AL HR HD
W

ABB INDUSTRIAL DRIVES

Drive application programming (IEC 61131-3)
Programming manual

Drive application programming (IEC
61131-3)

Programming manual

Table of contents

3AUA0000127808 Rev H
EN

Original instructions
EFFECTIVE: 2024-07-22

Table of contents 5

Table of contents

1 Introduction

Contents of this ChapPterooiiii e 15
CoMPATT D Y e 15
1K= T L= = 10 Lo | 1=T oY 16
Safety INSErUCTIONS ..o et e e 16
Purpose of the manual ... e 16
Terms and abbreviationsccooiiiiiiiiii i e 17
Related dOCUMENTES ... e e e e eaee e 17
Cybersecurity disClaimercoiiiii e e e e 18

NN = 18

2 Getting started

Contents of this ChapPtercoiiii e e 19
Settings up the programming environmentc.oooiiiiiiiii i e 19

3 Overview of drive programming

Contents of this Chaptercoiiiiii e e 21
Drive application programmingooiiiiiiiiiiiiiiiiiiie e e 21
Y2 = o' e =T | = o' 22
Programming WOrK CYCIe ..ot e e e e e ee e e as 23
ST o =T I= | o= 1= 23
Programming languages and modulesc.cooiiiiiiiiiiiiiiiiiii e 24
[T o] =1 o = S 24
Program @XECUTIONttt ettt e ettt e e e e e e e e eeeaeaas 24
(DT V=T g =T o = o= S 24
ApplicationParametersandEVENtSttt e 25

4 Creating application program

Contents of this ChapPterooiiii e e 27
Creating @ NEW PrOJECE c.uuuiiittt ittt e e et e e e et e aaaeeeeeeaaannaeens 27
Updating project informationc.oooiiiiiiiiiiiiiiii e eiieee e 29
AppPeNding @ NEW POU .. .o et e e e e 31
Writing @ Program COOE .. uu ittt ettt e e e e e ee e eeeeeeaaannes 33
Continuous function chart (CFC) programc.cceiiiiiiiiiii i eeeeeaeee 34
AddiNg lemMENTS ... e 34
Setting the execution order of the elements ..., 36
Adding comments to a CFC Programceivieeiiiiiee e eeiiiiie e eeaiiineeeanns 37
Declaring variablesooiii e 38
Adding iNputs and OULPULSuiiiiiiiiiii e et e e iereeee e 39
(O S O o] oo | -1 o o A U 39
Preparing a project fordownload ...t e 40
Establishing online connectiontothedrive ..o 40
Downloading the program tothedrive ..o 43
Creating @ bBOOt PrOJECT . ..uiiii it et e e 44

Opening a Project arChiVeooiiiiii e e e 45

6 Table of contents

Executing the program e e 49

5 Features

Contents of this CRAPLEroviiii e 51
Device handling ... e e 51
Viewing device informationo 52
Upgrading or adding a Nnew deVviCeuiiiiiiiiiiiiiii e eeeieeee e 53
Changing an existing deViCe ... e 53
Viewing software Updatesccoiiiiiiiiiiiii e 53
Program organization units (POU)ccuiiiiiiiiiiii i e 54
D 1= X = B) o 1= 55
Drive application programming HCENSEoiiiiiiiiiiiii i eeiiiieeee s 55
Application download OptioNScoiiiiiiiii e 56
Removing the application fromthetarget ... 57
Retain variables ..o e 58
Task CONFIQUIAtioON ... e 59
AdAING TaSKS 1ot e e 59
MONTEONNG tASKS ...t e et 61
Uploading and downloading source Codeooiiiiiiiiiiiiiiiiiiii e eeiiiieeeenas 62
Adding symbol configurationoooiiiiiiiii e 62
Debugging and online changesooiiiiiii i e 63
Safe dEDUGGING ..t e 63
RESEL OP I ONS i e 64
17 =T 010 Y oV 00 =S 64
L@ T 0 = L o o P 65
Application [0ading Packagecooviiiiiiii e 66

Loading application to a drive with Drive Composer - Drive firmware loader ... 68

6 Drivelnterface

Contents of this CRAPLEroiiiii i 73
Implementing Drivelnterfacecovviiiiiiiiii e 73
Selecting the parameter ST . ..o e 74
Viewing parameter MappPing rePOM ...ttt e e e eaaieeeeeanns 75

MappPiNg EXamMPle ... s 75
Updating drive parameters from installed devicecooiiiiiiiiiiiiiiinn.... 76
Updating drive parameters from parameters file ..., 77
SettiNg PaAramMELEr VIEBW ...ttt ettt ettt et et 7

7 Application parameters and events

Contents of this CRAPLEroiiiiiii e e 79
Application parameters and events ...ttt e 79
e =Y g Loy = g = T g = T 1< 79
Creating ParamEtar GrOUPS . ouuie ettt ettt e e e e e e aaaaeeeeeanannnes 80
Importing and exporting Parametersovvveiiiiieete it eaaiiieeeenns 80
(@ LT T 0T T =Y = f T 81
Parameter SeTtINGS ...oviiii i e 82

15 oF= 11 T 84
Tool/Fieldbus 32-bit INterfaceoovviiiiiii i eees 84
Fieldbus 16-bit interfacecoooiiiiiiii e 84
Testing for SCaAlING ...t e 84

Linking parameter to application codeooviiiiiiiiiiii e 84

Table of contents 7

= T =T 0 L= <] g 1Y/ 0= 85
Parameter famMiliEs ... 86
SlECtiON ISt i s 87
L0 88
APP At ION BVENTS .. 89

8 Configuring extension I/0 modules

Contents of this ChAPLEroviiiiii e 91
Configuring extension 1/O moduleooiiiiiiiiiiii e 91
N 0 91
NOE NUMDEIS ...t ettt e et e e e e e e e aeeeeens 93
Selecting iINPUL SIgNal tYPe .o e 94
5 TG 95
Extension I/O in drive application programccoiiiiiiiiiiiiiieeeieiiiiieeeennns 96
Adding F-series module ...t e 96
Setting module datac.ooviiiii e 98
Adding node NUMbEr ... o 98

I/O mapping variables 98
Using F-series I/O from the applicationccooiiiiiiiiiiiiii i 98
Adding bus fault cControl ..o 100
FIO-01 mModUle dataooeiiiiiiie ettt et e e et e e aaeeeeens 101
FIO-01 channel desCriptioNns 101
FIO-11 MoOdUle dataooiiiiiiii ettt e e eeeeeans 103
FIO-11 channel descriptions, 103
FAIO-01 module dataooiii e et eeee e as 106
FAIO-01 channel desCriptioNsii i 106
FDIO-01 Module data ...ooviiii ettt e e eieee e ns 109
FDIO-01 channel desCriptionsuiiiiiiiii i, 109
= L0] o T 1= 110

9 Libraries

Contents of this CRAPLEroiiiiiiii e 111
[o = 1V 1Y/ o 1T 111
Adding a library to the ProjecCtovviiiiiii e 112
Creating a new lborary ... e 114
INnstalling @a NeW [IDraryoooi e e 116
Managing [brary VErSiONS ...ttt e e e e eiee e as 117
Configuring a library with WIBU HCEeNSEcoviiiiiii e 118

10 Practical examples and tips

Contents of this ChAPLErooiiiiii e e 119
Solving communication problems ..o 119
Solving other Problemso e 120

11 Unsupported features

Contents of this ChAPLErooiiiiii e e 121
UNSUPPOItEd fEATUIES ...ttt ettt e s 121
12 ABB drives system library

Contents of this ChAPLEroiiiiiiii e 123

8 Table of contents

L T Y T 123
Function blocks of the system library ... e 124
Event function BIOCKSo e 126
Y N 126
11010 10 =Y 126

(10 0 1= o o = 126

DT =Y Y of 1o 1 T) o 126
3T T 1 AT o of o o 128
11010 10 = 128

(10 0 1= o o o ¥ 128

D T2 of 1o 1 T o 129
Parameter change function blocks ..o 130
o O LN L Y 130
11010 10 =Y 130

(10 0 1= o o ¥ 130

D T2 of 1o 1 T o 130

o o Y @ Y I S o [131
11010 10 =Y 131

(10 0 1= T o ¥ 131

DT =Y Y of 1o 1 T) o 131
External 32-bit SCaling ... e 132
External 16-bit sCaling . ..o e 132
Parameter imit Change e e eeeeee e aas 133
PAR _LIM _CHG D INT Lottt ittt e e e e e et e et e e e e eae e aaeeeaanas 133
11010 10 =Y 133

(10 0 1= o o = 133

D T =Y Y of 1o 1 T) o 133
PAR_LIM _CHG _REAL ..ttt ettt e e e e e e e e e e e e e aeeeaanas 134
1101 10 = 134

(10 0 1= o o = 134

DT =Y Y of 1o 1 T) o 134

PAR _LIM _CHG _UDINT ..ttt e et e e e e e e e e e e eeaeeanas 135
11010 10 =Y 135

(10 0 1= o o ¥ 135

DT =Y Y of 1o 1 T) o 135
Parameter default value changeoooiiiii e 136
PAR _DEF _CHG D DINT Lottt et e e e e e e e aeaeaanas 136
11010 10 =Y 136

(10 0 1= o o = 136

D T2 of 1o 1 T o 136

PAR _DEF _CHG_REAL ...ttt et et e e e et e e e e e e e aeaaaaas 137
11010 10 =Y 137

(10 0 1= o o = 137

DT =Y Y of 1o 1 T) o 137

PAR _DEF _CHG _UDINT ..ttt et e e e et e e e e e e e eeaeeaanas 138
11010 10 =Y 138

(10 0 1= o o ¥ 138

DT =Y Y of 1o 1 T) o 138
Parameter decimal displayc.ovviiiiiiiiii e e 139
o = 5 1] T o 139
11010 1 0 =Y 139

(@lo) oY o 1=Vt o 1Y a F= S 139

Table of contents 9

LY of 1o) T T 139
PAR _REFRESH .. e e e 140
11U 101 0 0 1= 1 72 140
CONNBCEIONS et e s 140
LY of 1o) T o T 140
Parameter ProteCtioN 141
P A R P RO T ittt et s 141
11U 101 0 0 1= Y 72 141
CONNBCEI ONS it e s 141
DS I Pt O N L 141
PAR _GRP P RO T it e e 142
11U 101 0 0 1= 1 7/ P 142
CONNBCEI ONS ettt s 142
DS I Pt O N L 142
Parameter read function blocks ... 143
ParREAA Bt ...ttt 143
11U 101 0 0 1= 1 7/ 143
CONNBCEI ONS it s 143
LYY of 1o) T o T 143
Y Y- Yo I |\ T 144
11U 101 0 0 1= Y 72 144
CONNBCEI NS et e s 144
LY of 1o) T) T 144
Y Y- Ye I B 11\ I U 145
11U 101 0 0 1= 1 7/ P 145
CONNBCEI ONS ettt s 145
LY of 1o) T T 145
ParREAA _RE AL .. e e e 146
11U 101 0 0 1= Y 72 146
CONNBCEI NS et e s 146
LY of 1o) T) o T 146
Y Y- Ye I 15 11\ T 147
11U 101 0 0 1= 1 7/ P 147
CONNBCEI ONS ettt s 147
DS I Pt O N Lt e 147
Parameter write function blocks ... 148
TV =] =) N 148
11U 101 0 0 1= 1 7/ P 148
CONNBCEI NS et e s 148
LY of 1o) T T 148
TNV S] N T 149
11U 101 0 0 1= 1 7/ P 149
CONNBCEI NS et e s 149
LY of 1o) T T 149
T TV o S 1\ T 150
11U 101 0 0 1= 1 7/ P 150
CONNBCEI NS et e s 150
LY of 1o) T T 150
Par Wt _REAL ..ottt et et 151
11U 101 0 0 1= 1 72 151
CONNBCEI NS it e e s 151

DS I Pt O N Lt e 151

10 Table of contents

Par Wit _UDINT Lttt e e e et e e it e a e et 152
1101 10 =Y 152
(10 0 1= T o ¥ 152
DT =Y Y of 1o T) o 152

Pointer parameter read function block ..o 153

ParRead _BitP T R L.ttt e e, 153
1101 10 =Y 153
(10 0 1= T o ¥ 153
DT =Y Y of 1o T) o 153

ParRead _ValPT R _DINT ...ttt ettt e e e e e eaaeaanas 154
11010 1 0 =Y 154
(10 0 1= o o ¥ 154
D T=Y Y of 1o 1 T) o T 154

ParREad_ValPTR_REALuiiiiii ittt e et e e e e eaaeeaanas 155
11010 10 = 155
(10 0 1= o o ¥ 155
DT =Y Y of 1o 1 T) o 155

ParRead_ValPTR_UDINT ...ttt ettt e e e et e e e e eee e eaaeeanas 156
1101 1 0 =Y 156
(@10 0 1= o o ¥ 156
D T=Y Y of 1o 1 T) o T 156

Gt PP arCONT . e 157
1101 10 =Y 157
(10 0 1= T o ¥ 157
DT =Y Y of 1o 1 T) o 157

Set pointer parameter to IEC variable function blocks ...l 159

ParSet_BitPTR _IEC ...ttt et e et e e e et 159
1101 10 =Y 159
(10 0 1= T o ¥ 159
DT =Y Y of 1o 1 T) o 159

ParSet_ValPTR_IEC _DINT ..ttt et e e e e e e e e e e e e aaeeeaanas 160
11010 1 0 =Y 160
(@10 0 1= o o ¥ 160
D T=Y Y of 1o 1 T) o T 160

ParSet_ValPTR_IEC_REAL ...ttt et e e e e e e e eaeeaaaas 161
1101 10 =Y 161
(10 0 1= o o = 161
DT =Y Y of 1o 1 T) o 161

ParSet_ValPTR_IEC _UDINT ...ttt et e e e e e e eieeeanas 162
11010 1 0 =Y 162
(@10 0 1= o o ¥ 162
DT =Y Y of 1o 1 T) o 162

Set pointer parameter to parameter function blocks ..., 163

ParS et _BitPT R Pl ..ot 163
11010 1 0 =Y 163
(@10 0 1= o o ¥ 163
DT =Y Y of 1o 1 T) o 163

ParS et _ValP T R Par ..t 164
11010 10 =Y 164
(10 0 1= o o = 164

D T2 of 1o 1 T o 164

Table of contents 11

System time function bIOCKS ..o 165
S S T IME .. e e 165
11U 101 0 0 1= 1 72 165
CONNBCEIONS et e s 165
LY of 1o) T o T 165

SY S TIME _UDINT Lttt e ettt e ettt et e eeeaaees, 167
11U 101 0 0 1= 1 7/ P 167
CONNBCEI ONS ettt s 167
DS I Pt O N Lt 167

Task time level fUNCEION BIOCKue e 169
USEATIMELEVEI ... e e 169

11U 101 0 0 1= 1 7/ P 169
CONNBCEI ONS ettt s 169
DS I Pt O N L 169

Read device serial number function block ... 170
Read _DriveSerialNUMDETe i, 170

11U 101 0 0 1= 1 7/ 170
CONNBCEI ONS it s 170
LYY of 1o) T o T 170

Y g oY g ol T [171

13 ABB D2D function blocks

Contents of this CRAPLEroiiiiiiii e 173
Introduction to ABB D2D function blocks ... 173
D2D communication library e 174
(DY={ DN o] [oTel Q=T o] g ol e [N 174
Data read/Write BIOCKS ... e e et 175
DS REAALOCAl .. 175
11U 101 0 0 1= 1 7/ P 175
CONNBCEI ONS ettt s 175
DS I Pt O N Lt e 175

DS WL OCAl et 176
11U 101 0 0 1= 1 72 176
CONNBCEI NS et e 176
DS I Pt O N Lt 176

D2D communication BIOCKS ... 177
GENBI Al o 177
D2 T RA ettt e 177
11U 101 0 0 1= 1 7/ P 177
CONNBCEI NS et e s 177
LY of 1o) T T 178
(D] b I] Y T 179
11U 101 0 0 1= 1 7/ P 179
CONNBCEI NS et e s 179
LY of 1o) T T 179

(D2 o i I 7 N { = S T 181
11U 101 0 0 1= 1 7/ P 181
CONNBCEI NS et e s 181
LY of 1o) T T 181

D2 T RA M i e e e 183
11U 101 0 0 1= 1 72 183

L@T0Y o] o Y=Lt (o] o 1= 183

12 Table of contents

DT =Y Y of 1o 1 T) o 183

D2D configuration bIOCKSoiiii i e 185
94 1 J 0 o 1 185
11010 10 =Y 185

(10 0 1= o o o ¥ 185

D T2 of 1o 1 T o 185
1= T o] U =T < 185

Ol OW BT USE .t e ettt ettt e 186

D2D _CONT TOKEN ..ttt e e e e 187
11010 10 =Y 7 187

(10 0 1= o o = 187

DT =Y Y of 1o 1 T) o 187

D b= 1] =T = o= 189
11010 10 =Y 189

(10 0 1= o o ¥ 189

D T2 of 1o 1 T o 189
Examples: D2D blOCKS ..o 190
Example 1: D2D_TRA / D2D_REC BIOCKSuuuiiiiiie i 190
Example 2: Token send configuration blocksoooiiiiiiiiiiiiiiiiinnn, 190

14 ABB drives standard library

Contents of this CRAPLEroviiii e 193
(0 1YYV 1Y 193
BasSiC fUNCLIONS oo 194
= S N 194
11010 10 =Y 194
CONNE I ONS et e 194
FUN I ON Lo e e s 194

B S E T . 195
1101 10 = 195
CONNE I ONS ettt e e 195
FUN I ON i e e et 195

D E MU X o s 196
11010 10 =Y 196
CONNE I ONS it e 196
FUN I ON i e e et 196
DEMUX M Lo s 197
11010 1 0 =Y 197
CONNE I ONS ettt e e 197
FUN I ON i e e et 197
MU X Lo 198
1101 10 =Y 198
CONNE I ONS ettt e e 198
FUN I ON i e e et 198

MU XM L s 199
11010 1 0 =Y 199
CONNE I ONS ettt e e 199
FUN I ON i e e et 199

P A C K e s 200
11010 10 =Y 200
CONNE I ONS ettt e e 200

(S0 o Tt 5 [o 1 200

Table of contents 13

S R D i 201

11U 101 0 0 1= 1 7/ P 201
CONNBCEI ONS ettt s 201
FUN G ON i e e e e 201
Truth table ... 201

S W T CH i e e s 202
11U 101 0 0 1= 1 7/ P 202
CONNBCEI ONS ettt s 202
FUN G ON i e e e e 202

S W T CH C i e e s 203
11U 101 0 0 1= 1 72 203
CONNBCEI NS et e s 203
FUN G ON i e e s 203
UN P A CK . e e e 204
11U 101 0 0 1= Y 72 P 204
CONNEBCEI NS et s 204
FUN G ON i e e e e 204
SpeCial fUNCLIONS .. oo e et 205
1 o 205
11U 101 0 0 1= 1 7/ P 205
CONNBCEI ONS ettt s 205
FUN G ON i e e 205
(LU Tt T e 1= T=T = § o] 206
11U 101 0 0 1= 1 72 206
CONNBCEI NS it e s 206
FUN G ON i e e s 207
INEEI PO At ON L. 207
BalanCiNg .o e 207
1 0'0 3 o T 207

L =T o | = X o 208
11U 101 0 0 1= Y 72 208
CONNBCEI NS it e e s 208
FUN G ON i e e e 209

@ ==Y [o 209
1= Vot 4 1 o T 209
1 0'0 o T 209
Y- T I = Y 209
11U 101 0 0 1= 1 7/ P 209
CONNBCEI NS et e s 209
FUN G ON i e e e 211
BalanCiNg .o e 211
L = 211
MOtOr POLENE OB ... i 212
11U 101 0 0 1= 1 72 212
CONNBCEI NS et e s 212
FUN G ON i e e e 212
@8 =T Y [o 213
1= Vot 4 1 o T 213
1 0'0 3 o T 213
Pl i 213
11U 101 0 0 1= 1 72 213

(@T0Y o oY=Vt (o] o 1= 213

14 Table of contents

FUN I ON i e e et 214
SMOOth transfer 215
1= o T 216
I8 = ol 41 o T 216
Limitation fUNCEIONue e 216
T 0/0 3 o T 217
= 1 010 o 217
1101 10 = 217
CONNE I ONS it e e 217
FUN I ON L e e et 218
I8 = ol 4 1 o T 218
T 0'0 3 o T 219

Further information

Introduction 15

Introduction

Contents of this chapter

This chapter describes the contents of the manual. It also contains information on
the compatibility, safety and intended audience.

Compatibility

This manual applies to ABB drives equipped with the application programming
functionality. The drives can be ordered with the application programming functionality.
The drive must be equipped with N8010 Application programming license on ZMU-02.

The following drives are compatible with application programming function.
- ACS880

. DCS880

. DCT880

- HES880 (available only for primary control program)

This manual is compatible with the following product releases:

» Drive Application Builder 1.3.1

« Drive composer pro 2.8.2 or later

For more details of compatibility information, refer the corresponding drive software
release notes or contact your ABB representative.

16 Introduction

Target audience

This manual is intended for a personnel performing drive application programming
or for understanding the programming environment capabilities. The reader of the
manual is expected to have basic knowledge of the drive technology and programmable
devices (drive and PC) and programming methods.

Safety instructions

Follow all safety instructions delivered with the drive.

» Readthecomplete safety instructions before you load and execute the application
program on the drive or modify the drive parameters. The complete safety
instructions are delivered with the drive as either part of the hardware manual,
or, in the case of ACS880 multidrives, as a separate document.

« Read the firmware function-specific warnings and notes before changing
parameter values. These warnings and notes are included in the parameter
descriptions presented in chapter Parameters of the firmware manual.

WARNING!
Ignoring the following instruction can cause physical injury or damage to the
equipment.

Do not make changes to drive in the online mode or download programs while
the drive is running to avoid damages to the drive.

Purpose of the manual

This manual gives basic instructions on the drive-based application programming
using Drive Application Builder programming tool. The programming tool is the
international IEC 61131-3 programming standard. The online help of Drive Application
Builder contains more detailed information of the IEC languages, programming
methods, editors and tool commands.

Terms and abbreviations

Introduction 17

Term Description

BCU Type of control unit

Drive Frequency converter for controlling AC motors

EMC Electromagnetic compatibility

EMI Electromagnetic interference

FAIO-01 Analog I/0 extension module

FDCO Optical DDCS communication module

FDIO-01 Optional digital I/O extension module

FEA-03 Optional I/0 extension adapter

FEN-01 Optional TTL incremental encoder interface module

FEN-11 Optional absolute encoder interface module

FEN-21 Optional resolver interface module

FEN-31 Optional HTL incremental encoder interface module

FIO-01 Optional digital I/O extension module

FIO-11 Optional analog I/O extension module

FPTC-01 Optional thermistor protection module

FPTC-02 Optional ATEX-certified thermistor protection module for potentially explosive
atmospheres

Frame, frame size Physical size of the drive or power module

FSO-12, FSO-21 Optional functional safety modules

IGBT Insulated gate bipolar transistor

Inverter unit Inverter module(s) under control of one control unit, and related components.
One inverter unit typically controls one motor.

Power module Common term for drive module, inverter module, supply module, brake
chopper module etc.

RFI Radio-frequency interference

STO Safe torque off (IEC/EN 61800-5-2)

Supply unit Supply module(s) under control of one control unit, and related components.

Related documents

Name Code

Drive manuals and guides

Drive application programming manual (IEC 61131-3) 3AUA0000127808
ACS880 primary control program firmware manual 3AUA0000085967
Option manuals and guides

FDCO-01/02 DDCS communication modules user’s manual 3AUA0000114058
FEA-03 F-series extension adapter user’s manual 3AUA0000115811
FAIO-01 analog /0 extension module user’s manual 3AUA0000124968
FDIO-01 digital I/O extension module user's manual 3AUA0000124966
Digital I/O Extension FIO-01 user’s manual 3AFE68784921
Analog /0 Extension FIO-11 user’s manual 3AFE68784930
Tool and maintenance manuals

Drive composer PC tool user's manual 3AUA0000094606

http://search.abb.com/library/Download.aspx?DocumentID=3AUA0000127808&LanguageCode=en&DocumentPartId=1&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3AUA0000085967&LanguageCode=en&DocumentPartId=1&Action=Launch
https://library.e.abb.com/public/c166f4b183fe291ac1257ca2003045de/EN_FDCO_01_02_UM_B_A4.pdf
https://library.e.abb.com/public/5ca393092fef8d97c1257da90040e0fe/EN_FEA-03_UM_B_A4.pdf
https://library.e.abb.com/public/51c88ba7a0d20ec9c1257de4004a6810/EN_FAIO_01_UM_B_A4.pdf
https://search.abb.com/library/Download.aspx?DocumentID=3AUA0000124966&LanguageCode=en&DocumentPartId=1&Action=Launch
https://library.e.abb.com/public/d428bbac1ca48e84c125777c003c9a81/EN_FIO-01_UM_D.pdf
https://library.e.abb.com/public/c8820e9bc03a3d20c12573e100390d8a/en_FIO_11_UM_C.pdf
http://search.abb.com/library/Download.aspx?DocumentID=3AUA0000094606&LanguageCode=en&DocumentPartId=1&Action=Launch

18 Introduction

Cybersecurity disclaimer

This product is designed to be connected to and to communicate information and
data via a network interface. It is your sole responsibility to provide and continuously
ensure a secure connection between the product and your network or any other
network (as the case may be). You shall establish and maintain any appropriate
measures (such as but not limited to the installation of firewalls, application of
authentication measures, encryption of data, installation of anti-virus programs, etc.)
to protect the product, the network, its system and the interface against any kind of
security breaches, unauthorized access, interference, intrusion, leakage and/or theft
of data or information. ABB Ltd and its affiliates are not liable for damages and/or
losses related to such security breaches, any unauthorized access, interference,
intrusion, leakage and/or theft of data or information.

Although ABB provides functionality testing on the products and updates that we
release, you should institute your own testing program for any product updates or
other major system updates (to include but not limited to code changes, configuration
file changes, third party software updates or patches, hardware exchanges, etc.) to
ensure that the security measures that you have implemented have not been
compromised and system functionality in your environment is as expected. This also
applies to the operating system. Security measures (such as but not limited to the
installation of latest patches, installation of firewalls, application of authentication
measures, installation of anti-virus programs, etc.) are in your responsibility. You have
to be aware that operating systems provide a considerable number of open ports that
should be monitored carefully for any threats.

Notes

« To support the main functionality of Drive Application Builder, open the specific
port, services and software in your computer. The below table shows the required
list of ports, services and software.

443 https WIBU license protection, User personal data | ABBDrivesLicenseManager
storage
443 https Installation file download DriveApplicationBuilderSetup
80 http Transfer application files to target and to | DriveDA
debug device
443 https SVN integration DriveApplicationBuilder
22350 |TCP/UDP Codemeter service Codemeter
22352 |TCP/UDP Codemeter service Codemeter

- ABBrecommends to use secured protocols on connecting to external interfaces.
For example, use secured HTTP (HTTPS) connection while using SVN functionality.

Getting started 19

Getting started

Contents of this chapter

This chapter provides information on how to setup a program and how to upgrade,
change and view device information in Drive Application Builder.

Settings up the programming environment

The following software installations are required for programming the drives.
- ABB drives with Drive application programming license (N8010)

« Drive Application Builder 1.2

« ACS-AP-x control panel and micro USB cable

« Drive composer pro 2.7 or later

For details of the version, refer the corresponding drive software release notes or
contact your ABB representative.

Note: Install Drive composer pro and then proceed with the installation of Drive
Application Builder. In case of any issues, contact your ABB representative.

The Drive composer pro enables setting and monitoring of the drive parameters and
signals. The control panel acts as a USB/RS485 converter between Drive Application
Builder, Drive composer pro and the drive.

To setup drive programming environment follow the below pre-requisites and
installation steps.

Pre-requisites:

« The Drive Application Builder supports Windows 10 (32-bit and 64-bit versions)
operating systems.

+ You must have administrator user rights to install Drive Application Builder.

20 Getting started

Installation steps:

1. Install Drive composer pro to enable communication with the target drive. For
more details, see Drive composer user’s manual (3AUA0000094606 [English]).

2. In Drive composer pro, go to System info - Products/Licenses, check that the
drive has an active IEC programming license and the drive firmware version is
correct.

For details of version, refer the corresponding drive software release notes or
contact your ABB representative.

Install Drive Application Builder according to the instruction guide included in the
installation media of Drive Application Builder. All drive application programming
related components are automatically installed.

ABE ABB Drive Application Builder 1.2.0 Build 883 - Selection Page - O X

Drive Application Builder

Engineering Productivity FRIPED

Install Software Packages for:
= ABB Drive Application Builder|

= [¥ Professional Tool Chain | E
Professional Version Conirol -

Professional Static Analysis

Description Release Notes Packages

= Drives Drive Application Builder
Programmable Drive
ABB Drive License Manager Engineering software suite

ABB AC Drives, DC Drives

This software package contains the following main components
and features:
Drive Application Builder Platform for efficient integrated engineering
Several Drive Application Builder Flatform Extensions
Package Manager for updates and extension packages
Installation Manager for maintaining the Drive Application Builder software

Erevious Install Cancel

To allow parallel communication with Drive Application Builder and Drive composer
pro, follow these steps:

1. Inthe main menu of Drive composer pro, click View and select Settings.

2. Inthe Settings window, enable Share connection check-box and click Save to
connect with Drive Application Builder.

After configuring the settings, restart Drive composer pro. Drive composer now
connects to the drive and allows sharing the connection with Drive Application Builder.

Overview of drive programming 21

Overview of drive programming

Contents of this chapter

This chapter provides an overview of drive programming environment and a typical
work cycle of drive application programming.

Drive application programming

The drive application programming function allows you to add your own program
code to the drive using the Drive Application Builder programming tool. The
programming method and languages are based on the IEC 61131-3 programming
standard.

With the drive application programming, you can create application specific features
on top of the drive firmware functionality. You can utilize the standard and extension
I/O and communication interfaces of the drive along with the appropriate firmware
signals. The program is executed in parallel with the drive control tasks using the same
hardware resources.

In addition, you can create your own parameters and events (faults and warnings)
that are visible on the ACS-AP-x control panel and in the Drive composer pro/entry
commissioning tools.

Note: For using Drive Application Builder online with the drive, enable the drive
application programming license in the target drive. See chapter Creating application
program (page 27).

22 Overview of drive programming

System diagram

The following simplified system diagram shows the application programming
environment in the same control unit as the drive firmware.

ZCU-»o¢ or BCU-o0 control unit

Fw paramelers] I FW events -
User System Infa
parameters User events

AEB Drive FW parameters

COMpOsEr pro (110, drive control) D2D communication, Ext /O, etc

ACS880 firmware

The following list describes the main components of application programming.
Drive control unit
« Run-time system (RTS) executes the application program.

- Drivelnterface allows input/output mapping between the application program
and drive firmware parameters.

« System function library enables access to the drive system services
(parameters/events/drive-to-drive communication, extension I/O).

« User made parameters.

« User made events (fault, warnings).

« Drive System info includes version information of the application program.
« Drive firmware parameters with I/O controls.

. D2D function blocks enable drive to drive communication, | /O extension modules,
and so on for application programming.

Drive memory unit

- Creates a permanent version of the application program (Boot application).

« Retains values of the application program variables.

- Consists of application source code (Note that the size of the memory is limited).

« Includes symbol and address information of the application program variables
for monitoring purposes.

PC tool programs

- Drive Application Builder for application program development and online
operations.

Overview of drive programming 23

- Drive composer pro for drive parameter, signal, event log monitoring and settings.
« Application program function libraries (for example, ABB standard library).

« The USB/ACS-AP-x control panel enables communication between the Drive
Application Builder, Drive composer pro and the drive.

Programming work cycle

The following steps describe a typical work cycle of the drive application programming
task.

1. Inthe Devices tree, do the following:
« create a new project
- add objects
« define the target and first program module.

2. Inthe Drivelnterface object, define the interface to drive firmware parameters
(1/0 access, drive control).

3. In Devices tree, define user parameters and events
(ApplicationParametersandEvents) module.

Develop the program structure and coding program units.
Define the program execution task configuration editor.

Compile and load the code using Build menu.

No u ok

In the Online menu, do the following:

« Select Create boot application if new parameters, mappings, events or task
configuration are added to the program.

- Debug the program code (stepping, forcing variables and breakpoints).

8. Inthe View menu, select Watch window to monitor program variables in Drive
Application Builder and Drive composer pro.

9. Repeat steps 2 to 8 to test the program.

Special tasks

The following special tasks are part of the drive application programming tasks.

1. Using Online menu, save or restore the source code to the permanent memory of
a drive.

2. Save the drive IEC symbol data to the permanent memory of a drive from the
Devices tree using Add Symbol configuration object to the tree option.

3. Inthe Application properties window or Project information, create a name and
version of the application.

4. Inthe Online menu, select Reset origin to remove the application from the target.

24 Overview of drive programming

Programming languages and modules

The programming environment supports programming languages as specified in the
IEC 61131-3 standard with some useful extensions.

The following programming languages are supported:

« Ladder diagram (LD)

« Function block diagram (FBD)

e Structured text (ST)

e Instruction list (IL)

« Sequential function chart (SFC)

« Continuous function chart (CFC), normal and page-oriented CFC editor

A program can be composed of multiple modules like functions, function blocks and
programs. Each module can be implemented independently with the above mentioned
languages. Each language has its own dedicated editors.

For more information on programming languages, see chapter Features (page 51).

Libraries

The program modules can be implemented in the projects or imported into libraries.
A library manager is used to install and access the libraries.

The two main types of libraries are:

« Local libraries (IEC language source code, for example,
AS1LB_Standard_ACS880_V3_5)

« System libraries (implemented in drive firmware, for example,
AY1LB_System_ACS880_V3_5)

Local libraries include source code or can be compiled. If the library is compiled, source
code is not included in the library.

For more information, see chapter Libraries (page 111).

Program execution

The program is executed on the same central processing unit (CPU) as the other drive
control tasks. In real time applications, programs are typically executed periodically
as cyclic tasks. The programmer can define the cyclic task interval. For more
information, see chapter Features (page 51).

Drivelnterface

The Drivelnterface object enables input and output mapping between application
program and drive firmware using drive firmware parameters used in the application
program. The list of parameters may be different for each drive firmware versions.
For more details onimplementing the Drivelnterface and updating parameter list, see
chapter Drivelnterface (page 73).

Overview of drive programming 25

ApplicationParametersandEvents

The ApplicationParameterandEvents Manager (APEM) object allows creating application
parameter groups, parameters, parameter types, parameter families, units and
application events for the drive in Drive Application Builder environment. For more
details on how to create parameter related tasks and application events, see chapter
Application parameters and events (page 79).

26

Creating application program 27

Creating application program

Contents of this chapter

This chapter describes the procedure to create application program.

Creating a new project

After starting Drive Application Builder programming environment, you can create a
new project.

1.

2.

In the Start Page, click New Project or in the main menu, go to File and select New
Project.

In the New Project dialog, select the required project template and click OK.

28 Creating application program

£ J@ New Project

Categories

Templates

£ Y
ACS330 DCXB30
project project

g5
MV Drive
project

Empty project

i5
HES830
project

A project containing one drive, one application, and an empty implementation for PLC_PRG

Name

I Untitied2

Location |C:‘J..lsers‘|

AoneDrive - ABB\Documents

You can rename the project in Name field and select the desired Location in the
file system.

list.

In the Standard Project dialog, select the type of control unit in Device drop-down

Standard Project

1

*

You are about to create a new standard project. This wizard will create the following objects within

this project:

- One programmab|
- & program PLC_P|

le device as specified below
R in the language specified below

- Task and openings as defined for the selected device. First created task will call PLC_PRG.

- A reference to the newest version of the ABB Standard library and ABBE System library currently

installed.

Device:

PLC_PRG in:

ACS880_AINF_ZCU12_14_M_V3_5 (ABB Oy)

ACS380 AINF BCU12 M V3 5 (ABB Oy)
ACSB30_AINF_ZCU12_14 M_V3_5 (AEE Oy)

ACSS80_AINV_ZCU12_14 M_V3_5 (ABE Oy)

ACSBB0_AISF_BCU12_M_V3_5 (ABE Oy)

ACS880_AISF_ZC1U14_M_V3_5 (ABB Oy)

ACS380_AINYV_BCU12_M_V3_5 (ABB Oy)

ACS880_APCF_BCU12_M_V3_5 (ABE Oy)

ACSB80_APCF_ZCU14_M_V3_5 (ABE Oy)

ACS880_APCV_BCU12_M_V3_5 (ABB Oy)
V35

< '

ACSBB0_APCY_ZCLI14_M_V3_5 (ABB Oy)
ACS880_ATEF_BCUU12 M V3 5 (ABE Oy)
ACSBB0_ATBF_7CU12_14_M_V3_5 (ABB Oy)
ACS880_YDIFE_UCU22_M_V3_5 (ABE Oy)

E

ACSBB0_YINFE_UCU22_F_V3_5 (ABB Oy)
ACS880_YINFE_UCUI22_M_V3_5 (ABE Oy)
ACS880_YISFE_ICUZ2_E V35 (ABB Oy)
ACS880_YISFE_UCUZ2_M_V3_5 (ABB OY)

GINKGO_QGKF_BCU01_M_V3_5 (ABB Ov)

wm

GINKGO EGKF FCUD2_04_M_v3_5 (ABB Oy)
e

Check the control unit type of the target drive either from the unit itself from the
hardware manual of drives or contact your local ABB representative.

In the PLC_PRG in drop-down list, select a programming language and click OK.

You can later add program modules made with other languages to the project.

Creating application program 29

|
Standard Project X |

= You are about to create a new standard project. This wizard will create the following objects within
- I this project:
L

- One programmable device as specified below

- A program PLC_PRG in the language specified below

- Task and openings as defined for the selected device. First created task will call PLC_PRG.

- A reference to the newest version of the ABB Standard library and ABB System library currently
installed.

Device: ACSBB0_AINF_ZCU12_14_M_V3_5 (ABB Oy) bt

PLC_PRG in: Structured Text (ST) S

Continuous Function Chart (CFC)

Continuous Function Chart (CFC) - page-oriented
Function Block Diagram {FBD)

Ladder Logic Diagram (LD)

Sequential Function Chart (SFC

Structured Text (5T)

A simple project for ACS880 target drive is created in the Devices tree.

=3 Lhitied? _‘

=[] Device (ACSEE0_ATNF_ZCU1Z_14_M_¥3_5)
=& PLC Logic
=1} Application
m Library Manager
i‘ #pplicationParametersandEvents
PLC_PRG (FRG)
= @ Task Configuration
= 3% Task_1
] PLC_PRG
Drivelnterface (MCSSE0 parameters AINFY 2.52)

The Devices tree includes:
+ PLC Logic
« Drivelnterface for firmware signal and parameter mapping

« Application (for example, you can add the following objects under Application)
« Library Manager for installing function libraries
« ApplicationParametersandEvents for creating user parameters and events
« Program organization units (POUs)
« Task Configuration module for defining in which task the POUs are executed
« Textlist
« Symbol configuration
« Global variable list
- Data type units (DUT)

Updating project information

You can update company name and version number for the application program in
the Project Information window. This information is visible in Drive composer tool
and ACS-AP-x control panel in the System info display. It helps to identify the loaded
application without the Drive Application Builder. You can also name the application
from the application tool.

30 Creating application program

To update project information in Drive Application Builder, follow these steps:

1.
2.

In the main menu, go to Project and select Project Information.

In the Project Information dialog, go to Summary tab and update the desired
information and click OK.

The updated project information is not loaded to the target application. Further
steps explain how to copy this information to the application information fields.

In the Devices tree, right click Applications and select Properties.

Properties dialog is displayed.

Click Information tab and click Reset to values from project information and then
click OK.

The Drive Application Builder version and project identification code are registered
automatically.

Creating application program 31

Appending a new POU

To append a new POU, follow these steps:
1. Inthe Devices tree, right-click Application and select Add object.

2. Select POU and click Add object.

3. Inthe Add POU dialog, Name the POU, select the Type of the POU and the used
implementation language and then click Add.

Add POU |

@ Create a new POU (Program Organization Unik)

Marne:
Foul

~Tvpe

i+ Program
" Function Block
[T Extends: I

|
[Implements: I _I

I~ | Final

fccess specifier:

| -
Method implementation language:

ICu:untinuu:uus Funckion Chart (CFC) j

. Funcktion

Beturn bype: I naa |

Implementation language:
Continuous Function Chart (CFC) j

add Zancel |

The appended POU, xxx (PRG) is added to the Devices tree under application. The
POU dialog is displayed with the declaration part and the program code.

32 Creating application program

Creating application program 33

Writing a program code

A program organization unit (POU) is a unit, object or area where you can write the
program code. The units can be created either directly under the Applications in the
Devices tree or in a separate POUs window (View -> POUs or click POUs in the lower
left corner).

The POU includes a declaration part (the upper window) and a program code part (the
lower window).

1A_ID ' [g] TORQUE_MEMORY |2 Task 1 |[g] TENSION TO_SPEED |[2] DIAMETER HOLD |[g] WINDER_CONTROL [[5] w X
1 PROGRAM TORQUE_MEMORY

= Z VAR _TNPUT
3 ENABLE_TORQUE_MEMORY: BOOL:

4 TORQUE_MEMORY_SAMPLE: BOOL:
5 TENSION_CONTROL_MODE_ACK: UINT:
6 TORQ_REF_TO_TRQ_CTRL: REAL;
| ? TORQUE_BOOST MUL: REAL: O :
4 3

T@ =
TENSION_CONTROL_MODE_ACK }
(e (S |
Torg_mem_ena
—A&ND | S o Program code part
— SET1 a1
| TORUUE_MEMORY_SAMPLE | — ——aRESET l

’_l Boost_on_delay ’ s @1
AND TON -
1 a ‘TI_‘

There are two different types of views for declaration part: a textual view and tabular
view. You can switch between these views by clicking the buttons.

<«

POU X -
1 PROGEAM BOT =
Z VAR
3 E.'['m_"-.-"ﬁR D
L I F
a2
"la

34 Creating application program

Continuous function chart (CFC) program

The following sections show how to create a new project in the CFC implementation
language.
Adding elements
1. Inthe Devices tree, expand Application and select xxx(PRG).
2. Inthe main menu, click View and select ToolBox.

ToolBox components are displayed and are used to add a CFC scheme.

ToolBox

- CFC
|k Painker |
i Control Poink
= Input
= Oukput
IF Box

= Jump

= Label

= Return

I Composer

Tk Selector

= Camment

== Connection Mark - Source
= Connection Mark - Sink

= © Input Fin
= Oukput Pin

If an empty ToolBox list is already displayed on the right side of the window,
double-click the xxx (PRG) to display the Toolbox and the POU window.

3. Toadd SEL and AND elements (logic operators, functions), use the Box element
in the ToolBox list.

In the ToolBox list, drag and drop the Box into the program code area.

- i POU x - ToolBox
1 PROGRAM POTT = CFC
k Painter
£l

z VAR
2 FHD VAR i Contkral Paint
4 - = Input

= Cukput

100 % |@ iTF Eox
= Jump
= Label
= Return
T Composer

E':' Ik Selector
e

= Comment

- — == Connection Mark - Source
7] = _onnection Matk - Sink

2 F Input Pin

|h‘ I*'I*I“‘u | 100 % I@ = Oukput Pin

5.

Creating application program 35

Enter the name of the function or operand in the ??? field.

« Youcanalso use Input Assistant to find the function, keyword, and operator.
To start Input Assistant, click the button or press F2.

« Thenumberinthe upperright corner of the white box indicates the execution
order of the function.

.
B Text search Categnriesl
Functionblocks A [Mame
Madule Calls < |ADD
Kesywords & ADR
Zanversion Operatars & AND
< AND_THEN
 ASIN
< ATAN
< BITADR

Right-click on input or output element and select Negate to invert.

AND

Copy
Paste

& Cut

W Delete
Select ol

Input Assistant. ..

YN r
| -2| Megate

ERJERIO

SetfReset »

Execution Order »

Edit Parameters. ..
Connect Selected Pins
Reset Pins

Remove Unused Pins

36 Creating application program

Setting the execution order of the elements

Each element has its own execution order. The number in the upper right corner of
the element indicates the sequence in which the elements in a CFC network are
executed in the online mode. The processing starts from the element with the lowest
number, that is 0. Note that the sequence influences the result and are changed in
certain cases.

You can set the execution order of each element using Set Execution Order and define
the number.

7] Copy
Paste

3 cut

. Delete

Select all
Browse »

E Input Assiskant...

SN 3
Megate
{En EMJEND
Set/Reset »
| Execution Crder M| % Send To Front
Edit Parameters.. . 21 send To Back
Connect Selected Pins iy Move Up
& Reset Pins L8 Mave Dawn
= Remove Unused Fins Set Execution Order...

Crder By Data Flow

Order By Topology

Creating application program 37

Adding comments to a CFC program

In the ToolBox, select Comment and then drag and drop to the desired point in the
program code area and enter the comment text.

- i POU X = ToolBos:
1 PROGEAM POT - CFC
k Painter

VAR
EHD VAR B8 I, Control Point

= Inpuk

LN)

= Cukput
IF Box

100 %% |@ = Jump
= Label
P = Return
AND 4T Composer
Tk selector
|= Comment

== Conneckion Mark - Source
= Connection Mark - Sink,

< Enier jour comment fere. 2F Input Fin
< = Dutput Pin

LIESCVRREULA

38 Creating application program

Declaring variables

To create a new variable, you can either declare it in the declaration part of the editor
or use Auto declaration.

Depending on the type of the declaration view (textual or tabular) add a new variable
by writing its properties to a new text row (textual view) or use the TAB button (tabular
view). For changing between the views, see section Writing a program code.

1. Inthe program code area, select the required object.
2. Inthe Drive Application Builder main menu, go to Edit - Browse - Auto Declare.

The Auto Declare dialog is displayed.

Auto Declare
Scope: Marne! Type:
fwar =l fori_value [pooL
Ohiject: Initialization: Address:
[POU [Appication] =l v
Flags: Comment:
[~ ComnsTANT =
[~ RETAIN
[~ PERSISTENT =l

[8]'4 | Cancel |

If you enable the option to declare unknown variables automatically (Tools =
Options - SmartCoding), the Auto Declare dialog opens every time you use an
unknown variable in your program and you can declare the variable instantly.

3. Define the Scope, Name and Type of the variable (mandatory).
« Scope defines the type of variable (global, input, output, etc.).
- Nameis a unique identifier of the variable and represents the purpose of the
variable.
« Typeis the IEC data type of the variable.

Optionally, you can also define the Initialization value, Address, Comment or Flags for
the variable.

Flags have the following meaning:

« CONSTANT means that the variable value cannot be changed and the variable
maintains its initial value all the time.

« RETAIN keeps its value over reboot and warm reset.
« PERSISTENT is not supported.

Creating application program 39

Adding inputs and outputs

You can add inputs and outputs by selecting ToolBox elements. For further information,
see section Adding elements.

Another way to add inputs and outputs straight to a block is to select a pin of a block
and start typing the name of a variable.

1. Inthe program code area, select the pin of the block.

- i FOU :u:|
1 PROGREM POT
VAR

DI1_walue: BOOL; D
EHD ViR

1

Ly T SN T R o

LIEICVRRETILT)

2. Name the input or output by writing the variable name to the block or use input
assistant as described in section Declaring variables.

3. To connect the input or output block to a pin, left-click the line connected to the
block and drag it to a pin of another block.

CFC program

The below figure shows an example of CFC program.

prev_DI1_value

Number_of_falling_edges

Ann:j

o} USINT_TO_BOOL =
-

USINT_TO_BOOL

USINT_TO_BOOL

BOOL_TO_USINT

prev_DI1_value

40 Creating application program

The following local variables are required in the block scheme.

1 PROGRAM FLC PRG

ooz g

1ce

Number of falling edges: BOOL;
prev_DI1 walue: BOOL;// := False;
DI: BOOL; 7/ := True;

7 END VAR

[=h]

During block scheme programming, the already created variables are displayedin the
Input Assistant and new declarations are added to the variable declaration area.

For using the Input Assistant, see section Adding elements (page 34).

Preparing a project for download

To prepare a project for downloading, follow these steps:
1. Inthe Drive Application Builder main menu, go to Build - Build.

2. Go to View - Messages to check that there are no errors or warnings.

Establishing online connection to the drive

The Drive Application Builder communication gateway handles communication between
Drive Application Builder and the drive. The gateway is a software component that
starts automatically at the powerup of the PC after installing Drive Application Builder.

Before starting with the communication setup, follow the pre-requisites listed below.

Pre-requisites:

1. Connect PC to a drive through USB port of the ACS-AP-x control panel using a
standard USB data cable (USB Type A <-> USB Type Mini-B).
Forinformation on making the control panel to PC USB connection, see ACS-AP-I,
-S,-Wand ACH-AP-H, -W Assistant control panel user’s manual (3AUA0000085685
[English]).

2. Make sure the ACS-AP-x USB driver is installed.

For installation procedure, refer Drive Composer Start-up and maintenance PC
tool user’s manual (3AUA0000094606 [English]).

3. Make surethedrive has application programming license N8010. To check license
information in Drive Composer pro and in ACS-AP-x control panel, go to System
info - Licenses.

To establish online connection to the target drive after defining the device type, follow
these steps:

1. Inthe Devices tree, double-click Device (ACS880_AINF_ZCU12_14 M _V3_5) and
select ABB Drives communication settings.
PC name is displayed by default.

2. Check that the USB cable is connected to the USB connector of the ACS-AP-x
control panel and the drive is powered.

Creating application program 41

Double-click on first node (node with host name) or click Scan network to search
the target device.

Filter Target ID displays only devices that are of the same type as the device
selected in the Devices window.

[pevice x| -

ABE Drives communicationsettings sgject network path to the controller :

Applications) W-L-7002013 Set as active path

Log

Il

Scan network

Users and Groups
Filter :

Information ITarget 1D <

Double-click the device or click Set as active Path.

] pevice x| -
ABE Drives communicationsettings sgject network path to the controller -
Applications = @h W-L-7002013 mﬂame: Set as active path |
[l Acssso {13{1} (active)
Log Connection Mode: |
PanelBus Scan network
Users and Groups
'f”de Number: Filter :
Information ITarge.t 1D =
(Channel Number:
_ i
o T Target Type:
4099
Target ID:
1612 0010
Target Version:
3.4.3.10

- If the drive has appropriate license code, the selected device is set as active
path and is ready for downloading a program to the drive. See section
Downloading the program to the drive.

- If the drive does not have the required license code, the selected device is
displayed with no license.

42 Creating application program

[{] Device x

ABB Drives communication settings Select network path to the controller

Applications = g L0005 Lezeloms Set a5 active path
B ~cs680 (No License.) {11 1} (active) [Nl et
Log (Connection Mode:
e Sean network
Users and Groups Node Number: il
: ilter
i
Information Target ID -
Channel Number:
i
—
— | Target Type:
4093
Target ID:
16120010
Target Version:

3.4.3.10

Creating application program 43

Downloading the program to the drive

You can download and execute the written program to the drive after the project is
ready for online communication with the drive. Check that the active path to the target
device is defined in the communication settings. For more information, see section
Establishing online connection to the drive.

In the Drive Application Builder main menu, go to Online - Login.

- If a program exists on the drive, the following dialog is displayed. Click Yes.

Drive Application Builder 1.0 - Premium

Application 'Application’ does not exist on device 'Drives', Do wou want to create it
and proceed with download?

| Details. . |

- Iftheapplication on the drive is not up to date, the following message is displayed.
Click OK to recreate boot application and then reboot the drive.

Drive Application Builder 1.0 - Premium

| | Application on drive is nok up to date, Please recreate boot
" application and reboat drive.

]|

After downloading the program, the background color of the device and application
name in the Devices tree changes. The program is in stop mode and the status is

shown in brackets [stop].

You can start the program by selecting Start in the Debug menu.

=5 Profecti =

= m Device [connected] (ACS&S0_AINF_ZCU12_{
= @1] PLC Logic
=} Application [stop]
m Library Manager
ﬂ ApplicationParametersandEvents
[] pLC_PRG (PRG)
POU (PREG
= @ Task Configuration
= @ Task_1(Task_1)
& pLc_PRG
ﬁ Drivelnterface (ACSE80 parameters Al

7] pevice x|

ABB Drives communication settings

Applications

Log

Users and Groups

Information

Select network path to the controller :

= ghy IN-L-7002013
[AcCseBO {1}{1} (active)

Device Name:
ACS880

Connection Mode:
PanelBus

Node Number:
1

Channel Number:
i

Target Type:
4099

Target ID:
16120010

Target Version:
3.4.3. 10

Set as active path

Scan network

Filter :
Target ID -

For more information on downloading a program, see section Application download

options (page 56).

44 Creating application program

Creating a boot project

The regular downloading moves the application program to the RAM memory of the
drive. By creating a boot project, the application is copied to the non-volatile memory
of the drive memory card and thus retains the application after power cycle or reboot.
For more details, see section Application download options (page 56).

To create a boot project, follow these steps:

1. IntheDrive Application Builder main menu, go to Online - Create boot application.

Online

&8 Login Alt+F8
Logout Ctrl+Fg

Create Boot Application

Logoff Current Device User

Download

Online Change

Source Download to Connected Device
Reset Warm

Reset Cold

Feset Origin

2. System prompts to save the boot application, click Save.

Creating application program 45

Opening a project archive
1. Launch Drive Application Builder.
In main menu, go to File - Open Project.
3. Navigate to a folder containing project archive and click Open.

The below screen appears. Click OK.

Drive Application Builder

Y'ou are trying to extract a project archive. A corresponding version of Drive
Application Builder is available to extract the project archive without updating the

project.

Flease select

(®) Continue to work with version: Drive Application Builder 1.0
Attention: you will only have the possibility to update the project in this case.

oK Cancel

4. In Extract Project Archive dialog, choose the location to extract the archive and
click Extract.

Locations

(®) Extract into the same folder where the archive is located
() Extractinto the following folder

C:Wsers\invaman\OneDrive - ABB\Documents

Advanced...

Contents

Items Comment

Project information
Referenced devices
Referenced libraries
UFF download information files

EaR SIS

The below message appears.

46 Creating application program

Do you want to use the Device Descriptor from the archive
instead of upgrading to latest firmware version 7 If you
choose to continue upgrading the device, there may be a
possible loss of Drive Interface mappings.

Yes Mo

Creating application program 47

Click Yes to load the project using device descriptions from archive. The
project can be verified by checking the drive interface and device version.

™
Fle Edt View Project Buld Online Debug Tools Window Hep \ ¢
ELA=ME L B0 &% -
pevices v 2 x|[@ pevice x -
=3 ATestrogram -
e e e T R) 288 Drives communicationsettings | General:
= @ PLC Logc
Wecwo
Log
Drive FW: AINFX
s Application Interface: 3.0.0.1
5880 drive, 2U-12 and 20
Inage:
&) TaskxCounter
Mk Drivelnterface (ACS880 parameters AINFX 3.40) Messages -Tota eror(), 0 waming(s), 1 message(s) v ax
Save Project - [© 0erorts) [0warning(s) [@ Omessage| X ¥
Description Project Object Position
T
Lostbuld: ©0 © 0 Precomple o/ G§ [

Click No to use the latest version of device description available with Drive
Application Builder. The below dialog appears. Click OK.

After upgrading the file to Drive Application Builder 1.0, it can not be opened with older
VErsions.
Cancel: the project file will be closed unchanged.

Please select

(® Upgrade the project file to version: Drive Application Builder 1.0

It could take several minutes.

Create backup (C:\Users\invaman\Onelrive - ABE\Documents\DAB and DMWOId
projects'Appl TestProgram AB 2.0 4\ApplTestProgram_2021_8_26 5 58 56 Backup.project)

Corl

If the project contains third party devices, the below message appears. Click
OK.

based on a project file,

If the project contains third party devices, it is recommended
to either use a project archive or to install all required third
party devices prior to the upgrade.

Proceed with upgrade?

0 Drive Application Builder will try to do a project upgrade

OK Cancel

48 Creating application program

- If any parameter types missing due to project upgrade, a message appears
Click OK.

- If any compiler version upgrade is available, a message appears. Click OK.

- Verify the project update is completed by checking the device version and
device interface firmware version.

x

File Edt Viw Project Buld Onine Debug Tools Window Help Y
El =R [B0 &% =)
v 8 x| @ vevice x
A88Drives communication settings | General
Name: ACSE80_AINF_Z0U12 14 M V3.5
Applications @ vendor: B8 Oy
Groups:Drives
Type: 099
Log 11612000
Version: 38.0.150
Drive FIW: AINFY
e Application Interface: 3.0.0.1
Description: ACS380 drve, 2CU-12 and ZCL-14 control boards
Access Rights
Information
Inage:
g
| g
6h ol el
&) ras
B Drvelnterface (ACSS80 parameters AINFX 3.40) e Tom0), 0 waria), Lmemer) _—
Save Project
Description Project Object Position
[52 Deveces [y pou
Lostbud: © 0 ® 0 precomple o/ G Project users (nabody) 5]

Creating application program 49

Executing the program

WARNING!

Do not debug or make changes to drive in the online mode or while the drive
is running to avoid damage to the drive. Ignoring the instruction can cause
physical injury or damage to the equipment.

1. Inthe Drive Application Builder main menu, go to Debug - Start.

The application status changes to [run] and notifies that the program is executed
successfully.

[Device x| E
=) Projectt
= () Device [cannected) (ACS880_AINF_2€U12 4| | 485 Drives communication settings Select network path to the cantraller
= Bl rcLoge
= £ Application [run] Applications = 9fy IN-L-7002013 Device Name: Set as active path
() Liorary Manager [l ACs880 {13{1} (active) Acsss0
@ ApplicationParametersandEventy | | Log Connection Mode: Sean network
[PLc_PrG (PrE) panebus
POU (BRG) Users and Groups - Eiter
= [E@ Task Configuration ot F |
nformation ange hd
= & Task_1{Task_1) Channel Humber:
&) pic_PrG P
£/ Drivelnterface (ACS630 parameters Al Target Type:
4039
Target ID:
16120010
Target Version:
3.4.3.10

2. Double-click the cell in the Prepared value column and type a new value.
« Press Enter to set or change a value of an existing variable.

Device.Application.PLC_PRG

Expression Tvpe Walue Prepared value Address
@ a INT 41 200 D
| | 2
-
1 al 3 =200 ls= 4 34 <2007 W1
z
100 % |[E
les \/| FeLIr | Program loaded | Progran unchanged Project user: (nobody) ;

3. Inthe Debug menu select the following:
« Write values to apply the prepared value to the variable.
« Force values to force the prepared value to the variable.
« Unforce values to unforce a forced value.
The variable value is changed. The current variable values are displayed in the
Value column and in the source code at the variable.

4. Inthe Debug menu, click Stop to stop the drive.

5. Inthe Online menu, click Logout to logout.

50

Features 51

Features

Contents of this chapter

This chapter describes the device handling information and features supported by
Drive Application Builder.

Device handling

In the application programming environment, devices represent hardware. The device
description file contains information about the target device (drive) from the
programming point of view like the device identifier, compiler type and memory size.
The Drive Application Builder installation package installs the device description files
automatically.

The device description may be updated later and a new file can be installed. The system
monitors that a project with an incompatible device description file is not loaded to
the drive.

52 Features

Viewing device information

In the Drive Application Builder Devices tree, double-click on Device and go to

Information tab to view the general information of a Device.

7 [i[] Device x

ABEE Drives communication sektings

Applications

Log

Users and Groups

Access Rights

Information

General:

@

Irmage:

Mame: ACSE80_AINE ZCU1Z 14 M W35
Yendor: ABE Oy

Groups: Drives

Type: 4099

ID: 1612 0010

Yersion: 3.5.0.0

Drive FW: AIMNFx

Application Interface: 3.0.0.1

Description: AC5530 drive, 2C10-12 and ZCU-14 control boards

The Device ID, Drive FW name (AINFX) and application interface version must be
identical in the project and drive target. In Drive composer pro, use the System info
option to check that the drive target has the corresponding application interface
version, device type and drive firmware name (displayed in parameter 7.04).

You can also check if the drive target has the corresponding application interface

version and device ID.

In Drive composer pro, go to System info - Products - More.

Features 53

1182019 11:15:32AM;| Set time

Drive name: ACS330 Set 1/18/2019 10:44:11 AM

Products

Dirive type: ACS330
Drive model: 0 More |
Serial number: .
Manufacturing date: Licenses |
Firmware version: AINFT v2.30.255.15 Mar 23 2016 10:40:12
Description:
Dirive name: ACS380
MRP code:
Application name DCP version: 0.0.41.1 More
ipp::E:{:gﬂ rders"’” Backup restore version: 0.1.0.0 —
I apslisation name | L0AdINg package: AINLT v2.30.285.15
Int applicati - Application device |D: 0x1612 0010

pplication version S . L
Int application id Application device version: 34310

Application interface version: 3004

_Dptim—modules Application system liorary name:
Embedded ethernet |Application system library version: 1.9.1.0

Ok |
4

The name and version of the available system library is displayed. Make sure this
information matches with the installed system library of the Drive Application Builder
project.

For more information, see parameters 7.23 for Application name and parameter 7.24
for version in ACS880 FW.

Upgrading or adding a new device
You can upgrade or add a new device to the programming environment.

1. Inthe Drive Application Builder main menu, go to Tools - Device Repository.
Device Repository dialog is displayed.

Click Install to select device description file.

3. Inthelnstall Device Description window, browse and select the device description
file (.devdesc.xml) in the file system.
Now you can add a new device to projects or upgrade currently existing devices
in the project.
Changing an existing device
You can change an existing device in Drive Application Builder project.

1. Inthe Drive Application Builder project, right-click on Device and select Update
objects or in the main menu, go to Project - Update project.
The Update objects dialog displays the available device types.

2. Select the required drive device and click Update objects.

Viewing software updates

In the Drive Application Builder start page, click Drive Application Builder to download
Drive Application Builder update packages.

https://new.abb.com/drives/software-tools/drive-application-programming

54 Features

This link is a download center for Drive Application Builder. For example, you can find
Drive Application Builder software, release note, Drive Application Builder update
packages, and so on.

Program organization units (POU)
The POU types are:

« The program (PRG) can contain one or more inputs/outputs. A program can be
called by another POU but cannot be called in a function (FUN). It is not possible
to create program instances.

« The function (FUN) has always a return value and can have one or several
inputs/outputs. The functions contain no internal state information.

« The function block (FB) has no return value but can contain one or more outputs
as declared in the variable declaration area. A function block is always called using
its instance and the instance are declared in a local or global scope.

The created project can contain POUs with a specified implementation language.
Each added POU has its own implementation language.

For detailed description of the POU types, see the IEC programming environment user
manual and the IEC 61131-3 open international standard.

Features 55

Data types

The ABB drives application program does not support some of the standard IEC data
types like BYTE, SINT, USINT and STRING. The following list gives the standard IEC
data types, sizes and ranges.

Data type Size Range Supported |Supported | Notes
(bits) by BCU-xx |by ZCU-xx
BOOL 8/16* |0, 1 (FALSE, TRUE) Yes Yes 8 bit » BCU-xx
16 bit » ZCU-xx
SINT 8 -128...127 Yes No
INT 16 -215, .215-1 Yes Yes
DINT 32 -231,,.231-1 Yes Yes
LINT 64 -263,,.263-1 No Yes
USINT 8 0...255 Yes No
UINT 16 0...65535 Yes Yes
UDINT 32 0...232 Yes Yes
ULINT 64 0...264 No Yes
BYTE 8 0...255 Yes No
WORD 16 0...65535 Yes Yes
DWORD 32 0..232-1 Yes Yes
LWORD 64 0...264-1 No Yes
REAL 32 -1.2*10-38,..3.4*1038 Yes Yes Slow. Do not
LREAL 64 -2.3*10-308 1, 7*10308 Yes Yes use.
TIME 32 0 ms...1193h2m47s295ms Yes Yes
LTIME 64 0 ns...~213503d Yes Yes
TOD 32 00:00:00...23:59:59 Yes Yes
DATE 32 01.01.1970...~06.02.2106 Yes Yes
DT 64 01.01.1970 00:00...~06.02.2106 Yes Yes
00:00
STRING[xx] 0...255 characters Yes No
WSTRING[xx] 0...32767 characters Yes Yes

Drive application programming license

The drive application programming license N8010 is required to download and execute
the program code on ABB drives. To check license information in Drive composer pro
or in ACS-AP-x control panel, go to System info - Licenses. If the required license
code is not available, contact your local ABB representative.

56 Features

Application download options

Before executing an application in the drive, download the application to the drive
memory. After downloading, the application software is embedded in the firmware
of the drive and has access to system resources.

Note: It is not recommended to download a program to the RAM memory when the
drive is in RUN mode. The drive must be in STOP mode and Start inhibits must be
possible to set.

Before downloading, make sure that there is no fieldbus device, M/F-link or D2D-link
connected to the drive. Drive composer is not running data monitoring or
back-up/restore at the same time.

There are two different download options:

Download - This is a regular download method that copies the compiled application
to the drive RAM memory. As aresult, it is possible to execute the application, but
after a power cycle or reboot the memory is erased. This download method does
not alter an application that is located in the drive boot memory (ZMU) and the
original application is available for use after a reboot.

Create boot application - This download method copies the application to the
non-volatile memory of the drive memory card. This way the application remains
intact after a power cycle or reboot. You should be logged into the drive to perform
this operation. Features that can work only after restarting the drive should be
downloaded with this method.

Create boot application command (Online - Create boot application) also includes
booting the drive. Rebooting stops the execution of the complete drive firmware
for some time. For this reason, it is allowed only when the drive is stopped and
start inhibition is granted to the Drive Application Builder.

Note:

Firmware parameter mapping, task configuration, application parameters and
event configuration are activated only after the boot application is loaded and
the drive is booted.

Start inhibition is not granted if the drive is running, disabled (DIL, Safety function
active) or faulted. Make sure that these conditions do not exist before downloading
the program.

Features 57

Removing the application from the target

Drive Application Builder application allows you to remove application from the target.
You can use Reset option if the application includes many changes like application
parameter changes or the application is replaced by another application. If the target
already includes an application, use the Reset origin selection in the Online menu
before downloading a new application.

This command removes (clears all) old application from the target and all the
applicationrelated references. Use this command at least once before the final version
of applicationis loaded. The command can be used only in the online mode. For further
information on Reset options, see section Reset options.

When you are prompted with the following message, click Yes.

Drive Application Builder 1.0 - Premium

lol Do wou really wank o perform the operation 'Reset origin'?

After you initiate the Reset origin option, the following message is displayed. Click
Yes. The command is executed only if Drive Application Builder receives the permission
from the drive.

Drive Application Builder 1.0 - Premium

I-') 1 This operation will remowve the application from drive and rebook
' ' the drive, Drive must be stopped, Da wou want ko conkinue?

58 Features

Retain variables

Retain variables includes the RETAIN flag used to retain values throughout the drive
reboot and warm reset. A cold reset sets the retain variable to its initial value. The
values of retain variables are cyclically stored in the flash memory of the drive and
restored to the stored value after restarting the program. The retain variables are
stored in a separate 256-byte memory area which defines the limits of their amount.

WARNING!

In a function block, do not declare a local variable as RETAIN because the
completeinstance of the function block is saved in the retain memory area and
this large function block instance can lead to running out of memory space.

In firmware version 2.6 and later, the power control board works with the parameter
settings:

- If parameter 95.04 = Internal 24V, retain values are saved immediately at the time
the drive loses power, meaning it is not cyclical.

« If parameter 95.04 = External 24V, retain values are saved at periodic intervals of
3 minutes. So the recovered variable may not be the recent value.

Note: Declaring a local variable in a function as RETAIN has no effect and the variable
is not saved in the retain memory area.

The existing retain variables cannot be linked to application parameters.

Features 59

Task configuration

The task configuration object handles call configuration of the programs. A task is a
project unit that defines which program is called in the project and when it is called.
The project can have more than one task with different time levels.

There are two types of tasks:

Cyclictask (Task_1, Task_2 and Task_3) - The task is processed cyclically according
to the task cycle timeinterval. The following table lists the time intervals available
for cyclic application programs. The highest priority is given to the task with the
shortest execution interval.

Task Time interval

Task_1 1...100ms

Note: For YINFB, YISFB and YDIFB drive firmwares, the time interval is
500 pus ... 100 ms.

Task_2 10...100 ms

Task_3 100 ... 1000 ms

Pre_task - The task is executed only once at start-up of the application program.
The feature is useful for one time initialization. The POUs (blocks) assigned into
this task are executed before starting the cyclic tasks.

Note: The application program consists of specific allocation of CPU resources. If the
limit exceeds, the drive trips to task overflow fault. For details, see ACS880 primary
control program firmware manual [3AUA0000085967 (English)].

Adding tasks

To add tasks to Task Configuration, follow these steps:

1.
2.
3.

In the Devices tree, right-click Task Configuration and select Add Object.
Select the Task and click Add object.

Select the Task in drop-down list and click Add.
The selected tasks are added in the Task Configuration object.

Click Add POU in the newly added Task_2 screen.

In the Input Assistant dialog, click Categories tab and then select PLC_PRG and
click OK.

PLC_PRG s added to Task_2. Drag and drop PLC_PRG to Task Configuration object.

60 Features

Devices

- 1%

=5 Projectvame

: || configuration
=[] ACS880_AINF_ZCU12_M_V3_5 (ACS880_AINF_ZCU12 |

& Task_2 x|

- _ # Notice: Create boot application and target boot needed in orderto get new task canfiguration effective
B0 pLC Logic
- o Application Type —
ﬂ Library Manager Task: Task_2 Interval (10 ms - 1000 ms): 100 E]
@ ApplicationParametersandEvents
PLC_PRG (PRG) POUs
= @ Task Configuration Add POU POU Comment
£ Task_1(Task_1) -
@ PLC_PRG Remove POU PLC_PRG
=% Task_2 (Task_2) Open POU
&3] pLC_PRG Change POUL..
ﬁ Drivelnterface (ACS880 parameters AINFY 1.80) T
Move Down

m

»

Features 61

Monitoring tasks

Before adding the tasks for monitoring in Drive Application Builder, check parameter
7.21 Application environment status in Drive composer pro.

b 7. System info
3 Drive rating id 939 NoUnit] 65535 o
4 Firmware name AINFE NoUnit
5 Firmware version 2.31.0.0 NoUnit 0.00.0.0 255.255... 0.00.0.0
i} Loading package name ADALE NoUnit
7 Loading package version 1.12.0.0 NoUnit 0.00.0.0 255.255... 0.00.0.0
8 Bootloader version 21200 NoUnit 0.00.0.0 255.255... 0.00.0.0
1 Cpu usage Bl % 0 100 1]
13 PU logic version number 0x0000 NoUnit 0x0000 Dxfrff 00000
21 Application environment st. 0b0000 | NoUnit 0b00D0 Ob1111_.. 0b0000
23 Cld value [bin] 0b0000 [hex] 0x0000 [dec] D
24 0.00.0.0
2 New value [bin] |0b0 | ox0000 |o
26 Bit | Name | value 0.00.0.0
30 0 0 = Pre task 0 00000
} 1 1 = Appl task1 0
2 2 = Appl taskz2 0
4 3 3 = Appl taska 0
} 4 4 0
5 5 0
) G [0
2 7 7 0 0
8 g 0
y a 9 0
) 10 10 0
) 11 11 0
12 12 0
4 13 13 D
3 14 14 0
P 15 15 = Task monitoring 0
} Refresh Ok Cancel
4

The parameter bits 7.21.0, 7.21.1, 7.21.2, and 7.21.3 are used to monitor the application
task related execution. To check the continuous execution of tasks, write the specific
task bit to 0. The executing task bits are updated to 1, except the Pre task, which
executes only once.

The calculation of tasks execution cycle (duration) is disabled by default. To view the
tasks execution monitoringin Drive Application Builder, change Bit 15 = Task monitoring
to high.

To add task monitoring view in Drive Application Builder, follow these steps:
1. Inthe Devices tree, double click Task Configuration.

2. Click Monitor tab to check the status report of available tasks.
The status report of available tasks appears. The values in the task monitoring
view are updated only after setting the parameter 7.21.15 to high in Drive composer
pro. The setting is configured again after the power cycle or boot or control board.

You can evaluate the total (task 1-3) CPU load using the parameters 7.40 IEC Application
Cpu usage peakand 7.411EC Application Cpu load average. For parameter descriptions,
see ACS880 primary control program firmware manual [3AUA0000085967 (English)].

62 Features

Uploading and downloading source code

Optionally, the source code of the project can be saved in the drive. This feature is
located in Drive Application Builder main menu Online - Source download to connected
device orin Device tree, right-click on drive device and click Source download to drive
and it ensures that the files are easy to obtain if needed.

You can retrieve the saved source code from the drive to a new project using File -»
Source upload from drive option available in Drive Application Builder main menu and
then scan and select the drive.

The size of the source codeis limited to 500 KB. Check the archiving option to minimize
the source code size (File - Project Archive - Save/Send Archive...). Note that
referenced devices and libraries are needed, the rest is optional.

Note: If the source code is saved on the ZMU memory unit, you can retrieve the program
with another PC without the authors consent unless the project is password protected.

Adding symbol configuration

To add symbol configuration in Drive Application Builder project, follow these steps:
1. Inthe Devices tree, right-click Application and select Add object.

2. Select Symbol configuration and click Add object.

3. Inthe Add Symbol configuration dialog, click Add.

Add Symbol Configuration El |

B8 reate aremote access symbol configuration,

™ Include Comments in XML
[Support OPC LA Features

r &dd library placehalder in Device Application
(recommended, but may Erigger downlaad)

Client side data layout
" Compatibility Layout
{+ Cphimized Layout

Add Cancel

Symbol configuration object is added to the project.

Features 63

After adding Symbol configuration object to the project, the IEC variable to symbol
dataisloadedinto the drive during the create boot application download. See section
Application download options (page 56). The feature provides Drive composer pro
access to the application variables which is used for graphical monitoring and
debugging.

Debugging and online changes

The following debugging features and variable forcing are supported:
« Start/stop program execution

« Setting breakpoints

« Stepping code line by line or by function

« Forcing variables (constant setting of variable values)

- Writing variables (single setting of variable values)
Note: Online changes of the program code are not supported.

WARNING!
Ignoring the following instruction can cause physical injury or damage to the
equipment.

Do not set breakpoints and force variables on a running drive that is connected
to motor.

Safe debugging

Avoid the following actions when debugging the application program of a running
drive connected to motor in the online mode:

« stopping the application program

setting breakpoints to the application program

. forcing variable values

« assigning values to outputs

» changing the values of a local variable in function blocks
« assigning invalid input values

Breakpoints stop the entire application, instead of just the task that has the currently
active breakpoint.

64 Features

Reset options

You can reset the application, using the reset selections in the Online mode.
1. Inthe Devices tree, select the Application.

2. Inthe main menu, click Online and select the desired reset method.

« Reset warmreset all variables of the currently active application to their initial
values (except retain and persistent variables). In case of specificinitial values,
the variables are reset exactly to those specific values.

+ Reset cold reset all variables (normal and retain) of the currently active
application to their initial values.

+ Resetorigin erase the application downloaded to the drive from the RAM and
the memory unit (Boot application). In case of specificinitial values, variables
are reset to those specific values. Drive firmware parameter mappings,
user-defined parameters and events are also removed. Finally the drive is
restarted.

Memory limits

You can remove the temporary code sections from the program using Build - Clean
or Clean all options available in Drive Application Builder main menu.

The memory area O is assigned for code and data. Memory area 1is assigned for retain
variables.

The below example shows an actual allocation in the build report.

Maseages -~ 0 X
Busid . ﬁ'nwtﬂl i Uwam‘-a[s]l'ﬂ'ﬁm[s]
Description Project =

generate relocations ...

n‘ Sipe of generated code: 76508 bytes

B size of global data: 13530 bytes

Wirch_Imt
|Tuta|rruarrmmnrum: §[==-11] I I Avaliabla mamony: S3308 I

Winch_Int

O Total allocated memory size for code and data: 100838 bytes L Winch_Int
€ Memary area 0 contains Data, Inpat, Output, Memory and Code: kighest used e::'e:;:

@ Memary ares contsing Retsin Data: highest used address: 256 Jlargest contiguous mema

Winch_Imt

Winch_Int 1

Build complete == 0 emors, 0 wamings : ready for download

| Total retain memory for uss: 258 | | Avalabls ratain memon: 160 |

Note: To optimize the memory consumption, avoid using function blocks and
unnecessary variable definitions.

Features 65

CPU limitation

The maximum execution load of the application is limited to 5 to 15% depending on
the drive type. To know the actual load limit, contact your local ABB representative.

You can monitor the CPU load by checking the application load with parameter 7.11
Cpu usage. To know the load difference, compare CPU usage values with and without
the application. Make sure that the difference value is not greater than the value limit.
If the application exceeds the limit, the drive trips to the task overload fault 6481. The
faultis registered to the event log of the drive and the fault-specific AUX code indicates
the overloaded tasks (10 = task 1, 11 = task 2 and 12= task 3).

You can evaluate the total (task 1-3) CPU load using the parameters 7.40 IEC Application
Cpuusage peakand 7.41 1EC Application Cpu load average. For parameter descriptions,
see ACS880 primary control program firmware manual [3AUA0000085967 (English)].

Perform CPU load tests to make sure that the drive is capable of adequately running
the application. Enable the required drive functions during the execution of the
application. For example, motor control, communication modules, encoders, and so
on.

66 Features

Application loading package

This feature allows the user to create a loading package containing of an application
program for ACS880 drive. To build a loading package when the tool is connected
online to the drive, use the Drive Application Builder command Create Boot Application.

You can also create offline application loading package file without firmware version
limit using premium license.

Note: To create loading package with or without firmware restrictions in offline, you
must have premium license.

Place the file to the corresponding project folder with the file name
<project_name>_<device>_<application>.Ip. Load the application loading packing
using the Drive loader tool.

Note: Application loading package functionality supports from AINFX 2.01 firmware
version onwards.

Before loading the package, Drive loader tool checks for the correct actual drive type
and firmware version to load the package. It also checks for the correct drive application
programming interface and the active programming license (N8010) in the target
drive.

To include symbol data and source code to application wrap file and loading package
using Drive Application Builder, follow these steps:

1. Inthe main menu of Drive Application Builder, go to Project = Project Settings.
Project settings dialog is displayed.

2. Click Application loading settings and select the desired options.
« Click add icon to add new firmware.
- Enter the firmware details and click Ok.

| Project Settings *

ﬁ% Application licensing

ﬂ? | Application loading settings
Iﬁl Compile options

[] Include symbaol file to "‘Application.wrp'file and loading package

& Compiler warnings (] Include source fileto '‘Application.wrp'file and loading package
D Library development Add supported firmwares
& Page Setup [AINF6 2.01.0.0

Security

© @

ﬂ? Source Download
Static Analysis Light

€ Users and Groups

@ Visualization

I;Ebl Visualization Profile

License Details

License check required

[CK Cancel

The added firmware is displayed in the Application loading settings.

Features 67

Note: Make sure that the application is working correctly with the added firmware.

It is also possible to add more supported firmware versions to the application
loading package.

68 Features

Loading application to a drive with Drive Composer - Drive firmware
loader

To create the application loading package file, see Creating a boot project (page 44).

To load the drive firmware, make sure the drive is connected to Drive Composer via
USB cable. For more information, seeDrive composer user’s manual (3AUA0000094606
[English]).

1. Make sure that the drive is connected to Drive Composer via USB cable.

2. Power up the drive. Make sure that the motor is not running (inverter) or the unit
is not operating (supply unit). If drive is connected via USB cable, Drive Composer
automatically discovers the drive. Click Connect.

fJ3 Welcome X

[v] DDCS enabled (ACS200 only)
[v] USBICOM enabled Comm settings

[] Ethemet enabled

Offline/Virtual Drives Connect

Note: If drive is connected via a USB cable, Drive Composer automatically discovers
the drive.

3. Click Tools = Drive firmware loader.

File Edit View Help

Safety Configuration Report

Backup network
Compare drive daia
PSL2 data logger
PSL2 Data Viewer

Drive Text Editor

Drive Parameter Conversion Tool Clri+Alt+P
EDS Export Ctri+l
Macro Alt+M

Register drive
Application symbols Alt=A

Search drive from DIB

Create service report
Drive firmware loader
Fieldbus adapter loader

Virtual drive launcher Ctri+L

Features 69

The Firmware update window appears.

If you have connected through Ethernet cable or the Drive Composer in the
Offline/Virtual Drives mode, and you open the firmware loader, a FIRMWARE
UPDATE warning message appears. Click OK.

FIRMWARE UPDATE

Firmware update requires USB connection, please connect PC to
control panel with USE cable.

Select the offline update tab and browse the application loading package file.

To select the application loading package from your computer, click Offline update,
Browse the package and click Select.

% %
Firmware update o Drive fimware
Loyl Basic information
Drive type: ACSa80 Control board type: ZCU-12 Current loading package version: AINLC v3.41
Drive list c Serial number: Current firmware version: AINFC w141 Update status: Update Available £
Q searcn
Firmware loader
* ACS880_AINEC (0}3) o © select firmware package
Cloud update Offline update

select firmware loading package from local disk
CAUsersy \Downloads\Appl_Loading_Device_APLDPIp Browse m

Note: If you try to load a corrupted or invalid loading package file, the application
displays an error message.

ERROR

The file you have selected is corrupted and can't be opened. Retry to
download the firmware. If this error occurs again, please contact
ABE support.

70 Features

5. Infirmware update window, Click Next.

[: 9 x
Firmware update © Drive fimware
< [Basic information
Drive type: Acssag Control board type: Zcu-12 Current loading package version: AINLC v3.41
Drive list (i Serial number: Current firmware version: AINFC vi41 Update status: Update Available €%

Q, search
* ACSSBO_AINFC (0}3) o © Load firmware

ﬁ} Current drive firmware
ACS880 AINFC v3.41

{é} Firmware to update

This loading package contains an application program for ABB Drive.

Software package

re package 1 (Recommended)

6. Select the desired check box if you want to create backup, restore parameters
from backup file or delete the file automatically after parameter restore. Select
the location to save the file if you want to create a backup. Click Start.

i X
Firmware update © Drive firmware
tak Basic information
Drive type: ACS850 Contral board type: ZCU-12 Current loading package version: AINLC w341
Drive list c Serial number: Current firmware version: ANFC v3.41 Update status: Update Available €»
Q, search
Note:
ACSBBO_AINFC {0}{3} o = Thedrive needs to be stopped before updating drive firmware.

Interrupting the progress can seriously damage the drive. Make sure USB cable s connected to PC and drive’s control panel.
Keep drive and PC connected to power supply all the time
+ Parameter backup will be automatically created.

I'would ke to create a parameters backup file before updating the firmware
I'would lke to restore the parameter automatically after firmware update.

1 would fike to delete the parameter backup file automatically after parameter restore.

Select a custom location or use the default backup storage

C:\Users\, \OneDrive - ABE\ Documents\Driveware\Composer\Firmware Browse

The estimated operation time is 4 minute(s).

Back Start

Features 71

7. Wait for the firmware to be loaded. The backup time can be more if you select the

parameter backup option.

The estimated operation time is 9 minute(s).

Z Parameter backup
In progress
I

The estimated operation time is 1 minute(s).

Parameters backup in progress...

Cal

Firmware update

BQ

Parameter restore

8. Theinstallation successful page appears.

@ Parameter backup

Paramater backup s 100% successiu

@ Firmware update

@ Parameter restore

Completed

@ Drive firmware update is successfully done!

Service report will be sent to ABB, Only drive related data is collected. You can also send the service report later. You can

unsent report from the offline report list of “Creating service report”.

All your configurations should be restored from the backup file, If you miss something from your set-up, please restore the

parameter backup again. You can also contact ABB support if you need further help.

9. Click Close.

Verify that the application is loaded to the drive. Refresh the drive in Drive Composer.

Confirm that the updated parameters using the Drive Application Builder are visible
in the Drive Composer. Check the application name matches the latest name in the

loading package file.

72 Features

33 Drive Composer pro v.29.1.678 DEVELOPMENT RELEASE
File Edit View Tools Help

@ ACS880_AINFC {0§3} @
L Bl

/T

Products

Drive type:

Drive model

Serial number:
Manufacturing date
Firmware version
Serviee pack
Description

Orive name

MRP code:
Application
Application name
Application version
Application i

@ R\ | Advertence
s Y @ 0
S Siop | Coastsiop Reference

Systeminfo ACSS00_ANFG (013) X

Drive name: RCTENGH

PITNTES RERC T 250672024 2.44.15 PM +

ACS830 More
)

Licenses
AINFC v3 41
Not required
ACSBS0_AINFC

More

Int application version
Int application id
Bios

Lapor_|]

COBCIA

avw

o x
ABB

(al])

Drivelnterface 73

Drivelnterface

Contents of this chapter

This chapter describes how to implement Drivelnterface and map input/output settings
between the application programs and the drive firmware parameters.

Implementing Drivelnterface

The interface between the drive firmware and the application is implemented using

Drivelnterface.

«stUntitled1.project - Drive Application Builder 1.0 - Premium

File Edt ‘Wew Project Euild Onlne Debug Tools

ExEI& | @b 05 | B) [T | % | ©F

=3 nttieds -

= m Device (ACSEE0_AINF_£CU12_14_M_¥3_5)
= Bl PLC Logic
=1} application
Library Manager
ﬂ ApplicationParametersandEvents
PLC_PRG (PRG)
" Symbal Configuration
= @ Task Configuration
= Q} Task_1
&) pLc_pRa
Drivelnterface (ACSB80 parameters AINFX 2.62)

D POLs | 58 Devices

‘Window Help

[fy DriveInterface x

Motice: Create boot application and target boot needzd to get mapping effective

0 - |’® Inputs |K@ Outputs | # Unassigned | -

Parameter Mame | Assignment | Mapping IEC Wariable | Data Type

[Min

-

+-[0 1 Actual values

4 3 Input references

[4 Warnings and Faults

| 5 Diagnostics

[& Control and status words
4 7 System info

10 Standard DI, RO

11 Standard D10, FI, FO
12 Standard AL

13 Standard A

19 Operation mode

20 Start/stopfdirection

21 Start/stop mode

2z Speed reference selection

R S T,

TP EYRY

A

| Last build: £ 0 & 0 Precompils:

Project user: {nobody)

74 Drivelnterface

Drivelnterface consists of all the drive firmware parameters list that can be used in
the application program. The list is specific to each drive firmware (a new firmware
may have new parameters). You can assign a parameter to be an input for the
application program and define that the parameter is read at the beginning of the
task execution. Similarly, you can assign parameters to be an output of the application.

Task X .
Execution order
Read IEC Program Write
Inputs Outputs
Read par Write par
1.1 30.12
Parameter Name Assignment Mapping IEC Variable Data Type Min Max
=3 1 Actual values
4% 1 Motorspeed used Input [Device_Motor_speed_used 11 REAL -30000.00 30000.00
=3 30 Limits
P 12 Maximum speed Qutput [Device_Maximum_speed_30_12 REAL -30000.00 30000.00

Note: The parameter to IEC variable mappings is valid only after creating a boot
application. For more details, see section Application download options (page 56).

» Driveinterfaceis not completely covering all the drive parameters. If the firmware
parameter is not available in the drive interface list, you can use AY1LB library
functions to read/write firmware parameters.

« Inorder to fully remove drive parameter settings from the drive, use Reset origin
option. Also, re-save user sets (see parameter 96.08) after removing or replacing
the application. As user set may have incorrect mapping of firmware parameter
to nonexisting application.

Selecting the parameter set

A drive can have different parameters depending on the firmware version. Before
performing parameter modification, make sure that the correct parameter set is
selected in Drivelnterface. The changes to parameter set in Drivelnterface removes
all the parameter mapping data.

To change the currently selected parameter set, follow these steps:

1. Inthe Devices tree, right-click Drivelnterface and select Update objects.
Update object window is displayed.

2. Select the correct parameter set for the current target and click Update objects.

Drivelnterface 75

Viewing parameter mapping report

After downloading the application program, a report of unresolved parameter
mappings between project parameters and actual parameters, messages, errors and
warnings in the drive are written in the Log.

() ACSBBO_ATNF_ZCU_M_V3_5 | - X
Communication Settings I Applications I Files Leg |PLC settings I PLC shell I Users and Groups I Access Rights I Task dap‘oymentl Status | Information |
™ offline-Logging:
|® Dwam\ng(s)l@ lerrur(s)l E Dexcepﬁun(s)lo 14infurmatun(s}| <all components: - | Logger: <Default logger> - £ | 5”' 5“ | ¥
Severity \ Time Stamp | Description | Component

il 1.01.1970 0:00:0:0 Application Application loaded CmpappEmbedded
L] 1.01.1970 0:00:0:0 Application Application loaded CmpAppEmbedded
i} 1.01.1970 0:00:0:0 CoDeSys Controlready cMm
i 1.01.1970 0:00:0:0 CH_INIT_COMM done M
il 1.01.1970 0:00:0:0 Call CH_INIT_COMM... CcM
L] 1.01.1970 0:00:0:0 CH_INIT_TASKS done ™
] 1.01.1970 0:00:0:0 Application Applicationnot foundto start CmpAppEmbedded
L] 1.01.1970 0:00:0:0 Call CH_INIT_TASKS... ™
i 1.01.1970 0:00:0:0 CH_INIT3 done M
il 1.01.1970 0:00:0:0 Call CH_INIT3... CcM
L] 1.01.1970 0:00:0:0 CH_INIT201 done ™
i 1.01.1970 0:00:0:0 Call CH_INIT201... M
il 1.01.1970 0:00:0:0 CH_INITZ done CcM
i 1.01.1970 0:00:0:0 Call CH_INIT2... M
il 1.01.1970 0:00:0:0 CH_INIT done CcM

For more details on downloading application program, see sections Downloading the
program to the drive (page 43) and Application download options (page 56).
Mapping example

To read digital input DI1 of the ACS880 control unit to the previous CFC program
example (see chapter Creating application program (page 27)), open group 10 and
select index 1.

1. Inthe Devices tree, double-click Drivelnterface.

2. Inthe Driveinterface window, double-click on the required Assignment cell and
select Input or select the desired Assignment from the available drop-down list.

DriveInterface x] -
£ Motice: Create boot application and target boat needed to get mapping effective
[T = |’@ Inputs |K@ Cukputs | @ Unassigned | - ﬁ_,
FParameter Mame | Assignmenk | Mapping IEC Variable | Data Type
=-~[_4 10 Standard DI, RO
=~ @ 1Dl status Inassigned LINT
% 001 IUnassigned 'I EOOL
@ 1012 Unassigred BOCL
@ 2003 E BO0L
@ 304 Unassigned BOCL
@ 4005 Unassigned BOICOL
@ S0 IUnassigned BOCL
d 15 DIIL Unassigned BOCL
+- @ 2Dl delayed status IUnassigned UINT
+- @ 301 force selection Unassigned UINT
+. @ 40l Fforce data Unassigned UINT
@ S DI ON delay Unassigned IDINT
#§ 6 DI OFF delay Unassigned UDINT
R N X SN T P | N PR S —— | 1 IFTRIT
1 |

3. Double-click default IEC variable name (eg, Device_DI1_10_1).

76 Drivelnterface

A button is displayed to change the name.

DriveInterface x] -
8 Motice: Create boot application and target boot needed to get mapping effective
T - |’@ Inputs |‘@ Cukputs | & Unassigned | -
Parameter Mame | Assignmenkt | Mapping | IEC Yariable | Data Tvpe
= 10 Standard DI, RO
= @ 1DIstatus Unassigned LINT
“p oDl Input @ Device DI1_1001 ... |BOOL
1DI2 Unassigned BOCL
2DI3 Unassigned BOCL
@ 3004 Unassigred BOOL
@ 4015 Unassigred BOOL
5D Unassigred BOOL
@ 15DIIL Unassigned BOCL
+- @ 2 DI delayed status |Jnassigned JINT
+- @ 3 DI force selection Jnassigned JINT
+- % 4DIforce data Unassigned JINT
S DI ON delay Unassigned IDINT
6 DIl OFF delay Unassigned JDINT

4. Click input assistant button to change the name. Input Assistant dialog is
displayed.

5. Click Categories and expand Drivelnterface tree to select a Device and then click
OK.
IEC variable name is changed.

If you want to select existing variable DI1 from the POU variable list, expand Application
and under POU, select DI1. DI1is connected to drive parameter 10.1 D/ status bit 0.

The mapped parameters are available as IEC variables in the program editors (press
F2).

Note: Bit and value pointer parameters can be used as outputs and then the pointer
is linked directly to the application memory.

Updating drive parameters from installed device

You can update the parameter list from the installed device or you can take the actual
drive parameter set used in Drivelnterface from Drive composer pro. See section
Updating drive parameters from parameters file.

To update the parameters from the installed device, follow these steps:

1. Inthe Devices tree, right click Drivelnterface and select Update Drive Parameter
Set.
Update parameter set dialog is displayed. By default From installed device option
is activated.

Expand Miscellaneous and select the device.

3. Click Update.
The parameter list from the selected device is displayed.

Drivelnterface 77

Updating drive parameters from parameters file

Optionally, you can update the actual drive parameter set using the Drive composer
pro backup file.

To update the parameters backup file, follow these steps:

1. Inthe Devices tree, right click Drivelnterface and select Update Drive Parameter
Set.
Update parameter set window is displayed.

2. Select From parameter file option and browse to select dcparams (.xml/) or Drive
composer backup file.

3. Click Update.
The changes/deleted parameters are displayed. Click OK.

Setting parameter view

1. Inthe Devices tree, double-click Drivelnterface.

2. Inthe upper-left corner of the Drivelnterface window, select Settings.

/i Drivelnterface X -

£ Motlice: Create boot application and target boot needed ta get mapping effective

i v| |’@ Inputs |K@ Oukputs | 4 Unassigned | -
Advanced Yiew | mssignment | Mapping | IEC Variable | Data Tvpe

@ Simple Yigw
| Setkings. .. |_

Expand all

Collapse Al ords

10 Standard DI, RO

11 Standard DI, FI, FO

12 Standard AL

13 Standard AO

19 Operation mode

20 Startfstopfdirection

21 Startfstop mode

22 Speed reference selection
23 Speed reference ramp

PFEFFTPERU

Y

@ = Create new variable " = Map to existing variable

3. Select the required view option for the corresponding parameter and click OK.

78 Drivelnterface

Simple/Advanced Yiew Settings

—Simple View ————— [Advanced Yiew
¥ Parameter Name [¥ Parameter Mame
v Aszignment v Azzignment
v tapping v Mapping
¥ IEC ariable [¥ IEC “ariable
v Data Type v Data Tvpe
[Min ¥ Min
[Max V¥ Max
™ Urit ¥ Urit
[Defaul ¥ Default
I Hide ¥ Hide
[T Tatal Hide ¥ Total Hide
[Hide Group W Hide Group
[Tatal Hide Group W Tatal Hide Group
]9 Cancel

The selected options in the view list are displayed in the Drivelnterface parameter
window.

Application parameters and events 79

Application parameters and events

Contents of this chapter

This chapter describes how to use parameter manager and provides detailed
information on parameter settings.

Application parameters and events

You can create application parameters and events visible in the panel and Drive
Composer pro tools.

1. Inthe Devices tree, right-click Applications and click Add Object.

2. Select Application Parameters and click Add object.

Add Application Parameters dialog is displayed. Click Add to add the Application
Parameters to Devices tree.

Note: You can create only one ApplicationParametersandEvents object at a time.

Parameter manager

In the ParameterManager window, you can create new groups with parameters,
parameter families, selection lists, units, events and language translations for the
names of all the previous items.

In the Devices tree/Application, double-click ApplicationParametersandEvents object.
The ParameterManager window is displayed.

80 Application parameters and events

Creating parameter groups

All the drive parameters belong to a specific parameter group. Before creating new
parameters, create a new parameter group. Make sure that all the groups have unique
name and number. You can change the group number and name. You can also add
translations into other languages in addition to the default language which is English.

In the ParameterManager window, click Group button to add a group.

ﬂ ParameterManager X] -

“w Import xML e Export XML IParameters + Ewents j Language IEninsh "I LangR.epork

Groups and Parameters |Fami|ies | Selection Lists | Lnits I Events |

[_4 Group gy Parameter < Delete Collapse all

Mo Mame (English) | IEiC Variable Type | Parameter Type Lang Marne | Help Text |

+ 4|9 Group 9 Group 9

ParameterManager automatically selects the first free parameter group number that
is not used in the drive firmware or ParameterManager.

Importing and exporting parameters

You can import and export Parameters, Events and Parameters + Events in the form
of XML format. Choose the desired option from the drop-down list and click Import
XML or Export XML.

ﬂ ParameterManager X] -

“@ Import XML e Export XML |Parameters + Events j Language IEnglish TI LangReport

Parameters
Events
Parameters + Events

Groups and Parameters | Farnilieg Enks I

4l Group dg Parameter 2 D

Mo, | Mame (English) | IEC Wariable Tvpe | Parameter Tvpe | Lang Mame | He
=14 9 Group 9 Group 9
i@ 1 Test REAL Decimal nurnber Test <

Application parameters and events 81

Creating parameters
In the ParameterManager window, select a parameter group.

Click Parameter button to create a new parameter.

Parameter Settings window is displayed.

In the Parameter Settings window, you can set the properties of the parameter.

The Parameter Settings window is identical for all the parameters but there are

also custom settings available depending on the parameter type.

For more information on parameter settings see section Parameter settings and
for the parameter type-specific windows, see section Parameter types.

In the Parameter Settings window, enter the Name of a parameter and click Add.

A new parameter is added to the selected group.

ﬂ ParameterManager X] -

"o Impork XML | e Expork XML IF‘arameters + Events j Language IEnglish vl LangR.epoark

Groups and Parameters | Families | Selection Lists | Units | Events |

|_4 Group gy Parameter 4 Delete Collapse &l

Mo, Marne (English) | IEC Yatiable Tvpe | Parameter Type | Lang Name I Help Text
=L A9 Group 9 Group 9
@1 Paral INT Decimal number Paral <emply =

ol | »

82 Application parameters and events

Parameter settings

In the Parameter Settings, you can set parameter properties.

Add Parameter

[Parameter Settings
Name Tes|
Parameter Type Decimal number 7
IEC ariable Frotections
& New | Type [REAL = || T Humanwe
I Human Hide
© g L] (R
[Total Hide
Farameter Family - None - - I~ WP PRun
¥ Include in user set
Function Type Setti diustabl B
" ating [adjuctatle) I Exclude from Backup
Saving Type immediate l
7~ Scaling
Base valus 1 3: W oo
M airmum 0.00
Tool / Fieldbus 32-bit interface
Default value =
32-bit scaler 1 3: oo =
Uit IN Lnit 'I
Decimal display 1} hd " o
Eigldbus 16-bit interface Testing for scaling
16-bit interface support no < Internal value # 32-hit scalar / Base value = External 32-bit value I
1E-bit scaler 1 3: Intermal value % 16-bit scalar / Base walue = Extemal 16-bit value I

Add Cancel

Parameter name

Parameter type

IEC variable name

Parameter family

The name shown in the parameter list when using Drive composer pro or ACS-AP-
x control panel.

Defines the type of parameter.
The following parameter types are available in the drop-down list.

« Decimal number

« Formatted number

- Bit pointer

« Value pointer

« Plain value list

- Bit list (16 bit)

For more information, see section Parameter types.

Used to define IEC variable for the parameter.

« The New option maps the parameter to a new IEC variable. If you do not give a
name for the new IEC variable, the parameter name is used as the IEC variable
name.

- When you create a new IEC variable, you must select the variable type, for ex-
ample, REAL. The selected parameter type restricts the variable type selection
and only the allowed types are shown in the IEC variable/Type list. For more
information on the variable types, see chapter Features (page 51).

« The Existing option maps the parameter to an already existing IEC variable by
finding the parameter from the list of the Input Assistant or writing the name
to the field.

Includes a parameter as part of the parameter family and inherits the settings
defined for the family. For more information, see section Parameter families.

Function types

Saving types

Protection, hiding
and excluding from
backup

Minimum, Maxim-
um and Default
value

Application parameters and events 83

These are flag configurations for parameters which determine the parameter be-
havior with the ACS-AP-x control panel and PC tool displays. There are five different
configurations:

. Setting (adjustable) - This function type is a generic configuration parameter.
When a parameter with this function type is changed by ACS-AP-x control panel
or Drive composer, the changed value is saved.

- Setting (reverts to default) - Used to request a function. When this request is
processed, the parameter returns to its default value.

« Signal (read only) - Displays the application parameter value in the ACS-AP-x
control panel or Drive composer pro. A parameter of this function type does
not have any meaningful default value.

- Signal (resettable) - This function type is identical to the read-only signal and
allows to reset parameters to their default values.

« Custom - Enables to change the values in the application.

Define the method of storing the parameter value to the non-volatile memory.
There are three different saving types:

« No - Does not store the parameter value changes done in the ACS-AP-x control
panel or Drive composer pro.

« Powerfail - If the parameter 95.04 is set to Internal 24V, the powerfail type
parameters are saved immediately at the time of power failure in the drive. If
the parameter 95.04 = External 24V, the values are saved at periodic intervals
of 1 minute. The powerfail saved parameters are limited to < 10.

« Immediate - If the parameter value is changed using keypad or PC tool, this type
saves the value immediately within 10 seconds. This saving type is used for
controls, but not for signals.

Allows you to set the following protections for parameters or set them on the
parameter group level by selecting a parameter group in ParameterManager.

« Human WP/Human Hide write protects/hides the parameter from a human
user manipulation. This setting can be bypassed using configuration tools,
fieldbus controllers, and so on.

- Total WP/Total Hide write protects/hides the parameter from any kind of ma-
nipulation outside the firmware. These parameters are used only by the applic-
ation.

The following settings are for parameters only:

« WP Run protects the parameter from writing when the drive is running.

« Include in user set includes parameter as a part of the process where all the
parameters become a user set.

« Exclude from Backup leaves the parameter out of parameter backup, but restores
the default parameter values. This setting applies only for parameters.

These are set for decimal and formatted numbers.

« Minimum and Maximum define the limits for the value of the parameter. These
values should not exceed the limits of the data type defined for the parameter.

- Default value is the value of the parameter at the start-up of the program and
it must be within the limits defined by the minimum and maximum values. The
default value returns if you restore defaults or clear all with parameter 96.06
(see the drive firmware manual).

84 Application parameters and events

Scaling

Base valueis theinternal firmware value. The scaling values in Base value, 32-bit scaler
and 16-bit scaler must match each other and define how a value of the parameter is
represented in other contexts. Scaling the other values of a parameter is calculated
based on the defined scaling values.

If the scaling factor is 1, meaning direct transform from one representation to another,
use the same number for all of the scaling values

Example:

The firmware uses values 0...1 for motor rotation speed measurement. The maximum
speed is 1500 rpm, and therefore the ACS-AP-x control panel displays 1500 rpm when
the internal value is 1 (the maximum speed). The 16-bit fieldbus device shows 100%.

In this example the values are: Base value =1, Value (32-bit int) = 1500, Value (16-bit
int) =100

Tool/Fieldbus 32-bit interface

» 32-bit scaler - 32-bit external value (for example, Drive composer pro or ACS-AP-x
control panel)

- Decimal display - Defines the number of decimal digits displayed on the Drive
composer pro or ACS-AP-x control panel. This setting applies only for an external
value, but has no effect on the internal value.

Fieldbus 16-bit interface

» 16-bitinterface support - This field defines if the 16-bit external format is allowed,
for example, in fieldbus devices and how it is scaled to the 32-bit external format:
« No - 16-bit external format is not allowed.
« Direct - 32-bit scaling is used but the value is displayed as a 16-bit value.
Therefore, the value (16-bit int) is considered meaningless.
« Scaled - separate 16-bit scaling is used. Value (16-bit int) must be defined.

» 16-bit scaler - 16-bit external value (for example, fieldbus devices).

Testing for scaling

Internal value calculates the scaling of 32 and 16 bit fieldbus interface with the
corresponding IEC variable. For description of formula, see PAR_SCALE_CHG function
block.

Linking parameter to application code

The IEC variable field in the Parameter settings window enables to link a parameter
to an application program code. There are two options to link a parameter with an
application program code.

« The New option adds a new IEC variable to the program and is visible in the input
assistant under ApplicationParametersandEvent object.

« The Existing option allows linking a parameter to the existing IEC program variable
using browser. Make sure to select the correct data type. If you change the link
to the existing IEC variable, a build error occurs. For information on incorrect
linked parameters, see the message box. Check the full path to correct the missing
linked parameters according to the program.

Note: The existing retain variables cannot be linked to application parameters.

Application parameters and events 85

Parameter types

In the Parameter Settings window, you can select the Parameter Type for the newly
created parameter.

« Decimal number creates a parameter with actual numeric contents, either decimal
or non-decimal numbers. The available IEC types are REAL, UDINT, UINT, DINT and
INT.

« Formatted number parameter type is used to make special purpose parameters
like date displays, version texts, passcodes, and so on. The available IEC types are
UDINT, UINT, DINT and INT. In the Display format for Data Parameter, you can
define the format in which the value should be displayed in the Drive composer
or ACS-AP-x control panel.

« Bit pointer creates a pointer parameter which can be assigned to point to a bit
of another parameter. You must associate the bit pointer parameter to a selection
list (a bit pointer list) that must be created beforehand. For more information,
see section Selection lists. The only available IEC type for bit pointer is BOOL. You
can define the default selection from the list.

» Value pointer creates a pointer parameter which can be assigned to point to
another parameter. You must associate the value pointer parameter to a selection
list (a value pointer list). For more information, see section Selection lists. The
only available IEC type for the value pointer is UDINT. You can define the default
selection from the list.

« Plain value list must be associated to a selection list (a plain value list). It allows
only values of alist as its own value. The available IEC types are UDINT, UINT, DINT
and INT. You can define the default selection from the list.

. Bitlist (16 bit) consists of maximum 16 Boolean values (bits). You can add new
rows (bits) to the list using the Bitlist row button. You can change the names of
the bits and their values to represent their purpose. The default value is the bit
value at the start-up of the program. The only available IEC type is UINT.

86 Application parameters and events

Parameter families

If a parameter shares some of its attributes (scaling, minimum/maximum, and so on)
with another parameter, it can belong to a family that describes these common
attributes. This way, when the attribute is changed in one parameter, it is also changed
in all parameters belonging to the same family.

The system library includes a function block to modify parameter attributes like
PAR_UNIT_SEL functions. See AY1LB_System_ACS880_V3_5libraryin Appendix B: ABB
drives system library.

If you select a parameter family Version style, make sure the family has a unique Name.
The parameter families can define limit or scaling properties or both.

@ Parametert x] -

“e Import XML T Export XML IParameters + Ewents j Language IEninsh j LangRepart

Groups and Parameters Families |Selection Lists I Lnits I Events |

‘ersion | Marne (English) | Limnit | Scalir » —) —
P9 1.1 — ~ i IMimirmurn Io 3 Mairurn Io 3

Internal Yariable type Iuint16 j

Base value Il ﬁ

3zbit [Float value external Il ﬁ

16bit value external Il ﬁ

init {NoLinit =l 1]

Decimal Display Iint dec j

-

| | 2] | >

Application parameters and

Selection lists

events 87

Selection lists are always associated to a parameter of the same type as in the list.

They are accessed only through the parameters.

1. In ParameterManager window, click Selection Lists tab and then click Selection
list to add values.
2. Select the Type of selection list and enter the name and then click Add.
“' ParameterManager x] -
"o Impork XML Te Export XL IParameters + Events j Language IEnglish vI LangR.eport
.Gn:uups and Parameters I Families Selection Lisks |Llnits I Events I
i) Selection list | List row Delete Expand al
Mame (Enalish’ | Yalue [Source par | List tvpe | Inverted | Lang Marme
Add Selection List M=]
M arne: ITESd
—Tywpe
&% Plain value list
" Walue pairter lizt
" Bit pointer list
Add Cancel
A
4| 0

The selection list is created. You can add the list row by clicking on List row button.

If you want to rename the list, double-click on the created list.

ﬂ ParameterManager X]

j Language IEninsh vI LangRepart

'Grnups and Pararneters I Families ~Selection Lists |Llnits | Events I

T Import XML Te Export %ML IParameters + Events

i=] Selection lisk == List row | Delete Expand all

Mame (English) m | Source par | List bvpe | Inverted | Larg Mame |
=--E5] Test e Plain walue list
=l o T

Note: You cannot change the type of selection. If you want to change th
selection, delete and create a new selection list.

e type of

Name (English) - The text visible to the user. Note that the name is not the

official text since the language translator use this text as a source when

creating the official language texts.

88 Application parameters and events

« Value/Source par - The value of the list row. For the bit and value pointers, it
is the index of the row in the list. For the value lists, it is an actual selectable
value.

- List type - There are three different types of selection lists:

- Bit pointer list - By default, the bit pointer list has the const_false and
const_true values. You can add single bits of any parameter of the
appropriate type.

« Value pointer list - By default, the value pointer list has the const_null
value. You can add any parameter which has the same data type as the
pointer associated to the list.

- Plainvalue list - You can add any values of type INT, DINT, UINT or UDINT.
The type should be same as the type of the pointer associated to the list.

3. Inverted-Whena bit /value is read from a source parameter, it is inverted /negated
for output when the inverted flag is set.

Units

You can create own units for the application parameters. A unit has a unique number
and a name. The allowed unit codes for the application program are 128...255.

You can add translations of the name into other languages.
1. Inthe ParameterManager view, click Units tab.
2. Click New Unit to add unit and click Add to add Language Id.

“' ParameterManager x] -
"o Import ML e Export XML |parameters+Euents j Language IEninsh vI LangRepart

.Groups and Pararneters I Families I Selection Lisks Units |Events I

=) Mew Unit | 3 Delete
ND.AIZWLBLAIE [English} | Lang Mame |
=) g (pddUnithg Mot

=] 128 unit__128 unit__128
=] 129 unit__129 unit__129
| unit__130 unit__130

The units are attached to parameters in the Add Parameter options in Parameter
Settings window.

Application parameters and events 89

Application events

You can configure your own application events (faults or warnings). The application
program then triggers the event and the event registers in the drive event logger with
a time stamp. The tool defines the event ID code, type and event name (with
translation).

In the ParameterManager view, click Events tab and then click Event to add Event.

i‘ ParameterManager x] -
" Import XML Te Export ML IParameters + Events j Language IEnglish TI LangReport

.Gruups and Parameters | Families | Selection Lisks | mits ~~ Events |

@ Event | 7 Delete
Mame i | IEZ Mariable | Event Type | Event ID Lang Marme | He
Add Event
Event Event_1 Fault 100 Event_1 Lo
Event_z2 Event_z2 Fault D101 Event_z2 Lo
Event_3 | Event_3 Fault Doz Event_3 Ly
b}
<| | i

Events dialog box gives the following information:

+ Name, in this example Event_1. The Event name is displayed on the ACS-AP-x
control panel and in the Drive composer tools when the event is
activated/deactivated.

» Event Type, in this example fault.
The following event types are supported:
« 1=Fault (Trips the drive)
« 2=Warning (Is registered to the event logger)
« 3 =Pureevent (Is registered to another logger)

- Event ID, in this example D100. Each type of event has its numerical range (ID
code). You can select the ID code within the range.

The event is activated by using the EVENT function block in the program code (library
AY1LB_System_ACS880_V3_5, see chapter Libraries (page 111)). Every event must have
its own instance of the EVENT block. The EVENT function block must have the same

ID code and type as defined in the previous dialog box.

90

Configuring extension I/O modules 91

Configuring extension /O modules

Contents of this chapter

This chapter contains general information on how to configure F-Series extension 1/0
in drive application programming through Drive Application Builder programming
tool.

Configuring extension 1/0 module
FEA-03

The FEA-03 F-series Extension adapter is used to locate additional F-series modules
like FIO-01, FIO-11, FAIO-01 or FDIO-01. The FEA-03 module contain 2-slots with
2-switches each. You can add FIO-01, FIO-11, FAIO-01 or FDIO-01 modules to the slots
of the control board or FEA-03 module. The application programming supports
7-extension I/O modules. See parameter group 14 //0 extension module 1in ACS880
primary control program firmware manual [3AUA0000085967 (English)].

For example, the figure below illustrates the maximum configuration of F-Series
modules on the Control board (ZCU) and FEA-03 adapters. It contains 3-firmware and
7-program modules. Node numbers 1, 2, 3 are on control board slot 1, 2, 3 and the
remaining node numbers are FEA-modules and their node numbers are defined by
F-Series module switch.

92 Configuring extension 1I/0 modules

Application
Application
Application
Application

Firmware
Application

Application

Application

000® 0o0@ 000

000®0o0® o000

Firmware Firmware
DDCS B
FDCO I — i
Slot3 Slot2

Configuring extension I/O modules 93

Node numbers

The node numbers 1...3 are reserved for extension I/O modules that are placed on the
slots of control board and the other node numbers can be used for modules in FEA
object.

The upper switch defines the first digit and the lower switch defines the second digit
of the node ID. For example, in case of node address 6, turn the lower switch to 6 and
check that the upper switch points to O.

94 Configuring extension I/0 modules

Selecting input signal type

You can select the unit (mA or V) of an analog signal by sliding the switches of FIO
module next to the input either up for current signal or down for voltage signal.

[E—
—
y—

ARALCG [EXTENSOM

Current and voltage signal switches.

5 B

Configuring extension I/O modules 95

FDCO

In FDCO adapter, select the channel number based on the used slot. Communication
slot for FDCO adapter is defined by parameter 60.41 Extension adapter com port
based on the used slot and channel. For the descriptions of parameter, see ACS880
primary control program firmware manual [3AUA0000085967 (English)].

For example, if FDCO adapter is placed on slot 2 and channel A is used, then slot2A is
selected for Extension adapter com port. For further details, see FDCO-01/02 DDCS

communication modules user’s manual [3AUA0000114058 (English)].

s :@oo

A'. DDCS ‘—'NK
=1 ot

4

4

' 4

”

o ' 4

=00t Q==
-

©

CH ASS'S

L r v

Connector for channel A

Connector for channel B

Selector for channel A
Selector for channel B

Lock

Mounting screw

LEDs

Nl oo MW NV

96 Configuring extension I/O modules

Extension 1/0 in drive application program

1.

Adding F-series module

In the Drive Application Builder Device tree, right-click on device node and select
Add object.

Select FSerieslO and click Add object.

The FSerieslO extension is added to the project. It contains 3-empty slots. You
can add FIO-01, FIO-11, FAIO-01 or FDIO-01 modules to F-Series slots. FDCO adapter
is required if you are using FEA-03 module.

=5 Uhtiteds -.‘

=[] Drives (ACSEE0_AINF_ZCULZ_14_M_¥3_5)
=&Y pLC Logic
= ":; Application
m Library Manager
ﬂ applicationParametersandEvents
PLC_PRG (PRG)
= @ Task Configuration
=g Task_1
H] PLC_PRG
Drivelnterface (ACSE30 parameters AINFY 2.82)
= [[Ext1o (FSeriesIon
: <Emptyl >
: <Empkyz >
: <Empkw3 =

Note: You can add only one FDCO adapter to FSerieslO extension. Because it has
only one communication port for FDCO adapter in the firmware. See parameter

60.41 Extension adapter com portin ACS880 primary control program firmware
manual [3BAUA0000085967 (English)].

In the ExtlO (FSerieslO), right-click on empty slot and click Add object.
Select FDCO-01/02 adapter and click Replace object.
FDCO-01/02 adapter is added to the Slot of FSerieslO module.

Configuring extension I/0 modules 97

=[5 thtibled? -

=[] Drives (ACSEE0_AINF_ZCU1Z_14_M_Y3_5)
-] pLC Logic
= f:; Application
m Library Manager
i‘ ApplicationParametersandEvents
PLC_PRG (PRI
= @ Task Configuration
=58 Task_1
] PLC_PRG
Drivelnterface (ACSE30 parameters AINFY 2.82)
=[] ExtIC (FSeriesIo)
- M [Foco (Foco-01j0z)

<Emptyl =

l: <Empkys =

l: <Empty3=

l: <Empty4d =
l: <EmptyZ=
l: <Empty3=

In the FDCO (FDCO-01/02), right-click on empty slot and click Add object.
Select FEA-03 and click Replace object.
In the FEA (FEA-03) module, right-click on an empty slot and click Add object.

® N o w

Select FIO-01 module and click Replace object.
Similarly, you can add FIO-11, FAIO-01 or FDIO-01 modules to FEA-03 empty slots.

Note: F-series IO modules used in Drive Application Builder should not be activated
as extension 10 module in groups 14, 15 and 16 in Drive composer pro.

98 Configuring extension I/0 modules

Setting module data

Adding node number
1. Inthe Drive Application Builder, double-click FIO_01 or any other module.

2. Click1/0-Bus Module Parameters tab and add the node number in the value field.

W FIDD1 X% o

1ji-Bus Module Parameters Parameter | Type | Value Default ‘u'aluel |nit | Descripkion |

@ Modeld BVTE fl 1 FIO_01.MNodeld

1i0-Bus Module I/0 Mapping

10 Mapping Lisk

Infarmation

|FIO_01 Hadsld

The node numbers 1, 2 or 3 are based on slot numbers. The node numbers 4...10
are used if the /O module is placed on FEA-03 module.

I/0 mapping variables
1. Inthe Drive Application Builder, double-click FIO-01 or any other module.
2. Click1/0-Bus Module l/0 Mapping tab and create |/O mapping variables in Variable

column.
W Fl0_01 x| o
If0-Bus Module Parameters ‘ Find Filket Shew &l ~ =k Add FE for [0 channel.., =
Variable | Mapping ‘ Channel | Address | Type ‘ Unit | Drescription | -
[/0-Bus Module 1/ Mapring 4§ Mod_FID_01_Status # Status %I WORD FIO_D1.5tatus
"% Mad_FI0_N1_Contral # Cartral WOWS WORD FIc_1 .Contral
U iy s " DIOx_FikerTime %QD2 REAL FIC_01.DIOx_FiterTime L
"% Mad_FI00_N1_DIo _CHOir # D10 _Chiir WOWE WORD FI_1.GI01_HDir
Information " Mod_FIG_01_DIO1_Outpat # DIO1_Oukput %OW? WORD FIo_01.DI01_Cutput
" DG _OMDelay W4 REAL FIo_01.DI01_ONDelay
K] DIGL_OFFDelsy %005 REAL FIo_01.DI01_OFFDelay
L] DICL_FilkInput Wiz WORD FIo_01.0I01_FiltInput L
k] DIC _Input Wl WORD FIo_01.0I01_Input
" D102 _Chiir WOWlZ WORD FI_01.0I02_choir
" DICE2_Output WOWLE WORD FIo 01.0I02_Cutput | B

The variable names must be individual. You can have maximum 100 mapping
variables. The |/O mapping variables do not support Mapping to existing variables.

Using F-series 1/0 from the application

You can assign I/0 module related blocks into the same application task. Do not assign
F-Series related block into PreTask. The I/O module can be handled according to the
fastest task cycle which contains module related blocks.

For example, FIO-01 is using Task_1 cycle and FIO-11 is using Task_2 cycle. If some of
the F10-11 handling blocks are moved into Task_1, then FIO-11 is handled (internally)
using Task_1 cycle, regardless, where other FIO-11 blocks are assigned. (Task_1 has
fastest cycle).

The IEC variable name must start with F-Series 1/0.

Configuring extension /0 modules 99

FSeriesI0.|

#|F10_01_6_Control

FIO_01_6_DIO1

FI0_01_6_D102

FIO_01_6_DIO3

FI0_01_6_DI04

FIO_01_6_Status

FI0_11_8_AI1_SWITCH
@ FIO_11_8_AIl_UNIT

FIO_11_8_AIZ SWITCH
FIO_11_8_AIZ_UNIT

(1]

The below figure shows the status of the application used for controlling the
application execution or producing application based events.

Devices

-

=l SWITCH OBECT_TEST{ I}

= [0 Pc Loge

= 7 Device fronmected] (ACS8B0_AINF _Z00112_14 14 V1_5)

&=

x
-

= 1} Application [run]

= 22 nooE 6
\B] FI0_01_& CTRL (PRG)
(K] Fro_02_6_pao_ouT (PRG)
(] Fi0_04_6_sTA (PRG)

= 2 voDE_8
[E] Fro_11_8_atizwrros pac)
(0] Poo_11 e aniswiTen Fag)
(W) Fo_11_g st FRG)
\B] FIO_11_B_AI2UNIT (PRG)

] FIO_11_5_AIZSWITCH (PRIG)
|N] FIO_t1_8_AI3UNIT (PRIG)
(M Fo_11_g cTrL (PRG)
(K] Fio_13_8_pio_ouT (Pas)
(] Fo_12_8_sTa PRS)
m Library Manager
@ AoplcatonfarametersancEvents
4] A1_counT FRG)
A Az_counT (FRG)
= [Task Corfiguration
B FW Furcton Sat
25 Pre_task (Pre_task)
= B Task_1(Task_1)
&1 F1o_01 6 CTRL
&1 Foo_or_6._5TA
&1 Fro_o1_s_pro_our
& a1_count
= g Taek 2 (Task_2)
& Fro_11_8 cTRL
& Fro_11_8_5TA
& roo_11_8_peo_our

n ' Fooissta [N Az counT & Tek 1 [[] FOM
Device Application FI0_01_6_CTRL

Expressson Type Value Prepared value
¥ R¥us WORD s
Control WORD i
Era BOOL | TRiLE |

] Status(2 | := FeriesIO.FI0 01 & Scatus[3 |
- 4 IF(EcafEEN | THEN

5 FFeriesI0.FIO 01_§_Centrol 3 | := Contrel[3 |
& EmmD IF

100 Configuring extension I/O modules

Adding bus fault control
To add F-Series I/O module to Drive Application Builder project, proceed as follows:
1. Inthe Drive Application Builder Devices tree, double-click ExtlO (FSerieslO).

2. Gotol/O-BusModulel/O Mapping tab and create /O mapping variables in Variable
column.
FSeries|O.BUS_Control value should be 0 in a program. The program should store
value 1in FSerieslO.BUS_Control if the FSeries|O.BUS_Status value is 3 (no
communication). The program should restore value 0 if the FSeries|O.BUS_Control
after the bus break is over when SerieslO.BUS_Status |I/O receives the value 2
(active).
The FSerieslO.BUS_Status receives the same values as channel status.
« 0= Notactive
« 1=lInitializing state
« 2 =Active
« 3 =No communication

Note: The F-Series I/0 bus does not recover automatically after the bus break. The
bus can recover without motor stop and restart by using Bus Control variable.

Configuring extension I/0 modules 101

FIO-01 module data

You can find the general information of FIO-01 module by clicking on Information tab.

A FIO_01 X

If0-Bus Module Parameters

FIO_01

General Information

If0-Bus Module I/O Mapping

IO mapping list Vendor: ABB Oy
Type: 36102
Information ID: 1612 A103
Version: 3.5.5.0
Description: FIO_01
Categories
Uncategorized

F10-01 channel descriptions

Channel Description

Status 0 = Not active

1 = Initializing state

2 = Active

3 = No communication
Control 0 = Inactivate

1 = Activate FIO-01 module

DIOx_FilterTime Defines the filtering time constant (0.8...100.0 ms). This time is applied
for all the filtered inputs (optional).

DIOx_ChDir (x=1-4) 0 = DIO is used as a digital output (default value).
1=DIO is used as a digital input.

DIOx_Output (x=1-4) 1/0 = ON/OFF status of digital output if channelis used as output (ChDir
= 0). The corresponding ON and OFF time delays are applied if they are
defined.

DIOx_ONDelay (x=1-4) Defines activation delay (0.0...300.0 s) applied for digital input/output.

This channel is optional.

DIOx_OFFDelay(x=1-4) Defines deactivation delay (0.0...300.0 s) applied for digital input/output.
This channel is optional.

DIOx_FiltInput (x=1-4) 1/0 = ON/OFF status of digital input if channel is used as input (ChDir
= 1). Filter time is applied if it is defined. Time delays are never applied.

102 Configuring extension 1/0 modules

Channel

Description

DIOx_Input (x=1-4)

1/0 = ON/OFF status of digital input if channel is used as input (ChDir
=1). The corresponding ON and OFF time delays are applied if they are
defined.

ROx_Output (x=1-2)

ROx_ONDelay (x=1-2)

1 = Relay is energized (ON)
0 = Relay is de-energized (OFF)

Defines activation delay (0.0...3000.0 s) applied for delayed state (op-
tional).

ROx_OFFDelay (x=1-2)

Defines deactivation delay (0.0...3000.0 s) applied for delayed state
(optional).

ROx_DelayState (x=1-2)

1/0 = ON/OFF status of relay.

The corresponding ON and OFF time delays are applied if they are
defined.

FIO-11 module data

Configuring extension 1/0 modules 103

You can find the general information of FIO-11 module by clicking on Information tab.

B FIO_11 X

I/0-Bus Module Parameters

Ij0-Bus Module IO Mapping

IO mapping list

Information

FIO_11

General Information

Vendor: ABB Oy
Type: 36102

ID: 1612 A105
Version: 3.5.5.0
Description: FIO_11
Categories

Uncategorized

. ¥

F10-11 channel descriptions

Channel Description
Status 0 = Not active

1 = Initializing state

2 = Active

3 = No communication
Control 0 = Inactivate

DIOx_FilterTime

1 = Activates FIO-11 module

Defines the filtering time constant (0.8...100.0 ms). This time is applied
for all the filtered inputs (optional).

DIOx_ChDir (x=1,2)

DIOx_Output (x=1,2)

0 = DIO is used as a digital output (default value).

1=DIO is used as a digital input.

1/0 = ON/OFF status of digital output if the channel is used as a output
(ChDir = 0).

The corresponding ON and OFF time delays are applied if they are
defined.

DIOx_ONDelay (x=1,2)

DIOx_OFFDelay(x=1,2)

Defines activation delay (0.0...300.0 s) applied for digital input/output.
This channel is optional.

Defines deactivation delay (0.0...300.0 s) applied for digital input/output.
This channel is optional.

104 Configuring extension |/O modules

Channel

Description

DIOx_Filtinput (x=1,2)

DIOx_Input (x=1,2)

AOXx_ForceSel

AOL1_FiltTime

AO1_FiltMin

AO1_FiltMax

AO1_FiltMinScaled

AO1_FiltMaxScaled

AO1_ScaledOut
AO1_ForceData

AO1_Actual

AO1_Filtered

Alx_ForceSel

Alx_Unit (x=1-3)

Alx_Min (x=1-3)

Alx_Max (x=1-3)

1/0 = ON/OFF status of digital input if the channel is used as a input
(ChDir = 1).

Filter time is applied if it is defined. Time delays are never applied.

1/0 = ON/OFF status of digital input if the channel is used as a input
(ChDir = 1).

The corresponding ON and OFF time delays are applied if they are
defined.

1= Aforced value is applied for an analog output (optional for testing
purposes).

0 = Forcing is not in use.

Defines the filter time constant (0.000...30.000 s).

This time is applied for the filtered analog output. This channelis optional.
Defines the minimum output value for an analog output (0.000...22.000
mA).

Defines the maximum output value for an analog output (0.000...22.000
mA).

Defines the real value (-32768.0...32767.0) that corresponds to the min-
imum output value (AO1_FiltMin). The source value is defined in
AO1_ScaledOut.

Defines the real value (-32768.0...32767.0) that corresponds to the max-
imum output value (AO1_FiltMax). The source value is defined in
AO1_ScaledOut.

Defines the output source value.

Defines the forced value that can be used instead of the output source
value AO1_ScaledOut. This channel is optional. The forced value
(0.000...22.000 mA) is applied for AO1_Actual without checking the
minimum or maximum output values. Filter time is not applied.

The actual analog output value (0.000...22.000 mA).

The value is same as in AO1_Filtered if forcing in not in use.
The filtered and scaled analog output value (0.000...22.000 mA).

0 = Forcing is not in use (optional for testing purposes)
1 =Force All to a value of Al1_ForceData
2 = Force Al2 to a value of Al2_ForceData

3 = Force All to a value of Al1_ForceData and Al2 to a value of Al2_For-
ceData

4 = Force Al3 to a value of AI3_ForceData

5 = Force All to a value of Al1l_ForceData and Al3 to a value of Al3_For-
ceData

6 = Force AlI2 to a value of Al2_ForceData and Al3 to a value of Al3_For-
ceData

7 = Force All to a value of Al1_ForceData, Al2 to a value of Al2_ForceData
and Al3 to a value of AI3_ForceData

Unit selection. This setting must match the corresponding hardware
setting on the I/O extension module.

2=V (Volts)

10 = mA (milliamperes)

Defines the minimum value for an analog input (-22.000...22.000 mA or
V).

Defines the maximum value for an analog input (-22.000...22.000 mA or
V).

Channel

Configuring extension I/0 modules 105

Description

Alx_MinScaled (x=1-3)

Defines the real value (-32768.0...32767.0) that corresponds to the min-
imum analog input value (Alx_Min).

Alx_MaxScaled (x=1-3)

Defines the real value (-32768.0...32767.0) that corresponds to the max-
imum analog input value (Alx_Max).

Alx_FiltTime (x=1-3)

Alx_FiltGain (x=1-3)

Alx_ForceData (x=1-3)

Alx_Actual (x=1-3)

Defines the filter time constant for the analog input (0.000...30.000 s).
This time is applied for analog inputs Alx_Actual and Alx_Scaled. This
channel is optional.

Selects the hardware filtering time for analog input. This channel is op-
tional. (0 = no filtering,1 =125 us, 2 =250us,3=500us,4=1ms,5=2
ms, 6 = 4ms, 7 = 7,9375 ms).

Defines the forced value that can be used instead of the true reading of
input. This channel is optional. The forced value (-22.000...22.000 mA or
V) is applied for Alx_Actual without checking minimum or maximum val-
ues. Filter time is not applied.

Displays the value of an analog input (-22.000...22.000 mA or V).

Alx_Scaled (x=1-3)

Displays the value of an analog input (-22.000...22.000 mA or V) after
scaling.

Alx_Switch (x=1-3)

0 = Unit selection matches the corresponding hardware setting.
1 = Unit selection does not match the corresponding hardware setting.

106 Configuring extension I/O modules

FAIO-01 module data

You can find the general information of FAIO-01 module by clicking on Information

tab.

A FAIO_01 X

If0-Bus Module Parameters
| If0-Bus Madule I/0 Mapping

If0 mapping list

| Information

FAIO_01

General Information

Vendar: ABB Qy
Type: 36102

1D 1612 A106
Version: 3.5.3.0
Description: FAIO_0O1
Categories

Uncategorized

FAIO-01 channel descriptions

Channel Descriptions

Status 0 = Not active
1 = Initializing state
2 = Active (successfully activated by Control)
3 = No communication

Control 0 = Inactivate

AOXx_ForceSel

1 = Activate FAIO-01 module

0 = Forcing is not in use output (optional for testing purposes)
1= AO1_ForceDatais applied to an analog output AO1_Actual
2 = AO2_ForceData is applied to an analog output AO2_Actual
3 =Both AO1_ForceData and AO2_ForceData are applied

AOx_FiltTime (x=1,2)

Defines the filter time constant (0.000...30.000 s).
This time is applied to the filtered analog output AOx_Filtered (optional).

AOx_FiltMin (x=1,2)

Defines the minimum output value to an analog output (0.000...22.000
mA).

AOx_FiltMax (x=1,2)

Defines the maximum output value to an analog output (0.000...22.000
mA).

Channel

Configuring extension I/0 modules 107

Descriptions

AOx_FiltMinScaled (x=1,2)

AOx_FiltMaxScaled (x=1,2)

Defines the real value (-32768.0...32767.0) that corresponds to the min-
imum output value (AOx_FiltMin). The source value is defined in
AOx_ScaledOut.

Defines the real value (-32768.0...32767.0) that corresponds to the
maximum output value (AOx_FiltMax). The source value is defined in
AOx_ScaledOut.

AOx_ScaledOut (x=1,2)

Defines the output source value.

AOx_ForceData (x=1,2)

AOx_Actual (x=1,2)

AOx_Filtered (x=1,2)

Alx_ForceSel

Defines the forced value that can be used instead of the output source
value AOx_ScaledOut, (optional).

The forced value (0.000...22.000 mA) is applied for AOx_Actual without
checking the minimum or maximum output values. Filter time is not
applied.

The actual analog output value (0.000...22.000 mA).
The value is same as in AOx_Filtered if forcing is not in use.

The filtered and scaled analog output value (0.000...22.000 mA).

0 = Forcing is not in use (optional for testing purposes)
1 =Force All to the value of All_ForceData
2 = Force AI2 to the value of Al2_ForceData

3 = Force All to the value of Al1l_ForceData and Al2 to the value of
Al2_ForceData

Alx_Unit (x=1,2)

Unit selection. This setting must match the corresponding hardware
setting on the I/0 extension module.

2 =V (volts)
10 = mA (milliamperes)

Alx_Min (x=1,2)

Alx_Max (x=1,2)

Alx_MinScaled (x=1,2)

Alx_MaxScaled (x=1,2)

Alx_FiltTime (x=1,2)

Defines the minimum value to an analog input (-22.000...22.000 mA or
V).

Defines the maximum value to an analog input (-22.000...22.000 mA or
V).

Defines the real value (-32768.0...32767.0) that corresponds to the min-
imum analog input value (Alx_Min).

Defines the real value (-32768.0...32767.0) that corresponds to the
maximum analog input value (Alx_Max).

Defines the filter time constant to an analog input (0.000...30.000 s).
This time is applied for the analog inputs Alx_Actual and Alx_Scaled,
(optional).

Alx_FiltGain (x=1,2)

Alx_ForceData (x=1,2)

Selects the hardware filtering time to an analog input (optional).

(0 = no filtering, 1 =125 us, 2 =250us,3=500us,4=1ms,5=2ms, 6 =
4 ms,7=7,9375 ms).

Defines the forced value that can be used instead of the true reading of
the input (optional).

The forced value (-22.000...22.000 mA or V) is applied for Alx_Actual
without checking minimum or maximum values. Filter time is not applied.

Alx_Actual (x=1,2)

Alx_Scaled (x=1,2)

Displays the value of an analog input (-22.000...22.000 mA or V).

Displays the value of an analog input (-22.000...22.000 mA or V) after
scaling.

108 Configuring extension I/O modules

Channel Descriptions

Alx_Switch (x=1,2) 0 = Unit selection matches the corresponding hardware setting.
1 = Unit selection does not match the corresponding hardware setting.

Configuring extension 1/0 modules 109

FDIO-01 module data

You can find the general information of FDIO-01 module by clicking on Information

tab.

Note: The application programming for the FDIO-01 module is applicable to YINFC

and YINFB v1.03 and later.

H FDIO_01 x

1/0-Bus Module Parameters

1/0-Bus Module /O FDIO 01
Mapphg General Information
Information Vendor:

Type:

D:

Version:
Description:

Categories

ABB Oy
36102
1612 A104
3.8.0.0
FDIO_01

Uncategorized

way -
o0l

!

i
i
LTI i -

3
i

FDIO-01 channel descriptions

Channel Descriptions

Status 0 = Not active
1 = Initializing state
2 = Active (successfully activated by Control)
3 = No communication

Control 0 = Inactivate

1 = Activate FDIO-01 module

DI_FilterTime

DIx_ONDelay (x=1,2,3)

Defines the digital inputs (all DI's) filter time (0.8...100.000 ms).
The default value is 10 ms.

Defines the DIx ON delay time (0.000...3000.000 s).
The default value is 0 s.

DIx_OFFDelay (x=1,2,3)

Defines the DIx OFF delay time (0.000...3000.000 s).
The default value is O s.

DIx_Filtinput (x=1,2,3)

Defines the state of DIx after filtering.

DIx_Input (x=1,2,3)

Defines the state of DIx when filter timeis O s.

ROx_Output (x=1,2)

ROx_ONDelay (x=1,2)

1 = Relay is energized (ON)
O = Relay is de-energized (OFF)

Defines activation delay (0.0...3000.0 s) applied for delayed state (op-
tional).

ROx_OFFDelay (x=1,2)

Defines deactivation delay (0.0...3000.0 s) applied for delayed state
(optional).

110 Configuring extension I/O modules

Channel Descriptions

ROx_DelayState (x=1,2) 1 = ON status of relay.
O = OFF status of relay.

The corresponding ON and OFF time delays are applied if they are
defined.

Fault codes

If the F-series |/0O configuration fails, a warning A7AB Extension |/O configuration
failureis logged in the Event log.

Auxiliary codes Descriptions

0x1000 - 0x1006 | Application related F-series ExtlO configuration file is broken.

0x2000 - 0x2006 | Task configuration error in configuration file.

0x2001 No enough communication capacity for requested module type and update times
(fast cycle).
0x2002 No enough communication capacity for requested module type and update times

(exceeded maximum allowed messages).

0x4000 - 0x4006 |DDCS configuration error in configuration file.
0x4003 Unknown task id in DDCS configuration.

Libraries 111

Libraries

Contents of this chapter

This chapter contains general information of libraries and description of the ABB
drives system and standard libraries.

Library types

The following libraries are installed by default in Drive Application Builder for drive
programming.

« Default libraries
- ABB drives system library (AY1LB_System_ACS880_V3_5)
- ABB drives standard library (AS1LB_Standard_ACS880_V3_5)

« Optional libraries
« All generic Drive Application Builder IEC libraries (standard and Util) can be
installed, but ABB does not guarantee their correct functioning. Note the data
type limitations described in chapter Features (page 51).

The Library Manager controls and manages the library usage in the project. Each
project has its own Library Manager which is added by default when you create a new
project.

i Library Manager x =
= Chtbied? -

- ﬁi Drives (ACSEEA_AINF_ZCULZ_ 14 M V3 §) ?_—,Add library Delete library Properties Detals | 5] Placsholders muhrary repositary

= @Q PLC Logic Mame | MNamespace | Effective wersion
= ':; Application AS1LB_Standard_ACS880_Y3_5, 1.0,1.2 (ABE Ov) AS1LB_Standard_ACS980_Y3_5 1012

) [ciErary Manager -+ AY1LB_System ACSBAN_Y3_5 = AVILE System ACSSE0_V3 S5, 1.9.1.0(ABE Oy} AYLLE System ACSEA0_Y3 5 1.8.1.0

@ AppiicationPar ametersandEvents AY2LE_D2DComm_ACSEB0_Y3_S, 1.9,0.2 (ABE Oy) Av2lB_DZDCoMM_ACSEB0_YV3 5 1,8.0.2

FLC PRI (PRG) Standard = Standard, 3.5.2.0 (System] Standard 3520

= {84 Task Canfiguration SystemPuncsABE, 0.0.0.1 (ABE) SystemFuncsABE 2.0.0.1

=g Task L @ L, 3.5.1.0 (System) i 3510
#] PLC_PRG

Drivelnterface (ACS880 parameters AINFY 2.82)
+ (] Extic (Fseriesion

) POLs |52 Devices

112 Libraries

ABB drives standard library contains the most common and useful functions and
function blocks to control the drive. All the functions are implemented locally using
structured text language. The Drive Application Builder and standard libraries include
additional general purpose functions.

ABB drives system library contains all the drive-specific functions to interface the
application with the drive firmware and 1/0 interface. This library has external
implementation in the drive system software.

Make sure the drive is installed with the corresponding system library.
1. Inthe Drive composer pro, right-click on drive and select System info.
2. Inthe System info screen, click More.

Check that the Application System Library displayed in the Drive composer pro has
the same library version as the Drive Application Builder project. If the versions are
not matching, part of the library may be incompatible.

Adding a library to the project

To add a Library Manager (library container) to the project:
1. Inthe Devices tree, right-click Application and select Add object.
2. Inthe Add object window, select Library Manager and click Add object.

3. Double-click Library Manager.
Library Manager window is displayed.

4. Click Add library to add the library.
In the Add Library dialog, click Advanced.

Add Library Ed
String For a Fulleext search. .. . = R
ting For a Fullkext searc m = -ﬂJ
Librar: | Compary |

&2 = Application
- Use Cases
- (Miscellaneous)

Adwvanced. .. | of I Cancel

6. Select the required library and click OK.

(il Add Library

Libraries 113

|String for a Fullkext search. ..

Libiraty | Placehalder I

Carmpany'; I{.ﬁ.ll Companies)

%Z - (Miscellaneous)
= ABB - Drives

| ASILE_Standard_ACSES0 W3 5 1.0.1.2 4850

AY1LE_System_AC3530_W3_5 1.9.1.0 4850y
AYELE_DZDComm_ACSEE0 WS 5 1,9.0.2 AS90)
%: Common
- Application

‘ Intern
=" System
= = Use Cases

®=
EE
®=
==
=
=
2=

¥ Group by category [Display all versions (for experts only)

Details, .. Library Repositary...

o |

Cancel

4

The selected library is added successfully.

Note: To make SFC language programs or functions, the lecSfc system library must

be available in the project.

114 Libraries

Creating a new library

The application programming environment allows you to create your own libraries to
use in the projects. After starting the programming environment, a new library can
be created with the New Project dialog.

1.
2.

In the New Project dialog box, click Empty project.

Type the library Name and Location and click OK.
The new library is added into the POUs tree.

In the View menu, select POUs to add a new POU into the created library.

Right-click on project name and select Add Object - POU.
Name the POU, for example, POUL.

Select the type of the POU, for example, Function Block and the implementation
language can be Structured Text (ST) and then click Add.

Open the created POU and add the following example code into the variables
declaration window.

FUNCTION BLOCK POUL

VAR INPUT
DI1 : BOOL;
END VAR

VAR OUTPUT
ROL : BOOL;
END VAR

WAR

prev_DI1 walue : BOOL;
END VAR

Add the following example code into the code area:

IF DI1 = FALSE AND prev_DIl value = TRUE THEN
ROL := NOT(ROL):
END_IF

prev_DI1 walue := DI1;

After the code is added, all library objects must be checked before the library
export.

In the Build menu select Check all Pool Objects.

In the Project menu, select Project Information and fill the information of the
created project to use the library in future (company, title and version).

Libraries 115

Project Information

‘File Summary | praperties | Statistics | Licensing |

Company: I‘ufendc-r name
Title: ILibrarv example title
Version: |1.1.D.1 [Released

Library Categaries: I |

Default namespace: I

Author: I
Description: ;I
[~
The fields in bold letters are used to identify alibrary.
[T Automatically generate POUs for property access
oK Cancel

After the information is added, it is possible to install this library directly to the
Library Repository.

In the File menu, you can do the following
« select Save Project and Install into Library Repository

Or

« select Save Project as to save the library as a usual file
Or

« select Save Project as Compiled Library to save the library as a compiled library
file

Note: You must use a compiled library file to protect the library source code. The
non-compiled library format does not protect the source code.

116 Libraries

Installing a new library

To install a new library, follow these steps:

In the Drive Application Builder project, double-click Library Manager.
Click Add library.

In the Add Library dialog, click Advanced.

Click Library Repository.

oA W

In the Library Repository window, click Install.

|4 fILibrary Repository

Location: Edit Locations. ..

|

(CHProgramDatat DrivespplicationBuildert 1, 0\0DGE_Managed Libraries_1.0)

—Installed libraries: Install...

Cormpany: I(.ﬁ.ll COMpanies) j Wrinskall

+=: (Miscellaneous)
<= ABB - Drives
+=2 application

Exzpark...

=
2" Intern

e e

+=: System
2= Use Cases

Find...

Details.. .,

I

I¥ Group by category Dependencies...

L

Library Profiles... | Close

6. Browse/select the required compiled library and click Open.
A new library is installed into the Library Repository and is ready to use in the
project.

Libraries 117

Managing library versions

Drive Application Builder allows you to use different versions of the selected library
according to project requirements.

To change the current effective library version, proceed as follows:
1. Open Library Manager.
2. Select the required library and click Properties.

3. Select the Specific version in the drop-down list and click OK.

Properties - #AY1LE_System_ACS880_¥3 o

—General: Yersion;

" Specific versian; j

MNamespace:

Defaulk ibrary: |AYILE Swskem ACSSE0 M3 5,1 ... | = Mewest version always

—Wisibility:
[only allow qualified access ko all identifiers.

If the current project is referenced as a library by another project:

[~ Publish all IEC symbals ta that project as if this reference would have been included there directly,

[Hide this reference in the dependency tree,

[~ optional {if the library is missing, no error will be reported),

I I Cancel

The library version is changed and can be used in the project.
If you want to add a new library version that is not in the Specific version list, first
install the version. See section Libraries (page 111).

118 Libraries

Configuring a library with WIBU license

In Drive Application Builder, you can configure a library with WIBU license.
1. In Drive Application Builder main menu, go to Project - Project Information.

2. Inthe Licensing tab, do the following:
« Enable Activate dongle licensing check-box and add the Firm code, Product
code, Activation URL and Activation mail.

. Click OK.
Project Information
File I Summary I Properties I Statistics Licensing |Signing I

If dongle licensing is activated, the user needs to connect a dongle
containing the appropriate license in order ko use this library,
Please note that only compiled libraries will be prokected!

v activate dongle licensing e
Firm code: O . /
Produck code: % ﬁ

Activation LIRL:

Ackivation mail:

[automatically generate 'Library Information' POUS

™ Automatically generate 'Project Information' POUSs

K, I Cancel

V.

The license protection can be used only for compiled libraries and it is necessary that
the given license is already present on the dongle.

Practical examples and tips 119

Practical examples and tips

Contents of this chapter

This chapter gives practical examples and tips on working with Drive Application
Builder.

Note: ABB recommends to update to the latest version of Drive application builder.

Solving communication problems

Follow the instructions below when the scan network does not find any drives.
1. Check the communication settings.

2. InWindows Computer Management - Device Manager, check that the
communication port is correctly installed.

3. If the USB Serial Port (COMX) is not displayed under Device Manager, check that
the corresponding USB/communication port driver is installed.

4. Select Ctrl + shift + esc = Processes to check that the OPC server (DriveDA.exe)
has started in Windows Task Manager.

5. Check that the Drive composer pro (Drive OPC) finds the connection to the drive.

Note: You must allow Drive Application Builder to share communication with Drive
composer pro.

For details on how to allow Drive Application Builder to share communication with
Drive composer pro, see chapter Getting started (page 19).

Follow the instructions below when the communication fails between Drive Application
Builder/Drive composer pro and drive.

« Check that the control panel has the latest firmware version
« Check the Driver data

120 Practical examples and tips

Note: For version details, refer the corresponding ACS880 drive software release notes
or contact your ABB representative.

Solving other problems

How to prevent unauthorized access to an application that is running in the
drive?

A compiled project as well as the downloaded source code can be password
protected. You can make a backup copy of the protected application. The backup
copy is encrypted and you need a password for downloading or executing the
copied application. The IEC function libraries and projects can be protected as
well by means of Drive Application Builder.

What to do when stack overflow fault 6487 occurs?

- Ifthe stack overflow fault 6487 occurs, then the number of the local variables
inside a function is too large. Unfortunately, the limit of the local variables
are relatively small. The stack usage is high especially if there are, for
example, division operands inside the EXPT function.

- Also if the division function divider is zero (an exceptional case), the stack
usage is high.

Do not make large functions. Try to make a compact function with a limited number

of variables (40 REAL). If the function is too large, change some of the local

variables to global variables (use, for example, multiple global variable lists GVL
to group variables by functions). Consider to use function blocks or program
modules instead of functions.

How to optimize the memory usage of the drive application? The code memory
of the application is running out. How to optimize the program?

The drive application programming environment has relatively limited memory
and execution capacity. There are a couple of tips to minimize the program code:
« Use functions as much as possible.

Note: If there are many variables inside the function, the risk of stack overflow
increases.
« Trytodesigntheapplication so that you do not need to create many instances
of large function blocks. Instead of function blocks use programs or functions.
« Use Drivelnterface to access drive parameters instead of the parameter
read/write functions.

How to solve the problem causing error message “Creating boot application

failed: Adding Application Parameters & Groups to UFF generator:

XmlDeserializationFailed”?

The problem is related to Application parameters and events module.

« Checkthatall Value pointer, Bit pointer and Plain value list type of parameters
have the correct Selection List.

« Checkthat the Bit list (16 bit) parameters do not have same Bit names (English)
multiple times (for example, text Bit_Handle_0 occurs twice).

« Check the tool message box for details.

Unsupported features 121

Unsupported features

Contents of this chapter

This chapter lists the features that are not supported for drives with standard drive
application programming V3.

Unsupported features

ABB drives do not support the following standard drive application programming V3
features.

Persistent variable type is not supported. In case the variable is saved over power
cycle, retain variable is used. Also, the user defined drive parameter can be created
to save value of the variable.

Target-based tracing. You can use the Monitor feature in Drive composer pro. See
Drive composer user’s manual (3AUA0000094606 [English]).

Some data types are not supported.

The number of program execution tasks are limited to 4. One of the task is a pre
task which is executed only once after power up. Other tasks are cyclically executed.

Program code simulation is not supported.
Target based visualization is not supported.

ISU/DSU firmware do not include DAB support for F-series devices.

122

ABB drives system library 123

ABB drives system library

Contents of this chapter

This chapter contains detailed information of the function blocks of the ABB drives
system library (AS1LB_Standard_ACS880_V3_5).

Overview

The ABB drives system library is intended to use with the ACS880 drives. It provides

event, parameter read/write and program time level function blocks for application

program in the Drive Application Builder environment. The description of the features
in this document is based on the ABB drives system library version 1.9.1.0.

Using Drive composer pro System info, check that the drive is installed with the
corresponding system library. In the System info, the system library versionis located
under the Products/More view. The system library versions must be similar in the
drive and the application program project.

124 ABB drives system library

Function blocks of the system library

Function block name

Description

Event function blocks

EVENT

Send the application event

ReadEventLog

Read the drive’s faults and warnings

Parameter change function blocks

PAR_UNIT_SEL
PAR_SCALE_CHG

PAR_LIM_CHG_DINT

Changes the unit of a parameter
Changes the parameter scaling attributes

Changes the limits of a parameter in DINT data format

PAR_LIM_CHG_REAL

Changes the limits of a parameter in REAL data format

PAR_LIM_CHG_UDINT

Changes the limits of a parameter in UDINT data format

PAR_DEF_CHG_DINT
PAR_DEF_CHG_REAL
PAR_DEF_CHG_UDINT
PAR_DISP_DEC

PAR_REFRESH

Changes the default values of a parameter in DINT data format
Changes the default values of a parameter in REAL data format
Changes the default values of a parameter in UDINT data format
Changes the decimal display of a parameter

Notifies PC tools and panel of any parameter attribute changes

Parameter protection

PAR_PROT

Protects individual parameters

PAR_GRP_PROT

Protects a parameter group

Parameter read function blocks

ParReadBit
ParRead_INT

ParRead_DINT

Read the value of a bit in a packed-Boolean-type parameter
Read the value of an INT/DINT/REAL type parameter

Read the value of a DINT/INT type parameter

ParRead_REAL

Read the value of a REAL type parameter

ParRead_UDINT

Read the value of a UDINT/UINT type parameter

Parameter write function blocks

ParWriteBit
ParWrite_DINT
ParWrite_INT

ParWrite_REAL

Write the value to a bit of a packed-Boolean-type parameter
Write the value to a REAL/DINT/INT type parameter
Write the value to an INT/DINT/REAL type parameter

Write the value to a REAL type parameter

ParWrite_UDINT

Write the value to an UDINT/UINT type parameter

Pointer parameter read function blocks

ParRead_BitPTR

ParRead_ValPTR_DINT

Read the pointed bit value from a bit pointer type parameter

Read the pointed DINT/INT value from a value pointer type parameter

Function block name

ABB drives system library 125

Description

ParRead_ValPTR_REAL

ParRead_ValPTR_UDINT

Read the pointed REAL value from a value pointer type parameter

Read the pointed UDINT/UINT value from a value pointer type parameter

GetPtrParConf

Read the source parameter settings. Source parameter must be a value
pointer, bit pointer or formatted number

Set pointer parameter function blocks

ParSet_BitPTR_IEC
ParSet_ValPTR_IEC_DINT
ParSet_ValPTR_IEC_REAL
ParSet_ValPTR_IEC_UDINT

ParSet_BitPTR_Par

Set a bit pointer parameter to point to a bit type IEC variable

Set a value pointer parameter to point to a DINT type IEC variable
Set a value pointer parameter to point to a REAL type IEC variable
Set a value pointer parameter to point to an UDINT type IEC variable

Set a bit pointer parameter to point to a bit of a packed Boolean para-
meter

ParSet_ValPTR_Par

Set a value pointer parameter to point to a value parameter

System time function blocks

SYS_TIME

Shows the previously set system data, time (broken time) and source

SYS_TIME_UDNIT

Task time level function block

UsedTimelevel

Shows the previously set system data, time (raw time) in native format
and source

Show time level (ms) of the program where the function block is located

126 ABB drives system library

Event function blocks

EVENT

Summary

The application event function block is used to trigger a predefined event
(fault/warning/pure) from the IEC code. The event is registered to drive event logger.

EVENT

—I0 Err

— AueCode

—EventType

—Trig

—Enable

Connections

Inputs

Name Type Value Description

ID WORD OxE100.. |Identification of the event (constant, cannot be changed on run time).

OXE2FF |This is a unique value of the event. You can find the supported values in
the ApplicationParametersAndEvent tool. A certain rangeis reserved for
each application event type.

Faults: OXxE100...E1FF
Warnings: OXE200.. OXE2FF

AuxCode DWORD |ANY The auxiliary code that you can set freely (constant).

Event- WORD 1,2 Type of the event (constant, cannot be changed on run time).

Type Supported event types: Fault = 1, Warning = 2, Pure = 8 (Notice is not
supported).

Trig BOOL T/F The high level (TRUE) of this pin sends/activates the event, if Enable is
set to TRUE. Warning is deactivated automatically, when Trig is de-
creased. To clear the fault, give the reset command.

Enable BOOL T/F Enable/disable event sending.

Outputs

Name Type Value Description

Err WORD ANY The value is typically 0x0000.
0x0001 = Not used
0x0002 = Event is not user-defined event
0x0003 = Event type error
0x0004 = Event ID type error
0x0005 = Not used
0x0006 = Unknown event type

Description

You can configure an application event with the ApplicationParametersandEvents in
Drive Application Builder. (See chapter Application parameters and events (page 79)).
This tool defines the ID and the event text (description).

Drive Application Builder supports the following event types: Fault, Warning and Pure.

ABB drives system library 127

The event ID, text, auxiliary code, time and operation data is registered into the drive
event logger. The application events can be shown using the ACS-AP-x control panel
and Drive composer tools, or using the ReadEventLog block on the application level.
A fault can be reset, for example, using the control panel or Drive composer pro tool.

Note: The current firmware supports execution of three event functions in the same
task cycle. If there are more event functions, do not enable all of them at the same
time.

128 ABB drives system library

ReadEventLog

Summary

ReadEventLog is a special block for reading faults and warnings from the drive event
system. The block does not read events or use the drive event or fault loggers. Instead
it gets the events straight from the event system itself.

ReadEventlog
—BventType Errt
—Index Codef
—Cnt HeCode b
—Enahble Status -

RdCntf-
EventLostCnt -

The purpose of the block is to forward drive events, for example, to external systems,
like automation user interfaces.

Connections
Inputs
Name Type Value Description
EventType UINT 0] Not used. The block returns the drive’s faults and warn-
ings. The value can be set to 0.
Index UINT 0] Not used. The value can be set to O.
Cnt UINT 0...6 Number of the wanted events at a time (0...6).
Enable BOOL T/F Enable/disable event sending.
Outputs
Name Type Value Description
Err UINT N/A Not used.
Code Array of Any of allowed | Event code (ID). The block supports maximum 6 events
UINT[10] events codes |at atime.
AuxCode Array of ANY Auxiliary code of the event.
UINT[10]
Status Array of ANY Status of the event.
UINT[10] 1= Event is activated.
2 = Event is deactivated.
3 = Acknowledgement requested.
4 = Event is reactivated (warnings).
5 = All faults are deactivated.
RdCnt UINT 0...6 The number of the get/read events at a time.
Maximum 6
RdCnt value = O indicates that there are no new events.
EventLostCnt (UINT ANY The number of the lost events (for monitoring).

ABB drives system library 129

Note: The current firmware supports execution of three event functions in the same
task cycle. If there are more event functions, do not enable all of them at the same
time.

It is recommend to use event blocks only on the tasks that has the cycle time setting
higher than 50ms.

Description

The block packs the event Code, AuxCode and Statusto vectors that the user canread.
The block does not sort faults and warnings from each other. The first event in the
vector is the oldest one.

The block returns the maximum Cnt number of events in each execution cycle
depending on how many events exist at this time on the drive. RdCntindicates how
many events are got in each execution cycle. The vectors and RdCnt are updated in
every execution cycle if new events exist. For this reason, only the value of RdCnt
matters when reading the event data from vectors. The older events are overwritten
by the newer ones.

Example:

In the first execution cycle, the user reads 2 events, for example, events 11, 12 (RdCnt
= 2). Both are valid. 12 is the last one.

In the second execution cycle, the user reads 1 event, for example, 21 (RdCnt = 1).

Now values 21, 12 can be seen in the Code vector, but because RdCntis 1, only the first
value is valid (21). (12 read in the previous cycle.)

Vectors are cleared only on the falling edge of the Enable pin.

EventLostCnt indicates the number of the lost events. The value should be 0. In the
opposite case, the reason can be too slow execution cycle of this block.

Note: The execution cycle of this block is slow. To optimize the application resources,
it is recommended to use only one instance of this block.

130 ABB drives system library

Parameter change function blocks
PAR_UNIT_SEL

Summary

PAR_UNIT_SEL block enables to change the unit of a parameter from the IEC
application. If one parameter of the family parameter is changed using this block, the
change applies to all other parameters of that parameter family.

PAR_UNIT_SEL

—{Enable Errf—

—Group

—{Index

—Unit
Connections
Inputs

Name Type Value Description
Enable BOOL T/F Enables unit change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Unit UNIT 128...255 Unit selection
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The rising edge of Enable input implies the unit change of a parameter. Group and
Index define the parameter to be changed and Unit defines the unit of the parameter.
The unit strings and corresponding codes are defined in the Drive Application Builder,
ApplicationparameterandEvents manager (APEM). Using this function block, the units
in the range of 128 to 255 can be changed.

Note: Use only the units defined in APEM. Selecting undefined units are not notified
by the Err output.

Errreturns an error code if there is an error during a unit change, for example, the unit
for change is beyond the selection range. If the unit selection and change operation
is successful, Errreturns a O.

ABB drives system library 131

PAR_SCALE_CHG

Summary

PAR_SCALE_CHG block enables changing the parameter scaling attributes from the
IEC application. Initial scaling values are defined in the Parameter family settings.

PAR_SCALE_CHG
—Enable Errf—
—Group
—{Index
—Basevalue
—BIT32_scaler
—BIT16_scaler
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables scale change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Basevalue DINT 128...255 Scales internal value to external 32 or 16 bit interface.
Used as divider
BIT32_scaler |DINT ANY Scaling factor for external 32 bit interface in panel (ACS-
AP-l), DriveComposer and fieldbus interface. The value
is used as a multiplier.
BIT16_scaler |INT ANY Scaling factor for external 16 bit interface for fieldbus
interface. The value is used as a multiplier.
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block enables to change the parameter scaling factor that scales the
internal value for DriveComposer tool, ACS-AP-I panel and fieldbus interface. The initial
values of the scaling factors are defined in ApplicationparameterandEvents manager
(APEM) for all user parameters. The changed parameter scaling applies to all parameters
of a specific family (scaling) defined in APEM.

Therising edge of Enableinput implies the parameter scaling change. Group and Index
define the parameter to be changed. The Basevalue scales the internal value to external
32 or 16 bit interface.

The BIT32_scaler and BIT16_scaler are used as scaling interfaces.

The Err output returns an error code if there is an error during the scaling change
operation. If the scaling changes are successful, Errreturns a O.

132 ABB drives system library

External 32-bit scaling

The external 32-bit scaling is used by (ACS-AP-I1), Drive Composer and PLC over fieldbus
adapter. If the parameter type is REAL, the number of decimals influence the scaling
defined in

ApplicationparametersandEvents manager or the PAR_DISP_DEC block.

If external value is requested as 32-bit integer, the internal float is scaled to external
float with the same scaling factor and then converted to 32 bit integer with extra
numbers for decimal values, depending on the display format of decimals. For example:
The value 1.23456 is displayed as 1.235 if the display format is 3 decimals.

Scaling formula:

Externalvalue(32bit)
= BlTJ?E“WLT",l“, « [ECprogramuvariable(internalvalue)
asevalue

External 16-bit scaling

The external 16-bit scaling is used only for fieldbus interface to fit internal value with
higher number of bits to the 16-bit scale. The 16-bit external value uses its own scaling
factor with no display format for decimals.

Scaling formula:

Externalvalue(16bit) = BILSsculer o 1 ECprogramovariable(internalvalue)

ABB drives system library 133

Parameter limit change
PAR_LIM_CHG_DINT

Summary

The PAR_LIM_CHG_DINT block enables to change minimum and maximum values (in
DINT data format) of a parameter from the IEC application. The changes in the limit
values apply to all parameters belonging to same parameter family defined in APEM.

PAR_LIM_CHG_DINT
—{Enable Errg—
—Group
—{Index
—Min_Val
— Max_Val
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables changing parameter limits at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Min_Val DINT ANY New minimum value in DINT data format
Max_Val DINT ANY New maximum value in DINT data format
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter limit values. Group
and Index define the parameter to be changed. The Min_Valand Max_Valare used to
set the new minimum and maximum values of the parameter respectively.

Note: Make sure that the following conditions are met while defining the minimum
and maximum values:

« The Max_Val must be greater than Min_Val.

« The Min_Val must be lesser than Max_Val.

« Min_Valmust not be equal to Max_Val.

Errreturns an error code if there is an error during the limits change operation, for

example, the new limits are beyond the range. If the change operation is successful,
Errreturns a 0.

134 ABB drives system library

PAR_LIM_CHG_REAL

Summary

The PAR_LIM_CHG_REAL block enables changing the minimum and maximum values
(in REAL data format) of the parameter from the IEC application. The changes in the
limit values apply to all parameters belong to the same parameter family defined in
APEM.

PAR_LIM_CHG_REAL

—{Enable Errf—

—Graup

—{Index

—Min_Val

— Max_Val
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables changing parameter limits at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Min_Val REAL ANY New minimum value in REAL data format
Max_Val REAL ANY New maximum value in REAL data format
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter limit values. Group
and Index define the parameter to be changed. The Min_Valand Max_Valare used to
set the new minimum and maximum values of the parameter respectively.

Note: Make sure that the following conditions are met while defining the minimum
and maximum values:

« Max_Valmust be greater than Min_Val

« Min_Valmust be lesser than Max_Val

« Min_Valmust not be equal to Max_Val

Err returns an error code if there is an error during the limits change operation, for

example, the new limits are beyond the range. If the change operation is successful,
Err returns a 0.

ABB drives system library 135

PAR_LIM_CHG_UDINT

Summary

The PAR_LIM_CHG_UDINT block enables changing the minimum and maximum values
(in UDINT data format) of a parameter from the IEC application. The changes in the
limit values apply to all parameters belong to the same parameter family defined in
APEM.

PAR_LTM_CHG_UDINT

—Enable Errf—

—Group

—{Index

—Min_Val

—Max_WVal
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables changing parameter limits at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Min_Val UDINT ANY New minimum value in UDINT data format
Max_Val UDINT ANY New maximum value in UDINT data format
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter limit values. Group
and Index define the parameter to be changed. The Min_Valand Max_Val are used to
set the new minimum and maximum values of the parameter respectively.

Note: Make sure that the following conditions are met while defining the minimum
and maximum values:

+ Max_Val must be greater than Min_Val

« Min_Valmust be lesser than Max_Val

« Min_Val must not be equal to Max_Val

Errreturns an error code if there is an error during the limits change operation, for

example, the new limits are beyond the range. If the change operation is successful,
Errreturns a 0.

136 ABB drives system library

Parameter default value change
PAR_DEF_CHG_DINT

Summary

The PAR_DEF_CHG_DINT block enables changing the default values (in DINT data
format) of a parameter from the IEC application. The value changes apply to all
parameters of that specific parameter family defined in APEM.

PAR_DEF_CHG_DINT

—{Enable Err—

—Group

—Index

—Default
Connections
Inputs

Name Type Value Description

Enable BOOL T/F Enables changing the default value of a parameter at the

rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default DINT ANY New default value in DINT data format
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter default values. Group
and Index define the parameter to be changed. The input Default is used to set the
new default value of the parameter.

Note: Define a default value within the minimum and maximum value.

Errreturns an error code if thereis an error during the change operation. If the default
value change operation is successful, Err returns a 0.

PAR_DEF_CHG_REAL

Summary

ABB drives system library 137

The PAR_DEF_CHG_REAL block enables changing the default values (in REAL data
format) of a parameter from the IEC application. The value changes apply to all
parameters of that specific parameter family defined in APEM.

PAR_DEF_CHG_REAL
—Enable Em
—Group
—Index
—Default
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables changing the default value of a parameter at the
rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Default REAL ANY New default value in REAL data format
Outputs
‘ Name Type Value Description
‘ Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter default values. Group
and Index define the parameter to be changed. The input Default is used to set the

new default value of the parameter.

Note: Define a default value within the minimum and maximum value.

Errreturns an error code if there is an error during the change operation. If the default
value change operation is successful, Errreturns a O.

138 ABB drives system library

PAR_DEF_CHG_UDINT

Summary

The PAR_DEF_CHG_UDINT block enables changing the default values (in UDINT data
format) of a parameter from the IEC application. The value changes apply to all
parameters of that specific parameter family defined in APEM.

PAR_DEF_CHG_UDINT
—Enable Err
—{Group
—Index
—Default
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables changing the default value of a parameter at the
rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Default UDINT ANY New default value in UDINT data format
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the changed parameter default values. Group
and Index define the parameter to be changed. The input Default is used to set the

new default value of the parameter.

Note: Define a default value within the minimum and maximum value.

Errreturns an error code if thereis an error during the change operation. If the default
value change operation is successful, Err returns a O.

ABB drives system library 139

Parameter decimal display
PAR_DISP_DEC

Summary

PAR_DISP_DEC block enables changing the number of displayed decimals of a
parameter from the IEC application. If one parameter of the family parameter is
changed using this block, then the change applies to all the other parameters of that
parameter family.

PAR_DISP_DEC
—Enable Err—
—{Group
—{Index
—Decimals
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables decimal display change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
Decimals UINT 128...255 Number of decimals to display
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the decimal display change of a parameter.
Group and Index define the parameter to be changed and the input Decimals defines
the number of decimal values to display. If the parameter is in REAL data format, then
the value is scaled for fieldbus interface by scaling factor 10(decimals),

Errreturns an error code if there is an error during a unit change, for example, the unit
for change is beyond the selection range. If the unit selection and change operation
is successful, Errreturns a O.

140 ABB drives system library

PAR_REFRESH

Summary
PAR_REFRESH block notifies PC tools and panel of any parameter attribute changes.

PAR_REFRESH
—Refresh Errp—
Cntf—

Connections
Inputs

Name Type Value Description

Refresh BOOL T/F Enables refresh at the rising edge
Outputs

Name Type Value Description

Err INT ANY Error output

Cnt UINT ANY Counts the number of refresh activation
Description

Therising edge of Refreshinput notifies any parameter changes to PC tools and panel.

WARNING!

Every time you activate the Refresh input in Drive Application Builder, a
notification appears in Drive Composer prompting to refresh the parameters.
Click OK to apply the parameter changes.

Errreturns an error code if the parameter protectionis applied successfully, Errreturns
a 0. The output Cnt increments at every activation of the input Refresh.

ABB drives system library 141

Parameter protection
PAR_PROT

Summary

PAR_PROT block is used to protect individual parameters. The block enables write
protection and hides flags dynamically from the IEC application. The changes do not
apply to any other parameter of the specific family.

PAR_PROT

—Enable Errf—

—Group

—Index

—{WR_Prot

—Hide
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables protection change at the rising edge
Group INT ANY Parameter group
Index INT ANY Parameter index
WR_Prot UINT ANY Applies write protection

0 = No protection
1 =Human WP [Drive Composer (Pro/Entry) and ACS-AP-
1/ACS-AP-S control panel]
Hide UINT ANY Hides flags
0 = No protection

1=Human WP [Drive Composer (Pro/Entry) and ACS-AP-
1/ACS-AP-S control panel]

Outputs

Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the protection change of a parameter. Group
and Index define the parameter to be changed. The inputs WR_Prot and Hide define
the parameter for write protection and parameter to hide respectively.

Errreturns an error code if there is an error during a parameter protection change. If
the parameter protection is applied successfully, Err returns a 0.

142 ABB drives system library

PAR_GRP_PROT

Summary

PAR_GRP_PROT block is used to protect a parameter group. This block enables write
protection and hides flags dynamically from the IEC application.

PAR_GRP_PROT

—Enable Errf—

—Group

—WR_Prot

—Hide
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables protection at the rising edge
Group INT ANY Parameter group
WR_Prot UINT ANY Applies write protection

0 = No protection

1=Human WP [Drive Composer (Pro/Entry) and ACS-AP-
1/ACS-AP-S control panel]

Hide UINT ANY Hides flags
0 = No protection

1=Human WP [Drive Composer (Pro/Entry) and ACS-AP-
1/ACS-AP-S control panel]

Outputs

Name Type Value ‘ Description
Err INT ANY ‘ Error output
Description

The rising edge of Enable input implies the protection change of a parameter group.
Group defines the group to be changed. The inputs WR_Prot and Hide define the
parameter group to be write protected and hidden.

Errreturns an error code if there is an error during a protection change. If the parameter
group protection is applied successfully, Err returns a 0.

ABB drives system library 143

Parameter read function blocks

ParReadBit

Summary

ParReadBit reads the value of a bit in a packed Boolean type parameter.

ParHeadEBit
—Group Cutput
—{Index Err
—BitNro
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT ANY Bit number
Outputs
Name Type Value Description
Output BOOL T/F Output value
Err INT ANY Error output
Description

The function block reads the value of a bit in a packed Boolean type parameter. Group
and Index define the parameter to be read and BitNro defines the number of the bit.
The value of the bit read is returned from Output.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

144 ABB drives system library

ParRead_INT

Summary
ParRead_INT reads the value of a INT/DINT/REAL type parameter.

ParRead INT
—Group QutputF—
—Index Errf—
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output INT ANY Output value
Err INT ANY Error output
Description

The function block reads the value of a DINT or INT type parameter. Group and Index
define the parameter to be read. The value of the parameter is returned from Output.
The type of output is INT even if the parameter to be read is of the DINT/REAL type.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

ParRead_DINT

Summary

ABB drives system library 145

ParRead_DINT reads the value of a DINT/INT type parameter.

ParRead_DINT
—Group Output
—Index Err
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output DINT ANY Output value
Err INT ANY Error output
Description

The function block reads the value of a DINT or INT type parameter. Group and Index
define the parameter to be read. The value of the parameter is returned from Output.
The type of Outputis DINT even if the parameter to be read is of the INT type.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

146 ABB drives system library

ParRead_REAL

Summary

ParRead_REAL reads the value of a REAL type parameter.

ParRead REAL
—Group Cutput
—Index Err
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output REAL ANY Output value
Err INT ANY Error output
Description

The function block reads the value of a REAL type parameter. Group and Index define
the parameter to be read. The value of the parameter is returned from Output.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

ParRead_UDINT

Summary

ABB drives system library 147

ParRead_UDINT reads the value of a UDINT/UINT type parameter.

ParRead_LDINT
—Group Output
—Index Err
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output UDINT ANY Output value
Err INT ANY Error output
Description

The function block reads the value of UDINT or UINT type parameter. Group and Index
define the parameter to be read. The value of the parameter is returned from Output.
The type of the output is UDINT even if the parameter to be read is of the UINT type.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

148 ABB drives system library

Parameter write function blocks

ParWriteBit

Summary

ParWriteBit writes a value to a bit of the packed Boolean type parameter.

ParWriteBit
—Input Errt-
—Group
—Index
—{BitNro
— Store
Connections
Inputs
Name Type Value Description
Input BOOL T/F Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT ANY Bit number
Store BOOL T/F Store input
Outputs
Name Type Value ‘ Description
Err INT ANY ‘ Error output
Description

The function block writes the value of Input into a selected bit of a packed Boolean
type parameter. Group and Index define the parameter to be written and BitNro define
the number of the bit. Store defines if the current written value of the parameter is
stored to the flash memory. During the power up of the drive, the value of the
parameter is set to the latest stored value.

Errreturns an error code if there is an error during the write operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the write operation
is successful, Errreturns a O.

ParWrite_DINT

Summary

ABB drives system library 149

ParWrite_DINT writes a value to a REAL/DINT/INT type parameter.

ParWnite_DINT
—Input Err
—Group
—{Index
—{Store
Connections
Inputs
Name Type Value Description
Input DINT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/F Store input
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block writes the value of Inputinto a selected DINT or INT type parameter.
The type of the Input is DINT even if the parameter to be written is of the INT/REAL
type. Group and Index define the parameter to be written. Store defines if the current
written value of the parameter is stored to the flash memory. During the power-up of
the drive, the value of the parameter is set to the latest stored valued.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

150 ABB drives system library

ParWrite_INT

Summary

ParWrite_INT writes a value to an INT/DINT/REAL type parameter.

ParWrite_INT

—Input Errf—

—{Group

—{Index

—{Stare
Connections
Inputs
Name Type Value Description
Input INT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/F Store input
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block writes the value of Input into a selected INT type parameter. The
type of the Input is INT even if the parameter to be written is of the DINT/REAL type.
In case of application parameter, select 16-bit interface support.

Group and Indexdefine the parameter to be written. Store defines if the current written
value of the parameter is stored to the flash memory. During the power up of the drive,
the value of the parameter is set to the latest stored value.

Errreturns an error code if there is an error during the write operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the write operation
is successful, Errreturns a O.

ParWrite_REAL

Summary

ABB drives system library 151

ParWrite_REAL writes a value to a REAL type parameter.

Parwnte REAL

—Input B

—Group

—{Index

—Store

Connections

Inputs

Name Type Value Description
Input REAL ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/F Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected REAL type parameter.
Group and Indexdefine the parameter to be written. Store defines if the current written
value of the parameter is stored to the flash memory. During the power up of the drive,
the value of the parameter is set to the latest stored value.

Errreturns an error code if there is an error during the write operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the write operation
is successful, Errreturns a O.

152 ABB drives system library

ParWrite_UDINT

Summary

ParWrite_UDINT writes a value to a UDINT/UINT type parameter.

Parwnte UDINT

—Input Err

—Group

—Index

—Store

Connections

Inputs

Name Type Value Description
Input UDINT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/F Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected UDINT or UINT type
parameter. The type of Input is UDINT even if the parameter to be written is of the
UINT type. Group and Index define the parameter to be written. Store defines if the
current written value of the parameter is stored to the flash memory. During the power
up of the drive, the value of the parameter is set to the latest stored value.

Errreturns an error code if there is an error during the write operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the write operation
is successful, Errreturns a O.

ABB drives system library 153

Pointer parameter read function block

ParRead_BitPTR

Summary

ParRead_BitPTR reads the pointed bit value from a bit pointer type parameter.

ParRead_BEiFTR
—Group COutput
—Index =1

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output BOOL ANY Output value

Err WORD ANY Error output
Description

The function block reads the pointed value of a bit pointer type parameter. Group and
Index define the pointed parameter to be read. The pointed value of the parameter is

returned from Output.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

154 ABB drives system library

ParRead_ValPTR_DINT

Summary
ParRead_ValPTR_DINT reads a pointed DINT/INT value from a value pointer type
parameter.

ParRead_ValFTR_DINT
—Group Output
—Index Errf-
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output DINT ANY Output value
Err INT ANY Error output
Description

The function block reads the pointed value of a DINT or INT pointer type parameter.
Group and Index define the pointed parameter to be read. The pointed value of the
parameter is returned from Output. The type of Output is DINT even if the parameter

typeis INT.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation

is successful, Errreturns a O.

ABB drives system library 155

ParRead_ValPTR_REAL

Summary

ParRead_ValPTR_REAL reads a pointed REAL value from a value pointer type parameter.

ParRead_ValFTR_REAL
—Group Output
—Index Errf-
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output REAL ANY Output value
Err INT ANY Error output
Description

The function block reads the pointed value of a REAL pointer type parameter. Group
and Index define the pointed parameter to be read. The pointed value of the parameter
is returned from Output.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation
is successful, Errreturns a O.

156 ABB drives system library

ParRead_ValPTR_UDINT

Summary
ParRead_ValPTR_UDINT reads a pointed UDINT/UINT value from a value pointer type
parameter.

ParRead_ValPFTR_UDINT
—Group Output
—Index Errf-
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs
Name Type Value Description
Output UDINT ANY Output value
Err INT ANY Error output
Description

The function block reads the pointed value of a UDINT or UINT pointer type parameter.
Group and Index define the pointed parameter to be read. The pointed value of the
parameteris returned from Output. The type of Outputis UDINT evenif the parameter

typeis UINT.

Errreturns an error code if there is an error during the read operation, for example,
the parameter is not found or it is a parameter of a wrong type. If the read operation

is successful, Errreturns a O.

GetPtrParConf

Summary

ABB drives system library 157

GetPtrParConf shows the source parameter settings. Source parameter must be value
pointer, bit pointer or formatted number (parameterindexFB).

GetPtrParConf
—5% Group Err]
—5_Index S Type
T_Group
T_Index
BitNra
ListIdx
Format
Connections
Inputs
Name Type Value Description
S_Group INT ANY Parameter group
S_Index INT ANY Parameter index
Outputs
Name Type Value Description
Err INT ANY Error output
0=0K
3 = Invalid mapping index
S_Type INT 0-6 Source parameter type:
0 = Unsigned 16-bit integer
1 = Signed 16-bit integer
2 = Unsigned 32-bit integer
3 = Signed 32-bit integer
4 = 32-bit Value pointer
5 = 32-bit Floating pointer
6 = 32-bit Bit pointer
T_Group INT ANY Destination parameter group.
T_Index INT ANY Destination parameter index.
BitNro INT 0-31 Bit number, when bit mapping is used.
Listldx INT O-N Index of list, when list is used.
Format INT 0-5 Shows the selected type of mapping (externalinterface).

Not available (0)
U32MAPFLAG_I16 (1)
Uu32MAPFLAG_U16 (2)
U32MAPFLAG_FLOAT (3)
U32MAPFLAG_I32 (4)
U32MAPFLAG_U32 (5)

Description

158 ABB drives system library

The block shows the source parameter settings.

If the source parameter type is formatted number/parameterindexFB, then the
parameter supports additional selection dialog (Other) in tools (selection list), where
external interface selection can be changed. Format pin is showing the selection.

Based on this information (16bit/32bit/Float), original destination parameter(s) can
be referenced by other blocks.

This is useful for example in cases, where the same destination parameter has different
scaling factors, depending on mapped data type (16 bit or 32 bit).

Note that this selection is not affecting into interface, which is used by source
parameter and in case the source parameter is application parameter with option
formatted number/parameterindexFB, it cannot be directly used by any other blocks.

When value pointer type source parameter is mapped into some destination parameter,
T_Group and T_Index shows the destination parameter.

If the source parameter points into application variable, it cannot be mapped. All the
other outputs are 0.

If the source parameter (parameterindexFB) is supporting external interface settings
with Set pointer parameter/other, then the Format shows the selected external
interface.

If the source parameter is mapped into list, then T_Group, T_Index shows the
parameter, which corresponds the list member. BitNro shows selected bit, and List/dx
shows the selected list index.

If the list member represent constant value, then T_Group = 0. T_index shows either
1 (list member =TRUE) or 0O (list member=FALSE) value.

If the source parameter is mapped into bit (BitPtr), then BitNro shows selected bit
number. T_Group, T_Indexindicates the destination parameter.

If the source parameter is mapped into formatted number with display format
parameterindexFB, then S_Typeis NUMTYPE_u32 (2) and Format shows the selected
external interface.

Avoid to put this block into the fast cycle and keep the amount of blocks (instances)
to minimum.

ABB drives system library 159

Set pointer parameter to IEC variable function blocks

Note: The old applications which are using these blocks of the earlier system library
version (1.9.0.x) must be updated to the new library version (1.9.1.0.) Otherwise the
application loading fault xxx occurs (aux code : 0x800A). You can also notice that the
old Par_set_ValPtr_IEC_xx are storing the value by default and new block must have
store input TRUE to have equal function. However it is not recommend to use Store
option if the value is changed repeatedly.

ParSet_BitPTR_IEC

Summary

ParSet_BitPTR_IEC sets a bit pointer parameter to point to a bit type IEC variable.

ParSet_BitPTR_IEC

—{Group Errp—

—Index

—{BitNro

—Staore

—IEC_War
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT 0] Bit setting is not supported.
Store BOOL T/F New value is stored to permanent memory of the drive.

Default is FALSE, but no storing.

IEC_Var BOOL T/F IEC variable
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a bit pointer type parameter to point to an IEC variable of the
Boolean type, that is, the IEC variable overwrites the value of the bit pointer. The
parameter to point must be bit pointer type. Group and Index define the parameter.
The BitNro input must be set to zero since (at least in this library version) the type of
IEC_Var must be Boolean and bit pointer type parameter. Therefore the bit number
cannot be chosen. The Store pin is used to save the pointer setting to the drive
permanent memory. During next power up, the drive memorizes the setting. The
IEC_Varinput is the IEC variable to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, then the Errreturns a O.

160 ABB drives system library

ParSet_ValPTR_IEC_DINT

Summary

ParSet_ValPTR_IEC_DINT sets a value pointer parameter to point to a DINT type IEC

variable.

ParSet_ValPTR_IEC_DINT

—Group Errf—

—{Index

—{Store

—IEC_Var

Connections

Inputs

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL T/F New value is stored to permanent memory of the drive.

Default is FALSE, but no storing.

IEC_Var DINT ANY IEC variable
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point an IEC variable of the
DINT type, that is, the IEC variable value overwrites the value of the value pointer. The
parameter to point must be a value pointer to the DINT or INT type. Group and Index
define the parameter. The Store pin is used to save the pointer setting to the drive
permanent memory. During next power up, the drive memorizes this setting. The
IEC_Varinput is the IEC variable to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Errreturns a O.

ParSet_ValPTR_IEC_REAL

Summary

ABB drives system library 161

ParSet_ValPTR_IEC_REAL sets a value pointer parameter to point to a REAL type IEC

variable.

ParSet_ValPTR_IEC_REAL

—Group Err

—Index

—Staore

—IEC_War
Connections
Inputs
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/F New value is stored to permanent memory of the drive.

Default is FALSE, but no storing.

IEC_Var REAL ANY IEC variable
Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of
the REAL type, that is, the IEC variable value overwrites the value of the value pointer.
The parameter to point must be a value pointer to the REAL type. Group and Index
define the parameter. The Store pin is used to save the pointer setting to the drive
permanent memory. During next power up, the drive memorizes this setting. The
IEC_Varinput is the IEC variable to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Errreturns a O.

162 ABB drives system library

ParSet_ValPTR_IEC_UDINT

Summary

ParSet_ValPTR_IEC_UDINT sets a value pointer parameter to point to a UDINT type

IEC variable.

ParSet_ValPTR_IEC_UDINT
Group
Index
Store
IEC_Var

Err

Connections

Inputs

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL T/F New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

IEC_Var UDINT ANY IEC variable

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point an IEC variable of the
UDINT type, that is, the IEC variable value overwrites the value of the value pointer.
The parameter to point must be a value pointer to the UDINT or UINT type. Group and
Index define the parameter. The Store pin is used to save the pointer setting to the
drive permanent memory. During next power up, the drive memorizes this setting.
The IEC_Varinput is the IEC variable to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is

successful, Errreturns a O

ABB drives system library 163

Set pointer parameter to parameter function blocks
ParSet_BitPTR_Par

Summary

ParSet_BitPTR_Par sets a bit pointer parameter to point to a bit of a packed Boolean
parameter.

ParSet_BitPTR_Par

—5_Group Errp—

—5_Index

—5_BitNro

—T_Group

—T_Index

—Store
Connections
Inputs
Name Type Value Description
S_Group INT ANY Source parameter group
S_Index INT ANY Source parameter index
S_BitNro INT ANY Source bit number
T_Group INT ANY Target parameter group
T_Index INT ANY Target parameter index
Store BOOL T/F New value is stored to permanent memory of the drive.

Default is FALSE, but no storing.

Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a bit pointer parameter to point to a bit of a packed Boolean
type parameter. S_Groupand S_Indexdefine the parameter to be pointed (the source)
and S_BitNro defines the number of the bit. T_Group and T_Index define the pointer
parameter (the target) which points to the source parameter. The target parameter
must be a Bit Pointer type and the source parameter must be a packed Boolean type.
The Store pin is used to save the pointer setting to the drive permanent memory.
During next power up, the drive memorizes this setting.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Err returns a O.

164 ABB drives system library

ParSet_ValPTR_Par

Summary

ParSet_ValPTR_Par sets a value pointer parameter to point to a value parameter.

Parset_ValPTR_Par

—5_Group Errf—

—5_Index

—T_Group

—T_Index

—{5tore
Connections
Inputs
Name Type Value Description
S_Group INT ANY Source parameter group
S_Index INT ANY Source parameter index
T_Group INT ANY Target parameter group
T_Index INT ANY Target parameter index
Store BOOL T/F New value is stored to permanent memory of the drive.

Default is FALSE, but no storing.

Outputs
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a value pointer parameter to point to a value parameter.
S_Group and S_Index define the parameter to be pointed (the source). T_Group and
T_Index define the pointer parameter (the target) which points to the source parameter.
The target parameter must be a pointer parameter of the same type as the source
parameter which must be a value parameter. The Store pin is used to save the pointer
setting to the drive permanent memory. During next power up, the drive memorizes
this setting.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Errreturns a O.

ABB drives system library 165

System time function blocks

SYS_TIME

Summary

SYS_TIME block returns to the previously set system date, time (broken time) and

source.
SYS_TIME
—Enable Errf—
—ExeCycle st_hourf—
st_minf—
st_sec—
st_yearf—
st_monf—
st_dayp—
st_wdayf—
st_TimeSrcf—
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enable/disable block execution (level sensitive).
ExeCycle INT ANY Execution cycle of this clock. Not used so far, leave uncon-
nected.
Outputs
Name Type Value Description
Err INT ANY Enable = O, Err = 1. Otherwise the value must be 0.
st_hour, ..., UINT ANY Calendar time.
st_day
st_wday UINT 1.7 Day of the week. 1 = Monday, 7 = Sunday
st_TimeSrc UINT 0..13 Source where the time has been set last.

Descripti

on

The function block use the time as the parameters 96.24...96.26, separated for easy
use. To reduce the application overload (quota), set Enable pin to TRUE to get the
time, otherwise set it to FALSE. You can put the block into slowest possible execution
cycle like 500 ms. Do not use several instances of this block, only one per application.

The possible time sources given by output st_TimeSrc are:

Value Description

0] Drive is maintaining its own Drive On Time.

1 User’s panel example, ACS-AP-l or DCP tool.

2 F-type of fieldbus module A.

3 D2D communication master.

4 ACS800M automation PLC via CI858, Modulebus.

166 ABB drives system library

Value Description

5 System real time clock (RTC).

6 F-type of fieldbus module B.

7 Embedded fieldbus.

8 Ethernet port in BCU (ABB SAP).

9 -

10 Drive composer tool in Ethernet link (ABB SAP).
11 INU-ISU link.

12 Master follower link.

13 Time via date and time parameters.

The figure below shows an example of SYS_TIME function block, where the drive time
is set by system RTC (real time clock).

i

5l sec

0

F

T

st_TimaSec| s_src I

ABB drives system library 167

SYS_TIME_UDINT

Summary

SYS_TIME_UDINT returns to the previously set system date and time (raw time) in
native format (1s units) and source.

SY5_TIME_UDINT
—{Enable Errf—
—StartYear TimeUDINTF—
TimeSrcf—
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enable/disable block execution (level sensitive).
Start year UINT ANY Not used so far, leave unconnected.
Outputs
Name Type Value Description
Err INT ANY Enable = O, Err = 1. Otherwise the value must be 0.
TimeUDINT UINT ANY Raw time (native time) in 1s units.
TimeSrc UINT 0..13 Source where the time has been set last.
Description

To reduce the application overload (quota), set Enable pin to TRUE to get the time,
otherwise set it to FALSE. You can put the block into slowest possible execution cycle
like 500 ms (exp.Task_3). Do not use several instances of this block.

The block is intended to use together with (raw) time manipulative blocks like
UDINT_TO_DT and UDINT_TO_DATE, which will convert (raw) time into IEC standard

formats.

The possible time sources given by output TimeSrc are:

Value Description

0] Drive is maintaining its own Drive On Time.

1 User’s panel example, ACS-AP-I or DCP tool.

2 F-type of fieldbus module A.

3 D2D communication master.

4 ACS800M automation PLC via CI858, Modulebus.
5 System real time clock (RTC).

6 F-type of fieldbus module B.

7 Embedded fieldbus.

8 Ethernet port in BCU (ABB SAP).

168 ABB drives system library

Value Description

9 -

10 Drive composer tool in Ethernet link (ABB SAP).
11 INU-ISU link.

12 Master follower link.

13 Time via date and time parameters.

The below figure shows an example of SYS_TIME_UDINT function block, where the
time is set by target RTC (real time clock).

Dewioe A pplication 575 _TIME_TO_DT

Expressice Type Value Prepaned valug
& @ 5T S¥5_TIME_UDINT

enail B E3

Erlil INT)

sc umNT 5

0T DATE_AND_TIME BT2014-1-23-4:58:33

datedi DATE Dal014-1-23

RawTime uomT 1390467513
) (]

e
i) 1
=T H | —
SeartY _ rnmr?r - ! | omre i. —
ear UOR =

ABB drives system library 169

Task time level function block

UsedTimelevel

Summary

UsedTimeLevel block shows the time level (ms) of the program (task execution cycle)

where the function block is located.

UsedTimelevel
QOutput

Connections

Inputs

Name Type Value

Description

NONE

Outputs

‘ Name Type Value

Description

‘Output INT ANY

Used time level in ms

Description

The function block shows the time level of the program (task cycle) in which the
particular function block is located. Output gives the time level in milliseconds.

170 ABB drives system library

Read device serial number function block

Read_DriveSerialNumber

Summary

DriveSerialNumber block shows the serial number of the drive.

Read DriveSerialNumber
ERR |

SER _NUMBER —serialno
Connections
Inputs
Name Type Value Description
NONE
Outputs
Name Type Value Description
Err INT ANY Error output
SER_NUMBER ARRAY[1...20] |ANY ASCII value of the drive serial number

of UNIT

Description

The function block shows the serial number of the drive. The output SER_NUMBER
gives the ASCII value of the drive serial number.

Error codes

ABB drives system library 171

The following list gives the most common error codes related to the function blocks
of the ABB drives system library. The error codes are received from the Err output and
they indicate if there is an error during the performance of the function block.

Error code Error code number Description

e_success 0 (hex 0) Success, no error.

e_WriteProtected 4 (hex 4) The parameter is write-protected.

e_Hidden 5 (hex 5) The parameter is hidden.

e_illegalOperation 6 (hex 6) Illegal operation, for example, the
parameter type is incorrect.

e_lowLimit 9 (hex 9) Parameter minimum value is ex-
ceeded.

e_highLimit 10 (hex A) Parameter maximum value is ex-
ceeded.

e_noValuelnList 11 (hex B) No value in the list.

e_parNotFound 13 (hex D) The parameter is not found.

e_OutsidelndexArea 774 (hex 306) Outside index area.

e_OverLappingGroup

e_UffError

775 (hex 307)

777 (hex 309)

Overlapping group.

UFF error.

172

ABB D2D function blocks 173

ABB D2D function blocks

Contents of this chapter

This chapter contains detailed information of the drive to drive (D2D) communication
function blocks of the ABB drives D2DComm library AY2LB_D2DComm_ACS880_V3_5.

Introduction to ABB D2D function blocks

The ABB D2D function blocks are intended to use with the ACS880 drives. It provides
drive to drive communication and drive to drive configuration function blocks for
application programmingin the Drive Application Builder environment. The description
of the features in this document is based on the ABB drives D2D communication library
version 1.9.0.2.

Note: In the Drive Composer Pro system information, make sure that the drive is
installed with the corresponding system library. In System info, the D2DComm library
version is located under the Products/ More view. The D2DComm library versions
must be same in the drive and the application program project.

174 ABB D2D function blocks

D2D communication library

Function block name Description

Data read/write

DS_ReadLocal Reads data from the local dataset.

DS_WriteLocal Writes data to local dataset.

Drive to drive communication

D2D_TRA Transmits data to a remote drive.

D2D_REC Receives data from the remote drive.
D2D_TRA_REC Transmits and receives data from the remote drive.
D2D_TRA_MC Transmits multicast messages to group of drives.

Drive to drive configuration

D2D_Conf Configures token management on master drive.
D2D_Conf_Token Configures the node related transmission cycle of token on master drive.
D2D_Master_State Returns status of master drive connected with D2D link, except its own status.

D2D block error codes

Bit | Value Description

0 D2D_MODE_ERR D2D is not active or message type is not supported in current D2D mode
(Master/ Follower).

1 LOCAL_DS_ERR Local dataset number out of range (1...255).

2 TARGET_NODE_ERR Target node out of range 1...62.

3 REMOTE_DS_ERR Remote dataset number out of range (128...255).
4 MSG_TYPE_ERR Unsupported message type (value out of range 0...5).

5 TOO_SHORT_CYCLE Communication overload (short token cycle).

6 INVALID_INPUT_VAL Input value out of range (Target node and/or cycle time).
7 GENERAL_D2D_ERR Some unspecified error situation in D2D driver.

8 RESPONSE_ERR Syntax error in the received response.

9 TRA_PENDING Message not sent.

10 | REC_PENDING Response not received.

11 | REC_TIMEOUT No response received.

12 | REC_ERROR Frame error in reception.

13 | REJECTED Message has been removed from the transmit buffer.

14 | BUFFER_FULL Transmit buffer is full.

15 | D2D_NOT_SUPPORTED | Target is not supporting D2D.

ABB D2D function blocks 175

Data read/write blocks
DS_ReadLocal

Summary

DS_ReadLocal block reads the dataset value from the local dataset table. The 48-bit
dataset composes of 16-bit and 32-bit parts. The 32-bit part is available both in DWORD
or REAL data formats in the function block output. The input is a pointer to the actual
data.

0% Readlocal
Liocal Drs e Efror
Out1_16bit
Qukt2_32bit
Out2_32bitReal

The dataset composes of three words in the output:
« 16-bit (WORD)

« 32-bit (DWORD or REAL)

Connections

Inputs

‘ Name Type Value Description

‘ LocalDsNr UINT 1...255 Local dataset number

Outputs
Name Type Value Description
Error UDINT ANY Error output
Outl_16bit WORD ANY 16-bit part of the dataset in WORD format
Out2_32bit DWORD | ANY 32-bit part of the dataset as DWORD format
Out2_32bitReal | REAL ANY 32-bit part of the dataset as REAL format
Description

The function block reads the local dataset value from the local dataset table. LocalDsNr
defines the local dataset number.

« Output Outl_16bit returns the first 16-bit of dataset as WORD data.
« Output Out2_32bit returns 32-bit part of dataset as DWORD data.
o Output Out2_32bitReal returns 32-bit part of dataset as REAL data.

Errorreturns an error code if there is an error during the read operation, for example,
the dataset is not found or if the dataset is beyond the dataset number range of
1...255. If the read operation is successful, Error returns a 0.

176 ABB D2D function blocks

DS_WriteLocal

Summary

DS_WriteLocal block writes data to local dataset. The 48-bit dataset composes of
16-bit and 32-bit parts. Inputs are pointers to actual data.

D5_WriteLocal
—lLocalDshr Errorf—
—pDakalnl_1&0it
—pDataln?_3Mhit
Connections
Inputs
Name Type Value Description
LocalDsNr UINT 128...255 Local dataset number
pDatalnl_16bit WORD - Pointer to 16-bit value
POINTER
pDataln2_32bit DWORD - Pointer to 32-bit data (REAL, DWORD)
POINTER
Outputs
Name Type Value Description
Error UDINT ANY Error output
Description

The DS_WriteLocal function writes data to the local dataset. LocalDsNr defines the
local dataset number from 128...255. The input data of 16-bit and 32-bit is connected
to the pointer inputs pDatalnl_16bit and pDataln2_32bit respectively using the ADR
operand.

Note: The data set numbers 128...255 are reserved for application programming.
However, you can set the data set numbers 1...127. There is risk of conflict with
firmware dataset.

Errorreturns an error code if there is an error during the write operation, for example,
the dataset is not found or if the dataset is beyond the dataset number range of
128...255. If the write operation is successful, Errorreturns a O.

ABB D2D function blocks 177

D2D communication blocks

General

The D2D_TRA, D2D_REC and D2D_TRA_REC blocks can be used only in a master drive.
These blocks can work independently without token configuration. The D2D_TRA_MC
block can be used in both master and follower drives. When D2D_TRA_MC block is
used in a follower drive, the token send configuration must be done using
D2D_Conf_Token and D2D_Conf blocks.

The D2D_Master_State block can be used without token configuration in both the
master and follower drives as well as the local dataset blocks DS_ReadLocal and
DS_WritelLocal.

D2D_TRA

Summary

D2D_TRA block sends data from a Master drive to a remote Follower drive. The 48-bit
data composes of 16-bit and 32-bit parts. The input data is directly given to the function
block inputs, so local datasets are not required.

D20 _TRA
Enalbile ErTar —
Pri SendMsglntt—
RemateMode
REmatelsie
pDatalnl_16hit
pData]rl.BI bit
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables sending data.
Pri UINT 1/2 Defines the priority of sending data; Standard (1)
or Low priority (2).
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 | Defines the remote drive dataset number.
pDatalnl_16bit WORD - Pointer to 16-bit value.
POINTER
pDataln2_32bit DWORD - Pointer to 32-bit data (REAL, DWORD).
POINTER
Outputs
Name Type Value Description

‘ Error UDINT ANY Error output.
‘ SendMsgCnt UDINT ANY Counts successfully transmitted messages.

178 ABB D2D function blocks

Description

The D2D_TRA function sends application variables data from the master drive to a
remote follower drive. The Enableinput enables or disables sending data. At the rising
edge of Enableinput Pri, RemoteNodeand RemoteDsNrare used. The input Pridefines
the priority of data transmission.

- Standard (1): The priority is set to Standard if fast response (2 ms) is required.
However, maximum of 2 blocks can be executed in the same cycle.

« Low priority (2): The priority is set to Low priority if slow response is required. It
is possible to execute up to 64 blocks in the same cycle.
« 10 ms cycle time - 10 blocks are executed
+ 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and
dataset number respectively, where the data is sent and stored. The input data of
16-bit and 32-bit is connected to the pointer inputs pDatalnl_16bitand pDataln2_32bit
respectively using ADR operand.

Errorblocks input values and operation status if there is an error while sending data.
If data is sent successfully, Errorreturns a 0. The SendMsgCount tracks the number
of successfully sent messages.

For details of how data is sent in WORD and REAL data format to remote drive, see
section Example 1: D2D_TRA / D2D_REC blocks.

ABB D2D function blocks 179

D2D_REC

Summary

D2D_REC block enables the master drive to receive data from a remote follower drive.
The block receives one 48-bit dataset from the follower dataset table. The response
is available at the output signals in 16-bit and 32-bit parts. An additional 32-bit data

is available in REAL format as own output.

D2D_REC
—Enable Errorf—
—Pri RovMsgCntp—
—RemoteNode Qutl_16bit}—
—RemuotelsMr Qut?_32bit}—
—suspendMode Out?_32bitRealf—
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1)
or Low priority (2).
RemoteNode UINT 1..62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 | Defines the remote drive dataset number.
SuspendMode UINT 0/1 Defines the behaviour of the application task
whether the D2D message is sent.
0 = message not sent
1 = message sent
Outputs
Name Type Value Description
Error UDINT ANY Error output.
RcvMsgCnt UDINT ANY Counts successfully received messages
Outl_16bit WORD ANY 16-bit dataset output value
Out2_32bit DWORD ANY 32-bit dataset output value
Out2_32bitReal REAL ANY 32-bit dataset output value in Real format.
Description

The D2D_REC block receives data from the remote drive. The Enable input enables or
disables receiving data. At the rising edge of Enableinput, the inputs Pri, RemoteNode,
RemoteDsNrand SuspendMode are used. The input Pridefines the priority of receiving
data.

« Standard (1): The priority is set to Standard if fast response (2 ms) is required.
However, maximum of 2 blocks can be executed in the same cycle.

180 ABB D2D function blocks

« Low priority (2): The priority is set to Low priority if slow response is required. It
is possible to execute up to 64 blocks in the same cycle.
+ 10 ms cycle time - 10 blocks are executed
+ 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and
dataset number respectively. The remote node number is set using parameter 60.02
inthe ACS880 Primary Control Program. Theinput SuspendMode defines the behavior
of the application task whether the intended message is sent.

0 = continues actual application task execution

1 =indicates that actual application task execution is pending to send messages and
to receive response of messages sent.

Errorblocks input values and operation status if there is an error while receiving data.
If receiving data is successful, Errorreturns a 0. The RcvMsgCount tracks the number
of successfully received messages.

The 16-bit and 32-bit data at the output returns from Outl_16bit and Out2_32bit
respectively. The 32-bit data of real data format returns from Out2_32bitReal.

For details of receiving data to master drive, see section Example 1: D2D_TRA /
D2D_REC blocks.

D2D_TRA_REC

Summary

ABB D2D function blocks 181

D2D_TRA_REC block enables the master drive to send and receive data from the remote
drive. The 16-bit and 32-bit parts of the dataset are defined in the corresponding
pointer type inputs. The response is available at the output signal in 16-bit and 32-bit
parts. An additional 32-bit data is available in REAL format as own output.

D2D_TRA_REC
—Enable Error
—lp SendMsglnt
—RemoteNads Quel_1ehit
—RemoteDsr Que2_32hit
—pDatainl_16bit Out?_32bitReal
—eDataln2_32bit
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1)
or Low priority (2).
RemoteNode UINT 1..62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 | Defines the remote drive dataset number.
pDatalnl_16bit WORD ANY 16-bit value connecting through ADR block.
POINTER
pDataln2_32bit DWORD ANY 32-bitinteger or real value connecting through ADR
POINTER block.
Outputs
Name Type Value Description
Error UDINT ANY Error output.
SendMsgCnt UDINT ANY Counts successfully transmitted messages
Outl_16bit WORD ANY 16-bit dataset output value
Out2_32bit DWORD ANY 32-bit dataset output value
Out2_32bitReal REAL ANY 32-bit dataset output value in Real format.

Description

The D2D_TRA_REC block sends data from the master drive and receives data from the
remote drive. The Enable input enables/disables sending or receiving data. At the
rising edge of Enable input, the inputs Pri, RemoteNode and RemoteDsNr are used.
The input Pri defines the priority of receiving data.

182 ABB D2D function blocks

- Standard (1): The priority is set to Standard if fast response (2 ms) is required.
However, maximum of 2 blocks can be executed in the same cycle.

« Low priority (2): The priority is set to Low priority if slow response is required. It
is possible to execute up to 64 blocks in the same cycle.
« 10 ms cycle time - 10 blocks are executed
« 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and
dataset number respectively. The response data is read from the dataset number
RemoteDsNr+1 of the remote drive. The data is selected using pointer inputs
pDatalnl_16bit and pDataln2_32bit.

Error blocks input values and operation status if there is an error while sending or
receiving data. If sending or receiving data is successful, Error returns a 0. The
SendMsgCount tracks the number of successfully sent messages.

The 16-bit and 32-bit data at the output returns from Outl_16bit and Out2_32bit
respectively. The additional output Out2_32bitReal returns 32-bit data in REAL data
format.

D2D_TRA_MC

Summary

ABB D2D function blocks 183

D2D_TRA_MCblock enables the drive (Master or Follower) to send multicast messages
to a group of drives. The block also allows sending follower to follower point to point

messages.

—iEnabfe

—iF‘T

— MultiCasiType
—femateNode
= Rematelshr
_i= Datainl_lbhét
—iplatalnd 32he

D2D_TRA_HC

Ermor—
LendiicgCni—

The multicast address is defined in the D2D_Conf block.

Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1)
or Low priority (2).
MultiCastType UINT 0/1 Allows sending multicast message types.
RemoteNode UINT 1..62 Defines the remote drive node address.
RemoteDsNr UINT 128...255 | Defines the remote drive dataset number.
pDatalnl_16bit WORD ANY 16-bit value connecting through ADR block
POINTER
pDataln2_32bit DWORD ANY 32-bitinteger or real value connecting through ADR
POINTER block
Outputs
Name Type Value Description
Error UDINT ANY Error output.
SendMsgCnt UDINT ANY Counts successfully transmitted messages
Description

The D2D_TRA_MC block sends multicast messages to a group of drives. It is possible
for the Master drive to receive messages from the Follower driver. For sending point
to point messages or standard multicast messages, the Follower drives need token

messages from the Master drive.

The Enable input enables/disables sending data. At the rising edge of Enable input
the inputs Pri, MultiCastType, RemoteNode and RemoteDsNr are used.

184 ABB D2D function blocks

The input Pri defines the priority of receiving data.

- Standard (1): The priority is set to Standard if fast response (2 ms) is required.
However, maximum of 2 blocks can be executed in the same cycle.

« Low priority (2): The priority is set to Low priority if slower response is sufficient.
Up to 64 blocks can be executed in the same cycle.
« 10 ms cycle time - 10 blocks are executed
« 100 ms cycle time - 64 blocks are executed

The input MultiCastType enables sending multicast messages of 3 different types:
« Follower point to point transmit (3)

- Standard Multicast (4): This message type requires all Follower/Master drives to
have a corresponding multicast address equal to the RemoteNode.

« Broadcast (5): In this message type all drives in the drive to drive link receive the
message including the Master drive. In this mode, the input RemoteNode must
be set to 255.

The inputs RemoteNode and RemoteDsNr define the remote drive node address and
dataset number respectively. The datais selected using pointer inputs pDatalnl_16bit
and pDataln2_32bit.

Error blocks input values and operation status if there is an error while sending or
receiving data. If sending or receiving data is successful, Errorreturns a 0. The
SendMsgCount tracks the number of successfully sent messages.

ABB D2D function blocks 185

D2D configuration blocks
D2D_Conf

Summary

D2D_Conf block configures token management on the master drive. The
D2D_Conf_Token block must be executed before the D2D_Conf block because
configuration data is built based on the node data in D2D_Conf_Token block.

D2D_Conf
—Enable Emor
—MCastGrp
— TokenTemCycle
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables configuration datain Master
drive.
The value FALSE stops sending token from
master to follower(s).
MCastGrp UINT - Defines multicast group address.
TokenTxmCycle UINT 1000...10000 | Sends the interval of token message.
0 = indicates that current configuration is re-
moved
Outputs
Name Type Value Description
Error UDINT ANY Error output.
Description

The D2D_Conf block is intended to execute only once, and for this reason, the block
should be assigned to Pre_Task. However, the block can be assigned to any task. In
cyclic tasks, the Enableinput controls the execution, including run time configuration.

The configured data is effective on the master drive after enabling the D2D_Conf
block. The Enable input enables/disables the configuration data on the master drive.
The rising edge of Enableinput triggers the configuration setup. The next rising edge
overwrites the Enable input of D2D_Conf_Token block, even if it is set to FALSE.

The input TokenTxmCycle is the base transmission cycle of token. The node related
transmission cycle is attained by multiplying this value set in the D2D_Conf_Token
block.

Errorblocks input values and operation status if there is an error in the configuration
data. If the configuration is successful, Error returns a O.

Master use

186 ABB D2D function blocks

The master drive has a message queue to handle cyclic transmission of the token
messages to follower drive. This queue can hold maximum 64 token messages. The
standard multicast group of master drive (address) is defined by the input MCastGrp.

Follower use

In the follower drive, only the multicast group (MCastGrp) can be defined and the
TokenTxmCycleis not used. The master drive transmit the token messages to follower
drives. After receiving a token, the follower is able to transmit a message from the
D2D message queue.

For example of token configuration, see section Example 2: Token send configuration
using D2D_Conf_Token and D2D_Conf blocks.

ABB D2D function blocks 187

D2D_Conf_Token

Summary

D2D_Conf_Token block configures the follower drive related token message send
cycle. In the follower mode, the output Error is set.

D2D_Conf_Token
—Enable Errarf—
—RemoteNode

—TumCycMultiplier

Connections
Inputs
Name Type Value Description
Enable BOOL Enables/disables the master drive from sending
the token to follower drive.
RemoteNode UINT 1..62 Defines the node address of the follower drive
where the token is transmitted.
TxmCycMultiplier | UINT Token send cycle. Multiplies the input TokenTxm-
Cyclein block D2D_Conf. If the value is 0, node is
removed from the configuration.
Outputs
Name Type Value Description
Error UDINT ANY Error output.
Description

The D2D_Conf_Token block is used to configure the node related transmission cycle
of token on master drive. This block is intended to execute only once from the Pre_Task.
However, the block can be assigned to any task. In cyclic tasks, the Enable input controls
the execution, including run time configuration. The settings are effective in the master
only after executing the D2D_Conf block.

Allnoderelated D2D_Conf_Token blocks must be executed before D2D_Conf by setting
the input Enable to TRUE. On run time in the Master drive, the Enable input
enables/disables the use of follower node. However, this selection is overwritten at
the next rising edge of Enable in the D2D_Conf block.

The RemoteNode and TxmCycMultiplier are set on the rising edge of Enable. The
configuration is effective after the next rising edge of Enable in the block D2D_Conf.
This configuration can be done on run time.

By setting the TxmCycMultiplier = O, the node related token send can be removed
permanently. At the next rising edge of Enable in D2D_Conf_Token and D2D_Conf
blocks, the node is removed from the token configuration.

Error blocks input values and operation status. The Error messages are listed below:

188 ABB D2D function blocks

Bit Error code Description

0 D2D_MODE_ERR D2D mode is not Master

5 TOO_SHORT_CYCLE Token interval(s) are short or communication is overloaded
6 INVALID_INPUT_VAL Input value (target node and/or cycle time) is out of range
7 GENERAL_D2D_ERR D2D driver failed to initialize message

For example of token configuration, see section Example 2: Token send configuration
using D2D_Conf_Token and D2D_Conf blocks.

ABB D2D function blocks 189

D2D_Master_State

Summary

D2D _Master_State block reads bit related Master state of all the drives connected to
D2D link. From the master drive, this block broadcasts the master state to other drives
using node number. This block works without token management configuration.

D2D_Master_ State
—Enable Errorf—
—Reset MstStatelF—
—Node MstState2—
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables block execution
Reset BOOL 0/1 Resets all master state bits on rising edge
Node UINT 1...62 Node address
Outputs
Name Type Value Description
Error UDINT ANY Error output.
MstStatel UDINT 0..31 Drive/node related master bits 0...31. Bit 0 ==
Nodel
MstState2 UDINT 32...63 Drive/node related master bits 32...63.
Description

The D2D_Master_State block is used when there is a risk to have multiple masters in
same D2D link. This enables creating systems with redundant masters. The block
returns status of all Master drives connected to the D2D link, except its own state,
which can be set and read using parameter 60.3 (M/F mode). As the Master drive
broadcasts its state to other drives based on Node address, the panel port
communication port parameter 49.1 (Node ID number) should also be using the same
value.

The master drive state bits are updated when the input Reset is set FALSE. The reset
function can be used whenever there is a state change from Master to Slave.

The input Node is same as parameter 60.2 (M/F node address).

Error blocks input values and operation status. In the follower drive, the output Error
returns the D2D_MODE_ERR code to notify that the drive is not able to broadcast
master state. However the block is able to read other drive states.

The output MstStatel includes drive/node related master bits 0 to 31. If this output
is set, the drive is Master.

The output MstStatel2includes drive/note related master bits 32 to 63.

190 ABB D2D function blocks

Examples: D2D blocks

Example 1: D2D_TRA / D2D_REC blocks
The examples below describe how the D2D_TRA and D2D_REC blocks are used for
sending and receiving data.

The D2D_TRA block is used to send data in WORD and REAL data format to remote
drive address 1 and dataset 128.

| 20 TRA °.
[__TROE 1Enabie Error -
Priority SencMsgCni -
= 1 Remotadddr
ADH 0 ResmobeDisNr
Vare_word ——1 Dimeain_16bn
— Dataln? 32bit
[ADR
[VarT_real }——

The DS_ReadLocal block is used to read the dataset in remote drive.

O%_Headlocal L
[il—Ln-c-:lDSHr Error - =
DataChut_16bit oo var_word 1)
Lratalutl_22bat |- ey
DataOut? 12hieHEAL { Flemote_Vart_real -

The DS _WriteLocal block is used to write WORD and UDINT values to remote drive
dataset 129.

|"l,§__'|)
2} - [[~ D5 _Witelocdl -
LocalDSNr Erree

Tt
[Vart woed]—rm :nmlm_mm
G Datalnd 32wt
ADH ' |
Vaed dword]—-[

The D2D_REC block is used to receive data from the master drive.

I DZ0_REC 1
[_wue Ensble Esvor |-
1T —————Priceity SendMagCre -
T b————— |Remotaiddr DatsOut1_ 16kt Rem_varZ et -
3 —————|RemcteDSN Datalutd_ Lt Fem_vard uding =
0 b SuspendMode DatsOut?_I2teREAL |-

Example 2: Token send configuration blocks

The example below describes how the D2D_Conf_Token and D2D_Conf blocks are
used for sending tokens.

In token send configuration, the master drive configures the token. After the follower
receives a token from the master, the follower node sends follower to follower (point
to point) or multicast message.

Using the D2D_Conf_Tokenblock, you can add a node into the token send configuration

with own instance or common instance. The example below is a common instance
configuration using the ConfToken. When all the nodes are included, the D2D_Confis

executed.

ABB D2D function blocks 191

In this example, a previous configuration with the following nodes existed:
remoteNodel and remoteNode2. A new configuration is set that includes only
remoteNodel for which remoteNode2 must be removed from the existing
configuration.

D2D_Conf
D2D_Conf Token

Master
Dnve

Token send

remoteM ode1 remote Nod e?

Each testStep represents a separate executed run cycle.

« testStep(l) - remoteNodel is added into new configuration

« testStep(3) - remoteNode2 is removed from configuration

« testStep(4) - D2D_Conf is invoked and starts sending token to remoteNodel
VAR

ConfToken: D2D_Conf_Token;

ConfD2D: D2D_Conf;

VAR_END

CASE testStep OF

0: // Initialize configuration blocks

ConfToken(Enable:= FALSE);

ConfD2D(Enable:= FALSE);

testStep:= testStep + 1;

1: // Add remoteNodel into configuration set-up (on rising edge of Enable)
ConfToken(Enable:= TRUE, TxmCycMultiplier:= 2, RemoteNode := remoteNodel);
testStep:= testStep + 1;

2: // Reset Enable pin

192 ABB D2D function blocks

ConfToken(Enable:= FALSE);
testStep:= testStep + 1;

3: // Remove remoteNode2 from configuration set-up, by setting TxmCycMultiplier:=
0]

ConfToken(Enable:= TRUE, TxmCycMultiplier:= 0, RemoteNode := remoteNode?2);
testStep:= testStep + 1;

4: // Launch new D2D configuration on rising edge of Enable (start of communication
with remoteNodel)

ConfD2D(Enable:= TRUE, TokenTxmCycle:= 1000);
testStep:= testStep + 1;

10: // Stop sending tokens (end of the communication)
ConfD2D(Enable:= FALSE);

testStep:= testStep + 1;

ABB drives standard library 193

ABB drives standard library

Contents of this chapter

This chapter contains detailed information of the basic and special functions of the
ABB drives standard library (AS1LB_Standard_ACS880_V3_5).

Overview

The ABB drives standard library is intended to use with the ACS880 drives. It provides
frequently used control elements for application programming in Drive Application
Builder. Unlike the standard libraries provided by 3S-Smart Software Solutions, most
of the function blocks in the library use floating point numbers. This provides more
flexible development environment as the programmer does not need to worry about
handling wide numerical ranges and scaling.

The drive version of the library is generated from the PLC version to make sure that
the codeis not altered in any way. For compatibility, some functions are implemented
as function blocks because the PLC does not support multiple outputs for functions.
The functions do not have a state and thus require less memory. This is also why the
drive version of the library has these blocks as functions (that is, there are 2 versions
available in the drive version).

The input values must be within the defined limits. If the block detects that the value
is out of range, then it can:

« Limit the value to the maximum or minimum value. For example, if the time
constant is set to a very large value or a negative value, it is limited inside the
block to make sure that it is the correct execution.

« Producean error signal. For example, if the low limit for the output is greater than
the high limit, the block cannot operate and produces an error.

The function blocks with a state has a balance reference and balance mode. This
feature provides the means to force the control system to a new state. By enabling

194 ABB drives standard library

the balance mode, the blocks operate as if the balance reference is the calculated
output of the block. Internal variables are also adjusted so that once the balance mode
is disabled the process continues from the balance reference value.

Basic functions
BGET

Summary

The BGET function reads one selected bit from a WORD or a DWORD (includes size
check).

BGET_WORD
—BIT_NR BGET_WORDE
—IN
Connections
Inputs
Name Type Value Description

BIT_NR | UINT 0..31 Bit number

IN DWORD | ANY Data input
WORD
Outputs
Name Type Value Description

BGET BOOL TRUE Bit value
FALSE

Function
The output (BGET) is the selected bit (BIT_NR) of the input word (/N).
If BIT_NRis 0, the bit is 0. If BIT_NRis 31, the bit is 31.

If the bit number is not within the range of 0...31 (for DWORD) or 0...15 (for WORD)),
the outputis O.

ABB drives standard library 195

BSET

Summary

The BSET function changes the state of one selected bit of a WORD or a DWORD
(includes size check).

BSET_WORD
—EN BSET _WORD k-
—BIT_NRE
—BIT_VALUE
—IN
Connections
Inputs
Name Type Value Description
EN BOOL TRUE Enable block
FALSE
BIT_NR UINT 0..31 Bit number

BIT_VALUE BOOL TRUE New value for bit
FALSE

IN DWORD | ANY Data input
WORD

Outputs

Name Type Value Description

BSET DWORD | ANY Changed word
WORD

Function

The value of a selected bit (BIT_NR) of the input (/N) is set based on the bit value input
(BIT_VALUE).

If BIT_NRis O, the bit is O. If BIT_NRis 31, the bit is 31. The function must be enabled
by the enable input (EN).

If the function is disabled or the bit number is not within the range of 0...31 (for
DWORD) or 0...15 (for WORD), the input value is stored to the output as it is (that is,
no bit setting occurs).

Example:

EN =1, BIT_NR=3,BIT_VALUE=0
IN = 0000 0000 11111111

BSET = 0000 0000 1111 0111

196 ABB drives standard library

DEMUX

Summary

The demultiplexer function block is available with 2, 4 and 8 inputs for the BOOL, DINT,
INT, REAL and UDINT data types.

DEMUX_B_INT
—IM OUTTE
—{A0D0OR OUT2E
OUT3H
OUT4E
OUTEE
OUTEE
OUTT
OUTEH
Connections
Inputs
Name Type Value Description
IN BOOL, DINT, INT, REAL, UDINT ANY Input
ADDR UINT 1..8 Address
Outputs
Name Type Value Description
OUTL1...8 BOOL, ANY Output 1...8
DINT,
INT,
REAL,
UDINT
Function

The input value (IN) is stored to the output (OUT1...8) selected by the address input
(ADDR). All other outputs are set to 0.

If the address input is not from 1 to 8, all outputs are set to 0.

ABB drives standard library 197

DEMUXM

Summary

The demultiplexer function block with an internal memory to store output values is
available with 2, 4 and 8 inputs for the BOOL, DINT, INT, REAL and UDINT data types.

DEMUXM_B_INT
—SET OUTTE
—LOAD OUTZ2
—RESET OUTIE
—ADDR OUT4}
—IMN OUTHE
OUTGE
OUT7
OUTE
Connections
Inputs
Name Type Value Description
SET BOOL TRUE, FALSE Set
LOAD BOOL TRUE, FALSE Load (Set only once)
RESET BOOL TRUE, FALSE Reset
ADDR UINT 1.8 Address
IN BOOL, DINT, INT, REAL, UDINT ANY Input
Outputs
Name Type Value Description
OUTL1...8 | BOOL, DINT, INT, REAL, UDINT ANY Output 1...8
Function

DEMUXM is used as a demultiplexer with the memory. It remembers the assigned
value to outputs and continue to send them until changed or reset.

The input value (IN) is stored to the output (OUTI...8) selected by the address input
(ADDR) if the load input (LOAD) or the set input (SET) is 1.

When the load inputis set to 1, the input value is stored to the output only once. When
the setinputis set to 1, the input value is stored to the output every time the block is
executed. The new set input overrides the load input.

If the address input is not from 1...8, the outputs are not affected by the input value.

If RESET =1, all outputs are set to 0 and the block’s memory is reset.

198 ABB drives standard library

MUX

Summary

The multiplexer function is for the REAL data type. Drive Application Builder version
does not support this function. The function block is available with 2, 4 and 8 inputs.

MUX_&_REAL
—ADDR MLX_8_REAL |-
—IN1
—IM2
—IM2
—IN4
—INE
—INE
—IN7
—INE

Connections

Inputs

Name Type Value Description

ADDR UINT 1.8 Address

IN1...8 REAL ANY Inputs 1...8

Outputs

Name Type Value Description

MUX REAL ANY Selected input value

Function

The value of an input (/N1...8) is selected by the address input (ADDR) and stored to
the output (MUX).

If the address input is not from 1...8, the output is set to O.

MUXM

Summary

ABB drives standard library 199

The multiplexer function block with an internal memory to store the output is available
with 2, 4 and 8 inputs for the BOOL, DINT, INT, REAL and UDINT data types.

MUXM_E_INT

—SET OUTE

—LOAD

—RESET

—ADDR

—IN1

—{IN2

—{IN3

—{IN4

—{IN5

—{ING

—{IN7

—{IN8

Connections

Inputs
Name Type Value Description
SET BOOL TRUE, FALSE Set
LOAD BOOL TRUE, FALSE Load
RESET BOOL TRUE, FALSE Reset
ADDR UINT 0..8 Address
IN1...8 BOOL, DINT, INT, REAL, UDINT ANY Inputsl...8

Outputs
Name Type Value Description
ouT BOOL, DINT, INT, REAL, UDINT ANY Output

Function

MUXM is used as a multiplexer with a memory. It remembers the assigned value of
the output and continue to send them until changed or reset.

The value of an input (/IN1...8) is selected by the address input (ADDR) and is stored
to the output (MUX) if the LOAD input or the SET input is 1.

When the load inputis set to 1, the input value is stored to the output only once. When
the setinputis set to 1, the input value is stored to the output every time the block is

executed. The new set input overrides the load input.

If the address inputis notfrom1...8, the outputis not affected by input value. If RESET
=1, then the output is set to 0 and the block’s memory is reset.

200 ABB drives standard library

PACK

Summary
The PACK function sets the BOOL inputs into a WORD or a DWORD.

PACK_WORD
—IND PACK_WORD ¢
—IN1
—IN2
—IN3
—IN&
—IN%
—IN&
—IN7
—INE
—INS
—IN10
—IN11
—IN12
—IN13
—IN14
—IN15

Connections

Inputs

Name Type Value Description

INO...31 | BOOL TRUE, FALSE Bits

Outputs

Name Type Value Description

PACK WORD, DWORD ANY Resulting pack of bits

Function

The PACK function takes an input set of bits and packs it in to a word.

ABB drives standard library 201

SR_D
Summary

The SR-D function block is an extension to a normal SR trigger with an additional
memory input D trigger. The Reset signal overrides all other control signals and clears
the internal block state. The Set signal forces the output to the TRUE state.

SR_D

—SET OUTE

—{DATA

—CLK

—RESET

Connections

Inputs
Name Type Value Description
SET BOOL TRUE, FALSE Set input
DATA BOOL TRUE, FALSE Data input
CLK BOOL TRUE, FALSE Clock, rising edge active
RESET BOOL TRUE, FALSE Reset

Outputs
Name Type Value Description
ouT BOOL TRUE, FALSE Output signal

Function

The SR-D block implements D trigger with the SET, RESET controls. The data is stored
from D input when the clock changes from O to 1. The SET signal forces the output to
the TRUE state. If R is active, the output is always FALSE. The RESET signal overrides
all other control signals and clears the internal block state.

When the clock input (CLK) is set from O to 1, the DATA input value is stored to the
output (OUT).

When RESET is set to 1, the output is set to O.

Truth table
SET RESET DATA CLK Previous out- ouT
put
ANY 1 Any Any Any 0]
1 0 Any Any Any 1
0 0 Any 0 Qn1 Qn1
0] 0 0 0-1 Any 0

202 ABB drives standard library

SET RESET DATA CLK Previous out- | OUT
put
0 0] ‘ 1 ‘ 0->1 ‘ Any 1
SWITCH
Summary

The SWITCH function block sets the output same as the input if EN equals TRUE,
otherwise all outputs are 0. SWITCH is available with 2, 4 and 8 inputs and outputs for
the BOOL, DINT, INT, REAL and UDINT data types.

SWITCH_Z INT
—EN OUT1E
—IN1 ouUT2E
—{IM2 OUT3E-
—{IM3 OUT4E
—{IN4 OUTS
—{IN5 OUTEE
—ING OUTT}
INT ouUTSE
—{INE
Connections
Inputs
Name Type Value Description
EN BOOL TRUE, FALSE Enable
IN1...8 BOOL, DINT, INT, REAL, UDINT ANY Input 1...8
Outputs
Name Type Value Description
OUT1...8 | BOOL, DINT, INT, REAL, UDINT ANY Output 1...8
Function

The output (OUTL...8) is equal to the corresponding input (/IN1...8) if the block is
enabled (EN = 1). Otherwise the output is O.

ABB drives standard library 203

SWITCHC

Summary

The SWITCHC function block has two channels. A channel can be chosen by using the
SELECT signal. If SELECT equals FALSE, channel A is active. If SELECT equals TRUE,

channel Bis active. If the EN signal is not active, all outputs are 0. SWITCHC is available
with 2, 4 and 8 input pairs and outputs for the BOOL, DINT, INT, REAL and UDINT data

types.

SWITCHC_& INT
—EN OUT1|-
—SELECT OUT2
—IN14 OUT3E
—IN2A OUT4E
—IN3A OUTSE
—IN4A OUTE}-
—INBA OUTT |-
—INEA OUTE}
—INTA
—INEA
—IN1B
—IN2E
—IN2E
—IN4E
—INSE
—INGE
—IN7E
—INEB

Connections

Inputs

Name Type Value Description

EN BOOL TRUE, FALSE Enable

SELECT | BOOL True, FALSE Select
IN1..8A | BOOL, DINT, INT, REAL, UDINT ANY Input Al1..8

IN1...8B | BOOL, DINT, INT, REAL, UDINT ANY InputB1...8

Outputs

Name Type Value Description

OUT1...8 | BOOL, DINT, INT, REAL, UDINT ANY Output Al..8

Function

204 ABB drives standard library

The output (OUTI...8) is equal to the corresponding channel A input (IN1...8A) if the
activate input signal (SELECT) is 0. The output is equal to the corresponding channel
B input (/N1...8B) if the activate input signal (SELECT) is 1.

If the block is disabled (EN = 0), all outputs are set to 0.
UNPACK

Summary
The UNPACK function block splits a WORD or a DWORD into a set of BOOL outputs.

UNPACK_WORD
—IN OUTOF-
OUT1§-
OUT2F
OUT3}-
OUT4FE
OUTSE-
OUTE}-
OUT7 |-
OUTEB}-
OUTI}-
OUT10}-
OUT11 -
OUT12F
OUT13
OUT14F
OUT15}

Connections

Inputs

Name Type Value Description

IN WORD, DWORD ANY Input data

Outputs

Name Type Value Description

OuUTO0..31| BOOL TRUE, FALSE Output bits

Function

The Unpack function takes an input word and returns it as a set of bits.

ABB drives standard library 205

Special functions

Filter

Summary

The FILT1_1 function block provides filtering of the high frequency part of the input
signal. The block acts as a single-pole low pass filter for the REAL numbers. The
balancing function permits the output signal to track an external reference.

FILT1_1
—IN OUTE-
{TF
—BAL
—BALREF
—TIMELEVEL
Connections
Inputs
Name Type Value Description
IN REAL ANY Input signal for the actual value.
TF REAL 0...ANY Filter time constant (ms).
BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.
BALREF | REAL ANY Value for the tracking mode.
TIME- INT 1...ANY Task interval in milliseconds, default = 10 ms.
LEVEL
Outputs
‘ Name Type Value Description
‘ ouT REAL ANY Filtered actual value
Function

The function filters the input signal using the current input and previous output.
The transfer function for a single-pole filter with no pass band gain is:
G(s) = ﬁ
To get the function for the output, cross-multiply the equation.
O(s)* (1 +sTF)=1x1(s)
Resolving the parenthesis gives:
O(s) +sTF xO(s) = I(s)
To get the equation to the time domain s has to be replaced by derivation.

O@t) + TF % O(t) = I(t)

206 ABB drives standard library

Since this is a first order approximation function block, the derivation can be replaced
by a difference.

O(t) + TF » 20200 = 1()

Where: Ts is the cycle time of the program in milliseconds (time difference between
t and t-1).

The final filtering algorithm is calculated by using the following formula that is obtained
by extracting O(t):
_ 1+(TF/TS)=0(t—1)
o(t) = TF/Ts+1
If TF = O or negative, the output value is set to the input value.

Because of the REAL data type limitation, the TF/Ts ration is limited to 8000000, to
make sure that it is always possible to add 1 to the real value.

Function generator

Summary

The FUNG_1V function block is used to generate an optional function of one variable,
y = f(x). The function is described by a number of coordinates. Linear interpolation is
used for values between these coordinates. An array of 8, 16 or 32 coordinates can be
specified. The balancing function permits the output signal to track an external
reference and gives a smooth return to the normal operation.

FUNG_1V_32 REAL
—{BAL OUTE
—BALREF BALREFO
—{IN_XTAE ERRORE-
—{XTAB
—YTAB
Connections
Inputs
Name Type Value Description
BAL BOOL TRUE, FALSE Input to activate the balancing mode.
BALREF | REAL ANY Balance reference.
Input for the reference value in the balancing mode.
IN_XTAB | REAL ANY Input signal for the function.
XTAB REAL [N] ANY Table of X coordinates for the function.
YTAB REAL [N] ANY Table of Y coordinates for the function.
Outputs
Name Type Value Description
ouT REAL ANY Value of the function.

BALREFO | REAL ANY TRUE if the high limit is reached.

ABB drives standard library 207

Name Type Value Description
ERROR | BOOL TRUE, FALSE TRUE when the input is outside the table range or when the
table contains unsorted (low to high) data for the input co-
ordinates.
Function

The function generator FUNG_1V calculates output signal Y for a value at input X.
Calculation is performed in accordance with a piece-by-piece linear function which is
determined by vectors XTAB and YTAB. For each X value in XTAB, thereis a
corresponding Y value in YTAB. The Y value at the output is calculated by means of
linear interpolation of the XTAB values, between which lies the value of input X. The
values in XTAB must increase from low to high in the table.

The output of the block depends only on the current input values, in other words, it
does not have any state.

Interpolation

The generated function is performed as follows:

Xk x Xk+l

V=Y S

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The X value
which corresponds to Y value is obtained at the BALREFO output. On balancing, the
Xvalue is calculated by interpolation in the same way the Y value is calculated during
the normal operation. To permit balancing, the values in YTAB must increase from low
to highin the table.

Limiting
If input signal X is outside the range defined by XTAB, the Y value is set to the highest
or lowest value in YTAB. If BALREF is outside the YTAB value range in the BAL mode,

thevalueatYis settothevalueat the BALREFinput and BALREFOis set to the highest
or lowest value in XTAB.

208 ABB drives standard library

Integrator

Summary

The INT_REAL function block integrates the input. The output signal can be limited
within limit values. The balancing function permits the output signal to track an external
reference and gives a smooth return to the normal operation.

INT_REAL
—IM OUTE
—GAIN OUT_HIF-
—TlI OUT_LOF
—RESET
—HOLD
—BAL
—BALREF
—OHL
—O0LL
—TIMELEVEL
Connections
Inputs
Name Type Value Description
IN REAL ANY Input signal for the actual value
GAIN REAL ANY Gain input
TI REAL 0...ANY Integration time (ms)
RESET BOOL TRUE, FALSE Clear integrated value
HOLD BOOL TRUE, FALSE Stops integration when set to TRUE
BAL BOOL TRUE, FALSE Balance input, activates the tracking mode
BALREF | REAL ANY Value for the tracking mode
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
TIME- INT 1...ANY Task interval in milliseconds, default =10 ms
LEVEL
Outputs
Name Type Value Description
ouT REAL ANY Output value.
OUT_HI | BOOL TRUE, FALSE TRUE if the high limit is reached.
OUT_LO | BOOL TRUE, FALSE TRUE if the low limit is reached.

ABB drives standard library 209

Function
The INT function can be written in the time plane as:
O(t) = K/T([I(t)dt)

The main controlled property is that the output signal retains its value when the input
signal I(t) = 0.

Clearing

The integrated value is cleared when RESET = TRUE (all internal variables are cleared).

Tracking

If BAL is set to TRUE, the integrator immediately goes into the tracking mode and the
output value is set to the value of the BALREF input. If the value at BALREF exceeds
the output signal limits, the output is set to the applicable limit value. On return to
the normal operation from the tracking mode, integration continues from the tracking
reference.

Limiting
The output value is limited between OHL and OLL. If the actual value exceeds the upper
limit, the OUT_HI output is set to TRUE. If it falls below the lower limit, the OUT_LO

output is set to TRUE. If the limits have incorrect values, both OUT_HIand OUT_LO
are set to TRUE.

Lead lag

Summary

The LEADLAG_REAL function block is used to filter the input signal and provide a phase
shifted output. This block acts as a lead/lag filter based on the COEF input value.

LEADLAG_REAL
—IM OUTE
—COEF
—TC
—RESET
—BAL
—{BALREF
—TIMELEVEL
Connections
Inputs
Name Type Value Description
IN REAL ANY Input signal for the function block
COEF REAL ANY Constant that determines the filter type
TC REAL 0...ANY Time constant (ms)
RESET BOOL TRUE, FALSE Resets the function block

BAL BOOL TRUE, FALSE Activates the balance mode

210 ABB drives standard library

Name Type Value Description

BALREF REAL ANY Balance reference
Input for the reference value in the balancing mode.

TIMELEVEL INT 1...ANY Task interval in milliseconds, default =10 ms

ABB drives standard library 211

Outputs
Name Type Value Description
ouT REAL ANY Output signal
Function

The transfer function for the lead/lag filter is:

1+aTl.s
14+Tes

The lead/lag filter has two input parameters TC and a (COEF):
« Ifa>1,the filter acts as a lead filter.

« Ifa<1,thefilter acts as a lag filter.

- Ifa=1, nofilteris applied.

The filter algorithm is calculated using the following formula:
dn =X - Bl*dnMem

Y = AO*dn + Al*dnMem

dnMem =dn

Where,

AO=(1+a*Tc) /(1 +Tc),

Al=(1-a*Tc)/ (1 +To),

Bi1=(1-Tc)/(1+Tc)

Xis the input signal.

Y is the output signal.

The initial value of dnMem is set to zero.

Note: If a or TCinput to the block is negative, the corresponding negative input is
assigned to zero before the filter algorithm is calculated.

Because of the REAL data type limitation, the TC/Ts ration is limited to 8000000, to
make sure that it is always possible to add 1 to the real value.

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The block
operates normally during this time which means that the internal variable is always
calculated.

Reset

If RESET is set to TRUE, the internal variable dnMem is set to zero and input value X
is returned.

212 ABB drives standard library

Motor potentiometer

Summary

The MOTPOT_REAL (motor potentiometer) function block is used to generate the
reference based on the activation of the Boolean (UP and DN) inputs. The rate of
change of a reference signal is controlled by the slope time and limits. The current
value is retained after a power cycle.

MOTPOT_REAL
—EN OUTE
—Hup
—DON
—SLOPE
—{BAL
—BALREF
—OHL
—OLL
—TIMELEVEL
Connections
Inputs
Name Type Value Description
EN BOOL TRUE, FALSE Enables operations.
up BOOL TRUE, FALSE Enables count up.
DN BOOL TRUE, FALSE Enables count down.
SLOPE UINT 0...65535 Delay time to count from OLL to OHL and vice versa.
BAL BOOL TRUE, FALSE Sets the output to BALREF or limit if it exceeds the limit.
BALREF REAL ANY Sets the output value when the BAL input is active.
OHL REAL ANY High input limit.
OLL REAL ANY Low input limit.
TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms.
Outputs
Name Type Value Description
ouT REAL ANY Output value
Function

The MOTPOT functional block is used to control the rate of change of an output
reference signal. Digital inputs are normally used as the UPand DOWN inputs.

The rate of change of a reference signal is controlled by the slope time parameter. If
the enable pin (EN) is set to TRUE, the reference value rises from minimum to maximum
during the slope time.

ABB drives standard library 213

EN turns on the MOTPOT function. If ENis set to FALSE, the output is zero. Based on
the UP or DN inputs getting activated, the output reference increases or decreases
to the maximum or minimum value based on the slope. If both UP/DN inputs are
activated/deactivated, the output is neither incremented nor decremented and is in
a steady state.

Clearing

When EN is set to FALSE, the output and internal values are set to zero.

Tracking

If BAL is set to TRUE, the output is set to the value of the BALREF input. If the value
at BALREF exceeds the output signal limits, the output is set to the applicable limit
value.

Limiting
The output value is limited between OHL and OLL. If the actual value is more than the

upper limit, the output is set to the OHL input value. If the actual value decreases
below the lower limit, the output is set to the OLL input value.

PID

Summary

The PID_REAL (Proportional-Integral-Derivative) element can be used as a generic PID
regulator in feedback systems. The main extension of the element is that a derivative
correction term with a filter is included. Another major extension is the antiwindup
protection. The output signal can be limited with limit values specified at special
inputs (OHL and OLL). The balancing function permits the output signal to track a
gradual return to the normal operation. After any parameter change or error condition,
the integral term of the correction is readjusted so that the output does not change
suddenly (“bumpless transfer”).

PID_REAL
~IN_FB ouTH
~IN_REF DEV}-
~GAIN OUT_HIE
Tl QUT_LO}
-TD

TC

TF

~I_RST
—BaL
—|BALREF
—oHL
~oLL

| TIMELEVEL

Connections

Inputs

214 ABB drives standard library

Name Type Value Description

IN_FB REAL ANY Actual input value

IN_REF REAL ANY Reference input value

GAIN REAL ANY Proportional gain

TI REAL 0...ANY Integration time (ms)

TD REAL 0...ANY Derivation time (ms)

TC REAL 0...ANY Anti-windup correction time (ms)

TF REAL 0...ANY Filter time (ms)

I_RST BOOL TRUE, FALSE Clear integrator

BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.

BALREF REAL ANY Value for the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1...ANY Task interval in milliseconds, default =10 ms
Outputs

Name Type Value Description

ouT REAL ANY Output signal

DEV REAL ANY Deviation (IN_FB - IN_REF)

OUT_HI | BOOL TRUE, FALSE TRUE if the high limit is reached.

OUT_LO | BOOL TRUE, FALSE TRUE if the low limit is reached.
Function

The differential equation describing the PID controller before saturation/limitation
that is implemented in this block is:

Outputpresar(t) = Up(t) + Ui(t) + Ud(t)
Where
OUT resat is the PID output before saturation
Up is the proportional term
Ui is the integral term with saturation correction
Ud is the derivative term
tis time.
The proportional term is:

Up(t) = Kpx DEV(t)

ABB drives standard library 215

Where:
Kp = P is the proportional gain of the PID controller
DEV(t) is the control deviation (see below).
The integral correction term is:
Ui(t) = 22« [DEV(1)dr+ Kc * (OUT(t) — OUTpresa(t))
Where:
Kc = integral antiwindup correction gain of the PID controller
OUT(t) = saturated/limited output signal of the controller
The antiwindup correction is thus taken to be part of the integral correction term.

K{: k (OUT(t) - OUj};resm‘,(t))

Windup is a phenomenon that is caused by the interaction of an error integral action
and saturations. All actuators have limitations: a motor has limited speed, a valve
cannot be more than fully opened or fully closed, and so on. For a control system with
a wide range of operating conditions, it is possible that the control variable reaches
the actuator limits. When this happens, the feedback loop is broken and the system
runs as an open loop because the actuator remains at its limit independently of the
process output. If a controller with the integrating action is used, the error continues
to beintegrated. This means that the integral term may become very large or, in other
words, it “winds up”. Then it is required that the error has the opposite sign for along
period before things return to normal. The consequence is that any controller with
the integral action may give large transients when the actuator saturates.

The derivative term is:

Ud(t) = Kp = Td 1550
Where:
Td is the derivative time constant.

The differential equations above are transformed into difference equations by
backward approximation.

The term is also filtered to make it resistant to high frequency noise.
G(s)=1/(1+sxTF)
Smooth transfer

The controller guarantees a smooth transfer in many special situations where, for
example, control parameters are suddenly changed. This means that in such abumpless
cycle the output retains its previous value. This is performed by resetting the integrator
term Ui to:

Ui(t) = OUT(t) — Up(t) — Ud(t)
Smooth functionality is not triggered in the first cycle by change in Ti, Tc, Tdand Tf.
Gain, time constants

The proportional gain Kp is a direct input parameter. The integrator, derivative and
antiwindup gains Ki, Kd and Kc must be calculated from the corresponding time
constants Ti, Td and Tc which are input parameters. The derivative gain is:

Kd=Td/T

216 ABB drives standard library

Where:

Tis the time level (execution cycle) of the block (in milliseconds as the time constants).
The integral gain is determined from Ti as follows:

Ki=0ifTi=0

Ki=T/Ti,if T<Ti

Ki=1,if T=2Ti>0

The anti-windup gain is determined similarly by Tc:
Kc=0,ifTc=0

Kc=T/Tc,if T<Tc

Kc=1,ifT=20

Thus the values of Kiand Kc are limited to the range 0 < Ki, Ti< 1.
If Tc =0, Kc =0 and anti-windup correction is disabled.

If Ti= 0, Ki= 0, the module does not update the integral term Ui, not even by the
anti-windup correction. Thus the integrator term retains its original value as long as
Ki remains zero.

The element stores the “current” set of gains Kp, Ki, Kcand Kd and time constants Tij,
Tcand Td, which it uses for calculating the control output(s).

Filtering

The derivative is filtered using a single-pole low pass filter. The following algorithm
is used to calculate the filtered value:

y(t) =

Where,

Kdx(Up(t)~Up(t—1))+Hxy(t-1)
1+4
T

Tis the time level (execution time) of the block (in milliseconds as the time constants).

If the filter time constant is left unassigned, it defaults to O which means that the
derivative is calculated without filtering. The time constant is limited to 8000000*time
level to avoid underflow.

Tracking

If BALis set to TRUE, the regulator goesinto the tracking mode and the output follows
the value at BALREF. If the value at BALREF exceeds the output signal limits (OLL and
OHL), the outputis set to the applicable limit value. The return from the tracking state
is bumpless.

Limitation function

The limitation function limits the output signal to the value range from OLL to OHL.
If the presaturated output exceeds OHL, OUTis set to OHL and OUT_HIis set to TRUE.
If the pre-saturated output decreases below OLL, OUTis set to OLL and OUT_LO'is
set to TRUE. Bumpless return from limitation is requested if and only if the anti-windup
correction is not in use, that is,. Ki= 0 or Kc= 0.

IF OLL < OHL, both OUT_Hland OUT_LO are set to TRUE and OUT retains the value
that it had in the execution cycle before the error occurred. After the error, the return
to the normal operation is smooth.

ABB drives standard library 217

Limiting
The output value is limited between OHL and OLL. If the actual value is more than the

upper limit, OUT_HIis set to TRUE. If the actual value decreases below the lower limit,
OUT_LOis set to TRUE.

Ramp

Summary

The RAMP is used to limit the rate of change of a signal. The output signal can be
limited with limit values specified at special inputs. The balancing function permits
the output signal to track an external reference.

RAMP
—IM OUTE
—STEP_UP OUT_HIE-
—STEFP_DN OUT_LOE
—SLOPE_UP
—SLOPE_DN
—{BAL
—{BALREF
—OHL
—OLL
—STOP
—TIMELEVEL
Connections
Inputs
Name Type Value Description
IN REAL ANY Input signal for the actual value
STEP_UP REAL 0...ANY The greatest allowed positive STEP change
STEP_DN REAL 0..ANY The greatest allowed negative STEP change
SLOPE_UP REAL 0..ANY Positive ramp for the output
SLOPE_DN REAL 0..ANY Negative ramp for the output
BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.
BALREF REAL ANY Balance reference
Input for the reference value in the tracking mode
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
STOP BOOL TRUE, FALSE Holds the output (stops ramping)
TIMELEVEL INT 1..ANY Task interval in milliseconds, default =10 ms

218 ABB drives standard library

Outputs
Name Type Value Description
ouT REAL ANY Output value
OUT_HI BOOL TRUE, FALSE TRUE if the high limit is reached
OuUT_LO BOOL TRUE, FALSE TRUE if the low limit is reached
Function

The main property of the RAMP element is that the output signal tracks the input
signal, while the input signal is not changed more than the value specified at the step
inputs. If the input signal change is more than the specified step change, the output
signalis first changed by STEP_UPor STEP_DN depending on the direction of change.
After the output signal is changed by SLOPE_UP or SLOPE_DN per second, until the
values at the input and output are equal. This means that if STEP_DN = STEP_UP =0,
a pure ramp function, that is, SLOPE/sec is obtained at the output. The greatest step
change allowed at the outputis specified by the STEP_UPand STEP_DNinputs for the
respective direction of change.

All parameters are specified as absolute values with the same unit as the input. Slopes
specify the change in units per second. Certain constants are pre-calculated to make
the execution time of the element as short as possible. The results are stored internally
inthe element. These constants are recalculated if the SLOPE_UPor SLOPE_DNvalues
are changed.

Calculation of the output

If Input (t) = Output (t-1), then Output (t) = Input (t)

If Input (t) > Output (t-1), then the change of the output value is limited as follows:

« Aninternal auxiliary variable VPOS follows the input value with the maximum rate
of change defined by SLOPE_UP. If the input value is greater than VPOS + STEP_UP,

the output value is limited to the value VPOS +STEP_UP. If the input value is less
than VPOS + STEP_UP, the output value is set to be equal to the input.

If SLOPE_UP = 0, the output value does not rise.
If Input (t) < Output (t-1), then the change of the Output value is limited as follows:

« Aninternal auxiliary variable VPOS follows the input value, with the maximum rate
of change defined by SLOPE_DN. If the input value is less than VPOS - STEP_DN,
the output valueis limited to the value VPOS - STEP_DN. If the input value is greater
than VPOS - STEP_DN, the output value is set to be equal to the input.

If SLOPE_DN =0, the output value does not lower no matter what the value of STEP_DN
and INis.

Tracking

If BAL is set to TRUE, the ramp immediately goes into the tracking mode and the
output is set to the value of BALREF. If the value at BALREF exceeds the output signal
limits, the output is set to the applicable limit value. During the tracking mode VPOS
= Qutput = BALREF. The return to the normal operation is done as if a unit step had
occurred at the input.

ABB drives standard library 219

Limiting
The limitation function limits the output signal to the values at the OHL inputs for the
upper limit and OLL for the lower limit. If the actual value exceeds the upper limit,

OUT_HlIis set to TRUE. If it falls below the lower limit, OUT_LOis set to TRUE. In the
limiting state VPOS(t) and OUT(t) are set to the applicable limit value.

If OLL < OHL, both OUT_HIland OUT_LO are set to TRUE and OUT retains the value
that it had in the execution cycle before the error occurred.

220

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type
designation and serial number of the unit in question. A listing of ABB sales, support and service
contacts can be found by navigating to www.abb.com/contact-centers.

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals

Your comments on our manuals are welcome. Navigate to forms.abb.com/form-26567.

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at
www.abb.com/drives/documents.

a3 (frozen)
PDF-A4
Created 2024-07-22, 11:09:39

https://new.abb.com/contact-centers
new.abb.com/service/training
https://forms.abb.com/form-26567?475096=3AUA0000127808%20H
www.abb.com/drives/documents

www.abb.com/drives

3AUA0000127808H

© Copyright 2024 ABB. All rights reserved.
Specifications subject to change without notice.

3AUA0000127808 Rev H (EN) 2024-07-22

	Table of contents
	Introduction
	Contents of this chapter
	Compatibility
	Target audience
	Safety instructions
	Purpose of the manual
	Terms and abbreviations
	Related documents
	Cybersecurity disclaimer
	Notes

	Getting started
	Contents of this chapter
	Settings up the programming environment

	Overview of drive programming
	Contents of this chapter
	Drive application programming
	System diagram
	Programming work cycle
	Special tasks
	Programming languages and modules
	Libraries
	Program execution
	DriveInterface
	ApplicationParametersandEvents

	Creating application program
	Contents of this chapter
	Creating a new project
	Updating project information
	Appending a new POU
	Writing a program code
	Continuous function chart (CFC) program
	Adding elements
	Setting the execution order of the elements
	Adding comments to a CFC program
	Declaring variables
	Adding inputs and outputs
	CFC program

	Preparing a project for download
	Establishing online connection to the drive
	Downloading the program to the drive
	Creating a boot project
	Opening a project archive
	Executing the program

	Features
	Contents of this chapter
	Device handling
	Viewing device information
	Upgrading or adding a new device
	Changing an existing device
	Viewing software updates

	Program organization units (POU)
	Data types
	Drive application programming license
	Application download options
	Removing the application from the target
	Retain variables
	Task configuration
	Adding tasks
	Monitoring tasks

	Uploading and downloading source code
	Adding symbol configuration
	Debugging and online changes
	Safe debugging

	Reset options
	Memory limits
	CPU limitation
	Application loading package
	Loading application to a drive with Drive Composer - Drive firmware loader

	DriveInterface
	Contents of this chapter
	Implementing DriveInterface
	Selecting the parameter set
	Viewing parameter mapping report
	Mapping example

	Updating drive parameters from installed device
	Updating drive parameters from parameters file
	Setting parameter view

	Application parameters and events
	Contents of this chapter
	Application parameters and events
	Parameter manager
	Creating parameter groups
	Importing and exporting parameters
	Creating parameters
	Parameter settings
	Scaling
	Tool/Fieldbus 32-bit interface
	Fieldbus 16-bit interface
	Testing for scaling

	Linking parameter to application code
	Parameter types
	Parameter families
	Selection lists
	Units
	Application events

	Configuring extension I/O modules
	Contents of this chapter
	Configuring extension I/O module
	FEA-03
	Node numbers
	Selecting input signal type
	FDCO

	Extension I/O in drive application program
	Adding F-series module
	Setting module data
	Adding node number
	I/O mapping variables
	Using F-series I/O from the application

	Adding bus fault control
	FIO-01 module data
	FIO-01 channel descriptions

	FIO-11 module data
	FIO-11 channel descriptions

	FAIO-01 module data
	FAIO-01 channel descriptions

	FDIO-01 module data
	FDIO-01 channel descriptions

	Fault codes

	Libraries
	Contents of this chapter
	Library types
	Adding a library to the project
	Creating a new library
	Installing a new library
	Managing library versions
	Configuring a library with WIBU license

	Practical examples and tips
	Contents of this chapter
	Solving communication problems
	Solving other problems

	Unsupported features
	Contents of this chapter
	Unsupported features

	ABB drives system library
	Contents of this chapter
	Overview
	Function blocks of the system library
	Event function blocks
	EVENT
	Summary
	Connections
	Description

	ReadEventLog
	Summary
	Connections
	Description

	Parameter change function blocks
	PAR_UNIT_SEL
	Summary
	Connections
	Description

	PAR_SCALE_CHG
	Summary
	Connections
	Description
	External 32-bit scaling
	External 16-bit scaling

	Parameter limit change
	PAR_LIM_CHG_DINT
	Summary
	Connections
	Description

	PAR_LIM_CHG_REAL
	Summary
	Connections
	Description

	PAR_LIM_CHG_UDINT
	Summary
	Connections
	Description

	Parameter default value change
	PAR_DEF_CHG_DINT
	Summary
	Connections
	Description

	PAR_DEF_CHG_REAL
	Summary
	Connections
	Description

	PAR_DEF_CHG_UDINT
	Summary
	Connections
	Description

	Parameter decimal display
	PAR_DISP_DEC
	Summary
	Connections
	Description

	PAR_REFRESH
	Summary
	Connections
	Description

	Parameter protection
	PAR_PROT
	Summary
	Connections
	Description

	PAR_GRP_PROT
	Summary
	Connections
	Description

	Parameter read function blocks
	ParReadBit
	Summary
	Connections
	Description

	ParRead_INT
	Summary
	Connections
	Description

	ParRead_DINT
	Summary
	Connections
	Description

	ParRead_REAL
	Summary
	Connections
	Description

	ParRead_UDINT
	Summary
	Connections
	Description

	Parameter write function blocks
	ParWriteBit
	Summary
	Connections
	Description

	ParWrite_DINT
	Summary
	Connections
	Description

	ParWrite_INT
	Summary
	Connections
	Description

	ParWrite_REAL
	Summary
	Connections
	Description

	ParWrite_UDINT
	Summary
	Connections
	Description

	Pointer parameter read function block
	ParRead_BitPTR
	Summary
	Connections
	Description

	ParRead_ValPTR_DINT
	Summary
	Connections
	Description

	ParRead_ValPTR_REAL
	Summary
	Connections
	Description

	ParRead_ValPTR_UDINT
	Summary
	Connections
	Description

	GetPtrParConf
	Summary
	Connections
	Description

	Set pointer parameter to IEC variable function blocks
	ParSet_BitPTR_IEC
	Summary
	Connections
	Description

	ParSet_ValPTR_IEC_DINT
	Summary
	Connections
	Description

	ParSet_ValPTR_IEC_REAL
	Summary
	Connections
	Description

	ParSet_ValPTR_IEC_UDINT
	Summary
	Connections
	Description

	Set pointer parameter to parameter function blocks
	ParSet_BitPTR_Par
	Summary
	Connections
	Description

	ParSet_ValPTR_Par
	Summary
	Connections
	Description

	System time function blocks
	SYS_TIME
	Summary
	Connections
	Description

	SYS_TIME_UDINT
	Summary
	Connections
	Description

	Task time level function block
	UsedTimeLevel
	Summary
	Connections
	Description

	Read device serial number function block
	Read_DriveSerialNumber
	Summary
	Connections
	Description

	Error codes

	ABB D2D function blocks
	Contents of this chapter
	Introduction to ABB D2D function blocks
	D2D communication library
	D2D block error codes

	Data read/write blocks
	DS_ReadLocal
	Summary
	Connections
	Description

	DS_WriteLocal
	Summary
	Connections
	Description

	D2D communication blocks
	General
	D2D_TRA
	Summary
	Connections
	Description

	D2D_REC
	Summary
	Connections
	Description

	D2D_TRA_REC
	Summary
	Connections
	Description

	D2D_TRA_MC
	Summary
	Connections
	Description

	D2D configuration blocks
	D2D_Conf
	Summary
	Connections
	Description
	Master use
	Follower use

	D2D_Conf_Token
	Summary
	Connections
	Description

	D2D_Master_State
	Summary
	Connections
	Description

	Examples: D2D blocks
	Example 1: D2D_TRA / D2D_REC blocks
	Example 2: Token send configuration blocks

	ABB drives standard library
	Contents of this chapter
	Overview
	Basic functions
	BGET
	Summary
	Connections
	Function

	BSET
	Summary
	Connections
	Function

	DEMUX
	Summary
	Connections
	Function

	DEMUXM
	Summary
	Connections
	Function

	MUX
	Summary
	Connections
	Function

	MUXM
	Summary
	Connections
	Function

	PACK
	Summary
	Connections
	Function

	SR_D
	Summary
	Connections
	Function
	Truth table

	SWITCH
	Summary
	Connections
	Function

	SWITCHC
	Summary
	Connections
	Function

	UNPACK
	Summary
	Connections
	Function

	Special functions
	Filter
	Summary
	Connections
	Function

	Function generator
	Summary
	Connections
	Function
	Interpolation
	Balancing
	Limiting

	Integrator
	Summary
	Connections
	Function
	Clearing
	Tracking
	Limiting

	Lead lag
	Summary
	Connections
	Function
	Balancing
	Reset

	Motor potentiometer
	Summary
	Connections
	Function
	Clearing
	Tracking
	Limiting

	PID
	Summary
	Connections
	Function
	Smooth transfer
	Filtering
	Tracking
	Limitation function
	Limiting

	Ramp
	Summary
	Connections
	Function
	Tracking
	Limiting

	Further information

