Introduction

9408-80 systems complement the highly successful 9408 floating ball, dip and submersible systems and employ the well-proven 8012 oxygen sensor. A key feature is the bayonet snap-fit connection which makes removal for calibration very easy and convenient. The typical life of the 8012 oxygen sensor is 12 months, although many users benefit from a much longer operational period.
For more information
Further publications are available for free download from:
www.abb.com/analytical

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
</tr>
</thead>
<tbody>
<tr>
<td>9408 series</td>
</tr>
<tr>
<td>Dissolved oxygen systems</td>
</tr>
<tr>
<td>Data Sheet</td>
</tr>
<tr>
<td>DS/9408-EN</td>
</tr>
</tbody>
</table>
1 INTRODUCTION

1.1 Purpose – Fig. 1.1
This instruction manual describes the installation and maintenance of the 9408-8000 Series Dissolved Oxygen System.

1.2 Systems and Cartridges – Fig. 1.1
Systems comprise a cartridge and a ‘T’ piece flowcell with connection fittings. The table below summarizes the available combinations of pipe size/connection type, cable length and cleaning option. Part numbers for individual items are listed in the Spares Section.

Note. This dissolved oxygen sensor is an electrochemical cell using lead based Chemistry. This ABB product in alignment with the industry of medical devices and monitoring and control instruments for dissolved oxygen measurement under ROHS (Directive 2011/65/eu) are exempted under Annex IV, part 1b for lead anodes in electrochemical sensors. Under normal use, both lead and its oxidised form, lead oxide, exist within the cell but pose no risk in operation or when disposed in conjunction with the disposal requirements of WEEE.

In alignment with the REACH Regulation, (EC 1907/2006) both lead (CAS 7439-92-1) and lead oxide (CAS 1317-36-8) are identified on the candidate list.

<table>
<thead>
<tr>
<th>Dissolved Oxygen System 9408/8</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process connections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" BSP</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>½" BSP</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1" NPT</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>½" NPT</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable length in metres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without cleaning</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With cleaning</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. Tube not supplied.

Fig. 1.1 System Schematics
2.1 Typical Installation

A typical installation is shown in Fig. 2.1. A recommended installation for samples which may have entrained air or are subject to intermittent flow is shown in Fig. 2.2.

![Fig. 2.1 Typical Installation](image)

Important Note. Installation must only be carried out in accordance with the local water authority and council bylaws.

Caution. The maximum water pressure at the electrode should not exceed 4 bar. At NO time should the sample pressure be allowed to exceed that of the Water Wash water supply. Fit a non return valve if this possibility exists.

Install a suitable solenoid valve (user supplied) to the mains water supply feed – see Important Note and Caution, above.

Connect a suitable length of \(\frac{3}{8} \) i.d. p.v.c. tube to the outlet of the solenoid valve. This tube terminates at the electrode installation point.

Push the quick-fit connector supplied, onto the free end of the tube. Note that the quick-fit connector incorporates a cut-off

Note. It is advisable to use a suitable hose clamp.

![Fig. 2.3 Installing the Water Wash Water Supply](image)

2.2 Water Supply for Water Wash Systems – Fig. 2.3 and 2.4

Information. As all quick-fit connectors used in Water Wash systems incorporate cutoff valves, tubes may subsequently be disconnected on operational equipment without sample loss or Water Wash discharge.

Note. For optimum performance of the Water Wash function in flow systems, the sample pressure should be at least 2 bars lower than that of the Water Wash water supply.

The water supply for the Water Wash system must come from a suitable supply via a solenoid valve. The general specification for the solenoid valve is:

- Brass body: 2/2, NC
- Orifice size: 3.0 / 4.0 mm
- Port size: \(\frac{1}{8} \) – \(\frac{1}{4} \) BS
- Pressure: 0 to 6 bar
- Coil: 110/115 V a.c. or 230/240 V a.c. 50/60 Hz

Before fitting the electrode cartridge system, install the water supply as shown in Fig. 2.3.

Note. See Fig. 2.3 for recommended tubing.

![Fig. 2.4 Location of Water Wash Nozzle](image)
2.3 Fitting the Dissolved Oxygen Sensor – Fig. 2.5

1. Remove dummy sensor from the cartridge.

2. Access the new sensor by unscrewing the sensor housing.

3. Unscrew the sensor from the shorting cap using the reverse end of the sensor housing as a tool.

4. Remove and discard the rubber sealing ring from the new sensor.

5. Dry the sensor with a paper tissue taking care not to damage the delicate, transparent membrane covering the silver cathode. Ensure that the gold contacts, and the threaded portion of the sensor are clean and completely dry.

6. Fit the new sealing ring supplied – see 4 above and screw the sensor into the cartridge body by hand, firmly.

7. Reverse the sensor housing and locate the lugs into the keyways on top of the sensor. Then using the sensor housing as a tool, tighten the sensor firmly by hand to ensure a good seal.

Caution. It is imperative to avoid damaging the membrane. EXTREME care must be taken when handling the sensor.

Fig 2.5 Fitting the Dissolved Oxygen Sensor

2.4 Installing the Cartridge

a) Fit the flowcell into the pipeline observing all safety precautions. Fit isolating valves where necessary to enable safe access to the sensor for maintenance purposes.

b) Ensure that all connections are tight.

c) Connect the end of the cable from the cartridge to the 4600 Series Transmitter – see Tables 2.1 and 2.2 and the appropriate 4600 Series manual.

d) Calibrate – see Section 3.

e) For Water Wash systems, snap on the water feed pipe from the solenoid valve – see Fig. 2.6.

h) Visually check water cleaning action by switching on the Water Wash option on the 4600 transmitter. There should be a vigorous jet of water sprayed across or onto the sensor membrane.

Table 2.1 Connections to the 4640 Dissolved Oxygen Transmitter

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+ve (red)</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-ve (blue)</td>
</tr>
<tr>
<td>4</td>
<td>screen</td>
</tr>
<tr>
<td>5</td>
<td>black</td>
</tr>
<tr>
<td>6</td>
<td>green</td>
</tr>
<tr>
<td>7</td>
<td>yellow</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+ve (red)</td>
</tr>
</tbody>
</table>

Table 2.1 Connections to the 4645 Dissolved Oxygen Transmitter

<table>
<thead>
<tr>
<th>Terminal No.</th>
<th>Wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBB</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>yellow</td>
</tr>
<tr>
<td>6</td>
<td>green</td>
</tr>
<tr>
<td>8</td>
<td>black</td>
</tr>
<tr>
<td>10</td>
<td>-ve (blue)</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>+ve (red)</td>
</tr>
</tbody>
</table>

Connect the screen to the earth stud on the case.
2 INSTALLATION

i) Ensure that all pipeline connections are securely fitted. Apply PTFE tape to the threads of the 1" NPT cartridge to effect a water tight seal, and check that the ‘O’ ring and sealing area are clean on bayonet.

j) Fit the electrode cartridge to the flowcell.

3 CALIBRATION

The procedures for zero and span calibration are fully described in the 4600 Series Transmitter Operating Instructions to which reference should be made.

Note. It is advisable to switch off the Water Wash before starting the calibration procedure. This can be done either by turning off at the transmitter unit, or by disconnecting the quick-fit connector.

1) Isolate the flowcell.

2) Remove the system from its mounting bracket.

Caution. It is imperative to avoid damaging the membrane when removing the cartridge (with sensor) from the flowcell. Use EXTREME care in step 3).

3) Remove the cartridge from the flowcell.

4) Wash the exposed sensor capsule CAREFULLY with clean water.

5) Calibrate as instructed in the 4600 Series Transmitter Operating Instructions.

6) Re-enable the Water Wash (if applicable).

7) Again, use EXTREME care when fitting the cartridge into the flowcell to avoid damaging the membrane; remount on the bracket and restore the sample.
4 MAINTENANCE

Regular maintenance is limited to periodic cleaning and calibration.

4.1 General Cleaning
To ensure accurate monitoring, the sensor membrane must be kept clean by periodic washing. The frequency depends on the particular application.

Caution. It is imperative to avoid damaging the membrane. EXTREME care must be taken when handling the sensor.

Wash the membrane using clean water and a soft cloth or tissue.

4.2 Calibration Requirement
Regular calibrations keep the system operating at the optimum level. Calibration also gives an early indication of degrading sensor performance. See Section 3 for the calibration procedure.

4.3 Replacing the Oxygen Sensor
The sensor is replaced whenever the existing one becomes exhausted. Typical sensor life is approximately 12 months.

Storage
DO:
— use sensors in date rotation to prevent them being stored longer than necessary.
— at all times, store sensors in a dry and cool environment.
— store sensors in a refrigerator to extend their life, but DO NOT allow them to freeze.
DO NOT:
— allow sensors to dry out, either in storage or in use.
— leave sensors in vehicles where they are likely to freeze or be exposed to high temperatures.
— leave sensors on-site without protection from direct sun or high temperatures.
— use the sensor if it's sealed environment has dried out.

1 Isolate and remove the cartridge from the flowcell.

Caution. Clean and dry the area around the sensor capsule before removal, as indicated below.

2 Use the sensor housing as a tool to unscrew the old sensor from the cartridge body (see 9 for method); discard the old capsule in accordance with local regulations.

3 Dry the cartridge body with a paper tissue; ensure that the gold electrical contacts, and the recess into which the capsule screws, are clean and completely dry.

Caution.
• Do not leave the new sensor exposed to air for more than 30 minutes as the membrane will dry out.
• Ensure the following steps are done carefully to avoid damaging the membrane covering the silver cathode.

4 Access the new capsule by unscrewing the capsule housing

5 Unscrew the capsule from the shorting cap using the reverse end of the capsule housing as a tool.

6 Remove and discard the rubber sealing ring from the new capsule.

7 Dry the sensor with a paper tissue taking care not to damage the delicate, transparent membrane covering the silver cathode. Ensure that the gold contacts, and the threaded portion of the sensor are clean and completely dry.

8 Fit the new sealing ring supplied – see 6 above and screw the sensor into the cartridge body by hand.

9 Reverse the sensor housing and locate the lugs into the keyways on top of the sensor. Then using the sensor housing as a tool, tighten the sensor firmly by hand to ensure a good seal.

10 Calibrate the cartridge – see Section 3.

11 Finish the installation – see Section 2.4.

Fig. 4.1 Procedure for Changing the Sensor Capsule
Dissolved Oxygen Sensor
- 8012 170

Cartridges
- D.O. cartridge, 1 m cable .. 9408 800
- D.O. cartridge, 3 m cable .. 9408 801
- D.O. cartridge, 5 m cable .. 9408 802
- D.O. cartridge, 10 m cable 9408 803
- D.O. cartridge, 20 m cable 9408 804
- D.O. cartridge, special cable length 9408 809

Cartridges + Water Wash
- D.O. cartridge, 1 m cable .. 9408 810
- D.O. cartridge, 3 m cable .. 9408 811
- D.O. cartridge, 5 m cable .. 9408 812
- D.O. cartridge, 10 m cable 9408 813
- D.O. cartridge, 20 m cable 9408 814
- D.O. cartridge, special cable length 9408 819

Additional Spares for Water Wash systems only
- End Cap Quick-fit in-line connector – 1/4” barb..... 0216512
- End Cap Quick-fit connector insert – panel mount 1/8” hose barb................................. 0216513
- Cartridge Quick-fit in-line connector – 1/8” barb..... 0216514
- Tubing – specify length: 1, 2, 3, 5, 10, 20 metres or special length .. 0212141
- Hose clamp for tubing above 0215163
Materials of construction.............................. Glass-coupled polypropylene
Operating temperature range......................... –5°C to 40°C
Operating pressure .. Atmospheric
Temperature compensation............................ Automatic correction by means of an integral Pt100 resistance sensor
Accuracy .. ±0.2 mg/l or ±2% saturation within ±10°C of the calibration temperature within the range 0°C to 35°C
Response .. Typically 20 seconds for 90% step change of oxygen concentration at 20°C
Pressure rating .. 2 bar
Flow rate ... 2 litres a minute minimum
Process connections 1/2” and 1” BSP and 1/2” and 1” NPT
Cable lengths .. 1, 3, 5, 10 and 20 metre (standard options). With a suitable junction box fitted, a maximum 100 metre cable can be used – part number 0233 828.