Multivariable CD control applications

By Shih-Chin Chen, Jonas Berggren, and Andreas Zehnpfund, QCS R&D

Cross-machine direction profile control has been a key area of advanced control applications in the paper industry since the early seventies [1-11]. In the past thirty years, the number of profile control applications on paper machines has increased dramatically. The total number of CD actuators installed between 1990 and 2007 exceeds 6,000 sets. As a result, many paper machines today are equipped with multiple sets of CD actuators. It is quite common that different CD actuators are added sequentially to existing machines for controlling particular sheet property profiles. Therefore, many paper machines have multiple sets of CD actuators working independently on the same machine. Even though papermakers recognised that one set of actuators may influence multiple sheet properties and one sheet property may be affected by multiple sets of actuators, there is no easy way to coordinate multiple CD actuators through independent single-input, single-output CD control applications.

Early attempts to coordinate multiple CD actuators were severely restricted by the capabilities of quality control systems (QCS) and the limited communication available among multiple actuators. A few alternative approaches were implemented to handle special cases [4, 12-15]. For cases where one actuator set influences multiple profiles, these profiles are combined together with proper weightings to generate a weighted profile and a CD control was designed to minimise the variation of the weighted profile [4, 12]. The implementation was simple and results were effective for specific applications. In other cases where one profile is changed by multiple sets of actuators, one approach [13] separates the input profile in multiple profiles based on the spatial frequency contents in the profile and then feeds one separated profile to each actuator set. Each actuator set controls the separated profile independently. Another approach [14, 15] predicts profile changes based on the control actions derived for the first set of actuators. The predicted profile changes are removed from the source profile. The difference profile is fed to the second set of actuators for control. Similar steps are applied to multiple sets of CD actuators in cascade. The execution of control actions is synchronised. All these approaches have had limited success and can only be applied to special cases.

Success through partnership!
Take the lead with BTC Speciality Chemicals.

BTC Speciality Chemical Distribution is the pan-European sales organisation of BASF focused on speciality chemicals and performance polymers. We offer you the competence and reliability of the world’s leading chemical company, combined with the flexibility and speed of our regional organisations. Our quality portfolio of high value products, individual services and system solutions helps you to take the lead in your business.
While alternative solutions have been applied in the past, the computing power and network communication of industrial control systems have significantly evolved in recent years. During this time, the applications of modern multivariable control techniques were also widely adopted in the paper industry. The use of personal computers and the OPC (OLE for Process Control) communication standard in the industry opens opportunities for new ways to control paper machines [16]. Multivariable CD control becomes the latest advanced control technique for paper machines [17-19].

Fig. 1 illustrates an example of a process where profiles may come from several machine locations and control actions are applied to multiple sets of CD actuators, such as slice screws, steam box, water sprays, and/or induction profilers. In some sections of machines, the sheet width may change and the sheet may oscillate sideways, so the scan limits may be different at each frame. The threading distance between each frame and actuator location is different, hence transport delays vary. Sensors on different scanners may not be synchronised and profiles may not be updated at the same time. Therefore, profiles from different frames may have different sizes, may not align ideally, and may not update simultaneously.

Similar to the complexity of measured profiles, CD actuators are located in different sections of the paper machine. Each actuator set consists of a different number of zones across the web with
different zone widths. Zones among different sets may not be aligned and may have different edge references.

To implement an advanced control for this multivariable process, we need models and alignment relationships for each input and output pair to describe the responses of each actuator zone.

The model of each zone consists of both spatial (cross-machine direction) and temporal (machine direction) responses. The temporal response is typically modeled as a first order dynamics with transport delay. Depending on actuator types, the spatial response could have a few different response characteristics. Fig. 2 shows examples of several possible spatial responses.

There are multiple objectives for a multivariable control to achieve. The primary goal is to produce a paper sheet where all profiles (weight, moisture, caliper, fiber orientation, etc.) are uniform. The control performance is quantified by profile variance relative to a target profile. Therefore the primary control objective is to minimise the variance of all profiles with respect to their target profiles. However, to minimise profile variations may require competing control actions among multiple actuator sets. This leads

References

to the need for trading priorities among different profiles while keeping all actuators within constraints. Multivariable CD control scheme has weighting factors that allow users to make their trade-off among different profiles. In practice, not all profiles and all actuators are always needed in a single multivariable control configuration. Depending on different process conditions, a subset of the full multivariable control may be more appropriate. The multivariable CD control is also flexible enough to accommodate this requirement.

System architecture

To make the implementation of multivariable CD control seamlessly integrated with modern control architecture [16], open communication standards such as OPC and TCP/IP are fully utilised. Fig. 3 illustrates the network layout of ABB’s Multivariable CD control. The multivariable CD control resides in an OPC server called Advanced Multivariable Control Server (AMCS). AMCS communicates via the standard Ethernet to various OPC servers for obtaining paper machine data such as frame information, measured profiles, actuator control modes and feedbacks, machine speed, grade data, etc. After the multivariable CD control derives desired control actions, it sends setpoint outputs to the various actuator systems via OPC. This architecture allows the multivariable CD control to be integrated with many existing QCS. AMCS can be installed on nearly any paper quality control system that supports standard OPC communication.

When it comes to creping - talk to the experts!

BTG Epánpes S.A., is the inventor and producer of the original high-performance creping blade, Duroblade®, as well as the unique CBC™ creping blade holder.

BTG now offers a more complete Tissue Service Package, containing services such as:
- Creping process surveys, blade holder performance, vibration monitoring, edge build-up cleaning solutions
- Blade wear- and performance analyses, on-site training and trial support in local languages
- Blade tracking, consignment- and safety stocks, express deliveries.

Well-known for high-quality service and with a mission to increase your productivity, we are only a phone call away whenever you need our assistance.

Talk to the experts!

www.btg.com duroblade@btg.com

Visit us at the following shows in October:
Japan TAPPI, MIAC, ABTCP and ATIP. See you there!
results and the flexibility to make clear trade-offs. There are also a number of displays that specifically designed for engineers to setup and configure a multivariable CD controller.

Application examples

Example 1: Weight and moisture control on a dual-headbox liner-board machine

A linerboard machine is frequently equipped with two or more headboxes. Each headbox has a set of slice screws for controlling both weight and moisture profiles. On the same machine there might also be other CD actuators such as a steambox and a water spray. Fig. 4 illustrates an example of such a machine that has four sets of CD actuators. The slice screws from primary and secondary headboxes have been selected to control both the weight and the moisture profiles. The trade-off between weight and moisture allows the moisture profile to be more tightly controlled.

Example 2: Weight and twist profile control on a multi-headbox machine

On paper machines, it is well known that the slice opening shape influences weight and fiber orientation simultaneously. Fiber orientation determines the twist characteristics of a sheet. The example in Fig. 5 demonstrates that multivariable CD control can effectively control both weight and twist, which is derived from fiber orientation measurements. This example shows that multivariable CD control effectively utilises multiple headboxes to balance the control of multiple profiles so that the sheet properties are fully optimised.

Example 3: Gloss and caliper control on a supercalender

For a supercalender application it is very crucial to obtain uniform high gloss on both sides of the sheet and maintain a specified caliper profile for good reel building. The following example in Fig. 6 shows that a multivariable CD control achieves the above goals with two induction CD actuators on a supercalender. The multivariable CD control is an indispensable tool to enhance supercalender applications.

Summary

The state of the art multivariable CD control described here has been applied to a variety of machines. The advanced control implementation and easy-to-use HSI has empowered papermakers to fully utilise the capability of their paper machines. Multivariable CD control flexibly coordinates multiple sets of CD actuators. The underlying control algorithm systematically makes the best utilisation of the control ranges of all actuators and controls sheet property profiles toward their targets. The application and the results of multivariable CD control have been well accepted by papermakers.

Parsytec

Turning quality data into integrated decision data

Reverting to approved methods and solutions is regarded as stagnancy in the fast moving world of technology. Thus, further developments, innovation, and speed have to determine the appearance of a company. True to this philosophy, Parsytec presents new means of production process optimisation in coating machines. The cue in this context is made out to "automatic defect classification".

Paper producers long to manufacture high quality products at reasonable costs. Hence, men and machines must work together and complement each other in order to reach this goal. Obviously, the solution most wanted comprises of innovations adapted specifically to customer needs. Those needs arise from discontent, which again may have various reasons. The most common are downtimes of the paper machine that cost great amounts of money and time. These standstills are often caused by web breaks or machine damage – both may find their origin in web defects.

Looking in on web defects

First of all, before defining the term "web inspection system", the meaning of web defects has to be illustrated. Web defects are abnormalities that arise on the produced paper. Their origins may vary,