Voltage Regulator

SPAU 341 C

Product Guide

Voltage Regulator

Product Guide

Features

SPAU 341 C 1MRS750400-MBG

Issued: July 1998 Status: Updated Version: D/25.04.2006 Data subject to change without notice

•	Comprehensive voltage regulation for
	power transformers with on-load tap-
	changers in distribution substations

- 1 A and 5 A tappings on the energizing phase current inputs
- Selectable rated energizing input voltage of phase-to-phase voltage measurement: 100 V, 110 V, 120 V
- Three-phase overcurrent and undervoltage blocking
- Line-drop compensation
- Maximum three transformers can be operated in parallel when the minimizing circulating current principle is used. Master/slave and negative reactance principles can be used with an unlimited number of transformers in parallel.
- Tap changer position measurement

- Local man-machine communication via push-buttons and digital display on the front panels of the regulator modules
- Serial interface for connecting the regulator to higher-level data acquisition systems, local/remote control systems or other host systems
- High immunity to electrical and electromagnetic interference
- Continuous self-supervision of regulator hardware and software for enhanced system reliability
- Auto-diagnostic fault indication to facilitate fault location and repair
- Powerful software support for parameterizing the regulator, for reading measured values, events, etc., and for storing set values
- CE marking according to the EC directive for EMC

rent principle.

When the master/slave principle is used the

unlimited. One regulator acts as the master

and calculates the voltage drop on the basis of

power transformers are equally loaded. In this

When the negative reactance principle is used

the module compares the actual phase shift with the set load phase shift and by measur-

ing the current the compensating value that

affects the regulator control voltage, can be

calculated. The negative reactance principle can be used for controlling power transformers with different ratings and step voltage val-

ues. Since, in this principle, no connection is

required between the regulators, even trans-

formers located in different substations can

When the minimizing current principle is

used the number of parallel power transform-

ers maximum is three. Each voltage regulator

module transmits its own current and phase

be operated in parallel.

4

number of parallel power transformers is

its own measurements, assuming that the

application a direct wiring is required

between the voltage regulators.

Application	The voltage regulator SPAU 341 C is intended to be used in distribution substations for automatic and manual voltage regulation for power transformers with on-load tap- changers. The regulator can be used in associ- ation with a single power transformer by measuring voltage alone. When two or three power transformers are run in parallel and more sophisticated regulating principles are	used the voltage regulators need to measure both voltage and current. Further, a means of communication between the regulators must be provided. When two transformers are run- ning in parallel three operating principles can be selected, i.e. the master/slave principle, the negative reactance principle or the minimiz- ing circulating current principle.
Design	The fully equipped voltage regulator includes four modules: a connection module, an I/O module, an automatic voltage regulating module and a manual voltage regulating mod- ule. The regulator modules are multi-func-	shift values to the other modules operating in parallel. The modules calculate the total value of the busbar current and the phase shift and compare this value with their own values.
	tional microprocessor-based plug-in units. The voltage regulator is available in two ver- sions: with or without the manual voltage regulating module. The regulator modules are provided with local man-machine communi- cation interfaces.	Manual voltage regulating module SPCU 1D56 When the voltage regulator is set for manual operation the tap changer of the power trans- former can be controlled via the push-buttons of the manual voltage regulating module. If a
	Automatic voltage regulator module SPCU 1D50 The automatic voltage regulator module is used for automatic control of the tap changers of power transformers. The module can con-	raise or lower command cannot be executed because of an overcurrent situation or exter- nal blocking, the operator will be notified by means of the LED indicators marked I> or BLOCK. The display of the module shows setting values, tap-changer positions and
	trol parallel transformers in three different ways, i.e. using the master/slave, the negative reactance and the minimizing circulating cur-	measured values.

Data communication

The relay is provided with a serial interface on the rear panel. By means of a bus connection module type SPA-ZC 17 or SPA-ZC 21 the relay can be connected to the fibre-optic SPA bus. The bus connection module type SPA-ZC 21 is powered from the host relay, whereas the bus connection module SPA-ZC 17 is provided with a built-in power unit, which can be fed from an external secured power source. The relay communicates with higher-level data acquisition and control systems over the SPA bus.

When several voltage regulators are to be operated in parallel, bus connection modules type SPA-ZC 100 are used.

Self-supervision

The regulator incorporates a sophisticated self-supervision system with auto-diagnosis, which increases the availability of the equipment and the reliability of the system. The self-supervision system continuously monitors the hardware and the software of the device. The system also supervises the operation of the auxiliary supply module and the voltages generated by the module. When a permanent internal relay fault is detected, the IRF indicator on the relay front panel is lit. At the same time the output relay of the self-supervision system operates and a fault message is transmitted to the higherlevel system over the serial bus. Further, in most fault situations, a fault code is shown in the display of the protection relay module. The fault code indicates the type of the fault that has been detected.

Auxiliary supply voltage

The auxiliary supply of the relay is obtained from an internal plug-in type power supply module. Two auxiliary power module versions are available: type SPGU 240A1 for the supply voltage range 80...265 V ac/dc and type SPGU 48B2 for the supply voltage range 18...80 V dc. The power supply module forms the internal voltages required by the protection relay and the I/O module.

Technical data

Table 1: Energizing inputs, voltage inputs

Rated voltage U _n , selectable	100 V (110 V, 120 V)
Terminal numbers	X0/13-14
Continuous voltage withstand	$2 \times U_n$
Rated burden of voltage input at Un	<0.5 VA
Rated frequency f _n , according to order	50 Hz or 60 Hz

Table 2: Energizing inputs, current measuring inputs

Rated current In		1 A	5 A
Terminal numbers		X0/1-3, 4-6, 7-9	X0/1-2, 4-5, 7-8
Thermal current	continuously	4 A	20 A
withstand	for 10 s	25 A	100 A
	for 1 s	100 A	500 A
Dynamic withstand	half-wave value	250 A	1250 A
Input impedance		<100 mΩ	<20 mΩ

Table 3: Output contact ratings

Type of contact		Tap-changer control	Signalling
Terminal numbers		X2/1-2, 3-4	X2/5-6, 7-8, 9-10-11, 14-15-16
Nominal voltage		250 V ac/dc	
Thermal withstand	Carry continuously	5 A	5 A
capability	Make and carry for 0.5 s	30 A	10 A
	Make and carry for 3 s	15 A	8 A
Breaking capacity for dc,	220 V dc	1 A	0.15 A
when the control circuit	110 V dc	3 A	0.25 A
time constant $L/R \le 40$ ms, at the control voltage levels	48 V dc	5 A	1 A

Table 4: External control inputs

Terminal numbers	X1/1-2, 3-4, 5-6, 7-8, 9-10, 11-12, 13-14	
External control voltage	18250 V dc or 80250 V ac	
Typical control current of input circuit	220 mA	

Table 5: External mA input

Terminal numbers	X1/15-16
External control current	020 mA
Input resistance	300 Ω

Product Guide

Table 6: Auxiliary supply modules

Power module SPGU 240A1	rated voltages U _n	110/120/230/240 V ac 110/125/220 V dc
	operative voltage range	80265 V ac/dc
Power module	rated voltages Un	24/48/60 V dc
SPGU 48B2	operative voltage range	1880 V dc
Power consumption, quiescent/operation conditions		~10 W/~15W

Table 7: Automatic voltage regulating module SPCU 1D50

Operate time setting range	0.0300 s
Operate time accuracy at definite time characteristic	\pm 1% of set value or \pm 250 ms
Operate time accuracy at inverse time characteristic	± 250 ms and the inaccuracy appearing when the measured voltage varies $\pm 0.3\%$
Minimum operate time at inverse time characteristic	1 s

Table 8: Manual voltage regulating module SPCN 1D56

Accuracy, mA input signal	±1% of FSR	
Output pulse duration, selectable	0.5010 s in 0.1 s steps	

Table 9: Data communication

Transmission mode		Fibre-optic serial bus
Data code		ASCII
Data transfer rate, selectable		4800 or 9600 Bd
Optical bus connection module for plastic core		SPA-ZC 21BB
	for glass fibre cables	SPA-ZC 21MM
Optical bus connection module powered from the	for plastic core cables	SPA-ZC 17BB
internal power source	for glass fibre cables	SPA-ZC 17MM
Optical bus connection module for parallel operation	for plastic core cables	SPA-ZC 100BB
	for glass fibre cables	SPA-ZC 100MM

7

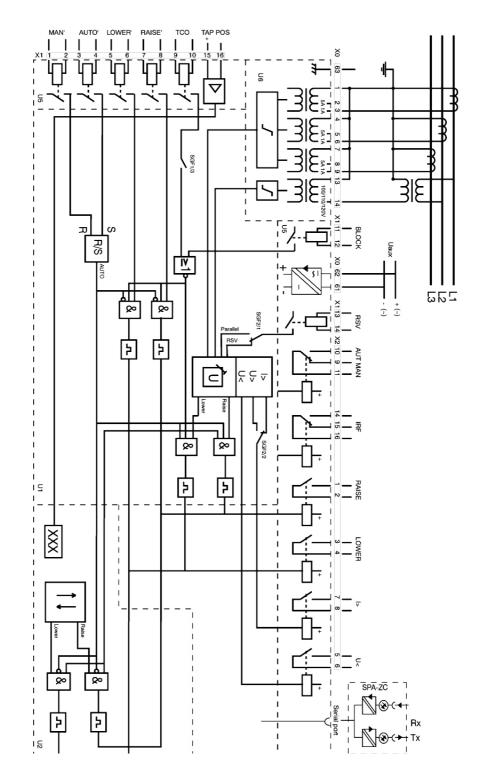

Product Guide

Table 10: Tests and standards

Test voltages	Insulation resistance voltage (IEC 60255-5)	>100 MΩ, 500 V dc
	Impulse test voltage (IEC 60255-5)	5 kV, 1.2/50 μs, 0.5 J
	Dielectric test voltage (IEC 60255-5)	2 kV, 50 Hz, 1 min
Interference tests	High-frequency (1 MHz) disturbance test (IEC 60255-22-1), common mode	2.5 kV
	High-frequency (1 MHz) disturbance test (IEC 60255-22-1), differential mode	1.0 kV
	Fast transients (IEC 60255-22-4, class III and IEC 61000-4-4, level 4), power supply inputs	4 kV, 5/50 ns
	Fast transients (IEC 60255-22-4, class III and IEC 61000-4-4, level 4), other inputs	2 kV, 5/50 ns
	Electrostatic discharge (IEC 60255-22-2 and IEC 61000-4-2, class III), air discharge	8 kV
	Electrostatic discharge (IEC 60255-22-2 and IEC 61000-4-2, class III), contact discharge	6 kV
Environmental conditions	Service temperature range	-10+55°C
	Transport and storage temperature range (IEC 60068-2-8)	-40+70°C
	Temperature influence – voltage measurement	<0.025%/°C
	Temperature influence – tap-changer position measurement	<0.025%/°C
	Temperature influence – current measurements	<0.1%/°C
	Damp heat test (IEC 60068-2-30)	9395%, +55°C, 6 cycles
	Degree of protection by enclosure of flush mounting regulator case according to IEC 60529	IP 54
	Weight of fully equipped regulator	~5.5 kg

Product Guide

Block diagram

BSPAU341

Fig. 1 Block diagram and sample connection diagram

Voltage Regulator

Product Guide

Mounting and dimensions

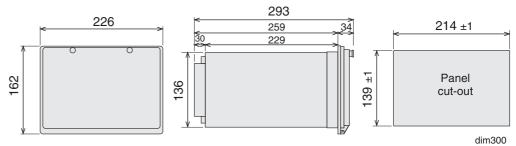
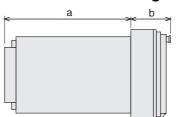



Fig. 2 Flush-mounting relay case (dimensions in mm)

Semi-flush mounting

Raising frame	а	b
SPA-ZX 301	219	74
SPA-ZX 302	179	114
SPA-ZX 303	139	154

SFM300_1

Fig. 3 Semi-flush mounting relay case (dimensions in mm)

Mounting in 19 inch cabinets and frames

An ancillary mounting plate, height 4U (~177 mm), is recommended to be used when the protection relays are to be mounted in 19 inch frames or cabinets. The ancillary mounting plate type SPA-ZX 304 accommodates two size 300 relays and type SPA-ZX 305 one size 300 relay.

Projecting mounting

When projecting mounting is preferred, a relay case type SPA-ZX 317 is used. The relay case for projecting mounting is provided with front connectors.

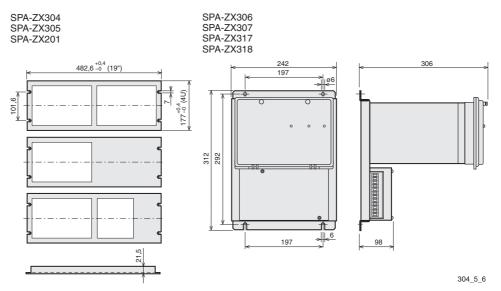


Fig. 4 Mounting cabinets and frames as well as projecting mounting (dimensions in mm)

Product Guide

Ordering

When ordering, please specify:

Ordering information	Ordering example
1. Type designation and quantity	SPAU 341 C1, 5 pieces
2. Order number	RS 488 003-AA
3. Rated frequency	I _n =5 A, U _n =110 V, f _n =50 Hz
4. Auxiliary voltage	U _{aux} =110 V dc
5. Accessories	-
6. Special requirements	-

Order numbers

Voltage regulator SPAU 341 C_ without test adapter	
SPAU 341 C1, incl. modules SPCU 1D50 and SPCN 1D56	RS 488 003-AA, CA, DA, FA
SPAU 341 C3, incl. module SPCU 1D50	RS 488 005-AA, CA, DA, FA
The last two letters of the order number indicate the rated frequency f_n and the auxiliary voltage U_{aux} of the relay as follows:	AA equals $f_n = 50$ Hz and $U_{aux} = 80265$ V ac/d
	CA equals $f_n = 50$ Hz and $U_{aux} = 1880$ V dc
	DA equals $f_n = 60$ Hz and $U_{aux} = 80265$ V ac/dc
	FA equals $f_n = 60$ Hz and $U_{aux} = 1880$ V dc

Voltage regulators SPAU 341 C_ including test adapter RTXP18		
SPAU 341 C1, incl. modules SPCU 1D50 and SPCN 1D56	RS 488 203-AA, CA, DA, FA	
SPAU 341 C3, incl. module SPCU 1D50	RS 488 205-AA, CA, DA, FA	
The last two letters of the order number indicate the rated frequency f_n and the auxiliary voltage U_{aux} of the relay as follows:	AA equals $f_n = 50$ Hz and $U_{aux} = 80265$ V ac/d	
	CA equals $f_n = 50$ Hz and $U_{aux} = 1880$ V dc	
	DA equals $f_n = 60$ Hz and $U_{aux} = 80265$ V ac/dc	
	FA equals $f_n = 60$ Hz and $U_{aux} = 1880$ V dc	

References

Additional information

User's manual and technical description "Voltage	1MRS 750110-MUM EN
regulator SPAU 341 C"	

ABB Oy Distribution Automation P.O. Box 699 FI-65101 Vaasa, FINLAND Tel +358 10 22 11 Fax +358 10 224 1094 www.abb.com/substationautomation