Cabinet Installation
ACS800-04 and ACS800-04M Drive Modules (45 to 560 kW)
ACS800-U4 Drive Modules (60 to 600 HP)
ACS800 Single Drive Manuals

HARDWARE MANUALS (appropriate manual is included in the delivery)

ACS800-01/U1 Hardware Manual 0.55 to 160 kW (0.75 to 200 HP) 3AFE64382101 (English)
ACS800-01/U1/04 Marine Supplement 0.55 to 160 kW (0.75 to 200 HP) 3AFE64291275 (English)
ACS800-11/U11 Hardware Manual 5.5 to 110 kW (7.5 to 125 HP) 3AFE68367883 (English)
ACS800-31/U31 Hardware Manual 5.5 to 110 kW (7.5 to 125 HP) 3AFE68599954 (English)
ACS800-02/U2 Hardware Manual 90 to 500 kW (125 to 600 HP) 3AFE64567373 (English)
ACS800-04/U4 Hardware Manual 0.55 to 160 kW (0.75 to 200 HP) 3AFE68372984 (English)
ACS800-04/04M/U4 Hardware Manual 45 to 560 kW (60 to 600 HP) 3AFE64671006 (English)
ACS800-04/04M/U4 Cabinet Installation 45 to 560 kW (60 to 600 HP) 3AFE68360323 (English)
ACS800-07/U7 Hardware Manual 45 to 560 kW (50 to 600 HP) 3AFE64702165 (English)
ACS800-07/U7 Dimensional Drawings 45 to 560 kW (50 to 600 HP) 3AFE64775421
ACS800-07 Hardware Manual 500 to 2800 kW 3AFE64731165 (English)
ACS800-17 Hardware Manual 55 to 2500 kW (75 to 2800 HP) 3AFE68397260 (English)
ACS800-37 Hardware Manual 55 to 2700 kW (75 to 3000 HP) 3AFE68557925 (English)

- Safety instructions
- Electrical installation planning
- Mechanical and electrical installation
- Motor control and I/O board (RMIO)
- Maintenance
- Technical data
- Dimensional drawings
- Resistor braking

FIRMWARE MANUALS, SUPPLEMENTS AND GUIDES
(appropriate documents are included in the delivery)

Standard Control Program Firmware Manual 3AFE64527592 (English)
System Control Program Firmware Manual 3AFE64670646 (English)
Control Program Template Firmware Manual 3AFE64616340 (English)
Master/Follower 3AFE64590430 (English)
Pump Control Program Firmware Manual 3AFE68478952 (English)
Extruder Control Program Supplement 3AFE64648543 (English)
Centrifuge Control Program Supplement 3AFE64667246 (English)
Traverse Control Program Supplement 3AFE64618334 (English)
Crane Control Program Firmware Manual 3BSE11179 (English)
Adaptive Programming Application Guide 3AFE64527274 (English)

OPTION MANUALS (delivered with optional equipment)

Fieldbus Adapters, I/O Extension Modules etc.
ACS800-04 and ACS800-04M Drive Modules
45 to 560 kW
ACS800-U4 Drive Modules
60 to 600 HP

Cabinet Installation
Table of contents

ACS800 Single Drive Manuals ... 2

Table of contents

About this manual
- What this chapter contains ... 11
- Target audience .. 11
- Safety ... 11
- Other related manuals ... 11
- Categorization according to the frame size 12
- Categorization according to the plus code 12
- Contents ... 12
- Installation, commissioning and operating flowchart 13
- Product and service inquiries ... 14
- Product training ... 14
- Providing feedback on ABB Drives manuals 14

The ACS800-04/U4 and ACS800-04M
- What this chapter contains ... 15
- The ACS800-04/U4 ... 15
- The ACS800-04M ... 16
 - Example configurations .. 16
- Type designation label ... 17
- Type code ... 18
- Main circuit and control interfaces .. 20
 - Connections of the Drive Control Unit (RDCU) in frame sizes R7 and R8 .. 21
 - Operation .. 21
- Printed circuit boards ... 22
- Motor control ... 22

Planning the cabinet installation
- What this chapter contains ... 23
- Cabinet construction ... 23
 - Disposition of the devices ... 23
 - Layout examples, door closed ... 24
 - Layout examples, door open .. 25
 - Grounding of mounting structures ... 26
 - Busbar material and joints .. 26
 - Tightening torques ... 26

Table of contents
Cabinet cooling .. 26
Cabinet cooling data ... 28
 IP 22 cabinet with no extra fan .. 28
 IP 54 cabinet with an extra fan .. 28
Preventing the recirculation of hot air ... 29
 Outside the cabinet .. 29
 Inside the cabinet ... 29
Cubicle heaters .. 29
Required free space around the drive module for cooling ... 30
 Free space at the top of the drive module .. 30
 Free space around units with busbars on the long side (bookshelf mounting +H354) .. 31
 Free space around units with busbars on the short side (flat mounting +H360) 32
When the drive module is installed in another position than vertically 33
 Drive module of frame size R7 on its side .. 33
 Drive module of frame size R7 on its back .. 34
EMC requirements .. 35
Grounding of cable shields ... 36
Installing the Drive Control Unit (RDCU) .. 36
Fastening of the control panel (CDP312R) ... 37
 Installing the control panel directly on the cabinet door ... 37
 Control Panel Mounting Platform RPMP-11/13 (+J410) .. 37
 Control Panel Holder RPMP-21 (+J413) ... 38
Mechanical installation of pre-assembled units (ACS800-04/U4) 39
What this chapter contains ... 39
Moving and unpacking the unit ... 39
Delivery check .. 40
Required tools .. 41
Installation procedure .. 42
 Fasten the module to the cabinet .. 42
 Clamping the pedestal with the outside brackets ... 42
 Fasten the terminals to the busbars ... 42
 View of output busbar connections of frame size R7 (DC and brake busbars included) . 43
 View of output busbar connections of frame size R8 (DC and brake busbars included) . 44
 User connections of Prevention of Unexpected Start (+Q950) 44

Mechanical installation of non-pre-assembled units (ACS800-04M) 45
What this chapter contains ... 45
How to read this chapter .. 45
 Units with bottom exit .. 45
 Units with pedestal and busbars on the long side (+H354, bookshelf mounting) 45
 Units with pedestal and busbars on the short side (+H360, flat mounting) 45
Required tools and tightening torques .. 46
Moving and unpacking the unit ... 46
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame size R7 units with bottom exit (+H352)</td>
<td>49</td>
</tr>
<tr>
<td>Delivery check</td>
<td>49</td>
</tr>
<tr>
<td>Assembling procedure</td>
<td>53</td>
</tr>
<tr>
<td>Fastening the spacer</td>
<td>55</td>
</tr>
<tr>
<td>Fastening the top entry busbar and bottom exit shrouds (+B060)</td>
<td>55</td>
</tr>
<tr>
<td>Top entry busbar shroud</td>
<td>55</td>
</tr>
<tr>
<td>Bottom exit shroud</td>
<td>56</td>
</tr>
<tr>
<td>Units with pedestal and busbars on the long side (+H354, bookshelf mounting)</td>
<td>57</td>
</tr>
<tr>
<td>Delivery check</td>
<td>57</td>
</tr>
<tr>
<td>Item packages</td>
<td>57</td>
</tr>
<tr>
<td>Item packages of frame size R7 with busbars on the long side</td>
<td>58</td>
</tr>
<tr>
<td>Item packages of frame size R8 with busbars on the long side</td>
<td>64</td>
</tr>
<tr>
<td>Assembling procedure for units with busbars on the long side (+H354)</td>
<td>73</td>
</tr>
<tr>
<td>Working order</td>
<td>73</td>
</tr>
<tr>
<td>Connecting the DC busbars to the pedestal (+H356 and +H363 only)</td>
<td>76</td>
</tr>
<tr>
<td>Procedure</td>
<td>76</td>
</tr>
<tr>
<td>Photos of frame size R7</td>
<td>76</td>
</tr>
<tr>
<td>Photos of frame size R8</td>
<td>77</td>
</tr>
<tr>
<td>Busbars to the left- or right-hand side of the module?</td>
<td>78</td>
</tr>
<tr>
<td>Swapping the busbars of the pedestal to the other side</td>
<td>78</td>
</tr>
<tr>
<td>Optional selection +H363</td>
<td>79</td>
</tr>
<tr>
<td>Fastening the pedestal to the cabinet base (not for wall-mounted units)</td>
<td>80</td>
</tr>
<tr>
<td>Clamping the pedestal with the outside brackets</td>
<td>80</td>
</tr>
<tr>
<td>Fastening the pedestal through the holes inside the pedestal</td>
<td>80</td>
</tr>
<tr>
<td>Fastening the drive module by top to the cabinet frame</td>
<td>81</td>
</tr>
<tr>
<td>Fastening the drive module to wall (wall-mounted units only, not for base-mounted units)</td>
<td>81</td>
</tr>
<tr>
<td>Requirements for protection</td>
<td>81</td>
</tr>
<tr>
<td>Requirements for the wall</td>
<td>81</td>
</tr>
<tr>
<td>Floor</td>
<td>81</td>
</tr>
<tr>
<td>Procedure</td>
<td>82</td>
</tr>
<tr>
<td>Fastening the output busbars and PE terminal and sliding the module in</td>
<td>86</td>
</tr>
<tr>
<td>View of output busbar connections of frame size R7 (DC and brake busbars included)</td>
<td>87</td>
</tr>
<tr>
<td>View of output busbar connections of frame size R8 (DC and brake busbars included)</td>
<td>88</td>
</tr>
<tr>
<td>Fastening the drive module to the pedestal</td>
<td>89</td>
</tr>
<tr>
<td>Fastening the shrouds in frame size R8</td>
<td>90</td>
</tr>
<tr>
<td>Top entry busbar shroud</td>
<td>90</td>
</tr>
<tr>
<td>Vertical busbar shroud</td>
<td>90</td>
</tr>
<tr>
<td>Units with pedestal and busbars on the short side (+H360, flat mounting)</td>
<td>91</td>
</tr>
<tr>
<td>Delivery check</td>
<td>91</td>
</tr>
<tr>
<td>Item packages</td>
<td>91</td>
</tr>
<tr>
<td>Item packages of frame size R7 with busbars on the short side</td>
<td>92</td>
</tr>
<tr>
<td>Item packages of frame size R8 with busbars on the short side</td>
<td>98</td>
</tr>
</tbody>
</table>
Assembling procedure for units with busbars on the short side (+H360) .. 104
Working order .. 104
Swapping the pedestal output busbars to the left-hand side .. 106
Connecting the DC busbars to the pedestal (+H360 +H356 only) .. 107
 Required parts .. 107
 Procedure .. 107
Preparing the adapter (+H360 +H356 only) ... 108
 Required parts .. 108
 Procedure .. 108
Fastening the adapter to the drive module ... 109
Fastening the drive module to the pedestal via the adapter .. 110
Connecting the output busbars on the short side of the module 111
 Procedure for frame size R7 .. 111
 Procedure frame size R8 .. 113

Checking the installation
What this chapter contains .. 115
Visual inspection .. 115
 Cabinet construction .. 115
 Instrumentation, busbars and cabling .. 115
 Groundings and protection .. 117
 Labels, switches, fuses and doors .. 118

Dimensional drawings
 Frame size R7 without pedestal (mm) .. 120
 Frame size R7 with bottom exit (mm) .. 121
 Frame size R7 with bottom exit and top entry and bottom exit shrouds (mm) .. 122
 Frame size R7 with busbars on the left side (mm) .. 123
 Frame size R7 with DC busbars on both sides (mm) .. 124
 Frame size R7 pedestal busbars on the long side (mm) .. 125
 Frame size R7 with busbars on the short side (mm) .. 126
 Frame size R8 without pedestal (mm) .. 127
 Frame size R8 with busbars on the left side (mm) .. 128
 Frame size R8 with top entry and vertical busbar shrouds (mm) .. 129
 Frame size R8 with busbars on both sides (mm) .. 130
 Frame size R8 pedestal busbars on the long side (mm) .. 131
 Frame size R8 with busbars on the short side (mm) .. 132
 Wall mounting spacers .. 133
 Frame size R7 bottom exit kit (+H352) .. 134
 Frame size R7 top entry busbar shroud and bottom exit shroud (+B060) .. 135
 Control Panel Holder RPMP-21 (+J413) .. 136
 Drive Control Unit (RDCU-02) .. 137

| Table of contents |
Dimensional drawings (USA) .. 138
Frame size R7 without pedestal (inches) 139
Frame size R7 with bottom exit (inches) 140
Frame size R7 with bottom exit and top entry and bottom exit shrouds (inches) 141
Frame size R7 with busbars on the left side (inches) 142
Frame size R7 with busbars on both sides (inches) 143
Frame size R7 pedestal busbars on the long side (inches) 144
Frame size R7 with busbars on the short side (inches) 145
Frame size R8 without pedestal (inches) 146
Frame size R8 with busbars on the left side (inches) 147
Frame size R8 with top entry and vertical busbar shrouds (inches) 148
Frame size R8 with busbars on both sides (inches) 149
Frame size R8 pedestal busbars on the long side (inches) 150
Frame size R8 with busbars on the short side (inches) 151

Circuit diagrams

What this chapter contains .. 153

Assembly drawings

What this chapter contains .. 155
Adding UDC+/R+, UDC- and R- busbars to the pedestal (frame size R7, +H356+H360) 156
Adding UDC+/R+, UDC- and R- busbars to the adapter (frame size R7, +H356+H360) 157
Adding UDC+/R+, UDC- and R- busbars to the pedestal (frame size R8, +H356+H360) 158
Adding UDC+/R+, UDC- and R- busbars to the adapter (frame size R8, +H356+H360) 159
Table of contents
About this manual

What this chapter contains
This chapter describes the intended audience and contents of the manual. It contains a flowchart of steps in checking the delivery, installing and commissioning the drive. The flowchart refers to chapters/sections in this manual and other manuals.

Target audience
This manual is intended for people who plan the installation, and install the drive module into a user-defined cabinet. Read the manual before the installation work. The reader is expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

The manual is written for readers worldwide. Both SI and imperial units are shown. Special US instructions for installations within the United States that must be installed per the National Electrical Code and local codes are marked with (US).

Safety

WARNING! Follow the safety instructions given in ACS800-04/04M/U4 Hardware Manual [3AFE64671006 (English)] when installing, operating and servicing the drive. If ignored, physical injury or death may follow, or damage may occur to the drive, the motor or driven equipment. Read the safety instructions before you work on the unit.

Other related manuals
See ACS800-04/04M/U4 Hardware Manual [3AFE64671006 (English)] for information concerning the drive module such as
- safety
- planning the electrical installation
- electrical installation
- motor control and I/O board (RMIO)
- maintenance
- technical data
- resistor braking.
For installation instructions of optional equipment, see their manuals.
For example installations in Rittal TS 8 cabinet, refer to ACS800-04/U4 Rittal TS 8 Cabinet Installation [3AFE68372330 (English)].

Categorization according to the frame size

The instructions, technical data and dimensional drawings which concern only certain frame sizes are marked with the symbol of the frame size R7 or R8. The frame size is not marked on the drive designation label. To identify the frame size of your drive, see the rating tables in chapter Technical data in ACS800-04/04M/U4 Hardware Manual [3AFE64671006 (English)].

Categorization according to the plus code

The instructions, technical data and dimensional drawings which concern only certain optional selections are marked with plus codes, e.g. +E210 or +H354. The options included in the drive can be identified from the plus codes visible on the type designation label of the drive. The plus code selections are listed in chapter The ACS800-04/U4 and ACS800-04M under Type code.

Contents

The chapters of this manual are briefly described below.

About this manual introduces this manual.

The ACS800-04/U4 and ACS800-04M describes the drive module.

Planning the cabinet installation instructs on general cabinet design, gives layout examples, free space requirements around the drive module for cooling and cabinet cooling data.

Mechanical installation of pre-assembled units (ACS800-04/U4) instructs how to mount a pre-assembled drive module into a cabinet.

Mechanical installation of non-pre-assembled units (ACS800-04M) instructs how to assemble the drive from the assembly kits.

Checking the installation helps in checking the mechanical and electrical installation of the drive.

Dimensional drawings contains the dimensional drawings of the drive modules.

Circuit diagrams shows an example circuit diagram for employing the Prevention of Unexpected Start function (+Q950).

Assembly drawings contains a few step-by-step assembly drawings.
Installation, commissioning and operating flowchart

<table>
<thead>
<tr>
<th>Task</th>
<th>Chapters in this manual</th>
<th>Chapters in ACS800-04/04M/U4 Hardware Manual [3AFE64671006 (English)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the frame size of your drive, R7 or R8.</td>
<td>-</td>
<td>Technical data / IEC ratings or NEMA ratings</td>
</tr>
<tr>
<td>Plan the installation.</td>
<td>Planning the cabinet installation</td>
<td>Technical data Planning the electrical installation</td>
</tr>
<tr>
<td>Check the ambient conditions, ratings, required cooling air flow, input power connection, compatibility of the motor, motor connection, and other technical data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpack and check the units.</td>
<td>Mechanical installation of pre-assembled units (ACS800-04/U4) or Mechanical installation of non-pre-assembled units (ACS800-04M)</td>
<td>-</td>
</tr>
<tr>
<td>Check that all necessary optional modules and equipment are present and correct. Only intact units may be started up.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assemble and install the drive module into the cabinet.</td>
<td>Mechanical installation of pre-assembled units (ACS800-04/U4) or Mechanical installation of non-pre-assembled units (ACS800-04M)</td>
<td></td>
</tr>
<tr>
<td>Install the RDCU drive control unit.</td>
<td>-</td>
<td>See RDCU Drive Control Unit Hardware Manual [3AFE64636324 (English)]</td>
</tr>
<tr>
<td>Check the installation.</td>
<td>Checking the installation</td>
<td>-</td>
</tr>
<tr>
<td>Electrical installation</td>
<td>-</td>
<td>Safety, Planning the electrical installation, Electrical installation, Maintenance, Technical Data, Resistor braking</td>
</tr>
<tr>
<td>Commissioning and operating the drive</td>
<td>-</td>
<td>See the appropriate firmware manual.</td>
</tr>
</tbody>
</table>
Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type code and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/drives and selecting Drives – World wide service contacts on the right pane.

Product training

For information on ABB product training, navigate to www.abb.com/drives and select Drives – Training courses on the right pane.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to www.abb.com/drives, then select successively Drives – Document Library – Manuals feedback form on the right pane.
The ACS800-04/U4 and ACS800-04M

What this chapter contains

This chapter describes the construction and operating principle of the drive in short.

The ACS800-04/U4

The ACS800-04/U4 is an IP 00 drive module for controlling AC motors. It is to be installed into a cabinet by the customer with base or wall fastening. The input cable terminals are located at the top of the unit whereas the motor cable terminals are located at the left- or right-hand side of the unit. The unit is delivered pre-assembled with mounting pedestal and output busbars.

Slots for cables going to the RMIO board in the RDCU unit. The cables are coiled on the top of the module.

Fastening points

Input cable terminals

Fastening points

Terminal block for user connection of optional Prevention of Unexpected Start (+Q950). See ACS800-04/04M/U4 Cabinet Installation [3AFE68360323 (English)] chapter Circuit diagrams.

Motor cable terminals

Optional brake and DC busbars and terminals

PE terminal

Alternative output cable terminals (when no vertical busbars are used)

Additional holes for fastening the cable terminals

Pedestal

Fastening bracket

Fastening points

Front cover

Drive Control Unit (RDCU)

The ACS800-04/U4 and ACS800-04M
The ACS800-04M

The ACS800-04M is delivered as non-pre-assembled kits, which provide more alternatives in assembling the units than the basic ACS800-04.

Example configurations

Frame size R7

Motor and brake busbars on the left-hand long side of the module and DC busbars on the right-hand side

Motor and brake busbars on the right-hand long side of the module and DC busbars on the left-hand side

Output busbars on the short side of the module

Frame size R8

Drive Control Unit (RDCU)

Frame size R7 with bottom exit (optional top entry busbar shroud and bottom exit shroud included). Output busbars are located at the base of the module.

Output busbars on the short side of the module
Type designation label

The type designation label includes an IEC and NEMA rating, C-UL US, and CSA markings, a type code and a serial number, which allow individual recognition of each unit. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit's manufacturing year and week respectively. The remaining digits complete the serial number so that there are no two units with the same serial number.

The type designation label is located on the front cover and the serial number label inside the unit. Example labels are shown below.

![Type designation label example](image1)

![Type designation label example](image2)

![Type designation label example](image3)

![Type designation label example](image4)
Type code

The type code contains information on the specifications and configuration of the drive. The first digits from left express the basic configuration (e.g. ACS800-04-0170-5). The optional selections are given thereafter, separated by plus signs (e.g. +E202). The main selections are described below. Not all selections are available for all types. For more information, refer to ACS800 Ordering Information (EN code: 64556568, available on request).

<table>
<thead>
<tr>
<th>Selection</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product series</td>
<td>ACS800 product series</td>
</tr>
<tr>
<td>Type</td>
<td>04 Drive module. When no options are selected: 6-pulse diode input bridge, IP 00, top entry, side exit, RDCU drive control unit, no control panel, no EMC filter, Standard Control Program, boards without coating, pedestal with output on the long side, output busbar set for motor, base and wall mounting brackets, one set of manuals. Pre-assembled unit.</td>
</tr>
<tr>
<td></td>
<td>U4 Drive module (USA). When no options are selected: 6-pulse diode bridge, open chassis, top entry, side exit, no control panel, no EMC filter, US version of the Standard Control Program (three-wire start/stop as default setting), common mode filter in frame size R8, boards without coating, pedestal with output on the long side, output busbar set for motor, base and wall mounting brackets, one set of manuals. Pre-assembled unit.</td>
</tr>
<tr>
<td>Size</td>
<td>Refer to Technical data: IEC ratings or NEMA ratings in Hardware Manual [3AFE64671006 (English)].</td>
</tr>
<tr>
<td>Voltage range</td>
<td>2 208/220/230/240 VAC</td>
</tr>
<tr>
<td></td>
<td>3 380/400/415 VAC</td>
</tr>
<tr>
<td></td>
<td>5 380/400/415/440/460/480/500 VAC</td>
</tr>
<tr>
<td></td>
<td>7 525/575/600/690 VAC</td>
</tr>
<tr>
<td>+ options</td>
<td>D150 brake chopper and busbars for brake resistor and DC connection</td>
</tr>
<tr>
<td>Filter</td>
<td>E210 EMC/RFI filter for second environment TN/IT (grounded/ungrounded) system</td>
</tr>
<tr>
<td></td>
<td>E208 common mode filter</td>
</tr>
<tr>
<td>Pedestal and output busbars</td>
<td>0H354 no pedestal</td>
</tr>
<tr>
<td>Control panel</td>
<td>J400 control panel including a 3-metre panel connection cable</td>
</tr>
<tr>
<td></td>
<td>J410 RPMP-11 control panel mounting platform kit including a 3-metre panel connection cable but no control panel</td>
</tr>
<tr>
<td></td>
<td>J413 RPMP-21 control panel holder</td>
</tr>
<tr>
<td>Fieldbus</td>
<td>K... Refer to ACS800 Ordering Information (EN code: 64556568).</td>
</tr>
<tr>
<td>I/O</td>
<td>L...</td>
</tr>
<tr>
<td>Control program</td>
<td>N...</td>
</tr>
<tr>
<td>Language of manual</td>
<td>R...</td>
</tr>
<tr>
<td>Specialities</td>
<td>P901 coated boards</td>
</tr>
<tr>
<td>Safety features</td>
<td>Q950 Prevention of Unexpected Start, 500 mm (19.68 in.) cable outside the drive module in frame size R7, 600 mm (23.62 in.) cable outside the drive module in frame size R8.</td>
</tr>
<tr>
<td>Type code for ACS800-04M non-pre-assembled units (delivered as kits)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Selection</td>
<td>Alternatives</td>
</tr>
<tr>
<td>Product series</td>
<td>ACS800 product series</td>
</tr>
<tr>
<td>Type</td>
<td>04M Drive module. When no options are selected: 6-pulse diode input bridge, IP 00, top entry, RDCU drive control unit, Standard Control Program, boards without coating, one set of manuals. No pedestal, no output busbars, no control panel, no EMC filter. Delivered as kits.</td>
</tr>
<tr>
<td>Size</td>
<td>Refer to Technical data: IEC ratings in Hardware Manual [3AFE64671006 (English)].</td>
</tr>
<tr>
<td>Voltage range</td>
<td>Refer to Technical data: IEC ratings in Hardware Manual [3AFE64671006 (English)].</td>
</tr>
<tr>
<td>(nominal rating in bold)</td>
<td>2 208/220/230/240 VAC</td>
</tr>
<tr>
<td></td>
<td>3 380/400/415 VAC</td>
</tr>
<tr>
<td></td>
<td>5 380/400/415/440/460/480/500 VAC</td>
</tr>
<tr>
<td></td>
<td>7 525/575/600/690 VAC</td>
</tr>
<tr>
<td>+ options</td>
<td></td>
</tr>
<tr>
<td>Shrouds</td>
<td>B060 Frame size R7: clear plastic shrouds for bottom exit kit (+H352) and input terminals. Frame size R8: clear plastic shrouds for vertical busbars and input terminals in bookshelf mounting (+H354)</td>
</tr>
<tr>
<td>Resistor braking</td>
<td>D150 brake chopper</td>
</tr>
<tr>
<td>Filter</td>
<td>E150 EMC/RFI filter for first environment TN (grounded) system, restricted (the A limits)</td>
</tr>
<tr>
<td></td>
<td>E210 EMC/RFI filter for second environment TN/IT (grounded/ungrounded) system</td>
</tr>
<tr>
<td></td>
<td>E208 common mode filter</td>
</tr>
<tr>
<td>Pedestal and output busbars</td>
<td>H352 bottom exit kit for frame size R7</td>
</tr>
<tr>
<td></td>
<td>H354 pedestal with output on the long side (bookshelf)</td>
</tr>
<tr>
<td></td>
<td>H355 vertical busbars and support brackets for AC output connection</td>
</tr>
<tr>
<td></td>
<td>H356 pedestal (and adapter with +H360) busbar kit for brake resistor and DC connection</td>
</tr>
<tr>
<td></td>
<td>H360 pedestal with output on the short side (flat)</td>
</tr>
<tr>
<td></td>
<td>H362 vertical busbars (and support brackets with +H360) for DC output connection</td>
</tr>
<tr>
<td></td>
<td>H363 busbar kit for DC and brake outputs on different long sides of the pedestal (+H356 required, not available for +H360)</td>
</tr>
<tr>
<td>Control panel</td>
<td>J400 control panel including a 3-metre panel connection cable</td>
</tr>
<tr>
<td></td>
<td>J410 RPMP-11 control panel mounting platform kit including a 3-metre panel connection cable but no control panel</td>
</tr>
<tr>
<td></td>
<td>J413 RPMP-21 control panel holder</td>
</tr>
<tr>
<td>Fieldbus</td>
<td>K... Refer to ACS800 Ordering Information (EN code: 64556568).</td>
</tr>
<tr>
<td>I/O</td>
<td>L...</td>
</tr>
<tr>
<td>Control program</td>
<td>N...</td>
</tr>
<tr>
<td>Language of manual</td>
<td>R...</td>
</tr>
<tr>
<td>Specialities</td>
<td>P901 coated boards</td>
</tr>
<tr>
<td>Safety features</td>
<td>Q950 Prevention of Unexpected Start, 500 mm (19.68 in.) cable outside the drive module in frame size R7, 600 mm (23.62 in.) cable outside the drive module in frame size R8.</td>
</tr>
</tbody>
</table>
Main circuit and control interfaces

This diagram shows the control interfaces and the main circuit of the drive.

External control via analogue/digital inputs and outputs

Optional module 1: RMBA, RAIO, RDIO, RDNA, RILON, RIBA, RPBA, RCAN, RCNA, RMBP, RETA, RRIA or RTAC

Optional module 2: RTAC, RAIO, RRIA or RDIO

DDCS communication option module: RDCO-01, RDCO-02 or RDCO-03

Drive

Capacitor bank

Rectifier

Inverter

AC supply

Motor output

Brake chopper (optional)

UDC+ UDC- R+ R-
Connections of the Drive Control Unit (RDCU) in frame sizes R7 and R8

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>six-pulse rectifier</td>
<td>converts the three-phase AC voltage to DC voltage</td>
</tr>
<tr>
<td>capacitor bank</td>
<td>energy storage which stabilizes the intermediate circuit DC voltage</td>
</tr>
<tr>
<td>six-pulse IGBT inverter</td>
<td>converts the DC voltage to AC voltage and vice versa. The motor operation is controlled by switching the IGBTs.</td>
</tr>
</tbody>
</table>
Printed circuit boards

The drive contains the following printed circuit boards as standard:

- main circuit board (AINT)
- motor control and I/O board (RMIO) with a fibre optic link to the AINT board
- input bridge control board (AINP)
- input bridge protection board (AIBP) which includes snubbers for the thyristors and varistors
- power supply board (APOW)
- gate driver control board (AGDR)
- diagnostics and panel interface board (ADPI)
- brake chopper control board (ABRC) with option +D150

Motor control

The motor control is based on the Direct Torque Control (DTC) method. Two phase currents and DC link voltage are measured and used for the control. The third phase current is measured for earth fault protection.
Planning the cabinet installation

What this chapter contains

This chapter guides in planning the installation of a converter module into a user-defined cabinet. The chapter gives free space requirements around the module for cooling, cabinet cooling data and layout examples. The issues discussed are essential for the safe and trouble-free use of the drive system.

Note: The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations.

Cabinet construction

The cabinet frame must be sturdy enough to carry the weight of the drive components, control circuitry and other equipment installed in it.

The cabinet must protect the converter module against contact and meet the requirements for dust and humidity, see chapter Technical data in ACS800-04/04M/U4 Hardware Manual [3AFE64671006 (English)].

Disposition of the devices

For easy installation and maintenance, a spacious layout is recommended. Sufficient cooling air flow, obligatory clearances, cables and cable support structures all require space.

The control boards must not be installed near main circuits or hot parts.

The following sections show a few layout examples. For example layouts in Rittal TS 8 cabinet, refer to ACS800-04/U4 Rittal TS 8 Cabinet Installation [3AFE68372330 (English)].

Planning the cabinet installation
Planning the cabinet installation

Layout examples, door closed

IP 22

IP 54

1a Air inlet for the converter module
1b Air inlet for the other equipment
2a Air outlet for the converter module
2b Air outlet for the other equipment
2c Air outlet for the converter module and the other equipment, an extra exhaust fan
3 Converter control panel (connected to the RMIO board in the RDCU unit inside the cabinet)
4 Contactor control switch and emergency stop switch (connected to the contactor control circuit inside the cabinet)
5 Operating handle of the disconnector

Roof air flow viewed from top
Planning the cabinet installation

Layout examples, door open

1. Supporting frame of the cabinet
2. Air baffles that separate the cool and hot areas (leak-proof lead-throughs)
3. Input power cable including the protective conductors to cabinet grounding (PE)
4. Disconnector and fuses
5. Contactor
6. Converter module
7. Motor cable including the grounding conductors
8. Drive Control Unit RDCU (includes RMIO board)
9. External control cables

See also section Required free space around the drive module for cooling.

WARNING! For units without bottom exit kit (+H352), it is not allowed to connect the cables directly to the drive module terminals without the pedestal as the lead-through insulation material is not strong enough to carry the mechanical stress exerted by the cables.
Grounding of mounting structures

Make sure any cross-members or shelves on which components are mounted are properly grounded and the connecting surfaces left unpainted. The drive module will be grounded to the cabinet frame via its fastening screws.

Busbar material and joints

Tin-plated copper is recommended but aluminium can also be used.

Before joining aluminium busbars, remove the oxide layer and apply suitable anti-oxidant joint compound.

Tightening torques

The following table applies to grade 8.8 screws (with or without joint compound).

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5</td>
<td>3.5 N·m (2.6 lbf·ft)</td>
</tr>
<tr>
<td>M6</td>
<td>9 N·m (6.6 lbf·ft)</td>
</tr>
<tr>
<td>M8</td>
<td>20 N·m (14.8 lbf·ft)</td>
</tr>
<tr>
<td>M10</td>
<td>40 N·m (29.5 lbf·ft)</td>
</tr>
<tr>
<td>M12</td>
<td>70 N·m (52 lbf·ft)</td>
</tr>
<tr>
<td>M16</td>
<td>180 N·m (133 lbf·ft)</td>
</tr>
</tbody>
</table>

Cabinet cooling

The installation site must be sufficiently ventilated.

The cabinet must have enough free space for the components to ensure sufficient cooling. Observe the minimum clearances given for each component.

The heat dissipated by cables and other additional equipment must also be ventilated.

The air inlets and outlets must be equipped with gratings that
- guide the air flow
- protect against contact
- prevent water splashes from entering the cabinet.
The drawing below shows two typical cabinet cooling solutions. The air inlet is at the bottom of the cabinet, while the outlet is at the top, either on the upper part of the door or on the roof.

The internal cooling fans of the converter modules and reactors/chokes are usually sufficient to keep the component temperatures low enough in IP 22 cabinets.

In IP 54 cabinets, thick filter mats are used to prevent water splashes from entering the cabinet. This entails the installation of additional cooling equipment, such as a hot air exhaust fan.

Arrange the cooling air flow through the converter module so that the requirements given in chapter Technical data in ACS800-04/04M/U4 Hardware Manual [3AFE64671006 (English)] are met:

• cooling air flow
 Note: The figures apply to continuous nominal load. If the load is cyclic or less than nominal, less cooling air is required.

• allowed ambient temperature.

See section Cabinet cooling data for:

• allowed temperature rise inside the cabinet
• allowed pressure drop over the cabinet that the module fan can overcome
• air inlet and outlet sizes required for the module cooling and recommended filter material (if used).
Cabinet cooling data

IP 22 cabinet with no extra fan

The table below shows the data the IP 22 cabinet should meet to ensure efficient cooling of the converter module. No extra fan is used. The pressure drop over the cabinet is the additional counterpressure that the module fan is capable of overcoming while still maintaining the required air flow through the module.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Temp. rise Over module °C</th>
<th>Pressure drop</th>
<th>Cabinet air inlet</th>
<th>Min. cabinet air outlet size* mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Over module Pa</td>
<td>Over cabinet Pa</td>
<td>Min. size Filter by Luftfilter</td>
</tr>
<tr>
<td>R7</td>
<td>30</td>
<td>300</td>
<td>30</td>
<td>288×292+688×521 airTex G150 398×312 (2 pcs)</td>
</tr>
<tr>
<td>R8</td>
<td>30</td>
<td>300</td>
<td>45</td>
<td>288×292+688×521 airTex G150 398×312 (2 pcs)</td>
</tr>
</tbody>
</table>

* size when the outlet is located on the cabinet roof

IP 54 cabinet with an extra fan

The table below shows the data the IP 54 cabinet should meet to ensure efficient cooling of the converter module. An extra fan is used. The pressure drop over the cabinet is the counterpressure the extra fan must overcome. The given fan types and filter materials are examples. Corresponding products by another manufacturer may be used as well. See the manufacturer’s Internet site for the detailed specification.

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Temp. rise Over module °C</th>
<th>Pressure drop</th>
<th>Extra fan type</th>
<th>Air inlet and outlet filter by Luftfilter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Over module Pa</td>
<td>Over cabinet Pa</td>
<td>Min. inlet (door) Min. outlet (roof)</td>
</tr>
<tr>
<td>R7</td>
<td>30</td>
<td>250*</td>
<td>RB2C-225/088 K093 or R2E225-AU64 by ebm airComp 300-50 288×292 + 688×521 airTex G150 398×312 (2 pcs)</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>30</td>
<td>250*</td>
<td>RH35M-4EK.2F.1R by Ziehl-Abegg or RB4T-355/170 by ebm airComp 300-50 288×292 + 688×521 airTex G150 398×312 (2 pcs)</td>
<td></td>
</tr>
</tbody>
</table>

* inlet filter 50 % unclean
Preventing the recirculation of hot air

Outside the cabinet

Prevent hot air circulation outside the cabinet by leading the outcoming hot air away from the area where the inlet air to the cabinet is taken. Possible solutions are listed below:

- gratings that guide air flow at the air inlet and outlet
- air inlet and outlet at different sides of the cabinet
- cool air inlet in the lower part of the front door, and an extra exhaust fan on the roof of the cabinet.

Inside the cabinet

Prevent hot air circulation inside the cabinet with e.g. leak-proof air baffles at the positions shown in the diagrams in section *Required free space around the drive module for cooling*. No gaskets are usually required.

Cubicle heaters

Use a cubicle heater if there is a risk of condensation in the cabinet. Although the primary function of the heater is to keep the air dry, it may also be required for heating at low temperatures. When placing the heater, follow the instructions provided by its manufacturer.
Required free space around the drive module for cooling

Free space at the top of the drive module

Required free space at the top of the module for frame sizes R7 and R8 is shown below (views of frame size R7). Note: Air inlet gratings only at the lower part of the cabinet door are not recommended without an extra fan. The air baffles are examples.

See also pages 31 and 32.

Air outlet on the cabinet roof and high air inlet gratings in the cabinet door

Air outlet on the cabinet roof and low air inlet gratings in the cabinet door

Air outlet and high air inlet gratings in the cabinet door

Air outlet and low air inlet gratings in the cabinet door

See also pages 31 and 32.
Free space around units with busbars on the long side (bookshelf mounting +H354)

The figure below shows the required free space in a unit with motor and brake busbars connected to the left-hand side and DC busbars to the right-hand side of the module (+H354+H356+H362+H363). The required free space when no vertical busbars are used is also shown.

The required free space in front of the unit depends on the gratings in the cabinet door:
- 0 mm (0 in.) with air inlets as high as the grating in the module [R7: 675 mm (27 in.), R8: 1120 mm (44 in.)]
- 150 mm (5.91 in.) with air inlets at the lower part of the cabinet only.
Free space around units with busbars on the short side (flat mounting +H360)

The required free space at the air inlet side of the drive module:

- **0 mm (0 in.)** if cabinet gratings are located at the air inlet side of the drive module and are as high as the grating in the module \([R7: 675 \text{ mm} (27 \text{ in.}), R8: 1120 \text{ mm} (44 \text{ in.})]\)
- **150 mm (5.91 in.)** with air inlets at the lower part of the cabinet only or with cabinet gratings at the long side of the drive module only.

Air inlet gratings in the cabinet are recommended at the air inlet side of the drive module if free space in front of the long side of the module is less than 150 mm (5.91 in.). The required area of the gratings is approximately \(3 \times 300 \text{ mm} \times 300 \text{ mm} (3 \times 11.81 \text{ in.} \times 11.81 \text{ in.})\), the minimum area is given on page 28.

Air baffle. Not needed if the drive module touches the cabinet door or the module air inlet touches the air inlet grating of the cabinet.

Cables connected to the vertical output busbar terminals require 50 mm (1.97 in.) free space around the busbar terminals for cooling.

Location of air inlet gratings

Air inlet gratings are needed if the free space in front of the long side of the module is less than 150 mm (5.91 in.). The required area of the gratings is approximately \(3 \times 300 \text{ mm} \times 300 \text{ mm} (3 \times 11.81 \text{ in.} \times 11.81 \text{ in.})\), the minimum area is given on page 28.

Air baffle. Not needed if the drive module touches the cabinet door or the module air inlet touches the air inlet grating of the cabinet.

Required area of air inlet gratings is approximately \(3 \times 300 \text{ mm} \times 300 \text{ mm} (3 \times 11.81 \text{ in.} \times 11.81 \text{ in.})\)
When the drive module is installed in another position than vertically

- Fasten the drive module by the fastening points.
- Lay support brackets below the module to carry the module weight.
- Ensure that hot air flows freely out of the cabinet and does not build up pressure.
- Reserve enough space for the cabling.
- In case of a short-circuit inside the drive module, hot ionized gases may escape sideways/upwards from the module through its ventilation holes. Ensure that the cabinet is constructed so that this will not cause any danger.
- The outlet cooling air is 25...30 °C (77...86 °F) hotter than the inlet air and flows sideways. Ensure that this does not cause danger.
- Ensure that the front panel, and preferably also the profiled side panel, can be removed and the cooling fan and capacitor pack changed.
- Ensure that the module can be changed, e.g. by sliding out of the cabinet on rails.

Drive module of frame size R7 on its side

WARNING! Do not place the support brackets under the studs. They cannot carry the weight of the drive module and the drive module would deform when placed onto them. The studs can be sawn off.

Note: Air inlet into the drive module goes through the front gratings of the module. Do not cover them.

Leave space in front of the module for maintenance.

Ensure that the cooling air will flow freely and is clean. Use filter mats if the input cooling air is taken near the floor surface and contains dust.

Place the support brackets on the same level as the spacers of the back plate of the bottom exit kit.

Prevent dripping water from entering the drive module.

Support the module from below. The fastening points are not sturdy enough to carry the weight of the module when laid on its side.
Drive module of frame size R7 on its back

Ensure that the cooling air will flow freely and is clean. Use filter mats if the input cooling air is taken near the floor surface and contains dust.

Prevent dripping water from entering the drive module.

Note: Air inlet into the drive module goes through the front gratings of the module. Do not cover them.

Leave space above the module for maintenance.

Air baffle for preventing cooling air recirculation.

Support the module from below. The fastening points are not sturdy enough to carry the weight of the module when laid on its back.

Ensure that the cooling air will flow freely and is clean. Use filter mats if the input cooling air is taken near the floor surface and contains dust.

Prevent dripping water from entering the drive module.

Note: Air inlet into the drive module goes through the front gratings of the module. Do not cover them.

Leave space above the module for maintenance.

Air baffle for preventing cooling air recirculation.

Support the module from below. The fastening points are not sturdy enough to carry the weight of the module when laid on its back.

Planning the cabinet installation
EMC requirements

Generally, the fewer and smaller the holes in the cabinet, the better the interference attenuation. The maximum recommended diameter of a hole in galvanic metal contact in the covering cabinet structure is 100 mm. Special attention must be paid to the cooling air inlet and outlet gratings.

The best galvanic connection between the steel panels is achieved by welding them together as no holes are necessary. If welding is not possible, the seams between the panels are recommended to be left unpainted and equipped with special conductive EMC strips to provide adequate galvanic connection. Usually, reliable strips are made of flexible silicon mass covered with a metal mesh. The non-tightened touch-contact of the metal surfaces is not sufficient, so a conductive gasket between the surfaces is required. The maximum recommended distance between assembly screws is 100 mm.

Sufficient high-frequency grounding network must be constructed in the cabinet to avoid voltage differences and forming of high-impedance radiator structures. A good high-frequency grounding is made with short flat copper braids for low inductance. One-point high-frequency grounding cannot be used due to the long distances inside the cabinet.

First environment EMC compliance *) of the drive requires 360° high frequency grounding of the motor cable shields at their entries. The grounding can be implemented by a knitted wire mesh screening as shown below.

*) First environment EMC compliance is defined in chapter Technical data / CE marking in ACS800-04/04M/U4 Hardware Manual [64671006 (English)].
360° high frequency grounding of the control cable shields is recommended at their entries. The shields can be grounded by means of conductive shielding cushions pressed against the cable shield from both directions:

Grounding of cable shields

* required for motor cables in first environment installations. First environment EMC compliance is defined in chapter Technical data / CE marking in ACS800-04/04M/U4 Hardware Manual [64671006 (English)].

Installing the Drive Control Unit (RDCU)

See RDCU Drive Control Unit Hardware Manual [3AFE64636324 (English)].
Fastening of the control panel (CDP312R)

The control panel can be fastened directly to the cabinet door, or a mounting platform or control panel holder (+J413) can be used.

Installing the control panel directly on the cabinet door

Fasten the control panel from the back side with two screws of one of the following types:

- standard screw with nominal diameter of 4 mm (0.16 in.)
- tapping screw with nominal diameter of 4.2 mm (0.17 in.) DIN 7981 C, DIN 7982 C, DIN 7983 C or DIN 7976 C
- PT screw for thermoplastics with nominal diameter of 4 mm (0.16 in.).

Control Panel Mounting Platform RPMP-11/13 (+J410)

For installation of the mounting platform, see RPMP-11/13 Control Panel Mounting Platform Kit Installation Guide [3AFE68400643 (English)].
Control Panel Holder RPMP-21 (+J413)

Fasten the control panel holder to the cabinet frame or wall with three screws. Do not fasten the panel holder to the drive module.
Mechanical installation of pre-assembled units (ACS800-04/U4)

What this chapter contains

This chapter describes how to install a pre-assembled drive module into a cabinet. First, before-installation information is given, such as required tools, moving the unit and checking the delivery. Then, the mechanical installation procedure is described.

Moving and unpacking the unit

WARNING! The drive is heavy [frame size R7: 100 kg (220 lb), frame size R8: 200 kg (441 lb)]. Lift the drive by the upper part only using the lifting lugs attached to the top of the unit. The lower part will be deformed from lifting. Do not remove the pedestal before lifting.

Do not tilt the drive. **The centre of gravity of the unit is high.** The unit will overturn from a tilt of about 6 degrees. **An overturning unit can cause physical injury.**

Views of frame size R7

Do not lift by the lower part of the frame.

Do not tilt!
Move the transport package by pallet truck to the installation site. Unpack the package as shown below.

The following items are located below the drive module:

Drive Control Unit (RDCU)

Note: Optional modules (if ordered) are factory installed onto the RMIO board in the RDCU unit. The fibre optic cables and power supply cable to be connected to the RMIO board are coiled on the top of the drive module.

- Base and wall fastening brackets, terminals for output cable connection and PE grounding. Screws are included in a plastic bag.
- Manuals (hardware, appropriate firmware, optional module), delivery documents, residual voltage warning stickers
- Control panel with a 3 m (98 in.) cable and RPMP control panel mounting kit (if ordered)

The following items are fastened to the drive module:
- pedestal
- output busbars U2, V2 and W2
- busbars for brake resistor connection if brake chopper is included.
- DC busbars if ordered

Delivery check

Check that there are no signs of damage. Before attempting installation and operation, check the information on the type designation label of the drive to verify that the unit is of the correct type.
Required tools

- set of screw drivers
- torque wrench with a 500 mm (20 in.) or 2 × 250 mm (2 × 10 in.) long extension bar
- 19 mm (3/4 in.) socket
 - for frame size R7: 13 mm (1/2 in.) magnetic-end socket
 - for frame size R8: 17 mm (11/16 in.) magnetic-end socket.
Installation procedure

Fasten the module to the cabinet

Fasten the module to the base of the cabinet with the outside fastening brackets as described below. For instructions in alternative fastening methods, refer to *Mechanical installation of non-pre-assembled units (ACS800-04M)*.

It is recommended to fasten the module also from the fastening points at the top of the unit. Refer to *Dimensional drawings* for the horizontal and vertical fastening points.

Clamping the pedestal with the outside brackets

1. Fasten the front bracket to the pedestal with two screws.

2. Fasten the back fastening bracket onto the cabinet floor with two screws.

3. Place the pedestal on the cabinet floor and push it so that the tabs of the fastening bracket enter the slots in the pedestal.

4. Fasten the front bracket to the base with two screws.

 ![Diagram of fastening procedure](image)

 Note: Place the module on a solid base. The fastening brackets are not strong enough to carry the weight of the module on their own.

Fasten the terminals to the busbars

1. Connect the PE terminal to the long side plate of the pedestal with screws.

2. Connect the output cable terminals to the busbars with screws.

 Note 1: The output cable terminals and PE terminal need not necessarily be used. The output cables can be also connected directly to the vertical output busbar holes with cable lugs. The PE conductors can be connected to the PE terminal screws. Busbars for output cables can be connected to the pedestal busbars.
View of output busbar connections of frame size R7 (DC and brake busbars included)

WARNING! The output busbars are fastened to the insulating supports with M8x16 screws when no cable lug terminal is connected, but with M8x20 screws when a cable lug terminal is also connected with the same screw. Screwing an M8x20 screw without a cable lug terminal through the busbar into the insulating support will break the insulating support. Fasten the cable lug terminals elsewhere with M10x25 screws.

Tightening torques
M8: 15...22 Nm (3.7 lbf ft)
M10: 30...44 Nm (22...32 lbf ft)
View of output busbar connections of frame size R8 (DC and brake busbars included)

WARNING! Fasten the output busbars to the insulating supports with M10x20 screws when no cable lug terminal is connected, but with M10x25 screws when a cable lug terminal is connected as well. Screwing an M10x25 screw without a cable lug terminal through the busbar into the insulating support will break the insulating support.

![Diagram of output busbar connections]

Tightening torque
- M10: 30...44 Nm (22...32 lbf ft)
- M12: 50...75 Nm (37...55 lbf ft)

User connections of Prevention of Unexpected Start (+Q950)

See pages 72 and 97.

WARNING!
Mechanical installation of non-pre-assembled units (ACS800-04M)

What this chapter contains

This chapter describes how to assemble the drive from the assembly kits. First, before-installation information is given, such as required tools, moving the unit and checking the delivery. Then, the working order of the mechanical installation is described. Thereafter, particular assembling instructions follow.

How to read this chapter

Units with bottom exit

1. Read sections Required tools and tightening torques and Moving and unpacking the unit.
2. Go to section Frame size R7 units with bottom exit (+H352) on page 49.

Units with pedestal and busbars on the long side (+H354, bookshelf mounting)

1. Read sections Required tools and tightening torques and Moving and unpacking the unit.
2. Identify your unit by its type code with the help of section Units with pedestal and busbars on the long side (+H354, bookshelf mounting) on page 57.
3. Choose the applying instructions in section Assembling procedure for units with busbars on the long side (+H354) on page 73.

Units with pedestal and busbars on the short side (+H360, flat mounting)

1. Read sections Required tools and tightening torques and Moving and unpacking the unit.
2. Identify your unit by its type code with the help of section Units with pedestal and busbars on the short side (+H360, flat mounting) on page 91.
3. Choose the applying instructions in section Assembling procedure for units with busbars on the short side (+H360) on page 104.
Required tools and tightening torques

- set of screw drivers
- torque wrench with a 500 mm (20 in.) or 2 x 250 mm (2 x 10 in.) long extension bar
- 19 mm (3/4 in.) socket
 for frame size R7: 13 mm (1/2 in.) magnetic-end socket
 for frame size R8: 17 mm (11/16 in.) magnetic-end socket.

<table>
<thead>
<tr>
<th>Screw</th>
<th>Grade</th>
<th>Tool</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>mm</td>
<td>in.</td>
</tr>
<tr>
<td>M4</td>
<td>8.8</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>M5</td>
<td>8.8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>M6</td>
<td>8.8</td>
<td>10</td>
<td>6.9</td>
</tr>
<tr>
<td>M8</td>
<td>8.8</td>
<td>13</td>
<td>15/16</td>
</tr>
<tr>
<td>M10</td>
<td>8.8</td>
<td>17</td>
<td>3/8</td>
</tr>
<tr>
<td>M12</td>
<td>8.8</td>
<td>19</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max 30°</td>
<td></td>
</tr>
</tbody>
</table>

Moving and unpacking the unit

WARNING! The drive is heavy [frame size R7: 100 kg (220 lb), frame size R8: 200 kg (441 lb)]. Lift the drive using the lifting lugs attached to the top of the unit. Do not tilt the drive. **The centre of gravity of the unit is high.** The unit will overturn from a tilt of about 6 degrees. **An overturning unit can cause physical injury.**

Mechanical installation of non-pre-assembled units (ACS800-04M)
The module is delivered in a two-level package. Unpack the package as shown below.

Move the transport package by pallet truck to the installation site. Lift up the top cover. The following items are located in the upper package (1):

- pedestal
- output busbars U2, V2 and W2
- supports, screws and terminals for the output busbars and PE grounding
- fastening brackets for base and wall mounting
- busbars for brake resistor connection (if brake chopper is ordered)
- adapter (if output busbars on the short side of the module)
- DC busbars (if ordered)
- control panel and a 3 m (98 in.) cable (if ordered)
- control panel mounting platform (if ordered).

In the lower package (2):

- drive module.

Below the drive module (3):

- Drive Control Unit (RDCU). Note: The fibre optic cables and power supply cable to be connected to the RMIO board inside the RDCU unit are wound on the top of the drive module.
- optional modules (if ordered) factory installed onto the RMIO board in the RDCU unit
- residual voltage warning and output busbar stickers
- hardware manual
- appropriate firmware manuals and guides
- delivery documents
- optional module manuals.

Undo the fastening screws.
Fasten the lifting hooks to the lifting lugs of the drive module. A hook can be fastened to the base bracket also. Use at least three fastening points because the module is turns over easily.
Frame size R7 units with bottom exit (+H352)

Delivery check

Check that there are no signs of damage. Before attempting installation and operation, check the information on the type designation label of the drive to verify that the unit is of the correct type.

<table>
<thead>
<tr>
<th>Package</th>
<th>Parts</th>
<th>Assembling drawing / reference to instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic unit (type code ACS800-0M4-xxxx-x+H352)</td>
<td></td>
<td>Refer to section Assembling procedure on page 53.</td>
</tr>
</tbody>
</table>

- Drive module

RDCU drive control unit

See RDCU Drive Control Unit Hardware Manual [3AFE64636324 (English)].
ACS800-04M of frame size R7 with bottom exit

<table>
<thead>
<tr>
<th>Package</th>
<th>Parts</th>
<th>Assembling drawing / reference to instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>68324963</td>
<td>L-plate</td>
<td>Pro/E code 64770306 D</td>
</tr>
<tr>
<td></td>
<td>Spacers for wall mounting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R-busbar with fastening pin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom plate</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical installation of non-pre-assembled units (ACS800-04M)
Mechanical installation of non-pre-assembled units (ACS800-04M)

ACS800-04M of frame size R7 with bottom exit

<table>
<thead>
<tr>
<th>Package</th>
<th>Parts</th>
<th>Assembling drawing / reference to instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional selection +H352+B060: top entry busbar shroud and bottom exit shroud</td>
<td></td>
<td>ProE code 64770306 D</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Top entry busbar shroud kit R7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+B060</td>
<td>68363977</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom exit shroud kit R7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+B060</td>
<td>68339545</td>
<td>Screws</td>
</tr>
</tbody>
</table>

Mechanical installation of non-pre-assembled units (ACS800-04M)
Mechanical installation of non-pre-assembled units (ACS800-04M)

ACS800-04M of frame size R7 with bottom exit

<table>
<thead>
<tr>
<th>Package</th>
<th>Parts</th>
<th>Assembling drawing / reference to instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ProE code 64770306 D</td>
</tr>
</tbody>
</table>

Example assembly + H352 + B060: bottom exit with top entry busbar shroud and bottom exit shroud

![Diagram of ACS800-04M with labels](image-url)
Assembling procedure

Assemble the units with bottom exit (+H352) as follows:

1. Remove the front cover of the drive module.
2. Fasten the L-plate to the base of the module.
 A. Insert the two pins of the longer side of the L-plate to the counter holes in the side plate of the drive module.
 B. Slide the L-plate horizontally to match the three pins in its shorter side with the counter holes in the drive module.
 C. Fasten the L-plate with 5 screws.
3. Fasten the bottom plate to the base of the drive module.

A. With brake chopper option (+D150), fasten R- busbar to the bottom plate with pin A1.
B. Insert the bottom plate onto its place.
C. Connect the busbars of the bottom plate to the busbars of the drive module with M8x25 combi screws using a torque wrench with an extension bar. Tightening torque: 15...22 Nm (11...16 lbf ft).
D. Fasten the bottom plate to the drive module with four M6 screws. Tightening torque: 6...9 Nm (3.7 lbf ft).

4. Fasten the front cover.
Fastening the spacer

Fasten the drive module to the cabinet or wall using a spacer at the top of the module on the fastening side.

Fastening the top entry busbar and bottom exit shrouds (+B060)

Press the top cover on the sides inwards to enable its tabs to enter the slots in the shroud when it is placed in position (4).

Step drill lead-throughs for the busbars.

Remove the protective film.

Fasten the shroud to the drive module
Bottom exit shroud

1. Step drill lead-throughs for the busbars.
2. Remove the protective film from all parts.
3. Fasten the L-plate to the drive module.
4. Fasten the side plates to the drive module.
5. Fasten the bottom to the shroud.