Technical Application Papers No. 28
Guide for installation of Indoor apparatus in Outdoor units
1. Introduction

Scope of this document is to provide manufacturers and installers using indoor apparatus into outdoor enclosures a guide, which specifies how to implement adequate solutions to ensure environmental conditions equal to those suitable for apparatus itself, in compliance to the indoor standard requirements.
2. Standard reference for indoor apparatus and switchboards

From IEC 62271-1 Ed. 2 (2017)

4.1.2 Indoor switchgear and controlgear
The normal service conditions for indoor switchgear and controlgear are:
 a) the ambient air temperature does not exceed 40 °C and its average value, measured over a period of 24 h does not exceed 35 °C. The ambient air temperature does not drop below –5 °C;
 b) there is no influence from solar radiation;
 c) the altitude does not exceed 1 000 m;
 d) the ambient air is not significantly polluted by dust, smoke, corrosive and/or flammable gases, vapours or salt and would be considered as having site pollution severity class (SPS) “very light” according to IEC TS 60815-1:2008;
 e) the conditions of humidity are as follows:
 • the average value of the relative humidity, measured over a period of 24 h, does not exceed 95 %;
 • the average value of the water vapour pressure, over a period of 24 h, does not exceed 2.2 kPa;
 • the average value of the relative humidity, over a period of one month, does not exceed 90 %;
 • the average value of the water vapour pressure, over a period of one month, does not exceed 1.8 kPa.

NOTE 1 Condensation can be expected where sudden temperature changes occur in periods of high humidity.
NOTE 2 High humidity can also be due to ground level rainwater or for underground applications, from incoming cable raceways connected to switchgear.

ABB Note: the normal service condition according to standard 62271-304 it is Design Class 0. This means COPL.
“CO: Condensation does not normally occur (not more than twice a year)”

From IEC 62271-304 Ed. 1 (2008)
(see also the red notes regarding the next Edition of IEC 62271-304)

1 Scope and object
This part of IEC 62271 applies to indoor enclosed switchgear and controlgear complying with IEC 62271-200 and IEC 62271-201, intended to be used in service conditions more severe with respect to condensation and pollution than the normal service conditions specified in IEC 62271-1. This technical specification covers equipment where any of the insulation is exposed to indoor climatic conditions.
The test detailed in this technical specification has been designed primarily to investigate the behaviour of electrical insulation and not corrosion on equipments. Nevertheless, the performance of mechanical components, such as mechanisms, interlocks and enclosures may also be recorded.

ABB Note 1- on the next Edition of 62271-304 this last point will change as follow: The test detailed in this technical specification has been designed primarily to classify the electrical insulation performance of equipment having high-voltage electrical insulation exposed to indoor service conditions, mainly in presence of condensation. The assessment of mechanical components, such as mechanisms, interlocks and enclosure is also considered.

ABB Note 2 - And the next phrase will disappear. This technical specification proposes definitions for two degrees of severe service conditions with respect to condensation and pollution. It also proposes test procedures for assessing the performance of enclosed switchgear and controlgear under specified conditions so that conclusions may be drawn concerning their suitability for service under those severe service conditions.
2. **Standard reference for indoor apparatus and switchboards**

ABB note: for the normal service condition (water condensation max 2 times a year and low pollution level) it is no need to do any special test. For more severe conditions the substation needs to be classified and tested according to IEC 62271-304.

3 **Degrees of severity of service conditions under condensation and pollution**

Indoor equipment installed inside a building or room and thus normally protected against the outdoor climatic conditions may be subjected to condensation due to rapid temperature changes and to pollution due to the environment inside the building.

ABB Note 3 – This point 3 will change in:

4 **Definition of indoor service conditions under condensation and pollution**

Indoor equipment is designed to be installed in an operating room inside a building or other housing and thus has a certain level of protection from the outdoor environmental conditions. In addition of the protection given by the building or other housing construction, precautions (see Annex C) to minimize the amount of deposits inside the switchgear and controlgear can be taken by the choice of an appropriate degree of protection of the enclosed switchgear and controlgear.

Condensation can occur due to rapid temperature changes inside the operating room. Pollution inside the operating room can be present depending on location and surrounding activity. In addition, the occurrence of condensation and the site pollution severity inside the operating room depend on the layout and the protection given by the building or other housing construction.

The presence of condensation and pollution has the potential to impact the voltage withstand capability of clearances and creepage distances, and possibly the insulating material itself. The concern is that there may be creation of full or partial conductive path between live parts or between live parts and conductive parts not intended to be live (enclosure, etc.).
3. Installation maintenance and instruction for apparatus (from VD4 - INSTALLATION AND SERVICE INSTRUCTIONS)

Installation

3.1. General

Correct installation is of primary importance. The manufacturer’s instructions must be carefully studied and followed. It is good practice to use gloves for handling the pieces during installation.

3.2. Installation and operating conditions

The following Standards must be taken into particular consideration during installation and service:

- IEC 62271-1/DIN VDE 0101
- VDE 0105: Electrical installation service
- DIN VDE 0141: Earthing systems for installations with rated voltage above 1 kV
- All the accident prevention regulations in force in the relative countries.

3.2.1. Normal conditions

Follow the recommendations in the IEC 62271-1 and 62271-100 Standards. In more detail:

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum</td>
<td>+ 40 °C</td>
</tr>
<tr>
<td>Average maximum over 24 hours</td>
<td>+ 35 °C</td>
</tr>
<tr>
<td>Minimum (according to class – 5), apparatus for indoor installation</td>
<td>– 5°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>The average value of the relative humidity, measured for a period longer than 24 hours, must not exceed the 95%.</td>
</tr>
<tr>
<td>The average value of the pressure of the water vapour, measured for a period longer than 24 hours, must not exceed 2.2 kPa.</td>
</tr>
<tr>
<td>The average value of the relative humidity, measured for a period longer than 1 month, must not exceed the 90%.</td>
</tr>
<tr>
<td>The average value of the pressure of the water vapour, measured for a period longer than 1 month, must not exceed 1.8 kPa.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000 m above sea level.</td>
</tr>
</tbody>
</table>

3.2.2. Special conditions

<table>
<thead>
<tr>
<th>Installations over 1000 m a.s.l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible within the limits permitted by reduction of the dielectric resistance of the air.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Increase in the ambient temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in the rated current.</td>
</tr>
<tr>
<td>Encourage heat dissipation with appropriate additional ventilation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate</th>
</tr>
</thead>
<tbody>
<tr>
<td>To avoid the risk of corrosion or other damage in areas:</td>
</tr>
<tr>
<td>• with a high level of humidity, and/or</td>
</tr>
<tr>
<td>• with rapid and big temperature variations, take appropriate steps (for example, by using suitable electric heaters) to prevent condensation phenomena.</td>
</tr>
</tbody>
</table>
3. Installation maintenance and instruction for apparatus (from VD4 - INSTALLATION AND SERVICE INSTRUCTIONS)

3.3. Power circuit connections of fixed circuit breakers

3.3.1. General recommendations
Select the cross-section of the conductors according to the service current and the short-circuit current of the installation. Prepare special pole insulators, near the terminals of the fixed circuit breaker or of the enclosure, sized according to the electrodynamic forces deriving from the short-circuit current of the installation.

3.3.2. Assembly of the connections
Check that the contact surfaces of the connections are flat, and are free of any burrs, traces of oxidation or deformation caused by drilling or impacts received. According to the conductor material and the surface treatment used, carry out the operations indicated in table T1 on the contact surface of the conductor.

Assembly procedure
Put the connections in contact with the circuit breaker terminals, taking care to avoid mechanical stresses (traction / compression) on, for example, the conducting busbars on the terminals. Interpose a spring washer and a flat washer between the head of the bolt and the connection. It is advisable to use bolts according to DIN class 8.8 Standards, also referring to what is indicated in table T2. In the case of cable connections, strictly follow the manufacturer’s instructions to make the terminals.

<table>
<thead>
<tr>
<th>Bare copper</th>
<th>Copper or silver-plated aluminium</th>
<th>Bare aluminium</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Clean with a fine file or emery cloth.</td>
<td>• Only in the case of obstinate traces of oxidation, clean with a very fine grain emery cloth taking care not to remove the surface layer.</td>
<td>• Clean with a metal brush or emery cloth.</td>
</tr>
<tr>
<td>• Tighten fully and cover the contact surfaces with 5RX Moly type grease</td>
<td>• If necessary, restore the surface treatment.</td>
<td>• Cover the contact surfaces again immediately with neutral grease</td>
</tr>
<tr>
<td>• Insert the copper-aluminium bimetal with surfaces shined (copper side in contact with the terminal; aluminium side in contact with the connection) between the aluminium connection and the copper terminal.</td>
<td></td>
<td>• Insert the copper-aluminium bimetal with surfaces shined (copper side in contact with the terminal; aluminium side in contact with the connection) between the aluminium connection and the copper terminal.</td>
</tr>
</tbody>
</table>
Maintenance

The maintenance operations are aimed at keeping the apparatus in good working condition for as long as possible. In accordance with what is specified in the IEC 61208 / DIN 31 051 Standards, the following operations must be carried out.

- **Inspection:** Finding out the actual conditions
- **Overhauling:** Measures to be taken to maintain the specific conditions
- **Repairs:** Measures to be taken to restore the specific conditions.

3.4. General

The vacuum circuit breakers are characterised by simple, sturdy construction and a long life. The operating mechanism requires maintenance and functional inspections to reach the expected operating-life (see par. 9.3.2.).

The vacuum interrupters are maintenance-free for their whole operating life. Vacuum interruption does not produce any harmful effects even when there are frequent interruptions at the rated and short-circuit current.

The interventions during service and their aim are determined by the ambient conditions, by the sequence of operations and by the short-circuit interruptions.

The maintenance operations must only be carried out by trained personnel and who follow all the safety regulations.

Furthermore, it is advisable to call on ABB personnel, at least in cases for checking the performances in service and for repairs.

Cut the power supply off and put the apparatus under safe conditions during the maintenance operations.

⚠️ Before carrying out any operations, check that the circuit breaker is open, with the spring discharged and that it is not supplied (medium voltage circuit and auxiliary circuits).
3. Installation maintenance and instruction for apparatus (from VD4 - INSTALLATION AND SERVICE INSTRUCTIONS)

3.5. Operating life expectancy
The operating life expectancy for the VD4 circuit breakers is as follows:
- vacuum interrupters: up to 30,000 operations, according to their type (see par. 7.2.3. Trip curves);
- switching device, actuator and transmission system: up to 30,000 operations, under normal operating conditions, according to the type of circuit breaker and with regular with operations correctly executed it is possible to carry out up to 1000 racking-out/in operations (as prescribed in the IEC 60271-200 Standards);
- the data regarding the operating life are basically applicable to all the components which cannot be directly affected by operator activity. The manually operated components (moving parts of isolatable parts, etc.) can vary their behaviour.

3.6. Inspections and functionality tests

3.6.1. Interruption devices in general
Check the conditions of the interruption devices with regular inspections.
Inspection at fixed intervals can be avoided when the apparatus is permanently under the control of qualified personnel.
The checks must, first of all, include visual inspection to check for any contamination, traces of corrosion or electrical discharge phenomena.

3.6.2. Stored energy operating mechanism
Carry out the functional test of the operating mechanism after 5,000 operations or during ordinary maintenance operations as specified in par. 9.2.1. and service the release devices at least every 5 years (see par. 9.3.2.).
Before doing the test, open the circuit breaker and carry out the following operations:
- in the case of withdrawable circuit breakers, take the circuit breaker to the isolated for test position in the case of fixed circuit breakers: cut off the power supply to the medium voltage circuit.

Note
Insulate the work area and make it safe, following the safety regulations specified in the IEC/DIN VDE Standards.
Functional test
- With the circuit breaker not connected to the load, carry out a few opening and closing operations.
- If foreseen, cut the power supply to the spring charging motor off. Discharge the spring by closing and opening the circuit breaker by means of the closing and opening pushbuttons.
- Visually inspect the lubrication conditions of the tulip isolating contacts, of the sliding surfaces, etc.
- Check correct electrical and mechanical operation of the various devices, with particular attention to the interlocks.
- The screws and nuts are tightened in the factory and correct tightening is marked with a collared sign. No further tightening operations are foreseen during the operating life of the circuit breaker. However, following any maintenance interventions, should it be necessary to re-tighten the screws or nuts, it is recommended to always replace the screws and nuts and to keep to the values indicated in fig. 12.

3.6.3. Circuit breaker pole
No other check except what has already been specified in par. 9.2.1. is necessary.

3.6.4. Withdrawable assembly (truck and circuit breaker)
Visually inspect the components, especially those which may be damaged by incorrect operations (also see table in chap. 8).
Visually inspect the isolating contacts and that all the contact elements are clean, especially in cases where signs of overheating are found (also see par. 9.4.).
Visually inspect and carry out the functional tests of the locks, checking their correct operation and activation without abnormal force – maximum 25 N (also see table in chap. 8).

3.7. Overhauling
3.7.1. Interruption devices in general
Should it have been necessary to clean the devices during the inspections, according to what is specified in par. 9.2.1., use the following procedure:
- Insulate the work area and make it safe, following the safety regulations specified in the IEC/DIN VDE Standards;
- General cleaning of the surfaces:
 - dry and eliminate light deposits of dirt with a soft dry cloth;
 - more resistant deposits of dirt can be removed using slightly alkaline domestic type detergent or Rivolta BWR 210 type detergent;
- Cleaning insulating surfaces and conductive parts.
After cleaning, rinse thoroughly with clean water and dry carefully.

Note
Only use detergents without halogens and never 1,1,1-trichloroethane, trichloroethylene or carbon tetrachloride!
4. Apparatus for indoor installation

Some samples

High flexibility - Modular AIS design

AIS design offers high flexibility
- Choose from various switching devices
- Vacuum or SF6 as per customer preference
- Fixed, removable or withdrawable devices

Highly flexible also on other components
- Conventional instrument transformers
 - current transformers (CTs) type DIN, Ring
 - voltage transformers (VTs) type DIN
- Digital offering
 - Current and Voltage sensors
 - Protection relays

Vacuum Circuit Breakers

SF6 Circuit Breakers

SF6 Load-BreakSwitch / fuse

Hybrid Vacuum CB and LBS

Conventional Instr. transformers

Non-conventional Current and Voltage sensors

Protection relays

Switch disconnector type NAL

Switch disconnector type NAL-H
5. Maintenance and instruction for switchboard UniSec

NOTE
Under abnormal operating conditions (including adverse climatic conditions) and/or particular environmental conditions (among which, heavy pollution and aggressive atmosphere), inspection at shorter intervals may be necessary.

NOTE
Should partial discharges occur as a result of condensation, application of a thin silicone film over the surface concerned is often effective as a temporary remedy. It is advisable to ask the ABB after-sales service department for advice regarding permanent solutions to this uncommon type of problem.

CAUTION
Follow the maintenance instructions in the manuals for the relative components.
6. Switchboards units for indoor installation
UniSec switchboard sample

Secondary Distribution AIS

Products
- UniSec Circuit breaker panels WBC (LSC2B) and SBC-W (LSC2A) mixed in same switchgear line-up
- Withdrawable circuit breaker panels
7. Effects of the outdoor environment: specific climatic conditions

When the environmental conditions are particularly aggressive during service, manufacturers of circuit breakers for indoor use should be consulted about every special service condition, e.g. in the presence of dust, smoke, corrosive gas, vapours or salt, etc. However, IEC 62271-1 gives specific indications about switchgear and controlgear. Chapter 4.2 “Special service conditions” and in particular in section 4.2.3 “Exposure to pollutions” the user is asked to define the site pollution severity (SPS) class according to IEC TS 60815-1. Furthermore, appendix K includes descriptions of the classes “Very light”, “Light” and “Medium” and suggestions for the minimum nominal specific creepage distance by pollution level to be adopted in these cases. For indoor applications up to 52 kV the IEC Standard IEC 62271-304 “High voltage switchgear and controlgear - Part 304: Design classes for indoor enclosed switchgear and controlgear for rated voltages above 1 kV up to and including 52 kV to be used in severe climatic conditions” can also be used.

By and large, a correct assessment of the environmental conditions must be based on a set of historical data recorded daily, monthly or on a seasonal basis (as appropriate). Surveys prior to installation dedicated to a specific situation may not be sufficiently comprehensive to determine whether the environment-product are compatible. The switchgear and controlgear manufacturers must be consulted after these analyses have been conducted, especially if the service conditions are more severe than normal.

(Note: abstract from 1VCP000735 - Rev.C -2018-06 Technical Application Papers No. 26)
Regarding the location, the substation can be within the volume of the building to be powered or separate from it. It may also be located on the roof of the building to be served, of course, after a careful study of the static and dynamic loads to which the roof will be subjected. In any case, the location of the substations must be such that it allows authorized personnel to access it as necessary, to perform service operations and maintenance on the components of the substation, even of those of greater size and weight, such as transformers. The substation can be non-prefabricated (covered under IEC 61936-1) or prefabricated (IEC 62271-202).

In addition, the substation structure must meet the requirements of the standards (CEI 99-4, Sec. 5 and CEI 0-16, para. 8.5.9) as regards:

a) low frequency magnetic fields
b) access
c) walls, floors and ceilings, etc. in accordance with Standard CEI 61936-1
d) ventilation
e) infiltration of water or flooding
f) the expected static and dynamic mechanical loads and internal overpressure caused by arcing

g) lighting

The substations must be fitted with lockable doors or otherwise require the use of tools to open or remove them so as to prevent access by unauthorized persons. In particular, the room hosting the metering systems must be accessible both by the User and by the Distributor.

The location of the structures must be such that the MV lines necessary for connection can be built and maintained in compliance with current regulations regarding electrical installations and safety as well as electromagnetic pollution. Separation, in terms of responsibility for the operation, running and maintenance of the various substations, should be easily distinguished on the planimetric diagrams.

Measurement of the energy withdrawn by a User at a sampling point must take place close to the MV connection using voltage and current transformers that are the responsibility of the Distributor. The dimensions of the connection room must necessarily allow the in-out insertion scheme to be adopted, which might be necessary at a later time. As a guideline, the overall surface area occupied by the delivery and metering room should be about 16 m².

The construction details are to be provided in the connection documentation provided by the Distributor; in any case, the design of the room for the network system at the user installation must comply with the regulations issued by the Distributor.
Prefabricated substation foundation & location highlights

Important factors that influence life time of prefabricated substation:

- Placement of substations and proximity to harsh environments.
- Materials of the substation and possibility of condensation. A thermic insulation of the wall it is recommended, to avoid internal condensation.
- Draining of the ground around the substation and preparation of the foundation including backfilling of cable trench.
- Elimination of pollution and humidity
- Placement of kiosks in terrains.
- Elimination of corona effect sources in design and installation: cable terminations, busbars, sharp edges...
- Heating, better utilization of the heating from the transformer and ventilation. It’s recommendable the use of heaters that assure an adequate air circulation, reducing the thermal excursion and avoid condensation.
- Respect of maintenance plan, to be done as per manufacturer instructions. Minimalization of space and placing requirement has already influenced development of kiosks and stations however the proper maintenance is still required.
8. Main requirements for the substations

Foundation highlights – ground work

Ground work
When placing of substations it is important to evaluate the drain quality of existing filling compound. The filling compound should consist of relatively large sand and a small mix of humus or soil and also be frost proof. Filling compound who has a fine consistency as for example clayey soil or clay, which hold the water, is not to be recommend. The compound must be changed and we recommend to use of one bed with large crushed stone/soil and then filling with smaller crushed stone/soil up to the base plate level. The filling compound must compresses gradually during the process to avoid setting in the ground. The filling compound around the building should be large, good draining crushed stone or soil. It is important that the construction pit has outlet so the water do not stay in the pit.

Galvanic currents
All metals has different inner galvanic voltage range. When one connect different metals with each other electrical at the same time who one have a leading fluid/compound between them, a galvanic current will flow. This process is equivalent by corrosion of metals. This is a phenomenon which can arise in connection with earthing of metal base plate.

Therefore it is important to select filling compound which have is of good drain and insulation qualities for foundation.
It is also to recommend to use continuous bus line for earthing and insulated earth wire towards the building. If earth rod/plate is used it should be placed in good distance from the base plate of the building for example under the cable channel and insulate incoming earth wire.
The foundation plastic outside of the base plate can be use to make a good insulation and prevent current linkage to earth to avoid galvanic current.

Preparation of ground for substation

A Adjusting level sand/concrete
B Prospective felted fabric
C Frostproof compound
D Frostproof dept

A Humidity rafter / Foundation plastic
B Ground plate
Prefabricated substation foundation & location highlights – ground preparation

Prefabricated substation on the small hill with proper ground preparation ...

... however located very close to the water

Prefabricated substation foundation & location highlights – cable trench backfilling

Backfilling of cable trench is needed

The cable trench needs backfilling in order to raise ground level and stop capillarity of water.
9. Some solution for particular condition

Subject: Hydrogen sulphide and sulphur dioxide corrosion of silver components

The most dangerous chemical products for electrical equipment are SO2 (sulphur dioxide) and H2S (hydrogen sulphide). H2S in harmful concentration is found inside chemical factories, geothermic power stations, water treatment plant, etc. The major source of SO2 emissions are the combustion of fuel for electricity generation and heating, processes in non-ferrous smelting and refining industry, oil and gas industry.

Consequences

H2S and SO2 on silver alloys cause the formation of Ag2S (silver sulphide) which is a bad current conductor; the contact resistance is dramatically increased, leading to overheating. This could jeopardize correct operation of the equipment and then causes destructive damage. Hopefully, when the contacts are breaking current, the arcing destroys locally silver sulphide. Though, contacts that are in open position (or closed position with no load) during a long time will experience increased contact resistance depending on the H2S concentration. This will a negative effect on the performance especially at low loads (low current).
10. Conclusions

A) Mandatory environmental condition
Ambient temperature -5÷+40 °C (35° Aver. Max in 24h) aerated
Humidity 95% max in 24h
Altitude ≤1000m
Absence of pollution (pouder, chemical substances, salt, flammables, etcetera..)

To avoid high level of humidity, provide proper aeration.
To avoid pollution, installation of filters on the aeration opening.
To avoid condensation, provide the presence of heaters sufficient to create proper condition inside substation.

In case the condition inside substation cannot be improved all apparatus and insulating components installed inside need to withstand the tests described in the standard IEC 62271-304

B) Maintenance planning
Cleaning, greasing/lubrification of operation mechanism, according to the Instruction Manuals of each apparatus.
Cleaning and protection of exposed electrical parts with appropriate grease for electrical use. Note: attention on the coupling of metals on the contacts points, to avoid electrochemical reaction (IEC/TR 60943).

C) Particular execution
In case of particular condition of temperature/humidity/pollution, have to be find solutions to reduce the impact of that on the apparatus (example: ambient air conditioned, air filtered, IP upgrading of the container....)
In case of possible pollution by H2S and/or SO2, tinning of the conductive parts and the contact surfaces of the main circuit parts would be necessary (instead of silvering). The low voltage contact points are need to be gold plated.