PGC5000シリーズ プロセスガスクロマトグラフ

PGC5000B型 スマートオープン™ は
信頼性と簡潔さを求めて設計されています
新しいPGC5000B型 スマートオープン™のご紹介

信頼性と簡潔さを求めて設計されています

石油、石油化学産業で炭化水素類を個別に分析するのに、最も多くの結果が得られ、汎用性のあるオンライン分析装置はプロセスガスクロマトグラフ（PGC）です。現在、世界中で30,000台以上のプロセスガスクロマトグラフが設置されていると見られています。

ABBプロセスアナリティクスはプロセスガスクロマトグラフィの分野で50年以上の経験と実績を持つリーダーとして認められています。ABBプロセスアナリティクスはここにPGC5000シリーズを投入することにより、この先の50年もオンラインプロセスガスクロマトグラフを進化させ革新を続けます。

PGC5000シリーズ

拡張性があり、簡潔で、取扱いが容易です

PGC5000シリーズは、1台のPGC5000A型マスタコントローラと本質的に安全な光ファイバで接続できる4台までのPGC5000B型アナライザーオープンから構成されます。

PGC5000A型マスタコントローラは工業標準の採用により操作が容易となっています。グラフィック表示によるヒューマンインタフェースは「ポイントアンドクリック」で簡単に操作できます。多くの機能にニステップ以下でアクセスすることができます。これにより、簡単なアプリケーションでも、複雑なアプリケーションでも、分析メソッド作成、変更、編集を簡単に行なえるようにしています。

PGC5000B型アナライザーオープンは、簡単なアプリケーションでも、複雑なアプリケーションでも、シンプルな構成のように設計されています。これは、オープンの構成をバルブは3個まで、検出器は1個とすることにより達成しています。構成部品を少なくすることにより、分析を簡潔にし、信頼性を高めています。複雑なアプリケーションもPGC5000B型アナライザーオープンを4台まで組み合わせることによりシンプルになります。
マルチオープン方式の利点

一つの測定要求に対して、マルチオープンを採用する大きな理由は、複雑な分析をより簡潔な方法に分解し、それによって少ない部品で簡潔で長期にわたって信頼性のあるものにすることです。複雑な測定を幾つかの方法に分けることで、分析のやり方をより理解しやすく、また維持し易くすることができます。分析の問題点や欠陥のトラブルシューティングをより論理的にします。もし分析にアラーム状態や問題があるときは、どこに欠陥が起きているのか認識するために、分析の各シーケンスを個別に見ることができます。マルチオープンと単一コントロール方式を採用すると、さらに次のような利点があります：

- マルチオープンそれぞれにコントローラを持つことにより、分析シーケンスを他のオープンの動作にかかわらず操作できます。
- 重要な測定のバックアップができます。
- オープン内の温度を個々に設定できるので、沸点範囲の広い炭化水素の分離測定に、それぞれに最適なカラムを選択することができます。
- 測定の速度を速めるために、同時測定のシーケンスを使うことができます。
- 一つの測定要求に対して、4式までのオープンを同時にコントロールすることができるので、多流路の複雑な測定を簡潔で信頼性のある方法で実行するための、ほぼ無制限なアプローチができます。

設置スペースと費用の削減

より小型に設計されたPGC5000B型アナライザオープンは設置スペースやユーティリティを削減します。従来のプロセスガスクロマトグラフと同じ占有面積に、二台までのアナライザオープンとPGC5000A型マスタコンントローラを設置することができます。プロセスガスクロマトグラフの約60%は、3個以下のハルプと1個の検出器しか使用していないので、同じ設置場所で2式のプロセスガスクロマトグラフに置き換えることができます。このことにより、大型のプロジェクトでは、アナライザシェルタの数を減らすことができます。
PGC5000B スマートオープン™

PGC5000B型オープンはフローコントロール部、オープン、電子回路部の3セクションからなります。各セクションは前面からアクセスします。また、電子回路部は側面からもアクセスすることができ、重要な部品の保守点検が容易にできるようになっています。

すべてのガス配管接続口はオープンの右側面にあります。これによりマルチオープンを上下に並べて設置し、配管をシンプルで、アクセスし易くします。

各オープンは、そのマスタコントローラの内部にオープンコントロールボードを持っています。これによって各スマートオープンはそれぞれ独立して分析メソッドを実行することができます。

オープンコントローラとその周辺機器（ディジタル温度コントローラ、検出器、電子式圧力調整器など）の間はCAN/パス通信が採用されています。これらの機器が持つディジタル信号処理（DSP）機能が、一括コントロールより分散コントロールを可能にし、これにより各機器のライフサイクルを向上させます。また設計変更がユーザーにも分かり易くなります。

フローコントロール部

フローコントロール部には、PGC5000の標準仕様として電子式圧力調整器（EPC）が搭載されています。これにより、PGC5000A型マスタコントローラのキーパッドから直接、または別のPGC5000A型マスタコントローラやネットワーク上のPCからリモートで5ゾーンまでの圧力を設定できるようにするものです。ディジタルコントロールにより、機械式圧力調整器よりはるかに精密に再現良好な圧力を設定することができます。このEPCモジュールは高速高性能マイクロプロセッサを搭載し、3桁の圧力設定ができるほか、次の特長があります：

- クロマトグラムの分解能、保持時間の安定性を向上
- 分析時間を短縮により、クロマトグラフィ分析を改善します。
- 压力プログラムを使って分析時間の短縮を図ることができます。
- 周囲温度、キャリアガス圧力、大気圧の影響を除くことにより、分析計の安定性を向上させます。
- 同一の分析計内で、メソッドごとに流量を変えられるので、アプリケーションの範囲を広げることができます。
オープン

オープン（恒温槽）には、気体や液体分析のために、3個までのバルブ、1個の検出器（シングルボートTCD、新型のマルチボートTCD、FIDのいずれか）、新しく小型化された触媒式空気精製器／メサナイザ、オープンヒータと分離カラムが収納されます。各分析計は、オープン内を効率的に配置することにより、オープン内の重要な部品を容易に扱うことができるようになっています。

■切替バルブ

CP型スライディングプレートバルブ

CP型スライディングプレートバルブは、連続使用に耐え、バックドカラムやキャピリカラムに使用します。スライダは、气密性を保つために、スライダの磨耗も自動的に補償される構造になっています。圧力は1.02MPaまで、温度は180℃まで使用できます。CP型バルブは構造が簡単で保守が容易なバルブです。保守費用も最小になるようにしたガスクロ用バルブです。

DV-22型ダイアフラムバルブ

DV-22型ダイアフラムバルブは、バックドカラムやキャピリカラムに使用します。圧力2.07MPaまで、温度は200℃まで使用できます。このバルブはパルプタイミングが重要であり、より高速で測定に用いるため、スイッチングを理想的に使用されます。

781型マイクロ液体サンプル注入バルブ

オプションの触媒式空気精製器／メサナイザ

新型触媒式空気精製器／メサナイザ

オプションの触媒式空気精製器／メサナイザは通常FID検出器とともに使用され、従来型より40%小型になり、消費電力も50%以下になっています。

分離カラム

分離カラムには、分析計に応じて、バックドカラム、キャピリカラムまたはマイクロバックドカラムがあります。ABBは50年以上にわたりバックドカラムを製造しています。そしてその間にカラムの性能を常に最良に維持することができる製造方法を発展させてきました。
オープン電子回路部

分析部オープンの電子回路には、検出器信号のディジタル信号処理回路、温度制御回路、圧力制御回路、ソレノイドリレー制御回路、ヒータ制御回路およびディジタル信号入力回路が収納されています。また、ここには24V電源もあります。前面および側面からアクセスできるので、トラブルシューティングや電気部品の取り外し、交換を容易にしています。

■検出器信号の処理

プロセスガスクロマトグラフの究極の目的は、ユーザーに成分濃度の正確で再現性のある値を提供することです。アナライザオープンの電子回路部にある検出器前置増幅器とピーク検出ソフトウェアを使用してこの仕事を遂行します。

ピーク検出アルゴリズムが、クロマトグラムをスキャンし、信号のどの部分が必要なピークであるのかを決定するのに用いられています。これは通常二つのステップで行われます。最初に、ピーク信号の面積を積分する始点と終点を決めなければなりません。それから、ピーク信号は電常にゼロから始まり、ゼロで終わっていないので、ピークの真の面積を決定しなければなりません。このステップをベースライン補正と呼んでいます。

PGC5000B型アナライザは、面積積分のアルゴリズムにおいて検出器信号のベースラインノイズ演算とピーク演算をともに使用しているので、すべての成分測定において一貫して再現性のある測定ができる最小／最大法によるピーク検出アルゴリズムを組み込んでいます。これには、ピーク頂点に対するウィンドウ、積分開始および停止、そしてベースライン補正の開始および停止の機能も入っています。グラフィックインタフェースを有するPGC5000A型マスタコンタローラは、ピーク毎にこれらのパラメータを簡単に容易に設定します。
■ デジタル温度コントロール

デジタル温度コントロール機能が、オープン、吸湿式空気製塩器／メサナイザ、液体サンプル部の温度コントロールに用いられています。デジタル圧力コントロールの場合と同様に、デジタル温度コントロールによりアナログ式温度コントロールより正確に再現性良く温度を設定することができます。すべての温度設定値を見た、変更したりすることがPGC5000A型マスタコントローラやネットワークのPCからできます。これらの作業をグラフィックインタフェースで非常に簡単にできます。

■ モジュール構成の電磁弁用マニホールド

モジュール構成の電磁弁用マニホールドには、電磁弁、駆動回路およびマニホールドを標準構成としています。このモジュールはスイッチングパルプ（電磁弁）を標準で3個、オプションでさらに10個を搭載できます。またオプションでこのマニホールドをオープンの外側に増設することもできます。このモジュールは光ファイバケーブルで接続されます。各オープンコントローラはデジタル出力を64点まで出すことができます。（即ち8チャンネルが8モジュール）

■ PGC5000B型スマートオープン" の標準入出力

PGC5000B型スマートオープン" はディジタル入力(5VDC、1mA)を16点、コモン異常信号出力としてリレー接点出力1点、パーソナルアラーム信號としてリレー接点出力1点を有しています。

■ オプションのアナログ、ディジタル入力

アナログ、ディジタル入力のオプションとして、DIN規格のレールに搭載するCANモジュールが用意されています。これらはアナライザオープンに外付けすることができ、光ファイバケーブルで接続されます。これにより各アナライザは、4チャンネルモジュールを搭載してアナログ出力32点またはアナログ入力32点を、また8チャンネルモジュールを搭載してディジタル入力64点またはディジタル出力64点をサポートすることができます。
アプリケーション技術

ABBのアプリケーションエンジニアはクロマトグラフィテクノロジーの分野において、長年の経験を有し、バイオニクス、イノベーションとして世界に認められたリーダーです。この経験とPGC5000シリーズの性能が結び合われ、プロセス分析の広い分野にクロマト分析技術を適用し、ABBは目標の測定時間を実現するのに成功しています。

特定の測定要求については打合せし、PGC5000シリーズについてさらに詳細な情報を必要とする場合は、ABBの代理店にご連絡ください。

信頼できるパートナーです

投資した設備やシステムから高い生産性を獲得するには、設備やシステムが昼夜を分かたず完全に稼働することが必要です。そのためには、設備やシステムの全ライフサイクルの期間を通じて、分析計やそのシステムを完全に稼働、維持させ、緊急時にはすぐにお信頼できるパートナーを持たなければなりません。

ABB認定者によるサービス

ABB は工場で認定したサービスエンジニアを提供しています。この訓練されたサービススペシャリストは何年もの経験と十分なノウハウを持ち、いつでもサービスを提供することができます。

ABBの強み

- 工場で認定されたインストラクタによる、ドキュメント類、実機を使用したテストによる教習と実習
- 新製品や新技術についてのサービス員に対する定期的トレーニング
- 3段階のサポート体制

認定レベル1
世界中のほとんどの国で利用できる、訓練を受け経験を積んだサービススペシャリストによるフィールドでのサポート

認定レベル2
分析計について十分の知識と長期の経験を持ったスペシャリストによるサポート

認定レベル3
工場でのサポートグループによるサービス

ABB は製品の継続的な開発・改良を進めています。本書の内容は予告なく改訂されることがありますので、ご覧ください。

ABB株式会社
プロセスオートメーション事業部
〒150-5512 東京都渋谷区桜丘町26番1号セルリアンタワー
TEL：(03) 5784-6261 FAX：(03) 5784-6276
E-mail：bs.communications@jp.abb.com

Copyright © ABB株式会社
説明は予告なく変更することがあります。このカタログに含まれている写真、図及びその他の画像はイラストレーションのために使用されており、製品の形状、機能を表すものではありません。製品に到着するユーザー向け文書が機関説明の唯一の情報源です。