load.
The distribution authority generally does not allow others to supply reactive power to the network, also due to the possibility of unexpected overvoltages.

In the case of a sinusoidal waveform, the reactive power necessary to pass from one power factor $\cos \varphi_{1}$ to a power factor $\cos \varphi_{2}$ is given by the formula:

$$
\mathrm{Q}_{\mathrm{c}}=\mathrm{Q}_{2}-\mathrm{Q}_{1}=\mathrm{P} \cdot\left(\tan \varphi_{1}-\tan \varphi_{2}\right)
$$

where:
P
is the active power;
$\mathrm{Q}_{1}, \varphi_{1}$ are the reactive power and the phase shifting before power factor correction
$\mathrm{Q}_{2}, \varphi_{2}$ are the reactive power and the phase shifting after power factor corection;
$\mathrm{Q}_{\mathrm{c}} \quad$ is the reactive power for the power factor correction.

4 Power factor correction

Table 2 shows the value of the relationship

$$
\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{Q}_{\mathrm{c}}}{\mathrm{P}}=\tan \varphi_{1}-\tan \varphi_{2}(4)
$$

for different values of the power factor before and after the correction.

4 Power factor correction

Example

Supposing the need to change from 0.8 to 0.93 the power factor of a three phase installation ($\mathrm{U}_{\mathrm{r}}=400 \mathrm{~V}$) which absorbs an average power of 300 kW . rom Table 2, at the intersection of the column comesponding to the final power factor (0.93), and the row corresponding to the starting power factor (0.8), the value of $K_{c}(0.355)$ can be read. The reactive power Q_{c} which must be generated locally shall be:

$$
Q_{C}=K_{c} \cdot P=0.355 \cdot 300=106.5 \mathrm{Kvar}
$$

Due to the effect of power factor correction, the current absorbed decreases from 540 A to 460 A (a reduction of approximately 15%)

Characteristics of power factor correction capacitor banks

The most economical means of increasing the power factor, especially for an installation which already exists, is installing capacitors.
Capacitors have the following advantages:
low cost compared with synchronous compensators and electronic power converters;
ease of installation and maintenance;
reduced losses (less than $0.5 \mathrm{~W} / \mathrm{kvar}$ in low voltage);
the possibility of covering a wide range of powers and different load profiles, simply supplying in parallel different combinations of components, each with a relatively small power.

The disadvantages are sensitivity to overvoltages and to the presence of non linear loads.

The Standards applicable to power factor correction capacitors are as follows:
IEC 60831-1 "Shunt power capacitors of the self-healing type for a.c. systems having a rated voltage up to and including 1000 V - Part 1: General - Perfor mance, testing and rating - Safety requirements - Guide for installation and operation";

IEC 60931-1 "Shunt power capacitors of the non-self-healing type for a.c systems having a rated voltage up to and including 1000 V-Part 1: General Performance, testing and rating - Safety requirements - Guide for installation and operation".

4 Power factor correction

The characteristics of a capacitor, given on its nameplate, are:

- rated voltage U_{r}, which the capacitor must withstand indefinitely - rated frequency f_{r} (usually equal to that of the network);
- rated power Q_{c}, generally expressed in kvar (reactive power of the capacitor bank).

From this data it is possible to find the size charactenistics of the capacitors by using the following formulae (5)

	Single phase connection	Three-phase star-connection	Three-phase delta-connection
Capacity of the capacitor bank	$\mathrm{C}=\frac{\mathrm{Q}_{\mathrm{c}}}{2 \pi \mathrm{f}_{r} \cdot \mathrm{U}_{\mathrm{r}}^{2}}$	$\mathrm{C}=\frac{\mathrm{Q}_{\mathrm{c}}}{2 \pi \mathrm{f}_{r} \cdot \mathrm{U}^{2}}$	$\mathrm{C}=\frac{\mathrm{Q}_{\mathrm{c}}}{2 \pi \mathrm{f}_{\cdot} \cdot \mathrm{U}_{\mathrm{r}}^{2} \cdot 3}$
Rated curent of the components	$\mathrm{I}_{\mathrm{r}}=2 \pi \mathrm{f} \cdot \mathrm{C} \cdot \mathrm{U}_{\mathrm{r}}$	$\mathrm{I}_{\mathrm{r}}=2 \pi \mathrm{f}_{\mathrm{r}} \cdot \mathrm{C} \cdot \mathrm{U}_{\mathrm{r}} / \sqrt{3}$	$\mathrm{I}_{\mathrm{r}}=2 \pi \mathrm{f} \cdot \mathrm{C} \cdot \mathrm{U} \cdot \mathrm{U}_{\mathrm{r}}$
Line current	$\mathrm{I}_{1}=\mathrm{I}_{\text {c }}$	$1_{1}=I_{\text {c }}$	$\mathrm{I}_{1}=1 \pi \cdot \sqrt{3}$

$\mathrm{U}_{\mathrm{r}}=$ line voltage system
In a three-phase system, to supply the same reactive power, the star connection requires a capacitor with a capacitance three times higher than the deltaconnected capacitor.
In addition, the capacitor with the star connection results to be subjected to a voltage $\sqrt{ } 3$ lower and flows through by a current $\sqrt{ } 3$ higher than a capacitor inserted and delta connected.
Capacitors are generally supplied with connected discharge resistance calculated so as to reduce the residual voltage at the terminals to 75 V in 3 minutes, as stated in the reference Standard.

4.2 Power factor correction method

Single PFC

Single or individual power factor correction is carried out by connecting a capacitor of the correct value directly to the terminals of the device which absorbs reactive power.
Installation is simple and economical: capacitors and load can use the same overload and short-circuit protection, and are connected and disconnected simultaneously.
The adjustment of $\cos \varphi$ is systematic and automatic with benefit not only to the energy distribution authority, but also to the whole internal distribution system of the user.
This type of power factor correction is advisable in the case of large users with constant load and power factor and long connection times.
Individual PFC is usually applied to motors and fluorescent lamps. The capacitor units or small lighting capacitors are connected directly to loads.

4 Power factor correction

ndividual PFC of motors

The usual connection diagrams are shown in the following figure:

It e case of direct connection (diagrams 1 and 2) there is a risk that after disconnection of the supply, the motor will continue to rotate (residual kinetic energy) and self-excite with the reactive energy supplied by the capacitor bank, acting as an asynchronous generator. In this case, the voltage is maintained on the load side of the switching and control device, with the risk of dangerous overvoltages of up to twice the rated voltage value.

However, in the case of diagram 3, to avoid the risk detailed above, the norma procedure is to connect the PFC bank to the motor only when it is running, and to disconnect it before the disconnection of the motor supply

As a general rule, for a motor with power P_{r}, it is advisable to use a PFC with reactive power Q_{c} below 90% of the reactive power absorbed by the no-load motor Q_{0}, at rated voltage U_{r}, to avoid a leading power factor Considering that under no-load conditions, the current absorbed $\mathrm{I}_{0}[\mathrm{~A}]$ is solely reactive, if the voltage is expressed in volts, it results:

$$
\mathrm{Q}_{\mathrm{c}}=0.9 \cdot \mathrm{Q}_{0}=0.9 \cdot \frac{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}} \cdot \mathrm{I}_{0}}{1000}[\mathrm{kvar}](6)
$$

The current I_{0} is generally given in the documentation supplied by the manufacturer of the motor.

4 Power factor correction

Table 3 shows the values of reactive power for power factor correction of some ABB motors, according to the power and the number of poles

Table 3: Reactive power for power factor motor correction

$\mathbf{P}_{\mathbf{r}}$ $[\mathbf{k W}]$	$\mathbf{Q}_{\mathbf{c}}$ $[\mathbf{k v a r}]$	Before PFC $\boldsymbol{\operatorname { c o s }} \varphi_{r}$		After PFC	
$\mathbf{I}_{\mathbf{r}}[\mathbf{A}]$	$\boldsymbol{\operatorname { c o s } \varphi _ { \mathbf { 2 } }}$	$\mathbf{I}_{\mathbf{2}}[\mathbf{A}]$			

$\mathbf{4 0 0 V} / \mathbf{5 0} \mathbf{~ H z / 2}$ poles $/ \mathbf{3 0 0 0} \mathbf{r} / \mathbf{m i n}$					
7.5	2.5	0.89	13.9	0.98	12.7
11	2.5	0.88	20	0.95	18.6
15	5	0.9	26.5	0.98	24.2
18.5	5	0.91	32	0.98	29.7
22	5	0.89	38.5	0.96	35.8
30	10	0.88	53	0.97	47.9
37	10	0.89	64	0.97	58.8
45	12.5	0.88	79	0.96	72.2
55	15	0.89	95	0.97	87.3
75	15	0.88	131	0.94	122.2
90	15	0.9	152	0.95	143.9
110	20	0.86	194	0.92	181.0
132	30	0.88	228	0.95	210.9
160	30	0.89	269	0.95	252.2
200	30	0.9	334	0.95	317.5
250	40	0.92	410	0.96	391.0
315	50	0.92	510	0.96	486.3

$\mathbf{4 0 0 V} / \mathbf{5 0} \mathbf{~ H z} / \mathbf{4}$ poles $/ \mathbf{1 5 0 0} \mathbf{r} / \mathbf{m i n}$					
7.5	2.5	0.86	14.2	0.96	12.7
11	5	0.81	21.5	0.96	18.2
15	5	0.84	28.5	0.95	25.3
18.5	7.5	0.84	35	0.96	30.5
22	10	0.83	41	0.97	35.1
30	15	0.83	56	0.98	47.5
37	15	0.84	68	0.97	59.1
45	20	0.83	83	0.97	71.1
55	20	0.86	98	0.97	86.9
75	20	0.86	135	0.95	122.8
90	20	0.87	158	0.94	145.9
110	30	0.87	192	0.96	174.8
132	40	0.87	232	0.96	209.6
160	40	0.86	282	0.94	257.4
200	50	0.86	351	0.94	320.2
250	50	0.87	430	0.94	399.4
315	60	0.87	545	0.93	507.9

4 Power factor correction

$\begin{gathered} \mathbf{P r}_{\mathbf{r}} \\ {[\mathrm{kW}]} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{Q}_{\mathbf{c}} \\ {[k \text { var] }} \end{gathered}$	Before PFC		After PFC	
		$\cos ^{\left(\varphi_{r}\right.}$	$\mathrm{Ir}_{\mathrm{r}}[\mathrm{A}]$	$\boldsymbol{\operatorname { c o s }} \varphi_{2}$	$\mathbf{I}_{2}[\mathrm{~A}]$
$400 \mathrm{~V} / 50 \mathrm{~Hz} / 6$ poles / $1000 \mathrm{r} / \mathrm{min}$					
7.5	5	0.79	15.4	0.98	12.4
11	5	0.78	23	0.93	19.3
15	7.5	0.78	31	0.94	25.7
18.5	7.5	0.81	36	0.94	30.9
22	10	0.81	43	0.96	36.5
30	10	0.83	56	0.94	49.4
37	12.5	0.83	69	0.94	60.8
45	15	0.84	82	0.95	72.6
55	20	0.84	101	0.96	88.7
75	25	0.82	141	0.93	123.9
90	30	0.84	163	0.95	144.2
110	35	0.83	202	0.94	178.8
132	45	0.83	240	0.95	210.8
160	50	0.85	280	0.95	249.6
200	60	0.85	355	0.95	318.0
250	70	0.84	450	0.94	404.2
315	75	0.84	565	0.92	514.4
$400 \mathrm{~V} / 50 \mathrm{~Hz} / 8$ poles / $750 \mathrm{r} / \mathrm{min}$					
7.5	5	0.7	18.1	0.91	13.9
11	7.5	0.76	23.5	0.97	18.4
15	7.5	0.82	29	0.97	24.5
18.5	7.5	0.79	37	0.93	31.5
22	10	0.77	45	0.92	37.5
30	12.5	0.79	59	0.93	50.0
37	15	0.78	74	0.92	62.8
45	20	0.78	90	0.93	75.4
55	20	0.81	104	0.93	90.2
75	30	0.82	140	0.95	120.6
90	30	0.82	167	0.93	146.6
110	35	0.83	202	0.94	178.8
132	50	0.8	250	0.93	214.6

4 Power factor correction

Example

For a three-phase asynchronous motor, 110 kW ($400 \mathrm{~V}-50 \mathrm{~Hz}-4$ poles), the PFC power suggested in the table is 30 kvar.

Individual power factor correction of three-phase transformers

A transformer is an electrical device of primary importance which, due to the system requirements, is often constantly in service.
In particular, in installations constituted by several transformer substations, it is advisable to carry out power factor correction directly at the transformer.
In general, the PFC power (Q_{C}) for a transformer with rated power $\mathrm{S}_{\mathrm{r}}[\mathrm{kVA}]$ should not exceed the reactive power required under minimum reference load conditions.
Reading the data from the transformer nameplate, the percentage value of the no-load current $i_{0} \%$, the percentage value of the short-circuit voltage $u_{k} \%$, the iron losses P_{fe} and the copper losses $\mathrm{P}_{\mathrm{cu}}[\mathrm{kW}]$, the PFC power required is approximately:
$Q_{c}=\sqrt{\left(\frac{i_{0} \%}{100} \cdot S_{r}\right)^{2}-P_{f e}{ }^{2}}+K_{L}{ }^{2} \cdot \sqrt{\left(\frac{u_{k} \%}{100} \cdot S_{r}\right)^{2}-P_{c u}{ }^{2}} \approx\left(\frac{i_{0} \%}{100} \cdot S_{r}\right)+K_{L}{ }^{2} \cdot\left(\frac{u_{k} \%}{100} \cdot S_{r}\right)[k \operatorname{kvar}](7)$
where K_{L} is the load factor, defined as the relationship between the minimum reference load and the rated power of the transformer.

Example

Supposing the need for PFC of a 630 kVA oil-distribution transformer which supplies a load which is less than 60% of its rated power.
From the data on the transformer nameplate:
$\mathrm{i}_{0} \%=1.8 \%$
$\mathrm{u}_{\mathrm{k}} \%=4 \%$
$\mathrm{P}_{\mathrm{cu}}=8.9 \mathrm{~kW}$
$\mathrm{P}_{\mathrm{fe}}=1.2 \mathrm{~kW}$
The PFC power of the capacitor bank connected to the transformer is:
$\left.\left.\left.Q_{c}=\sqrt{\left(\frac{i_{0}}{100}\right.} \cdot S_{r}\right)^{2}-P_{f e}^{2}+K_{L}^{2} \cdot \sqrt{\left(\frac{U_{k} \%}{100}\right.} \cdot S_{r}\right)^{2}-P_{\mathrm{cu}}{ }^{2}=\sqrt{\left(\frac{1.8 \%}{100} \cdot 630\right)^{2}} 1.2^{2}+0.6^{2} \cdot \sqrt{\left(\frac{4 \%}{100}\right.} 630\right)^{2}-8.9^{2}=19.8 \mathrm{kvar}$
while, when using the simplified formula, the result is
$Q_{c}=\left(\frac{i_{0} \%}{100} \cdot S_{r}\right)+K_{L}^{2} \cdot\left(\frac{u_{k} \%}{100} \cdot S_{r}\right)=\left(\frac{1.8 \%}{100} \cdot 630\right)+0.6^{2} \cdot\left(\frac{4 \%}{100} \cdot 630\right)=20.4 \mathrm{kvar}$

4 Power factor correction

 on the secondary side of an ABB transformer, according to the different minimum estimated load levels.

Table 4: PFC reactive power for ABB transformers

\mathbf{Q}_{c} [kvar]

Qc [kvar]									
$\begin{gathered} \mathbf{s}_{\mathbf{r}} \\ {[\mathrm{kVA}]} \\ \hline \end{gathered}$	$\mathbf{u k}_{\mathbf{k}} \%$	io\%	$\mathrm{P}_{\text {fe }}$	Pcu		load factor K_{L}			
	[\%]	[\%]	[kW]	[kW]	0	0.25	0.5	0.75	1
Oil Distribution Transformer MV-LV									
50	4	2.9	0.25	1.35	1.4	1.5	1.8	2.3	2.9
100	4	2.5	0.35	2.30	2.5	2.7	3.3	4.3	5.7
160	4	2.3	0.48	3.20	3.6	4	5	6.8	9.2
200	4	2.2	0.55	3.80	4.4	4.8	6.1	8.3	11
250	4	2.1	0.61	4.50	5.2	5.8	7.4	10	14
315	4	2	0.72	5.40	6.3	7	9.1	13	18
400	4	1.9	0.85	6.50	7.6	8.5	11	16	22
500	4	1.9	1.00	7.40	9.4	11	14	20	28
630	4	1.8	1.20	8.90	11	13	17	25	35
800	6	1.7	1.45	10.60	14	16	25	40	60
1000	6	1.6	1.75	13.00	16	20	31	49	74
1250	6	1.6	2.10	16.00	20	24	38	61	93
1600	6	1.5	2.80	18.00	24	30	47	77	118
2000	6	1.2	3.20	21.50	24	31	53	90	142
2500	6	1.1	3.70	24.00	27	37	64	111	175
3150	7	1.1	4.00	33.00	34	48	89	157	252
4000	7	1.4	4.80	38.00	56	73	125	212	333

Cast Resin Distribution Transformer MV-LV									
100	6	2.3	0.50	1.70	2.2	2.6	3.7	5.5	8
160	6	2	0.65	2.40	3.1	3.7	5.5	8.4	12
200	6	1.9	0.85	2.90	3.7	4.4	6.6	10	15
250	6	1.8	0.95	3.30	4.4	5.3	8.1	13	19
315	6	1.7	1.05	4.20	5.3	6.4	9.9	16	24
400	6	1.5	1.20	4.80	5.9	7.3	12	19	29
500	6	1.4	1.45	5.80	6.8	8.7	14	23	36
630	6	1.3	1.60	7.00	8	10	17	29	45
800	6	1.1	1.94	8.20	8.6	12	20	35	56
1000	6	1	2.25	9.80	9.7	13	25	43	69
1250	6	0.9	3.30	13.00	11	15	29	52	85
1600	6	0.9	4.00	14.50	14	20	38	67	109
2000	6	0.8	4.60	15.50	15	23	45	82	134
2500	6	0.7	5.20	17.50	17	26	54	101	166
3150	8	0.6	6.00	19.00	18	34	81	159	269

Example

For a 630 kVA oil-distribution transformer with a load factor of 0.5 , the necessary PFC power is 17 kvar.

4 Power factor correction

PFC in groups

This consists of local power factor correction of groups of loads with similar functioning characteristics by installing a dedicated capacitor bank. This method achieves a compromise between the economical solution and the correct operation of the installation, since only the line downstream of the installation point of the capacitor bank is not correctly exploited.

Centralized PFC

The daily load profile is of fundamental importance for the choice of the most suitable type of power factor correction.
In installations, in which not all loads function simultaneously and/or in which some loads are connected for only a few hours a day, the solution of using single PFC becomes unsuitable as many of the capacitors installed could stay idle for long periods.
In the case of installations with many loads occasionally functioning, thus having a high installed power and a quite low average power absorption by the loads which function simultaneously, the use of a single PFC system at the installation origin ensures a remarkable decrease in the total power of the capacitors to be installed.

4 Power factor correction

Centralized PFC normally uses automatic units with capacitor banks divided into several steps, directly installed in the main distribution switchboards; the use of a permanently connected capacitor bank is only possible if the absorption of reactive energy is fairly regular throughout the day.
The main disadvantage of centralized PFC is that the distribution lines of the installation, downstream of the PFC device, must be dimensioned taking into account the full reactive power required by the loads.

4.3 Circuit-breakers for the protection and switching of capacitor banks

The circuit-breakers for the protection and switching of capacitor banks in LV shall:

1. withstand the transient currents which occur when connecting and disconnecting the banks. In particular, the instantaneous magnetic and electronic releases shall not trip due to these peak currents;
2. withstand the periodic or permanent overcurrents due to the voltage harmonics and to the tolerance ($+15 \%$) of the rated value of capacity;
3. perform a high number of no-load and on-load operations, also with high frequency;
4. be coordinated with any extemal device (contactors)

Furthermore, the making and breaking capacity of the circuit-breaker must be adequate to the short- circuit current values of the installation.

Standards IEC 60831-1 and 60931-1 state that
the capacitors shall normally function with an effective current value up to 130% of their rated current I_{rc} (due to the possible presence of voltage harmonics in the network);
a tolerance of $+15 \%$ on the value of the capacity is allowed
The maximum current which can be absorbed by the capacitor bank $I_{c m a x}$ is:

$$
I_{c \max }=1 \cdot 3 \cdot 1 \cdot 15 \cdot \frac{Q_{c}}{\sqrt{3} \cdot U_{r}} \approx 1.5 \cdot I_{r c}(8)
$$

Therefore:

- the rated current of the circuit-breaker shall be greater than 1.5. I_{r};
the overload protection setting shall be equal to $1.5 \cdot \mathrm{I}_{\mathrm{rc}}$
The connection of a capacitor bank, similar to a closing operation under short circuit conditions, associated with transient currents with high frequency ($1 \div 15$ $\mathrm{kHz})$, of short duration ($1 \div 3 \mathrm{~ms}$), with high peak ($25 \div 200 \mathrm{I}_{\mathrm{rc}}$).
Therefore:
the circuit-breaker shall have an adequate making capacity;
the setting of the instantaneous short-circuit protection must not cause unwanted trips.

4 Power factor correction

The second condition is generally respected:

- for thermomagnetic releases, the magnetic protection shall be set at a value not less than $10 \cdot I_{\mathrm{cmax}} \quad \mathrm{I}_{3} \geq 10 \cdot I_{\mathrm{cmax}}=15 \cdot I_{\mathrm{rc}}=15 \cdot \frac{\mathrm{Q}_{\mathrm{r}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}$ (9)
- for electronic releases, the instantaneous short-circuit protection shall be deactivated ($l_{3}=\mathrm{OFF}$)
Hereunder, the selection tables for circuit-breakers: for the definition of the version according to the required breaking capacity, refer to Volume 1, Chapter 3.1 "General characteristics".
The following symbols are used in the tables (they refer to maximum values):
$I_{\text {nCB }}=$ rated current of the protection release [A]
$-\mathrm{I}_{\mathrm{rc}}=$ rated current of the connected capacitor bank [A]
$\mathrm{Q}_{\mathrm{C}}=$ power of the capacitor bank which can be connected [kvar] with reference to the indicated voltage and 50 Hz frequency
- $\mathrm{N}_{\text {mech }}=$ number of mechanical operations;
$\mathrm{f}_{\text {mech }}=$ frequency of mechanical operations $[\mathrm{op} / \mathrm{h}]$
$\mathrm{N}_{\mathrm{el}}=$ number of electrical operations with reference to a voltage of 415 V for Tmax and Isomax moulded-case circuit breakers (Tables 5 and 6), and to a voltage of 440 V for Emax air circuit-breakers (Table 7);
$\mathrm{f}_{\mathrm{el}}=$ frequency of electrical operations [op/h].
Table 5: Selection table for Tmax moulded-case circuit-breakers

	$\mathrm{I}_{\text {ncB }}$	I_{rc}	$\mathrm{Q}_{\mathrm{C}}[\mathrm{kvar}]$					$\mathrm{N}_{\text {mech }}$	$\mathrm{f}_{\text {mech }}$	N_{el}
CB Type	[A]	$[\mathrm{A}]$	400 V	440 V	500 V	690 V		$[\mathrm{op} / \mathrm{h}]$		$[0 \mathrm{p} / \mathrm{h}]$
T1 B-C-N 160	160	107	74	81	92	127	25000	240	8000	120
T2 N-S-H-L 160*	160	107	74	81	92	127	25000	240	8000	120
T3 N-S 250*	250	166	115	127	144	199	25000	240	8000	120
T4 N-S-H-L-V 250	250	166	115	127	144	199	20000	240	8000	120
T4 N-S-H-L-V 320	320	212	147	162	184	254	20000	240	6000	120
T5 N-S-H-L-V 400	400	267	185	203	231	319	20000	120	7000	60
T6 N-S-H-L-V 630	630	421	291	302	364	502	20000	120	7000	60
T6 N-S-H-L 800	800	533	369	406	461	637	20000	120	5000	60
T7 S-H-L 1000	1000	666	461	507	576	795	10000	60	2000	60
T7 S-H-L 1250	1250	833	577	634	721	994	10000	60	2000	60
T7 S-H-L- 1600	1600	1067	739	813	924	1275	10000	60	2000	60

For plug-in version reduce the maximum power of the capacitor bank by 10%

Table 6: Selection table for SACE Isomax S7 moulded-case circuit-breakers

	$\mathrm{I}_{\text {ncB }}$	I_{rc}	$\mathrm{Q}_{\mathrm{c}}[\mathrm{kvar]}$					$\mathrm{N}_{\text {mech }}$	$\mathrm{f}_{\text {mech }}$	$\mathrm{N}_{\text {el }}$
S7 S-H-L 1250	1250	833	577	635	722	996	10000	120	7000	20
S7 S-H-L 1600	1600	1067	739	813	924	1275	10000	120	5000	20

4 Power factor correction

Table 7: Selection table for SACE Emax air circuit-breakers

	$\mathrm{I}_{\text {ncB }}$	$\mathrm{I}_{\text {rc }}$	Qc [kvar]				$\mathrm{N}_{\text {mech }}$	$\mathrm{f}_{\text {mech }}$	$\mathrm{N}_{\text {el }}$	$\mathrm{fel}^{\text {e }}$
CB Type	(A)	(A)	400 V	440 V	500 V	690 V	(op/h)		(op/h)	
X1 B-N	630	421	291	320	364	502	12500	60	6000	30
X1 B-N	800	533	369	406	461	637	12500	60	6000	30
X1 B-N	1000	666	461	507	576	795	12500	60	4000	30
X1 B-N	1250	834	578	636	722	997	12500	60	4000	30
X1 B-N	1600	1067	739	813	924	1275	12500	60	3000	30
E1BN	800	533	369	406	461	637	25000	60	10000	30
E1BN	1000	666	461	507	576	795	25000	60	10000	30
E1 B N	1250	834	578	636	722	997	25000	60	10000	30
E1 B N	1600	1067	739	813	924	1275	25000	60	10000	30
E2 B-N-S	800	533	369	406	461	637	25000	60	15000	30
E2 B-N-S	1000	666	461	507	576	795	25000	60	15000	30
E2 B-N-S	1250	834	578	636	722	997	25000	60	15000	30
E2 B-N-S	1600	1067	739	813	924	1275	25000	60	12000	30
E2 B-N-S	2000	1334	924	1017	1155	1594	25000	60	10000	30
E3 N-S-H-V	800	533	369	406	461	637	20000	60	12000	20
E3 N-S-H-V	1000	666	461	507	576	795	20000	60	12000	20
E3 N-S-H-V	1250	834	578	636	722	997	20000	60	12000	20
E3 N-S-H-V	1600	1067	739	813	924	1275	20000	60	10000	20
E3 N-S-H-V	2000	1334	924	1017	1155	1594	20000	60	9000	20
E3 N-S-H-V	2500	1667	1155	1270	1444	1992	20000	60	8000	20
E3 N-S-H-V	3200	2134	1478	1626	1848	2550	20000	60	6000	20
E4 S-H-V	3200	2134	1478	1626	1848	2550	15000	60	7000	10
E6 H-V	3200	2134	1478	1626	1848	2550	12000	60	5000	10

5 Protection of human beings

5.1 General aspects: effects of current on

human beings
Danger to persons due to contact with live parts is caused by the flow of the current through the human body. The effects are:
tetanization: the muscles affected by the current flow involuntary contract and letting go of gripped conductive parts is difficult. Note: very high currents do not usually induce muscular tetanization because, when the body touches such currents, the muscular contraction is so sustained that the involuntary muscle movements generally throw the subject away from the conductive part;
breathing arrest: if the current flows through the muscles controlling the lungs, the involuntary contraction of these muscles alters the normal respiratory process and the subject may die due to suffocation or suffer the consequences of traumas caused by asphyxia;
ventricular fibrillation: the most dangerous effect is due to the superposition of the extemal currents with the physiological ones which, by generating uncontrolled contractions, induce alterations of the cardiac cycle. This anomaly may become an irreversible phenomenon since it persists even when the stimulus has ceased;

- burns: they are due to the heating deriving, by J oule effect, from the current passing through the human body.

The Standard IEC 60479-1 "Effects of current on human being and livestock" is a guide about the effects of current passing through the human body to be used for the definition of electrical safety requirements. This Standard shows, on a time-current diagram, four zones to which the physiological effects of altemating current $(15 \div 100 \mathrm{~Hz}$) passing through the human body have been related.

5 Protection of human beings

Figure 1: Time-c

Zone

limits
Ip to 0.5 mA Physiological effects
line a Usually no reaction.
0.5 mA

Usually no harmful physiological effects.
up to
line b^{*}
$\overline{\text { AC-3 }}$
up to
curve c_{c}

$\overline{\text { AC-4 }}$	Above curve C_{1}	Increasing with magnitude and time, dangerous pathophysiological effects such as cardiac arrest, breathing arrest and severe bums may occur in addition to the effects of zone 3 .
AC-4.1	$\mathrm{c}_{1}-\mathrm{C}_{2}$	Probability of ventricular fibrillation increasing up to about 5\%.
AC-4.2	$\mathrm{C}_{2}-\mathrm{C}_{3}$	Probability of ventricular fibrillation up to about 50%.
AC-4.3	Beyond curve C_{3}	Probability of ventricular fibrillation above 50%.

This Standard gives also a related figure for direct current.
By applying Ohm's law it is possible to define the safety curve for the allowable voltages, once the human body impedance has been calculated. The electrical impedance of the human body depends on many factors. The above mentioned Standard gives different values of impedance as a function of the touch voltage and of the current path.

5 Protection of human beings

The Standard IEC 60479-1 has adopted precautionary values for the impedance reported in the figure so as to get the time-voltage safety curve (Figure 2) related to the total touch voltage U_{T} (i.e. the voltage which, due to an insulation failure, is present between a conductive part and a point of the ground sufficiently far, with zero potential).
This represents the maximum no-load touch voltage value; thus, the most unfavorable condition is taken into consideration for safety's sake.

Figure 2: Safety curve

From this safety curve it results that for all voltage values below 50 V , the tolerance time is indefinite; at 50 V the tolerance time is 5 s . The curve shown in the figure refers to an ordinary location; in particular locations, the touch resistance of the human body towards earth changes and consequently the tolerable voltage values for an indefinite time shall be lower than 25 V .
Therefore, if the protection against indirect contact is obtained through the disconnection of the circuit, it is necessary to ensure that such breaking is caried out in compliance with the safety curve for any distribution system.

5 Protection of human beings

5.2 Distribution systems

The earth fault modalities and the consequences caused by contact with live parts, are strictly related to the neutral conductor arrangement and to the connections of the exposed conductive parts.

For a correct choice of the protective device, it is necessary to know which is the distribution system of the plant
IEC 60364-1 classifies the distribution systems with two letters.
The first letter represents the relationship of the power system to earth: - T: direct connection of one point to earth, in alternating current systems, generally the neutral point;
I: all live parts isolated from earth, or one point, in alternating current systems generally the neutral point, connected to earth through an impedance.

The second letter represents the relationship of the exposed conductive parts of the installation to earth:
T: direct electrical connection of the exposed conductive parts to earth,
N : direct electrical connection of the exposed conductive parts to the earthed point of the power system.

Subsequent letters, if any, represent the arrangement of neutral and protective conductors:

- S: protective function is provided by a conductor separate from the neutral conductor;
C: neutral and protective functions combined as a single conductor (PEN conductor).

Three types of distribution system are considered:
TT System

TN System

5 Protection of human beings

IT System

In TT systems, the neutral conductor and the exposed conductive parts are connected to earth electrodes electrically independent; the fault current flows towards the power supply neutral point through earth (Fig. 1):

Figure 1: Earth fault in TT systems

I_{k}

In TT installations, the neutral conductor is connected to the supply star center it is usually distributed and has the function of making the phase voltage (e.g 230 V) available, useful for single-phase load supply. The exposed conductive parts, on the contrary, singularly or collectively, are locally connected to earth TT systems are generally used for civil installations.
TN systems are typically used when the power supply is distributed to loads having their own electrical substation. The neutral conductor is directly earthed in the substation; the exposed conductive parts are connected to the sam earthing point of the neutral conductor, and can be locally earthed Three types of TN system are considered according to the arrangement o neutral and protective conductors:

1. TN-C neutral and protective functions are combined in a single conductor (PEN conductor);
2. TN-S neutral and protective conductors are always separated;
3. TN-C-S neutral and protective functions are combined in a single conductor in a part of the system (PEN) and are separated in another part (PE + N).

5 Protection of human beings

In TN systems, the fault current flows towards the power supply neutral point through a solid metallic connection, practically without involving the earth electrode (Figure 2).

Figure 2: Earth fault in TN systems

T systems have no live parts directly connected to earth, but they can be earthed through a sufficiently high impedance. Exposed conductive parts shal be earthed individually, in groups or collectively to an independent earthing electrode.
The earth fault current flows towards the power supply neutral point through the earthing electrode and the line conductor capacitance (Figure 3).

Figure 3: Earth fault in IT system

These distribution systems are used for particular plants, where the continuity of supply is a fundamental requirement, where the absence of the supply can cause hazards to people or considerable economical losses, or where a low value of a first earth fault is required. In these cases, an insulation monitoring device shall be provided for optical or acoustic signalling of possible earth faults, or failure of the supplied equipment.

5 Protection of human beings

5.3 Protection against both direct and

 indirect contactContacts of a person with live parts can be divided in two categories:

- direct contacts;
- indirect contacts

A direct contact occurs when a part of the human body touches a part of the plant, usually live (bare conductors, terminals, etc.).
A contact is indirect when a part of the human body touches an exposed conductive parts, usually not live, but with voltage presence due to a failure or wear of the insulating materials.

The measures of protection against direct contact are
insulation of live parts with an insulating material which can only be removed by destruction (e.g. cable insulation);
barriers or enclosures: live parts shall be inside enclosures or behind barriers providing at least the degree of protection IPXXB or IP2X; for horizontal surfaces the degree of protection shall be of at least IPXXD or IP4X (for the meaning of the degree of protection codes please refer to Volume 1, Chapter 6.1 Electrical switchboards);
obstacles: the interposition of an obstacle between the live parts and the operator prevents unintentional contacts only, but not an intentional contact by the removal of the obstacle without particular tools
placing out of reach: simultaneously accessible parts at different potentials shall not be within arm's reach

An additional protection against direct contact can be obtained by using residual current devices with a rated operating residual current not exceeding 30 mA . It must be remembered that the use of a residual current device as a mean of protection against direct contacts does not obviate the need to apply one of the above specified measures of protection.

The measures of protection against indirect contact are
automatic disconnection of the supply: a protective device shall automatically disconnect the supply to the circuit so that the touch voltage on the exposed conductive part does not persist for a time sufficient to cause a risk of harmful physiological effect for human beings;
supplementary insulation or reinforced insulation, e.g. by the use of Class II components;

5 Protection of human beings

- non-conducting locations: locations with a particular resistance value of insulating floors and walls $\ell 50 \mathrm{k} \Omega$ for $\mathrm{U}_{\mathrm{r}} \leq 500 \mathrm{~V} ; \geq 100 \mathrm{k} \Omega$ for $\left.\mathrm{U}_{\mathrm{r}}>500 \mathrm{~V}\right)$ and without protective conductors inside
- electrical separation, e.g. by using an isolating transformer to supply the circuit; earth-free local equipotential bonding: locations where the exposed conductive parts are connected together but not earthed.

Finally, the following measures provide combined protection against both direct and indirect contact:
SELV (Safety Extra Low Voltage) system and PELV (Protective Extra Low Voltage) system;
FELV (Functional Extra Low Voltage) system

The protection against both direct and indirect contact is ensured if the equirements stated in 411 from IEC 60364-4-41 are fulfilled; particularly.
the rated voltage shall not exceeds $50 \mathrm{~V} \mathrm{ac} \mathrm{r.m.s}$.and 120 V nipple-free dc the supply shall be a SELV or PELV source
all the installation conditions provided for such types of electrical circuits shal be fulfilled.

A SELV circuit has the following characteristics:

1) it is supplied by an independent source or by a safety source. Independent sources are batteries or diesel-driven generators. Safety sources are supplies obtained through an isolating transfomer;
) there are no earthed points. The earthing of both the exposed conductive parts as well as of the live parts of a SELV circuit is forbidden;
) it shall be separated from other electrical systems. The separation of a SELV system from other circuits shall be guaranteed for all the components; for this purpose, the conductors of the SELV circuit may be contained in multiconductor cables or may be provided with an additional insulating sheath

A PELV circuit has the same prescription of a SELV system, except for the prohibition of earthed points; in fact in PELV circuits, at least one point is always earthed

5 Protection of human beings

FELV circuits are used when for functional reasons the requirements for SELV or PELV circuits cannot be fulfilled; they require compliance with the following rules: a) protection against direct contact shall be provided by either
bariers or enclosures with degree of protection in accordance with what stated above (measures of protection against direct contact);

- insulation corresponding to the minimum test voltage specified for the primary circuit. If this test is not passed, the insulation of accessible nonconductive parts of the equipment shall be reinforced during erection so that it can withstand a test voltage of 1500 V ac r.m.s. for 1 min.;
b) protection against indirect contact shall be provided by:
connection of the exposed conductive parts of the equipment of the FELV circuit to the protective conductor of the primary circuit, provided that the latter is subject to one of the measures of protection against direct contact connection of a live conductor of the FELV circuit to the protective conductor of the primary circuit provided that an automatic disconnection of the supply is applied as measure of protection
c) plugs of FELV systems shall not be able to enter socket-outlets of other voltage systems, and plugs of other voltage systems shall not be able to enter socket-outlets of FELV systems.
Figure 1 shows the main features of SELV, PELV and FELV systems.

Figure 1: SELV, PELV, FELV systems

Note 1: Overcurent protective devices are not shown in this figure.

5 Protection of human beings

.4 TT System

An earth fault in a \mathbb{T} system involves the circuit represented in Figure 1

Figure 1: Earth fault in TT system

I_{k}
The fault current involves the secondary winding of the transformer, the phase conductor, the fault resistance, the protective conductor and the earth electrode esistance (plant earthing system (R_{A}) and earthing system which the neutral is onnected to (R_{B}).
According to IEC 60364-4 requirements, the protective devices must be co ordinated with the earthing system in order to rapidly disconnect the supply, if the touch voltage reaches harmful values for the human body
Assuming 50 V (25 V for particular locations) as limit voltage value, the condition o be fulfilled in order to limit the touch voltage on the exposed conductive parts under this limit value is

$$
R_{t} \leq \frac{50}{I_{a}} \quad \text { or } \quad R_{t} \leq \frac{50}{I_{\Delta n}}
$$

where:
R_{t} is the total resistance, equal to the sum of the earth electrode $\left(R_{A}\right)$ and the protective conductor for the exposed conductive parts $[\Omega]$; I_{a} is the current causing the automatic operation within 5 s of the overcurrent protective device, read from the tripping curve of the device $[A]$
$I_{\Delta n}$ is the rated residual operating current, within one second, of the circuit-breaker [A]

5 Protection of human beings

From the above, it is clear that R_{t} value is considerably different when using automatic circuit-breakers instead of residual current devices.
In fact, with the former, it is necessary to obtain very low earth resistance values (usually less than 1Ω) since the 5 s tripping current is generally high, whereas, with the latter, it is possible to realize earthing systems with resistance value of thousands of ohms, which are easier to be carried out.

Table 1 reports the maximum earth resistance values which can be obtained using residual current devices, with reference to an ordinary location (50 V):

Table 1: Earth resistance values

L_{n} $[\mathrm{A}]$	R_{t} $[\Omega]$
0.01	5000
0.03	1666
0.1	500
0.3	166
0.5	100
3	16
10	5
30	1.6

Example

Assuming to provide protection by using an automatic circuit-breaker Tmax T1B160 $\ln 125$, the trip current value in less than 5 s , read from the tripping characteristic curve, is about 750 A , when starting from cold conditions (the worst case for thermomagnetic releases).

So:

$$
\mathrm{R}_{\mathrm{t}} \leq \frac{50}{750}=0.06 \Omega
$$

In order to provide the required protection, it must be necessary to carry out an earthing system with an earth resistance $R_{t} \leq 0.06 \Omega$, which is not an easily obtainable value.

On the contrary, by using the same circuit-breaker mounting ABB SACE RC221 residual current release, with rated residual operating current $I_{\Delta n}=0.03 \mathrm{~A}$, the required value of earth resistance is:

$$
R_{t} \leq \frac{50}{0.03}=1666.6 \Omega
$$

5 Protection of human beings

In an electrical installation with a common earthing system and loads protected by devices with different tripping currents, for the achievement of the coordination of all the loads with the earthing system, the worst case - represented by the device with the highest tripping current - shall be considered.

As a consequence, when some feeders are protected by overcurrent devices and some others by residual current devices, all the advantages deriving from the use of residual current releases are nullified, since the R_{t} shall be calculated on the basis of the $I_{5 s}$ of the overcurrent device and since it is the highest tripping current between these two kind of devices.

Therefore, it is advisable to protect all the loads of a TT system by means of residual current circuit-breakers coordinated with the earthing system to obtain the advantages of both a quick disconnection of the circuit when the fault occurs as well as an earthing system which can be easily accomplished.
which can be easily obtained in practice.

5 Protection of human beings

An earth fault in a TN system involves the circuit represented in Figure 1:

Figure 1: Earth fault in TN system

The fault loop does not affect the earthing system and is basically formed by the connection in series of the phase conductor and of the protective conductor. To provide a protection with automatic disconnection of the circuit, according to IEC 60364-4 prescriptions, the following condition shall be fulfilled:

$$
\mathrm{Z}_{\mathrm{s}} \cdot \mathrm{I}_{\mathrm{a}} \leq \mathrm{U}_{0}
$$

where:
Z_{S} is the impedance of the fault loop comprising the source, the live conductor up to the point of the fault and the protective conductor between the point of the fault and the source $[\Omega]$;
U_{0} is the nominal ac r.m.s. voltage to earth $[\mathrm{V}$;
l_{a} is the current causing the automatic operation of the disconnecting protective device within the time stated in Table 1, as a function of the rated voltage U_{0} or, for distribution circuits, a conventional disconnecting time not exceeding 5 s is permitted [A]; if the protection is provided by means of a residual current device, l_{a} is the rated residual operating current $\mathrm{I}_{\Delta \mathrm{n}}$.

Table 1: Maximum disconnecting times for TN system

$\mathrm{U}_{0}[\mathrm{~V}]$	Disconnecting time [s]
120	0.8
230	0.4
400	0.2
>400	0.1

5 Protection of human beings

In TN installations, an earth fault with low impedance occurring on the LV side causes a short circuit current with quite high value, due to the low value of the impedance of the fault loop. The protection against indirect contact can be provided by automatic circuit-breakers: it is necessary to verify that the operating current within the stated times is lower than the short-circuit current.

The use of residual current devices improves the conditions for protection in particular when the fault impedance doesn't have a low value, thus limiting the short-circuit current; this current can persist for quite long time causing overheating of the conductors and fire risks.

Finally, it is important to highlight the fact that the residual current devices cannot be used in TN-C system, since the neutral and protective functions are provided by a unique conductor: this configuration prevents the residual current device from working.

Example:

In the plant represented in Figure 2, the earth fault current is:

$$
I_{K L G}=3 \mathrm{kA}
$$

The rated voltage to earth is 230 V , therefore, according to Table 1 , it shall be verified that:

$$
I_{a}(0.4 \mathrm{~s}) \leq \frac{U_{0}}{Z_{s}}=I_{\mathrm{kLG}}=3 \mathrm{kA}
$$

Figure 2

5 Protection of human beings

From the tripping curve (Figure 3), it is clear that the circuit-breaker trips in 0.4 s for a current value lower than 950 A . As a consequence, the protection against indirect contact is provided by the same circuit-breaker which protects the cable against short-circuit and overload, without the necessity of using an additional residual current device.

Figure 3: LG Time-Current curves

5 Protection of human beings

5.6 IT System

As represented in Figure 1, the earth fault current in an IT system flows through the line conductor capacitance to the power supply neutral point. For this reason, the first earth fault is characterized by such an extremely low current value to prevent the overcurrent protections from disconnecting; the deriving touch voltage is very low.

Figurel: Earth fault in IT system

According to IEC 60364-4, the automatic disconnection of the circuit in case of the first earth fault is not necessary only if the following condition is fulfilled:

$$
\mathrm{R}_{\mathrm{t}} \cdot \mathrm{I}_{\mathrm{d}} \leq \mathrm{U}_{\mathrm{L}}
$$

where:
R_{t} is the resistance of the earth electrode for exposed conductive parts [Ω]
I_{d} is the fault current, of the first fault of negligible impedance between a phase conductor and an exposed conductive part [A];
U_{L} is 50 V for ordinary locations (25 V for particular locations).
If this condition is fulfilled, after the first fault, the touch voltage value on the exposed conductive parts is lower than 50 V , tolerable by the human body for n indefinite time, as shown in the safety curve (see Chapter 5.1 "General aspects: effects of current on human beings
In IT system installations, an insulation monitoring device shall be provided to

5 Protection of human beings

indicate the occurrence of a first earth fault; in the event of a second fault, the supply shall be disconnected according to the following modalities:
a) where exposed conductive parts are earthed in groups or individually, the conditions for protection are the same as for TT systems (see Chapter 5.4 " TT system"):
b) where exposed conductive parts are interconnected by a protective conductor collectively earthed, the conditions of a TN system apply; in particular, the following conditions shall be fulfilled:
if the neutral is not distributed:

$$
Z_{\mathrm{s}} \leq \frac{\mathrm{U}_{\mathrm{r}}}{2 \cdot I_{\mathrm{a}}}
$$

if the neutral is distributed:

$$
Z_{s}^{\prime} \leq \frac{U_{0}}{2 \cdot I_{a}}
$$

where

- U_{0} is the rated voltage between phase and neutral $[\mathrm{V}]$;
- U_{r} is the rated voltage between phases [V];
- Z_{s} is the impedance of the fault loop comprising the phase conductor and the protective conductor of the circuit $[\Omega]$;
- Z^{\prime} 's is the impedance of the fault loop comprising the neutral conductor and the protective conductor of the circuit [Ω];
- l_{a} is the operating current of the protection device in the disconnecting time specified in Table 1, or within 5 s for distribution circuits.

Table 1: Maximum disconnecting time in IT systems

Rated voltage $\left.\mathbf{U}_{\mathbf{0}} \mathbf{U}_{\mathbf{r}} \mathbf{~ V}\right]$	disconnecting time [s]	
$120 / 240$	neutral not distributed	neutral distributed
$230 / 400$	0.8	5
$400 / 690$	0.4	0.8
$580 / 1000$	0.2	0.4

IEC 60364-4 states that, if the requirements mentioned at point b) cannot be fulfilled by using an overcurrent protective device, the protection of every supplied load shall be provided by means of a residual current device.

The residual current device threshold shall be carefully chosen in order to avoid unwanted tripping, due also to the particular path followed by the first fault current through the line conductor capacitance to the power supply neutral point (instead of the faulted line, another sound line with higher capacitance could be affected by a higher fault current value).

5 Protection of human beings

5.7 Residual current devices (RCDs)

Generalities on residual current circuit-breakers

The operating principle of the residual current release is basically the detection of an earth fault current, by means of a toroid transformer which embraces al the live conductors, included the neutral if distributed
Figure 1: Operating principle of the residual current device

In absence of an earth fault, the vectorial sum of the currents I_{Δ} is equal to zero; in case of an earth fault if the I_{Δ} value exceeds the rated residual operating current $I_{\Delta n}$, the circuit at the secondary side of the toroid sends a command signal to a dedicated opening coil causing the tripping of the circuit-breaker. A first classification of RCDs can be made according to the type of the fault urrent they can detect:
AC type: the tripping is ensured for residual sinusoidal alternating currents, whether suddenly applied or slowly rising;
A type: tripping is ensured for residual sinusoidal altemating currents and residual pulsating direct currents, whether suddenly applied or slowly rising; - B type: tripping is ensured for residual direct currents, for residual sinusoidal alternating currents and residual pulsating direct currents, whether suddenly applied or slowly rising.

Another classification referred to the operating time delay is:
undelayed type;
time delayed S-type

5 Protection of human beings

RCDs can be coupled, or not, with other devices; it is possible to distinguish among
pure residual current circuit-breakers (RCCBs): they have only the residual current release and can protect only against earth fault. They must be coupled with thermomagnetic circuit-breakers or fuses, for the protection against thermal and dynamical stresses;
residual current circuit-breakers with overcurrent protection (RCBOs): they are the combination of a thermomagnetic circuit-breaker and a RCD; for this reason, they provide the protection against both overcurrents as well as earth fault current;

- residual current circuit-breakers with external toroid: they are used in industrial plants with high currents. They are composed by a release connected to an external toroid with a winding for the detection of the residual current; in case of earth fault, a signal commands the opening mechanism of a circuit-breaker or a line contactor.
Given $I_{\Delta n}$ the operating residual current, a very important parameter for residual current devices is the residual non-operating current, which represents the maximum value of the residual current which does not cause the circuit-breaker trip; it is equal to $0.5 \mathrm{I}_{\Delta \mathrm{n}}$. Therefore, it is possible to conclude that
- for $I_{\Delta}<0.5 \cdot I_{\Delta n}$ the RCD shall not operate;
- for $0.5 \mathrm{I}_{\Delta n}<I_{\Delta}<I_{\Delta n}$ the RCD could operate;
- for $I_{\Delta}>I_{\Delta n}$ the RCD shall operate.

For the choice of the rated operating residual current, it is necessary to consider in addition to the coordination with the earthing system, also the whole of the leakage currents in the plant; their vectorial sums on each phase shall not be greater than $0.5 \cdot I_{\Delta n}$. in order to avoid unwanted tripping.

Discrimination between RCDs

The Standard IEC 60364-5-53 states that discrimination between residual current protective devices installed in series may be required for service reasons, particularly when safety is involved, to provide continuity of supply to the parts of the installation not involved by the fault, if any. This discrimination can be achieved by selecting and installing RCDs in order to provide the disconnection from the supply by the RCD closest to the fault.
There are two types of discrimination between RCDs:

- horizontal discrimination: it provides the protection of each line by using a dedicated residual current circuit-breaker; in this way, in case of earth fault, nly the faulted line is disconnected, since the other RCDs do not detect any ault current. However, it is necessary to provide protective measures against direct contacts in the part of the switchboard and of the plant upstream the RCD;
vertical discrimination: it is realized by using RCDs connected in series.

Figure 2: Horizontal discrimination between RCD

5 Protection of human beings

5.8 Maximum protected length for the

 protection of human beingsAs described in the previous chapters, the Standards give indications about the maximum disconnecting time for the protective devices, in order to avoid pathophysiological effects for people touching live parts.
For the protection against indirect contact, it shall be verified that the circuitbreaker trips within a time lower than the maximum time stated by the Standard this verification is carried out by comparing the minimum short-circuit curren of the exposed conductive part to be protected with the operating current corresponding to the time stated by the Standard.
The minimum short-circuit current occurs when there is a short-circuit between the phase and the protective conductors at the farthest point on the protected conductor
For the calculation of the minimum short-circuit current, an approximate method can be used, assuming that
a 50% increasing of the conductors resistance, with respect to the $20^{\circ} \mathrm{C}$ current
a 80 reduction the supply voltage is considered as effect of the
the conductor reactance is considered only for cross sections larger than $95 \mathrm{~mm}^{2}$.
The formula below is obtained by applying Ohm's law between the protective device and the fault point.

Legend of the symbols and constants of the formula
0.8 is the coefficient representing the reduction of the voltage
1.5 is the coefficient representing the increasing in the resistance
U_{r} is the rated voltage between phases;
U_{0} is the rated voltage between phase and ground
S is the phase conductor cross section;
S_{N} is the neutral conductor cross section
$\mathrm{S}_{\text {PE }}$ is the protection conductor cross section;
ρ is the conductor resistivity at $20^{\circ} \mathrm{C}$,

- L is the length of the cable
$\mathrm{m}=\frac{\mathrm{S} \cdot \mathrm{n}}{\mathrm{S}_{\mathrm{PE}}}$ is the ratio between the total phase conductor cross section
(single phase conductor cross section S multiplied by n, number of conductors in parallel) and the protective conductor cross section S_{PE} assuming they are made of the same conductor materia
- $m_{1}=\frac{S_{N} \cdot n}{S_{P E}}$ is the ratio between the total neutral conductor cross section
(single neutral conductor cross section S_{N} multiplied by n , number of conductors in parallel) and the protective conductor cross section SPE assuming they are made of the same conductor material
k_{1} is the correction factor which takes into account the reactance of cables with cross section larger than $95 \mathrm{~mm}^{2}$, obtainable from the following table:

Phase conductor cross section $\left[\mathrm{mm}^{2}\right]$	120	150	185	240	300
k_{1}	0.90	0.85	0.80	0.75	0.72

5 Protection of human beings

k_{2} is the correction factor for conductors in parallel, obtainable by the following formula:

$$
\mathrm{k}_{2}=4 \frac{\mathrm{n}-1}{\mathrm{n}}
$$

where n is the number of conductor in parallel per phase;
1.2 is the magnetic threshold tolerance allowed by the Standard.

TN system

The formula for the evaluation of the minimum short circuit current is

$$
\begin{equation*}
I_{k \min }=\frac{0.8 \cdot U_{0} \cdot S}{1.5 \cdot 1.2 \cdot \rho \cdot(1+m) \cdot L} \tag{1}
\end{equation*}
$$

and consequently:

T system

he formulas below are valid when a second fault turns the IT system into a TN system.
It is necessary to separately examine installations with neutral not distributed and neutral distributed.

5 Protection of human beings

Neutral not distributed

When a second fault occurs, the formula becomes:
$\mathrm{I}_{\mathrm{k} \min }=\frac{0.8 \cdot \mathrm{U}_{\mathrm{r}} \cdot \mathrm{S}}{2 \cdot 1.5 \cdot 1.2 \cdot \rho \cdot(1+\mathrm{m}) \cdot \mathrm{L}} \cdot \mathrm{K}_{1} \cdot \mathrm{~K}_{2}$
and consequently:

$$
\mathrm{L}=\frac{0.8 \cdot \mathrm{U}_{\mathrm{r}} \cdot \mathrm{~S}}{2 \cdot 1.5 \cdot 1.2 \cdot \rho \cdot(1+\mathrm{m}) \cdot I_{\mathrm{k} \min }} \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{2}
$$

Neutral distributed

Case A: three-phase circuits in IT system with neutral distributed
The formula is:

$$
I_{\mathrm{kmin}}=\frac{0.8 \cdot \mathrm{U}_{0} \cdot \mathrm{~S}}{2 \cdot 1.5 \cdot 1.2 \cdot \rho \cdot(1+\mathrm{m}) \cdot \mathrm{L}} \cdot \mathrm{~K}_{1} \cdot \mathrm{~K}_{2}
$$

and consequently:

$$
\mathrm{L}=\frac{0.8 \cdot \mathrm{U}_{0} \cdot \mathrm{~S}}{2 \cdot 1.5 \cdot 1.2 \cdot \rho \cdot(1+\mathrm{m}) \cdot I_{\mathrm{kmin}}} \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{2}
$$

Case B: three-phase + neutral circuits in IT system with neutral distributed

The formula is:

$$
I_{\mathrm{kmin}}=\frac{0.8 \cdot \mathrm{U}_{0} \cdot \mathrm{~S}_{\mathrm{N}}}{2 \cdot 1.5 \cdot 1.2 \cdot \rho \cdot\left(1+\mathrm{m}_{1}\right) \cdot \mathrm{L}} \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{2}
$$

and consequently:

$$
\mathrm{L}=\frac{0.8 \cdot \mathrm{U}_{0} \cdot \mathrm{~S}_{\mathrm{N}}}{2 \cdot 1.5 \cdot 1.2 \cdot \rho \cdot\left(1+\mathrm{m}_{1}\right) \cdot \mathrm{I}_{\mathrm{k} \text { min }}} \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{2}
$$

5 Protection of human beings

Note for the use of the tables

The tables showing the maximum protected length (MPL) have been defined considering the following conditions:
one cable per phase;
rated voltage equal to 400 V (three-phase system);
copper cables;
neutral not distributed, for IT system only

- protective conductor cross section according to Table 1:

Table 1: Protective conductor cross section

Phase conductor cross section S $\left[\mathrm{mm}^{2}\right]$	Protective conductor cross section S_{PE} $\left[\mathrm{mm}^{2}\right]$
$\mathrm{S} \leq 16$	S
$16<\mathrm{S} \leq 35$	16
$\mathrm{~S}>35$	$\mathrm{~S} / 2$

Note phase and protective conductors having the same isolation and conductive materiak

Whenever the S function (delayed short-circuit) of electronic releases is used for the definition of the maximum protected length, it is necessary to verify that the tripping time is lower than the time value reported in Chapter 5.5 Table 1 for TN systems and in Chapter 5.6 Table 1 for IT systems.

For conditions different from the reference ones, the following correction factors shall be applied.

5 Protection of human beings

Correction factors

Correction factor for cable in parallel per phase: the value of the maximum protected length read in Table 2 (TN system) or Table 3 (IT system) shall be multiplied by the following factor:

n	2	3	4	5	6	7	8
k_{p}	2	2.7	3	3.2	3.3	3.4	3.5

is the number of conductors in parallel per phase
Correction factor for three-phase voltage different from 400 V : the value of the maximum protected length read in Table 2 (TN system) or Table 3 (IT system) shall be multiplied by the following factor:

voltage $[\mathrm{V}]$	230	400	440	500	690
k_{v}	0.58	1	1.1	1.25	1.73

For 230 V single-phase systems, no correction factor is necessary

Correction factor for aluminium cables: the value of the maximum protected length read in Table 2 (TN system) or Table 3 (TT system) shall be multiplied by the following factor:

0.64

Correction factor for protective conductor cross section $\mathbf{S}_{\text {PE }}$ different from the cross sections stated in Table 1: the value of the maximum protected length shall be multiplied by the coefficient corresponding to the phase conductor cross section and to the ratio between the protective conductor (PE) and the phase cross sections:

$S_{\text {PE }} / S$ S	0.5	0.55	0.6	0.66	0.75 $\mathrm{k}_{\text {PE }}$	0.87	1	1.25	1.5	2
$\leq 16 \mathrm{~mm}^{2}$	0.67	0.71	0.75	0.80	0.86	0.93	1.00	1.11	1.20	1.33
$25 \mathrm{~mm}^{2}$	0.85	0.91	0.96	1.02	1.10	1.19	1.28	1.42	1.54	1.71
$35 \mathrm{~mm}^{2}$	1.06	1.13	1.20	1.27	1.37	1.48	1.59	1.77	1.91	2.13
$>35 \mathrm{~mm}^{2}$	1.00	1.06	1.13	1.2	1.29	1.39	1.5	1.67	1.8	2.00

Correction factor for neutral distributed in IT systems (for Table 3 only): the value of the maximum protected length shall be multiplied by 0.58 .

5 Protection of human beings

TN system MPL

by MCB
Table 2.1: Curve Z

CURVE		\mathbf{Z}							
$\mathbf{I n}$		$\leq \mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
$\mathbf{1 3}$		$\mathbf{3 0}$	$\mathbf{3 9}$	$\mathbf{4 8}$	$\mathbf{6 0}$	$\mathbf{7 5}$	$\mathbf{9 6}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$
\mathbf{S}	$\mathbf{S}_{\text {PE }}$								
1.5	1.5	173	133	108	86	69	54	43	
2.5	2.5	288	221	180	144	115	90	72	58
4	4	461	354	288	231	185	144	115	92
6	6	692	532	432	346	277	216	173	138
10	10	1153	886	721	577	461	360	288	231
16	16	1845	1419	1153	923	738	577	461	369
25	16	2250	1730	1406	1125	900	703	563	450

Table 2.2: Curve B

CURVE		\mathbf{B}												
$\mathbf{I n}$		$\leq \mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
$\mathbf{I 3}$		$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 5}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 1 5}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$
\mathbf{S}	$\mathbf{S} \mathbf{\text { PE }}$													
1.5	1.5	173	130	104	80	65	52	42	32	26				
2.5	2.5	288	216	173	133	108	86	69	54	43	35	27		
4	4	461	346	277	213	173	138	111	86	69	55	44	35	28
6	6	692	519	415	319	259	208	166	130	104	83	66	52	42
10	10	1153	865	692	532	432	346	277	216	173	138	110	86	69
16	16	1845	1384	1107	852	692	554	443	346	277	221	176	138	111
25	16	2250	1688	1350	1039	844	675	540	422	338	270	214	169	135
35	16												190	152

Table 2.3: Curve C

CURVE	\mathbf{C}															
$\mathbf{I n}$		$\leq \mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$
$\mathbf{1 2 5}$																
$\mathbf{1 3}$		$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 3 0}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 2 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 3 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$
$\mathbf{1 2 5 0}$																
\mathbf{S}	$\mathbf{S} \mathbf{P E}$															
1.5	1.5	173	130	86	65	52	40	32	26	21	16	13				
2.5	2.5	288	216	144	108	86	67	54	43	35	27	22	17	14		
4	4	461	346	231	173	138	106	86	69	55	43	35	28	22	17	14
6	6	692	519	346	259	208	160	130	104	83	65	52	42	33	26	21
10	10	1153	865	577	432	346	266	216	173	138	108	86	69	55	43	35
16	16	1845	1384	923	692	554	426	346	277	221	173	138	111	88	69	55
25	16	2250	1688	1125	844	675	519	422	338	270	211	169	135	107	84	68
35	16														95	76

5 Protection of human beings

TN system MPL
by MCB
Table 2.4: Curve K
CURVE K K K K K K K K K K K K K K K K K K K

 $\begin{array}{r}\mathbf{S} \quad \mathbf{S}_{\mathrm{PE}} \\ \hline 1.5 \quad 1.5\end{array}$
$\begin{array}{lllllllllllllllllll}1.5 & 1.5 & 185 & 123 & 92 & 88 & 64 & 62 & 46 & 37 & 34 & 28 & 25 & 23 & 18 & 15 & 14 & 12 & 10\end{array}$

1.5	1.5	185	123	92	88	64	62	46	37	34	28	25	23	18	15	14	12	10	9		
2.5	2.5	308	205	154	146	106	103	77	62	56	47	41	38	31	25	24	19	17	15	15	14

4	4	492	328	246	234	170	164	123	98	89	76	66	62	49	39	38	31	27	25	24	22	20	16
6	6	738	492	369	350	55	246	85	148	134	114	98	92	74	59	57	46	40	37	36	33	30	23

10	10	1231	820	615	584	425	410	308	246	224	189	164	154	123	98	95	77	67	62	60	55
49	39																				

Table 2.5: Curve D

	CURVE	D	\mathbf{D}													
$\mathbf{I n}$		$\leq \mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$
$\mathbf{1 0 0}$																
$\mathbf{I 3}$		$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$	$\mathbf{1 2 0}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$	$\mathbf{2 6 0}$	$\mathbf{3 2 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 4 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 6 0}$	$\mathbf{1 6 0 0}$
$\mathbf{2 0 0 0}$																
\mathbf{S}	$\mathbf{S}_{\text {PE }}$															
1.5	1.5	130	86	65	43	32	26	20	16	13	10	8	6			
2.5	2.5	216	144	108	72	54	43	33	27	22	17	14	11	9	7	
4	4	346	231	173	115	86	69	53	43	35	28	22	17	14	11	9
6	6	519	346	259	173	130	104	80	65	52	42	32	26	21	16	13
10	10	865	577	432	288	216	173	133	108	86	69	54	43	35	27	22
16	16	1384	923	692	461	346	277	213	173	138	111	86	69	55	44	35
25	16	1688	1125	844	563	422	338	260	211	169	135	105	84	68	54	42
35	16														47	38

TN system MPL
by MCCB Table 2.6: TmaxT1 TMD

		T1						
	In	≤ 50	≤ 50	63	80	100	125	160
	13	500 A	630 A	10 ln				
S	$\mathrm{S}_{\text {PE }}$							
1.5	1.5	6						
2.5	2.5	10						
4	4	15	12	12	10	8	6	
6	6	23	18	18	14	12	9	7
10	10	38	31	31	24	19	15	12
16	16	62	49	49	38	31	25	19
25	16	75	60	60	47	38	30	23
35	16	84	67	67	53	42	34	26
50	25	128	102	102	80	64	51	40
70	35	179	142	142	112	90	72	56
95	50	252	200	200	157	126	101	79

Table 2.7: $T \max 12$ TMD

| T2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.6 | 2 | 2.5 | 3.2 | 4 | 5 | 6.3 | 8 | 10 | 12.5 | $16 \div 50$ | 63 | 80 | 100 | 125 | 160 |

	In	1.6	2	2.5	3.2	4	5	6.3	8	10	12.5	16:50	63	80	100	125	160
	13	10 ln	10 In	10 ln	10 ln	500 A	10 ln										
S	$\mathrm{S}_{\text {PE }}$																
1.5	1.5	246	197	157	123	98	79	62	49	39	31	8					
2.5	2.5	410	328	262	205	164	131	104	82	66	52	13					
4	4	655	524	419	328	262	210	166	131	105	84	21	17	13	10	8	
6	6	983	786	629	491	393	315	250	197	157	126	31	25	20	16	13	10
10	10	1638	1311	1048	819	655	524	416	328	262	210	52	42	33	26	21	16
16	16	2621	2097	1677	1311	1048	839	666	524	419	335	84	67	52	42	34	26
25	16				1598	1279	1023	812	639	511	409	102	81	64	51	41	32
35	16						1151	914	720	576	460	115	91	72	58	46	36
50	25								1092	874	699	175	139	109	87	70	55
70	35										979	245	194	153	122	98	76
95	50											343	273	215	172	137	107
120	70											417	331	261	209	167	130
150	95											518	411	324	259	207	162
185	95											526	418	329	263	211	165

5 Protection of human beings

TN system MPL by MCCB		Table 2.8: Tmax T3 TMD						
		T3						
	In	63	80	100	125	160	200	250
	13	10 ln	10 In					
S	$\mathrm{S}_{\text {PE }}$							
4	4	17	13	10	8			
6	6	25	20	16	13	10	8	
10	10	42	33	26	21	16	13	10
16	16	67	52	42	34	26	21	17
25	16	81	64	51	41	32	26	20
35	16	91	72	58	46	36	29	23
50	25	139	109	87	70	55	44	35
70	35	194	153	122	98	76	61	49
95	50	273	215	172	137	107	86	69
120	70	331	261	209	167	130	104	83
150	95	411	324	259	207	162	130	104
185	95	418	329	263	211	165	132	105
240	120	499	393	315	252	197	157	126

Table 2.9: Tmax T4 TMD/TMA

		T4								
	In	20	32	50	80	100	125	160	200	250
	13	320 A	10 In	10 In	5...10 In	5... 10 In	5... 10 In	5... 10 ln	5...10 in	5... 10 ln
S	$\mathrm{S}_{\text {PE }}$									
1.5	1.5	14	14	9	11... 5	9... 4	7... 3	5... 3	4...2	3...2
2.5	2.5	23	23	14	18... 9	14...7	12... 6	9... 5	7...4	$6 . .3$
4	4	36	36	23	29...14	23...12	18... 9	14... 7	12... 6	9... 5
6	6	54	54	35	43... 22	35...17	28...14	22...11	17...9	$14 . . .7$
10	10	90	90	58	72... 36	58.... 29	46.... 23	36... 18	29...14	23...12
16	16	144	144	92	115... 58	92... 46	74... 37	58... 29	46... 23	37... 18
25	16	176	176	113	141... 70	113... 56	90... 45	70... 35	56.... 28	45... 23
35	16	198	198	127	158...79	127... 63	101... 51	79... 40	63... 32	51... 25
50	25	300	300	192	240...120	192... 96	154... 77	120...60	96... 48	77... 38
70	35	420	420	269	336... 168	269... 135	215... 108	168... 84	135... 67	108... 54
95	50	590	590	378	472... 236	378...189	302... 151	236...118	189... 94	151...76
120	70	717	717	459	574...287	459... 229	367...184	287... 143	229... 115	184... 92
150	95	891	891	570	713... 356	570... 285	456...228	356...178	285... 143	228...114
185	95	905	905	579	724... 362	579... 290	463... 232	362... 181	290...145	232...116
240	120	1081	1081	692	865...432	692...346	554...277	432... 216	346...173	277...138
300	150	1297	1297	830	1038... 519	830...415	664... 332	519... 259	415... 208	332...166

5 Protection of human beings

TN system MPL by MCCB	Table 2.10: Tmax T5-T6 TMA						
			T5	T5	T5	T6	T6
		In	320	400	500	630	800
		I_{3}	$5 . . .10 \mathrm{ln}$	5...10 In	5...10 In	5...10 In	5...10 In
	S	$\mathrm{S}_{\text {PE }}$					
	1,5	1,5	3...1	2... 1	2...1	1...1	1...1
	2,5	2,5	5...2	4...2	3...1	2...1	2...1
	4	4	7... 4	$6 . .3$	5...2	4...2	3...1
	6	6	11... 5	9... 4	7... 3	5... 3	4...2
	10	10	18... 9	14...7	12... 6	9...5	7... 4
	16	16	29... 14	23...12	18... 9	15... 7	12... 6
	25	16	35... 18	28...14	23... 11	18... 9	14... 7
	35	16	40... 20	32...16	25...13	20...10	16... 8
	50	25	$60 . .30$	48... 24	38... 19	31... 15	24...12
	70	35	84... 42	67... 34	54... 27	43... 21	34...17
	95	50	118... 59	94...47	76... 38	60... 30	47... 24
	120	70	143... 72	115... 57	92...46	73... 36	57...29
	150	95	178... 89	143... 71	114... 57	91... 45	71...36
	185	95	181... 90	145... 72	116... 58	92... 46	72... 36
	240	120	216... 108	173... 86	138... 69	110... 55	86...43
	300	150	259... 130	208... 104	166... 83	132... 66	104...52

Table 2.11: Tmax T2 with PR221 DS-LS

		T2	T2	T2	T2	T2
	In	10	25	63	100	160
	13	5.5 In				
S	$\mathbf{S}_{\text {PE }}$					
1.5	1.5	79	31	12		
2.5	2.5	131	52	21		
4	4	210	84	33	21	
6	6	315	126	50	31	20
10	10	524	210	83	52	33
16	16	839	335	133	84	52
25	16	1023	409	162	102	64
35	16	1151	460	183	115	72
50	25	1747	699	277	175	109
70	35	2446	979	388	245	153
95	50	3434	1374	545	343	215
120	70	4172	1669	662	417	261
150	95	5183	2073	823	518	324
185	95	5265	2106	836	526	329

5 Protection of human beings

TN system MPL
by MCCB

Table 2.12: Tmax T4-T5-T6 with PR221 - PR222 - PR223 Tmax 17 with PR231-PR232 - PR331-PR332

		T4	T4	T4	T4	T5	T5	T5	T6	T6	T6	77	77	17	77
	In	100	160	250	320	320	400	630	630	800	1000	800	1000	1250	1600
	I_{3}	6.5 In													
S	$\mathrm{S}_{\text {PE }}$														
1,5	1,5														
2,5	2,5														
4	4														
6	6	29	18												
10	10	48	30	19											
16	16	77	48	31	24	24	19								
25	16	94	59	38	30	30	24	15							
35	16	106	66	43	33	33	27	17							
50	25	161	101	65	50	50	40	26	26	20		20			
70	35	226	141	90	71	71	56	36	36	28	23	28	23	18	14
95	50	317	198	127	99	99	79	50	50	40	32	40	32	25	20
120	70	385	241	154	120	120	96	61	61	48	39	48	39	31	24
150	95	478	299	191	150	150	120	76	76	60	48	60	48	38	30
185	95	486	304	194	152	152	121	77	77	61	49	61	49	39	30
240	120	581	363	232	181	181	145	92	92	73	58	73	58	46	36
300	150	697	435	279	218	218	174	111	111	87	70	87	70	55	43

Note: if the setting of function 1 is different from the reference value (6.5), the value of the MPL shall be multiplied by the ratio between the reference value and the set value
Table 2.13: SACE Isomax S7 with PR211- PR212

		S7	57	S7
	In	1000	1250	1600
	13	6 In	6 ln	6 ln
S	$\mathrm{S}_{\text {PE }}$			
2.5	2.5			
4	4			
6	6			
10	10			
16	16			
25	16			
35	16			
50	25			
70	35	22	18	14
95	50	31	25	20
120	70	38	31	24
150	95	48	38	30
185	95	48	39	30
240	120	58	46	36
300	150	69	55	43

Note: if the setting of function S or 1 is different from the reference value (6), the MPL value shall be multiplied by the ratio between the reference
using function S the MPL shall be multiplied by 1.1 .

5 Protection of human beings

IT system MPL

by MCB Table 3.1: Curve Z

CURVE		\mathbf{z}								
$\mathbf{I n}$		$\leq \mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$
$\mathbf{1 3}$		$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{3 9}$	$\mathbf{4 8}$	$\mathbf{6 0}$	$\mathbf{7 5}$	$\mathbf{9 6}$	$\mathbf{1 2 0}$	$\mathbf{1 5 0}$
\mathbf{S}	$\mathbf{S} \mathbf{1 8 9}$									
1.5	1.5	150	150	115	94	75	60	47	37	
2.5	2.5	250	250	192	156	125	100	78	62	50
4	4	400	400	307	250	200	160	125	100	80
6	6	599	599	461	375	300	240	187	150	120
10	10	999	999	768	624	499	400	312	250	200
16	16	1598	1598	1229	999	799	639	499	400	320
25	16	1949	1949	1499	1218	974	780	609	487	390

Table 3.2: Curve B

CURVE	B	\mathbf{B}											
$\mathbf{I n}$		$\leq \mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$
$\mathbf{1 0 0}$													
$\mathbf{1 3}$		$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 5}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 1 5}$	$\mathbf{4 0 0}$
$\mathbf{5 0 0}$													
\mathbf{S}	$\mathbf{S}_{\mathbf{P E}}$												
1.5	1.5	150	112	90	69	56	45	36	28	22			
2.5	2.5	250	187	150	115	94	75	60	47	37	30	24	
4	4	400	300	240	184	150	120	96	75	60	48	38	30
6	6	599	449	360	277	225	180	144	112	90	72	57	45
10	10	999	749	599	461	375	300	240	187	150	120	95	75
16	16	1598	1199	959	738	599	479	384	300	240	192	152	120
25	16	1949	1462	1169	899	731	585	468	365	292	234	186	146
35	16												117

Table 3.3: Curve C

CURVE	\mathbf{C}																
$\mathbf{I n}$	$\mathbf{\leq 3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	
$\mathbf{1 3}$		$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 3 0}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$	$\mathbf{2 5 0}$	$\mathbf{3 2 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 3 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 5 0}$
\mathbf{S}	$\mathbf{S}_{\text {PE }}$																
1.5	1.5	150	112	75	56	45	35	28	22	18	14	11					
2.5	2.5	250	187	125	94	75	58	47	37	30	23	19	15	12			
4	4	400	300	200	150	120	92	75	60	48	37	30	24	19	15	12	10
6	6	599	449	300	225	180	138	112	90	72	56	45	36	29	22	18	14
10	10	999	749	499	375	300	230	187	150	120	94	75	60	48	37	30	24
16	16	1598	1199	799	599	479	369	300	240	192	150	120	96	76	60	48	38
25	16	1949	1462	974	731	585	450	365	292	234	183	146	117	93	73	58	47
35	16														82	66	53

5 Protection of human beings

IT system MPL

by MCB
Table 3.4: Curve K

CURVE K K K K K K K K K K K K K K K In $\quad \leq$| | ≤ 3 | 4 | 4.2 | 5.8 | 6 | 8 | 10 | 11 | 13 | 15 | 16 | 20 | 25 | 26 | 32 | 37 | 40 | 41 | 45 | 50 |
| :--- |

 | $\mathbf{S} \quad \mathrm{S}_{\mathrm{PE}}$ |
| :--- | :--- |
| $15 \quad 15$ |

1.5	1.5	161	107	80	76	55	54	40	32	29	25	21	20	16	13	12	10

$\begin{array}{cccccccccccccccccccccccc}2.5 & 2.5 & 268 & 178 & 134 & 127 & 92 & 89 & 67 & 54 & 49 & 41 & 36 & 33 & 27 & 21 & 21 & 17 & 14 & 13 & 13 & 12\end{array}$

| 4 | 4 | 428 | 285 | 214 | 204 | 148 | 143 | 107 | 86 | 78 | 66 | 57 | 54 | 43 | 34 | 33 | 27 | 23 | 21 | 21 |
| :--- | | 6 | 6 | 642 | 428 | 321 | 306 | 221 | 214 | 161 | 128 | 117 | 99 | 86 | 80 | 64 | 51 | 49 | 40 | 35 | 32 | 31 | 29 | 26 | 20 |
| :--- |

16	16	1712	1141	856	815	590	571	428	342	311	263	228	214	171	137	132	107	93	86	84	76
68	54																				

Table 3.5: Curve D

CURVE	\mathbf{D}															
$\mathbf{I n}$		$\leq \mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 3}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$
$\mathbf{1 0 0}$																
$\mathbf{1 3}$		$\mathbf{4 0}$	$\mathbf{6 0}$	$\mathbf{8 0}$	$\mathbf{1 2 0}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$	$\mathbf{2 6 0}$	$\mathbf{3 2 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 4 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 2 6 0}$	$\mathbf{1 6 0 0}$
$\mathbf{2 0 0 0}$																
\mathbf{S}	$\mathbf{S}_{\text {PE }}$															
1.5	1.5	112	75	56	37	28	22	17	14	11	9	7	6			
2.5	2.5	187	125	94	62	47	37	29	23	19	15	12	9	7	6	
4	4	300	200	150	100	75	60	46	37	30	24	19	15	12	10	7
6	6	449	300	225	150	112	90	69	56	45	36	28	22	18	14	11
10	10	749	499	375	250	187	150	115	94	75	60	47	37	30	24	19
16	16	1199	799	599	400	300	240	184	150	120	96	75	60	48	38	30
25	16	1462	974	731	487	365	292	225	183	146	117	91	73	58	46	37
35																41

5 Protection of human beings

IT system MPL
by MCCB Table 3.6: Tmax T1 TMD

		T1						
	$\mathbf{I n}$	$\leq \mathbf{5 0}$	$\leq \mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 6 0}$
	$\mathbf{1 3}$	$\mathbf{5 0 0} \mathbf{A}$	$\mathbf{6 3 0} \mathbf{A}$	$\mathbf{1 0} \mathbf{I n}$	$\mathbf{1 0} \mathbf{I n}$	$\mathbf{1 0} \mathbf{~ I n}$	$\mathbf{1 0} \mathbf{I n}$	$\mathbf{1 0} \mathbf{~ I n}$
\mathbf{S}	$\mathbf{S}_{\text {PE }}$							
1.5	1.5	5						
2.5	2.5	8						
4	4	13	11	11	8	7	5	
6	6	20	16	16	12	10	8	6
10	10	33	26	26	21	17	13	10
16	16	53	42	42	33	27	21	17
25	16	65	52	52	41	32	26	20
35	16	73	58	58	46	37	29	23
50	25	111	88	88	69	55	44	35
70	35	155	123	123	97	78	62	49
95	50	218	173	173	136	109	87	68

Table 3.7: Tmax T2 TMD

		T2	T2	T2	T2	T2	12	12	T2	12	T2	T2	T2	T2	T2	12	T2
	In	1.6	2	2.5	3.2	4	5	6.3	8	10	12.5	16:50	63	80	100	125	160
	13	10 ln	10 In	10 In	500A	10 ln											
S	$\mathrm{SPE}^{\text {P }}$																
1.5	1.5	213	170	136	106	85	68	54	43	34	27	7					
2.5	2.5	355	284	227	177	142	113	90	71	57	45	11					
4	4	567	454	363	284	227	182	144	113	91	73	18	14	11	9	7	
6	6	851	681	545	426	340	272	216	170	136	109	27	22	17	14	11	9
10	10	1419	1135	908	709	567	454	360	284	227	182	45	36	28	23	18	14
16	16	2270	1816	1453	1135	908	726	576	454	363	291	73	58	45	36	29	23
25	16				1384	1107	886	703	554	443	354	89	70	55	44	35	28
35	16						997	791	623	498	399	100	79	62	50	40	31
50	25								946	757	605	151	120	95	76	61	47
70	35										847	212	168	132	106	85	66
95	50											297	236	186	149	119	93
120	70											361	287	226	181	145	113
150	95											449	356	281	224	180	140
185	95											456	362	285	228	182	142

5 Protection of human beings

IT system MPL by MCCB		Table 3.8: Tmax T3 TMD						
		T3						
In		63	80	100	125	160	200	250
13		10 ln						
S	$\mathrm{S}_{\text {PE }}$							
4	4	14	11	9	7			
6	6	22	17	14	11	9	7	
10	10	36	28	23	18	14	11	9
16	16	58	45	36	29	23	18	15
25	16	70	55	44	35	28	22	18
35	16	79	62	50	40	31	25	20
50	25	120	95	76	61	47	38	30
70	35	168	132	106	85	66	53	42
95	50	236	186	149	119	93	74	59
120	70	287	226	181	145	113	90	72
150	95	356	281	224	180	140	112	90
185	95	362	285	228	182	142	114	91
240	120	432	340	272	218	170	136	109

Table 3.9: Tmax T4 TMD/TMA

		T4								
	In	20	32	50	80	100	125	160	200	250
	13	320 A	10 ln	10 ln	5... 10 ln	5... 10 In	5... 10 ln	5... 10 In	5... 10 In	5... 10 ln
S	$\mathrm{S}_{\text {PE }}$									
1.5	1.5	12	12	7	9... 5	7... 4	$6 . .3$	5... 2	4...2	3...1
2.5	2.5	20	20	12	16... 8	12... 6	10... 5	8... 4	$6 . .3$	5... 2
4	4	31	31	20	25...12	20... 10	16... 8	12... 6	10... 5	8... 4
6	6	47	47	30	37...19	30... 15	24...12	19... 9	$15 . . .7$	12... 6
10	10	78	78	50	62... 31	50... 25	40... 20	31... 16	25... 12	20... 10
16	16	125	125	80	100...50	80... 40	64...32	50... 25	40... 20	32...16
25	16	152	152	97	122... 61	97... 49	78... 39	61... 30	49... 24	39... 19
35	16	171	171	110	137... 69	110... 55	88... 44	69... 34	55... 27	44... 22
50	25	260	260	166	208... 104	166... 83	133... 67	104... 52	83... 42	67... 33
70	35	364	364	233	291... 146	233...117	186.... 93	146... 73	117... 58	93... 47
95	50	511	511	327	409... 204	327...164	262... 131	204... 102	164... 82	131...65
120	70	621	621	397	497... 248	397... 199	318...159	248...124	199... 99	159... 79
150	95	772	772	494	617... 309	494... 247	395... 198	309...154	247...123	198... 99
185	95	784	784	502	627... 313	502... 251	401... 201	313...157	251...125	201... 100
240	120	936	936	599	749... 375	599... 300	479... 240	375... 187	300... 150	240... 120
300	150	1124	1124	719	899...449	719... 360	575... 288	449... 225	360...180	288...144

5 Protection of human beings

IT system MPL

by MCCB

		T5	T5	T5	T6	T6
	In	320	400	500	630	800
	I_{3}	$5 . . .10 \mathrm{ln}$	5... 10 In	5... 10 In	5... 10 ln	5... 10 ln
S	$\mathrm{S}_{\text {PE }}$					
1.5	1.5	2... 1	2...1	1... 1	1...1	
2.5	2.5	4...2	3...2	2...1	2...1	2... 1
4	4	$6 . .3$	5...2	4...2	3...2	2...1
6	6	9...5	7... 4	$6 . .3$	5...2	4...2
10	10	16... 8	12... 6	10... 5	8...4	$6 . .3$
16	16	25...12	20...10	$16 . . .8$	13... 6	10... 5
25	16	30... 15	24...12	19... 10	15... 8	12... 6
35	16	34...17	27...14	22...11	17...9	14...7
50	25	52... 26	42... 21	33...17	26...13	21... 10
70	35	73... 36	58... 29	47... 23	37... 18	29...15
95	50	102... 51	82... 41	65... 33	52... 26	41... 20
120	70	124... 62	99... 50	79... 40	63... 32	50... 25
150	95	154... 77	123... 62	99... 49	78... 39	62... 31
185	95	157... 78	125... 63	100... 50	80... 40	63... 31
240	120	187... 94	150... 75	120... 60	95...48	75... 37
300	150	225... 112	180... 90	144... 72	114... 57	90... 45

Table 3.11: Tmax T2 with PR221 DS-LS

		T2	T2	T2	T2	T2
	In	10	25	63	100	160
	13	5.5 In				
S	$\mathrm{S}_{\text {PE }}$					
1.5	1.5	68	27	11		
2.5	2.5	113	45	18		
4	4	182	73	29	18	
6	6	272	109	43	27	17
10	10	454	182	72	45	28
16	16	726	291	115	73	45
25	16	886	354	141	89	55
35	16	997	399	158	100	62
50	25	1513	605	240	151	95
70	35	2119	847	336	212	132
95	50	2974	1190	472	297	186
120	70	3613	1445	573	361	226
150	95	4489	1796	713	449	281
185	95	4559	1824	724	456	285

Note: if the setting of function I is different from the reference value (5.5), the MPL value shall be multiplied by the ratio between the reference value and the set value.

5 Protection of human beings

$\begin{array}{lr}\text { IT system MPL Table 3.12: Tmax T4-T5-T6 with PR221 - PR222 - PR22 } \\ \text { by MCCB } & \text { Tmax T7 with PR231-PR232-PR331-PR332 }\end{array}$

Note: if the setting of function I is different from the reference value (6.5), the value of the MPL shall be multiplied by the ratio between the reference value and the set value

5 Protection of human beings

IT system MPL by MCCB

Table 3.13: SACE Isomax S7 with PR211-212

		S7	57	S7
	In	1000	1250	1600
	13	6 In	6 In	6 In
S	$\mathrm{S}_{\text {PE }}$			
2.5	2.5			
4	4			
6	6			
10	10			
16	16			
25	16			
35	16			
50	25			
70	35	19	16	12
95	50	27	22	17
120	70	33	26	21
150	95	41	33	26
185	95	42	33	26
240	120	50	40	31
300	150	60	48	37

Note: if the setting of function S or I is different from the reference value (6), the MPL value shall be multiplied by the ratio between the reference value and the set value. Besides sing function S , the MPL shall be multiplied by 1.1 .

6 Calculation of short-circuit current

A short-circuit is a fault of negligible impedance between live conductors having a difference in potential under normal operating conditions.

6.2 Fault typologies

a three-phase circuit the following types of fault may occur
three-phase fault;
two-phase fault;

- phase to neutral fault
- phase to PE fault

In the formulas, the following symbols are used
l_{k} short-circuit current

- Ur rated voltage
- Z phase conductor impedance
- Z_{N} neutral conductor impedance,
$Z_{\text {PE }}$ protective conductor impedance
The following table briefly shows the type of fault and the relationships between the value of the short-circuit current for a symmetrical fault (three phase) and the short-circuit current for asymmetrical faults (two phase and single phase) in case of faults far from generators.

Three-phase fault

wo-phase fault

$$
\begin{aligned}
& I_{k L L L}=\frac{U r}{\sqrt{3} Z_{L}} \\
& \text { where } \\
& Z_{L}=\sqrt{R_{L}^{2}+X_{L}^{2}}
\end{aligned}
$$

6 Calculation of short-circuit current

Phase to PE fault

$$
I_{K L P E}=\frac{U_{r}}{\sqrt{3}\left(Z_{L}+Z_{P E}\right)}
$$

If $Z_{L}=Z_{P E}$ (crosss section of protective conductor equal

$$
\begin{aligned}
& \text { to the phase conductor one): } \\
& I_{\text {KIPE }}=\frac{U_{r}}{\sqrt{3}\left(Z_{L}+Z_{P E}\right)}=\frac{U_{r}}{\sqrt{3}\left(2 Z_{L}\right)}=0.51_{\mathrm{KLLL}}
\end{aligned}
$$

$$
\text { If } Z_{\mathrm{PE}}=2 Z_{\mathrm{L}} \text { (cross section of protective conductor } \begin{aligned}
& \text { half to the phase conductor one): }
\end{aligned}
$$

$$
\begin{aligned}
& \text { half to the phase conductor one): } \\
& I_{\text {KLPE }}=\frac{U_{r}}{\sqrt{3}\left(z_{L}+Z_{\text {PE }}\right)}=\frac{U_{r}}{\sqrt{3}\left(3 z_{L}\right)}=0.331_{\mathrm{KLLL}}
\end{aligned}
$$

If $Z_{\mathrm{PE}} \cong 0$ limit condition:

$$
I_{\text {LLPEE }}=\frac{U_{r}}{\sqrt{3}\left(Z_{L}+Z_{\text {PE }}\right)}=\frac{U_{r}}{\sqrt{3}\left(Z_{L}\right)}=I_{\text {KLLL }}
$$

The following table allows the approximate value of a short-circuit current to be found quickly.

Note	Three-phase short-circuit\qquad IkLL	Two-phase short-circuit	Phase to neutral short-circuit\qquad $I_{\text {kLN }}$	Phase to PE short-circuit (TN system) $I_{\text {kLPE }}$
		$l_{\text {KLL }}$		
$\mathrm{I}_{\text {kLLL }}$	-	$k_{\text {kLL }}=0.871_{\text {kLLL }}$	$\begin{aligned} & I_{N N}=0.51_{\text {KLL }}\left(Z_{L}=Z_{N}\right) \\ & I_{N N}=0.333_{\text {KLLL }}\left(Z_{L}=0,5 Z_{N}\right) \\ & L_{L N}=\exists_{K L L}\left(Z_{N} \cong 0\right) \end{aligned}$	
$\mathrm{I}_{\text {kLL }}$	$\mathrm{I}_{\text {kLL }}=1.16 \mathrm{k}_{\mathrm{kLL}}$	-		
$\mathrm{l}_{\text {kıN }}$			-	

6 Calculation of short-circuit current

6.3 Determination of the short-circuit

current: "short-circuit power method"

The short-circuit current can be determined by using the "short-circuit power method". This method allows the determination of the approximate short-circuit current at a point in an installation in a simple way; the resultant value is generally acceptable. However, this method is not conservative and gives more accurat values, the more similar the power factors of the considered components an (network, generators, transformers, motors and large section cables etc.). The "short-circuit power method" calculates the short-circuit current I_{k} based on the formula:

Three-phase short-circuit $\quad I_{k}=\frac{S_{k}}{\sqrt{3} \cdot U_{r}}$

Two-phase short-circuit

$$
I_{k}=\frac{S_{k}}{2 \cdot U_{r}}
$$

where:
S_{k} is the short-circuit apparent power seen at the point of the fault

- U_{r} is the rated voltage

To determine the short-circuit apparent power S_{k}, all the elements of the network shall be taken into account, which may be:
elements which contribute to the short-circuit curren
network, generators, motors;

- elements which limit the value of the short-circuit current
conductors and transformers.
The procedure for the calculation of the short-circuit current involves the following steps:

1. calculation of the short-circuit power for the different elements of the installation
2. calculation of the short-circuit power at the fault point;
3. calculation of the short-circuit current.

6.3.1 Calculation of the short-circuit power for the different elements of the

 installationThe short-circuit apparent power S_{k} shall be determined for all the components which are part of the installation:

Network

An electrical network is considered to include everything upstream of the point of energy supply.

6 Calculation of short-circuit current

Generally, the energy distribution authority supplies the short-circuit apparent power $\left(S_{\text {knet }}\right)$ value at the point of energy supply. However, if the value of the short-circuit current $I_{\text {knet }}$ is known, the value of the power can be obtained by using, for three-phase systems, the following formula

$$
S_{\text {knet }}=\sqrt{3} U_{r} I_{\text {knet }}
$$

where U_{r} is the rated voltage at the point of energy supply.
If the aforementioned data are not available, the values for $\mathrm{S}_{\text {knet }}$ given in the following table can be taken as reference values:

Net voltage $\left.\mathbf{U}_{\mathbf{r}} \mathbf{[k V}\right]$	Short-circuit power $\mathbf{S}_{\text {knet }}[\mathbf{M V A}]$
Up to 20	500
Up to 32	750
Up to 63	1000

Generator

The short-circuit power is obtained from:

$$
S_{\mathrm{kgen}}=\frac{\mathrm{S}_{\mathrm{r}} \cdot 100}{\mathrm{X}_{\mathrm{d} \%}^{*}}
$$

where $X_{d \%}^{*}$ is the percentage value of the subtransient reactance (X_{d} ") or of the transient reactance $\left(X_{d^{\prime}}\right)$ or of the synchronous reactance $\left(X_{d}\right)$, according to the instant in which the value of the short-circuit power is to be evaluated.
in general, the reactances are expressed in percentages of the rated impedance f the generator $\left(Z_{d}\right)$ given by

$$
Z_{d}=\frac{U_{r}^{2}}{S_{r}}
$$

where U_{r} and S_{r} are the rated voltage and power of the generator. Typical values can be
X_{d} " from 10 \% to 20%;
$X_{d}{ }^{\prime}$ from 15% to 40%;
X_{d} from 80% to 300%.
Normally, the worst case is considered, that being the subtransient reactance The following table gives the approximate values of the short-circuit power of generators ($X_{d}{ }^{\prime \prime}=12.5 \%$)

| $\mathrm{S}_{\mathrm{r}}[\mathrm{kVA}]$ | 50 | 63 | 125 | 160 | 200 | 250 | 320 | 400 | 500 | 630 | 800 | 1000 | 1250 | 1600 | 2000 | 2500 | 3200 | 4000 |
| :---: |
| $\mathrm{~S}_{\text {keen }}[\mathrm{MVA}]$ | 0.4 | 0.5 | 1.0 | 1.3 | 1.6 | 2.0 | 2.6 | 3.2 | 4.0 | 5.0 | 6.4 | 8.0 | 10.0 | 12.8 | 16.0 | 20.0 | 25.6 | 32.0 |

6 Calculation of short-circuit current

Asynchronous three-phase motors

Under short-circuit conditions, electric motors contribute to the fault for a brief period (5-6 periods).
The power can be calculated according to the short-circuit current of the motor (l) by using the following expression

$$
S_{\mathrm{kmot}}=\sqrt{3} \cdot U_{r} \cdot I_{\mathrm{k}}
$$

Typical values are

$\mathrm{S}_{\mathrm{kmot}}=5 \div 7 \mathrm{~S}_{\text {mot }}$
(I_{k} is about $5 \div 7 I_{\text {mot }}: 5$ for motors of small size, and 7 for larger motors).

Transformers

The short-circuit power of a transformer ($\mathrm{S}_{\text {ktrafo }}$) can be calculated by using the following formula

$$
\mathrm{S}_{\mathrm{ktrafo}}=\frac{100}{\mathrm{u}_{\mathrm{k}} \%} \cdot \mathrm{~S}_{\mathrm{r}}
$$

The following table gives the approximate values of the short-circuit power of transformers:

$\mathrm{S}_{\mathrm{r}}[\mathrm{KVA}]$	50	63	125	160	200	250	320	400	500	630	800	1000	1250	1600	2000	2500	3200	4000
$\mathrm{u}_{\mathrm{k}} \%$	4	4	4	4	4	4	4	4	4	4	5	5	5	6	6	6	6	6
$\mathrm{~S}_{\text {ktafo }}[\mathrm{MVA}]$	1.3	1.6	3.1	4	5	6.3	8	10	12.5	15.8	16	20	25	26.7	33.3			

Cables

A good approximation of the short-circuit power of cables is

$$
\mathrm{S}_{\text {kcable }}=\frac{\mathrm{U}_{\mathrm{r}}{ }^{2}}{\mathrm{Z}_{\mathrm{c}}}
$$

where the impedance of the cable $\left(Z_{C}\right)$ is:

$$
\begin{aligned}
& I_{\text {KLLL }}=\frac{U r}{\sqrt{3} Z_{L}} \\
& \text { where } \\
& Z_{L}=\sqrt{R_{L}^{2}+X_{L}^{2}}
\end{aligned}
$$

The following table gives the approximate values of the short-circuit power of cables, at 50 and 60 Hz , according to the supply voltage (cable length $=10 \mathrm{~m}$):

6 Calculation of short-circuit current

S [mm^{2}]	230 [V]	$400[\mathrm{VJ}$	440 N [MVA]	$\begin{gathered} 500 \mathrm{IV} \\ \text { @ } 50 \mathrm{~Hz} \\ \hline \end{gathered}$	690 IV	$\mathrm{S}_{\text {kcable }}$ [MVA] @ 60 Hz				
1.5	0.44	1.32	1.60	2.07	3.94	0.44	1.32	1.60	2.07	3.94
2.5	0.73	2.20	2.66	3.44	6.55	0.73	2.20	2.66	3.44	6.55
4	1.16	3.52	4.26	5.50	10.47	1.16	3.52	4.26	5.50	10.47
6	1.75	5.29	6.40	8.26	15.74	1.75	5.29	6.40	8.26	15.73
10	2.9	8.8	10.6	13.8	26.2	2.9	8.8	10.6	13.7	26.2
16	4.6	14.0	16.9	21.8	41.5	4.6	13.9	16.9	21.8	41.5
25	7.2	21.9	26.5	34.2	65.2	7.2	21.9	26.4	34.1	65.0
35	10.0	30.2	36.6	47.3	90.0	10.0	30.1	36.4	47.0	89.6
50	13.4	40.6	49.1	63.4	120.8	13.3	40.2	48.7	62.9	119.8
70	19.1	57.6	69.8	90.1	171.5	18.8	56.7	68.7	88.7	168.8
95	25.5	77.2	93.4	120.6	229.7	24.8	75.0	90.7	117.2	223.1
120	31.2	94.2	114.0	147.3	280.4	29.9	90.5	109.5	141.5	269.4
150	36.2	109.6	132.6	171.2	326.0	34.3	103.8	125.6	162.2	308.8
185	42.5	128.5	155.5	200.8	382.3	39.5	119.5	144.6	186.7	355.6
240	49.1	148.4	179.5	231.8	441.5	44.5	134.7	163.0	210.4	400.7
300	54.2	164.0	198.4	256.2	488.0	48.3	146.1	176.8	228.3	434.7

With n cables in parallel, it is necessary to multiply the value given in the table by n . If the length of the cable $\left(\mathrm{L}_{\text {act }}\right)$ is other than 10 m , it is necessary to multiply the value given in the table by the following coefficient:

10

632 Calculation of the short-circuit power at the fault point

The rule for the determination of the short-circuit power at a point in the installation, according to the short-circuit power of the various elements of the circuit, is analogue to that relevant to the calculation of the equivalent admittance. In particular:

- the power of elements in series is equal to the inverse of the sum of the inverses of the single powers (as for the parallel of impedances);

$$
S_{k}=\frac{1}{\sum \frac{1}{S_{i}}}
$$

the short-circuit power of elements in parallel is equal to the sum of the single short-circuit powers (as for the series of impedances).

$$
\mathrm{S}_{\mathrm{k}}=\sum \mathrm{S}_{\mathrm{i}}
$$

The elements of the circuit are considered to be in series or parallel, seeing the circuit from the fault point.
In the case of different branches in parallel, the distribution of the current between the different branches shall be calculated once the short-circuit current at the fault point has been calculated. This must be done to ensure the correct choice of protection devices installed in the branches.

6 Calculation of short-circuit current

6.3.3 Calculation of the short-circuit curren

To determine the short-circuit current in an installation, both the fault point as well as the configuration of the system which maximize the short-circuit current involving the device shall be considered. If appropriate, the contribution of the motors shall be taken into account.
For example, in the case detailed below, for circuit-breaker CB1, the worst condition occurs when the fault is right upstream of the circuit-breaker itself. To determine the breaking capacity of the circuit-breaker, the contribution of two ransformers in parallel must be considered.

Fault right downstream of CB1

Fault right upstream of CB1
(worst condition for CB1)

Once the short-circuit power equivalent at the fault point has been determined, the short-circuit current can be calculated by using the following formula:

Three-phase short-circuit $\quad I_{k}=\frac{S_{k}}{\sqrt{3} \cdot U_{r}}$

Two-phase short-circuit $\quad I_{k}=\frac{S_{k}}{2 \cdot U_{r}}$

6 Calculation of short-circuit current

As a first approximation, by using the following graph, it is possible to evaluate the three-phase short-circuit current downstream of an object with short-circuit power ($\mathrm{S}_{\mathrm{kEL}}$) known; corresponding to this value, knowing the short-circuit power upstream of the object ($S_{k U P}$), the value of l_{k} can be read on the y-axis, expressed in KA , at 400 V .

Figure 1: Chart for the calculation of the three-phase short-circuit current at 400 V

6 Calculation of short-circuit current

6.3.4 Examples

The following examples demonstrate the calculation of the short-circuit current in some different types of installation

Calculation of the short-circuit power of different elements

Network: $\quad \mathrm{S}_{\text {knet }}=500 \mathrm{MVA}$

Transformer: $\quad S_{\text {ktrafo }}=\frac{100}{u_{k} \%} \cdot \mathrm{~S}_{\mathrm{r}}=26.7 \mathrm{MVA}$
Motor: $\quad S_{\text {mot }}=\frac{P_{r}}{\eta \cdot \cos \varphi_{r}}=267 \mathrm{kVA}$
$\mathrm{S}_{\mathrm{kmot}}=6.6 \cdot \mathrm{~S}_{\text {mot }}=1.76 \mathrm{MVA}$ for the first $5-6$ periods (at 50 Hz about 100 ms)

Calculation of the short-circuit current for the selection of circuit-breakers

Selection of CB1
For circuit-breaker CB1, the worst condition arises when the fault occurs right for circuit-breaker CB1, the worst condition arises whe case of a fault right upstream, the circuit-breaker would be involved only by the fault current flowing from the motor, which is remarkably smaller than the network contribution.

6 Calculation of short-circuit current

The circuit, seen from the fault point, is represented by the series of the network with the transformer. According to the previous rules, the short-circuit power is determined by using the following formula:

$$
S_{\text {KCB1 } 1}=\frac{S_{\text {kneet }} \cdot S_{\text {ktafo }}}{S_{\text {knet }}+S_{\text {krafo }}}=25.35 \mathrm{MVA}
$$

he maximum fault current is

$$
I_{\mathrm{KCB} 1}=\frac{\mathrm{S}_{\mathrm{kCB} 1}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}=36.6 \mathrm{kA}
$$

The transformer LV side rated current is equal to 2309 A ; therefore the circuitbreaker to select is an Emax E3N 2500
Using the chart shown in Figure 1, it is possible to find $\mathrm{I}_{\mathrm{kCB}}$ from the curve with $\mathrm{S}_{\mathrm{kUP}}=\mathrm{S}_{\mathrm{knet}}=500 \mathrm{MVA}$ corresponding to $\mathrm{S}_{\mathrm{kEL}}=\mathrm{S}_{\mathrm{ktrafo}}=26.7 \mathrm{MVA}:$

6 Calculation of short-circuit current

Selection of CB2

For circuit-breaker CB2, the worst condition arises when the fault occurs right downstream of the circuit-breaker itself. The circuit, seen from the fault point, is represented by the series of the network with the transformer. The short-circuit current is the same used for CB1.

$$
I_{\mathrm{KCB} 1}=\frac{S_{\mathrm{KCB} 1}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}=36.6 \mathrm{kA}
$$

The rated current of the motor is equal to 385 A ; the circuit-breaker to select is a Tmax T5H 400.

Selection of CB3
For CB3 too, the worst condition arises when the fault occurs right downstream of the circuit-breaker itself.
The circuit, seen from the fault point, is represented by two branches in parallel: the motor and the series of the network and transformer. According to the previous rules, the short-circuit power is determined by using the following formula
Motor // (Network + Transformer)

$$
\begin{gathered}
\mathrm{S}_{\mathrm{kCB} 3}=\mathrm{S}_{\mathrm{kmot}}+\frac{1}{\frac{1}{\mathrm{~S}_{\mathrm{knet}}}+\frac{1}{\mathrm{~S}_{\mathrm{ktrafo}}}}=27.11 \mathrm{MVA} \\
\mathrm{I}_{\mathrm{KCB} 3}=\frac{\mathrm{S}_{\mathrm{KCB} 3}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}=39.13 \mathrm{kA}
\end{gathered}
$$

The rated current of the load L is equal to 1443 A ; the circuit-breaker to select is a Tmax T7S1600 or an Emax X1B1600.

Example 2

The circuit shown in the diagram is constituted by the supply, two transformers in parallel and three loads.

6 Calculation of short-circuit current

Calculation of the short-circuit powers of different elements:

Network	$\mathrm{S}_{\text {knet }}=500 \mathrm{MVA}$
Transformers 1 and 2	$\mathrm{S}_{\mathrm{k} \text { trafo }}=\frac{\mathrm{S}_{\mathrm{r}}}{\mathrm{u}_{\mathrm{k}} \%} \cdot 100=26.7 \mathrm{MVA}$

Selection of CB1 (CB2)
For circuit-breaker CB1 (CB2) the worst condition arises when the fault occurs ight downstream of the circuit-breaker itself. According to the previous rules, the circuit seen from the fault point, is equivalent to the parallel of the two transformers in series with the network: Network + (Trafo 1 // Trafo 2)
The short-circuit current obtained in this way comesponds to the short-circuit ment a this cument given the symmetry of the circuit is distribut equally between the two branches (half each). The current which flows through CB1 (CB2) is therefore equal to half of that at the busbar.

$$
\begin{gathered}
\mathrm{S}_{\text {kbusbar }}=\frac{\mathrm{S}_{\text {knet }} \cdot\left(\mathrm{S}_{\text {trafo1 }}+\mathrm{S}_{\text {ktrafo2 }}\right)}{\mathrm{S}_{\text {knet }}+\left(\mathrm{S}_{\text {ktrafo1 }}+\mathrm{S}_{\text {ktrafo } 2}\right)}=48.2 \mathrm{MVA} \\
\mathrm{I}_{\text {kbusbar }}=\frac{\mathrm{S}_{\text {kbusbar }}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}=69.56 \mathrm{kA} \\
\mathrm{I}_{\text {KCB1(2) }}=\frac{\mathrm{I}_{\text {kbusbar }}}{2}=34.78 \mathrm{kA}
\end{gathered}
$$

The circuit-breakers CB1(CB2) to select, with reference to the rated current of the transformers, are Emax E3N 2500.

Selection of CB3-CB4-CB5
or these circuit-breakers the worst condition arises when the fault occurs ight downstream of the circuit-breakers themselves. Therefore, the short-circuit curent to be taken into account is that at the busbar

$$
I_{\mathrm{kCB} 3}=I_{\mathrm{kbusbar}}=69.56 \mathrm{kA}
$$

The circuit-breakers to select, with reference to the current of the loads, are: CB3: Emax E3S 2500
CB4: Emax E2S 1600
CB5: Tmax T2H 160

6 Calculation of short-circuit current

6 Calculation of short-circuit current

Note

In the case of the I_{k} upstream and the length of the cable not being included in the table, it is necessary to consider
the value right above I_{k} upstream;
the value right below for the cable length
These approximations allow calculations which favour safety.

- In the case of cables in parallel not present in the table, the length must be divided by the number of cables in parallel.

Example

Data
ated voltage $=400 \mathrm{~V}$
Cable section $=120 \mathrm{~mm}^{2}$
Conductor $=$ copper
Length $=29 \mathrm{~m}$
Upstream short-
circuit current $=32 \mathrm{kA}$
400 V

Procedure

the row corresponding to the cable cross section $120 \mathrm{~mm}^{2}$, it is possible to find the column for a length equal to 29 m or right below (in this case 24). In the column of upstream short-circuit current it is possible to identify the row with a value of 32 kA or right above (in this case 35). From the intersection of this las row with the previously identified column, the value of the downstream short ircuit current can be read as being equal to 26 kA .

6 Calculation of short-circuit current

6.5 Algebra of sequences

6.5.1 General aspects

It is possible to study a symmetrical, balanced three-phase network in quite a simple way by reducing the three-phase network to a single-phase one having the same value of rated voltage as the three-phase system line-to-line voltage Asymmetric networks cannot be reduced to the study of a single-phase network ust because of this unbalance. In this case, being impossible any simplification, it is necessary to proceed according to the analysis methods typical for the solution of electrical systems.
The modelling technique allowing the calculation of an asymmetric and unbalanced network by converting it to a set of three balanced networks that each can be represented by a single-phase equivalent circuit easily solvable is the method of symmetrical components.
This method derives from mathematical considerations according to which any set of three phasors ${ }^{1}$ can be divided into three sets of phasors with the following characteristics:

- a balanced set, called positive sequence, formed by three phasors of equal magnitude shifted by 120° and having the same phase sequence as the origina system
- a balanced set, called negative sequence, formed by three phasors of equal magnitude shifted by 120° and having inverse phase sequence to that of the onginal system
a zero sequence set formed by three phasors of equal magnitude in phase
Figure 1

The phasor is a vectorial representation of magnitude which varies in time. A signal of type $\mathrm{v}(\mathrm{t})=\sqrt{2} \cdot \mathrm{~V} \cdot \cos (\omega \cdot \mathrm{t}+\varphi)$ is represented by the phasor $\overline{\mathrm{v}}=\mathrm{V} \cdot \mathrm{e}^{\mathrm{i} \varphi}$

6 Calculation of short-circuit current

6.5.2 Positive, negative and zero sequence systems

The following relationships* represent the link between the quantities of the hree-phase balanced network and the positive, negative and zero sequence systems:

$$
\begin{array}{cccc}
\bar{V}_{0}=\frac{1}{3}\left(\overline{\mathrm{~V}}_{1}+\overline{\mathrm{V}}_{2}+\overline{\mathrm{V}}_{3}\right) & \overline{\mathrm{I}}_{0}=\frac{1}{3}\left(\overline{\mathrm{I}}_{1}+\overline{\mathrm{I}}_{2}+\overline{\mathrm{I}}_{3}\right) & \overline{\mathrm{V}}_{1}=\overline{\mathrm{V}}_{0}+\overline{\mathrm{V}}_{\mathrm{d}}+\overline{\mathrm{V}}_{\mathrm{i}} & \overline{\mathrm{I}}_{1}=\overline{\mathrm{I}}_{0}+\overline{\mathrm{I}}_{\mathrm{d}}+\overline{\mathrm{I}}_{\mathrm{i}} \\
\overline{\mathrm{~V}}_{\mathrm{d}}=\frac{1}{3}\left(\overline{\mathrm{~V}}_{1}+\alpha \cdot \overline{\mathrm{V}}_{2}+\alpha^{2} \cdot \overline{\mathrm{~V}}_{3}\right) & \overline{\mathrm{I}}_{\mathrm{d}}=\frac{1}{3}\left(\overline{\mathrm{I}}_{1}+\alpha \cdot \overline{\mathrm{I}}_{2}+\alpha^{2} \cdot \overline{\mathrm{I}}_{3}\right) & \overline{\mathrm{V}}_{2}=\overline{\mathrm{V}}_{0}+\alpha^{2} \cdot \overline{\mathrm{~V}}_{\mathrm{d}}+\alpha \cdot \overline{\mathrm{V}}_{\mathrm{i}} & \overline{\mathrm{I}}_{2}=\overline{\mathrm{I}}_{0}+\alpha^{2} \cdot \overline{\mathrm{I}}_{\mathrm{d}}+\alpha \cdot \overline{\mathrm{I}}_{\mathrm{i}} \\
\overline{\mathrm{~V}}_{\mathrm{i}}=\frac{1}{3}\left(\overline{\mathrm{~V}}_{1}+\alpha^{2} \cdot \overline{\mathrm{~V}}_{2}+\alpha \cdot \overline{\mathrm{V}}_{3}\right)_{1} & \overline{\mathrm{I}}_{\mathrm{i}}=\frac{1}{3}\left(\overline{\mathrm{I}}_{1}+\alpha^{2} \cdot \overline{\mathrm{I}}_{2}+\alpha \cdot \overline{\mathrm{I}}_{3}\right) & \overline{\mathrm{V}}_{3}=\overline{\mathrm{V}}_{0}+\alpha \cdot \overline{\mathrm{V}}_{\mathrm{d}}+\alpha^{2} \cdot \overline{\mathrm{~V}}_{i} & \overline{\mathrm{I}}_{3}=\overline{\mathrm{I}}_{1}+\alpha \cdot \overline{\mathrm{I}}_{2}+\alpha^{2} \cdot \overline{\mathrm{I}}_{3}
\end{array}
$$

In the fomulas the subscrints mevant to positive sequence, neqative sequence and zero-sequence components are indicated by " d ", " i " and " 0 " respectively.
The complex constant $\alpha=-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}$
otates the vector by 120° in a positive direction (counterclockwise).
The complex constant $\alpha^{2}=-\frac{1}{2}-\mathrm{j} \frac{\sqrt{3}}{2}$ operates a -120° rotation.
Some useful properties of this set of three vectors are:
$1+\alpha+\alpha^{2}=0$
$\alpha^{2}-\alpha \mid=\sqrt{3}$
Figure 2

Therefore, it is possible to state that a real three-phase network may be replaced by three single-phase networks related to the three positive, negative and zero sequences, by substituting each component with the corresponding equivalent circuit. If generators can be considered symmetrical as it occurs in plant practice, by considering as a positive sequence set the one they generate, the thre single-phase networks are defined by the following circuits and equations:

here:
E_{d} is the line-to-neutral voltage $\left(E_{d}=\frac{U_{r}}{\sqrt{3}}\right)$ of the section upstream the fault
Z is the system impedance upstream the fault location
I is the fault current

- V is the voltage measured at the fault location.

6 Calculation of short-circuit current

6.5.3 Calculation of short-circuit current with the algebra of sequences

Without going into the details of a theoretical treatment, it is possible to show the procedure to semplify and resolve the electrical network under a preestabilished fault condition thruogh an example
solated line-to line fault
The diagram showing this fault typology and the link between currents and voltages, may be represented as follows:

Figure 4
Fault conditions (3)

$$
\begin{aligned}
& \overline{V_{2}}=\overline{V_{3}} \\
& \overline{T_{2}}=-\bar{I}_{3} \\
& \overline{T_{1}}=0
\end{aligned}
$$

By using the given fault conditions and the formula 1), it follows that:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{i}} \\
\mathrm{I}_{\mathrm{d}}=-\mathrm{I}_{\mathrm{i}} \\
\mathrm{I}_{\mathrm{o}}=0 \text { therefore } \mathrm{V}_{\mathrm{o}}=0
\end{gathered}
$$

These relationships applied to the three sequence circuits of Figure 3 allow the definition of the sequence network equivalent to the three-phase network under study and representing the initial fault condition. This network may be represented as follows:

Figure 5

6 Calculation of short-circuit current

By solving this simple network (constituted by series-connected elements) in relation to the current I_{d}, the following is obtained:

$$
\overline{I_{d}}=\frac{\overline{E_{d}}}{\bar{Z}_{d}+\overline{Z_{i}}}
$$

5)

By using formulas 2) referred to the current, and formulas 4), it follows that:

$$
\overline{I_{2}}=\left(\alpha^{2}-\alpha\right) \cdot \overline{I_{d}} \quad \overline{I_{3}}=\left(\alpha-\alpha^{2}\right) \cdot \overline{I_{d}}
$$

Since $\left|\left(\alpha^{2}-\alpha\right)\right|$ results to be equal to $\sqrt{3}$, the value of the line-to-line short-circuit current in the two phases affected by the fault can be expressed as follows:

$$
\left|\overline{I_{2}}\right|=\left|\overline{\mathrm{I}}_{3}\right|=\left|\overline{\mathrm{k}}_{\mathrm{k}}\right|=\sqrt{3} \cdot\left|\frac{\overline{\mathrm{E}_{\mathrm{d}}}}{\overline{\mathrm{Z}_{\mathrm{d}}}+\overline{\mathrm{Z}_{\mathrm{i}}}}\right|
$$

Using formulas 2) referred to the voltage, and formulas 4) previously found, the following is obtained:
$\bar{V}_{1}=2 \cdot \bar{V}_{i}$
6) for the phase not affected by the fault
$\overline{\mathrm{V}}_{2}=\overline{\mathrm{V}}_{3}=\left(\alpha^{2}+\alpha\right) \cdot \overline{\mathrm{V}}_{\mathrm{d}}=-\overline{\mathrm{V}}_{\mathrm{d}}$
7) for the phases affected by the fault

Through the negative sequence circuit, relation 6) can be written as $\overline{\mathrm{V}}_{1}=-2 \cdot \overline{\mathrm{Z}}_{\mathrm{i}} \cdot \overline{\mathrm{I}}_{\mathrm{i}}$.
Further to the above, and since $\overline{\bar{l}_{\mathrm{d}}}=-\overline{\bar{I}_{\mathrm{i}}}$, the phase not affected by the fault shall be:

$$
\overline{\mathrm{V}}_{1}=\frac{2 \cdot \overline{\mathrm{Z}}_{\mathrm{i}}}{\overline{\mathrm{Z}}_{\mathrm{d}}+\overline{\mathrm{Z}}_{\mathrm{i}}} \cdot \overline{\mathrm{E}}_{\mathrm{d}}
$$

For the phases affected by the fault, being $\overline{\mathrm{V}}_{\mathrm{d}}=\overline{\mathrm{V}}_{\mathrm{i}}=\frac{\overline{\mathrm{V}}_{1}}{2}$, it results:

$$
\bar{V}_{2}=\overline{\mathrm{V}}_{3}=-\frac{\overline{\mathrm{V}}_{1}}{2}=\frac{\bar{Z}_{i} \cdot \overline{\mathrm{E}}_{\mathrm{d}}}{\overline{\mathrm{Z}}_{\mathrm{d}}+\overline{\mathrm{Z}}_{\mathrm{i}}}
$$

Making reference to the previous example, it is possible to analyse all fault ypologies and to express the fault currents and voltages as a function of the impedances of the sequence components.

6 Calculation of short-circuit current

A summary is given in Table 1 below:

6 Calculation of short-circuit current

6.5.4 Positive, negative and zero sequence short-circuit impedances of

 electrical equipmentEach component of an electrical network (utility - transformer - generator cable) may be represented by a positive, negative and zero sequence impedance value.

Utility
By utility it is meant the distribution supply network (usually MV) from which the plant is fed. It is characterized by positive and negative sequence elements, whereas the zero sequence impedance is not taken into consideration since the delta-connected windings of the primary circuit of the transformer impede the zero sequence current. As regards the existing impedances, it can be written:

$$
Z_{d}=Z_{i}=Z_{\text {NET }} \frac{U_{r}}{\sqrt{3} \cdot I_{\mathrm{k} 3}}
$$

Transformer

It is characterized by positive and negative sequence elements; besides, as a function of the connection of the windings and of the distribution system on the LV side, the zero sequence component may be present too.
Thus, it is possible to say that:

$$
Z_{d}=Z_{i}=Z_{T}=\frac{u k \%}{100} \cdot \frac{U_{r}^{2}}{S_{r}}
$$

whereas the zero sequence component can be expressed as:
$Z_{0}=Z_{T}$ when the flow of zero sequence currents in the two windings is possible $Z_{0}=\infty$ when the flow of zero sequence currents in the two windings is impossible

Cable
It is characterized by positive, negative and zero sequence elements which vary as a function of the return path of the short-circuit current.

As regards the positive and negative sequence components, it is possible to say that:
$\mathrm{Z}_{\mathrm{d}}=\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}_{\mathrm{C}}=\mathrm{R}_{\mathrm{C}}+\mathrm{j} \mathrm{X}_{\mathrm{C}}$
To evaluate the zero sequence impedance, it is necessary to know the return path of the current:
$Z_{o}=Z_{C}+j 3 \cdot Z_{n C}=\left(R_{C}+3 \cdot R_{n c}\right)+j\left(X_{C}+3 \cdot X_{n c}\right)$
Retum through the neutral wire (phase-to-neutral fault)
$Z_{o}=Z_{C}+j 3 \cdot Z_{\text {PEC }}=\left(R_{C}+3 \cdot R_{\text {PEC }}\right)+j\left(X_{C}+3 \cdot X_{P E C}\right)$
Return through PE (phase-to-PE conductor fault in TN-S system)
$Z_{o}=Z_{E C}+j 3 \cdot Z_{E C}=\left(R_{C}+3 \cdot R_{E C}\right)+j\left(X_{C}+3 \cdot X_{E C}\right)$
Return through ground (phase-to-ground fault in TT system)
where:
$\mathrm{Z}_{\mathrm{C}}, \mathrm{R}_{\mathrm{C}}$ and X_{C} refer to the line conductor

- $Z_{n c}, R_{n c}$ and $X_{n c}$ refer to the neutral conductor
- $\mathrm{Z}_{\text {PEC }}, \mathrm{R}_{\text {PEC }}$ and $X_{\text {PEC }}$ refer to the protection conductor PE
- $Z_{E C}, R_{E C}$ and $X_{E C}$ refer to the ground.

6 Calculation of short-circuit current

Synchronous generators

Generally speaking, positive, negative and zero sequence reactances of synchronous generators (and also of rotating machines) have different values. For the positive sequence, only the sub transient reactance $X_{d}^{\prime \prime}$ is used, since, in this case, the calculation of the fault current gives the highest value.
The negative sequence reactance is very variable, ranging between the values of $X_{d}^{\prime \prime}$ and $X_{q}^{\prime \prime}$. In the initial instants of the short-circuit, $X_{d}^{\prime \prime}$ and $X_{q}^{\prime \prime}$ do not differ very much and therefore we may consider $X_{i}=X_{d}^{\prime \prime}$. On the contrary if $X_{d}^{\prime \prime}$ and $X_{d}^{\prime \prime}$ are remarkably different, it is possible to use a value equal to the average value of the two reactances; it follows that:

$$
X_{i}=\frac{X_{d}^{\prime \prime}+X_{q}^{\prime \prime}}{2} .
$$

The zero sequence reactance is very variable too and results to be lower than the other two above mentioned reactances. For this reactance, a value equal to 0.1 to 0.7 times the negative or positive sequence reactances may be assumed and can be calculated as follows:

$$
x_{o}=\frac{x_{0} \%}{100} \cdot \frac{U_{r}^{2}}{S_{r}}
$$

where $x_{0} \%$ is a typical parameter of the machine. Besides, the zero sequence component results to be influenced also by the grounding modality of the generator through the introduction of the parameters R_{G} and X_{G}, which represent, respectively, the grounding resistance and the reactance of the generator. If the star point of the generator is inaccessible or anyway non-earthed, the grounding mpedance is ∞.

To summarize, the following expressions are to be considered for the sequence impedances:

$$
\begin{aligned}
& Z_{d}=\left(R_{a}+j \cdot X_{d}^{\prime \prime}\right) \\
& Z_{i}=\left(R_{a}+j \cdot X_{d}^{\prime \prime}\right) \\
& Z_{o}=R_{a}+3 \cdot R_{G}+j \cdot\left(X_{o}+3 \cdot X_{G}\right)
\end{aligned}
$$

where R_{a} is the stator resistance defined as $R_{a}=\frac{X_{d}^{\prime \prime}}{2 \cdot \pi \cdot f \cdot T_{a}}$, with T_{a} as stator time constant.

6 Calculation of short-circuit current

Loads

the load is passive, the impedance shall be considered as infinite
f the load is not passive, as it could be for an asynchronous motor, it is possible o consider the machine represented by the impedance Z_{M} for the positive and negative sequence, whereas forthe zero sequence the value Z must be give by the manufacturer. Besides, if the motors are not earthed, the zero sequence mpedance shall be ∞.
Therefore:

$$
Z_{d}=Z_{i}=Z_{M}=\left(R_{M}+j \cdot X_{M}\right)
$$

with Z_{M} equal to
where:
L_{LR} is the current value when the rotor is blocked by the motor
I_{r} is the rated current of the motor
$S_{r}=\frac{P_{r}}{\left(\eta \cdot \cos \varphi_{r}\right)}$ is the rated apparent power of the motor
The ratio $\frac{R_{M}}{X_{M}}$ is often known; for LV motors, this ratio can be considered equal
to 0.42 with $X_{M}=\frac{Z_{M}}{\sqrt{1+\left(\frac{R_{M}}{X_{M}}\right)^{2}}}$, from which $X_{M}=0.922 \cdot Z_{M}$ can be determined.
6.5.5 Formulas for the calculation of the fault currents as a function of the electrical parameters of the plant

Through Table 1 and through the formulas given for the sequence impedances expressed as a function of the electrical parameters of the plant components, it is possible to calculate the different short-circuit currents.

In the following example, a network with a MV/LV transformer with delta primary winding and secondary winding with grounded star point is taken into consideration and a line-to-line fault is assumed downstream the cable distribution line.
Figure 6

Applying the algebra of sequences:

$$
I_{k 2}=\frac{\sqrt{3} \cdot E_{d}}{\left(Z_{d}+Z_{i}\right)}
$$

the impedances relevant to the positive and negative sequences under examination are:

$$
Z_{d}=Z_{i}=Z_{\text {NET }}+Z_{T}+Z_{L}
$$

considering that $E_{d}=\frac{U_{r}}{\sqrt{3}}$, the following is obtained:

$$
I_{k 2}=\frac{\sqrt{3} \cdot E_{d}}{\left(Z_{d}+Z_{i}\right)}=\frac{U_{r}}{2 \cdot\left(Z_{\text {NET }}+Z_{T}+Z_{L}\right)}
$$

where:
U_{r} is the rated voltage on the LV side
Z_{T} is the impedance of the transformer
Z_{L} is the impedance of the phase conductor
$Z_{\text {NET }}$ is the impedance of the upstream network
By making reference to the previous example, it is possible to obtain Table 2 below, which gives the expressions for the short-circuit currents according to the different typologies of fault.

Table 2

Three-phase fault $I_{k 3}$

$I_{k 3}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{\text {NET }}+Z_{T}+Z_{L}\right)}$

Line-to-line
fault

$I_{K 2}=\frac{U_{r}}{2 \cdot\left(Z_{\text {NET }}+Z_{T}+Z_{L}\right)}$

Where:
U_{r} is the rated voltage on the LV side
Z_{T} is the impedance of the transformer
Z_{L} is the impedance of the phase conductor
$\mathrm{Z}_{\text {NET }}$ is the impedance of the upstream network
Z_{PE} is the impedance of the protection conductor (PE)
Z_{N} is the impedance of the neutral conductor

Table 3 below summarizes the relations for the fault currents, taking into account the upstream defined or infinite power network values and the distance of the fault from the transformer
Table 3

	Upstream defined power network		Upstream infinite power network $\mathrm{Z}_{\text {NET }} \rightarrow 0$	
	Far-from the transformer	Near the transformer $Z_{L} \rightarrow 0, Z_{\text {PE }}\left(o Z_{N}\right) \rightarrow 0$	Far-from the transformer	Near the transformer $Z_{L} \rightarrow 0, Z_{P E}\left(o Z_{N}\right) \rightarrow 0$
$\mathrm{I}_{\mathrm{k} 3}$	$I_{k 3}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{\text {NET }}+Z_{T}+Z_{L}\right)}$	$I_{k 3}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{\text {NET }}+Z_{T}\right)}$	$I_{k 3}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{T}+Z_{L}\right)}$	$I_{k_{3}}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{T}\right)}$
$\mathrm{I}_{\mathrm{k} 2}$	$\mathrm{K}_{\mathrm{K} 2}=\frac{U_{r}}{2 \cdot\left(Z_{\text {NET }}+Z_{T}+Z_{L}\right)}$	$I_{k 2}=\frac{U_{r}}{2 \cdot\left(Z_{\text {NET }}+Z_{T}\right)}$	$\mathrm{I}_{\mathrm{k} 2}=\frac{\mathrm{U}_{\mathrm{r}}}{2 \cdot\left(Z_{\mathrm{T}}+Z_{\mathrm{L}}\right)}$	$\mathrm{I}_{\mathrm{k} 2}=\frac{\mathrm{U}_{\mathrm{r}}}{2 \cdot\left(Z_{\mathrm{T}}\right)}$
	$k_{k 2}<l_{k 3}$	$\mathrm{l}_{\mathrm{k} 2}=0.87 \cdot \mathrm{l}_{\mathrm{k}}$	$\mathrm{l}_{k 2}=0.87 \cdot \mathrm{l}_{\mathrm{k}}$	$\mathrm{l}_{k 2}=0.87 \cdot \mathrm{k}^{\prime}$
$\mathrm{I}_{\mathrm{k} 1}$	$I_{k 1}=\frac{U_{r}}{\sqrt{3} \cdot\left(\frac{2}{3} \cdot Z_{\text {NET }}+Z_{T}+Z_{L}+Z_{P E}\right)}$	$I_{k 1}=\frac{U_{r}}{\sqrt{3} \cdot\left(\frac{2}{3} \cdot Z_{\text {NET }}+Z_{T}\right)}$	$I_{k 1}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{T}+Z_{L}+Z_{P E}\right)}$	$I_{k 1}=\frac{U_{r}}{\sqrt{3} \cdot\left(Z_{T}\right)}$
	$\begin{gathered} \mathrm{I}_{\mathrm{k} 1}>\mathrm{l}_{\mathrm{k}} \\ \text { if } \\ \mathrm{z}_{\mathrm{NeT}}>3 \cdot \mathrm{z}_{\mathrm{PE}} \end{gathered}$	$l_{k 1}>\left.\right\|_{k 3}$	$\mathrm{l}_{\mathrm{k} 1} \leq \mathrm{l}_{\mathrm{k} 3}$	$\mathrm{l}_{k 1}=l_{k 3}$

6.6 Calculation of the peak value of the

short-circuit current

The electrodynamical effects of the short-circuit currents are particularly dangerous for the bus ducts, but they can also damage cables
The peak current is important also to evaluate the I_{cm} value of the circuitbreaker.
The I_{cm} value is also bound to the I_{cu} value, according to Table 16 of the Standard IEC 60947-1. With reference to the short-circuit current of the plant, it shall be $I_{\mathrm{cm}}>\mathrm{I}_{\mathrm{kp}}$.

The peak current of a plant may be calculated by the following formula (see Std. IEC 60909-0)

$$
I_{k p}=I_{k}^{\prime \prime} \cdot \sqrt{2} \cdot\left(1.02+0.98 \cdot e^{-\frac{3 \cdot R}{x}}\right)
$$

where:
$l^{\prime \prime}{ }_{k}$ is the short-circuit current (rms value) at the initial instant of the short circuit
R is the resistive component of the short-circuit impedance at the fault location - X is the reactive component of the short-circuit current at the fault location

When the power factor $\cos \varphi_{k}$ is known, it is possible to write

$$
I_{\mathrm{kp}}=I_{\mathrm{k}}^{\prime \prime} \cdot \sqrt{2} \cdot\left(1.02+0.98 \cdot \mathrm{e}^{-\frac{3}{\tan \varphi_{k}}}\right)
$$

6 Calculation of short-circuit current

7 Considerations about UPS

(Uninterruptible Power Supplies)

contribution to short-circuit current
In the following considerations particular attention is given to a double-conversion or UPS on-line, belonging to the category VFI (Voltage and Frequency independent), for which the output voltage is independent of the mains voltage variations and frequency variations are controlled by this device within the standard limits prescribed by the Standards; this system is characterised by the following operating modalities:
under normal operating conditions, in the presence of the network voltage the load is fed by the network itself through the UPS;
under emergency conditions (lack of network), power to the load is supplied by the battery and by the inverter ("island supply" with UPS disconnected from the mains);
in case of temporary overcurrent required by the load (e.g. motor start-up), power supply to the load is guaranteed by the network through the static switch which excludes the UPS
in case of maintenance, for example due to a fault on the UPS, the load is fed by the network through a manual bypass switch, by temporarily giving up the availability of emergency power supply.

As regards the dimensioning of the protections on the supply side of the UPS it is necessary to know the characteristics of the network voltage and of the short-circuit current; for the dimensioning of the protections on the load side, it is necessary to know the current values let through by the UPS.
If power supply of the loads is provided directly from the network through manua bypass, also the circuit-breaker on the load side must have a breaking capacity (cu) suitable for the short-circuit current of the supply-side network.
urthemore, if required, an evaluation of the protection co-ordination in relatio to the operating conditions is necessary.

6 Calculation of short-circuit current

However, in order to choose the suitable protections, it is important to distinguish between two operating conditions for UPS

1) UPS under normal operating conditions

a) Overload condition:
if due to a possible fault on the battery, this condition affects only the circuit breaker on the supply-side of the UPS (also likely the intervention of the protections inside the battery):
if required by the load, this condition might not be supported by the UPS which is bypassed by the static converter.
b) Short-circuit condition

The short-circuit current is limited by the dimensioning of the thyristors of the bridge inverter. In the practice, UPS may supply a maximum short-circuit current equal to 150 to 200% of the rated value. In the event of a shortcircuit, the inverter supplies the maximum current for a limited time (some hundreds of milliseconds) and then switches to the network, so that power to the load is supplied by the bypass circuit
this case, selectivity between the circuit-breaker on the supply side and the circuit-breaker on the load side is important in order to disconnect onl the load affected by the fault.
The bypass circuit, which is also called static switch, and is formed by thynistors protected by extrarapid fuses, can feed the load with a higher current than the inverter; this current results to be limited by the dimensioning of the thyristors used, by the power installed and by the provided protections.
The thyristors of the bypass circuit are usually dimensioned to withstand the following overload conditions
125% for 600 seconds
150% for 60 seconds
700\% for 600 milliseconds
1000\% for 100 milliseconds
Generally, more detailed data can be obtained from the technical information given by the manufacturer.

6 Calculation of short-circuit current

2) UPS under emergency operating conditions

a)Overload condition:
this condition, involving the load-side circuit-breaker only, is supported by the battery with inverter, which presents an overload condition usually calculable
the following orders of magnitude:
$15 \times \ln$ for indefinite time
$25 \times$ In for 600 seconds
$5 \times \mathrm{In}$ for 60 second
$2 \times$ In for 1 seconds
Generally, more detailed data can be obtained from the technical information given by the manufacturer.
b) Short-circuit condition:
the maximum current towards the load is limited by the inverter circuit only (with a value from 150 to 200% of the nominal value). The inverter feeds the short-circuit for a certain period of time, usually limited to some milliseconds, after which the UPS unit disconnects the load leaving it without supply. In this operating modality, it is necessary to obtain selectivity between the circuitreaker on the load side and the inverter, which is quite difficult due to the reduced tripping times of the protection device of the inverter.

Annex A: Calculation tools

These slide rules represent a valid instrument for a quick and approximate dimensioning of electrical plants.
All the given information is connected to some general reference conditions the calculation methods and the data reported are gathered from the IEC Standards in force and from plant engineering practice. The instruction manua enclosed with the slide rules offers different examples and tables showing the correction coefficients necessary to extend the general reference conditions to those actually required.

These two-sided slide rules are available in four different colors, easily identified by subject:
yellow slide rule: cable sizing;
orange slide rule: cable verification and protection;
green slide rule: protection coordination;

- blue slide rule: motor and transformer protection.

Figure 7
Figure 8
Manual bypass

UPS on-line with static switch
UPS off-line: loads directly fed by the network

Annex A: Calculation tools

Yellow slide rule: cable sizing

Side
Definition of the current carying capacity, impedance and voltage drop of cables
Side
Calculation of the short-circuit current for three-phase fault on the load side of a cable line with known cross section and length.
In addition, a diagram for the calculation of the short-circuit current on the load side of elements with known impedance.

Annex A: Calculation tools

Orange slide rule: cable verification and protection

Side
Verification of cable protection against indirect contact and short-circuit with ABB SACE MCCBs (moulded-case circuit-breakers).
de
Verification of cable protection against indirect contact and short-circuit with ABB MCBs (modular circuit-breakers).

Annex A: Calculation tools

Green slide rule: protection coordination

Side
Selection of the circuit-breakers when back-up protection is provided.
Side 0
Definition of the limit selectivity current for the combination of two circuit-breakers in series.

Annex A: Calculation tools

Blue slide rule: motor and transformer protection

Side
Selection and coordination of the protection devices for the motor starter, DOL start-up (type 2 coordination in compliance with the Standard IEC 60947-4-1).

Side 0
Sizing of a transformer feeder:
In addition, a diagram for the calculation of the short-circuit current on the load side of transformers with known rated power.

Annex A: Calculation tools

DOCWin is a software for the dimensioning of electrical networks, with low or medium voltage supply
Networks can be completely calculated through simple operations starting from the definition of the single-line diagram and thanks to the drawing functions provided by an integrated CAD software.

Drawing and definition of networks

Creation of the single-line diagram, with no limits to the network complexity Meshed networks can also be managed.
-The diagram can be divided into many pages

- The program controls the coherence of drawings in real time.
- It is possible to enter and modify the data of the objects which form the network by using a table
- It is possible to define different network configurations by specifying the status (open/closed) of the operating and protective devices.


```
manmer
```


Supplies

- There are no pre-defined limits: the software manages MV and LV power supplies and generators, MV/LV and LV/LV transformers, with two or three windings, with or without voltage regulator, according to the requirements.

Network calculation

Load Flow calculation using the Newton-Raphson method. The software can manage networks with multiple slacks and unbalances due to single- or twophase loads. Magnitude and phase shift of the node voltage and of the branch current are completely defined for each point of the network, for both MV as well as LV.

- Calculation of the active and reactive power required by each single power source.

Annex A: Calculation tools

Management of local (motors) and centralized power factor correction with capacitor banks.

- Management of the demand factor for each single node of the network and of the utilization factor on the loads.
- Short-circuit current calculation for three-phase, phase-to-phase, phase-to Short-circuit current calculation for three-phase, phase-to-phase, phase-to-
neutral, phase-to-ground faults. The calculation is also caried out for MV neutral, phase-to-ground faults. The calculation is also camed out for MV
sections, in compliance with the Standards IEC 60909-1, IEC 61363-1 (naval installations) or with the method of symmetric components, taking into accoun also the time-variance contribution of rotary machines (generators and motors). - Calculation of switchboard overtemperature in compliance with Standard IEC 60890. The power dissipated by the single apparatus is automatically derived by the data files of the software, and can be considered as a function of the rated current or of the load current.

Cable line sizing

- Cable line sizing according to thermal criteria in compliance with the following Standards: CEI 64-8 (tables CEI UNEL 35024-35026), IEC 60364, VDE 298 4, NFC 15-100, IEC 60092 (naval installations) and IEC 60890.
- Possibility of setting, as additional calculation criterion, the economic criteria stated in the Standard IEC 60827-3-2.
- Possibility of setting, as additional calculation criterion, the maximum allowed voltage drop.
- Automatic sizing of busbar trunking system.
- Sizing and check on the dynamic withstand of busbars in compliance with the Standard IEC 60865

Curves and verifications

- Representation of:
time / current curves (1-t)
current / let-through energy curves $(1-1 / 2 t)$
current limiting curves (peak): visual check of the effects of the settings on the trip characteristics of protection devices.

Annex A: Calculation tools

- Representation of the curves of circuit-breakers, cables, transformers, motors and generators.
- Possibility of entering the curve of the utility and of the MV components point by point, to verify the tripping discrimination of protection devices.
- Verification of the maximum voltage drop at each load.
- Verification of the protection devices, with control over the setting parameters of the adjustable releases (both thermomagnetic as well as electronic).

Selection of operating and protection device

- Automatic selection of protection devices (circuit-breakers and fuses)
- Automatic selection of operating devices (contactors and switch disconnectors)
- Discrimination and back-up managed as selection criteria, with discrimination level adjustable for each circuit-breaker combination.

- Discrimination and back-up verification also through quick access to coordination tables

Annex A: Calculation tools

- Motor coordination management through quick access to ABB tables.

Printouts

Single-line diagram, curves and reports of the single components of the network can be printed by any printer supported by the hardware configuration.
All information can be exported in the most common formats of data exchange - All print modes can be customized.

Annex B : Calculation of load current I_{b}

Generic loads

The formula for the calculation of the load current of a generic load is:

$$
I_{b}=\frac{P}{k \cdot U_{r} \cdot \cos \varphi}
$$

where:

- P is the active power [W]
- k is a coefficient which has the value:
- 1 for single-phase systems or for direct current systems;
- $\sqrt{3}$ for three-phase systems;
- U_{r} is the rated voltage $[\mathrm{V}]$ (for three-phase systems it is the line voltage, for single-phase systems it is the phase voltage);
- $\cos \varphi$ is the power factor

Table 1 allows the load current to be determined for some power values according to the rated voltage. The table has been calculated considering $\cos \varphi$ to be equal to 0.9; for different power factors, the value from Table 1 must be multiplied by the coefficient given in Table 2 corresponding to the actual value of the power factor ($\cos \varphi_{\mathrm{act}}$).

P [kW]	230	400	415	$\begin{gathered} \mathbf{U}_{\mathrm{r}}[\mathrm{~V}] \\ 440 \\ \mathbf{I}_{\mathrm{b}}[\mathrm{~A}] \end{gathered}$	500	600	690
0.03	0.08	0.05	0.05	0.04	0.04	0.03	0.03
0.04	0.11	0.06	0.06	0.06	0.05	0.04	0.04
0.06	0.17	0.10	0.09	0.09	0.08	0.06	0.06
0.1	0.28	0.16	0.15	0.15	0.13	0.11	0.09
0.2	0.56	0.32	0.31	0.29	0.26	0.21	0.19
0.5	1.39	0.80	0.77	0.73	0.64	0.53	0.46
1	2.79	1.60	1.55	1.46	1.28	1.07	0.93
2	5.58	3.21	3.09	2.92	2.57	2.14	1.86
5	13.95	8.02	7.73	7.29	6.42	5.35	4.65
10	27.89	16.04	15.46	14.58	12.83	10.69	9.30
20	55.78	32.08	30.92	29.16	25.66	21.38	18.59
30	83.67	48.11	46.37	43.74	38.49	32.08	27.89
40	111.57	64.15	61.83	58.32	51.32	42.77	37.19
50	139.46	80.19	77.29	72.90	64.15	53.46	46.49
60	167.35	96.23	92.75	87.48	76.98	64.15	55.78
70	195.24	112.26	108.20	102.06	89.81	74.84	65.08
80	223.13	128.30	123.66	116.64	102.64	85.53	74.38
90	251.02	144.34	139.12	131.22	115.47	96.23	83.67
100	278.91	160.38	154.58	145.80	128.30	106.92	92.97
110	306.80	176.41	170.04	160.38	141.13	117.61	102.27
120	334.70	192.45	185.49	174.95	153.96	128.30	111.57
130	362.59	208.49	200.95	189.53	166.79	138.99	120.86
140	390.48	224.53	216.41	204.11	179.62	149.68	130.16
150	418.37	240.56	231.87	218.69	192.45	160.38	139.46
200	557.83	320.75	309.16	291.59	256.60	213.83	185.94

Annex B: Calculation of load current I_{b}

$\mathbf{P}[\mathbf{k W]}$	$\mathbf{2 3 0}$	$\mathbf{4 0 0}$	$\mathbf{4 1 5}$	$\mathbf{U}_{\mathbf{r}} \mathbf{~} \mathbf{4 4 0}$ $\mathbf{l}_{\mathbf{b}}[\mathbf{A}]$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{6 9 0}$
250	697.28	400.94	386.45	364.49	320.75	267.29	232.43
300	836.74	481.13	463.74	437.39	384.90	320.75	278.91
350	976.20	561.31	541.02	510.28	449.05	374.21	325.40
400	1115.65	641.50	618.31	583.18	513.20	427.67	371.88
450	1255.11	721.69	695.60	656.08	577.35	481.13	418.37
500	1394.57	801.88	772.89	728.98	641.50	534.58	464.86
550	1534.02	882.06	850.18	801.88	705.65	588.04	511.34
600	1673.48	962.25	927.47	874.77	769.80	641.50	557.83
650	1812.94	1042.44	1004.76	947.67	833.95	694.96	604.31
700	1952.39	1122.63	1082.05	1020.57	898.10	748.42	650.80
750	2091.85	1202.81	1159.34	1093.47	962.25	801.88	697.28
800	2231.31	1283.00	1236.63	1166.36	1026.40	855.33	743.77
850	2370.76	1363.19	1313.92	1239.26	1090.55	908.79	790.25
900	2510.22	1443.38	1391.21	1312.16	1154.70	962.25	836.74
950	2649.68	1523.56	1468.49	1385.06	1218.85	1015.71	883.23
1000	2789.13	1603.75	1545.78	1457.96	1283.00	1069.17	929.71

Table 2: Correction factors for load current with $\cos \varphi$ other than 0.9

$\cos _{\text {act }}$	1	0.95	0.9	0.85	0.8	0.75	0.7
$\mathrm{k}_{\text {cos } \varphi^{*}}$	0.9	0.947	1	1.059	1.125	1.2	1.286

*For $\cos \varphi_{\text {act }}$ values not present in the table, $\quad \mathrm{K}_{\text {cos } \varphi}=\frac{0.9}{\cos \varphi_{\text {act }}}$
Table 3 allows the load current to be determined for some power values according to the rated voltage. The table has been calculated considering $\cos \varphi$ to be equal to 1 ; for different power factors, the value from Table 3 must be multiplied by the coefficient given in Table 4 corresponding to the actual value of the power factor ($\cos \varphi_{\mathrm{act}}$).
Table 3: Load current for single-phase systems with $\cos \varphi=1$ or dc systems

	$\left.\mathrm{U}_{\mathrm{r}} \mathrm{IV}\right]$						
	230	400	415	440	500	600	690
P [kW]	I_{b} [A]						
0.03	0.13	0.08	0.07	0.07	0.06	0.05	0.04
0.04	0.17	0.10	0.10	0.09	0.08	0.07	0.06
0.06	0.26	0.15	0.14	0.14	0.12	0.10	0.09
0.1	0.43	0.25	0.24	0.23	0.20	0.17	0.14
0.2	0.87	0.50	0.48	0.45	0.40	0.33	0.29
0.5	2.17	1.25	1.20	1.14	1.00	0.83	0.72
1	4.35	2.50	2.41	2.27	2.00	1.67	1.45
2	8.70	5.00	4.82	4.55	4.00	3.33	2.90
5	21.74	12.50	12.05	11.36	10.00	8.33	7.25
10	43.48	25.00	24.10	22.73	20.00	16.67	14.49
20	86.96	50.00	48.19	45.45	40.00	33.33	28.99

Annex B: Calculation of load current I_{b}

Table 4: Correction factors for load current with $\cos \varphi$ other than 1

$\cos \varphi_{\text {act }}$	1	0.95	0.9	0.85	0.8	0.75	0.7
$\mathrm{k}_{\text {cos }{ }^{*}}$	1	1.053	1.111	1.176	1.25	1.333	1.429

*For $\cos \varphi_{\text {act }}$ values not present in the table, $\quad \mathrm{K}_{\cos \varphi}=\frac{1}{\cos \varphi_{\text {act }}}$
Lighting circuits
The current absorbed by the lighting system may be deduced from the lighting equipment catalogue, or approximately calculated using the following formula:
where:

- P_{L} is the power of the lamp IW]
- n_{L} is the number of lamps per phase
- K_{B} is a coefficient which has the value

1 for lamps which do not need any auxiliary starter
1.25 for lamps which need auxiliary starters;

- k_{N} is a coefficient which has the value:

1 for star-connected lamps;
$\sqrt{3}$ for delta-connected lamps;

- U_{rL} is the rated voltage of the lamps;
- $\cos \varphi$ is the power factor of the lamps which has the value: 0.4 for lamps without compensation;
0.9 for lamps with compensation.

$$
I_{\mathrm{b}}=\frac{P_{\mathrm{L}} \mathrm{n}_{\mathrm{L}} \mathrm{k}_{\mathrm{B}} \mathrm{~K}_{\mathrm{N}}}{U_{\mathrm{H}} \cos \varphi}
$$

Annex B: Calculation of load current I_{b}

Motors

Table 5 gives the approximate values of the load current for some three-phase squirrel-cage motors, 1500 rpm at 50 Hz , according to the rated voltage. Note: these values are given for information only, and may vary according to the motor manifacture

Table 5: Motor load curren

Annex C: Harmonics

What are they?

The harmonics allow to represent any periodic waveform; in fact, according to Fourier's theorem, any periodic function of a period T may be represented as a summation of:

- a sinusoid with the same period T;
- some sinusoids with the same frequency as whole multiples of the fundamental; a possible continuous component, if the function has an average value not null in the period
The harmonic with frequency corresponding to the period of the original waveform is called fundamental and the harmonic with frequency equal to " n " times that of the fundamental is called harmonic component of order " n ". A perfectly sinusoidal waveform complying with Fourier's theorem does not present harmonic components of order different from the fundamental one. Therefore, it is understandable how there are no harmonics in an electrical system when the waveforms of current and voltage are sinusoidal. On the contrary the presence of hammonics in an electrical system is an index of the distortion of the voltage or current waveform and this implies such a distribution f the electric power that malfunctioning of equipment and protective device can be caused.
To summarize: the harmonics are nothing less than the components of a distorted waveform and their use allows us to analyse any periodic nonsinusoida waveform through different sinusoidal waveform components.
Figure 1 below shows a graphical representation of this concept.

Figure 1

Caption:

nonsinusoidal waveform
 first harmonic (fundamental)
 third harmonic

fifth harmonic
Annex C: Harmonics

How harmonics are generated?

Harmonics are generated by nonlinear loads. When we apply a sinusoidal voltage to a load of this type, we shall obtain a current with non-sinusoidal waveform. The diagram of Figure 2 illustrates an example of nonsinusoidal current waveform due to a nonlinear load:

Figure 2

Linear load

Nonlinear load

As already said, this nonsinusoidal waveform can be deconstructed into harmonics. If the network impedances are very low, the voltage distortion resulting from a harmonic current is low too and rarely it is above the pollution level already present in the network. As a consequence, the voltage can remain practically sinusoidal also in the presence of current harmonics.
To function properly, many electronic devices need a definite current waveform and thus they have to 'cut' the sinusoidal waveform so as to change its ms value or to get a direct current from an altemate value; in these cases the current on the line has a nonsinusoidal curve.
The main equipment generating harmonics are:
personal computer
fluorescent lamps
static converters

- continuity groups
variable speed drives
welders
In general, waveform distortion is due to the presence, inside of these equipment of bridge rectifiers, whose semiconductor devices cary the current only for a fraction of the whole period, thus originating discontinuous curves with the consequent introduction of numerous harmonics.

Annex C: Harmonics

Also transformers can be cause of harmonic pollution; in fact, by applying a perfectly sinusoidal voltage to a transformer, it results into a sinusoida magnetizing flux, but, due to the phenomenon of the magnetic saturation of ron, the magnetizing current shall not be sinusoidal. Figure 3 shows a graphic representation of this phenomenon:

Figure 3

Caption:

magnetizing current (iu)

first harmonic current (fundamental)
third harmonic current
flux variable in time: $\phi=\phi_{\text {max }} \sin \omega t$
The resultant waveform of the magnetizing current contains numerous harmonics, the greatest of which is the third one. However, it should be noted that the magnetizing current is generally a little percentage of the rated current of the transformer and the distortion effect becomes more and more negligible the most loaded the transformer results to be.

Effects

The main problems caused by hamonic currents are

1) overloading of neutrals
2) increase of losses in the transformers
3) increase of skin effect

The main effects of the harmonics voltages are:
4) voltage distortion
5) disturbances in the torque of induction motors

Annex C: Harmonics

1) Overioading of neutrals

In a three phase symmetric and balanced system with neutral, the waveforms between the phases are shifted by a 120° phase angle so that, when the phase are equally loaded, the current in the neutral is zero. The presence of unbalanced loads (phase-to-phase, phase-to-neutral etc.) allows the flowing of an unbalanced current in the neutral.

Figure 4

Figure 4 shows an unbalanced system of currents (phase 3 with a load 30% igher than the other two phases), and the current resultant in the neutral is ighlighted in red. Under these circumstances, the Standards allow the neutral conductor to be dimensioned with a cross section smaller than the phase conductors. In the presence of distortion loads it is necessary to evaluate correctly he effects of hamonics.
In fact, although the currents at fundamental frequency in the three phases cancel each other out, the components of the third harmonic, having a period qual to a third of the fundamental, that is equal to the phase shift between th hases (see Figure 5), are reciprocally in phase and consequently they sum in the neutral conductor adding themselves to the normal unbalance currents. The same is true also for the harmonics multiple of three (even and odd, although actually the odd ones are more common).

Annex C: Harmonics

Figure 5

Phase 1:
fundamental harmonic and 3rd hamonic

Phase 2:
fundamental harmonic and $3^{\text {rd }}$ harmonic

Phase 3:
fundamental harmonic and $3^{\text {rd }}$ harmonic

Resultant of the currents of the three phases

Annex C: Harmonics

Increase of losses in the transformers

The effects of harmonics inside the transformers involve mainly three aspects

- a) increase of iron losses (or no-load losses)
b) increase of copper losses
- c) presence of harmonics circulating in the windings
a) The iron losses are due to the hysteresis phenomenon and to the losse caused by eddy currents; the losses due to hysteresis are proportional to the frequency, whereas the losses due to eddy currents depend on the square of the frequency.
b) The copper losses correspond to the power dissipated byJ oule effect in the transformer windings. As the frequency rises (starting from 350 Hz) the current tends to thicken on the surface of the conductors (skin effect); under these circumstances, the conductors offer a smaller cross section to the current flow, since the losses by Joule effect increase
These two first aspects affect the overheating which sometimes causes a derating of the transformer.
c) The third aspect is relevant to the effects of the triple- N harmonics (homopolar harmonics) on the transformer windings. In case of delta windings, the harmonics flow through the windings and do not propagate upstreamtowards the network since they are all in phase; the delta windings therefore represent a barrier for triple-N harmonics, but it is necessary to pay particular attention o this type of harmonic components for a correct dimensioning of the transformer.

3) Increase of skin effect

When the frequency rises, the current tends to flow on the outer surface of a conductor. This phenomenon is known as skin effect and is more pronounced at high frequencies. At 50 Hz power supply frequency, skin effect is negligible, but above 350 Hz , which corresponds to the 7th harmonic, the cross section for the current flow reduces, thus increasing the resistance and causing additional losses and heating
In the presence of high-order harmonics, it is necessary to take skin effect into account, because it affects the life of cables. In order to overcome this problem, it is possible to use multiple conductor cables or busbar systems formed by more elementary isolated conductors.

4) Voltage distortion

The distorted load current drawn by the nonlinear load causes a distorted voltage drop in the cable impedance. The resultant distorted voltage waveform is applied to all other loads connected to the same circuit, causing harmonic currents to low in them, even if they are linear loads.
The solution consists in separating the circuits which supply harmonic generating loads from those supplying loads sensitive to hamonics.

5) Disturbances in the torque of induction motors

Harmonic voltage distortion causes increased eddy current losses in the motors, in the same way as seen for transformers. The additional losses are due to the generation of harmonic fields in the stator, each of which is trying to rotate the motor at a different speed, both forwards ($1^{\text {st }}, 4^{\text {th }}, 7^{\text {th }}, \ldots$) as well as backwards (2nd $, 5^{\text {th }}, 8^{\text {th }}, \ldots$). High frequency currents induced in the rotor further increase losses.

Annex C: Harmonics

Main formulas

The definitions of the main quantities typically used in a hamonic analysis are given hereunder.

Frequency spectrum
The frequency spectrum is the classic representation of the harmonic content of a waveform and consists of a histogram reporting the value of each harmonic as a percentage of the fundamental component. For example, for the following waveform:

the frequency spectrum is:
 The frequency spectrum provides the size of the existing harmonic components.

Peak factor

The peak factor is defined as the ratio between the peak value and the rms value of the waveform:

$$
\mathrm{k}=\frac{\mathrm{I}_{\mathrm{p}}}{\mathrm{I}_{\mathrm{rms}}}
$$

in case of perfectly sinusoidal waveforms, it is worth $\sqrt{2}$, but in the presence of harmonics it can reach higher values.
High peak factors may cause the unwanted tripping of the protection devices.
Rms value
The ms value of a periodical waveform $\mathrm{e}(\mathrm{t})$ is defined as:

$$
E_{\mathrm{rms}}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{e}^{2}(\mathrm{t}) \mathrm{dt}}
$$

where T is the period

Annex C: Harmonics

If the rms values of the harmonic components are known, the total rms value can be easily calculated by the following formula:

$$
E_{r m s}=\sqrt{\sum_{n=1}^{\infty} E_{n}^{2}}
$$

Total harmonic distortion THD
The total harmonic distortion is defined as

$$
\begin{aligned}
& \mathrm{THD}_{\mathrm{i}}=\frac{\sqrt{\sum_{\mathrm{n}=2}^{\infty} \mathrm{I}_{\mathrm{n}}^{2}}}{\mathrm{I}_{1}} \text { THD in current } \\
& \mathrm{THD}_{\mathrm{u}}=\frac{\sqrt{\sum_{\mathrm{n}=2}^{\infty} \mathrm{U}_{\mathrm{n}}^{2}}}{\mathrm{U}_{1}} \text { THD in voltage }
\end{aligned}
$$

The harmonic distortion ratio is a very important parameter, which gives information about the harmonic content of the voltage and current waveforms and about the necessary measures to be taken should these values be high For $\mathrm{THD}_{i}<10 \%$ and $\mathrm{THD}_{u}<5 \%$, the harmonic content is considered negligible and such as not to require any provisions.

Standard references for circuit-breakers

EC 60947 Low-voltage switchgear and controlgear
Annex F of the Standard IEC 60947-2 (third edition 2003) gives information about the tests to check the immunity of the overcurrent releases against hamonics.
In particular, it describes the waveform of the test current, at which, in correspondence with determinate values of injected current, the release shall have a behaviour complying with the prescriptions of this Standard

Hereunder, the characteristics of the waveform of the test current are reported which shall be formed, in altemative, as follows

1) by the fundamental component and by a 3rd harmonic variable between 72% and 88% of the fundamental, with peak factor equal to 2 or by a 5 th harmonic variable between 45% and 55% of the fundamental, with peak factor equal to 1.9
or
2) by the fundamental component and by a 3rd harmonic higher than 60% of the fundamental, by a 5 th harmonic higher than 14% of the fundamental and by a 7th harmonic higher than 7% of the fundamental. This test current shall have a peak factor ≥ 2.1 and shall flow for a given time $\leq 42 \%$ of the period for each half period.

Annex D: Calculation of the coefficient k for

 the cables ($\mathbf{k}^{\mathbf{2}} \mathbf{S}^{\mathbf{2}}$)By using the formula (1), it is possible to determine the conductor minimum section S, in the hypothesis that the generic conductor is submitted to an adiabatic heating from a known initial temperature up to a specific final temperature (applicable if the fault is removed in less than 5 s):

$$
\begin{equation*}
\mathrm{S}=\frac{\sqrt{\mathrm{I}^{2} t}}{\mathrm{k}} \tag{1}
\end{equation*}
$$

where:

- S is the cross section [mm^{2}];
- I is the value (r.m.s) of prospective fault current for a fault of negligible impedance, which can flow through the protective device $[A]$;
- t is the operating time of the protective device for automatic disconnection [s] k can be evaluated using the tables $2 \div 7$ or calculated according to the formula (2):

$$
\begin{equation*}
k=\sqrt{\frac{Q_{c}(B+20)}{\rho_{20}} \ln \left(1+\frac{\theta_{\mathrm{f}}-\theta_{\mathrm{i}}}{B+\theta_{\mathrm{i}}}\right)} \tag{2}
\end{equation*}
$$

where:

- Q_{C} is the volumetric heat capacity of conductor material $\left[J /{ }^{\circ} \mathrm{Cmm}{ }^{3}\right]$ at $20^{\circ} \mathrm{C}$; - B is the reciprocal of temperature coefficient of resistivity at $0^{\circ} \mathrm{C}$ for the conductor [${ }^{\circ} \mathrm{C}$];
- ρ_{20} is the electrical resistivity of conductor material at $20^{\circ} \mathrm{C}[\Omega \mathrm{mm}$
- θ_{i} initial temperature of conductor $\left[{ }^{\circ} \mathrm{C}\right]$
- θ_{f} final temperature of conductor $\left[{ }^{\circ} \mathrm{C}\right]$.

Table 1 shows the values of the parameters described above

Table 1: Value of parameters for different materials

Material	\mathbf{B} $\left.{ }^{\circ} \mathrm{C}\right]$	$\mathbf{Q}_{\mathbf{c}}$ $\left[/{ }^{\circ} \mathrm{Cmm}^{3}\right]$	$\rho_{\mathbf{2 0}}$ $[\Omega \mathrm{mm}]$	$\sqrt{\frac{Q_{c}(\mathrm{~B}+2 \mathrm{O})}{\rho_{20}}}$
Copper	234.5	$3.45 \cdot 10^{-3}$	$17.241 \cdot 10^{-6}$	226
Aluminium	228	$2.5 \cdot 10^{-3}$	$28.264 \cdot 10^{-6}$	148
Lead	230	$1.45 \cdot 10^{-3}$	$214 \cdot 10^{-6}$	41
Steel	202	$3.8 \cdot 10^{-3}$	$138 \cdot 10^{-6}$	78

Annex D: Calculation of the coefficient k for

 the cables ($\mathbf{k}^{2} \mathbf{S}^{2}$)| | Conductor insulation | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \text { PVC } \\ \leq \mathbf{3 0 0} \mathrm{mm}^{2} \\ \hline \end{gathered}$ | $\begin{gathered} \text { PVC } \\ \leq \mathbf{3 0 0} \mathrm{mm}^{2} \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { EPR } \\ & \text { XLPE } \\ & \hline \end{aligned}$ | Rubber $60^{\circ} \mathrm{C}$ | Mineral | |
| | | | | | PVC | Bare |
| Initial temperature ${ }^{\circ} \mathrm{C}$ | 70 | 70 | 90 | 60 | 70 | 105 |
| Final temperature ${ }^{\circ} \mathrm{C}$ | 160 | 140 | 250 | 200 | 160 | 250 |
| Material of conductor: | | | | | | |
| copper | 115 | 103 | 143 | 141 | 115 | 135/115 a |
| aluminium | 76 | 68 | 94 | 93 | - | - |
| tin-soldered joints in copper conductors | 115 | - | - | - | - | - |

a This value shall be used for bare cables exposed to touch.

Table 3: Values of k for insulated protective conductors not incorporated in cables and not bunched with other cables

Conductor insulation	Temperature ${ }^{\circ} \mathrm{C}{ }^{\text {b }}$		Material of conductor		
	Initial	Final	Copper	Aluminium Value for k	Steel
$70^{\circ} \mathrm{C} \mathrm{PVC}$	30	160/140 a	143/133 a	95/88 ${ }^{\text {a }}$	52/49 a
$90^{\circ} \mathrm{C} \mathrm{PVC}$	30	160/140 a	143/133 a	95/88 ${ }^{\text {a }}$	52/49 a
$90^{\circ} \mathrm{C}$ thermosetting	30	250	176	116	64
$60^{\circ} \mathrm{C}$ rubber	30	200	159	105	58
$85^{\circ} \mathrm{C}$ rubber	30	220	166	110	60
Silicone rubber	30	350	201	133	73

a The lower value applies to PVC insulated conductors of cross section greater than $300 \mathrm{~mm}^{2}$
Temperature limits for various types of insulation are given in IEC 60724.

Annex D : Calculation of the coefficient k for

 the cables ($k^{2} \mathbf{S}^{2}$)Table 4: Values of k for bare protective conductors in contact with cable covering but not bunched with other cables

a Temperature limits for various types of insulation are given in IEC 60724.

Table 5: Values of \mathbf{k} for protective conductors as a core incomporated in a cable or bunched with other cables or insulated conductors

Conductor insulation	Temperature ${ }^{\circ} \mathrm{C}{ }^{\text {b }}$		Material of conductor		
	Initial	Final	Copper	Aluminium Value for k	Steel
$70^{\circ} \mathrm{C} \mathrm{PVC}$	70	160/140 a	115/103 a	76/68 a	42/37 a
$90^{\circ} \mathrm{C} \mathrm{PVC}$	90	160/140 a	100/86 a	66/57 a	36/31 a
$90^{\circ} \mathrm{C}$ thermosetting	90	250	143	94	52
$60^{\circ} \mathrm{C}$ rubber	60	200	141	93	51
$85^{\circ} \mathrm{C}$ rubber	85	220	134	89	48
Silicone rubber	180	350	132	87	47
	The lower $00 \mathrm{~mm}^{2}$ emperatu	plies to PVC for various	lated conduc of insulation	of cross sectio given in IEC 60	eater than

Conductor insulation	Annex D : Calculation of the coefficient k for the cables ($k^{2} S^{2}$)					
	Initial	Final	Copper	Aluminium Value	Lead	Steel
$70^{\circ} \mathrm{C} \mathrm{PVC}$	60	200	141	93	26	51
$90^{\circ} \mathrm{C} \mathrm{PVC}$	80	200	128	85	23	46
$90^{\circ} \mathrm{C}$ thermosetting	80	200	128	85	23	46
$60^{\circ} \mathrm{C}$ rubber	55	200	144	95	26	52
$85^{\circ} \mathrm{C}$ rubber	75	220	140	93	26	51
Mineral PVC covered ${ }^{\text {a }}$	70	200	135	-	-	-
Mineral bare sheath	105	250	135	-	-	-

Table 7: Value of k for bare conductors where there is no risk of damage to any neighbouring material by the temperature indicated
Material of conductor

Conductor insulation	Initial temperature ${ }^{\circ} \mathrm{C}$ ${ }^{30}$						
		Copper		Aluminium		Steel	
		k value	Maximum temperature ${ }^{\circ} \mathrm{C}$	k value	Maximum temperature ${ }^{\circ} \mathrm{C}$	k value	Maximum temperature ${ }^{\circ} \mathrm{C}$
Visible and in restricted area	30	228	500	125	300	82	500
Normal conditions	30	159	200	105	200	58	200
Fire risk	30	138	150	91	150	50	150

Annex E: Main physical quantities and

 electrotechnical formulasThe International System of Units (SI)

SI Base Units Quantity	Symbol	Unit name
Length	m	metre
Mass	kg	kilogram
Time	s	Second
Electric Current	A	ampere
Thermodynamic Temperature	K	kelvin
Amount of Substance	mol	mole
Luminous Intensity	cd	candela

Metric Prefixes for Multiples and Sub-multiples of Units

Decimal power	Prefix	Symbol	Decimal power	Prefix	Symbol
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	mikro	$\mathrm{\mu}$
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{9}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	etto	h	10^{-21}	zepto	z
10	deca	da	10^{-24}	yocto	y

Annex E: Main physical quantities and electrotechnical formulas

Main quantities and SI units

Quantity Symbol	Name	SI unit Symbol	Name	Other units Symbol	Name	Conversion
Length, area, volume						
।	length	m	metre	in	inch	$1 \mathrm{in}=25.4 \mathrm{~mm}$
				ft	foot	$1 \mathrm{ft}=30.48 \mathrm{~cm}$
				fathom	fathom	1 fathom $=6 \mathrm{ft}=1.8288 \mathrm{~m}$
				mile	mile	1 mile $=1609.344 \mathrm{~m}$
				sm	sea mile	$1 \mathrm{sm}=1852 \mathrm{~m}$
				yd	yard	$1 \mathrm{yd}=91.44 \mathrm{~cm}$
A	area	m^{2}	square metre	$\begin{aligned} & \hline \text { a } \\ & \text { ha } \end{aligned}$	are hectare	$\begin{aligned} & 1 \mathrm{a}=102 \mathrm{~m}^{2} \\ & 1 \mathrm{ha}=10^{4} \mathrm{~m}^{2} \end{aligned}$
v	volume	m3	cubic metre	1	litre	$1 \mathrm{l}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}$
				UK pt	pint	$1 \mathrm{UK} \mathrm{pt}=0.5683 \mathrm{dm}^{3}$
				UK gal	gallon	1 UK gal $=4.5461 \mathrm{dm}^{3}$
				US gal	gallon	1 US gal $=3.7855 \mathrm{dm}^{3}$
Angles						
α, β, γ	plane angle	rad	radian	\bigcirc	degrees	$1^{\circ}=\frac{\pi}{180} \cdot \mathrm{rad}$
Ω	solid angle	sr	steradian			
Mass						
m	mass, weight	kg	kilogram	lb	pound	$1 \mathrm{lb}=0.45359 \mathrm{~kg}$
p	density	kg/m ${ }^{\text {a }}$	kilogram			
v	specific volume	m3/kg	cubic metre for kilogram			
M	moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	kilogram for square metre			
Time						
t	duration	s	second			
f	frequency	Hz	Hert			$1 \mathrm{~Hz}=1 / \mathrm{s}$
ω	angular frequency	1/s	reciprocal second			$\omega=2 \mathrm{pf}$
v	speed	m/s	metre per second	km/h	kilometre per hour	$1 \mathrm{~km} / \mathrm{h}=0.2777 \mathrm{~m} / \mathrm{s}$
				mile/h	mile per hour	$1 \mathrm{mile} / \mathrm{h}=0.4470 \mathrm{~m} / \mathrm{s}$
				knot	kn	$1 \mathrm{kn}=0.5144 \mathrm{~m} / \mathrm{s}$
g	acceleration	$\mathrm{m} / \mathrm{s}^{2}$	metre per second squared			
Force, energy, power						
F	force	N	newton	kgf		$\begin{aligned} & 1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \\ & 1 \mathrm{kgf}=9.80665 \mathrm{~N} \end{aligned}$
p	pressure/stress	Pa	pascal	bar	bar	$\begin{aligned} & 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2} \\ & 1 \mathrm{bar}=10^{5} \mathrm{~Pa} \end{aligned}$
w	energy, work	J	joule			$1 \mathrm{~J}=1 \mathrm{~W} \cdot \mathrm{~s}=1 \mathrm{~N} \cdot \mathrm{~m}$
P	power	W	watt	Hp	horsepower	$1 \mathrm{Hp}=745.7 \mathrm{~W}$
Temperature and heat						
T	temperature	K	kelvin	${ }^{\circ} \mathrm{C}$	Celsius	$\mathrm{T}[\mathrm{K}]=273.15+\mathrm{T}\left[{ }^{\circ} \mathrm{C}\right]$
				${ }^{\circ} \mathrm{F}$	Fahrenheit	$\left.T[K]=273.15+(5 / 9)\left(T{ }^{[} \mathrm{F} F\right\} 32\right)$
Q	quantity of heat	J	joule			
S	entropy	J/K	joule per kelvin			
Photometric quantitites						
1	luminous intensity	cd	candela			
L	luminance	$\mathrm{cd} / \mathrm{m}^{2}$	candela per squar	metre		
Φ	luminous flux	Im	lumen			$1 \mathrm{~lm}=1 \mathrm{~cd} \cdot \mathrm{sr}$
E	illuminance	lux				$1 \mathrm{lux}=1 \mathrm{~lm} / \mathrm{m}^{2}$

ABB SACE - Electrical devices

Annex E: Main physical quantities and electrotechnical formulas

Quantity Symbol	Name	Main electrical and magnetic quantities and SI units				
		SI unit Symbol	Name	Other units Symbol	Name	Conversion
1	current	A	ampere			
V	voltage	V	volt			
R	resistance	Ω	ohm			
G	conductance	S	siemens			$\mathrm{G}=1 / \mathrm{R}$
X	reactance	Ω	ohm			$\begin{aligned} & x_{L}=\omega \mathrm{L} \\ & x_{C}=1 / \omega C \\ & \hline \end{aligned}$
B	susceptance	S	siemens			$\begin{aligned} & \mathrm{B}_{\mathrm{L}}=-1 / \omega \mathrm{L} \\ & \mathrm{~B}_{\mathrm{C}}=\omega \mathrm{C} \\ & \hline \end{aligned}$
Z	impedance	Ω	ohm			
Y	admittance	S	siemens			
P	active power	W	watt			
Q	reactive power	var	reactive volt ampere			
S	apparent power	VA	volt ampere			
Q	electric charge	C	coulomb	Ah	ampere/hour	$\begin{aligned} & \hline \mathrm{C}=1 \mathrm{~A} \cdot \mathrm{~S} \\ & 1 \mathrm{Ah}=3600 \mathrm{~A} \cdot \mathrm{~s} \\ & \hline \end{aligned}$
E	electric field strength	V/m	volt per metre			
C	electric capacitance	F	farad			$1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}$
H	magnetic field	A / m	ampere per metre			
B	magnetic induction	T	tesla	G	gauss	$\begin{aligned} & 1 \mathrm{~T}=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{m}^{2} \\ & 1 \mathrm{G}=10-4 \mathrm{~T} \end{aligned}$
L	inductance	H	henry			$1 \mathrm{H}=1 \Omega \cdot \mathrm{~s}$

Resistivity values, conductivity and temperature coefficient at $20^{\circ} \mathrm{C}$ of the main electrical materials

conductor	conductivity resistivity $\boldsymbol{\rho}_{20}$ $[\mathrm{~mm} 2 \Omega / \mathrm{m}]$	$\boldsymbol{\chi}_{20}=1 / \boldsymbol{\rho}_{20}$ $[\mathrm{~m} / \mathrm{mm} 2 \Omega]$	temperature coefficient α_{20} $[\mathrm{~K} \cdot 1]$
Aluminium	0.0287	34.84	$3.8 \cdot 10^{-3}$
Brass, CuZn 40	≤ 0.067	≥ 15	$2 \cdot 10^{-3}$
Constantan	0.50	2	$-3 \cdot 10^{-4}$
Copper	0.0175	57.14	$3.95 \cdot 10^{-3}$
Gold	0.023	43.5	$3.8 \cdot 10^{-3}$
Iron wire	0.1 to 0,15	10 to 6.7	$4.5 \cdot 10^{-3}$
Lead	0.208	4.81	$3.9 \cdot 10^{-3}$
Magnesium	0.043	23.26	$4.1 \cdot 10^{-3}$
Manganin	0.43	2.33	$4 \cdot 10^{-6}$
Mercury	0.941	1.06	$9.2 \cdot 10^{-4}$
Ni Cr 8020	1	1	$2.5 \cdot 10^{-4}$
Nickeline	0.43	2.33	$2.3 \cdot 10^{-4}$
Silver	0.016	62.5	$3.8 \cdot 10^{-3}$
Zinc	0.06	16.7	$4.2 \cdot 10^{-3}$

Annex E: Main physical quantities and

 electrotechnical formulas
Main electrotechnical formulas

Impedance

resistance of a conductor at temperature ϑ	$\mathrm{R}_{\theta}=\mathrm{P}_{\theta} \cdot \frac{l}{\mathrm{~S}}$
conductance of a conductor at temperature	$\mathrm{G}_{\theta}=\frac{1}{\mathrm{R}_{\theta}}=\chi_{\theta} \cdot \frac{\mathrm{S}}{l}$
resistivity of a conductor at temperature ϑ	$\rho_{\vartheta}=\rho_{20}\left[1+\alpha_{20}(\vartheta-20)\right]$
capacitive reactance	$\mathrm{X}_{\mathrm{C}}=\frac{-1}{\omega \cdot \mathrm{C}}=-\frac{1}{2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{C}}$
inductive reactance	$\mathrm{X}_{\mathrm{L}}=\omega \cdot \mathrm{L}=2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{L}$
impedance	$\mathrm{Z}=\mathrm{R}+\mathrm{j} \mathrm{X}$
module impedance	$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}}$
phase impedance	$\varphi=\arctan \frac{\mathrm{R}}{\mathrm{X}}$
conductance	$\mathrm{G}=\frac{1}{\mathrm{R}}$
capacitive susceptance	$\mathrm{B}_{\mathrm{C}}=\frac{-1}{\mathrm{X}_{\mathrm{c}}}=\omega \cdot \mathrm{C}=2 \cdot \pi \cdot \mathrm{f} \cdot \mathrm{C}$
inductive susceptance	$B_{L}=\frac{-1}{X_{L}}=-\frac{1}{\omega \cdot L}=-\frac{1}{2 \cdot \pi \cdot f \cdot L}$
admittance	$Y=G-j B$
module admittance	$\mathrm{Y}=\sqrt{\mathrm{G}^{2}+\mathrm{B}^{2}}$
phase admittance	$\varphi=\arctan \frac{\mathrm{B}}{\mathrm{G}}$

Annex E: Main physical quantities and electrotechnical formulas
mpedances in serie

$$
\mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}+\ldots \quad \mathrm{z}_{1} \quad \mathrm{z}_{2}-\mathrm{z}_{3}
$$

Admittances in series

$$
Y=\frac{1}{\frac{1}{Y_{1}}+\frac{1}{Y_{2}}+\frac{1}{Y_{3}}+\ldots} \quad Y_{1}
$$

Impedances in parallel

$$
Z=\frac{1}{\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}+\ldots}
$$

Admittances in parallel

$$
Y=Y_{1}+Y_{2}+Y_{3}+. .
$$

Delta-star and star-delta transformations

\[

\]

Annex E: Main physical quantities and

 electrotechnical formulas
Transformers

Two-winding transformer

rated current	$\mathrm{I}_{\mathrm{r}}=\frac{\mathrm{S}_{\mathrm{r}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}$
short-circuit power	$\mathrm{S}_{\mathrm{k}}=\frac{\mathrm{S}_{\mathrm{r}}}{\mathrm{U}_{\mathrm{k}} \%} \cdot 100$
short-circuit current	$\mathrm{I}_{\mathrm{k}}=\frac{\mathrm{S}_{\mathrm{k}}}{\sqrt{3} \cdot \mathrm{U}_{\mathrm{r}}}=\frac{\mathrm{I}_{\mathrm{r}}}{\mathrm{U}_{\mathrm{k}} \%} \cdot 100$
longitudinal impedance	$\mathrm{Z}_{\mathrm{T}}=\frac{\mathrm{U}_{\mathrm{k}} \%}{100} \cdot \frac{\mathrm{U}_{\mathrm{r}}^{2}}{\mathrm{~S}_{\mathrm{r}}}=\frac{\mathrm{U}_{\mathrm{k}} \%}{100} \cdot \frac{\mathrm{~S}_{\mathrm{r}}}{3 \cdot \mathrm{I}_{\mathrm{r}}^{2}}$
longitudinal resistance	$\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{P}_{\mathrm{k}} \%}{100} \cdot \frac{\mathrm{U}_{\mathrm{r}}}{\mathrm{S}_{\mathrm{r}}}=\frac{\mathrm{p}_{\mathrm{k}} \%}{100} \cdot \frac{\mathrm{~S}_{\mathrm{r}}}{3 \cdot \mathrm{I}_{\mathrm{r}}^{2}}$
longitudinal reactance	$\mathrm{X}_{\mathrm{T}}=\sqrt{\mathrm{Z}_{\mathrm{T}}^{2}-\mathrm{R}_{T}^{2}}$

Three-winding transformer

Annex E: Main physical quantities and electrotechnical formulas

Voltage drop and power

	single-phase	three-phase	direct current
voltage drop	$\Delta \mathrm{U}=2 \cdot \mathrm{I} \cdot \mathrm{l} \cdot(\mathrm{r} \cos \varphi+\mathrm{x} \sin \varphi)$	$\Delta \mathrm{U}=\sqrt{3} \cdot \mathrm{I} \cdot \mathrm{l} \cdot(\mathrm{r} \cos \varphi+\mathrm{x} \sin \varphi)$	$\Delta \mathrm{U}=2 \cdot \mathrm{I} \cdot \mathrm{l} \cdot \mathrm{r}$
percentage voltage drop	$\Delta \mathrm{u}=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{r}}} \cdot 100$	$\Delta \mathrm{u}=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{r}}} \cdot 100$	$\Delta \mathrm{u}=\frac{\Delta \mathrm{U}}{\mathrm{U}_{\mathrm{r}}} \cdot 100$
active power	$\mathrm{P}=\mathrm{U} \cdot \mathrm{I} \cdot \cos \varphi$	$\mathrm{P}=\sqrt{3} \cdot \mathrm{U} \cdot \mathrm{I} \cdot \cos \varphi$	$\mathrm{P}=\mathrm{U} \cdot \mathrm{I}$
reactive power	$\mathrm{Q}=\mathrm{U} \cdot \mathrm{I} \cdot \sin \varphi$	$\mathrm{Q}=\sqrt{3} \cdot \mathrm{U} \cdot \mathrm{I} \cdot \sin \varphi$	-
apparent power	$\mathrm{S}=\mathrm{U} \cdot \mathrm{I}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$	$\mathrm{~S}=\sqrt{3} \cdot \mathrm{U} \cdot \mathrm{I}=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}}$	-
power factor	$\cos \varphi=\frac{\mathrm{P}}{\mathrm{S}}$	$\cos \varphi=\frac{\mathrm{P}}{\mathrm{S}}$	-
power loss	$\Delta \mathrm{P}=2 \cdot l \cdot \mathrm{r} \cdot \mathrm{I}^{2}$	$\Delta \mathrm{P}=3 \cdot l \cdot \mathrm{r} \cdot \mathrm{I}^{2}$	$\Delta \mathrm{P}=2 \cdot l \cdot \mathrm{r} \cdot \mathrm{I}^{2}$

Caption

ρ_{20} resistivity at $20^{\circ} \mathrm{C}$
total length of conductor
cross section of conductor
α_{20} temperature coefficient of conductor at $20^{\circ} \mathrm{C}$
θ^{20} temperature of conductor
$\rho \theta$ resistivity against the conductor temperature
angular frequency
frequency
resistance of conductor per length unit
x reactance of conductor per length unit
$u_{k} \%$ short-circuit percentage voltage of the transformer
S_{r} rated apparent power of the transformer
U_{r} rated voltage of the transformer
$\mathrm{p}_{\mathrm{k}}{ }^{\mathrm{k}}$ \% percentage impedance losses of the transformer under short-circuit conditions

Due to possible developments of standards as well as of materials, the characteristics and dimensions specified in this document may only be considered binding after confirmation by ABB SACE.

ABB SACE S.p.A.
An ABB Group Company
L.V. Breakers

Via Baioni, 35
24123 Bergamo - Italy
Tel.: +39 035.395.111 - Telefax: +39 035.395.306-433
http://www.abb.com

[^0]: ${ }^{\text {12 }}$) Value for the supply side magnetic only T2 circuit-breaker.
 ${ }^{\text {3) }}$) Value for the supply side magnetic only T3 circuit-breaker.
 ${ }^{4}$) Value for the supply side magnetic only T4 circuit-breaker.

[^1]: 1) Value for the supply side magnetic only T2 circuit-breaker
 ${ }^{(2)}$ Value for the supply side magnetic only T2-T3 circuit-breake
 Value for the supply side magnetic only T3 circuit-breake
[^2]: 1000 V version circuit-breakers in dc, with neutral at 100%.

