Relion® Protection and Control

620 series ANSI
Engineering Manual
Copyright

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Warranty

Please inquire about the terms of warranty from your nearest ABB representative.

ABB Inc.
Distribution Automation
4300 Coral Ridge Drive
Coral Springs, FL 33065, USA
Toll-free: 1 (800) 523-2620
Phone: +1 954-752-6700
Fax: +1 954 345-5329
http://www.abb.com/substationautomation
Disclaimer

The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with. In particular, any risks in applications where a system failure and/or product failure would create a risk for harm to property or persons (including but not limited to personal injuries or death) shall be the sole responsibility of the person or entity applying the equipment, and those so responsible are hereby requested to ensure that all measures are taken to exclude or mitigate such risks.

This document has been carefully checked by ABB but deviations cannot be completely ruled out. In case any errors are detected, the reader is kindly requested to notify the manufacturer. Other than under explicit contractual commitments, in no event shall ABB be responsible or liable for any loss or damage resulting from the use of this manual or the application of the equipment.
Conformity

This product complies with the directive of the Council of the European Communities on the approximation of the laws of the Member States relating to electromagnetic compatibility (EMC Directive 2004/108/EC) and concerning electrical equipment for use within specified voltage limits (Low-voltage directive 2006/95/EC). This conformity is the result of tests conducted by ABB in accordance with the product standards EN 50263 and EN 60255-26 for the EMC directive, and with the product standards EN 60255-1 and EN 60255-27 for the low voltage directive. The product is designed in accordance with the international standards of the IEC 60255 series and ANSI C37.90.
Safety information

Dangerous voltages can occur on the connectors, even though the auxiliary voltage has been disconnected.

Non-observance can result in death, personal injury or substantial property damage.

Only a competent electrician is allowed to carry out the electrical installation.

National and local electrical safety regulations must always be followed.

The frame of the IED has to be carefully grounded.

When the plug-in unit has been detached from the case, do not touch the inside of the case. The IED case internals may contain high voltage potential and touching these may cause personal injury.

The IED contains components which are sensitive to electrostatic discharge. Unnecessary touching of electronic components must therefore be avoided.

Whenever changes are made in the IED, measures should be taken to avoid inadvertent tripping.
Table of contents

Section 1 Introduction
- This manual
- Intended audience
- Product documentation
 - Product documentation set
 - Document revision history
 - Related documentation
- Symbols and conventions
 - Symbols
 - Document conventions
 - Functions, codes and symbols

Section 2 IED engineering process
- Monitoring and control system structure
- Standard configuration concept
- Workflow

Section 3 PCM600 tool
- Connectivity packages
- PCM600 and IED connectivity package version
- PCM600 projects
- Communication between PCM600 and the IED

Section 4 Setting up a project
- Installing connectivity packages
- Activating connectivity packages
- Setting up communication between PCM600 and the IED
 - Setting up IP addresses
- Creating a new project
- Building the plant structure
- Inserting an IED
 - Inserting an IED in online mode
 - Inserting an IED in offline mode
 - Inserting an IED from the template directory
 - Inserting an IED by importing a .pcmi file
- Setting the IED IP address in a project
- Technical key
Table of contents

IEC 61850 naming conventions to identify an IED...............................44
Setting the technical key...46
COM600 project..49
Importing an IED in a COM600 project..49
Using the Web HMI..53
IED User Management..54

Section 5 Protection and control engineering..........................57
Application Configuration tool..57
 Function blocks..58
 Signals and signal management...59
 Function block execution parameters...60
 Execution order and feedback loops..61
 Configuration parameters...62
 Connections and variables...62
 Hardware channels..63
 Validation..64
 Validation when creating an application configuration...............64
 Validation on demand...65
 Validation when writing to the IED...66
Parameter Setting tool..66
 Configuration parameter...67
 Setting parameter...67
 Setting group..67
 IED parameter import and export..67
 IED parameter organization..68
Signal Matrix tool..68
Load Profile tool...71
 Opening and closing Load Profile tool...............................71
 Load Profile tool user interface...74
 Information fields..75
Fault Record tool...75
 Opening and closing Fault Record tool..................................75
 Fault Record tool interface..77

Section 6 LHMI engineering...79
Single-line diagram engineering...79
 Diagrams in Graphical Display Editor.......................................79
 Display window and sequence order.....................................80
 Symbol library...81
 Supported single-line diagram symbols.................................81
Section 7 IEC 61850 communication engineering.................95
IEC 61850 protocol references and pre-conditions.......................95
IEC 61850 interface...95
 IEC 61850 interface in the IED...96
 GOOSE data exchange...96
Function view for IEC 61850 in PCM600..................................97
Station configuration description file types.................................98
IEC 61850 engineering process..98
 Exporting SCL files from PCM600......................................99
 Exporting SCD files..99
 Exporting ICD or CID files..100
Engineering vertical and horizontal communication........................101
 Importing SCL files to PCM600..102
 Importing SCD files..103
 Importing ICD or CID files...105
Writing communication configuration to the IED..............................105

Section 8 Glossary..107
Section 1 Introduction

1.1 This manual

The engineering manual contains instructions on how to engineer the IEDs using the different tools in PCM600. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 61850 and other supported protocols.

1.2 Intended audience

This manual addresses system and project engineers involved in the engineering process of a project, and installation and commissioning personnel, who use technical data during engineering, installation and commissioning, and in normal service.

The system engineer must have a thorough knowledge of protection and/or control systems, protection and/or control equipment, protection and/or control functions and the configured functional logics in the IEDs. The installation and commissioning personnel must have a basic knowledge of handling electronic equipment.

1.3 Product documentation

1.3.1 Product documentation set

The application manual contains application descriptions and setting guidelines sorted per function. The manual can be used to find out when and for what purpose a typical protection function can be used. The manual can also be used when calculating settings.

The communication protocol manual describes a communication protocol supported by the IED. The manual concentrates on vendor-specific implementations.

The engineering guide provides information for IEC 61850 engineering of the protection IEDs with PCM600 and IET600. This guide concentrates especially on the configuration of GOOSE communication with these tools. The guide can be used as a technical reference during the engineering phase, installation and commissioning.
phase, and during normal service. For more details on tool usage, see the PCM600 documentation.

The engineering manual contains instructions on how to engineer the IEDs using the different tools in PCM600. The manual provides instructions on how to set up a PCM600 project and insert IEDs to the project structure. The manual also recommends a sequence for engineering of protection and control functions, LHMI functions as well as communication engineering for IEC 61850 and other supported protocols.

The installation manual contains instructions on how to install the IED. The manual provides procedures for mechanical and electrical installation. The chapters are organized in chronological order in which the IED should be installed.

The operation manual contains instructions on how to operate the IED once it has been commissioned. The manual provides instructions for monitoring, controlling and setting the IED. The manual also describes how to identify disturbances and how to view calculated and measured power grid data to determine the cause of a fault.

The point list manual describes the outlook and properties of the data points specific to the IED. The manual should be used in conjunction with the corresponding communication protocol manual.

The technical manual contains application and functionality descriptions and lists function blocks, logic diagrams, input and output signals, setting parameters and technical data sorted per function. The manual can be used as a technical reference during the engineering phase, installation and commissioning phase, and during normal service.

1.3.2 Document revision history

<table>
<thead>
<tr>
<th>Document revision/date</th>
<th>Product series version</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/2012-10-31</td>
<td>2.0</td>
<td>First release</td>
</tr>
</tbody>
</table>

1.3.3 Related documentation

1.4 Symbols and conventions

1.4.1 Symbols

The caution icon indicates important information or warning related to the concept discussed in the text. It might indicate the presence of a hazard which could result in corruption of software or damage to equipment or property.

The information icon alerts the reader of important facts and conditions.

The tip icon indicates advice on, for example, how to design your project or how to use a certain function.

Although warning hazards are related to personal injury, it is necessary to understand that under certain operational conditions, operation of damaged equipment may result in degraded process performance leading to personal injury or death. Therefore, comply fully with all warning and caution notices.

1.4.2 Document conventions

A particular convention may not be used in this manual.

- Abbreviations and acronyms in this manual are spelled out in the glossary. The glossary also contains definitions of important terms.
- Push-button navigation in the LHMI menu structure is presented by using the push-button icons.
 To navigate between the options, use ↑ and ↓.
- HMI menu paths are presented in bold. Select Main menu/Settings.
- WHMI menu names are presented in bold. Click Information in the WHMI menu structure.
- LHMI messages are shown in Courier font.
 To save the changes in non-volatile memory, select Yes and press ↵.
- Parameter names are shown in italics.
 The function can be enabled and disabled with the Operation setting.
- Parameter values are indicated with quotation marks.
 The corresponding parameter values are "Enabled" and "Disabled".
- IED input/output messages and monitored data names are shown in Courier font.
When the function picks up, the **PICKUP** output is set to TRUE.

- Dimensions are provided both in inches and mm. If it is not specifically mentioned, the dimension is in mm.

1.4.3 Functions, codes and symbols

All available functions are listed in the table. All of them may not be applicable to all products.

Table 1: Functions included in 620 series ANSI IEDs

<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60617</th>
<th>ANSI/C37.2 - 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, low stage, instance 1</td>
<td>PHLPTOC1</td>
<td>3I> (1)</td>
<td>51P</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, low stage, instance 2</td>
<td>PHLPTOC2</td>
<td>3I> (2)</td>
<td>51P (2)</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, low stage, instance 3</td>
<td>PHLPTOC3</td>
<td>3I> (3)</td>
<td>51P (3)</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 1</td>
<td>PHHPTOC1</td>
<td>3I>> (1)</td>
<td>50P-1</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 2</td>
<td>PHHPTOC2</td>
<td>3I>> (2)</td>
<td>50P-2</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 3</td>
<td>PHHPTOC3</td>
<td>3I>> (3)</td>
<td>50P-1 (2)</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 4</td>
<td>PHHPTOC4</td>
<td>3I>> (4)</td>
<td>50P-2 (2)</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 5</td>
<td>PHHPTOC5</td>
<td>3I>> (5)</td>
<td>50P-1 (3)</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, high stage, instance 6</td>
<td>PHHPTOC6</td>
<td>3I>> (6)</td>
<td>50P-2 (3)</td>
</tr>
<tr>
<td>Three-phase non-directional overcurrent protection, instantaneous stage, instance 1</td>
<td>PHIPTOC1</td>
<td>3I>>> (1)</td>
<td>50P-3</td>
</tr>
<tr>
<td>Three-phase non-directional long time overcurrent protection, lower stage, instance 1</td>
<td>PHLPTOC1</td>
<td>3I> (3)</td>
<td>51LT</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, low stage, instance 1</td>
<td>DPHLPCOC1</td>
<td>3I> - > (1)</td>
<td>67/51P</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, low stage, instance 2</td>
<td>DPHLPCOC2</td>
<td>3I> - > (2)</td>
<td>67/51P(2)</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, high stage, instance 1</td>
<td>DPHHPCOC1</td>
<td>3I>> - > (1)</td>
<td>67/50P-1</td>
</tr>
<tr>
<td>Three-phase directional overcurrent protection, high stage, instance 2</td>
<td>DPHHPCOC2</td>
<td>3I>> - > (2)</td>
<td>67/50P-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 1</td>
<td>EFLPTOC1</td>
<td>Io> (1)</td>
<td>51G</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 2</td>
<td>EFLPTOC2</td>
<td>Io> (2)</td>
<td>51N-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 3</td>
<td>EFLPTOC3</td>
<td>Io> (3)</td>
<td>51N (2)</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, low stage, instance 4</td>
<td>EFLPTOC4</td>
<td>Io> (4)</td>
<td>50SEF</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 1</td>
<td>EFHPTOC1</td>
<td>Io>> (1)</td>
<td>50G-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 2</td>
<td>EFHPTOC2</td>
<td>Io>> (2)</td>
<td>50G-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 3</td>
<td>EFHPTOC3</td>
<td>Io>> (3)</td>
<td>50N-1</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 4</td>
<td>EFHPTOC4</td>
<td>Io>> (4)</td>
<td>50N-2</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, high stage, instance 5</td>
<td>EFHPTOC5</td>
<td>Io>> (5)</td>
<td>50N-1 (3)</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, instantaneous stage, instance 1</td>
<td>EFIPTOC1</td>
<td>Io>>>(1)</td>
<td>50G-3</td>
</tr>
<tr>
<td>Non-directional earth-fault protection, instantaneous stage, instance 2</td>
<td>EFIPTOC2</td>
<td>Io>>>(2)</td>
<td>50N-3</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI/C37.2 - 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directional earth-fault protection, low stage, instance 1</td>
<td>DEFLPDEF1</td>
<td>Io> -> (1)</td>
<td>67/51N</td>
</tr>
<tr>
<td>Directional earth-fault protection, low stage, instance 2</td>
<td>DEFLPDEF2</td>
<td>Io> -> (2)</td>
<td>67/51N</td>
</tr>
<tr>
<td>Directional earth-fault protection, high stage, instance 1</td>
<td>DEFHPEF1</td>
<td>Io>> -> (1)</td>
<td>67/50N-1</td>
</tr>
<tr>
<td>Directional earth-fault protection, high stage, instance 2</td>
<td>DEFHPEF2</td>
<td>Io>> -> (2)</td>
<td>67/50N-2</td>
</tr>
<tr>
<td>Three phase directional power protection, instance 1</td>
<td>DPSRDI1</td>
<td>I1> -> (1)</td>
<td>32P-1</td>
</tr>
<tr>
<td>Three phase directional power protection, instance 2</td>
<td>DPSRDI2</td>
<td>I1> -> (2)</td>
<td>32P-2</td>
</tr>
<tr>
<td>Ground directional power protection, instance 1</td>
<td>DNZSRDI1</td>
<td>I2 ->, Io-> (1)</td>
<td>32N-1</td>
</tr>
<tr>
<td>Ground directional power protection, instance 2</td>
<td>DNZSRDI2</td>
<td>I2 ->, Io-> (2)</td>
<td>32N-2</td>
</tr>
<tr>
<td>Phase distance protection, instance 1</td>
<td>PHDSTPD1</td>
<td>Zc</td>
<td>21P</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection, instance 1</td>
<td>NSPTOC1</td>
<td>I2> (1)</td>
<td>46-1</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection, instance 2</td>
<td>NSPTOC2</td>
<td>I2> (2)</td>
<td>46-2</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection, instance 3</td>
<td>NSPTOC3</td>
<td>I2> (3)</td>
<td>46-3</td>
</tr>
<tr>
<td>Three-phase undervoltage protection, instance 1</td>
<td>PHPTUV1</td>
<td>3U< (1)</td>
<td>27-1</td>
</tr>
<tr>
<td>Three-phase undervoltage protection, instance 2</td>
<td>PHPTUV2</td>
<td>3U< (2)</td>
<td>27-1</td>
</tr>
<tr>
<td>Three-phase undervoltage protection, instance 3</td>
<td>PHPTUV3</td>
<td>3U< (3)</td>
<td>27-1</td>
</tr>
<tr>
<td>Three-phase undervoltage protection, instance 4</td>
<td>PHPTUV4</td>
<td>3U< (4)</td>
<td>27-1</td>
</tr>
<tr>
<td>Three-phase overvoltage protection, instance 1</td>
<td>PHPTO1</td>
<td>Uo> (1)</td>
<td>59G</td>
</tr>
<tr>
<td>Three-phase overvoltage protection, instance 2</td>
<td>PHPTO2</td>
<td>Uo> (2)</td>
<td>59N</td>
</tr>
<tr>
<td>Three-phase overvoltage protection, instance 3</td>
<td>PHPTO3</td>
<td>Uo> (3)</td>
<td>59N</td>
</tr>
<tr>
<td>Three-phase overvoltage protection, instance 4</td>
<td>PHPTO4</td>
<td>Uo> (4)</td>
<td>59N</td>
</tr>
<tr>
<td>Positive-sequence undervoltage protection, instance 1</td>
<td>PSPTUV1</td>
<td>U1< (1)</td>
<td>27PS</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection, instance 1</td>
<td>NSPTOV1</td>
<td>U2> (1)</td>
<td>47-1</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection, instance 2</td>
<td>NSPTOV2</td>
<td>U2> (2)</td>
<td>47-2</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection, instance 3</td>
<td>NSPTOV3</td>
<td>U2> (3)</td>
<td>47-1</td>
</tr>
<tr>
<td>Negative-sequence overvoltage protection, instance 4</td>
<td>NSPTOV4</td>
<td>U2> (4)</td>
<td>47-2</td>
</tr>
<tr>
<td>Frequency protection, instance 1</td>
<td>FRFPR1</td>
<td>f>/f<,df/dt (1)</td>
<td>81-1</td>
</tr>
<tr>
<td>Frequency protection, instance 2</td>
<td>FRFPR2</td>
<td>f>/f<,df/dt (2)</td>
<td>81-2</td>
</tr>
<tr>
<td>Frequency protection, instance 3</td>
<td>FRFPR3</td>
<td>f>/f<,df/dt (3)</td>
<td>81-1</td>
</tr>
<tr>
<td>Frequency protection, instance 4</td>
<td>FRFPR4</td>
<td>f>/f<,df/dt (4)</td>
<td>81-2</td>
</tr>
<tr>
<td>Voltage per hertz protection, instance 1</td>
<td>OEPVPH1</td>
<td>Uf> (1)</td>
<td>24</td>
</tr>
<tr>
<td>Voltage per hertz protection, instance 2</td>
<td>OEPVPH2</td>
<td>Uf> (2)</td>
<td>24</td>
</tr>
<tr>
<td>Voltage per hertz protection, instance 3</td>
<td>OEPVPH3</td>
<td>Uf> (3)</td>
<td>24</td>
</tr>
<tr>
<td>Voltage per hertz protection, instance 4</td>
<td>OEPVPH4</td>
<td>Uf> (4)</td>
<td>24</td>
</tr>
<tr>
<td>Three-phase thermal protection for feeders, cables and distribution</td>
<td>T1PTTR1</td>
<td>3th>F</td>
<td>49F</td>
</tr>
<tr>
<td>Three-phase thermal overload protection for power transformers, two</td>
<td>T2PTTR1</td>
<td>3th>T</td>
<td>49T</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection for motors, instance 1</td>
<td>MNSTOC1</td>
<td>I2>M (1)</td>
<td>46M-1</td>
</tr>
<tr>
<td>Negative-sequence overcurrent protection for motors, instance 2</td>
<td>MNSTOC2</td>
<td>I2>M (2)</td>
<td>46M-2</td>
</tr>
<tr>
<td>Loss of phase, instance 1</td>
<td>PHPTUC1</td>
<td>3lc (1)</td>
<td>37-1</td>
</tr>
<tr>
<td>Loss of phase, instance 2</td>
<td>PHPTUC2</td>
<td>3lc (2)</td>
<td>37-2</td>
</tr>
<tr>
<td>Loss of phase, instance 3</td>
<td>PHPTUC3</td>
<td>3lc (3)</td>
<td>37-3</td>
</tr>
<tr>
<td>Loss of load supervision, instance 1</td>
<td>LOFLPTUC1</td>
<td>3lc (1)</td>
<td>37M-1</td>
</tr>
<tr>
<td>Loss of load supervision, instance 2</td>
<td>LOFLPTUC2</td>
<td>3lc (2)</td>
<td>37M-2</td>
</tr>
<tr>
<td>Function</td>
<td>IEC 61850</td>
<td>IEC 80617</td>
<td>ANSI/C37.2 - 2008</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>REF620</td>
<td>REM620</td>
<td>RET620</td>
</tr>
<tr>
<td>Phase current sets summing function</td>
<td>CMSUM1</td>
<td>CSUM</td>
<td>CSUM</td>
</tr>
<tr>
<td>Three phase measurement switching</td>
<td>VMSWI1</td>
<td>VSWI</td>
<td>VSWI</td>
</tr>
<tr>
<td>Motor load jam protection</td>
<td>JAMPTOC1</td>
<td>I></td>
<td>51LR</td>
</tr>
<tr>
<td>Motor start-up supervision</td>
<td>STTPMSU1</td>
<td>I<2 n<</td>
<td>66/51LRS</td>
</tr>
<tr>
<td>Phase reversal protection</td>
<td>PREVPTOC1</td>
<td>I></td>
<td>46R</td>
</tr>
<tr>
<td>Thermal overload protection for motors</td>
<td>MPTTR1</td>
<td>I>M</td>
<td>49M</td>
</tr>
<tr>
<td>Motor differential protection</td>
<td>MPDIF1</td>
<td>I>M</td>
<td>87M</td>
</tr>
<tr>
<td>Stabilized and instantaneous differential protection for 3W – Transformers</td>
<td>TR3PDTF1</td>
<td>I>M</td>
<td>87T</td>
</tr>
<tr>
<td>Numerical stabilized low impedance restricted earth-fault protection</td>
<td>LREFPNDF1</td>
<td>dIoLo></td>
<td>87LOZREF</td>
</tr>
<tr>
<td>Circuit breaker failure protection, instance 1</td>
<td>CCBRBF1</td>
<td>3I>I>BF</td>
<td>50BF-1</td>
</tr>
<tr>
<td>Circuit breaker failure protection, instance 2</td>
<td>CCBRBF2</td>
<td>3I>I>BF</td>
<td>50BF-2</td>
</tr>
<tr>
<td>Circuit breaker failure protection, instance 3</td>
<td>CCBRBF3</td>
<td>3I>I>BF</td>
<td>50BF-3</td>
</tr>
<tr>
<td>Three-phase inrush detector, instance 1</td>
<td>INRPHAR1</td>
<td>I>2</td>
<td>INR</td>
</tr>
<tr>
<td>Master trip, instance 1</td>
<td>TRPPTRC1</td>
<td>Master Trip (1)</td>
<td>86/94-1</td>
</tr>
<tr>
<td>Master trip, instance 2</td>
<td>TRPPTRC2</td>
<td>Master Trip (2)</td>
<td>86/94-2</td>
</tr>
<tr>
<td>Master trip, instance 3</td>
<td>TRPPTRC3</td>
<td>Master Trip (3)</td>
<td>86/94-3</td>
</tr>
<tr>
<td>Arc protection, instance 1</td>
<td>ARCSARC1</td>
<td>ARC (1)</td>
<td>AFD-1</td>
</tr>
<tr>
<td>Arc protection, instance 2</td>
<td>ARCSARC2</td>
<td>ARC (2)</td>
<td>AFD-2</td>
</tr>
<tr>
<td>Arc protection, instance 3</td>
<td>ARCSARC3</td>
<td>ARC (3)</td>
<td>AFD-3</td>
</tr>
<tr>
<td>High impedance fault detection</td>
<td>PHIZ1</td>
<td>PHIZ1</td>
<td>HIZ</td>
</tr>
<tr>
<td>Cable fault detection</td>
<td>RCFD1</td>
<td>CFD</td>
<td>CFD</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 1</td>
<td>LSHDPFRQ1</td>
<td>UFLS/R (1)</td>
<td>81LSH-1</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 2</td>
<td>LSHDPFRQ2</td>
<td>UFLS/R (2)</td>
<td>81LSH-2</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 3</td>
<td>LSHDPFRQ3</td>
<td>UFLS/R (3)</td>
<td>81LSH-3</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 4</td>
<td>LSHDPFRQ4</td>
<td>UFLS/R (4)</td>
<td>81LSH-4</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 5</td>
<td>LSHDPFRQ5</td>
<td>UFLS/R (5)</td>
<td>81LSH-5</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 6</td>
<td>LSHDPFRQ6</td>
<td>UFLS/R (6)</td>
<td>81LSH-6</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 7</td>
<td>LSHDPFRQ7</td>
<td>UFLS/R (7)</td>
<td>81LSH-7</td>
</tr>
<tr>
<td>Load shedding and restoration, instance 8</td>
<td>LSHDPFRQ8</td>
<td>UFLS/R (8)</td>
<td>81LSH-8</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 1</td>
<td>MAPGAPC1</td>
<td>Th> Th>(1)</td>
<td>38-1</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 2</td>
<td>MAPGAPC2</td>
<td>Th> Th>(2)</td>
<td>38-2</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 3</td>
<td>MAPGAPC3</td>
<td>Th> Th>(3)</td>
<td>38-3</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 4</td>
<td>MAPGAPC4</td>
<td>Th> Th>(4)</td>
<td>38-4</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 5</td>
<td>MAPGAPC5</td>
<td>Th> Th>(5)</td>
<td>38-5</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 6</td>
<td>MAPGAPC6</td>
<td>Th> Th>(6)</td>
<td>38-6</td>
</tr>
<tr>
<td>RTD based thermal protection, instance 7</td>
<td>MAPGAPC7</td>
<td>Th> Th>(7)</td>
<td>38-7</td>
</tr>
</tbody>
</table>

Control

Circuit-breaker control, instance 1	CBXCBR1	I<> O CB (1)	52-1
Circuit-breaker control, instance 2	CBXCBR2	I<> O CB (2)	52-2
Circuit-breaker control, instance 3	CBXCBR3	I<> O CB (3)	52-3
Emergency startup	ESMGAPC1	ESTART	62EST
Auto-reclosing, instance 1	DARREC1	O -> I (1)	79-1
Auto-reclosing, instance 2	DARREC2	O -> I (2)	79-2

Condition monitoring

Table continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>IEC 61850</th>
<th>IEC 60817</th>
<th>ANSI/C37.2 - 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit-breaker condition monitoring, instance 1</td>
<td>SSCBR1</td>
<td>CBCM (1)</td>
<td>52CM-1 52CM 52CM (1)</td>
</tr>
<tr>
<td>Circuit-breaker condition monitoring, instance 2</td>
<td>SSCBR2</td>
<td>CBCM (2)</td>
<td>52CM-2 52CM (2)</td>
</tr>
<tr>
<td>Circuit-breaker condition monitoring, instance 3</td>
<td>SSCBR3</td>
<td>CBCM (3)</td>
<td>52CM (3)</td>
</tr>
<tr>
<td>Trip circuit supervision, instance 1</td>
<td>TCSSCBR1</td>
<td>TCS (1)</td>
<td>TCM-1 TCM-1 TCM-1</td>
</tr>
<tr>
<td>Trip circuit supervision, instance 2</td>
<td>TCSSCBR2</td>
<td>TCS (2)</td>
<td>TCM-2 TCM-2 TCM-2</td>
</tr>
<tr>
<td>Trip circuit supervision, instance 3</td>
<td>TCSSCBR3</td>
<td>TCS (3)</td>
<td>TCM-3</td>
</tr>
<tr>
<td>Current circuit supervision</td>
<td>CCRDIF1</td>
<td>MCS 3I</td>
<td>CCM CCM</td>
</tr>
<tr>
<td>Advanced current circuit supervision for transformers</td>
<td>CTSSDIF1</td>
<td>MCS 3I, I2</td>
<td>MCS 3I, I2</td>
</tr>
<tr>
<td>Fuse failure supervision, instance 1</td>
<td>SEQRFUF1</td>
<td>FUSEF (1)</td>
<td>60-1 60 60 (1)</td>
</tr>
<tr>
<td>Fuse failure supervision, instance 2</td>
<td>SEQRFUF2</td>
<td>FUSEF (2)</td>
<td>60-2 60 (2)</td>
</tr>
<tr>
<td>Runtime counter for machines and devices, instance 1</td>
<td>MDSOPT1</td>
<td>OPTS (1)</td>
<td>OPTM-1</td>
</tr>
<tr>
<td>Runtime counter for machines and devices, instance 2</td>
<td>MDSOPT2</td>
<td>OPTS (2)</td>
<td>OPTM-2</td>
</tr>
<tr>
<td>Measurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase current measurement, instance 1</td>
<td>CMMXU1</td>
<td>3I</td>
<td>IA, IB, IC IA, IB, IC (1)</td>
</tr>
<tr>
<td>Three-phase current measurement, instance 2</td>
<td>CMMXU2</td>
<td>3I(B)</td>
<td>IA, IB, IC (2) IA, IB, IC (2)</td>
</tr>
<tr>
<td>Three-phase current measurement, instance 3</td>
<td>CMMXU3</td>
<td>3I(C)</td>
<td>IA, IB, IC (3)</td>
</tr>
<tr>
<td>Sequence current measurement, instance 1</td>
<td>CSMSQI1</td>
<td>I1, I2, I0</td>
<td>I1, I2, I0 (1)</td>
</tr>
<tr>
<td>Sequence current measurement, instance 2</td>
<td>CSMSQI2</td>
<td>I1, I2, I0 (B)</td>
<td>I1, I2, I0 (2)</td>
</tr>
<tr>
<td>Sequence current measurement, instance 3</td>
<td>CSMSQI3</td>
<td>I1, I2, I0 (C)</td>
<td>I1, I2, I0 (3)</td>
</tr>
<tr>
<td>Residual current measurement, instance 1</td>
<td>RESCMUX1</td>
<td>Io</td>
<td>IO IO IO</td>
</tr>
<tr>
<td>Residual current measurement, instance 2</td>
<td>RESCMUX2</td>
<td>Uo</td>
<td>Uo</td>
</tr>
<tr>
<td>Residual current measurement, instance 3</td>
<td>RESCMUX3</td>
<td>Uo(B)</td>
<td>VG</td>
</tr>
<tr>
<td>Residual voltage measurement, instance 1</td>
<td>RESVMMXU1</td>
<td>Uo</td>
<td>VG VG VG</td>
</tr>
<tr>
<td>Residual voltage measurement, instance 2</td>
<td>RESVMMXU2</td>
<td>Uo(B)</td>
<td>Uo</td>
</tr>
<tr>
<td>Sequence voltage measurement, instance 1</td>
<td>VSMQI1</td>
<td>U1, U2, U0</td>
<td>V1, V2, V0 V1, V2, V0 (1)</td>
</tr>
<tr>
<td>Sequence voltage measurement, instance 2</td>
<td>VSMQI2</td>
<td>U1, U2, U0 (B)</td>
<td>V1, V2, V0 (2) V1, V2, V0 (2)</td>
</tr>
<tr>
<td>Three-phase power and energy measurement, instance 1</td>
<td>PEMMIXU1</td>
<td>P, E</td>
<td>P, E P, E (1)</td>
</tr>
<tr>
<td>Three-phase power and energy measurement, instance 2</td>
<td>PEMMIXU2</td>
<td>P, E (B)</td>
<td>P, E (2)</td>
</tr>
<tr>
<td>Current total demand distortion, instance 1</td>
<td>CMHAI1</td>
<td>PQM3I(1)</td>
<td>PQM3I(1)</td>
</tr>
<tr>
<td>Voltage total harmonic distortion, instance 1</td>
<td>VMHAI1</td>
<td>PQM3U(1)</td>
<td>PQVPH-1</td>
</tr>
<tr>
<td>Voltage total harmonic distortion, instance 2</td>
<td>VMHAIS</td>
<td>PQM3U(2)</td>
<td>PQVPH-2</td>
</tr>
<tr>
<td>Voltage variation, instance 1</td>
<td>PHQVVR1</td>
<td>PQ 3U<>(1)</td>
<td>PQSS-1</td>
</tr>
<tr>
<td>Voltage unbalance, instance 1</td>
<td>VSOUB1</td>
<td>PQMUBU(1)</td>
<td>PQVUB-1</td>
</tr>
<tr>
<td>Voltage unbalance, instance 2</td>
<td>VSOUB2</td>
<td>PQMUBU(2)</td>
<td>PQVUB-2</td>
</tr>
<tr>
<td>Load profile, instance 1</td>
<td>LDLMSTA1</td>
<td>LoadProf</td>
<td>LoadProf LoadProf</td>
</tr>
<tr>
<td>Frequency measurement, instance 1</td>
<td>FMMXU1</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Frequency measurement, instance 2</td>
<td>FMMXU2</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Single-phase power and energy measurement, instance 1</td>
<td>SPEMMIXU1</td>
<td>SP, SE</td>
<td>SP, SE SP, SE SP, SE (1)</td>
</tr>
<tr>
<td>Single-phase power and energy measurement, instance 2</td>
<td>SPEMMIXU2</td>
<td>SP, SE(B)</td>
<td>SP, SE (2)</td>
</tr>
<tr>
<td>Tap changer position indication</td>
<td>TPSMTC1</td>
<td>TPSM</td>
<td>TPSM 84T</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 1</td>
<td>TPGAPC1</td>
<td>TP (1)</td>
<td>TP-1 TP-1 TP-1</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 2</td>
<td>TPGAPC2</td>
<td>TP (2)</td>
<td>TP-2 TP-2 TP-2</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 3</td>
<td>TPGAPC3</td>
<td>TP (3)</td>
<td>TP-3 TP-3 TP-3</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs), instance 4</td>
<td>TPGAPC4</td>
<td>TP (4)</td>
<td>TP-4 TP-4 TP-4</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs, second resolution), instance 1</td>
<td>TPSGAPC1</td>
<td>TPS (1)</td>
<td>62CLD-1</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs, second resolution), instance 2</td>
<td>TPSGAPC2</td>
<td>TPS (2)</td>
<td>62CLD-3</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs, minute resolution), instance 1</td>
<td>TPSMGAPC1</td>
<td>TPSM (1)</td>
<td>62CLD-2</td>
</tr>
<tr>
<td>Function</td>
<td>IEC 61850</td>
<td>IEC 60617</td>
<td>ANSI/C37.2 - 2008</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Minimum pulse timer (2 pcs, minute resolution), instance 2</td>
<td>TPMGAPC2</td>
<td>TPM (2)</td>
<td>62CLD-4</td>
</tr>
<tr>
<td>Pulse timer (8 pcs), instance 1</td>
<td>PTGAPC1</td>
<td>PT (1)</td>
<td>PT-1</td>
</tr>
<tr>
<td>Pulse timer (8 pcs), instance 2</td>
<td>PTGAPC2</td>
<td>PT (2)</td>
<td>PT-2</td>
</tr>
<tr>
<td>Time delay off (8 pcs), instance 1</td>
<td>TOFGAPC1</td>
<td>TOF (1)</td>
<td>TOF-1</td>
</tr>
<tr>
<td>Time delay off (8 pcs), instance 2</td>
<td>TOFGAPC2</td>
<td>TOF (2)</td>
<td>TOF-2</td>
</tr>
<tr>
<td>Time delay off (8 pcs), instance 3</td>
<td>TOFGAPC3</td>
<td>TOF (3)</td>
<td>TOF-3</td>
</tr>
<tr>
<td>Time delay off (8 pcs), instance 4</td>
<td>TOFGAPC4</td>
<td>TOF (4)</td>
<td>TOF-4</td>
</tr>
<tr>
<td>Time delay on (8 pcs), instance 1</td>
<td>TONGAPC1</td>
<td>TON (1)</td>
<td>TON-1</td>
</tr>
<tr>
<td>Time delay on (8 pcs), instance 2</td>
<td>TONGAPC2</td>
<td>TON (2)</td>
<td>TON-2</td>
</tr>
<tr>
<td>Time delay on (8 pcs), instance 3</td>
<td>TONGAPC3</td>
<td>TON (3)</td>
<td>TON-3</td>
</tr>
<tr>
<td>Time delay on (8 pcs), instance 4</td>
<td>TONGAPC4</td>
<td>TON (4)</td>
<td>TON-4</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 1</td>
<td>SRGAPC1</td>
<td>SR (1)</td>
<td>SR-1</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 2</td>
<td>SRGAPC2</td>
<td>SR (2)</td>
<td>SR-2</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 3</td>
<td>SRGAPC3</td>
<td>SR (3)</td>
<td>SR-3</td>
</tr>
<tr>
<td>Set reset (8 pcs), instance 4</td>
<td>SRGAPC4</td>
<td>SR (4)</td>
<td>SR-4</td>
</tr>
<tr>
<td>Move (8 pcs), instance 1</td>
<td>MVGAPC1</td>
<td>MV (1)</td>
<td>MV-1</td>
</tr>
<tr>
<td>Move (8 pcs), instance 2</td>
<td>MVGAPC2</td>
<td>MV (2)</td>
<td>MV-2</td>
</tr>
<tr>
<td>Move (8 pcs), instance 3</td>
<td>MVGAPC3</td>
<td>MV (3)</td>
<td>MV-3</td>
</tr>
<tr>
<td>Move (8 pcs), instance 4</td>
<td>MVGAPC4</td>
<td>MV (4)</td>
<td>MV-4</td>
</tr>
<tr>
<td>Move (8 pcs), instance 5</td>
<td>MVGAPC5</td>
<td>MV (5)</td>
<td>MV-5</td>
</tr>
<tr>
<td>Move (8 pcs), instance 6</td>
<td>MVGAPC6</td>
<td>MV (6)</td>
<td>MV-6</td>
</tr>
<tr>
<td>Move (8 pcs), instance 7</td>
<td>MVGAPC7</td>
<td>MV (7)</td>
<td>MV-7</td>
</tr>
<tr>
<td>Move (8 pcs), instance 8</td>
<td>MVGAPC8</td>
<td>MV (8)</td>
<td>MV-8</td>
</tr>
<tr>
<td>Generic control points, instance 1</td>
<td>SPCGIO1</td>
<td>SPC(1)</td>
<td>CNTRL-1</td>
</tr>
<tr>
<td>Generic control points, instance 2</td>
<td>SPCGIO2</td>
<td>SPC(2)</td>
<td>CNTRL-2</td>
</tr>
<tr>
<td>Generic control points, instance 3</td>
<td>SPCGIO3</td>
<td>SPC(3)</td>
<td>CNTRL-3</td>
</tr>
<tr>
<td>Remote Generic control points, instance 1</td>
<td>SPCRGIIO1</td>
<td>SRCR(1)</td>
<td>RCNTRL-1</td>
</tr>
<tr>
<td>Local Generic control points, instance 1</td>
<td>SPCGLIO1</td>
<td>SPC(1)</td>
<td>LCNTRL-1</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 1</td>
<td>UDFCNT1</td>
<td>CTR(1)</td>
<td>CTR-1</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 2</td>
<td>UDFCNT2</td>
<td>CTR(2)</td>
<td>CTR-2</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 3</td>
<td>UDFCNT3</td>
<td>CTR(3)</td>
<td>CTR-3</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 4</td>
<td>UDFCNT4</td>
<td>CTR(4)</td>
<td>CTR-4</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 5</td>
<td>UDFCNT5</td>
<td>CTR(5)</td>
<td>CTR-5</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 6</td>
<td>UDFCNT6</td>
<td>CTR(6)</td>
<td>CTR-6</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 7</td>
<td>UDFCNT7</td>
<td>CTR(7)</td>
<td>CTR-7</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 8</td>
<td>UDFCNT8</td>
<td>CTR(8)</td>
<td>CTR-8</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 9</td>
<td>UDFCNT9</td>
<td>CTR(9)</td>
<td>CTR-9</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 10</td>
<td>UDFCNT10</td>
<td>CTR(10)</td>
<td>CTR-10</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 11</td>
<td>UDFCNT11</td>
<td>CTR(11)</td>
<td>CTR-11</td>
</tr>
<tr>
<td>Generic Up-Down Counters, instance 12</td>
<td>UDFCNT12</td>
<td>CTR(12)</td>
<td>CTR-12</td>
</tr>
<tr>
<td>Programmable buttons (16 buttons), instance 1</td>
<td>FKEYGGIO1</td>
<td>FKEY</td>
<td>FKEY</td>
</tr>
</tbody>
</table>

Logging functions

<table>
<thead>
<tr>
<th>Disturbance recorder</th>
<th>RDRE1</th>
<th>DR</th>
<th>DFR</th>
<th>DFR</th>
<th>DFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault recorder</td>
<td>FLTMSTA</td>
<td>FR</td>
<td>FR</td>
<td>FR</td>
<td>FR</td>
</tr>
<tr>
<td>Sequence event recorder</td>
<td>SER</td>
<td>SER</td>
<td>SER</td>
<td>SER</td>
<td>SER</td>
</tr>
<tr>
<td>Fault location</td>
<td>DRFLO</td>
<td>DRFLO</td>
<td>FLO</td>
<td>FLO</td>
<td>FLO</td>
</tr>
</tbody>
</table>

Section 1

Introduction

| 620 series ANSI Engineering Manual | 1MAC452307-IB A |
Section 2 IED engineering process

PCM600 is used for various tasks in the IED engineering process.

- **IED engineering management**
 - Organizing the bay IEDs in the structure of the substation by defining voltage levels and bays below the substation. PCM600 manages the project.
 - Configuring the IED functions (for example, protection and control functions) by using the Application Configuration tool.
 - Configuring the parameters and setting values for the IED itself and for the process functions by using the Parameter Setting tool.
 - Drawing single-line diagrams and making links to dynamic process values by using the Graphical Display Editor. The single-line diagrams are displayed in LHMI on the bay IED.
 - Configuring connections between the application configuration function blocks and physical hardware input and outputs by using the Signal Matrix tool.

- **Communication management**
 - IEC 61850 station communication engineering is done with a separate tool, for example, CCT600 or IET600. PCM600 interacts with CCT600 or IET600 by importing and exporting SCL files.
 - Configuring the GOOSE receive data connections to the IED's application configuration function blocks by using the Application Configuration tool and the Signal Matrix tool.
 - Configuring protocol data mapping for Modbus or DNP3 with the Communication Management tool.

- **Disturbance record management**
 - Generating overviews on the available (digital fault) recordings in all connected protection IEDs by using the Disturbance Handling tool.
 - Manually reading the recording files (in the COMTRADE format) from the protection IEDs by using the Disturbance Handling tool or automatically by using the PCM600 Scheduler.
 - Managing recording files with the Disturbance Handling tool.
 - Creating recording file content overview reports for fast evaluation with assistance of the Disturbance Handling tool.

- **Service management**
• Monitoring the selected signals of an IED for commissioning or service purposes by using the Signal Monitoring tool.

Figure 1: Organization of PCM600 in different management tasks

There are also additional functions for managing projects and organizing user rights.

- PCM600 user management
 - Organizing users regarding their rights, profiles and passwords to use different tools and functions in the tools.
 - Defining allowed activities for user profiles to use tools in PCM600.

Once the engineering of the IED is finished, the results must be written to the IED. The connection between the physical IED and PCM600 is established via an Ethernet link on the front or rear port on the IED.
2.1 Monitoring and control system structure

The monitoring and control system for electrical substations contains a number of IEDs for various purposes.

See PCM600 documentation for the recommended size of a project. Larger projects can be divided into several PCM600 projects.

Figure 2: Principle structure of a monitoring and control system for a substation

The monitoring and control system can be divided into three main parts.

• Bay level IEDs
• Station communication
• Station level IEDs

All three parts require specific engineering and configuration.

The plant structure is used to identify each IED in its location within the substation organization. Plant structure is a logical image of the substation and the bays within the substation. The organization structure for the IEDs may differ from the structure of the primary equipment in the substation.

In PCM600 it is possible to set up a hierarchical structure of five levels for the IED identification.
2.2 Standard configuration concept

The product series covers IEDs developed for the protection of medium voltage applications. Every product has predefined application-specific software called standard configuration that contains protection, control, supervision and measurement function blocks and default logical connections; for more information, see the application manuals. The product also includes the standard configuration specific default single-line diagram.

The standard configuration software consists of connections between an application's functions developed according to the needs of a particular functional application. The inputs and outputs are similarly assigned to a default set of connections such as position indication and Master trip. The alarm LEDs are assigned to default connections based on the order number.

Current and voltage channels for protection and measurement functions are fixed as a part of standard configuration and cannot be reassigned with Signal Matrix or Application Configuration in PCM600.

The single-line diagram consists of an application-specific general arrangement of a single-line diagram that includes position indications and the selection of controllable objects and measurements.

The content of the standard configuration depends on the intended functional application. The standard configurations also have selectable software options, which are selected when ordering the IED. Some of the software options are related to the IED hardware.

The standard configurations can be used as is, but they can also be modified by using the PCM600. The standard configuration itself can be modified or extended by using the Application Configuration tool, the Signal Matrix tool and the communication configuration tools. The single-line diagram can also be modified with Graphical Display Editor.
All functions and application logic included in a standard configuration of the IED can be in use at the same time.

However, by removing unused function blocks from the configuration with the Application Configuration in PCM600, more resources in the IED become available for other purposes.

- More advanced user application logic with Application Configuration
- Extensive use of GOOSE sending and receiving
- Increasing the amount of data reported for IEC 61850 clients
2.3 Workflow

Start

Project

Create plant structure and insert IED objects

ACT SMT

Configure IED functionality

PST

Parametrization

GDE

Create single line diagram for local HMI

DNP 3.0 Modbus

IEC 61850

Export SCD

Import SCL files to CCT600 or IET600 and do signal engineering. Export updated SCL files from CCT600 or IET600.

Import SCD

Make GOOSE connections

SMT

Write configuration to IED

CCT600 or IET600

Signal engineering

Figure 3: IED engineering workflow proposal based on practical experience and dependencies of the steps

It is possible to make a different kind of a sequence based on the information available at the time when the project is started. This means that several iterations may be needed to complete the project.
Setting up a PCM600 project

- The plant structure is built according to the substation structure.

 See PCM600 documentation for the recommended size of a project. Larger projects can be divided into several PCM600 projects.

- In order to add an IED to a project, a suitable ConnPack is needed. IEDs can be added either while connected, disconnected or through other means such as an IED template.
- IED objects are uniquely named within the PCM600 project.

Application configuration in the Application Configuration tool

- Protection and control functions can be configured as needed.
- The configuration made in the Application Configuration tool is saved to make the interfaces and signals available for other engineering tools within PCM600, for example, for the Parameter Setting tool.

Parameter setting and configuration in the Parameter Setting tool

- Configuration parameters such as CT and VT conversion values of the transformer module are checked by the tool.
- If needed, the setting values are checked and adjusted with the Parameter Setting tool.

Single-line diagram configuration in the Graphical Display Editor

- It is possible to create a single-line diagram for the switching devices in the bay.
- Measurements can be included when needed.
- The dynamic elements are linked to the functions created in the Application Configuration tool; for example, a breaker object is linked to the circuit breaker control function.

LHMI engineering

- The LED behavior is defined with Parameter Setting.
- The LEDs are configured with Application Configuration.

Communication protocol engineering
- The communication engineering details are protocol dependent.
- The connectivity package creates the IEC 61850 configuration for vertical communication automatically and it is directly suitable, in most cases, for IEC 61850 client configuration. A station configuration tool, for example CCT600 or IET600, is used for horizontal communication.
- The Communication Management tool is used for communication protocols; for example, Modbus and DNP3.

The IED restarts automatically when writing an IED configuration where changes have been made. It is not possible to communicate with the IED during restart.
Protection and Control IED Manager PCM600 offers all the necessary functionality to work throughout all stages of the IED life cycle.

- Planning
- Engineering
- Commissioning
- Operation and disturbance handling
- Functional analysis

With the individual tool components, you can perform different tasks and functions and control the whole substation. PCM600 can operate with many different topologies, depending on the customer needs.

PCM600 is used to conduct complete engineering and configuration activities needed for the bay level IEDs.

Connectivity Packages are separate software packages that provide type and version information to PCM600. Further Connectivity Packages assist the tool with communications.

PCM600 uses IEC 61850 over Ethernet to communicate with bay IEDs. This communication allows PCM600 to configure and monitor the IEDs. In addition to IEC 61850 the IEDs have optional communications protocols and hardware to connect to station engineering tools. PCM600 provides the ability to export the configuration of the IEDs or entire substation in a standard file format which allows for station engineering.

A PC with PCM600 can be connected to any 620 series IED within a station by using the Ethernet connection. The connection can also be used for service and maintenance purposes. In addition, the connection is used to handle digital fault records from the protection IEDs using the IEC 61850 file transfer.

The modern-day IEDs are designed using the concept of the IEC 61850 standard. This is primarily in regards to how functions within the IED are modelled and how the IED is represented in the substation. See the IEC 61850 parameter list for the list of logical nodes available in the IED and observe how they follow the structure and rules as defined in part 7 of the standard.

The engineering of the used communication protocols is a separate task and an addition to the engineering of protection and control functions.
PCM600 can be used for different purposes throughout the IED life cycle. A set of special tools is available for different applications.

The applications can be organized into groups.

- IED product engineering
- IED communication engineering per protocol
- IED system monitoring
- IED product diagnostic

Symbol standard and naming style can be set in PCM600 by selecting **Tools/Options/System Settings**. For further information regarding the system settings, see PCM600 online help.

![System Settings](image)

Figure 4: Symbol standard and naming options

The system settings must be set before a new PCM600 project is started. For more information, see PCM600 documentation.
3.1 Connectivity packages

A connectivity package is a software component that consists of executable code and data which enables system tools to communicate with an IED. Connectivity packages are used to create configuration structures in PCM600. The latest PCM600 and connectivity packages are backward compatible with older IED versions.

A connectivity package includes all of the data which is used to describe the IED. For example it contains a list of what parameters exist, which data format is used, the units, the setting range, the access rights and visibility of the parameter. In addition it contains code which allows software packages that consume the connectivity package to properly communicate with the IED. It also allows for localization of text even when its read from the IED in a standard format such as COMTRADE.

Update Manager is a tool that helps in defining the right connectivity package versions for different system products and tools. Update Manager is included with products that use connectivity packages.

3.2 PCM600 and IED connectivity package version

- Protection and Control IED Manager PCM600 Ver. 2.4 SP1 or later
- IED Connectivity Package REF620 ANSI Ver. 2.0 or later
- IED Connectivity Package REM620 ANSI Ver. 2.0 or later
- IED Connectivity Package RET620 ANSI Ver. 2.0 or later

Download connectivity packages from the ABB web site http://www.abb.com/substationautomation

3.3 PCM600 projects

A typical project in PCM600 contains a plant structure including one or several IED objects, where each IED object contains the engineering data created or modified using the different PCM600 tools.

Several projects can be created and managed by PCM600, but only one project can be active at a time.

With PCM600, it is possible to do various tasks.
• Open existing projects
• Import projects
• Create new projects
• Export projects
• Delete projects
• Rename projects
• Copy and paste projects

The extension of the exported project file is .pcmp. The files are only used for exporting and importing projects between PCM600s.

3.4 Communication between PCM600 and the IED

The communication between the IED and PCM600 is independent of the used communication protocol within the substation or to the NCC.

All communication is done over Ethernet using the IEC 61850 protocol.

Each IED has an Ethernet interface connector on the front and optionally on the rear side as well. The Ethernet connector can be used for communication with PCM600.

When an Ethernet-based station protocol is used, the same Ethernet port and IP address can be used for PCM600 communication.

Two basic variants have to be considered for the connection between PCM600 and the IED.

• Direct point-to-point link between PCM600 and the IED front port
• Indirect link via station LAN or from remote via network

1. If needed, the IP address for the IEDs is set.
2. A PC or workstation is set up for a direct link (point-to-point), or the PC or workstation is connected to the LAN/WAN network.
3. The IED IP addresses in the PCM600 project are configured for each IED to match the IP addresses of the physical IEDs.

For successful IED engineering and usage, check the workstation firewall TCP and UDP port configurations, especially for IEC 61850 and FTP. Other protocols are not used for engineering and/or they are optional.
<table>
<thead>
<tr>
<th>Protocol</th>
<th>TCP port</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Transfer Protocol (FTP)</td>
<td>20, 21</td>
</tr>
<tr>
<td>IEC 61850</td>
<td>102</td>
</tr>
<tr>
<td>Web Server HTTP</td>
<td>80</td>
</tr>
<tr>
<td>Simple Network Time Protocol (SNTP)</td>
<td>123</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>502</td>
</tr>
<tr>
<td>DNP TCP</td>
<td>20000</td>
</tr>
</tbody>
</table>
Section 4 Setting up a project

4.1 Installing connectivity packages

1. Close PCM600.
2. Run the ABB IED Connectivity Package RE_6xx Ver. n.msi installer. (n = version number)
3. To install the connectivity package, follow the steps in the connectivity package installation wizard.

4.2 Activating connectivity packages

The IED connectivity package has to be installed before activating the connectivity packages.

1. Activate the appropriate connectivity package in the Update Manager after the installation.

Figure 5: Help menu – Update Manager
The **Update Manager** shows the IEDs that are compatible with the installed PCM600 version.

2. **Select IED Connectivity Package RE_620 ANSI Ver. n (n = version number) to use 620 series products.**
 Always use the latest version of the connectivity package.

![Figure 6: Activating the connectivity package](image)

PCM600 recognizes the installed connectivity package(s) during startup and the corresponding IED types are available in PCM600 when starting a new project.

4.3 Setting up communication between PCM600 and the IED

4.3.1 Setting up IP addresses

The IP address and the corresponding subnet mask can be set via LHMI for the rear Ethernet interface in the IED. Each Ethernet interface has a default factory IP address when the complete IED is delivered. The default factory IP address is not given when an additional Ethernet interface is installed or when an interface is replaced.
The IED front port IP address is fixed to 192.168.0.254 and it cannot be modified.

1. Set the IP address for the IED rear port and the corresponding subnet mask via the LHMI path: Configuration/Communication/Ethernet/Rear port.

<table>
<thead>
<tr>
<th>Default IP address for the IED rear port</th>
<th>Corresponding subnet mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.2.10</td>
<td>255.255.0.0</td>
</tr>
</tbody>
</table>

Communication fails if the IP addresses of the front and the rear port belong to the same subnet.

4.4 Creating a new project

1. Start PCM600.
2. To see the projects that are currently available in the PCM databases, select File/Open/Manage Project on the menu bar. The Open/Manage Project window is displayed.
3. Click Projects on my computer.
4. Click New Project.
5. If there are currently projects or object tools open, a confirmation dialog box opens.
 - Click Yes to close the open projects. A Create New Project dialog box opens.

Figure 7: New Project dialog box
Section 4
Setting up a project

4.5 Building the plant structure

Building a plant structure is useful when a complete grid with an essential number of IEDs has to be built.

1. Create a new plant structure.

Figure 8: Creating a new project

6. In the Project Name box, give a name for the project.

The project name must be unique.

7. Optionally, write a description of the project in the Description box.
8. Click Create.

PCM600 sets up a new project that is listed under Projects on my computer.
Section 4
Setting up a project

4.6 Inserting an IED

The context menu or the Object Types view shows the available IEDs that can be inserted, on the bay level, into the plant structure according to the installed connectivity package.

It is possible to do various tasks in the plant structure.

- Insert an IED to offline mode or online mode
- Import a template IED that is available in the template library as a .pcmt file
- Import a preconfigured IED available as a .pcmi file
From the plant structure it is possible to see whether the inserted IED is in the offline or online mode. A red cross in front of the IED symbol indicates an offline mode.

4.6.1 Inserting an IED in online mode

When the IED is already connected to PCM600, PCM600 can read the order number directly from the IED. It is possible to read the full configuration from the IED by using the Read from IED function.

To set up an IED online, the IED must be connected to PCM600.

1. In the Plant Structure view, right-click the bay and from the list that appears, select New and the IED application area, for example, Motor Protection IEDs and select the IED type to be inserted.

Figure 10: Selecting the IED type

You can also drag-and-drop an IED from the Object Types view to the bay level.

The Configuration Mode Selection Page dialog box opens.
2. Select **Online Configuration** and click **Next**.
 The **Communication protocol selection page** is displayed.
3. In the **IED protocol** list, select the IED communication protocol and click **Next**.
 The **Communication protocol** page is displayed.
4. In the Port list, select the port.
 • If the rear port is selected, insert the correct IP address (of the physical IED to be configured) into the IP address box.

 Communication configuration is now defined.

5. Click Next in the Configuration Wizard.
6. Click Scan to scan/read the order code of the IED.
 The Order code detection page is displayed.
7. Click Next.

The Setup Complete Page dialog box shows the summary of the IED type, version, IP address and the selected order number.
To cancel the insertion, click **Cancel**.

If an error is found on the **Setup Complete Page**, it is not possible to go back and make modifications. If an error is detected, cancel the insertion by clicking **Cancel** and insert the IED again.

8. Click **Finish** to confirm the configuration and conduct the insertion.
9. From the **Plant structure** view, check that PCM600 has turned online the IED that was inserted to the bay level.

You cannot scan data from the IED or proceed further if the IED is not online or if the IP address is not correct.
4.6.2 Inserting an IED in offline mode

When the IED is not available or is not connected to PCM600, engineering can be done off-line. The off-line configuration in PCM600 can be written to the IED later when it is connected.

Working in the offline mode has an advantage compared to online mode in that the preparation for the configuration can be started even though the IED is not available.

1. In the **Plant Structure** view, right-click the bay and from the list that appears, select **New** and the IED application area, for example, **Feeder IEDs**.
2. Select the IED type to be inserted.

 Alternatively, drag-and-drop an IED from the **Object Types** view to the bay level.

The **Configuration Mode Selection Page** dialog box opens.

![Configuration Mode Selection Page]

3. Select **Offline Configuration** and click **Next**.
Setting up an IED in the offline mode is similar as in the online mode; however, with offline mode it is not necessary to type the correct IP address in the Communication port and IP address dialog box.

4. On the order code selection page, make right order code selections.
5. Click Generate to generate the functions for the selected order code. A “Function generation complete.” dialog box is shown. Click Close.
6. Click Next on the Setup Complete Page that shows the summary of the IED type, version, IP address and the selected order number.
7. Click Finish to confirm the configuration and conduct the insertion.

4.6.3 Inserting an IED from the template directory

IED templates can be used for replicating IEDs with same order code in PCM600 projects. Template includes IED application configuration, graphical display configuration (single-line diagram), communication protocol mappings and parameters. An IED in the plant structure can be exported as a template (.pcmt file). The template library can be build up of all the exported IED templates.

It is also possible to insert an IED from the template library to create a new IED in the plant structure. After a template IED has been imported, the IP address, the Caption in IED Object Properties and the Technical Key that corresponds to the physical IED have to be changed.

A template IED can be inserted only when the bay is selected in the plant structure.

1. In the Plant structure view, select the bay, right-click and select New/ Create from template.
 The Create New Object from Template dialog box opens.
2. Select the IED from the list of available IEDs.
3. Click the icon on the right column in the list of available templates. The **Template Properties** dialog box opens.
4. Check and verify the template information and click Close to close the window. The Create New Object from Template dialog box is displayed.
5. You can now delete, import or create a template by clicking the corresponding button.
 - To delete the selected template, click Delete Template.
 - To import a template from the selection window, click Import Template.
 - To insert the selected IED to the bay, click Create.

 It is possible to insert more than one IED from the Create New Object from Template dialog box. The dialog box remains open until you click Close.

6. Click Close when you are finished.

4.6.4 Inserting an IED by importing a .pcmi file

It is possible to create a new IED object in the plant structure by importing a .pcmi file.
A .pcmi file can only be selected when the bay is selected in the plant structure.

1. In the **Plant Structure** view, right-click the bay and from the list that appears, select **Import**.

A .pcmi file can be imported only when the bay is selected in the plant structure.

![Importing IED configuration](image)

Figure 18: Importing IED configuration

2. Select the .pcmi file to be imported and click **Open**.

After importing, the IED object is created in the plant structure.
After the .pcmi file has been imported, the IP address, the name and the technical key that corresponds to the physical IED have to be changed.

4.7 Setting the IED IP address in a project

The IP address and subnet mask of the IED object in PCM600 must match the front and rear port of the physical IED to which the PC is connected. The IP address of the physical IED can only be set via the LHMI and cannot be set from PCM600. The PC and IED may need to be on the same subnet.

In PCM600, there are two alternatives to set the IP address of an IED object.

- On the first page of the wizard when including a new IED into a project.
- In the IP address box of the IED's Object Properties dialog box.

![Alternative 1: setting the IP address on the first wizard page](image-url)
Figure 20: Alternative 2: setting the IP address in IED's Object Properties dialog box

The choice of alternative depends on the time at which the IP address is available. Entering the IP address via the IED Object Properties dialog box is possible at any time while entering it via the configuration wizard can only be done when adding the IED object.

1. In the Plant Structure view, select the IED to which the IP address is to be entered.
2. Select View/Object Properties on the menu bar. Object Properties dialog box is opened.
3. Type in the IP address to the IP Address row.

4.8 Technical key

Both a physical IED and an IED object in PCM600 have a technical key. The technical key in the IED and PCM600 must be the same, otherwise it is not possible to download a configuration.

Each IED in a PCM600 project must have a unique technical key. Therefore, it is not possible to set the same technical key for several IEDs in the same PCM600 project.

The IED is delivered with a factory default technical key. The validation of the technical keys between PCM600 and the IED does not occur if the IED contains the factory default technical key.
The technical key property in PCM600 corresponds to the IED name attribute in SCL files. Avoid changing the IED name attribute outside PCM600, because data in PCM600 may get lost when importing the SCL files.

The technical key must be the same for the communication between the IED and PCM600. The technical key can be read from the IED and updated to PCM600, or the PCM600 technical key can be written to the IED. Alternatively, a user-defined technical key can be defined.

When writing a configuration to the IED, PCM600 checks for a mismatch between the IED object and the physical IED technical key.

4.8.1 IEC 61850 naming conventions to identify an IED

The IEC 61850 naming conventions to identify an IED are only valid when the IEC 61850 standard is used for station bus communication. According to the IEC 61850–6 clause 8.4, the SCL model allows two kinds of project designations in the object properties: a technical key and a user-oriented textual designation.

Technical key is used in engineering drawings and for signal identifications. This is contained in the attribute name as an identification of each object. If the value is used as a reference to an object, it is contained in an attribute name starting with a string denoting the reference target object type and ending with the string Name. The
technical key is used within SCL for referencing to other objects. Note that the name is a relative identification within a hierarchy of objects.

User-oriented textual designation is contained in the desc attribute. Attributes are not allowed to contain carriage return, line feed, tab, greater than, less than, double quotes or ampersand characters. The semantics of desc must also be relative within an object hierarchy.

PCM600 takes care of the two possibilities. The two possible signal designations are available per object in the object properties for all hierarchical levels beginning with the station as the highest level.

The technical key is automatically generated based on the rules and type specifications of IEC 61346 and the extended definitions assigned for substations by a technical committee. The technical key is shown in the Object Properties dialog box under SCL Technical Key or Technical Key.

- The station is predefined by “AA1” where 1 is the index. To get the real station name that is used, it is possible to rename the SCL Technical Key for the station as the name used by the project. To minimize the word length, take a short form because this name is used also in the transmitted messages to identify the events, for example.
- The voltage level. In the example it is 20 kV and J1 is selected from the list below SCL Technical Key in the Object Properties dialog box.
- The bay and the IED are appended with the coding defined in the IEC 61346 standard and the substation definition lists. In the example, Bay SCL Technical Key part is Q01 and IED is A1.

The user-oriented textual designation is visible in the Plant structure view for each object. It is the name given by default or changed by using the Rename function.
The created technical key for the full path name of the IED would be: AA1J1Q01A1.

- AA1 = substation in the project
- J1 = voltage level from 20 to 30 kV
- Q01 = the first bay in the voltage level
- A1 = first IED in the bay Q01

4.8.2 Setting the technical key

1. Select the IED in the **Plant Structure** view and right-click.
2. From the list that opens, select **Set Technical Key in IED**.
Figure 23: PCM600: Setting the technical key on the IED level

A dialog box opens to inform about the technical key concept.
3. Click **OK**.

The technical key is read from the IED and the **Set Technical Key** dialog box opens.

4. In **Set Technical Key** dialog box, select the technical key to be used. There are three alternatives:
 - Use the existing technical key in the IED
 - Use the existing technical key defined for the IED object in PCM600
 - Set a user-defined technical key, which changes the technical key for both the physical IED and IED object in PCM600

 Maximum length of technical key is 20 characters. Technical key must begin with an alphabetic character (A-Z, a-z), but the
remaining characters can be alphanumeric or underscore (A-Z, a-z, 0-9, _).

5. Click **OK** to confirm the selection.

It is not possible to set a user-defined name or select the **Technical key in IED** if the value is the same as already given to another IED object in the PCM600 project. An error message is displayed if this happens.

4.9 COM600 project

The 620 series connectivity package has support for SAB600. A 620 series IED is imported as a 620 series device. It is also possible to import a full PCM600 project including several 620 series devices to SAB600. In this case, PCM600 project information is imported to SAB600 using a SCD file.

The 620 series device supports several functions in COM600.

- Controlling the switchgear
- Monitoring the measured values
- Reading digital fault recordings
- Setting parameters

4.9.1 Importing an IED in a COM600 project

1. Create a PCM600 project including several IEDs.
2. Export the SCD file from PCM600.
 In the **Plant structure** view, select the substation, right-click and select **Export**.

Figure 26: *Creating a PCM600 project including several devices*
3. Import the SCD configuration into the SAB600 project.
 In the **Project Explorer** view, right-click the IEC61850 OPC Server object and select **Import**.
Figure 28: Importing the SCD configuration into the SAB600 project

4. In the **SCL Import** view, click **Select File** to select the SCD file exported from PCM600.
5. Check the default settings in the SCL Import view and change the settings if they are not suitable. The default settings in the SCL Import dialog should be OK in most cases.
6. Click Import to import the SCD file.
7. Check the IP address on the IEC61850 subnetwork and change it if needed. When the SCD file is directly exported from PCM600, it will use the IP address of the PCM600 computer, not the COM600.

The communication towards the IEDs is now ready. For information on how to finalize the single-line diagram and enable parameter setting through COM600 HMI, see the COM600 documentation.

4.10 Using the Web HMI

WHMI is enabled by default. Log in with the proper user rights to use the WHMI.

1. To enable the WHMI, select Main menu/Configuration/HMI/Web HMI mode via the LHMI.
2. Reboot the IED for the change to take effect.
4.11 IED User Management

IED user authorization is disabled by default and can be enabled at Main Menu/Configuration/Authorization in local HMI or WHMI. IED user passwords can be changed in local HMI and using IED User Management tool in PCM600.

![Change Password using IED User Management tool](image)

In case remote authentication has been enabled, the user has to make following changes in PCM600 in order to get the communication between the IED and PCM600 to work:

<table>
<thead>
<tr>
<th>Object Properties Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Authentication Disabled</td>
<td>False</td>
</tr>
<tr>
<td>Is Password used</td>
<td>True</td>
</tr>
<tr>
<td>Password</td>
<td>Write the correct password</td>
</tr>
</tbody>
</table>
When communicating with IED using PCM tools and having IED authentication enabled, the user will be prompted for IED user name and password. When setting the technical key, the user has to give the username and password twice.

If PCM authentication has been enabled in PCM System Settings, an IED user can be linked to the PCM user being used by checking the Remember me flag in the IED Login dialog. After that the IED Login dialog will not be needed at tool communication in the future, since logging into PCM will then also provide for IED authentication credentials.
Audit trails (IED login, logoff events) can be monitored by using the Event Viewer tool. By default, the audit trails are not shown in the Event Viewer tool. To view them, change the default ADMINISTRATOR IED password by using the IED User Management tool, and log in as ADMINISTRATOR IED user when opening the Event Viewer tool.
Section 5 Protection and control engineering

5.1 Application Configuration tool

Application Configuration tool is used to modify an application configuration for an IED and is based on IEC 61131-3 Function Block Diagrams.

The function blocks are dedicated to different functions.

- Control related functions
- Protection related functions
- Monitoring functions
- Communication

For more information on the function blocks, see the technical manual.

Most function blocks are mapped as logical nodes according to the IEC 61850 standard. See the IEC 61850 parameter list for more information.

If a function block is removed with Application Configuration, the function related data disappears from the menus as well as from the IEC 61850 data model, with the exception of some basic function blocks, which are mandatory and thus cannot be removed from the IED configuration by removing them from the Application Configuration.

Other function blocks are not mapped as logical nodes; for example, logical gates.

The basic features of Application Configuration tool include the ability to organize a configuration into several MainApplications as well as providing different application programming features.

- Organize an application configuration
 - Organize an application configuration into a number of logical parts (MainApplication)
 - Organize a MainApplication over a number of pages
- Features for programming an application configuration
• Insert function blocks, make connections and create variables
• Include the hardware I/O channels directly to the application configuration
• Calculate the execution order automatically by clicking **Calculate execution order** on the toolbar.
• Document the application configuration: such as, make printouts
• Save application configurations as templates in an application library to reuse them in other IEDs (Function blocks and related logic can be fully or partially reused depending on the functionality available in other IED)
• Validate the application configuration during the configuration process on demand and while writing the application configuration to the IED

For instructions on how to perform the different tasks in PCM600, see PCM600 online help.

5.1.1 Function blocks

Function blocks are the main elements of an application configuration. They are designed for a various number of functions and organized into groups by type. The different function block types are shown in the **Object Types** view. Function block data can be modified with the Application Configuration tool.

- Set user-defined names for function blocks and signals marked with blue text.

 Signals that have a user-defined name created with the Application Configuration tool are only visible in the Parameter Setting tool if the IED configuration is written to the IED and read back to PCM600. Otherwise, the default signal name is shown in the Parameter Setting tool.

 If possible, set the user-defined name to a signal before connecting the signal to other function blocks.

- Set IEC 61850, ANSI or IEC 60617 symbol standard.
- Set IEC or/and ANSI naming style.
- Lock function blocks.
- Set visibility for execution order, cycle time and instance number.
- Manage signals; for example, hide, show and rearrange.
- Invert Boolean inputs and outputs.
Figure 33: Application Configuration tool: function block overview

1. Connection(s)
2. User-defined function block name
3. Function block, selected (red)
4. Function block name
5. Function block, locked (red)
6. Hardware, binary output channel
7. Hardware, programmable LED
8. Hardware, binary input channel
9. Hardware, analog input channel
10. User-defined signal name
11. User-defined input variable
12. Execution order
13. Cycle time
14. Instance number
15. Signal description note

5.1.2 Signals and signal management

Function block has a set of input and output signals. The placement of function block signals is from left to right. Input signals are placed on the left and output signals on the right.

Function blocks can contain more signals than needed in that application part. Unused signals can be hidden to get a clear picture.

Signals are located up and down on both sides of the middle position. When there is space left, some signals may be moved up or down for better visibility and connection routing.
Boolean input and output signals may need to be inverted to fulfil the logic. The Application Configuration tool supports the adding of inversion logic to a binary signal.

The input signal on glue logic function blocks can only be inverted if a glue logic function block with lower execution order in the same cycle time is available. Similarly, the output signal can only be inverted if a glue logic function block with higher execution order in the same cycle time is available. Up to two input signals and two output signals can be inverted for glue logic blocks in the same cycle time.

All input signals have a default value that is used when not connected.

5.1.3 Function block execution parameters

Three function block execution parameters have an influence on the runtime execution of the function block within the application configuration.

- Execution order
- Cycle time
- Instance number

Each time a new function block is selected, these parameters must be selected from the lists in the Application Configuration tool. Depending on the function block type, some of the three parameters are selectable and some not. The cycle time may be predefined to one value. The instance number is a counter for the total possible number of function blocks of that type used within the application configuration.

The Execution Order and Instance Number are a combination that is predefined within a product. It is possible to select a pair out of the list.
The Cycle Time is automatically set to 2.5 ms (50 Hz) or to 2.083 ms (60 Hz) and it cannot be modified. Depending on the function block type and the 620 series product, only one or both possibilities may be available.

To automatically calculate the execution order, click Calculate Execution Order on the tool bar.

5.1.4 Execution order and feedback loops

With the Application Configuration tool it is possible to draw multi-layer configuration logic that contains feedback loops. The execution order of logic functions is calculated automatically in the Application Configuration tool, but the execution order can be set manually also. If the automatically calculated value causes the function to be executed one task cycle time after the other logic functions in the same loop, the execution order number can be set manually to prevent delays, for example, in output activation.

The following example shows a simple situation where the execution order causes one cycle time delay if the NOT port is executed in the order determined by the automatic calculation.
By setting a smaller execution number than in the AND port to where the NOT port is connected, it is possible to fix the execution order of all functions in a loop so that they are handled in the same task.

Configuration parameters

Configuration parameters can be viewed and set with the Parameter Setting tool.

Connections and variables

A connection is the link or "wire" between function block outputs and inputs.

There are rules and methods for making connections.

- Drag a line between two signals
- Link two signals by using variables
It is possible to search and replace variable names in Application Configuration tool.

Connect the variables to a destination, for example to a function block or a hardware output channel. The connectivity package automatically removes the orphan variables which are not connected to any destination.

Connection validation

A connection is only useful or even possible between two signals of the same base attribute type.

![Figure 37: Application Configuration tool: an error message of a signal mismatch for a connection](image)

5.1.7 Hardware channels

Hardware channels can only be connected to a function block input or output. A hardware connection can be established with the Application Configuration tool or Signal Matrix tool.

When a hardware channel is connected, a graphical symbol appears in the Application Configuration tool. The connection is also displayed in the Signal Matrix tool with a cross mark. Hardware channels are always visible in the Signal Matrix tool.
There are three types of supported hardware channels.

- Binary input channels
- Binary output channels
- Analog input channels

Hardware input channel can be used as often as needed. A hardware binary output channel is taken from the list of available channels when a new channel is requested. This prevents using the same hardware binary output channel twice.

5.1.8 Validation

Validation checks the application configuration for errors based on the rules that govern the creation of the application at three different times.

- During the logic creation, while making a connection or placing a function block
- On demand by starting the validation
- When writing the application configuration to the IED

5.1.8.1 Validation when creating an application configuration

Validation is made when creating the application configuration.
• A connection between two input or two output signals is not possible
• A connection between two different data types is not possible: for example, from a binary output to an analog input

5.1.8.2 Validation on demand

The validity of an application configuration can be checked by clicking Validate Configuration in the toolbar. The Application Configuration tool checks the application configuration for formal correctness. The found problems are divided into warnings and errors.

• Warnings, marked with a yellow warning icon
 • Example: a variable connected to an output signal that is not connected
 • Example: if the user connects an output from a higher execution order function to inputs of lower execution order function

• Errors, marked with a red circle with a cross
 • Example: unconnected hardware output

Warnings do not prevent writing to the IED. However, errors must be corrected before writing the application configuration to the IED. The application configuration can be saved and the Application Configuration tool can be closed with open errors, but not written to the IED.

These problems are listed in the Output view under the Application Configuration tab. Double-clicking the error or warning row navigates to the MainApplication/Page/Area, where the problem was identified.
5.1.8.3 Validation when writing to the IED

When writing the application configuration to the IED, an automatic validation is performed. The validation is the same as the manually demanded validation. Errors abort the writing.

5.2 Parameter Setting tool

Configuration parameters and settings parameters can be changed with LHMI, WHMI or with the Parameter Setting tool in PCM600.

Some parameters are only visible in the Parameter Setting tool and some only in LHMI.

A common writing from PCM600 to the IED, where parameters are changed in the Parameter Setting tool, overwrites any parameter changes made locally with LHMI.

All variables listed and displayed in the parameter list can be sorted into two groups.
5.2.1 Configuration parameter

Configuration parameter specifies the operation mode of an application function or of the IED. These are basic configurations that are normally configured only once and then not modified again. The IED configures itself during startup according to the given configuration parameter values.

5.2.2 Setting parameter

Setting parameter (short form: “setting”) is a parameter that can be changed in the IED at runtime.

5.2.3 Setting group

Nearly all settings used by the IED for protection application functions are organized into a group of settings. Up to six setting groups can be configured with different values. The IED supports the selection of a setting group at runtime.

5.2.4 IED parameter import and export

IED parameters can be imported and exported in XRIO file format. The parameter import/export functionality is available via the File menu when the Parameter Setting tool is open.

Figure 40: Parameter import/export
5.2.5 IED parameter organization

The organization of parameters into a tree structure becomes visible in the Plant Structure by expanding the setting tree.

5.3 Signal Matrix tool

The Signal Matrix tool is used to make cross-references between the physical I/O signals and function blocks and for the GOOSE signal input engineering.

The Signal Matrix tool cannot be used for adding or removing function blocks, for example, GOOSE receive function blocks. The Application Configuration tool is used for this kind of operations.
Figure 41: Signal Matrix tool: operation principles

A binary input channel can be connected to one or more function block inputs. If it is activated from more than one function block output, the glue logic has to be used.

A binary output channel can only be activated from one function block output. If it is activated from more than one function block output, the glue logic has to be used.
Glue logic means inserting a logical gate (OR and AND blocks) between the binary input and the function blocks or between the function blocks and the binary output channel. This can be engineered with the Signal Matrix tool.

Connections made with the Signal Matrix tool are automatically also shown in the Application Configuration tool.

![Figure 42: Signal Matrix tool: a connection between binary input channels to binary input signals](image)

Depending on the IED capability, the Signal Matrix tool has a separate sheet for each possible combination.

The possible sheets are:
• Binary inputs
• Binary outputs
• Analog inputs
• Functions
• GOOSE

5.4 Load Profile tool

Load Profile tool is used for reading load profile records from an IED, clearing old records and viewing records via an external COMTRADE viewer. The default viewer included with PCM600 is Wavewin, but a third party viewer can be used.

5.4.1 Opening and closing Load Profile tool

• To open the Load Profile tool, click Load Profile Tool on the context menu of an IED node inside the PCM600 project tree.
To close the Load Profile tool, click the **Close** button in the tool.
The Load Profile tool runs in the same process as PCM600 but in a separate window. Multiple instances of the tool can be run at the same time. Any open tool instances are closed without confirmation when PCM600 is closed.
By default, the Load Profile tool uses the \PCMDBases\LPR directory as a saving target directory.

Figure 44: Load Profile tool
5.4.2 Load Profile tool user interface

![Load Profile tool interface](image)

Figure 45: Load Profile tool interface

Table 4: Available actions on the user interface

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Path</td>
<td>Default local path (C:\PCMDataBases\LPR) is the location from which the records are shown on the Load Profile tool. It is also the default path for saving records. Local Path field also allows the user to change the target location where the records are saved. The grid of the Load Profile tool shows only the records in the default local path including unsaved records in the temp path (C:\Temp\Load\Profile Tool) if there are any. Therefore changing the default local path allows the user to save records at the specified location on the local machine but the user is not be able to see those records in the grid of the Load Profile tool.</td>
</tr>
<tr>
<td>Load</td>
<td>Clicking the Load button downloads all available records from C:\LDP\COMTRADE directory in the IED to a temporary folder C:\Temp\LoadProfileTool on the local machine. In this temporary folder, the target file name is constant, and loading again overwrites the file. An unsaved record is deleted when the tool is closed.</td>
</tr>
<tr>
<td>Save</td>
<td>Clicking the Save button moves the records to the default or specified local path, Load transfers the records to a temporary folder. Each load profile record comprises two files with file extensions .dat and .cfg. Clicking Save adds a time stamp to the file names and moves the two files pertaining to the record to the default or specified folder. Saving another record creates a new record in addition to the old ones.</td>
</tr>
<tr>
<td>Clear</td>
<td>Clicking the Clear button clears record from either the Load Profile tool or IED or both. Before deleting the records, a confirmation dialog box is shown.</td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Select any record and click Open to view the record in Wavewin, provided that this external software is installed. Additionally, any record row can be double-clicked to view that record.</td>
</tr>
<tr>
<td>Sort</td>
<td>To sort the record rows by any column click a column header.</td>
</tr>
<tr>
<td>Close</td>
<td>Clicking the Close button closes this instance of the tool. Any open instance is finally closed when the whole PCM600 is closed.</td>
</tr>
<tr>
<td>File</td>
<td>All the actions are also available on the tool through File drop-down menu.</td>
</tr>
</tbody>
</table>

5.4.3 Information fields

The **IP** box shows the IP address of the selected IED and the **Local Path** box shows the selected location for reading or viewing records.

In the record grid, the name, creation time, modification time and size of each record are shown. The times and dates shown in the grid are the times when the files have been read rather than the original date stamps in the IED.

![Information fields](image)

Figure 46: Information fields

5.5 Fault Record tool

The Fault Record tool is used for reading the fault records from the IED and it is included in the connectivity packages. The tool makes analyzing the fault records easier by showing them separately in their own user control components. It also includes save, copy and clear functions where all the fault records are saved or copied in text format for later viewing or cleared from the IED or the tool.

5.5.1 Opening and closing Fault Record tool

- To open the Fault Record tool, click **Fault Record Tool** on the context menu of an IED node inside the PCM600 project tree.
To close the Fault Record tool, click the **Close** button in the tool. The Fault Record tool runs in the same process as PCM600 but in a separate window. Multiple instances of the tool can be run at the same time. Any open tool instances are closed without confirmation when PCM600 is closed.

Fault Record tool is a connectivity package tool. The main functionality is divided into three parts – reading the fault record parameters from the IED, displaying their names, values and units on the user interface and saving them to a text file. It is also possible...
to clear all the fault records from both the tool and the IED and copy the fault records either individually or all at once and paste them to a word processor.

5.5.2 Fault Record tool interface

![Fault Record Tool Interface](image)

Figure 48: Fault record tool
<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>Clicking the Read button reads all available fault records from the IED into the tool. User has the option to read 1 fault record, 20 fault records or all fault records. The Read button opens up a progress bar to indicate an ongoing read operation. Click the Cancel button on the Read progress bar to cancel the read operation. On operation completion, the available fault records are shown in the record grid. Click the + icon to expand and view record details.</td>
</tr>
<tr>
<td>Save</td>
<td>Click Save to save the fault records on the local machine as .txt file.</td>
</tr>
<tr>
<td>Clear</td>
<td>Record can be cleared from either the Fault record tool or the IED or both. Before deleting the records, a confirmation dialog box is shown.</td>
</tr>
<tr>
<td>Close</td>
<td>Clicking the Close button closes this instance of the Fault Record tool. Any open instance is finally closed when the whole PCM600 is closed.</td>
</tr>
<tr>
<td>File</td>
<td>File menu for Save and Exit actions.</td>
</tr>
<tr>
<td>Edit</td>
<td>Copy All in the Edit menu allows to copy all the fault records which can then be pasted to a word processor and saved on the local machine without having to save the records as a .txt file. Additionally the user can select any particular fault record and right-click to copy the selected record.</td>
</tr>
</tbody>
</table>
For information on LED operation modes supported by the IED, see the technical manual.

6.1 Single-line diagram engineering

A single-line diagram of the IED can be designed by using the Graphical Display Editor tool of PCM600. The single-line diagram is modelled according to the IEC 61850 standard in the Graphical Display Editor.

6.1.1 Diagrams in Graphical Display Editor

The Graphical Display Editor is used for various tasks.

- HMI display raster layouts
- Adding static text
- Adding measurands
- Adding busbars
- Adding symbols onto display page
- Drawing lines (creating a link)
- Adding buttons to control ACT application with SPCGGIO
The Graphical Display Editor has a fixed symbol library window on the left side of the view. The presentation is empty when no page exists for the IED. A default single-line diagram presentation is displayed if standard configurations are used.

6.1.1.1 Display window and sequence order

There are rules for handling the HMI pages.

- IED supports one bay with one single-line diagram.
- Measurements and the single-line diagram can be displayed on the page in any possible order and placement.
- All symbol objects, for example apparatus and measurement, on the HMI page must be linked to the correct function block in the application configuration in order to present the correct process values.
6.1.1.2 Symbol library

The **Symbol Library** view contains panes that include drawing symbols or elements for creating a single-line diagram, measurements and texts onto a page. Panes can be opened by clicking the name bar of the selected element.

The library shows the symbols either in the ANSI standard or IEC standard. The standard is selected from the list located on top of the window.

When changing to another library standard, Graphical Display Editor changes the symbols according to the selected new standard and redraws the single-line diagram in the window.

To change the symbol format used in the IED, select **Main menu/Configuration/HMI/SLD symbol format** and choose IEC or ANSI.

To become familiar with the available symbols, select the different panes and their symbols.

6.1.1.3 Supported single-line diagram symbols

<table>
<thead>
<tr>
<th>Description</th>
<th>IEC representation</th>
<th>ANSI representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit breaker — Intermediate position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit breaker – Open position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit breaker – Closed position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit breaker – Bad (faulty) position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnector – Intermediate position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disconnector – Open position</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table continues on next page
<table>
<thead>
<tr>
<th>Description</th>
<th>IEC representation</th>
<th>ANSI representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disconnector – Closed position</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Disconnector – Bad (faulty) position</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Truck – Intermediate position</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Truck – Open position</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Truck – Closed position</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Truck – Bad (faulty) position</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>In-feeder</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Out-feeder</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Current transformer</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Voltage transformer</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Ground symbol</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Motor</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
<tr>
<td>Generator</td>
<td>![IEC symbol]</td>
<td>![ANSI symbol]</td>
</tr>
</tbody>
</table>

Table continues on next page
6.1.1.4 HMI display raster layout and text font selection

The raster on the page changes from symbol presentation to text presentation when a text object is selected and vice versa.

The text can be presented in UniCode characters (6 x 12 pixels). The total size of the presented white area (page) represents the visible part of the LHMI display without the header line.

The visible display for a single-line diagram is organized in a raster of 9 x 7 (columns x rows). Each symbol (presented in 15 x 15 pixels) included in the drag-and-drop method must be dropped into a raster box.

The description text for an apparatus object can be placed in all four directions around the symbol. The description is part of the apparatus object. It is possible to place the symbols without the assistance of **Snap to Grid** and manually change the position coordinates.

6.1.1.5 Text handling

The display switches when text is selected in a display of 22 x 9 (columns x rows). One display box is the placeholder for one character. A text element must be placed in the position of the display.

The name and the unit of a measurement or text symbol can be changed by double-clicking the symbol or via the **Object Properties** view.

Selecting and toggling **Show Texts using the IED fonts** can be used to preview the single-line diagram to see how it will be presented in the real HMI display.
6.1.1.6 Adding static text

1. Place a **Static Text** object into a raster box by dragging-and-dropping.

![Figure 50: Adding a static text field into a LHMI view](image)

2. Edit the text in the **Name** field in the **Object Properties** view, or alternatively double-click the text to edit it.

6.1.1.7 Adding select buttons

1. Drag a **Select Button** object into a raster box.
2. Right-click the select button symbol and click **Select Input Signal**.
6.1.1.8 Adding a measurand

1. Place a **Measurand** object into a raster box by dragging-and-dropping.
2. In the Objects Properties view, edit the name, unit and the number of decimals. Unit text specifies the default text used for the measurement's unit. If Unit text is not empty, the unit in the IED is updated dynamically based on the signal it is connected to. If the Unit text is empty in the Graphical Display Editor, no unit is shown. The Scale factor parameter is not used.

6.1.1.9 Adding a busbar

1. Add at least two Busbar Junctions.
2. Add links between the Busbar Junctions.
3. Add a link between one Busbar Junction point and the corresponding symbol or junction point.

6.1.1.10 Adding symbols into a display page

1. Prepare the body of the single-line diagram by locating symbols to the wanted positions on the display.
2. Place the apparatus or transformer symbols into a raster box by dragging-and-dropping.
3. Place the connection symbols into a raster box by dragging-and-dropping.
4. Place the junction points. Do not connect two symbols directly to each other; instead, add a junction between them.
5. Use the coordinates as symbols for adjusting the placement.

Figure 52: Graphical Display Editor: drawing a busbar and placing busbar junctions
6.1.1.11 Drawing lines to create links

After the apparatus symbols are placed, lines can be drawn to create links.

1. To draw a line, center the mouse pointer on the center of the connection point (visible in two circles at the end points of a line).
2. Click to start and move the mouse pointer to the destination connection point.
3. Center the mouse pointer once again and click to drop the line.
Select Line draw icon from toolbar to draw lines between symbols.

Figure 54: Graphical Display Editor: drawing a line between symbols

4. Draw all line elements that are necessary.
5. To finish the line drawing, click Select on the menu bar.

6.1.2 Bay configuration engineering

A view with a single-line diagram and measurements contains active living objects. The object values are updated by the IED periodically (measurement) or in case of an event.

Once the symbols are placed on the HMI page, they must be linked to the corresponding function block in the application configuration, which protects or controls the object that the symbol on the HMI page represents.
6.1.2.1 Creating a complete HMI display page

1. Make a sketch of how to present the single-line diagram.
2. Place the apparatus, transformer and other symbols that are needed for the single-line diagram into the raster boxes.
3. Add Junction points where needed.
4. Link the apparatus symbols with line elements.
5. In the Object Properties view, adjust the text symbols while writing to north, east, south or west.
6. Place measurements when needed.
7. Edit the name, unit and the number of the measurements' decimals.
8. Select each object that has a dynamic link and make the link to the corresponding process object.
9. Check that you have selected the correct function block. Function blocks of the same type can have different instance numbers.

10. Ensure that all links are done.
11. Save the complete picture.
12. Write to the IED.
13. Validate the single-line diagram on the IED.

Figure 55: Graphical Display Editor: establishing a dynamic object link
6.1.2.2 Linking process objects

To describe a process object within an IED, it needs to be established in the application configuration, configured when given the parameters by the Parameter Setting tool and linked to be displayed in the HMI.

Three tools are involved in the described steps.

- Application Configuration tool for programming the application function block for the apparatus and/or measurements
- Parameter Setting tool for adapting the settings and/or configuration parameters of the application function block
- Graphical Display Editor for establishing the link to update the selected data attribute in the HMI of the application function block

The following application function blocks are used to deliver the needed information:

- Switch controller (of type CSWI) for an apparatus
- All configured function blocks with measurements (of type MMXU) for the measurements

1. Right-click the apparatus symbol and select Select Input Signal.
 A list of engineered switch control application function blocks opens.
2. Select the switch control application function block that corresponds to the selected apparatus.
3. Right-click the measurement symbol and select Select Input Signal.
 A list of the engineered measurement application function blocks opens.
4. Select the measurement application function block that corresponds to the selected symbol.
The ordering number in the selection window of the process objects corresponds to the number given in the Parameter Setting tool tree and to the application function block in the Application Configuration tool. Only the apparatus and measurements that are configured in the application configuration program are displayed.
Figure 57: Graphical Display Editor: object properties view for text insertion
Section 7 IEC 61850 communication engineering

7.1 IEC 61850 protocol references and pre-conditions

To engineer the IEC 61850 protocol interface for the IED, the following additional manuals or knowledge of their contents is required.

- Knowledge of the IEC 61850 engineering process as described in the IEC 61850 standard
- The technical manual describes the function blocks defined as logical nodes
- The IEC 61850 engineering guide
- The IEC 61850 parameter list

7.2 IEC 61850 interface

For more information on the implementation of IEC 61850 in IEDs, see IEC 61850 engineering guide.
IEC 61850 interface in the IED

IEC 61850 provides a method for identifying all signals that belong to a function. These signals are identified through the logical nodes representing the functions. All signal information for commands and monitoring are available in logical nodes.

Whenever a function block is instantiated in the Application Configuration tool, PCM600 automatically generates the corresponding logical node data.

7.2.1.1 GOOSE data exchange

The IEC 61850 protocol supports a method to directly exchange data between two or more IEDs. This method is described in the IEC 61850–7–2 clause 15.

The concept is based on sending a multicast over the Ethernet. Whoever needs the information, detects the telegram by its source address, reads the telegram and handles it. The telegrams are multicast sent and not acknowledged by the receiver.
When a GOOSE message is to be sent, it is defined by configuring the data set with the defined trigger option and GoCB. This engineering process is done in a station configuration tool, for example, CCT600 or IET600. The task involves configuring lists with the signal, value and quality (data attributes) that belong to the GOOSE message data set.

In the opposite direction, the standard only defines the IED as a receiver of a GOOSE message. How the GOOSE input signals are handled must be defined in the IED application configuration. The SCD file generated by CCT600 or IET600 (or any other station configuration tool) contains the GOOSE data sets as input data. The input data must be connected to a GOOSE receive function blocks in the Signal Matrix tool.

7.2.2 Function view for IEC 61850 in PCM600

The IED design is directly based on IEC 61850. Thus, the function blocks in PCM600 tool use IEC 61850 logical node naming for function blocks. This relation is automatically handled by the PCM600 tools.

The concept in the IED is such that the IEC 61850 data for each function instance is available in the data model, even when the function is not used in the application. This means that it is not necessary to handle any instance information for the functions regarding IEC 61850.
7.2.3 Station configuration description file types

The IEC 61850 standard defines SCL file types in the sequence of engineering. These files have a different definition, which is explained in IEC 61850–6. Three of the file types are used in the engineering process for an IED.

- **ICD = IED capability description**
 - Capability description of the IED in logical nodes and their data. No information about, for example, the communication configuration is included.
 - An IED is already extended by default data sets and report control blocks. They are predefined by ABB. Changes or additional data sets, for example, have to be done with CCT600 or IET600.

- **SCD = Station configuration description**
 - A complete configuration description of all IEDs in a station and the full engineering of process signals and communication structure is included. This includes all the needed data sets and control blocks.

- **CID = configured IED description**
 - The CID file contains the information needed for configuring one specific IED. The CID file contains the complete configuration description of one specific IED. This includes the configured IED name, communication part, data sets and all control blocks.

7.3 IEC 61850 engineering process

The IEC 61850 standard defines how information is communicated in a substation. The information communication can be divided into different parts.

- Description of the substation part, including the used logical nodes
- Description of the IEDs with their logical nodes
- Description of the communication network
- Description of the engineering process

When exporting a SCL file from PCM600, the tool builds a default substation structure and creates default data sets and control blocks for vertical communication between the substation client and IEDs. For more information, see the IEC 61850 standards.

In the following example, it is assumed that PCM600 and CCT600 or IET600 are used as the system configuration tools.
1. SCL files are exported from PCM600. In this case, a SCD file. It is also possible to export other SCL file types.

2. Horizontal and vertical communication is configured using the station configuration tool, for example, CCT600 or IET600.

3. SCL files are imported to a PCM600 project. In this case, it is the updated SCD file.

![Diagram of signal engineering procedure flow]

Figure 60: IEC 61850: signal engineering procedure flow when a complete station is exported as a SCD file

7.3.1 Exporting SCL files from PCM600

A pre-condition for exporting SCL files from PCM600 is that all IEDs in the project must be engineered in PCM600. The IEDs require unique name and IP addresses and they must be set according to the project definitions. IED configurations must be finalized as far as possible before starting the IEC 61850 configuration part.

7.3.1.1 Exporting SCD files

1. Select the station in the Plant Structure view.
2. Right-click the station and select **Export**.
3. From the open standard Windows dialog box, select the location to store the file and name it.
4. Click **Save**.
 The **SCL Export Options** dialog box opens.

5. Select the **Export Private Sections**.
6. Click **Export** to export the private sections to the SCD file.
 A progress window shows the ongoing export of the station.

7.3.1.2 Exporting ICD or CID files

1. Select the IED in the **Plant Structure** view.
2. Right-click the IED and select **Export**...
The **Export** dialog box opens.

3. From the **Save as type** list, select the type of file to export.
 - Configured IED description (.cid) for the IEC 61850 structure as needed for the IED at runtime
 - IED capability description (.icd) for the IEC 61850 structure

![Image of Export dialog box]

Figure 63: IEC 61850: export IED file type selection

4. Click **Save**.
The **SCL Export Options** dialog box opens.

5. Select the export options.

![Image of SCL Export Options dialog box]

Figure 64: IEC 61850: export options for ICD files

6. Click **Export**.

7.3.2 Engineering vertical and horizontal communication

For IEC 61850 engineering a separate system configuration tool is needed to be used with PCM600. In PCM600 Ver. 2.3 or earlier the recommended tool is CCT600. In PCM600 Ver. 2.4 or later the recommended tool is IET600, which is also included in the PCM600 Engineering Pro installation package.

1. Create a project in an IEC 61850 configuration tool.
2. Import the SCD file created by PCM600.
3. Conduct vertical communication engineering (monitoring direction).
3.1. Check the default data sets.
3.2. Configure and/or reconfigure the default data sets.

Data sets meant for vertical reporting can only contain data on the data object level, not on the data attribute level.

The data set for GOOSE can contain signals only on the data attribute level.

3.3. Configure additional Report Control Blocks when needed for each data set used for vertical communication.
3.4. Link the IED clients to the Report Control Blocks.

Up to five report clients can be configured.

4. Conduct horizontal communication engineering.

4.1. Configure GOOSE control blocks for each data set configured for GOOSE messages.

One data can be included in the GOOSE data set only once.

4.2. Define the client IEDs for each GOOSE control block.
4.3. Link the IEDs to the GOOSE control block that is to receive the GOOSE control block.

5. Export the updated SCD file.

All data sets, Report Control Blocks and GOOSE control blocks must be located in LLN0.

7.3.3 Importing SCL files to PCM600

The IED engineering tool must be able to receive a SCD file or an ICD file as an import to receive the engineered communication extensions, for example, for the different IEDs.
7.3.3.1 Importing SCD files

1. Select the station in the **Plant Structure** view.
2. Right-click the station and select **Import**.
3. From the open standard Windows menu, select the file to be imported and start the reading.
 The **SCL Import Options** dialog box opens, querying how the file should be handled during the import.

4. In the **SCL Import Options** dialog box, select how to handle the file during the import.
 - Click **Don't import IEDs of unknown type** to protect the existing IEDs in case the SCD file does not match the original configuration in PCM600.
 - Click **Replace unknown IED types with generic IEC 61850 object type** if it is known that the file includes additional IEDs that are needed. The IED of type “Generic IEC 61850 IED” is used to integrate these kinds of IEDs into the plant structure, for example.
 - Click **Ignore PCM Object Type** to update the IED object(s) in PCM600 from the IED type(s) in the SCD file, whether or not the IED type(s) in the SCD file matches the IED object(s) in PCM600.
 - Click **Ignore Substation Section** to not import the SSD file part of the SCD file.

5. Click **Import** when the file definition has been completed.
 A progress view displays the importing procedure.

6. Make connections from the sending IEDs to the receiving function blocks with the Signal Matrix tool.
 Make connections between the signals that the server is sending and the function blocks on the receiver's side.

7. Write the configuration to the IED.
 In the **Plant Structure** view, select the IED, right-click and select **Write to IED**.
Figure 66: Common write menu

The engineered data is written to the IED when executing a common *Write to IED operation.*
7.3.3.2 Importing ICD or CID files

1. Select an existing IED to import IEC 61850 files.
2. From the **Files of type** list, select the file type of IEC 61850 to be imported (ICD or CID).
 The **SCL Import Option** dialog box opens.
3. In the **SCL Import Option** dialog box, select how the file is to be handled during the import.

 ![SCL Import Options](IEC09000631-1-en.vsd)

 Figure 67: IEC 61850: SCL import options

 - **Don't import** protects the existing IEDs in case the SCD file does not match the original configuration in PCM600.
 - **Replace unknown** can be used when it is known that the file includes additional IEDs that are needed. The IED of type “Generic IEC 61850 IED” is used to integrate these kinds of IEDs into, for example, the plant structure.
 - **Ignore PCM Object Type** updates the IED object(s) in PCM600 from the IED type(s) in the SCD file, discarding whether or not the IED type(s) in the SCD file matches the IED object(s) in PM600.
 - **Ignore Substation Section** does not import the SSD file part of the SCD file.

4. Click **Import** when the definition has been completed.
 A progress view displays the importing procedure.

7.3.4 Writing communication configuration to the IED

IEC 61850 communication depends on the proper communication configuration in all IEDs that communicate via IEC 61850.

It is possible to make a configuration change in one IED, without affecting the communication engineering. For example, when the Application Configuration tool
configuration is changed, but no changes are done to the instantiation or deletion of functions that represent a logical node.

When a changed configuration is written to the IED, you are asked to update the communication configuration.

![Update Communication Window](image)

Figure 68: Updating the communication configuration in the IED with the configuration made in PCM600

1. Select whether or not to update the configuration.
 - Click **Yes** in the **Update Communication** window to update the communication configuration part in the IED.
 - Click **No** in the **Update Communication** window to keep the communication configuration part in the IED. Other parts of the configuration will be updated.

 ![Information Icon]

 If no changes have been done in the communication configuration part, click **No** in the **Update Communication** window.
620 series Series of numerical IEDs for high-end protection and supervision applications of utility substations, and industrial switchgear and equipment

ACT 1. Application Configuration tool in PCM600
 2. Trip status in IEC 61850

ANSI American National Standards Institute

CCT600 Communication Configuration tool in PCM600

CID Configured IED description

CMT Communication Management tool in PCM600

COMTRADE Common format for transient data exchange for power systems. Defined by the IEEE Standard.

DHT Disturbance Handling tool in PCM600

DNP3 A distributed network protocol originally developed by Westronic. The DNP3 Users Group has the ownership of the protocol and assumes responsibility for its evolution.

EMC Electromagnetic compatibility

Ethernet A standard for connecting a family of frame-based computer networking technologies into a LAN

EVT Event Viewer tool in PCM600

FTP File transfer protocol

GDE Graphical Display Editor in PCM600

GoCB GOOSE control block

GOOSE Generic Object-Oriented Substation Event

HMI Human-machine interface

HW Hardware

I/O Input/output

ICD IED capability description

IEC International Electrotechnical Commission
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61850</td>
<td>International standard for substation communication and modeling</td>
</tr>
<tr>
<td>IED</td>
<td>Intelligent electronic device</td>
</tr>
<tr>
<td>IET600</td>
<td>Integrated Engineering Toolbox in PCM600</td>
</tr>
<tr>
<td>Instance</td>
<td>Identical protection function blocks available in a standard configuration. By setting the application-specific parameters of an instance, a protection function stage can be established.</td>
</tr>
<tr>
<td>IP address</td>
<td>A set of four numbers between 0 and 255, separated by periods. Each server connected to the Internet is assigned a unique IP address that specifies the location for the TCP/IP protocol.</td>
</tr>
<tr>
<td>LAN</td>
<td>Local area network</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>LHMI</td>
<td>Local human-machine interface</td>
</tr>
<tr>
<td>Modbus</td>
<td>A serial communication protocol developed by the Modicon company in 1979. Originally used for communication in PLCs and RTU devices.</td>
</tr>
<tr>
<td>MON</td>
<td>Signal Monitoring tool in PCM600</td>
</tr>
<tr>
<td>NCC</td>
<td>Network control center</td>
</tr>
<tr>
<td>PCM600</td>
<td>Protection and Control IED Manager</td>
</tr>
<tr>
<td>PST</td>
<td>Parameter Setting tool in PCM600</td>
</tr>
<tr>
<td>SAB600</td>
<td>Substation automation builder tool</td>
</tr>
<tr>
<td>SCD</td>
<td>Substation configuration description</td>
</tr>
<tr>
<td>SCL</td>
<td>XML-based substation description configuration language defined by IEC 61850</td>
</tr>
<tr>
<td>SMT</td>
<td>Signal Matrix tool in PCM600</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User datagram protocol</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide area network</td>
</tr>
<tr>
<td>WHMI</td>
<td>Web human-machine interface</td>
</tr>
</tbody>
</table>
ABB Inc.
Distribution Automation
4300 Coral Ridge Drive
Coral Springs, FL 33065, USA
Phone +1 (800) 523-2620
Phone +1 954-752-6700
Fax +1 954 345-5329
www.abb.com/substationautomation