ABB INDUSTRIAL DRIVES

Drive application programming (IEC 61131-3)
Programming manual

Drive application programming (IEC
61131-3)

Programming manual

Table of contents

© 2019 ABB Oy. All Rights Reserved. 3AUA0000127808 Rev F
EN
EFFECTIVE: 2019-03-07

Table of contents 5

Table of contents

1 Introduction

Contents of this Chapter ... e 15
CompPatibility ... e 15
Target QUAIENCE ...t 15
Safety INSIIUCHONS ... e 16
Purpose of the manual ... 16
Terms and abbreviations e 16
Related dOCUMENTES ... e 17
Cybersecurity disClaimer e 17

I (= 18

2 Getting started

Contents of this Chapter ... e 19
Settings up the programming environment 19

3 Overview of drive programming

Contents of this Chapter ... e 21
Drive application programmingooiiiiiiioi i e 21
SYS M Iagram ... e 22
Programming WOrK CYCIE ... e 23
SPECIAl taSKS .. oo 23
Programming languages and modules ...t 23
I o 7= 3 = 24
Program EXECULION e 24
DrVEINIEITACE ... 24
ApplicationParametersandEvents ... 24

4 Creating application program

Contents of this Chapter ... 25
Creating @ NeW PrOjJECT it e 25
Updating project information 27
Appending @ NeW POU ... 28
WIiting @ program COOEcoiiii ittt ettt et es 30
Continuous function chart (CFC) programooeiiiiiii i 30
Adding ElemENtS ... 31
Setting the execution order of the elements ..., 33
Adding comments to @ CFC programo.ueiiiiiii i 33
Declaring variables ... 34
Adding inputs and OUIPULS ..o 35
L0 O o o Yo = 1 o ¢ 35
Preparing a project for download 36
Establishing online connectiontothe drive ... 36
Downloading the program tothe drive ... 39
Creating @ boot PrOJECT ... e 40

Executing the program 41

6 Table of contents

5 Features

Contents of this Chapter ... e 43
Device handlingoooin e 43
Viewing device information ... e 44
Upgrading or adding @ NeW deVICEuiiiiiiiiiiii i 45
Changing an existing devViCeooiiiiiiii 45
Viewing software updatesoooiiiii i 45
Program organization units (POU) ..o e 46
DAl a Y P e 47
Drive application programming liCENSE ...t 47
Application download OpliONS ... 48
Removing the application fromthetargetccooiiii 49
Retain variables ... 50
Task CoNfigUIation ... 51
AdAINg tasKS e 51
MONItOFING taSKS ...\ .t s 53
Uploading and downloading SOUIrce COAeuiiiiiiiiiii e 54
Adding symbol configuration ... 54
Debugging and online Changesooviiiiiiii 55
Safe debUGGING ..o 55
RESEE OPlIONS .. 56
MeEMOrY IMItS ..o e 56
CPU IMitation ... e e e e 57
Application loading Packageooviiiiiiiii e 58
Downloading loading package to adriveccoooiiiiiiiiiiiiiiiec 59

6 Drivelnterface

Contents of this Chapter ... e 63
Implementing Drivelnterface ... 63
Selecting the parameter set ... 64
Viewing parameter mapping rePoOrt 65

MappPIiNg EXaMPIE 65
Updating drive parameters from installed device ..., 66
Updating drive parameters from parametersfile ... 67
Setting Parameter VIEW ... 67

7 Application parameters and events

Contents of this Chapter ... e 69
Application parameters and eVents ...t 69
Parameter MaNaAgEr 69
Creating parameter GrOUPSoiiii ittt et 70
Importing and exporting Parametersuuiii e, 70
Creating ParamEtersS 71
Parameter settingsooooiiiii 72
SCaAlING . o 74
Tool/Fieldbus 32-bitinterface ... 74
Fieldbus 16-bitinterfaceo 74
Testing for SCaliNg ... 74
Linking parameter to application CoOdeoviiiiiiiiiii e 74
Param e el tY DS . o e 75

Parameter familiesooo o e 76

Table of contents 7

SeleCtioN liStS ... 77
Uit L e e 78
APPliCatioN BVENTS s 79

8 Configuring extension I/O modules

Contents of this Chapter ... e 81
Configuring extension /O module ... 81
FE A e e 81
NOdE NUMDEIS .. e 83
Selecting iNnput signal tyPeoiiii e 84
D C 0 it e 85
Extension 1/O in drive application program ... 86
Adding F-series module ... e 86
Setting module datao e 88
Adding node NUMDET o e 88

/O mapping variableso e 88
Using F-series 1/0 from the application ... 88
Adding bus fault control ... 90
FIO-01 Module data ... e e 91
FIO-01 Channel descriptionscooiiiiii i e 91
FIO-11 Module data ..o e 93
FIO-11 Channel desCriptionsooiiiiiii i i 93
FAIO-01 Module dataooiii e e 96
FAIO-01 Channel descriptionsoiiiiiiiii e 96
Fault CoOes ... 98

9 Libraries

Contents of this Chapter ... e 99
] o = 1Y/ 1 1= T 99
Adding alibrarytothe project ... 100
Creating @ NewW lIDrary ... 102
Installing @ NEW lIDrary ... 104
Managing library VErsiOoNScoooiiiiii 105
Configuring a library with WIBU license ...t 106

10 Practical examples and tips

Contents of this Chapter ... e 107
Solving communication problems ...t 107
SoIVINg Other ProbIEmMS e 108

11 Unsupported features

Contents of this Chapter ... e 109
Unsupported featureso 109
12 ABB drives system library

Contents of this Chapter ... e 111
L= 1= 111
Function blocks of the system library ... 112

8 Table of contents

Event function bloCKso 114
e e O 114
UMM AN ..ttt et et ettt e e 114
CONNECHONS ..\ttt e 114
)T o114 0] o 114
ReadEVENTLOG e 116

S T3] 0= 116
CONNECHIONS ..t e 116

T2 o140 o 117
Parameter change function blockso 118
PAR UNIT _SE L .ottt e e e e e e e aaeeens 118
T3 0= 118
CONNECHIONS .. e 118
DL 014] o 118

PAR _SCALE CHG .. e e e e 119
UMM AN ..ttt e e e 119
CONNECHIONS ..t 119

DT o140 o 119
External 32-bit scaling ... 120
External 16-bit scaling ..o 120
Parameter limit Change ... e 121
PAR _LIM _CHG _DINT Lot et 121
SUMIMIAIY . e e e e 121
CONNECHIONS .t e 121

0T o140 o 121
PAR_LIM_CHG _REAL ..o et 122
SUMIMIAIY .ttt et et ettt ettt e, 122
CONNECHIONS ..t e 122
DS I Pt ON ... s 122

PAR _LIM _CHG _UDINT Lttt e e e et aeee e 123
SUMIMIAIY .t et ettt et e ettt e 123
CONNECHIONS .t e 123

)T o140 o 123
Parameter default value change i 124
PAR _DEF _CHG _DINT ittt e e et et aee e 124
SUMIMIANY .ttt e e ettt et e 124
CONNECHIONS .t e 124
DS I Pt ON ... e 124
PAR_DEF_CHG _REAL ..ot e e e ee e 125
18] 1] 1 0= 1Y 125
CONNECHIONS ..ttt 125
07T o140 o 125
PAR_DEF_CHG _UDINT ...ttt e et aee e ans 126
10011 0= 1Y 126
CONNECHIONS .t e 126
07T o140 o 126
Parameter decimal displaycoooiiiiiiii 127
PAR _DISP _DEC ... e 127
18] 00] 1 0= TV 127
CONNECHIONS .t e 127

D72 o140 o 127

Table of contents 9

PAR_REFRESH ... e e e 128
UMM Y .t ettt e e e 128
(0701 0] g T=T o1 1] o I 128
DL 4] o140 o 128

Parameter proteCtion ... 129

PAR P RO .o 129
UMM AN .t et e 129
(0707 01 g T=Y o1 1 o] o I 129
DL 4] o140 o 129

PAR G RP P RO e 130
UMY .ttt e 130
(0701 01 g 1= o1 1 o] o 1< 130
DL] o140 o 130

Parameter read function DIOCKS ... e 131

ParReadBito 131
UMM AN .ot e ettt e e 131
(0701 01 g L= o1 1 o] o 1< T 131
DL] o140 o 131

ParRead INT ..o 132
SUMIMIAIY e e e e 132
CONNECHIONS ..ttt e e 132
DL] o140 o 132

ParRead DINT ..o 133
SUMIMIAIY e e e e e e 133
(0701 01 g T=Y o1 1 o] o 1< 133
DL] o140 o 133

ParRead REAL ... 134
18] 1] 0= Y 134
(0701 01 g L= o1 1 o] o 1< 134
DL] o140 o 134

ParRead _UDINT ... e ettt e 135
18] 1] 0= Y 135
(0701 0] g =11 o] o 1< 135
DL] o140 o 135

Parameter write function bIOCKSc.ooiiiiiiii e 136

ParWriteBit 136
18] 1] 0= Y 136
(0701 01 g L= o1 1o] o 1< 136
DL] o140 o 136

ParVrite DINT oo 137
SUMIMIAIY e e e e e et 137
(0707 01 g L= o1 1 o] o 1< 137
DL] o140 o 137

ParWWrite INT oo 138
18] 1] 0= Y 138
(0701 01 g L= o1 1 o] o 1< 138
DS I Pt ON ... 138

ParWrite REAL ... 139
18] 1] 0= Y 139
(0701 01 g L= o1 1 o] o 1< 139

DL] o140 o 139

10 Table of contents

ParWWrite _UDINT Lo e e ettt e e e 140
T3 0= 140
(0] 01 g T3 o] o 1< 140
DT 014 0] o 140

Pointer parameter read function block ... 141

ParRead _BitP TR ... e 141
S T3] 0= 141
CONNECHIONS ..t e 141
T2 o140 o 141

ParRead_ValPTR _DINT ... e e 142
ST 0= 142
CONNECHIONS ...t 142
L2 o140 o 142

ParRead_ValPTR _REAL ... e 143
UMM AN ..ttt et e 143
CONNECHIONS ..t 143
T2 o140 o 143

ParRead_ValPTR _UDINT ... e e aee e 144
SUMIMIANY .t e et 144
CONNECHIONS .t 144
DT o140 o 144

GetPtr P arC ONT ... e 145
SUMIMIAIY . e e e e 145
CONNECHIONS .t e 145
0T o140 o 145

Set pointer parameter to IEC variable function blocks ... 147

ParSet BitPTR _IEC ... e e 147
SUMIMIANY .ttt e ettt e e e e 147
CONNECHIONS ..t e 147
0T o140 o 147

ParSet ValPTR _IEC DINT ... e e 148
101011 0= TV 148
CONNECHIONS .t e 148
)T o140 o 148

ParSet ValPTR_IEC _REAL ... e 149
SUMIMIANY .ttt e e ettt et e 149
CONNECHIONS .t e 149
DS I Pt ON ... e 149

ParSet_ValPTR_IEC _UDINT ... e e e e 150
18] 1] 1 0= 1Y 150
CONNECHIONS ..ttt 150
07T o140 o 150

Set pointer parameter to parameter function blocks ...l 151

ParSet BitPTR _Paro 151
100110 = Y 151
CONNECHIONS .t 151
)72 o140 o 151

ParSet ValPTR _Paro e 152
18] 00] 1 0= TV 152
CONNECHIONS .t e 152

D72 o140 o 152

Table of contents 11

System time function BIOCKS ... 153
SY S TIME .. e e 153
SUMIMIAIY .. e 153

(970) 0] aT=To3 1] o 10 153
DS I P ON ... 153

SYS TIME UDINT .. e e e e 155
UMM AN .t et e 155

(070) 0] aT=To7 1] o TSR 155
DL 4] o140 o 155

Task time level function DIOCKoooiiini e 157
USEATIMELEVEL ... e e 157
UMM AN .t et e e 157

(070) o] aT=To3 1 0] o TP 157
DS I P ON ... 157

=t o) 7o Yo [= 158

13 ABB D2D function blocks

Contents of this Chapter ... e 159
Introduction to ABB D2D function bloCKScc.oooiiiiiiii e 159
D2D communication lIbrary 160
D2D bloCK error COdes ... 160
Dataread/write BIOCKS ... 161
DS ReadloCaluviiiiii i 161
SUMIMIAIY e e et e e 161

(0701 01 g T=T o1 1 o] o 1< 161
DS I Pt ON 161

DS WrELOCal ..o 162
18] 1] 0= Y 162

(0701 01 g T=Y o1 1 o] o 1< 162
D72] o140 o 162

D2D communication bIOCKS ... 163
BNl .. 163
D2 TR e e 163
SUMIMIAIY e e ettt 163

(0701 01 g =11 o] o 1< 163
DL] o140 o 164

D2 RE C ..t e e 165
18] 1] 0= Y 165

(0701 01 g L= o1 1o] o 1< 165
DL] o140 o 165

D2D TRA REC ..o e e e 167
SUMIMIAIY e e e e e et 167

(0707 01 g L= o1 1 o] o 1< 167
DL] o140 o 167

D2D TRA M ..o e e e e 169
18] 1] 0= Y 169

(0701 01 g L= o1 1 o] o 1< 169
DL] o140 o 169

D2D configuration bIoCKs ... 171
19124 15 O o | P 171
1011 0= Y 171

CONNECHIONS ..ot e e 171

12 Table of contents

LT o114 0] o 171
=TS 1= T 1= 171
FOlOWET USE ... ettt 172
D2D CoNf TOKEN ..ttt e 173
S T3 4= 173
CONNECHIONS ..t e 173
DS I Pt ON ...t s 173
D2D Master Stateo 175
UMM AN .ttt et ettt e e 175
CONNEC IONS ..ttt e 175
L=< 014 0] o 175
EXamples: D2D DIOCKS ...ooviiiiiiiii e 176
Example 1: D2D_TRA /D2D_REC bIOCKScoiiiiiiiiie i 176
Example 2: Token send configuration blocks ... 176

14 ABB drives standard library

Contents of this Chapter ... e 179
L@ 17T V11 179
BasiC fUNCHIONS ... 180
B T i s 180
SUMIMIAIY .ttt et e e 180
CONNEBCHIONS ..ot e e s 180
FUNCHON e e e i 180
] = 181
SUMIMIANY . et 181
CONNEBCHIONS .. e e s 181
FUNCHON e e e 181
DEIMU X i 182
SUMIMIANY .ttt e ettt e e e e 182
CONNEBCHIONS ..t e e s 182
FUNCHON o e e et 182
DEMUXIM ... e e e e 183
101011 0= TV 183
CONNEBCHIONS .. e e s 183
FUNCHON e e e 183
MU XK L e e 184
SUMIMIANY .ttt e e ettt et e 184
(970) 0 aT=To3 1] o 10 184
FUNCHON . et 184
MU XM e e e 185
18] 1] 1 0= 1Y 185
(070) 8] aT=To3 1] o 1= 185
FUNCHON . e e e 185

P A K e 186
10011 0= 1Y 186
(070) 8 o T=To3 1] o 1= 186
FUNCHON o e et 186
SR D i 187
SUMIMIAIY .ttt et ettt et e et e 187
CONNEBCHIONS .. e 187
FUNCHON L e e 187

TrUth GADIE ..o 187

Table of contents 13

S VT CH e e 188
UMM Y .t ettt e e e 188
(0701 0] g T=T o1 1] o I 188
FUNCH 0N L. e 188

SV T CH C .. e e 189
UMM AN .ttt e et e 189
(0701 01 g L= o1 1 o] o 1< 189
FUNCH 0N L. s 189

UN P A CK Lo e 190
UMM AN .t et 190
(0701 01 g T=Y o1 1 o] o 1< 190
FUNCH 0N L. e, 190

SpeCial fUNCHONS ... e 191

DrIVE CONIIOL .., 191
UMM AN .t e e et 191
(0701 01 g L= o1 1 o] o 1< 191
FUNCH ON L. s 193
0 T 193

(T 193
SUMIMIAIY e e e e 193
CONNECHIONS ..ttt e e 193
FUNCH ON L. e 194

FUNCLON geNerator e 194
SUMIMIAIY e e e e e e 194
(0701 01 g T=Y o1 1 o] o 1< 195
FUNCH 0N L. s 195
Interpolationo 195
BalanCing ..o 196
0 T 196

=Y 0= o 196
18] 1] 0= Y 196
(0707 01 g L= o1 1 o] o 1< 197
FUNCH 0N L. e 197
ClaNNG e 198
TraCKING oo 198
0 T 198

== T - T 198
18] 1] 0= Y 198
(0707 01 g =Y o1 1 o] o 1< 198
FUNCH 0N L. e 199
BalanCing ... 199
RSB i e 199

Motor potentiometer 200
18] 1] 0= Y 200
(0701 0] g 1= o1 1 o] o 1< 200
FUNCH 0N L. s 200
ClaNING 201
TraCKING oo 201
0 T 201

P e 201
18]] 0= Y 201

CONNECHIONS ..ottt e e 201

14 Table of contents

FUNCHON e e e 202
SMOOth traNS Ol ..o 203
I e NG .. 204
TrACKING e 204
Limitation fUNCHON ... 204
T 71 (T 205
RaAMD o 205
T3 4= 205
CONNEBCHIONS .. e e e s 205
FUNCHON e et 206
TrACKING et 206
001 T R 207
Further information

Introduction 15

Introduction

Contents of this chapter

This chapter describes the contents of the manual. It also contains information on the
compatibility, safety and intended audience

Compatibility

This manual applies to the ABB drives equipped with the application programming
functionality. For example, ABB ACS880 and DCX880 industrial drives can be ordered with
the application programming functionality. The drive must be equipped with N8010 Application
programming license on ZMU-02.

This manual is compatible with the following product releases:
* Drive Application Builder 1.0
* Drive composer pro 2.2 or later

For more details of compatibility information, refer the corresponding ACS880 or DCX880
drive software release notes or contact your ABB representative.

Target audience

This manual is intended for a personnel performing drive application programming or for
understanding the programming environment capabilities. The reader of the manual is
expected to have basic knowledge of the drive technology and programmable devices (drive
and PC) and programming methods.

16 Introduction

Safety instructions

Follow all safety instructions delivered with the drive.

+ Read the complete safety instructions before you load and execute the application
program on the drive or modify the drive parameters. The complete safety instructions
are delivered with the drive as either part of the hardware manual, or, in the case of

ACS880 multidrives, as a separate document.

* Read the firmware function-specific warnings and notes before changing parameter
values. These warnings and notes are included in the parameter descriptions presented

in chapter Parameters of the firmware manual.

WARNING!

Ignoring the following instruction can cause physical injury or damage to the
equipment.

Do not make changes to drive in the online mode or download programs while the

drive is running to avoid damages to the drive.

Purpose of the manual

This manual gives basic instructions on the drive-based application programming using
Drive Application Builder programming tool. The programming tool is the international IEC
61131-3 programming standard. The online help of Drive Application Builder contains more

detailed information of the IEC languages, programming methods, editors and tool

commands.

Terms and abbreviations

Term Description

ACS-AP-x Assistant control panel

BCU Type of control unit

DDCS Distributed drives communication system protocol
DI Digital input

FAIO-01 Optional analog I/0O extension module

FDCO-01 DDCS communication module with two pairs of 10 Mbit/s DDCS channels
FDIO-01 Optional digital I/O extension module

F10-01 Optional digital /0 extension module

FI1O-11 Optional analog I/0O extension module

ZCU Type of control unit

Introduction 17

Related documents

Name Code

Drive manuals and guides

Drive application programming manual (IEC 61131-3) 3AUA0000127808
ACS880 primary control program firmware manual 3AUA0000085967
Option manuals and guides

FDCO-01/02 DDCS communication modules user’s manual 3AUA0000114058
FEA-03 F-series extension adapter user’s manual 3AUA0000115811
FAIO-01 analog I/0 extension module user’s manual 3AUA0000124968
Digital 1/0 Extension FIO-01 user’s manual 3AFE68784921
Analog I/0 Extension FIO-11 user’s manual 3AFE68784930
Tool and maintenance manuals

Drive composer PC tool user's manual 3AUA0000094606

Cybersecurity disclaimer

This product is designed to be connected to and to communicate information and data via
a network interface. It is your sole responsibility to provide and continuously ensure a secure
connection between the product and your network or any other network (as the case may
be). You shall establish and maintain any appropriate measures (such as but not limited to
the installation of firewalls, application of authentication measures, encryption of data,
installation of anti-virus programs, etc.) to protect the product, the network, its system and
the interface against any kind of security breaches, unauthorized access, interference,
intrusion, leakage and/or theft of data or information. ABB Ltd and its affiliates are not liable
for damages and/or losses related to such security breaches, any unauthorized access,
interference, intrusion, leakage and/or theft of data or information.

Although ABB provides functionality testing on the products and updates that we release,
you should institute your own testing program for any product updates or other major system
updates (to include but not limited to code changes, configuration file changes, third party
software updates or patches, hardware exchanges, etc.) to ensure that the security measures
that you have implemented have not been compromised and system functionality in your
environment is as expected. This also applies to the operating system. Security measures
(such as but not limited to the installation of latest patches, installation of firewalls, application
of authentication measures, installation of anti-virus programs, etc.) are in your responsibility.
You have to be aware that operating systems provide a considerable number of open ports
that should be monitored carefully for any threats.

18 Introduction

Notes

* To support the main functionality of Drive Application Builder, open the specific port,

services and software in your computer. The below table shows the required list of ports,
services and software.

443 https WIBU license protection, User personal data storage | ABBDrivesLicenseManager
443 https Installation file download DriveApplicationBuilderSetup
80 http Transfer application files to target and to debug DriveDA

device
443 https SVN integration DriveApplicationBuilder
22350 | TCP/UDP |Codemeter service Codemeter
22352 | TCP/UDP | Codemeter service Codemeter

ABB recommends to use secured protocols on connecting to external interfaces. For
example, use secured HTTP (HTTPS) connection while using SVN functionality.

Getting started 19

Getting started

Contents of this chapter

This chapter provides information on how to setup a program and how to upgrade, change
and view device information in Drive Application Builder.

Settings up the programming environment

The following software installations are required for programming ACS880 and DCX880
drives.

» ACS880 drive or DCX880 converter with Drive application programming license (N8010)
* Drive Application Builder 1.0

* ACS-AP-x control panel and micro USB cable

* Drive composer pro 2.2 or later

For details of the version, refer the corresponding ACS880 or DCX880 drive software release
notes or contact your ABB representative.

The Drive composer pro enables setting and monitoring of the drive parameters and signals.
The control panel acts as a USB/RS485 converter between Drive Application Builder, Drive
composer pro and the drive.

To setup ACS880 or DCX880 drive programming environment follow the below pre-requisites

and installation steps.

Pre-requisites:

* The Drive Application Builder supports Windows 7 and Windows 10 (32-bit and 64-bit
versions) operating systems.

* You must have administrator user rights to install Drive Application Builder.

Installation steps:

1. Install Drive composer pro to enable communication with the target drive. For more
details, see Drive composer user’s manual (3AUA0000094606 [English]).

20 Getting started

2. In Drive composer pro, go to System info — Products/Licenses, check that the
ACS880 or DCX880 drive has an active IEC programming license and the drive firmware
version is correct.

For details of version, refer the corresponding ACS880 or DCX880 drive software release
notes or contact your ABB representative.

Install Drive Application Builder according to the instruction guide included in the installation
media of Drive Application Builder. All drive application programming related components
are automatically installed.

%5 ABB Drive Application Builder 1.0.0 Build 104 - Selection Page

Drive Application Builder ARD

; ; . D
Engineering Productivity
Select twpe af installation: Description | Release Notes I Packages
IProfessional Edition j Drive application programming ﬂ

Inztall Software Packages for:

The application programming tool of ABB ACS250 and

= = [w] ABB Drive Application Builder DOXESD drives

=] ww[¥] Professional Tool Chain
sy [¥] Professional Version Control
=[] Professional Static Analysis
= =[] Drives

B[Progrmmmable Drive This software package contains the following main components
- and features:

® programming drive in CODESYS V3 environment based on IEC 61131-3
standard

+ create additive parameters and events to drive user interface

» download, monitor and debug target over ABB Drives tools communication

Motice: Requires installation of Drive composer pro 1.6 or laters

L]

=l Downloaded «F Up to date

PBrevious | Download and Instal Cancel |

To allow parallel communication with Drive Application Builder and Drive composer pro,
follow these steps:

1. In the main menu of Drive composer pro, click View and select Settings.
2. Inthe Settings window, enable Share connection check-box and click Save to connect
with Drive Application Builder.

After configuring the settings, restart Drive composer pro. Drive composer now connects to
the drive and allows sharing the connection with Drive Application Builder.

Overview of drive programming 21

Overview of drive programming

Contents of this chapter

This chapter provides an overview of ACS880 and DCX880 drive programming environment
and a typical work cycle of drive application programming.

Drive application programming

You can order ABB industrial drives ACS880 and DCX880 with the application programming
functionality. The function allows you to add your own program code to the drive using the
Drive Application Builder programming tool. The programming method and languages are
based on the IEC 61131-3 programming standard.

With the drive application programming, you can create application specific features on top
of the drive firmware functionality. You can utilize the standard and extension 1/0O and
communication interfaces of the drive along with the appropriate firmware signals. The
program is executed in parallel with the drive control tasks using the same hardware
resources.

In addition, you can create your own parameters and events (faults and warnings) that are
visible on the ACS-AP-x control panel and in the Drive composer pro/entry commissioning
tools.

Note:

For using Drive Application Builder online with the drive, enable the drive application
programming license in the target drive. See chapter Creating application program (page 25).

22 Overview of drive programming

System diagram

The following simplified system diagram shows the application programming environment

in the same control unit as the drive firmware.

ZCU-x0x or BCU-x0x control unit

e Fw paramelers} [FW events
IEC User System Info
fua parameters J | User events

libraries

A I D
Mpp

Drrive Application Builder

S|

&7
K]

Internal

o

nel

ABE Drive
COMpasar pro

FW parameters
(YO, drive control)

D2D communication, Ext /0, etc |

ACS880 firmware

The following list describes the main components of application programming.

Drive control unit
* Run-time system (RTS) executes the application program.

+ Drivelnterface allows input/output mapping between the application program and drive

firmware parameters.

+ System function library enables access to the drive system services
(parameters/events/drive-to-drive communication, extension 1/O).

* User made parameters.

* User made events (fault, warnings).

+ Drive System info includes version information of the application program.
* Drive firmware parameters with I/O controls.

« D2D function blocks enable drive to drive communication, I/O extension modules, and

so on for application programming.

Drive memory unit

* Creates a permanent version of the application program (Boot application).

* Retains values of the application program variables.

+ Consists of application source code (Note that the size of the memory is limited).

* Includes symbol and address information of the application program variables for
monitoring purposes.

PC tool programs

» Drive Application Builder for application program development and online operations.

» Drive composer pro for drive parameter, signal, event log monitoring and settings.
* Application program function libraries (for example, ABB standard library).

Overview of drive programming 23

The USB/ACS-AP-x control panel enables communication between the Drive Application
Builder, Drive composer pro and the drive.

Programming work cycle

The following steps describe a typical work cycle of the drive application programming task.

1.

N o ok

In the Devices tree, do the following:

* create a new project

* add objects

» define the target and first program module.

In the Drivelnterface object, define the interface to drive firmware parameters (1/0O
access, drive control).

In Devices tree, define user parameters and events (ApplicationParametersandEvents)
module.

Develop the program structure and coding program units.
Define the program execution task configuration editor.
Compile and load the code using Build menu.

In the Online menu, do the following:

» Select Create boot application if new parameters, mappings, events or task
configuration are added to the program.

+ Debug the program code (stepping, forcing variables and breakpoints).

In the View menu, select Watch window to monitor program variables in Drive Application
Builder and Drive composer pro.

Repeat steps 2 to 8 to test the program.

Special tasks

The following special tasks are part of the drive application programming tasks.

1.

4.

Using Online menu, save or restore the source code to the permanent memory of a
drive.

Save the drive IEC symbol data to the permanent memory of a drive from the Devices
tree using Add Symbol configuration object to the tree option.

In the Application properties window or Project information, create a name and version
of the application.

In the Online menu, select Reset origin to remove the application from the target.

Programming languages and modules

The programming environment supports programming languages as specified in the IEC
61131-3 standard with some useful extensions.

The following programming languages are supported:

Ladder diagram (LD)

Function block diagram (FBD)
Structured text (ST)

Instruction list (IL)

Sequential function chart (SFC)

24 Overview of drive programming

* Continuous function chart (CFC), normal and page-oriented CFC editor

A program can be composed of multiple modules like functions, function blocks and programs.
Each module can be implemented independently with the above mentioned languages.
Each language has its own dedicated editors.

For more information on programming languages, see chapter Features (page 43).

Libraries

The program modules can be implemented in the projects or imported into libraries. A library
manager is used to install and access the libraries.

The two main types of libraries are:

* Local libraries (IEC language source code, for example,
AS1LB_Standard_ACS880_V3_5)

* External libraries (external implementation and source code, for example,
AY1LB_System_ACS880_V3_5)

Local libraries include source code or can be compiled. If the library is compiled, source
code is not included in the library.

For more information, see chapter Libraries (page 99).

Program execution

The program is executed on the same central processing unit (CPU) as the other drive
control tasks. In real time applications, programs are typically executed periodically as cyclic
tasks. The programmer can define the cyclic task interval. For more information, see chapter
Features (page 43).

Drivelnterface

The Drivelnterface object enables input and output mapping between application program
and drive firmware using drive firmware parameters used in the application program. The
list of parameters may be different for each drive firmware versions. For more details on
implementing the Drivelnterface and updating parameter list, see chapter

Drivelnterface (page 63).

ApplicationParametersandEvents

The ApplicationParameterandEvents Manager (APEM) object allows creating application
parameter groups, parameters, parameter types, parameter families, units and application
events for the drive in Drive Application Builder environment. For more details on how to
create parameter related tasks and application events, see chapter Application parameters
and events (page 69).

Creating application program 25

Creating application program

Contents of this chapter

This chapter describes the procedure to create application program.

Creating a new project

After starting Drive Application Builder programming environment, you can create a new

project.

1. In the Start Page, click New Project or in the main menu, go to File and select New
Project.

2. Inthe New Project dialog, select the required project template and click OK.
You can rename the project in Name field and select the desired Location in the file
system.

3. In the Standard Project dialog, select the type of control unit in Device drop-down list.

26 Creating application program

standard Project Ed |

&

‘fou are about ko create a new standard project, This wizard will create the Following
objects within this project:

- One programmable device as specified below

- & program PLC_PRG in the language specified below

- Task and openings as defined for the selected device. First created task will call
PLC_PRia,

- & reference to the newest version of the ABB Standard library and ABE System library
currently installed.

Device: ACSER0_AINF_ZCU1Z_14_M_W3_5 (ABE Ov) |

AC5350_AIMF BCULZ M W35 5 (AEE O

OSSN 1 mS550 AINF ZCU1Z 14 M Y3 5 (AEE Ov)

ACS380_AISF_BCULZ M W3 S (ABB Oy)
ACSEE0_AISF_ZCUL4_M_WS 5 (ABE Ov)
ACSEE0_APCF_BCULZ_M_V3_S (ABE Ov)
ACSEE0_APCF_ZCUL4 M Y35 (ABE Ov)
ACSEE0_APCY_BCULZ_M_V3_5 (ABE Oy
ACSEE0_APCY_ZCUL4_M_Y3_5 (ABE Oy)
ACSEE0_ATEF_BCU1Z_M_V3_5 (ABE Oyl

ACSEE0_ATEBF _FCULZ 14 M W3 5 (ABE Ov)

Check the control unit type of the target drive either from the unit itself from the hardware
manual of drives or contact your local ABB representative.

In the PLC_PRG in drop-down list, select a programming language and click OK.

You can later add program modules made with other languages to the project.

Standard Project | x|

-

You are about to create a new standard project. This wizard will create the Following
abjecks within this project:

- One programmable device as specified below

- & program PLC_PRaG in the language specified below

- Task and openings as defined For the selecked device, First created task will call

PLC_ PRI

- & reference to the newest wersion of the ABE Standard library and ABE Swstem library
currenthy installed,

Device: ACSEE0_AINF_FCIU1Z2_14_M_Y3_5 (ABE Ow) j
=l

PLC_PRGIM: | Continuous Function Chart (CFC)

Zonkinuous Function Chart (CFC)
_onkinuous Funckion Chart (CFC) - page-oriented

Function Block Diagram (FELY
Ladder Logic Diagram (LLY
Sequential Function Chart (SFC)
Structured Texk (ST)

A simple project for ACS880 target drive is created in the Devices tree.

Creating application program 27

=5 Ltied? -

=[] Device (ACSEE0_AINF_ZCU1Z_14_M_¥3_5)
=2l PLE Logic
= f:; Application
m Library Manager
H ApplicationParametersandEvents
PLC_PRSG (PRG)
= @ Task Configur ation
=58 Task_1
B PLC_PRG
DriveInterface (AC3580 parameters AINFX 2,620

The Devices tree includes:

PLC Logic

Drivelnterface for firmware signal and parameter mapping

Application (for example, you can add the following objects under Application)
» Library Manager for installing function libraries

* ApplicationParametersandEvents for creating user parameters and events
* Program organization units (POUs)

+ Task Configuration module for defining in which task the POUs are executed
+ Textlist

* Symbol configuration

* Global variable list

+ Data type units (DUT)

Updating project information

You can update company name and version number for the application program in the
Project Information window. This information is visible in Drive composer tool and ACS-AP-x
control panel in the System info display. It helps to identify the loaded application without
the Drive Application Builder. You can also name the application from the application tool.

To update project information in Drive Application Builder, follow these steps:

1.
2.

In the main menu, go to Project and select Project Information.

In the Project Information dialog, go to Summary tab and update the desired information
and click OK.

The updated project information is not loaded to the target application. Further steps
explain how to copy this information to the application information fields.

In the Devices tree, right click Applications and select Properties.

Properties dialog is displayed.

Click Information tab and click Reset to values from project information and then
click OK.

The Drive Application Builder version and project identification code are registered
automatically.

28 Creating application program

Appending a new POU

To append a new POU, follow these steps:
1. In the Devices tree, right-click Application and select Add object.

2. Select POU and click Add object.
3. Inthe Add POU dialog, Name the POU, select the Type of the POU and the used
implementation language and then click Add.

pgdpu K|

@ Create a new POU (Program Qrganization Unik)

Marne:
o

~Tvpe

i+ Program

" Function Block
[~ Exztends: I _I
[~ Implements: I _I
I~ Final

Access specifier:

| [~
Method implementation language:

ICDntinuu:uus Function Chart {CFC) j

. Function

Return bvpe: I o |

Implementation language:
Continuous Function Chart (CFC) j

add Zancel |

The appended POU, xxx (PRG) is added to the Devices tree under application. The
POU dialog is displayed with the declaration part and the program code.

Creating application program 29

30 Creating application program

Writing a program code

A program organization unit (POU) is a unit, object or area where you can write the program
code. The units can be created either directly under the Applications in the Devices tree or
in a separate POUs window (View -> POUs or click POUs in the lower left corner).

The POU includes a declaration part (the upper window) and a program code part (the lower
window).

1a_i0 ' 8) TORQUE_MEMORY | &5 Task_1 || TENSION_TO_SPEED |[5] DIAMETER_HOLD | WINDER_CONTROL |[5] + X |

1 PROGRAM TORQUE_MEMORY -
= F VAR _INPUT
3 (* Selects the t & t = the meamc D

ENABLE_TORQUE_MEMORY: BOOL:
TORQUE_MEMORY_ SAMPLE: BOOL:
TENSION_CONTROL_MODE_ACK: UINT:
TORQ_REF_TO_TRQ_CTRL: REAL: ‘
TORQUE_BOOST_MUL: RERAL: (% M

Declaration part

| 4]

|»

Had

| TENSION_CONTROL_MODE_ACK :
Emtmsf—— L] |

Torq_mem_ena —
—AND oy &27 tue Program code part
[TORQUE_MEMORY_SAMPLE p—— L— G RESET I

Boost_on_delay —
L T | ,@«;;l

There are two different types of views for declaration part: a textual view and tabular view.
You can switch between these views by clicking the buttons.

POU X -
1| PROGRAM POU »[=
z2l VAR
3| END VAR

4 I F
s
"la

Continuous function chart (CFC) program

The following sections show how to create a new project in the CFC implementation
language.

Creating application program 31

Adding elements

1. In the Devices tree, expand Application and select xxx(PRG).

2. Inthe main menu, click View and select ToolBox.
ToolBox components are displayed and are used to add a CFC scheme.

ToolBox

- CFC
(W Pointer |
I Control Poink
= Input
= Cubpuk
IF Box

= Jump

= Label

— Return

I Composer

Ik Selectar

= Comment

== Connection Mark - Source
= Connection Mark - Sink

2 © Input Pin
= Cukput Pin

If an empty ToolBox list is already displayed on the right side of the window, double-click
the xxx (PRG) to display the Toolbox and the POU window.

3. Toadd SEL and AND elements (logic operators, functions), use the Box element in the
ToolBox list.
In the ToolBox list, drag and drop the Box into the program code area.

-~ i POU = = ToolBiox
- CFC
1 PROGRAM POTT
k Painker

VAR
FHD VAR £ I Control Point

= Input

W)

= Oubpuk

100 % |@ [TF Box
= Jump
= Label
— Return
I Composer
TIE Selectar
i = Camment
= == Connection Mark - Source
. = Conneckion Mark, - Sink.
4 Input Pin

| .: I+|‘“‘L| | 100 % |@\ = oukput Pin

4. Enter the name of the function or operand in the ??7? field.

* You can also use Input Assistant to find the function, keyword, and operator. To
start Input Assistant, click the button or press F2.

32 Creating application program

* The number in the upper right corner of the white box indicates the execution order
of the function.

s]
B Text search CatEQDFiES|
Functionblocks & Name
Module Calls < | ADD
Keywords < ADR
Conversion Operators < AND
< AMD_THEN
< ASIN
< ATAN
< BITADR

5. Right-click on input or output element and select Negate to invert.

AND

Capy
Paste

Cuk

X %<

Delete
Select Al

Input Assistank, ..

WM 3
| -2| Negate

EMJEMC

SetfReset k

Execution Order »

Edit Parameters. ..

Conneck Selected Pins
Reset Pins

Remove nused Pins

Creating application program 33

Setting the execution order of the elements

Each element has its own execution order. The number in the upper right corner of the
element indicates the sequence in which the elements in a CFC network are executed in
the online mode. The processing starts from the element with the lowest number, that is 0.
Note that the sequence influences the result and are changed in certain cases.

You can set the execution order of each element using Set Execution Order and define the

number.

AND

Copy

Paste

Cut

Delste

Select Al

Browse:

Input Assistant, ..
=L

Megate

EMNJENOD

Set/Reset

Execution Crder

H o

Edit Parameters. .,
Connect Selected Pins
Reset Pins

Remowve Unused Pins

L4 send To Front
41 send To Back
L Move Up

L1 Mowve Down

Set Execution Order..,

Crder By Data Flow

Crder By Topology

Adding comments to a CFC program

In the ToolBox, select Comment and then drag and drop to the desired point in the program
code area and enter the comment text.

<Enfer pour comment fare.,

/i POU X -
1 PROGRRM POU
s VAR
3 EHD VAR B
kY
100 % |@
N
AND

DEIEN

100 % (R

Ta |:||EI 0

- CFC
k Fointer
i Control Poirt
= Input
= Cubput
IF Box
= Jump
o Label
= Return
I Composer
Ik Selector
|= Commert

== Connection Mark - Source
= Connection Mark - Sink
= [Inpuk Rin

= Qukpuk Fin

34 Creating application program

Declaring variables

To create a new variable, you can either declare it in the declaration part of the editor or
use Auto declaration.

Depending on the type of the declaration view (textual or tabular) add a new variable by
writing its properties to a new text row (textual view) or use the TAB button (tabular view).
For changing between the views, see section Writing a program code.

1. In the program code area, select the required object.
2. In the Drive Application Builder main menu, go to Edit — Browse — Auto Declare.
The Auto Declare dialog is displayed.

Auto Declare

Srope: MNarne: Type:
fuar =l fori_value [Boot

Ohiject: Initialization: Address:

[Pou Capplication] =l _| |

Flags: Carmment:
[~ CONSTANT =]
[~ RETAIN

[PERSISTENT =l

QK | Cancel |

If you enable the option to declare unknown variables automatically (Tools — Options
— SmartCoding), the Auto Declare dialog opens every time you use an unknown
variable in your program and you can declare the variable instantly.

3. Define the Scope, Name and Type of the variable (mandatory).
» Scope defines the type of variable (global, input, output, etc.).
* Name is a unique identifier of the variable and represents the purpose of the variable.
+ Type is the IEC data type of the variable.

Optionally, you can also define the Initialization value, Address, Comment or Flags for the
variable.
Flags have the following meaning:

+ CONSTANT means that the variable value cannot be changed and the variable maintains
its initial value all the time.

* RETAIN keeps its value over reboot and warm reset.
« PERSISTENT is not supported.

Adding inputs and outputs

Creating application program 35

You can add inputs and outputs by selecting ToolBox elements. For further information,

see section Adding elements.

Another way to add inputs and outputs straight to a block is to select a pin of a block and

start typing the name of a variable.
1. In the program code area, select the pin of the block.

/i POU X
1 PROGRAM FOTI

E
DIl <alue: BOOL;
EHD VAR

1

Lo T R T R o

LIESCVRRETIETY

2. Name the input or output by writing the variable name to the block or use input assistant

as described in section Declaring variables.

3. To connect the input or output block to a pin, left-click the line connected to the block

and drag it to a pin of another block.

CFC program

The below figure shows an example of CFC program.

’_’_WT_m_mm E
i

USINT_TO_BOOL

BOOL_TO_USINT

prev_DI1_value 2]

USINT_TO_BOOL =

Mumber_cf_falling_edges

36 Creating application program

The following local variables are required in the block scheme.

1 PROGEAM FLC PFRG
N

Number of falling edges: BOOL;

[Y

prev_DI1 walue: BOOL;// := False:
& DI: BOOL; /S := True:
7 END VAR

During block scheme programming, the already created variables are displayed in the Input
Assistant and new declarations are added to the variable declaration area.

For using the Input Assistant, see section Adding elements (page 31).

Preparing a project for download

To prepare a project for downloading, follow these steps:
1. In the Drive Application Builder main menu, go to Build — Build.
2. Go to View — Messages to check that there are no errors or warnings.

Establishing online connection to the drive

The Drive Application Builder communication gateway handles communication between
Drive Application Builder and the drive. The gateway is a software component that starts
automatically at the powerup of the PC after installing Drive Application Builder.

Before starting with the communication setup, follow the pre-requisites listed below.

Pre-requisites:

1. Connect PC to a drive through USB port of the ACS-AP-x control panel using a standard
USB data cable (USB Type A <-> USB Type Mini-B).
For information on making the control panel to PC USB connection, see ACS-AP-x
control panel user’s manual (3AUA0000085685 [English]).

2. Make sure the ACS-AP-x USB driver is installed.
For installation procedure, refer Drive composer user’s manual (3AUA0000094606
[English]).

3. Make sure the drive has application programming license N8010. To check license
information in Drive composer pro and in ACS-AP-x control panel, go to System info
— Licenses.

To establish online connection to the target drive after defining the device type, follow these

steps:

1. Inthe Devices tree, double-click Device (ACS880_AINF_ZCU12_14 M _V3_5) and
select ABB Drives communication settings.
PC name is displayed by default.

2. Check that the USB cable is connected to the USB connector of the ACS-AP-x control
panel and the drive is powered.

3. Double-click on first node (node with host name) or click Scan network to search the
target device.

Creating application program 37

Filter Target ID displays only devices that are of the same type as the device selected
in the Devices window.

(] pevice x| =
ABB Drives communication settings Select network path to the controller :
Applications # L7003 Set as active path |
Log
Users and Groups
Filter :
Information Target ID 4
Double-click the device or click Set as active Path.
(] pevice x| =
ABB Drives communication settings Select network path to the controller :
Applications = gy IN-L-7002013 Device Name:)
0w (1) (active) ACSE80 Set as active path
Log Connection Mode: |
panclBus Scan network:
Users and Groups Node Number: Filter -
i
Information Target ID 4
'Channel Number:
. 1
B ____,_____7__ Target Type:
4099
Target ID:
16120010
Target Version:
3.4.3.10

» If the drive has appropriate license code, the selected device is set as active path
and is ready for downloading a program to the drive. See section Downloading the
program to the drive.

+ Ifthe drive does not have the required license code, the selected device is displayed
with no license.

38 Creating application program

mDelr'meX

ABB Drives communication settings

Applications
Log
Users and Groups

Infarmation

Select network path to the controller

= g IN-L-700201

[Ki] ACS880 (to License.) {13{1}{active)

Device Name:
ACS880

ion Mode:
PanelBus

Node Humber:

i

Channel Number:
1

Target Type:
4099

Target ID:

16120010

Target Version:
3.4.3.10

Set as active path

Scan network.

Filter

Target 1D -

Creating application program 39

Downloading the program to the drive

You can download and execute the written program to the drive after the project is ready
for online communication with the drive. Check that the active path to the target device is
defined in the communication settings. For more information, see section Establishing online

connection to the drive.

In the Drive Application Builder main menu, go to Online — Login.
» If a program exists on the drive, the following dialog is displayed. Click Yes.

Drive Application Builder 1.0 - Premium

Application '&pplication’ does not exist on device Trives'. Do you want to create it
and proceed with download?

| Details. .. |

+ Ifthe application on the drive is not up to date, the following message is displayed. Click
OK to recreate boot application and then reboot the drive.

Drive Application Builder 1.0 - Premiunm

."-I Application on drive is not up to date, Please recreate book
¥ application and reboot drive.

After downloading the program, the background color of the device and application name
in the Devices tree changes. The program is in stop mode and the status is shown in brackets

[stop].

You can start the program by selecting Start in the Debug menu.

=5 Profecti -

= m Device [connected] (ACS880_AINF_ZCU12_
=l PLC Logic
=L} Application [stop]
m Library Manager
ﬂ ApplicationParametersandEventy
[pLc_PRG (PRG)
POU (PRG
= @ Task Configuration
= @ Task_1(Task_1)
& pLc_PRG
ﬁ Drivelnterface (ACS&80 parameters Al|

] Device x|

ABB Drives communication settings

Applications

Log

Users and Groups

Information

Select network path to the controller

= gy INL-7002013
1] acsseo {1}{1} (active)

Device Name:
ACS830

(Connection Mode:
PanelBus

Node Number:

1

Channel Number:
1

Target Type:
4035

Target ID:
1612 0010

Target Version:
3.4.3.10

Set as active path

Scan network

Il

Filter :

ITarge1 1] h

For more information on downloading a program, see section Application download

options (page 48).

40 Creating application program

Creating a boot project

The regular downloading moves the application program to the RAM memory of the drive.
By creating a boot project, the application is copied to the non-volatile memory of the drive
memory card and thus retains the application after power cycle or reboot. For more details,
see section Application download options (page 48).

To create a boot project, follow these steps:

1. In the Drive Application Builder main menu, go to Online — Create boot application.
The following message is displayed. Click Yes to reboot the drive.

Drive Application Builder 1.0 - Premium

Creating a boot application will lzad the diive to reboot. The diive must be in stopped state.
Do pou want to continue?

[~ Reset application parameters to defaults

[Clear User Sets

The reset to default values is optional. If you select Reset application parameters to
defaults option, the next boot resets all the application parameters to their default
values. The previously set values are not restored from the permanent memory.
Select this option when a new application is loaded to a drive or a reset origin has been
performed or when application parameters of the new application are different from the
previously loaded application.

Note:

It is recommended to select the Reset application parameters to defaults option
whenever you load a new application to the drive or whenever you change the parameter
definitions of the existing application (APEM).

If you select Clear User Sets option, user sets get cleared which are saved earlier using
Drive Composer Pro.

After creating the boot application, the status changes from STOP to RUN.
2. System prompts to save the boot application, click Save.

Creating application program 41

Executing the program

WARNING!

A Do not debug or make changes to drive in the online mode or while the drive is
running to avoid damage to the drive. Ignoring the instruction can cause physical
injury or damage to the equipment.

1. In the Drive Application Builder main menu, go to Debug — Start.

The application status changes to [run] and notifies that the program is executed
successfully.

Em 3 evice x| -
B roject
=i é}vwm [connected] (ACS880_AINF_ZCU12 1| | ABS Drives communication settings Select network path to the controller -
= PLC Logic
=63 i = L~ i
] I;Elﬁbﬂhm [run] Applications) évimﬂzm{lxl)(ey gg;ﬁ»ggnam Set a5 active path
Library Manager 5880 active]
@ AoplicatiorParametersandevents | | Log |Connection Mode:
Scan network
[6] pLC_PRG (PRG) R
POU (PRG) Users and Groups INode Number: i
= {Zf Task Configuration — F e =]
nformation arge B
=& Task_1 (Task_1) Channel Number:
&) pLC_PRG —— -
£/ Drivelnterface (ACS330 parameters Al - [Target Type:
4088
[Target ID:
16120010
[Target Version:
[3.4.3.10

2. Double-click the cell in the Prepared value column and type a new value.
* Press Enter to set or change a value of an existing variable.

E] PLC_PRG X -
Device.Application.PLC_PRG
Expression Type Yalue Prepared value Address =
@ a INT 941 200 I:l
q | i
&
1 al 9 200> = & 94 =200= W1
z
100 % |18
[=H \/| RN | Program loaded | Program unchanged Project user: {nobady) ;

3. Inthe Debug menu select the following:
* Write values to apply the prepared value to the variable.
* Force values to force the prepared value to the variable.
* Unforce values to unforce a forced value.

The variable value is changed. The current variable values are displayed in the Value
column and in the source code at the variable.

4. In the Debug menu, click Stop to stop the drive.
5. In the Online menu, click Logout to logout.

42

Features 43

Features

Contents of this chapter

This chapter describes the device handling information and features supported by Drive
Application Builder.

Device handling

In the application programming environment, devices represent hardware. The device
description file contains information about the target device (drive) from the programming
point of view like the device identifier, compiler type and memory size. The Drive Application
Builder installation package installs the device description files automatically.

The device description may be updated later and a new file can be installed. The system
monitors that a project with an incompatible device description file is not loaded to the drive.

44 Features

Viewing device information

In the Drive Application Builder Devices tree, double-click on Device and go to Information
tab to view the general information of a Device.

- ﬂj Device X -
AEE Drives communication setkings General:
Name: AC5580_AIMF_ZCU1Z_14 M_W3 5
Applications ﬂj Yendor: AEE Oy
Groups: Drives
Type: 4039
Log ID: 1612 0010

Yersion: 3.5.0.0

Drive FW: AINFx

Application Interface: 3.0.0.1

Description: ACS330 drive, 200J-12 and ZCU-14 contral boards

|Jsers and @roups

Access Rights

Information
Irnage:

The Device ID, Drive FW name (AINFX) and application interface version must be identical
in the project and drive target. In Drive composer pro, use the System info option to check
that the drive target has the corresponding application interface version, device type and
drive firmware name (displayed in parameter 7.04).

You can also check if the drive target has the corresponding application interface version
and device ID.

In Drive composer pro, go to System info — Products — More.

Features 45

Set time

Drive name: |FREEN) 111812019 10:44:11 AM

Products

11872019 11:16:32 AM LI

Dirive type: ACSE30
Drive model: 0 More |
Serial number: .
Manufacturing date: Licenses |
Firmware version: AINFT v2.30.255.15 Mar 23 2016 10:40:12
Drescription:
Dirive name: ACS380
MRP code:
Application name DCP version: 0.0.41.1 More
ipp::E:{:gﬂ rders"’” Backup restore version: 0.1.0.0
pRiESton. Loading package: AINLT v2.30.255.15
Int application name
pplcat : Application device 1D: 0x1612 0010
Int application version T . L
Int application id Application device version: 34310
Application interface version: 30041

M Application system library name:
Embedded ethernet |Application system library version: 1.9.1.0

Ok |

The name and version of the available system library is displayed. Make sure this information
matches with the installed system library of the Drive Application Builder project.

For more information, see parameters 7.23 for Application name and parameter 7.24 for
version in ACS880 FW.

Upgrading or adding a new device

You can upgrade or add a new device to the programming environment.

1. In the Drive Application Builder main menu, go to Tools — Device Repository.
Device Repository dialog is displayed.

2. Click Install to select device description file.

3. Inthe Install Device Description window, browse and select the device description file
(.devdesc.xml) in the file system.
Now you can add a new device to projects or upgrade currently existing devices in the
project.

Changing an existing device

You can change an existing device in Drive Application Builder project.

1. Inthe Drive Application Builder project, right-click on Device and select Update objects
or in the main menu, go to Project — Update project.
The Update objects dialog displays the available device types.

2. Select the required drive device and click Update objects.
Viewing software updates

In the Drive Application Builder start page, click Drive Application Builder to download Drive
Application Builder update packages.

https://edit.abb.com/main/software-tools/applicationbuilder/Action/Preview?sf-auth=kvwUedQ7A%2fbccf4liHeOyPVpTcrAq9QRfzisTXB2NxGsV34koSbVREvRw%2fP7wT6Sgmq87y%2fT%2fPCk%2f2LEOGg1WeNih7aHiRW99TqcqMwpYLe3PkXaqB8vDCikIkIi9n0xhdmjeadlDCWIsoWYHKs%2fkVGrPpDixWvC39g3%2f3DY9qySa%2flOQSs21e0jrZU%2fuujiK21vO40xB1I15AS5YctaDFFtGTtKzXIl8PZe14VFKrkOrjRLlCwZ3nVHcGrZYW47eb6fFBpk4cZjHbHUDDhiB2r4fLwF4NR9B5aMLpnGO8ZYjyBmY3WgMtuXfV2jO6bFM1Czh65840p2bKpyockU4B%2bwYEL9YR0ekwTvfNbnWpAEAQAA&sf_site=04f317e2-c1f4-63c0-9537-ff0000433538&sf_site_temp=true

46 Features

This link is a download center for Drive Application Builder. For example, you can find Drive
Application Builder software, release note, Drive Application Builder update packages, and
so on.

Program organization units (POU)

The POU types are:

* The program (PRG) can contain one or more inputs/outputs. A program can be called
by another POU but cannot be called in a function (FUN). It is not possible to create
program instances.

» The function (FUN) has always a return value and can have one or several inputs/outputs.
The functions contain no internal state information.

+ The function block (FB) has no return value but can contain one or more outputs as
declared in the variable declaration area. A function block is always called using its
instance and the instance are declared in a local or global scope.

The created project can contain POUs with a specified implementation language. Each
added POU has its own implementation language.

For detailed description of the POU types, see the IEC programming environment user
manual and the IEC 61131-3 open international standard.

Data types

The ABB drives application program does not support some of the standard IEC data types
like BYTE, SINT, USINT and STRING. The following list gives the standard IEC data types,
sizes and ranges.

Features 47

Data type Size Range Supported |Supported |Notes
(bits) by BCU-xx |by ZCU-xx
BOOL 8/16* |0, 1 (FALSE, TRUE) Yes Yes 8 bit —» BCU-xx
16 bit —» ZCU-xx
SINT 8 -128...127 Yes No
INT 16 -215,,.215-1 Yes Yes
DINT 32 -231,.2311 Yes Yes
LINT 64 -263,,,263-1 No Yes
USINT 8 0...255 Yes No
UINT 16 0...65535 Yes Yes
UDINT 32 0...232 Yes Yes
ULINT 64 0...264 No Yes
BYTE 8 0...255 Yes No
WORD 16 0...65535 Yes Yes
DWORD 32 0...232-1 Yes Yes
LWORD 64 0...264-1 No Yes
REAL 32 -1.2¥10-38...3.4*1038 Yes Yes Slow. Do not
LREAL 64 -2.3*10-308_,1,7*10308 Yes Yes use.
TIME 32 0 ms...1193h2m47s295ms Yes Yes
LTIME 64 0 ns...~213503d Yes Yes
TOD 32 00:00:00...23:59:59 Yes Yes
DATE 32 01.01.1970...~06.02.2106 Yes Yes
DT 64 01.01.1970 00:00...~06.02.2106 00:00| Yes Yes
STRING[xx] 0...255 characters Yes No
WSTRING[xx] 0...32767 characters Yes Yes

Drive application programming license

The drive application programming license N8010 is required to download and execute the
program code on the ACS880 or DCX880 drives. To check license information in Drive

composer pro or in ACS-AP-x control panel, go to System info — Licenses. If the required
license code is not available, contact your local ABB representative.

48 Features

Application download options

Before executing an application in the drive, download the application to the drive memory.
After downloading, the application software is embedded in the firmware of the drive and
has access to system resources.

Note:

It is not recommended to download a program to the RAM memory when the drive is in
RUN mode. The drive must be in STOP mode and Start inhibits must be possible to set.

Before downloading, make sure that there is no fieldbus device, M/F-link or D2D-link
connected to the drive. Drive composer is not running data monitoring or back-up/restore
at the same time.

There are two different download options:

Download - This is a regular download method that copies the compiled application to
the drive RAM memory. As a result, it is possible to execute the application, but after a
power cycle or reboot the memory is erased. This download method does not alter an
application that is located in the drive boot memory (ZMU) and the original application
is available for use after a reboot.

Create boot application - This download method copies the application to the
non-volatile memory of the drive memory card. This way the application remains intact
after a power cycle or reboot. You should be logged into the drive to perform this
operation. Features that can work only after restarting the drive should be downloaded
with this method.

Create boot application command (Online — Create boot application) also includes
booting the drive. Rebooting stops the execution of the complete drive firmware for
some time. For this reason, it is allowed only when the drive is stopped and start inhibition
is granted to the Drive Application Builder.

Note:

Firmware parameter mapping, task configuration, application parameters and event
configuration are activated only after the boot application is loaded and the drive is
booted.

Start inhibition is not granted if the drive is running, disabled (DIL, Safety function active)
or faulted. Make sure that these conditions do not exist before downloading the program.

Features 49

Removing the application from the target

Drive Application Builder application allows you to remove application from the target. You
can use Reset option if the application includes many changes like application parameter

changes or the application is replaced by another application. If the target already includes
an application, use the Reset origin selection in the Online menu before downloading a new
application.

This command removes (clears all) old application from the target and all the application

related references. Use this command at least once before the final version of application
is loaded. The command can be used only in the online mode. For further information on

Reset options, see section Reset options.

When you are prompted with the following message, click Yes.

Drive Application Builder 1.0 - Premium

After you initiate the Reset origin option, the following message is displayed. Click Yes. The
command is executed only if Drive Application Builder receives the permission from the
drive.

Drive Application Builder 1.0 - Premium

[) 1 This operation will remove the application from drive and rebook
' ¢ the drive. Drive must be stopped, Do wou wank ko conkinue?

50 Features

Retain variables

Retain variables includes the RETAIN flag used to retain values throughout the drive reboot
and warm reset. A cold reset sets the retain variable to its initial value. The values of retain
variables are cyclically stored in the flash memory of the drive and restored to the stored
value after restarting the program. The retain variables are stored in a separate 256-byte
memory area which defines the limits of their amount.

WARNING!

A In a function block, do not declare a local variable as RETAIN because the complete
instance of the function block is saved in the retain memory area and this large
function block instance can lead to running out of memory space.

In firmware version 2.6 and later, the power control board works with the parameter settings:

+ If parameter 95.04 = Internal 24V, retain values are saved immediately at the time the
drive loses power, meaning it is not cyclical.

» If parameter 95.04 = External 24V, retain values are saved at periodic intervals of 3
minutes. So the recovered variable may not be the recent value.

Note:
Declaring a local variable in a function as RETAIN has no effect and the variable is not
saved in the retain memory area.

The existing retain variables cannot be linked to application parameters.

Features 51

Task configuration

The task configuration object handles call configuration of the programs. A task is a project
unit that defines which program is called in the project and when it is called. The project
can have more than one task with different time levels.

There are two types of tasks:

* Cyclic task (Task_1, Task_2 and Task_3) - The task is processed cyclically according
to the task cycle time interval. The following table lists the time intervals available for
cyclic application programs. The highest priority is given to the task with the shortest
execution interval.

Task Time interval
Task_1 1...100 ms
Task 2 10... 100 ms
Task_3 100 ... 1000 ms

* Pre_task - The task is executed only once at start-up of the application program. The
feature is useful for one time initialization. The POUs (blocks) assigned into this task
are executed before starting the cyclic tasks.

Note:

The application program consists of specific allocation of CPU resources. If the limit exceeds,
the drive trips to task overflow fault. For details, see ACS880 primary control program
firmware manual [3AUA0000085967 (English)].

Adding tasks

To add tasks to Task Configuration, follow these steps:
1. In the Devices tree, right-click Task Configuration and select Add Object.
2. Select the Task and click Add object.
3. Select the Task in drop-down list and click Add.
The selected tasks are added in the Task Configuration object.
4. Click Add POU in the newly added Task_2 screen.

5. Inthe Input Assistant dialog, click Categories tab and then select PLC_PRG and click
OK.

PLC_PRG is added to Task_2. Drag and drop PLC_PRG to Task Configuration object.

52 Features

> 1 %

o Task 2 x |

: Configuration
= m ACS830_AINF_ZCU12 M_¥3_5 (ACS880_AINF_ZCL12 |
=B PLE Logic

9 Notice: Createboot application and target boot needed in orderto get new task configuration effective
= Application Type
(i) Library Manager Task: Task_2 Interval (10 ms - 1000 ms): 100 E]
“ ApplicationParametersandEvents
PLC_PRG (PRG) PQOUs
- @ Task Configuration Add POU POU Comment
5 Task_1 (Task_1)
Remove POU PLC_PRG
& pLC_PRG
5 Task_? (Task_3) Open POU
i8] PLC_PRG Change POU.

[i
2By Drivelnterface (ACS880 parameters AINFX 1,30) ey

Move Down

m

Features 53

Monitoring tasks

Before adding the tasks for monitoring in Drive Application Builder, check parameter 7.21
Application environment status in Drive composer pro.

A 7. System info
3 Drive rating id 993 NoUnit 1] 65535 o]
4 Firmware name AINFG NoUnit
5 Firmware version 2.31.0.0 NoUnit 0.00.0.0 255.255... 0.00.0.0
i} Loading package name ADALG NoUnit
7 Loading package version 1.12.0.0 NoUnit 0.00.0.0 255.255... 0.00.0.0
H] Bootloader version 212.0.0 NoUnit 0.00.0.0 255.255... 0.00.0.0
11 Cpu usage 51 Yo 0 100 0
13 PU logic version number 00000 NoUnit 0x0000 Oxffif Q0000
21 Application environment st... 0b0000 | Nolinit 0p0000 Ob1111... 0b0000
25 Old value [bin] 0b0ODO [hex] 0x0000 [dec] O
24 0.00.0.0
- New value [bin] |obo | ox0000 Jo
26 Bit | Name | value 0.00.0.0
30 0 0 = Pre task 0 Q0000
3 1 1 = Appl task1 1]
2 2 = Appl task2 0
4 3 3 = Appl task3 0
3 4 4 1]
5 5 1]
) 6 5]]
y ! 7 o i
8 8 0
} 9 9 0
b 10 10 0
3 11 11 1]
12 12 1]
4 13 13 0
3 14 14 1]
} 15 15 = Task monitoring 0
} Refresh Ok Cancel
4

The parameter bits 7.21.0, 7.21.1, 7.21.2, and 7.21.3 are used to monitor the application
task related execution. To check the continuous execution of tasks, write the specific task
bit to 0. The executing task bits are updated to 1, except the Pre task, which executes only
once.

The calculation of tasks execution cycle (duration) is disabled by default. To view the tasks
execution monitoring in Drive Application Builder, change Bit 15 = Task monitoring to high.

To add task monitoring view in Drive Application Builder, follow these steps:
1. In the Devices tree, double click Task Configuration.

2. Click Monitor tab to check the status report of available tasks.

The status report of available tasks appears. The values in the task monitoring view are
updated only after setting the parameter 7.21.15 to high in Drive composer pro. The
setting is configured again after the power cycle or boot or control board.

You can evaluate the total (task 1-3) CPU load using the parameters 7.40 IEC Application
Cpu usage peak and 7.41 IEC Application Cpu load average. For parameter descriptions,
see ACS880 primary control program firmware manual [3AUA0000085967 (English)].

54 Features

Uploading and downloading source code

Optionally, the source code of the project can be saved in the drive. This feature is located
in Drive Application Builder main menu Online — Source download to connected device
or in Device tree, right-click on drive device and click Source download to drive and it
ensures that the files are easy to obtain if needed.

You can retrieve the saved source code from the drive to a new project using File — Source
upload from drive option available in Drive Application Builder main menu and then scan
and select the drive.

The size of the source code is limited to 500 KB. Check the archiving option to minimize
the source code size (File — Project Archive — Save/Send Archive...). Note that
referenced devices and libraries are needed, the rest is optional.

Note:

If the source code is saved on the ZMU memory unit, you can retrieve the program with
another PC without the authors consent unless the project is password protected.

Adding symbol configuration

To add symbol configuration in Drive Application Builder project, follow these steps:
1. In the Devices tree, right-click Application and select Add object.

2. Select Symbol configuration and click Add object.

3. Inthe Add Symbol configuration dialog, click Add.

Add Symbol Configuration E |

B8 Create aremote access symbol configuration,

[Include Comments in XML
r Support OPC UA Features

r Add| library placeholder in Bevice Application
(recommended, But may brigger download)

Client side data lavout
" Compatibility Layaut
{* Optimized Layout

add Zancel

Symbol configuration object is added to the project.

Features 55

After adding Symbol configuration object to the project, the IEC variable to symbol data is
loaded into the drive during the create boot application download. See section Application
download options (page 48). The feature provides Drive composer pro access to the
application variables which is used for graphical monitoring and debugging.

Debugging and online changes

The following debugging features and variable forcing are supported:
« Start/stop program execution

» Setting breakpoints

+ Stepping code line by line or by function

* Forcing variables (constant setting of variable values)

+ Writing variables (single setting of variable values)

Note:
Online changes of the program code are not supported.

WARNING!
Ignoring the following instruction can cause physical injury or damage to the
equipment.

Do not set breakpoints and force variables on a running drive that is connected to
motor.

Safe debugging
Avoid the following actions when debugging the application program of a running drive
connected to motor in the online mode:
» stopping the application program
* setting breakpoints to the application program
» forcing variable values
* assigning values to outputs
» changing the values of a local variable in function blocks
* assigning invalid input values

Breakpoints stop the entire application, instead of just the task that has the currently active
breakpoint.

56 Features

Reset options

You can reset the application, using the reset selections in the Online mode.
1. Inthe Devices tree, select the Application.
2. In the main menu, click Online and select the desired reset method.

* Reset warm reset all variables of the currently active application to their initial
values (except retain and persistent variables). In case of specific initial values, the
variables are reset exactly to those specific values.

* Reset cold reset all variables (normal and retain) of the currently active application
to their initial values.

* Reset origin erase the application downloaded to the drive from the RAM and the
memory unit (Boot application). In case of specific initial values, variables are reset
to those specific values. Drive firmware parameter mappings, user-defined
parameters and events are also removed. Finally the drive is restarted.

Memory limits

You can remove the temporary code sections from the program using Build — Clean or
Clean all options available in Drive Application Builder main menu.

The memory area 0 is assigned for code and data. Memory area 1 is assigned for retain
variables.

The below example shows an actual allocation in the build report.

Maseages - 3 X
Buid - lE'Drr.-ﬁ'ﬂ-r[ﬂl i Uwa'rrq[i]|ﬂ'{-messa-:z[s]
Description Project =
generate relocations ..,
¥ Size of generated code: 76508 bytes Winch_Int
O 52¢ of global data: 13530 bytes | Total memory Tor wea: 163540 | I Avaliabie MmO S3306 I Winth_int
O Totsl allocated memary size for code and data: 100638 bytes L Winch_Int
@ Memary area 0 contains Dats, Input, Output, Memory and Cade: highast used addres ;: argiesteontiguaus mamory gapd63306 (3% %) Wirsth_nt]
O Memory area 1 conksins Retsin Data: highest used addresg: 256 Jlargest contiguous memany gap Winch_Int :
Build complete == emrors, 0 wamings : ready for download
I Total retain memory Tor wes: 256 | I Lwvaliabda retsin meamory: 150 i

Note:

To optimize the memory consumption, avoid using function blocks and unnecessary variable
definitions.

Features 57

CPU limitation

The maximum execution load of the application is limited to 5 to 15% depending on the
drive type. To know the actual load limit, contact your local ABB representative.

You can monitor the CPU load by checking the application load with parameter 7.17 Cpu
usage. To know the load difference, compare CPU usage values with and without the
application. Make sure that the difference value is not greater than the value limit. If the
application exceeds the limit, the drive trips to the task overload fault 6481. The fault is
registered to the event log of the drive and the fault-specific AUX code indicates the
overloaded tasks (10 = task 1, 11 = task 2 and 12= task 3).

You can evaluate the total (task 1-3) CPU load using the parameters 7.40 IEC Application
Cpu usage peak and 7.41 IEC Application Cpu load average. For parameter descriptions,
see ACS880 primary control program firmware manual [3AUA0000085967 (English)].

Perform CPU load tests to make sure that the drive is capable of adequately running the
application. Enable the required drive functions during the execution of the application. For
example, motor control, communication modules, encoders, and so on.

58 Features

Application loading package

This feature allows the user to create a loading package containing of an application program
for ACS880 drive. To build a loading package when the tool is connected online to the drive,
use the Drive Application Builder command Create Boot Application.

You can also create offline application loading package file without firmware version limit
using premium license.
Note:

To create loading package with or without firmware restrictions in offline, you must have
premium license.

Place the file to the corresponding project folder with the file name
<project_name>_<device>_<application>.Ip. Load the application loading packing using
the Drive loader tool.

Note:

Application loading package functionality supports from AINFX 2.01 firmware version
onwards.

Before loading the package, Drive loader tool checks for the correct actual drive type and
firmware version to load the package. It also checks for the correct drive application
programming interface and the active programming license (N8010) in the target drive.

To include symbol data and source code to application wrap file and loading package using
Drive Application Builder, follow these steps:
1. In the main menu of Drive Application Builder, go to Project — Project Settings.
Project settings dialog is displayed.
2. Click Application loading settings and select the desired options.
» Click add icon to add new firmware.
* Enter the firmware details and click Ok.

Add new firmware E3

»| Version [2 -jm -Jo o

Add new firmware

QE, | Cancel ’L
e

The added firmware is displayed in the Application loading settings.

Note:
Make sure that the application is working correctly with the added firmware.

It is also possible to add more supported firmware versions to the application loading
package.

Features 59

Downloading loading package to a drive

Drive loader tool is used to download loading package to common platform drives.
1. Start Drive loader tool.
2. Click Open to download a loading package or click Scan to scan the connected device.

ARB Drive loader 2 (eS|

File Devices Tools Help

Drive loader 2

Tool for downloading Loading Packages
to Common platform drives

Open a Loading Package to download

or scan for a connected device

3. Select the desired loading package file (./p) and click Open.
4. Select the desired drive and click Select.

5. Inthe Software Set drop-down list, select the appropriate selection.

1. Loads new application, set application parameters to default and removes user set
from the drive.

2. Loads new application.

3. Removes the application from the drive (reset origin). Before using this option, you
must first load application loading package using options 1 or 2.
4. Removes user set from the drive.

60 Features

ARB Drive loader 2 X

File Devices Tools Hslp

Make the appropriate selections and
download the Loading Package to the device

Selected device: AC3880

Al
Loading Package: Ch\Usersiinmam2 .. 7]
yDevice Applicationlp u

1 -- default -- v

1 -- default --

Software Set:

P Software Set Infy

Serial port

Connected device Loading Package
Drive type: ---

Firmware:

Download
=l

6. Select the desired communication Serial port and click Download.
Before starting downloading, drive loader checks for the following:

» Correct control board (ZCU/BCU).

+ Same device ID in Drive Application Builder project and drive control board.
* Correct version of application environment.

* Programming license loaded to target (N8010).

* Firmware version supported in loading package.

Note:

Before starting downloading, make sure Drive Application Builder or Drive composer
pro are not connected to the drive.

A warning message is displayed. Click OK.

Drive loader 2

Warning! You are about to start downloading the Loading
Package to the device. After the download has started,
interrupting the progress by e g unplugging or turning off the

device can seriously damage it. The download can take up to 15
minutes.

Features 61

In case of restrictions due to incompatible firmware version, the Drive loader stops and
displays an error message. Click downloading.txt to view error log file.

Drive loader 2

An error has happened, please see details below.
¥ Error Infermation
Error Code: 27

Restrictions mismatch.

See log file for more information: downloadlog.txt

62

Drivelnterface

Drivelnterface 63

Contents of this chapter

This chapter describes how to implement Drivelnterface and map input/output settings
between the application programs and the drive firmware parameters.

Implementing Drivelnterface

The interface between the drive firmware and the application is implemented using

Drivelnterface.

+#= Untitledl.project - Drive Application Builder 1.0 - Premium

File Edit View Project Buld Online Debug Tools

BEE & N A=l

=g Lhttied! -

= [Device (AC5BB0_AINF_ZCULZ_14_M_¥3_5)
= EU PLC Logic
= C; Application
Library Manager
ﬂ ApplicationParametersandEvents
PLC_PRG (PRG)
"3 Symbol Configuration
= @ Task Configuration
= @ Task_1
& pLC_PRG
Drivelnterface (ACSEE0 parameters AINFY 2,82)

[Pous l_’“: Devices

Window Help

|
DriveInterface X | -
Motice: Creale boot application and target boot needed to get mapping effective
[T ~ |"® Inputs |"® Qutpts I & Unassigned ‘ -
Parameter Name ‘ Assignment ‘ Mapping | IEC Yariable ‘ Data Type ‘ Min -

+- 1 1 Actual values

[3 Input references

4 4 Warnings and faults

1 5 Diagnostics

[& Control and status words

[7 System info

4 10 5tandard DI, RO

[11 Standard DIO, FL, FO

4 12 standard AT

[J 13 standard 80

4 139 Operation mode

4 20 startfstop/direction

4 21 sStart/stap mode

4 22 Speed reference selection
e

| n [|

Fel U RS SIS SR S R

‘ Last build: € 0 & 0 Precompile: o ‘

Project user: {nobody)

64 Drivelnterface

Drivelnterface consists of all the drive firmware parameters list that can be used in the
application program. The list is specific to each drive firmware (a new firmware may have
new parameters). You can assign a parameter to be an input for the application program
and define that the parameter is read at the beginning of the task execution. Similarly, you
can assign parameters to be an output of the application.

Task X .
Execution order
Read IEC Program Write
Inputs Outputs
Read par Write par
1.1 30.12
Parameter Mame Assignment Mapping IEC Variable Data Type Min Max
=@ 1Actual values
4% 1 Motorspeed used Input @ Device_Motor_speed_used 11 REAL -30000.00 30000.00
=3 30 Limits
P 12 Maximum speed Qutput @ Device_Maximum_speed_30_12 REAL -30000.00 30000.00
Note:

The parameter to IEC variable mappings is valid only after creating a boot application. For
more details, see section Application download options (page 48).

» Drive interface is not completely covering all the drive parameters. If the firmware
parameter is not available in the drive interface list, you can use AY1LB library functions
to read/write firmware parameters.

* Inorder to fully remove drive parameter settings from the drive, use Reset origin option.
Also, re-save user sets (see parameter 96.08) after removing or replacing the application.
As user set may have incorrect mapping of firmware parameter to nonexisting application.

Selecting the parameter set

A drive can have different parameters depending on the firmware version. Before performing
parameter modification, make sure that the correct parameter set is selected in Drivelnterface.
The changes to parameter set in Drivelnterface removes all the parameter mapping data.

To change the currently selected parameter set, follow these steps:

1. In the Devices tree, right-click Drivelnterface and select Update objects.
Update object window is displayed.

2. Select the correct parameter set for the current target and click Update objects.

Drivelnterface 65

Viewing parameter mapping report

After downloading the application program, a report of unresolved parameter mappings
between project parameters and actual parameters, messages, errors and warnings in the
drive are written in the Log.

7] ACSB880_AINF_ZCU_M_V3_5 | - X
' Communication Settings I Applications | Files Log |PLC settings | PLC shell I Users and Groups I Access Rights I Task deploymentl Status | Information |
™ offline-Logaing:
‘@ Uwarmng{s)lﬂ 1error(s)| E Dexcepuan(s)lﬂ 14\nf0rmauon(s)‘ <Al components > ~ | Logger: <Defaultlogger> A= e
Severity | Time Stamp ‘ Description ‘ Companent

[i] 1.01,1970 0:00:0:0 Application Application loaded CmpAppEmbedded

i} 1.01.1970 0:00:0:0 Application Application loaded CmpAppEmbedded

il 1.01.1970 0:00:0:0 CoDeSys Controlready M

il 1.01.1970 0:00:0:0 CH_INIT_COMM done M

i 1.01.1970 0:00:0:0 Call CH_INIT_COMM... cMm

il 1.01.1970 0:00:0:0 CH_INIT_TASKS done M

[x] 1.01.1970 0:00:0:0 Application Applicationnotfoundto start CmpAppEmbedded

i} 1.01.1970 0:00:0:0 Call CH_INIT_TASKS... cMm

L] 1.01.1970 0:00:0:0 CH_INIT3 done M

i 1.01.1970 0:00:0:0 Call CH_INTT3... cMm

il 1.01.1970 0:00:0:0 CH_INIT201 done M

L] 1.01.1970 0:00:0:0 Call CH_INIT201... M

il 1.01.1970 0:00:0:0 CH_INIT2 done M

L] 1.01.1970 0:00:0:0 Call CH_INITZ... M

i 1.01.1970 0:00:0:0 CH_INIT done cMm

For more details on downloading application program, see sections Downloading the program
to the drive (page 39) and Application download options (page 48).

Mapping example
To read digital input DI1 of the ACS880 control unit to the previous CFC program example
(see chapter Creating application program (page 25)), open group 10 and select index 1.
1. In the Devices tree, double-click Drivelnterface.

2. In the Driveinterface window, double-click on the required Assignment cell and select
Input or select the desired Assignment from the available drop-down list.

DriveInterface x] -
8 Molice: Create boot application and target boot needed to get mapping effective
0 - |’@ Inputs |K® Cukputs | @ |Unassigned | - |_f_'_.|+
Parameter Marme | Assignmment | Mapping IEC Yariable | Data Tvpe
= 105tandard DI, RO
= @ 1Dl skatus IUnassigred IJIMT
% 0Dl Unassigned ¥ | BOOL
@ 1012 IInassigred BOOL
@ 2013 E BOCIL
@ 3004 IUnassigred BiooL
@ 4DIS IUnassigred BiooL
@ 5DI6 Unassigned BOOL
@ 15DIIL IUnassigred BiooL
+- @ 2 DI delayed stakus Unassigned JIMT
+- @ 301 Force selection Unassigned JIMT
+- @ 40Dl force data Unassigned UINT
@ SDI1 oM delay Unassigned DINT
@ & DI OFF delay Unassigned DINT
N I % £ T N T Y | I PR S— | LIFTRIT
1] |

3. Double-click default IEC variable name (eg, Device_DI1_10_1).
A button is displayed to change the name.

66 Drivelnterface

DriveInterface x] -
Molice: Create boot application and target book needed to get mapping effective
0 - |’@ Inpuks |"@ Oukputs | i Unassigned | - ‘.’.L
Parameter Name | Assignmment | Mapping | IEC Variable | Drata Type
=4 105tandard DI, RO
=l @ 1 DI skatus Unassigred JINT
* ooI Inpuk @ Device_DI1_10_1 _| B0
@ 1012 Unassigned Bl
@ 2DI3 Unassigned BOGCL
@ 3004 Unassigned Bl
@ 4DI5 Unassigred BionCL
@ 5DI6 Unassigned Bl
@ 15 DIIL Unassigned Bl
+ - i 2 DI delaved status Unassigned JINT
+- @ 3Dl force selection Unassigned IMT
@ 4 DI force data |Inassigned LINT
@ 5DI1 ON delay Unassigned LUDINT
@ & DIl OFF delay Unassigned LDINT

4. Click input assistant button to change the name. Input Assistant dialog is displayed.
5. Click Categories and expand Drivelnterface tree to select a Device and then click OK.
IEC variable name is changed.

If you want to select existing variable DI1 from the POU variable list, expand Application
and under POU, select DI1. DI1 is connected to drive parameter 10.1 DI status bit 0.

The mapped parameters are available as IEC variables in the program editors (press F2).

Note:
Bit and value pointer parameters can be used as outputs and then the pointer is linked
directly to the application memory.

Updating drive parameters from installed device

You can update the parameter list from the installed device or you can take the actual drive
parameter set used in Drivelnterface from Drive composer pro. See section Updating drive
parameters from parameters file.

To update the parameters from the installed device, follow these steps:
1. In the Devices tree, right click Drivelnterface and select Update Drive Parameter Set.

Update parameter set dialog is displayed. By default From installed device option is
activated.

2. Expand Miscellaneous and select the device.

3. Click Update.
The parameter list from the selected device is displayed.

Drivelnterface 67

Updating drive parameters from parameters file

Optionally, you can update the actual drive parameter set using the Drive composer pro

backup file.

To update the parameters backup file, follow these steps:

1. In the Devices tree, right click Drivelnterface and select Update Drive Parameter Set.
Update parameter set window is displayed.

2. Select From parameter file option and browse to select dcparams (.xm/) or Drive
composer backup file.

3. Click Update.
The changes/deleted parameters are displayed. Click OK.

Setting parameter view

1. In the Devices tree, double-click Drivelnterface.
2. In the upper-left corner of the Drivelnterface window, select Settings.

/i Drivelnterface X -

€ Motice: Create boot application and target boot needed to get mapping effective

[T vl |”@ Inputs |K@ Cukputs | 4 Unassigned | -
Advanced Yiew | Assignment | Mapping | IEC wariable | Data Type
@ Simple View

| Setkings. .. |

Expand all
ords

Collapse &l

10 Standard DI, RO

11 Standard DIO, FI, FO

12 Standard AL

13 Standard AO

19 Operation mode

|4 20 Start/stop/direction

[21 Startfstop mode

|4 22 Speed reference selection
|4 23 Speed reference ramp

-

% = Map to existing variable

VEyee

=l R R R s R

@ = Create new variable

3. Select the required view option for the corresponding parameter and click OK.

68 Drivelnterface

Simple;/Advanced ¥iew Settings

—Simple Wiew ————— [advanced Yiew
¥ Parameter Mame ¥ Parameter Mame
v Azsignment v Assignment
v Mapping ¥ M apping
[¥ IEC *ariable ¥ IEC “ariable
v Data Type v Data Type
™ Min ¥ Min
[~ Max ¥ Max
[Uni ¥ Uit
™ Defaul ¥ Default
I™ Hide W Hide
™ Total Hide ¥ Total Hide
™ Hide Group ¥ Hide Group
™ Total Hide Group ¥ Total Hide Group
OF. Cancel

The selected options in the view list are displayed in the Drivelnterface parameter
window.

Application parameters and events 69

Application parameters and events

Contents of this chapter

This chapter describes how to use parameter manager and provides detailed information
on parameter settings.

Application parameters and events

You can create application parameters and events visible in the panel and Drive Composer
pro tools.

1. In the Devices tree, right-click Applications and click Add Object.
2. Select Application Parameters and click Add object.
Add Application Parameters dialog is displayed. Click Add to add the Application
Parameters to Devices tree.
Note:
You can create only one ApplicationParametersandEvents object at a time.

Parameter manager

In the ParameterManager window, you can create new groups with parameters, parameter
families, selection lists, units, events and language translations for the names of all the
previous items.

In the Devices tree/Application, double-click ApplicationParametersandEvents object.
The ParameterManager window is displayed.

70 Application parameters and events

Creating parameter groups

All the drive parameters belong to a specific parameter group. Before creating new
parameters, create a new parameter group. Make sure that all the groups have unique
name and number. You can change the group number and name. You can also add
translations into other languages in addition to the default language which is English.

In the ParameterManager window, click Group button to add a group.

@ ParameterManager x] -
T Impork #ML Te Expork XML IF‘arameters + Events j Language IEnglish vl LangRepart

Groups and Parameters | Families | Selection Lists | Units | Events |

g Group gy Parameter 3 Delete Collapse all

Mo ame (English) | IEC Wariable Tvpe | Parameter Tvpe | Lang Mame | Help Text

= A9 Group 9 Group 9

ParameterManager automatically selects the first free parameter group number that is not
used in the drive firmware or ParameterManager.

Importing and exporting parameters

You can import and export Parameters, Events and Parameters + Events in the form of
XML format. Choose the desired option from the drop-down list and click Import XML or
Export XML.

ﬂ ParameterManager X] -

T Import XML e Export XML |Parameters + Events j Language IEnglish TI LangReport

Parameters
Events
Parameters + Evenks

Eriks |

Groups and Parameters | Farnilies

g Group &y Parameter 34 D

Mo, | Marne (English} | IEC Yariable Tvpe | Parameter Tvpe | Lang Marne | He
=L 9 Group 9 Group 9
1 Test REAL Decimal number Test <

Application parameters and events 71

Creating parameters

In the ParameterManager window, select a parameter group.

Click Parameter button to create a new parameter.

Parameter Settings window is displayed.

In the Parameter Settings window, you can set the properties of the parameter. The
Parameter Settings window is identical for all the parameters but there are also custom
settings available depending on the parameter type.

For more information on parameter settings see section Parameter settings and for the
parameter type-specific windows, see section Parameter types.

In the Parameter Settings window, enter the Name of a parameter and click Add.

A new parameter is added to the selected group.

ﬂ ParameterManager X] -

"o Import BML | e Expork XML IParameters + Events j Language IEninsh 'I LangRepart

Groups and Parameters | Familes | Selection Lists | Units | Events |

_qiGroup dt Parameter 3¢ Delete Collapse all

Mo, rame (English) | IEC Yariahle Tyvpe | Parameter Type | Lang Mame | Help Text
=D Group 9 Group 9
@1 Paral INT Decimal nurnber Paral <empky =

1| | o

72 Application parameters and events

Parameter settings

In the Parameter Settings, you can set parameter properties.

Add Parameter

—Parameter Settings

Tool / Fieldbus 32-hit interface

Mame ITesl{

Parameter Type IDecima\ number ‘I

IELC Wariable Pratections

 New | Tope [REAL =l || T Human wr
™ Human Hide

e L (NG
I Total Hide

Parameter Family |<_. Hone - 'I [~ WP Run

I¥' Include in user st
Furiction Type IS i cfjuistabl ‘I
" ting (adjustatle] ™ Exclude from Backup
Saving Type Iimmed\ale 'I
[~ Scaling
Base value |1 Hi Migtmem 0.00

32-bit scaler |1 3:
Unit INDUmt 'I
Drecimal display IU hd
Figldbus 16-bit interface Testing for scaling.
16-bit interface support [&~ Interal value # 32-bit scalar / Base value = External 32-bit value
1B-bit scaler IW 33 |nternal walue # 16-bit soalar / Bage value = External 168-bit value

M aximum .00

Default value Im

Add Cancel

Parameter name

Parameter type

IEC variable name

Parameter family

The name shown in the parameter list when using Drive composer pro or ACS-AP-x
control panel.

Defines the type of parameter.
The following parameter types are available in the drop-down list.

¢ Decimal number

* Formatted number

* Bit pointer

* Value pointer

* Plain value list

« Bit list (16 bit)

For more information, see section Parameter types.

Used to define IEC variable for the parameter.

» The New option maps the parameter to a new IEC variable. If you do not give a name
for the new IEC variable, the parameter name is used as the IEC variable name.

* When you create a new |IEC variable, you must select the variable type, for example,
REAL. The selected parameter type restricts the variable type selection and only the
allowed types are shown in the IEC variable/Type list. For more information on the
variable types, see chapter Features (page 43).

» The Existing option maps the parameter to an already existing IEC variable by finding
the parameter from the list of the Input Assistant or writing the name to the field.

Includes a parameter as part of the parameter family and inherits the settings defined
for the family. For more information, see section Parameter families.

Function types

Saving types

Protection, hiding
and excluding from
backup

Minimum, Maxim-
um and Default
value

Application parameters and events 73

These are flag configurations for parameters which determine the parameter behavior
with the ACS-AP-x control panel and PC tool displays. There are five different configur-
ations:

+ Setting (adjustable) - This function type is a generic configuration parameter. When
a parameter with this function type is changed by ACS-AP-x control panel or Drive
composer, the changed value is saved.

+ Setting (reverts to default) - Used to request a function. When this request is processed,
the parameter returns to its default value.

+ Signal (read only) - Displays the application parameter value in the ACS-AP-x control
panel or Drive composer pro. A parameter of this function type does not have any
meaningful default value.

+ Signal (resettable) - This function type is identical to the read-only signal and allows
to reset parameters to their default values.

» Custom - Enables to change the values in the application.

Define the method of storing the parameter value to the non-volatile memory.
There are three different saving types:

* No - Does not store the parameter value changes done in the ACS-AP-x control panel
or Drive composer pro.

» Powerfail - If the parameter 95.04 is set to Internal 24V, the powerfail type parameters
are saved immediately at the time of power failure in the drive. If the parameter 95.04
= External 24V, the values are saved at periodic intervals of 1 minute. The powerfail
saved parameters are limited to < 10.

* Immediate - If the parameter value is changed using keypad or PC tool, this type saves
the value immediately within 10 seconds. This saving type is used for controls, but
not for signals.

Allows you to set the following protections for parameters or set them on the parameter
group level by selecting a parameter group in ParameterManager.

* Human WP/Human Hide write protects/hides the parameter from a human user ma-
nipulation. This setting can be bypassed using configuration tools, fieldbus controllers,
and so on.

» Total WP/Total Hide write protects/hides the parameter from any kind of manipulation
outside the firmware. These parameters are used only by the application.

The following settings are for parameters only:

* WP Run protects the parameter from writing when the drive is running.

* Include in user set includes parameter as a part of the process where all the parameters
become a user set.

» Exclude from Backup leaves the parameter out of parameter backup, but restores the
default parameter values. This setting applies only for parameters.

These are set for decimal and formatted numbers.

* Minimum and Maximum define the limits for the value of the parameter. These values
should not exceed the limits of the data type defined for the parameter.

» Default value is the value of the parameter at the start-up of the program and it must
be within the limits defined by the minimum and maximum values. The default value
returns if you restore defaults or clear all with parameter 96.06 (see the drive firmware
manual).

74 Application parameters and events

Scaling

Base value is the internal firmware value. The scaling values in Base value, 32-bit scaler
and 16-bit scaler must match each other and define how a value of the parameter is
represented in other contexts. Scaling the other values of a parameter is calculated based
on the defined scaling values.

If the scaling factor is 1, meaning direct transform from one representation to another, use
the same number for all of the scaling values

Example:

The firmware uses values 0...1 for motor rotation speed measurement. The maximum speed
is 1500 rpm, and therefore the ACS-AP-x control panel displays 1500 rpm when the internal
value is 1 (the maximum speed). The 16-bit fieldbus device shows 100%.

In this example the values are: Base value = 1, Value (32-bit int) = 1500, Value (16-bit int)
=100

Tool/Fieldbus 32-bit interface
* 32-bit scaler - 32-bit external value (for example, Drive composer pro or ACS-AP-x
control panel)

+ Decimal display - Defines the number of decimal digits displayed on the Drive composer
pro or ACS-AP-x control panel. This setting applies only for an external value, but has
no effect on the internal value.

Fieldbus 16-bit interface

* 16-bit interface support - This field defines if the 16-bit external format is allowed, for
example, in fieldbus devices and how it is scaled to the 32-bit external format:
* No - 16-bit external format is not allowed.

» Direct- 32-bit scaling is used but the value is displayed as a 16-bit value. Therefore,
the value (16-bit int) is considered meaningless.

* Scaled - separate 16-bit scaling is used. Value (16-bit int) must be defined.

* 16-bit scaler - 16-bit external value (for example, fieldbus devices).

Testing for scaling

Internal value calculates the scaling of 32 and 16 bit fieldbus interface with the corresponding
IEC variable. For description of formula, see PAR_SCALE_CHG function block.

Linking parameter to application code

The IEC variable field in the Parameter settings window enables to link a parameter to an
application program code. There are two options to link a parameter with an application
program code.

* The New option adds a new IEC variable to the program and is visible in the input
assistant under ApplicationParametersandEvent object.

* The Existing option allows linking a parameter to the existing IEC program variable
using browser. Make sure to select the correct data type. If you change the link to the
existing IEC variable, a build error occurs. For information on incorrect linked parameters,
see the message box. Check the full path to correct the missing linked parameters
according to the program.

Note:
The existing retain variables cannot be linked to application parameters.

Application parameters and events 75

Parameter types

In the Parameter Settings window, you can select the Parameter Type for the newly created
parameter.

Decimal number creates a parameter with actual numeric contents, either decimal or
non-decimal numbers. The available IEC types are REAL, UDINT, UINT, DINT and INT.

Formatted number parameter type is used to make special purpose parameters like
date displays, version texts, passcodes, and so on. The available IEC types are UDINT,
UINT, DINT and INT. In the Display format for Data Parameter, you can define the
format in which the value should be displayed in the Drive composer or ACS-AP-x
control panel.

Bit pointer creates a pointer parameter which can be assigned to point to a bit of another
parameter. You must associate the bit pointer parameter to a selection list (a bit pointer
list) that must be created beforehand. For more information, see section Selection lists.
The only available IEC type for bit pointer is BOOL. You can define the default selection
from the list.

Value pointer creates a pointer parameter which can be assigned to point to another
parameter. You must associate the value pointer parameter to a selection list (a value
pointer list). For more information, see section Selection lists. The only available IEC
type for the value pointer is UDINT. You can define the default selection from the list.

Plain value list must be associated to a selection list (a plain value list). It allows only
values of a list as its own value. The available IEC types are UDINT, UINT, DINT and
INT. You can define the default selection from the list.

Bit list (16 bit) consists of maximum 16 Boolean values (bits). You can add new rows
(bits) to the list using the Bitlist row button. You can change the names of the bits and
their values to represent their purpose. The default value is the bit value at the start-up
of the program. The only available IEC type is UINT.

76 Application parameters and events

Parameter families

If a parameter shares some of its attributes (scaling, minimum/maximum, and so on) with
another parameter, it can belong to a family that describes these common attributes. This
way, when the attribute is changed in one parameter, it is also changed in all parameters
belonging to the same family.

The system library includes a function block to modify parameter attributes like
PAR_UNIT_SEL functions. See AY1LB_System_ACS880_V3_5library in Appendix B: ABB
drives system library.

If you select a parameter family Version style, make sure the family has a unique Name.
The parameter families can define limit or scaling properties or both.

@ Parameter! x| -

“e Import XML Te Export XML IParameters + Events j Language IEninsh j LangReport

Groups and Parameters Families |Se|ecti0n Lists I Units I Events I

‘ersion | Marne (Englishy | Lirnit | Scalin »)
P11 E— T i Minirnum Ig 3' Maimum Ig 3'

Internal Yariable bype Iuint16 j

Base value Il ﬁ

32bit [Float value external Il ﬁ

16bit value external Il ﬁ

Unit [| L

Decimal Display Iint Ddec j

-

< | 2] ul | v

Application parameters and events 77

Selection lists

Selection lists are always associated to a parameter of the same type as in the list. They
are accessed only through the parameters.

1. In ParameterManager window, click Selection Lists tab and then click Selection list
to add values.

2. Select the Type of selection list and enter the name and then click Add.

ﬂ ParameterManager x] -
“w Import XML e Export $ML IF‘arameters + Events j Language IEnglish vI LangR.eport

Groups and Parameters I Families Selection Lists |Llnits I Everts I

i=) Selection list == List row [elebe Expand all

rame (English) | Yalue | Source par | List byvpe | Inverted | Lang Mame

Add Selection List M= E3

M ame: I Tesd

— Tupe
% Plain value list
" Walue paointer list
" Bit pointer list

Add Cancel

ad | 2

The selection list is created. You can add the list row by clicking on List row button. If
you want to rename the list, double-click on the created list.

ﬂ ParameterManager x] -
Tw Import ML T Export XML IParameters + Events j Language IEninsh vI LangR.eport

Groups and Parameters I Families ~Selection Lists |Llnits I Events I

i=) Selection list =] List row < Delete Expand all
Mame (English m [Source par | Lisk bype | Inverked | Lang Marme |
=-E5] Test o Plain walue list
= 0 Mo et
Note:

You cannot change the type of selection. If you want to change the type of selection,
delete and create a new selection list.

78 Application parameters and events

* Name (English) - The text visible to the user. Note that the name is not the official
text since the language translator use this text as a source when creating the official
language texts.

» Value/Source par - The value of the list row. For the bit and value pointers, it is the
index of the row in the list. For the value lists, it is an actual selectable value.

» List type - There are three different types of selection lists:

» Bitpointer list - By default, the bit pointer list has the const_false and const_true
values. You can add single bits of any parameter of the appropriate type.

* Value pointer list - By default, the value pointer list has the const_null value.
You can add any parameter which has the same data type as the pointer
associated to the list.

+ Plain value list - You can add any values of type INT, DINT, UINT or UDINT.
The type should be same as the type of the pointer associated to the list.

3. Inverted - When a bit /value is read from a source parameter, it is inverted /negated for
output when the inverted flag is set.

Units

You can create own units for the application parameters. A unit has a unique number and
a name. The allowed unit codes for the application program are 128...255.

You can add translations of the name into other languages.

1. Inthe ParameterManager view, click Units tab.

2. Click New Unit to add unit and click Add to add Language Id.

i" ParameterManager x] -
" Import XML Te Export XML IParameters + Events j Language IEnglish vI LangR.eport

.Grcuups and Parameters I Farmilies I Selection Lisks Units |Event5 I

= Mew Unit | 3 Delete

LI:LEL:IE (English) | Lang Mame |
=y g taddUnit] Mot

=| 125 unit__128 unit__128

=| 129 unit__129 unit__129

= unit__130 unit__130

The units are attached to parameters in the Add Parameter options in Parameter Settings
window.

Application parameters and events 79

Application events

You can configure your own application events (faults or warnings). The application program
then triggers the event and the event registers in the drive event logger with a time stamp.
The tool defines the event ID code, type and event name (with translation).

In the ParameterManager view, click Events tab and then click Event to add Event.

ﬂ ParameterManager x] -
"o Impork XML Te Expork XML IParameters + Events j Language IEnglish vI LangR.eport

.Gru:uups and Parameters I Families I Selection Lists I mits ~ Events |

4 Event | 3 Delete
Mame PRE Event | IEZ YWariable | Event Tvpe | Event ID | Lang Mame | He
Event_ Event_1 Faulk 00 Event_1 Lo
Event_zZ Event_z2 Fault D101 Event_zZ <K
Event_3 | Event_3 Fault ooz Event_3 K
o
1| | i

Events dialog box gives the following information:
* Name, in this example Event_1. The Event name is displayed on the ACS-AP-x control
panel and in the Drive composer tools when the event is activated/deactivated.
* Event Type, in this example fault.
The following event types are supported:
* 1 =Fault (Trips the drive)
+ 2 =Warning (Is registered to the event logger)
» 3 =Pure event (Is registered to another logger)

* EventID, in this example D100. Each type of event has its numerical range (ID code).
You can select the ID code within the range.

The event is activated by using the EVENT function block in the program code (library
AY1LB_System_ ACS880 V3 5, see chapter Libraries (page 99)). Every event must have
its own instance of the EVENT block. The EVENT function block must have the same ID
code and type as defined in the previous dialog box.

80

Configuring extension I/O modules 81

Configuring extension I/O modules

Contents of this chapter

This chapter contains general information on how to configure F-Series extension 1/O in
drive application programming through Drive Application Builder programming tool.

Configuring extension I/0 module
FEA-03

The FEA-03 F-series Extension adapter is used to locate additional F-series modules like
FIO-01, FIO-11 or FAIO-01. The FEA-03 module contain 2-slots with 2-switches each. You
can add FIO-01, FIO-11 or FAIO-01 modules to the slots of the control board or FEA-03
module. The application programming supports 7-extension 1/0O modules. See parameter
group 714 I/O extension module 1in ACS880 primary control program firmware manual
[BAUA0000085967 (English)].

For example, the figure below illustrates the maximum configuration of F-Series modules
on the Control board (ZCU) and FEA-03 adapters. It contains 3-firmware and 7-program
modules. Node numbers 1, 2, 3 are on control board slot 1, 2, 3 and the remaining node
numbers are FEA-modules and their node numbers are defined by F-Series module switch.

82 Configuring extension I/O modules

Application
Application

Firmware

000@oo@ooo

Application

FEA-03

000®oo® ooo

Application

Application

000®@ oo® ooo

Application

Application

FEA-03

000 @ oo® ooo

DDCS

FDCO

Slot3

Firmware

—
—

°in

o
—~+
—

o (il
il —
Y .

Configuring extension I/O modules 83

Node numbers

The node numbers 1...3 are reserved for extension I/O modules that are placed on the slots
of control board and the other node numbers can be used for modules in FEA object.

The upper switch defines the first digit and the lower switch defines the second digit of the
node ID. For example, in case of node address 6, turn the lower switch to 6 and check that
the upper switch points to 0.

84 Configuring extension I/O modules

Selecting input signal type

You can select the unit (mA or V) of an analog signal by sliding the switches of FIO module
next to the input either up for current signal or down for voltage signal.

| E—
——
y—

ANALCGS 10 EXTENEION

Current and voltage signal switches.

T i

Configuring extension I/O modules 85

FDCO

In FDCO adapter, select the channel number based on the used slot. Communication slot
for FDCO adapter is defined by parameter 60.41 Extension adapter com port based on the
used slot and channel. For the descriptions of parameter, see ACS880 primary control
program firmware manual [3AUA0000085967 (English)].

For example, if FDCO adapter is placed on slot 2 and channel A is used, then slot2A is
selected for Extension adapter com port. For further details, see FDCO-01/02 DDCS
communication modules user’s manual [3AUA0000114058 (English)].

YLy

Connector for channel A

Connector for channel B

Selector for channel A

Selector for channel B
Lock

Mounting screw

LEDs

N| ol o A WN| >

86 Configuring extension I/O modules

Extension 1/O in drive application program

1.

Adding F-series module

In the Drive Application Builder Device tree, right-click on device node and select Add
object.
Select FSerieslO and click Add object.

The FSerieslO extension is added to the project. It contains 3-empty slots. You can add
FI1O-01, FIO-11 or FAIO-01 modules to F-Series slots. FDCO adapter is required if you
are using FEA-03 module.

=5 Lintitied? v

= E‘i Drives (HCS380_AINF_ACU12 14 M M3 5]
=[2Y] PLE Logic
= ":; Application
m Library Manager
i‘ ApplicationParametersandEvents
PLC_PRG (PRG)
= @ Task Configuration
=52 Task_1
& PLC_PRG
Drivelnterface (AC55830 parameters AIMNFY 2.82)
=[] [Ext12 (FSeriesIon
K <Emptyl =
K <EmptyZ =
K <Empty3=

Note:

You can add only one FDCO adapter to FSerieslO extension. Because it has only one
communication port for FDCO adapter in the firmware. See parameter 60.41 Extension
adapter com port in ACS880 primary control program firmware manual
[BAUA0000085967 (English)].

In the ExtlO (FSerieslO), right-click on empty slot and click Add object.
Select FDCO-01/02 adapter and click Replace object.
FDCO-01/02 adapter is added to the Slot of FSerieslO module.

® N oo

Configuring extension I/O modules 87

=15 thtiede -‘

=[] Drives {ACSEE0_AINF_ZCI12_14_M_¥3_5)
=81 PLC Logic
= ":; Application
m Library Manager
ﬂ applicationParametersandEvents
PLC_PRG (PRG)
= @ Task Configuration
=38 Task_1
] PLC_PRG
Drivelnterface (AC3330 parameters AINFY 2.82)
=[] ExtIo (FSeriesIO)
- M [Foco (Foco-o1)02)
l: <Empkwl >
l: <Empkvz =
l: <Empkv3z=
l: <Empkywd =
l: <Empkvz =
l: <Empkw3z=

In the FDCO (FDCO-01/02), right-click on empty slot and click Add object.
Select FEA-03 and click Replace object.
In the FEA (FEA-03) module, right-click on an empty slot and click Add object.

Select FIO-01 module and click Replace object.
Similarly, you can add FIO-11 or FAIO-01 modules to FEA-03 empty slots.

88 Configuring extension I/O modules

Setting module data

Adding node number

1. In the Drive Application Builder, double-click FIO_01 or any other module.
2. Click I/0-Bus Module Parameters tab and add the node number in the value field.

W FIO_01 x|

I/0-Bus Module Parameters Parameter I Tvpe | Walue Default \I'aluel LInit I Description I

NodeId E¥TE 1 FI0_01.MNodeld

I/0-Bus Module 1O Mapping

I Mapping Lisk

Information

|F10_|:|1 Modeld

The node numbers 1, 2 or 3 are based on slot numbers. The node numbers 4...10 are
used if the I/O module is placed on FEA-03 module.

I/0 mapping variables

1. In the Drive Application Builder, double-click FIO-01 or any other module.
2. Click 1/0-Bus Module I/0 Mapping tab and create /O mapping variables in Variable

column.
W FIO 01 x| -
1j0-Bus Module Parameters ‘ Find Filker Shew sl ~ db add FE for 10 channel, ., =
Variable | Mapping | Channel | Address ‘ Type | Uik ‘ Description | -
1j0-Bus Module 1IG Mapping * Mod_F10_01_Status # Status IWL WORD FI0_01.5tatus
) Mod_FIO_01_Control P Contral PWZ WORD FIC_01.Contral
e i K] DICx_FilterTime %QDZ REAL FIO_01.DIC:x_FilterTime |
"% Mod_F10_01_DIOL_ChDir # DIO1_ChDir GOWE WORD F10_01.DIC1_ChDir
Infatmation "% Mod_F10_0L_DIO1_Output # DIO1_Cutput HQWT WORD FIO_01.DIOL_Output
K DI _ONDelay %004 REAL FI0_01.DIC1_CNDelay
" DIl OFFDelay | %QDS REAL FIO_01.DIOL_OFFDelay
k] DI 1_FiltInput %IWZ WORD FI0_01.DIOL_FiltInput L
4 DIO1_Input AU WORD FI0_01.DIC1_Input
" DIoz_cChDir %OWIZ WORD FIO_01.DI02_ChDir
K] DICZ_Output %BOWIS WORD FI0_01.DIO2_Output hd| =l

The variable names must be individual. You can have maximum 100 mapping variables.
The I/O mapping variables do not support Mapping to existing variables.

Using F-series 1/0 from the application

You can assign I/0O module related blocks into the same application task. Do not assign
F-Series related block into PreTask. The I/0O module can be handled according to the fastest
task cycle which contains module related blocks.

For example, FIO-01 is using Task_1 cycle and FIO-11 is using Task_2 cycle. If some of
the FIO-11 handling blocks are moved into Task_1, then FIO-11 is handled (internally) using
Task_1 cycle, regardless, where other FIO-11 blocks are assigned. (Task_1 has fastest

cycle).
The IEC variable name must start with F-Series 1/O.

Configuring extension I/O modules 89

FSerieal0.|

#|F10_01_6_Control |-
FIO_01_6_DIO1

i FIO_01_&_DIO2

FI0_01_&_DIO3

FIO_01_6_DIO4

FI0_01_6_Status

FIO_11_8_AIl_SWITCH
FI0_11_8_AI1_UNIT

FIO_11_8 AIZ_SWITCH
FIO_11_8_AIZ_UNIT -

i

The below figure shows the status of the application used for controlling the application
execution or producing application based events.

Devaons >3 X ') mooiesta [TH] Az couT & Tesky [N PO
- LORECT TEST(Y (=) + | T —————
] Device [eonnactad] (ACSRBO_AINF_2CU12_14_M_V3_S)
= [0 Prc Loge Expression Type Value Prepared value
= £} Apphcation [run] #* Tatus WORD 2
= NODE 6 # Control WORD 1
|B) FI0_08_6_CTRL (FREG) # Ena BOOL “

|N] FID_01_5_Di0_ouT (FRG)
(] Fo_01_5_STA (PRE)
= NCDE 8
(K] Fio_t1_B_A1i3ATTCH PRG)
(W) Fro_1a_B_asaswiTcH (FRG) :
j] FIO_11_6_A6 ILINIT (FRG)] Status[_ % | := FleriesIO.FI0 01 _& Status[3 |
A Fi0_13.5 AT (FRG)) -‘ o E;:Eﬂrfﬁfgl_ﬁ_ﬁﬁﬂmll 1 i= Cencrel 3
|N) FIo_11_B AIZSWITCH (PRG) ¢ mme
|N] FrO_t1_6_sisunm (PRG)]
[§] Fio_11_8_cTry (PRG) .
[N] Fro_11_8_pio_oum pas) 3
(] Fio_11_8_sTa FRS)
m Library Manager
i AppicabonParametersarcdSvents
&) A1 CounT FRG)
A Az_counT (FRG)
= [Task Corfouration
3 P Furesen Set
25 Pre_task (Pre_task)
= G Task_1(Task_1)
&) F10_01_6_CTRL
H] Fio_01 6 5TA
&1 rio_01_s_pio_cut
&) a1_counT
= & Task_3 (Task_2)
& Fro_11_8_CTRL
& Fio_11_8_5TA
& ro_11_8_peo_our

90 Configuring extension I/O modules

Adding bus fault control

To add F-Series I/0O module to Drive Application Builder project, proceed as follows:

1. In the Drive Application Builder Devices tree, double-click ExtlO (FSerieslO).

2. Go to I/0-Bus Module /O Mapping tab and create I/O mapping variables in Variable
column.
FSerieslO.BUS_Control value should be 0 in a program. The program should store
value 1 in FSerieslO.BUS_Control if the FSeries|O.BUS_Status value is 3 (no
communication). The program should restore value 0 if the FSeries|O.BUS_Control
after the bus break is over when Series|O.BUS_Status I/O receives the value 2 (active).

The FSerieslO.BUS_Status receives the same values as channel status.
* 0= Not active

1 = Initializing state

2 = Active

3 = No communication

Note:

The F-Series I/O bus does not recover automatically after the bus break. The bus can
recover without motor stop and restart by using Bus Control variable.

Configuring extension I/O modules 91

FIO-01 Module data

You can find the general information of FIO-01 module by clicking on Information tab.

A FIO 01 X

I/O mapping list

Information

I/0-Bus Module Parameters

I/0-Bus Module IO Mapping

FIO_01

General Information

Vendor: ABBE Oy
Type: 36102

1D: 1612 A103
Version: 3.5.5.0
Description: FIO_01
Categories

Uncategorized

FI0-01 Channel descriptions

Channel Description
Status 0 = Not active

1 = Initializing state

2 = Active

3 = No communication
Control 0 = Inactivate

1 = Activate FIO-01module

DIOx_FilterTime

Defines the filtering time constant (0.8...100.0 ms). This time is applied for all the filtered
inputs (optional).

DIOx_ChDir (x=1-4)

0 = DIO is used as a digital output (default value).
1 =DIO is used as a digital input.

DIOx_Output (x=1-4)

1/0 = ON/OFF status of digital output if channel is used as output (ChDir = 0). The cor-
responding ON and OFF time delays are applied if they are defined.

DIOx_ONDelay (x=1-
4)

Defines activation delay (0.0...300.0 s) applied for digital input/output. This channel is
optional.

DIOx_OFF-
Delay(x=1-4)

Defines deactivation delay (0.0...300.0 s) applied for digital input/output. This channel
is optional.

DIOx_Filtinput (x=1-
4)

1/0 = ON/OFF status of digital input if channel is used as input (ChDir = 1). Filter time is
applied if it is defined. Time delays are never applied.

DIOx_Input (x=1-4)

1/0 = ON/OFF status of digital input if channel is used as input (ChDir = 1). The corres-
ponding ON and OFF time delays are applied if they are defined.

92 Configuring extension I/O modules

Channel Description

ROx_Output (x=1-2) |1 = Relay is energized (ON)
0 = Relay is de-energized (OFF)

ROx_ONDelay (x=1-|Defines activation delay (0.0...300.0 s) applied for delayed state (optional).
2)

ROx_OFFDelay Defines deactivation delay (0.0...300.0 s) applied for delayed state (optional).
(x=1-2)

ROx_DelayState 1/0 = ON/OFF status of relay.
(x=1-2) The corresponding ON and OFF time delays are applied if they are defined.

Configuring extension I/O modules 93

FIO-11 Module data

You can find the general information of FIO-11 module by clicking on Information tab.

8 FIO_11 X

I/0 mapping list

Information

I/0-Bus Module Parameters

I/0-Bus Module IO Mapping

FIO_11

General Information

Vendor: ABB Oy
Type: 36102

I 1512 A105
Version: 3.5.5.0
Description: FIO_11
Categories

Uncategorized

F10-11 Channel descriptions

Channel Description
Status 0 = Not active

1 = Initializing state

2 = Active

3 = No communication
Control 0 = Inactivate

1 = Activates FIO-11 module

DIOx_FilterTime

Defines the filtering time constant (0.8...100.0 ms). This time is applied for all the filtered
inputs (optional).

DIOx_ChDir (x=1,2)

0 = DIO is used as a digital output (default value).
1 =DIO is used as a digital input.

DIOx_Output (x=1,2)

1/0 = ON/OFF status of digital output if the channel is used as a output (ChDir = 0).
The corresponding ON and OFF time delays are applied if they are defined.

DIOx_ONDelay Defines activation delay (0.0...300.0 s) applied for digital input/output. This channel is
(x=1,2) optional.

DIOx_OFF- Defines deactivation delay (0.0...300.0 s) applied for digital input/output. This channel
Delay(x=1,2) is optional.

DIOx_Filtinput 1/0 = ON/OFF status of digital input if the channel is used as a input (ChDir = 1).
(x=1,2) Filter time is applied if it is defined. Time delays are never applied.

94 Configuring extension I/O modules

Channel

Description

DIOx_Input (x=1,2)

1/0 = ON/OFF status of digital input if the channel is used as a input (ChDir = 1).
The corresponding ON and OFF time delays are applied if they are defined.

AOx_ForceSel

1 = A forced value is applied for an analog output (optional for testing purposes).
0 = Forcing is not in use.

AO1_FiltTime Defines the filter time constant (0.000...30.000 s).

This time is applied for the filtered analog output. This channel is optional.
AO1_FiltMin Defines the minimum output value for an analog output (0.000...22.000 mA).
AO1_FiltMax Defines the maximum output value for an analog output (0.000...22.000 mA).

AO1_FiltMinScaled

Defines the real value (-32768.0...32767.0) that corresponds to the minimum output
value (AO1_FiltMin). The source value is defined in AO7_ScaledOut.

AO1_FiltMaxScaled

Defines the real value (-32768.0...32767.0) that corresponds to the maximum output
value (AO1_FiltMax). The source value is defined in AO71_ScaledOut.

AO1_ScaledOut

Defines the output source value.

AO1_ForceData

Defines the forced value that can be used instead of the output source value
AO1_ScaledOut. This channel is optional. The forced value (0.000...22.000 mA) is applied
for AO1_Actual without checking the minimum or maximum output values. Filter time is
not applied.

AO1_Actual The actual analog output value (0.000...22.000 mA).
The value is same as in AO17_Filtered if forcing in not in use.
AO1_Filtered The filtered and scaled analog output value (0.000...22.000 mA).

Alx_ForceSel

0 = Forcing is not in use (optional for testing purposes)

1 = Force Al1 to a value of Al1_ForceData

2 = Force Al2 to a value of Al2_ForceData

3 = Force Al1 to a value of Al1_ForceData and Al2 to a value of Al2_ForceData
4 = Force Al3 to a value of AI3_ForceData

5 = Force Al1 to a value of Al1_ForceData and Al3 to a value of AI3_ForceData
6 = Force AlI2 to a value of AI2_ForceData and Al3 to a value of AI3_ForceData

7 = Force Al1 to a value of Al1_ForceData, Al2 to a value of Al2_ForceData and Al3 to
a value of AI3_ForceData

Alx_Unit (x=1-3)

Unit selection. This setting must match the corresponding hardware setting on the 1/0
extension module.

2 =V (Volts)
10 = mA (milliamperes)

Alx_Min (x=1-3)

Defines the minimum value for an analog input (-22.000...22.000 mA or V).

Alx_Max (x=1-3)

Defines the maximum value for an analog input (-22.000...22.000 mA or V).

Alx_MinScaled (x=1-
3)

Defines the real value (-32768.0...32767.0) that corresponds to the minimum analog
input value (Alx_Min).

Alx_MaxScaled (x=1-
3)

Defines the real value (-32768.0...32767.0) that corresponds to the maximum analog
input value (Alx_Max).

Alx_FiltTime (x=1-3)

Defines the filter time constant for the analog input (0.000...30.000 s). This time is applied
for analog inputs Alx_Actual and Alx_Scaled. This channel is optional.

Alx_FiltGain (x=1-3)

Selects the hardware filtering time for analog input. This channel is optional. (0 = no fil-
tering, 1=125us,2=250us,3=500us,4=1ms,5=2ms, 6 =4ms, 7 =7,9375 ms).

Alx_ForceData (x=1-
3)

Defines the forced value that can be used instead of the true reading of input. This
channel is optional. The forced value (-22.000...22.000 mA or V) is applied for Alx_Actual
without checking minimum or maximum values. Filter time is not applied.

Alx_Actual (x=1-3)

Displays the value of an analog input (-22.000...22.000 mA or V).

Alx_Scaled (x=1-3)

Displays the value of an analog input (-22.000...22.000 mA or V) after scaling.

Configuring extension I/O modules 95

Channel

Description

Alx_Switch (x=1-3)

0 = Unit selection matches the corresponding hardware setting.
1 = Unit selection does not match the corresponding hardware setting.

96 Configuring extension I/O modules

FAIO-01 Module data

You can find the general information of FAIO-01 module by clicking on Information tab.

5 FAIO_01 X

I/0-Bus Module Parameters

FAIO_01

| 1/0-Bus Module If0 Mapping
General Information

IO mapping list Vendor: ABB Oy

Type: 36102

| Information o 1612 A106
Version: 3.5.5.0
Description: FAIO_O1
Categories
Uncategorized

R
FaI0-Ql -
P = o

FAIO-01 Channel descriptions

Channel Descriptions

Status 0 = Not active

1 = Initializing state

2 = Active (successfully activated by Control)
3 = No communication

Control 0 = Inactivate
1 = Activate FAIO-01 module

AOx_ForceSel 0 = Forcing is not in use output (optional for testing purposes)

1 =A01_ForceData is applied to an analog output AO71_Actual
2 = A02_ForceData is applied to an analog output AO2_Actual
3 = Both AO1_ForceData and AO2_ForceData are applied

AOx_FiltTime Defines the filter time constant (0.000...30.000 s).
(x=1.2) This time is applied to the filtered analog output AOx_Filtered (optional).

AOx_FiltMin (x=1,2) | Defines the minimum output value to an analog output (0.000...22.000 mA).

AOx_FiltMax (x=1,2)| Defines the maximum output value to an analog output (0.000...22.000 mA).

AOx_FiltMinScaled | Defines the real value (-32768.0...32767.0) that corresponds to the minimum output
(x=1,2) value (AOx_FiltMin). The source value is defined in AOx_ScaledOut.

Configuring extension I/O modules 97

Channel

Descriptions

AOx_FiltMaxScaled
(x=1,2)

Defines the real value (-32768.0...32767.0) that corresponds to the maximum output
value (AOx_FiltMax). The source value is defined in AOx_ScaledOut.

AOx_ScaledOut
(x=1,2)

Defines the output source value.

AOx_ForceData
(x=1,2)

Defines the forced value that can be used instead of the output source value
AOx_ScaledOut, (optional).

The forced value (0.000...22.000 mA) is applied for AOx_Actual without checking the
minimum or maximum output values. Filter time is not applied.

AOx_Actual (x=1,2)

The actual analog output value (0.000...22.000 mA).
The value is same as in AOx_Filtered if forcing is not in use.

AOx_Filtered (x=1,2)

The filtered and scaled analog output value (0.000...22.000 mA).

Alx_ForceSel

0 = Forcing is not in use (optional for testing purposes)

1 = Force Al1 to the value of Al1_ForceData

2 = Force Al2 to the value of Al2_ForceData

3 = Force Al1 to the value of Al1_ForceData and Al2 to the value of AI2_ForceData

Alx_Unit (x=1,2)

Unit selection. This setting must match the corresponding hardware setting on the I/O
extension module.

2 =V (volts)
10 = mA (milliamperes)

Alx_Min (x=1,2)

Defines the minimum value to an analog input (-22.000...22.000 mA or V).

Alx_Max (x=1,2)

Defines the maximum value to an analog input (-22.000...22.000 mA or V).

Alx_MinScaled
(x=1,2)

Defines the real value (-32768.0...32767.0) that corresponds to the minimum analog
input value (Alx_Min).

Alx_MaxScaled
(x=1,2)

Defines the real value (-32768.0...32767.0) that corresponds to the maximum analog
input value (Alx_Max).

Alx_FiltTime (x=1,2)

Defines the filter time constant to an analog input (0.000...30.000 s). This time is applied
for the analog inputs Alx_Actual and Alx_Scaled, (optional).

Alx_FiltGain (x=1,2)

Selects the hardware filtering time to an analog input (optional).

(0 = no filtering, 1 =125 us, 2=250us,3=500us,4=1ms,5=2ms,6=4ms, 7 =
7,9375 ms).

Alx_ForceData
(x=1,2)

Defines the forced value that can be used instead of the true reading of the input (option-
al).

The forced value (-22.000...22.000 mA or V) is applied for Alx_Actual without checking
minimum or maximum values. Filter time is not applied.

Alx_Actual (x=1,2)

Displays the value of an analog input (-22.000...22.000 mA or V).

Alx_Scaled (x=1,2)

Displays the value of an analog input (-22.000...22.000 mA or V) after scaling.

Alx_Switch (x=1,2)

0 = Unit selection matches the corresponding hardware setting.
1 = Unit selection does not match the corresponding hardware setting.

98 Configuring extension I/O modules

Fault codes

If the F-series 1/O configuration fails, a warning A7AB Extension I/O configuration failure is
logged in the Event log.

Auxiliary codes Descriptions

0x1000 — 0x1006 Application related F-series ExtlO configuration file is broken.

0x2000 — 0x2006 Task configuration error in configuration file.

0x2001 No enough communication capacity for requested module type and update times (fast
cycle).
0x2002 No enough communication capacity for requested module type and update times (ex-

ceeded maximum allowed messages).

0x4000 — 0x4006 DDCS configuration error in configuration file.
0x4003 Unknown task id in DDCS configuration.

Libraries

Libraries 99

Contents of this chapter

This chapter contains general information of libraries and description of the ABB drives
system and standard libraries.

Library types

The following libraries are installed by default in Drive Application Builder for drive

programming.
* Default libraries

» ABB drives system library (AY1LB_System_ACS880_V3_5)
» ABB drives standard library (AS1LB_Standard_ACS880 V3 5)

* Optional libraries

* All generic Drive Application Builder IEC libraries (standard and Util) can be installed,
but ABB does not guarantee their correct functioning. Note the data type limitations
described in chapter Features (page 43).

The Library Manager controls and manages the library usage in the project. Each project
has its own Library Manager which is added by default when you create a new project.

i) Library Manager x|

=5 titted? -
=[] Drives (ACSEB0_AIMF_ZCULZ 14 M W3 5)
=Bl pLE Logic
=4} application
m Library Manager

ﬂ ApplicationParametersandEwents
PLC_PRG (PRG)
= Task Configuration
= Task 1
] PLC_PRG
Crivelnterface (ACSSE0 parameters AINFY 2,82)
#- i ExtIO (FSeries1o)

) FOUs | 52 Devices

45 Add library Delete library Properties Details | 5] Placeholders m Library repository
Name ‘ Mamespace ‘ Effective version
ASILE_Standard_ACSEA0_Y3_5, 1.0.1.2 (ABE Oy A51LB_Standard_ACSEE0_Y3_5 1.0.1.2
+ AYILE System_ACSSE0_Y3_S = AYILE_System_ACSS30 V3.5, 1.0.1.0(ABEOy) AVILE System ACSSE0_Y3 S 1.9.1.0
Av2LE_D?DComm_ACSEA0_Y3 5, 1.9.0,2 (ABE Ov) AVELE_DEDComm_ACSEED_¥3_S 1.9.0.2
Standard = Standard, 3.5,2,0 {System) Standard 3.5.2.0
SystemFuncsABE, 0,0,0,1 (ABE) SystemFuncsABE 0.0.0.1
+ Uk, 3.5, 1.0 (System) Lt 3.5.1.0

100 Libraries

ABB drives standard library contains the most common and useful functions and function
blocks to control the drive. All the functions are implemented locally using structured text
language. The Drive Application Builder and standard libraries include additional general
purpose functions.

ABB drives system library contains all the drive-specific functions to interface the application
with the drive firmware and I/O interface. This library has external implementation in the
drive system software.

Make sure the drive is installed with the corresponding system library.

1. In the Drive composer pro, right-click on drive and select System info.

2. In the System info screen, click More.

Check that the Application System Library displayed in the Drive composer pro has the

same library version as the Drive Application Builder project. If the versions are not matching,
part of the library may be incompatible.

Adding a library to the project

To add a Library Manager (library container) to the project:
1. In the Devices tree, right-click Application and select Add object.
2. Inthe Add object window, select Library Manager and click Add object.
3. Double-click Library Manager.
Library Manager window is displayed.
4. Click Add library to add the library.
5. Inthe Add Library dialog, click Advanced.

Add Library

String For a Fullkext search. .. = 1|
il

Library | Company |
+- 3= Application
1

o=
s-- Use Cases
+- 322 (Miscellaneous)

Advanced, .. | of I Cancel |

4

6. Select the required library and click OK.

Libraries 101

(5iil Add Library E3

IString for a fullkext search. ..

Libar ary | Placeholder I

Company: I{.ﬁ.ll Companies) j

%:? - (Miscellaneous)

2= ABB - Drives
| A51L6_Standard_ACSE80 Y3 5 1012 A5850)
AY¥ILE System_ACSSS0 W3 5 1.0.1.0 ASF0p
A 2LE_DEDComm_ACSE50_YW3_5 1.9.02 AS5Sy
E: Common

2= application

E_,: Intern

2= System

',13: Use Cases

W Group by category [Display all versions (For experts only)

Details... Library Repository, .. ok I Cancel

The selected library is added successfully.

Note:
To make SFC language programs or functions, the lecSfc system library must be available
in the project.

102 Libraries

Creating a new library

The application programming environment allows you to create your own libraries to use in
the projects. After starting the programming environment, a new library can be created with
the New Project dialog.

1.
2.

In the New Project dialog box, click Empty project.

Type the library Name and Location and click OK.

The new library is added into the POUs tree.

In the View menu, select POUs to add a new POU into the created library.

Right-click on project name and select Add Object — POU.

Name the POU, for example, POU1.

Select the type of the POU, for example, Function Block and the implementation language
can be Structured Text (ST) and then click Add.

Open the created POU and add the following example code into the variables declaration
window.

FUNCTION BLOCE EBOU1

VAR INPUT
DI1 : BOOL;
END VAR

VAR OUTPUT
ROL : BOOL;
END VAR

WAE

prev_DI1 _walus : BOOL;
END VAR

Add the following example code into the code area:

IF DI1 = FALSE AND prev_DI1_value = TRUE THEN
ROl := NOT(RO1]:
END IF

prev_DI1 walue := DI1;

After the code is added, all library objects must be checked before the library export.
In the Build menu select Check all Pool Objects.

In the Project menu, select Project Information and fill the information of the created
project to use the library in future (company, title and version).

Libraries 103

Project Information

‘File Summary | propertes | Statistics | Licensing |

Company: I"u"endor name
Title: ILihrarv example title
Version: |1.1.D.1 [T Released

Library Categories: I |

Default namespace: I

Author: I
Description: ﬂ
[
The fieldsin bold letters are used toidentify alibrary.
[T Automatically generate POUs for property access
K Cancel

After the information is added, it is possible to install this library directly to the Library
Repository.

In the File menu, you can do the following
» select Save Project and Install into Library Repository

Or

+ select Save Project as to save the library as a usual file
Or

+ select Save Project as Compiled Library to save the library as a compiled library
file

Note:

You must use a compiled library file to protect the library source code. The non-compiled
library format does not protect the source code.

104 Libraries

Installing a new library

To install a new library, follow these steps:

1. In the Drive Application Builder project, double-click Library Manager.
Click Add library.

In the Add Library dialog, click Advanced.

Click Library Repository.

In the Library Repository window, click Install.

o kw0

|"'" jiLibrary Repository

Location:

Edit Locations. . |

(iC:1ProgramData)DrivespplicationBuilder 1.0 DAE_Managed Libraries_1.0)

—Installed libraries:

Install... |

Companty: I(.ﬁ.ll companies) j S |

+ - 1= (Miscellaneous)

+- 3= BB - Drives Expork,.. |

+- 0= Application

+- 2= Intern

+. 0= System

+. 05 Use Cases

Find...

Dekails, ..

I

¥ Group by categary Dependencies. .. |

Library Profiles. .. | Close

L

6. Browse/select the required compiled library and click Open.
A new library is installed into the Library Repository and is ready to use in the project.

Libraries 105

Managing library versions

Drive Application Builder allows you to use different versions of the selected library according
to project requirements.

To change the current effective library version, proceed as follows:

1. Open Library Manager.

2. Select the required library and click Properties.

3. Select the Specific version in the drop-down list and click OK.

Properties - #AY1LEB_System_ACS830_¥3_ 5

—General: WErSion:

= Specific version; j

MNamespace:

Defaulk ibrary: |&Y1LE_Swstem ACSES0_Y3 5,1 ... |) Mewest version always

—Wisibility:
I only allow qualified access ta all identifiers.

If the current project is referenced as a library by another project:

[~ Publish all IEC symbals ko that project as if this reference would have been included there directly,

[Hide this reference in the dependency tree,

[~ optional (if the library is missing, no errar will be reported),

I, I Zancel

The library version is changed and can be used in the project.
If you want to add a new library version that is not in the Specific version list, first install
the version. See section Libraries (page 99).

106 Libraries

Configuring a library with WIBU license

In Drive Application Builder, you can configure a library with WIBU license.
1. In Drive Application Builder main menu, go to Project — Project Information.
2. Inthe Licensing tab, do the following:

+ Enable Activate dongle licensing check-box and add the Firm code, Product code,
Activation URL and Activation mail.

+ Click OK.

Project Information
File I Surnmary I Properties I Skatistics Licensing |Signing I

If dongle licensing is activated, the user needs ko connect a dongle
containing the appropriate license in order to use this libratsy,
Please nokte that only compiled libraries will be protected!

v Activate dongle licensing

Eirm code: O r

S

Product code:

Activation URL:

Activation mail:

[Automatically generate 'Library Information' POLS

[Automatically generate ‘Project Information’ POUS

Ik, Zancel

A

The license protection can be used only for compiled libraries and it is necessary that the
given license is already present on the dongle.

Practical examples and tips 107

Practical examples and tips

Contents of this chapter

This chapter gives practical examples and tips on working with Drive Application Builder.

Solving communication problems

Follow the instructions below when the scan network does not find any drives.

1.
2.

Check the communication settings.

In Windows Computer Management — Device Manager, check that the communication
port is correctly installed.

If the USB Serial Port (COMX) is not displayed under Device Manager, check that the
corresponding USB/communication port driver is installed.

Select Ctrl + shift + esc — Processes to check that the OPC server (DriveDA.exe) has
started in Windows Task Manager.

Check that the Drive composer pro (Drive OPC) finds the connection to the drive.

Note:

You must allow Drive Application Builder to share communication with Drive composer
pro.

For details on how to allow Drive Application Builder to share communication with Drive
composer pro, see chapter Getting started (page 19).

Follow the instructions below when the communication fails between Drive Application
Builder/Drive composer pro and drive.

Check that the control panel has the latest firmware version
Check the Driver data

108 Practical examples and tips

Note:

The next panel driver version is not known. For version details, refer the corresponding
ACSB880 drive software release notes or contact your ABB representative.

Solving other problems

How to prevent unauthorized access to an application that is running in the drive?
A compiled project as well as the downloaded source code can be password protected.
You can make a backup copy of the protected application. The backup copy is encrypted
and you need a password for downloading or executing the copied application. The IEC
function libraries and projects can be protected as well by means of Drive Application
Builder.

What to do when stack overflow fault 6487 occurs?

« If the stack overflow fault 6487 occurs, then the number of the local variables
inside a function is too large. Unfortunately, the limit of the local variables
are relatively small. The stack usage is high especially if there are, for example,
division operands inside the EXPT function.

» Also if the division function divider is zero (an exceptional case), the stack
usage is high.

Do not make large functions. Try to make a compact function with a limited number of

variables (40 REAL). If the function is too large, change some of the local variables to

global variables (use, for example, multiple global variable lists GVL to group variables
by functions). Consider to use function blocks or program modules instead of functions.

How to optimize the memory usage of the drive application? The code memory

of the application is running out. How to optimize the program?

The drive application programming environment has relatively limited memory and

execution capacity. There are a couple of tips to minimize the program code:

» Use functions as much as possible.

Note:
If there are many variables inside the function, the risk of stack overflow increases.

* Try to design the application so that you do not need to create many instances of
large function blocks. Instead of function blocks use programs or functions.

» Use Drivelnterface to access drive parameters instead of the parameter read/write
functions.

How to solve the problem causing error message “Creating boot application
failed: Adding Application Parameters & Groups to UFF generator:
XmlDeserializationFailed”?

The problem is related to Application parameters and events module.

» Check that all Value pointer, Bit pointer and Plain value list type of parameters have
the correct Selection List.

» Check that the Bit list (16 bit) parameters do not have same Bit names (English)
multiple times (for example, text Bit_Handle_0 occurs twice).

» Check the tool message box for details.

Unsupported features 109

Unsupported features

Contents of this chapter

This chapter lists the features that are not supported for ACS880 and DCX880 drives with
standard drive application programming V3.

Unsupported features

ACS880 and DCX880 drives do not support the following standard drive application
programming V3 features.

» Persistent variable type is not supported. In case the variable is saved over power cycle,
retain variable is used. Also, the user defined drive parameter can be created to save
value of the variable.

+ Target-based tracing. You can use the Monitor feature in Drive composer pro. See Drive
composer user’s manual (3AUA0000094606 [English]).

» Some data types are not supported.

+ The number of program execution tasks are limited to 4. One of the task is a pre task
which is executed only once after power up. Other tasks are cyclically executed.

* Program code simulation is not supported.
+ Target based visualization is not supported.

110

ABB drives system library 111

ABB drives system library

Contents of this chapter

This chapter contains detailed information of the function blocks of the ABB drives system
library (AS1LB_Standard_ACS880_V3 5).

Overview

The ABB drives system library is intended to use with the ACS880 drives. It provides event,
parameter read/write and program time level function blocks for application program in the
Drive Application Builder environment. The description of the features in this document is
based on the ABB drives system library version 1.9.1.0.

Using Drive composer pro System info, check that the drive is installed with the corresponding
system library. In the System info, the system library version is located under the
Products/More view. The system library versions must be similar in the drive and the
application program project.

112 ABB drives system library

Function blocks of the system library

Function block name

Description

Event function blocks

EVENT

Send the application event

ReadEventLog

Read the drive’s faults and warnings

Parameter change function bl

ocks

PAR_UNIT_SEL

Changes the unit of a parameter

PAR_SCALE_CHG

Changes the parameter scaling attributes

PAR_LIM_CHG_DINT

Changes the limits of a parameter in DINT data format

PAR_LIM_CHG_REAL

Changes the limits of a parameter in REAL data format

PAR_LIM_CHG_UDINT

Changes the limits of a parameter in UDINT data format

PAR_DEF_CHG_DINT

Changes the default values of a parameter in DINT data format

PAR_DEF_CHG_REAL

Changes the default values of a parameter in REAL data format

PAR_DEF_CHG_UDINT

Changes the default values of a parameter in UDINT data format

PAR_DISP_DEC

Changes the decimal display of a parameter

PAR_REFRESH

Notifies PC tools and panel of any parameter attribute changes

Parameter protection

PAR_PROT

Protects individual parameters

PAR_GRP_PROT

Protects a parameter group

Parameter read function blocks

ParReadBit

Read the value of a bit in a packed-Boolean-type parameter

ParRead_INT

Read the value of an INT/DINT/REAL type parameter

ParRead_DINT

Read the value of a DINT/INT type parameter

ParRead_REAL

Read the value of a REAL type parameter

ParRead_UDINT

Read the value of a UDINT/UINT type parameter

Parameter write function bloc

ks

ParWriteBit

Write the value to a bit of a packed-Boolean-type parameter

ParWrite_ DINT

Write the value to a REAL/DINT/INT type parameter

ParWrite_INT

Write the value to an INT/DINT/REAL type parameter

ParWrite_ REAL

Write the value to a REAL type parameter

ParWrite_UDINT

Write the value to an UDINT/UINT type parameter

Pointer parameter read function blocks

ParRead_BitPTR

Read the pointed bit value from a bit pointer type parameter

ParRead_ValPTR_DINT

Read the pointed DINT/INT value from a value pointer type parameter

ABB drives system library 113

Function block name

Description

ParRead_ValPTR_REAL

Read the pointed REAL value from a value pointer type parameter

ParRead_ValPTR_UDINT

Read the pointed UDINT/UINT value from a value pointer type parameter

GetPtrParConf

Read the source parameter settings. Source parameter must be a value
pointer, bit pointer or formatted number

Set pointer parameter function blocks

ParSet_BitPTR_IEC

Set a bit pointer parameter to point to a bit type IEC variable

ParSet_ValPTR_IEC_DINT

Set a value pointer parameter to point to a DINT type IEC variable

ParSet_ValPTR_IEC_REAL

Set a value pointer parameter to point to a REAL type IEC variable

ParSet_ValPTR_IEC_UDINT

Set a value pointer parameter to point to an UDINT type IEC variable

ParSet_BitPTR_Par

Set a bit pointer parameter to point to a bit of a packed Boolean parameter

ParSet_ValPTR_Par

Set a value pointer parameter to point to a value parameter

System time function blocks

SYS_TIME

Shows the previously set system data, time (broken time) and source

SYS_TIME_UDNIT

Shows the previously set system data, time (raw time) in native format and
source

Task time level function block

UsedTimeLevel

Show time level (ms) of the program where the function block is located

114 ABB drives system library

Event function blocks
EVENT

Summary

The application event function block is used to trigger a predefined event (fault/warning/pure)
from the IEC code. The event is registered to drive event logger.

EVENT

—ID Err

—AuxCode

—EventType

—Trig

—Enable

Connections

Inputs

Name Type Value Description

ID WORD |0xE100.. |ldentification of the event (constant, cannot be changed on run time). This is

OxE2FF |a unique value of the event. You can find the supported values in the Applic-
ationParametersAndEvent tool. A certain range is reserved for each application
event type.

Faults: 0xE100...E1FF
Warnings: 0xE200.. OxE2FF

AuxCode [DWORD |ANY The auxiliary code that you can set freely (constant).

Event- WORD (1,2 Type of the event (constant, cannot be changed on run time).

Type Supported event types: Fault = 1, Warning = 2, Pure = 8 (Notice is not sup-
ported).

Trig BOOL TIF The high level (TRUE) of this pin sends/activates the event, if Enable is set
to TRUE. Warning is deactivated automatically, when Trig is decreased. To
clear the fault, give the reset command.

Enable |BOOL T/IF Enable/disable event sending.

Outputs

Name Type Value Description

Err WORD |ANY The value is typically 0x0000.
0x0001 = Not used
0x0002 = Event is not user-defined event
0x0003 = Event type error
0x0004 = Event ID type error
0x0005 = Not used
0x0006 = Unknown event type

Description

You can configure an application event with the ApplicationParametersandEvents in Drive
Application Builder. (See chapter Application parameters and events (page 69)). This tool
defines the ID and the event text (description).

Drive Application Builder supports the following event types: Fault, Warning and Pure.

ABB drives system library 115

The event ID, text, auxiliary code, time and operation data is registered into the drive event
logger. The application events can be shown using the ACS-AP-x control panel and Drive
composer tools, or using the ReadEventLog block on the application level. A fault can be
reset, for example, using the control panel or Drive composer pro tool.

Note:

The current firmware supports execution of three event functions in the same task cycle. If
there are more event functions, do not enable all of them at the same time.

116 ABB drives system library

ReadEventLog

Summary

ReadEventLog is a special block for reading faults and warnings from the drive event system.
The block does not read events or use the drive event or fault loggers. Instead it gets the
events straight from the event system itself.

ReadEventlog
—BventType Errk
—Index Codef
—Cnt SpeCode -
—Enable Status -

RdCnt
BventLostCnt -

The purpose of the block is to forward drive events, for example, to external systems, like
automation user interfaces.

Connections

Inputs
Name Type Value Description
EventType UINT 0 Not used. The block returns the drive’s faults and warnings.
The value can be set to 0.
Index UINT 0 Not used. The value can be set to 0.
Cnt UINT 0...6 Number of the wanted events at a time (0...6).
Enable BOOL TIF Enable/disable event sending.
Outputs
Name Type Value Description
Err UINT N/A Not used.
Code Array of Any of allowed |Event code (ID). The block supports maximum 6 events at
UINT[10] events codes |atime.
AuxCode Array of ANY Auxiliary code of the event.
UINT[10]
Status Array of ANY Status of the event.
UINT[10] 1 = Event is activated.
2 = Event is deactivated.
3 = Acknowledgement requested.
4 = Event is reactivated (warnings).
5 = All faults are deactivated.
RdCnt UINT 0...6 The number of the get/read events at a time.
Maximum 6
RdCnt value = 0 indicates that there are no new events.
EventLostCnt |UINT ANY The number of the lost events (for monitoring).

ABB drives system library 117

Note:

The current firmware supports execution of three event functions in the same task cycle. If
there are more event functions, do not enable all of them at the same time.

It is recommend to use event blocks only on the tasks that has the cycle time setting higher
than 50ms.

Description

The block packs the event Code, AuxCode and Status to vectors that the user can read.
The block does not sort faults and warnings from each other. The first event in the vector
is the oldest one.

The block returns the maximum Cnt number of events in each execution cycle depending

on how many events exist at this time on the drive. RdCnt indicates how many events are
got in each execution cycle. The vectors and RdCnt are updated in every execution cycle

if new events exist. For this reason, only the value of RdCnt matters when reading the event
data from vectors. The older events are overwritten by the newer ones.

Example:

In the first execution cycle, the user reads 2 events, for example, events 11, 12 (RdCnt =
2). Both are valid. 12 is the last one.

In the second execution cycle, the user reads 1 event, for example, 21 (RdCnt = 1).

Now values 21, 12 can be seen in the Code vector, but because RdCnt is 1, only the first
value is valid (21). (12 read in the previous cycle.)

Vectors are cleared only on the falling edge of the Enable pin.

EventlLostCntindicates the number of the lost events. The value should be 0. In the opposite
case, the reason can be too slow execution cycle of this block.
Note:

The execution cycle of this block is slow. To optimize the application resources, it is
recommended to use only one instance of this block.

118 ABB drives system library

Parameter change function blocks
PAR_UNIT_SEL

Summary

PAR_UNIT_SEL block enables to change the unit of a parameter from the IEC application.
If one parameter of the family parameter is changed using this block, the change applies
to all other parameters of that parameter family.

PAR_UNIT_SEL
—Enable Errf—
—Group
—{Index
—Unit

Connections

Inputs

Name Type Value Description

Enable BOOL TIF Enables unit change at the rising edge
Group INT ANY Parameter group

Index INT ANY Parameter index

Unit UNIT 128...255 Unit selection

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the unit change of a parameter. Group and Index
define the parameter to be changed and Unit defines the unit of the parameter. The unit
strings and corresponding codes are defined in the Drive Application Builder,
ApplicationparameterandEvents manager (APEM). Using this function block, the units in

the range of 128 to 255 can be changed.

Note:

Use only the units defined in APEM. Selecting undefined units are not notified by the Err

output.

Err returns an error code if there is an error during a unit change, for example, the unit for
change is beyond the selection range. If the unit selection and change operation is successful,
Errreturns a 0.

ABB drives system library 119

PAR_SCALE_CHG

Summary

PAR_SCALE_CHG block enables changing the parameter scaling attributes from the IEC
application. Initial scaling values are defined in the Parameter family settings.

PAR_SCALE_CHG
—Enable Errf—
—Group
—Index
—Basevalue
—BIT32_scaler
—BIT16_scaler

Connections

Inputs

Name Type Value Description

Enable BOOL T/F Enables scale change at the rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Basevalue DINT 128...255 Scales internal value to external 32 or 16 bit interface.
Used as divider

BIT32_scaler |DINT ANY Scaling factor for external 32 bit interface in panel (ACS-AP-
1), DriveComposer and fieldbus interface. The value is used
as a multiplier.

BIT16_scaler |INT ANY Scaling factor for external 16 bit interface for fieldbus inter-
face. The value is used as a multiplier.

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block enables to change the parameter scaling factor that scales the internal
value for DriveComposer tool, ACS-AP-I panel and fieldbus interface. The initial values of
the scaling factors are defined in ApplicationparameterandEvents manager (APEM) for all
user parameters. The changed parameter scaling applies to all parameters of a specific
family (scaling) defined in APEM.

The rising edge of Enable input implies the parameter scaling change. Group and Index
define the parameter to be changed. The Basevalue scales the internal value to external
32 or 16 bit interface.

The BIT32 _scaler and BIT16_scaler are used as scaling interfaces.

The Erroutput returns an error code if there is an error during the scaling change operation.
If the scaling changes are successful, Err returns a 0.

120 ABB drives system library

External 32-bit scaling

The external 32-bit scaling is used by (ACS-AP-I), Drive Composer and PLC over fieldbus
adapter. If the parameter type is REAL, the number of decimals influence the scaling defined
in

ApplicationparametersandEvents manager or the PAR_DISP_DEC block.

If external value is requested as 32-bit integer, the internal float is scaled to external float
with the same scaling factor and then converted to 32 bit integer with extra numbers for
decimal values, depending on the display format of decimals. For example: The value
1.23456 is displayed as 1.235 if the display format is 3 decimals.

Scaling formula:
BIT32scaler x 10Pecimals
Basevalue

Ezxternalvalue(32bit) = x TECprogramuvariable(internalvalue)

External 16-bit scaling

The external 16-bit scaling is used only for fieldbus interface to fit internal value with higher
number of bits to the 16-bit scale. The 16-bit external value uses its own scaling factor with
no display format for decimals.

Scaling formula:
BIT16scaler

Ezxternalvalue(16bit) = 5 i
asevalue

x TECprogramuvariable(internalvalue)

ABB drives system library 121

Parameter limit change
PAR_LIM_CHG_DINT

Summary

The PAR_LIM_CHG_DINT block enables to change minimum and maximum values (in
DINT data format) of a parameter from the IEC application. The changes in the limit values
apply to all parameters belonging to same parameter family defined in APEM.

PAR_LIM_CHG_DINT
—Enahle Errf—
—Group
—Index
—Min_Val
— Max_Val

Connections

Inputs

Name Type Value Description

Enable BOOL T/IF Enables changing parameter limits at the rising edge
Group INT ANY Parameter group

Index INT ANY Parameter index

Min_Val DINT ANY New minimum value in DINT data format
Max_Val DINT ANY New maximum value in DINT data format
Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter limit values. Group and
Index define the parameter to be changed. The Min_Val and Max_Val are used to set the
new minimum and maximum values of the parameter respectively.

Note:
Make sure that the following conditions are met while defining the minimum and maximum
values:

* The Max_Val must be greater than Min_Val.
* The Min_Val must be lesser than Max_Val.
* Min_Val must not be equal to Max_Val.

Errreturns an error code if there is an error during the limits change operation, for example,
the new limits are beyond the range. If the change operation is successful, Err returns a 0.

122 ABB drives system library

PAR_LIM_CHG_REAL

Summary

The PAR_LIM_CHG_REAL block enables changing the minimum and maximum values (in
REAL data format) of the parameter from the IEC application. The changes in the limit values
apply to all parameters belong to the same parameter family defined in APEM.

PAR_LIM CHG_REAL
Enable Errg—
Group
Index
Min_Wal
Max_Val

Connections

Inputs

Name Type Value Description

Enable BOOL T/IF Enables changing parameter limits at the rising edge
Group INT ANY Parameter group

Index INT ANY Parameter index

Min_Val REAL ANY New minimum value in REAL data format
Max_Val REAL ANY New maximum value in REAL data format
Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter limit values. Group and
Index define the parameter to be changed. The Min_Val and Max_Val are used to set the
new minimum and maximum values of the parameter respectively.

Note:
Make sure that the following conditions are met while defining the minimum and maximum
values:

* Max_Val must be greater than Min_Val
* Min_Val must be lesser than Max_Val
* Min_Val must not be equal to Max_Val

Err returns an error code if there is an error during the limits change operation, for example,
the new limits are beyond the range. If the change operation is successful, Err returns a 0.

ABB drives system library 123

PAR_LIM_CHG_UDINT

Summary

The PAR_LIM_CHG_UDINT block enables changing the minimum and maximum values
(in UDINT data format) of a parameter from the IEC application. The changes in the limit
values apply to all parameters belong to the same parameter family defined in APEM.

PAR_LIM_CHG_UDINT
Enable Errf—
Group
Index
Min_val
Max_\al

Connections

Inputs

Name Type Value Description

Enable BOOL T/IF Enables changing parameter limits at the rising edge
Group INT ANY Parameter group

Index INT ANY Parameter index

Min_Val UDINT ANY New minimum value in UDINT data format
Max_Val UDINT ANY New maximum value in UDINT data format
Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter limit values. Group and
Index define the parameter to be changed. The Min_Val and Max_Val are used to set the
new minimum and maximum values of the parameter respectively.

Note:

Make sure that the following conditions are met while defining the minimum and maximum
values:

* Max_Val must be greater than Min_Val
* Min_Val must be lesser than Max_Val
* Min_Val must not be equal to Max_Val

Errreturns an error code if there is an error during the limits change operation, for example,
the new limits are beyond the range. If the change operation is successful, Err returns a 0.

124 ABB drives system library

Parameter default value change
PAR_DEF_CHG_DINT

Summary

The PAR_DEF_CHG_DINT block enables changing the default values (in DINT data format)
of a parameter from the IEC application. The value changes apply to all parameters of that
specific parameter family defined in APEM.

—Enable
—Group
— Index
—Default

PAR_DEF_CHG_DINT

Err

Connections

Inputs

Name Type Value Description

Enable BOOL TIF Enables changing the default value of a parameter at the
rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default DINT ANY New default value in DINT data format

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter default values. Group and
Index define the parameter to be changed. The input Default is used to set the new default

value of the parameter.

Note:

Define a default value within the minimum and maximum value.

Errreturns an error code if there is an error during the change operation. If the default value
change operation is successful, Errreturns a 0.

ABB drives system library 125

PAR_DEF_CHG_REAL

Summary

The PAR_DEF_CHG_REAL block enables changing the default values (in REAL data
format) of a parameter from the IEC application. The value changes apply to all parameters
of that specific parameter family defined in APEM.

PAR_DEF_CHG_REAL
—1Enahble Errf—
—Group
—Index
—Diefault

Connections

Inputs

Name Type Value Description

Enable BOOL TIF Enables changing the default value of a parameter at the
rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default REAL ANY New default value in REAL data format

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter default values. Group and
Index define the parameter to be changed. The input Default is used to set the new default
value of the parameter.

Note:

Define a default value within the minimum and maximum value.

Errreturns an error code if there is an error during the change operation. If the default value
change operation is successful, Err returns a 0.

126 ABB drives system library

PAR_DEF_CHG_UDINT

Summary

The PAR_DEF_CHG_UDINT block enables changing the default values (in UDINT data
format) of a parameter from the IEC application. The value changes apply to all parameters
of that specific parameter family defined in APEM.

PAR_DEF_CHG_UDINT
Enable Errf—
Group
Index
Default

Connections

Inputs

Name Type Value Description

Enable BOOL TIF Enables changing the default value of a parameter at the
rising edge

Group INT ANY Parameter group

Index INT ANY Parameter index

Default UDINT ANY New default value in UDINT data format

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the changed parameter default values. Group and
Index define the parameter to be changed. The input Default is used to set the new default
value of the parameter.

Note:

Define a default value within the minimum and maximum value.

Errreturns an error code if there is an error during the change operation. If the default value
change operation is successful, Errreturns a 0.

ABB drives system library 127

Parameter decimal display
PAR_DISP_DEC

Summary

PAR_DISP_DEC block enables changing the number of displayed decimals of a parameter
from the IEC application. If one parameter of the family parameter is changed using this
block, then the change applies to all the other parameters of that parameter family.

PAR_DISP_DEC
Enable Errf—
Group
Index
Decimals

Connections

Inputs

Name Type Value Description

Enable BOOL T/F Enables decimal display change at the rising edge
Group INT ANY Parameter group

Index INT ANY Parameter index

Decimals UINT 128...255 Number of decimals to display

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The rising edge of Enable input implies the decimal display change of a parameter. Group
and Index define the parameter to be changed and the input Decimals defines the number
of decimal values to display. If the parameter is in REAL data format, then the value is scaled
for fieldbus interface by scaling factor 10(decimals),

Errreturns an error code if there is an error during a unit change, for example, the unit for
change is beyond the selection range. If the unit selection and change operation is successful,
Errreturns a 0.

128 ABB drives system library

PAR_REFRESH

Summary
PAR_REFRESH block notifies PC tools and panel of any parameter attribute changes.

PAR_REFRESH

— Refresh Errf—
Cntp—

Connections

Inputs

Name Type Value Description

Refresh BOOL TIF Enables refresh at the rising edge
Outputs

Name Type Value Description

Err INT ANY Error output

Cnt UINT ANY Counts the number of refresh activation
Description

The rising edge of Refresh input notifies any parameter changes to PC tools and panel.

WARNING!
Every time you activate the Refresh input in Drive Application Builder, a notification

appears in Drive Composer prompting to refresh the parameters. Click OK to apply
the parameter changes.

Errreturns an error code if the parameter protection is applied successfully, Err returns a
0. The output Cnt increments at every activation of the input Refresh.

ABB drives system library 129

Parameter protection
PAR_PROT

Summary

PAR_PROT block is used to protect individual parameters. The block enables write protection
and hides flags dynamically from the IEC application. The changes do not apply to any other
parameter of the specific family.

PAR_PROT
—Enable Errf—
—Group
—Index
—WE_Prot
—Hide

Connections

Inputs

Name Type Value Description

Enable BOOL T/IF Enables protection change at the rising edge
Group INT ANY Parameter group

Index INT ANY Parameter index

WR_Prot UINT ANY Applies write protection

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ACS-AP-S control panel]

Hide UINT ANY Hides flags

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ACS-AP-S control panel]

Outputs

Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the protection change of a parameter. Group and
Index define the parameter to be changed. The inputs WR_Prot and Hide define the
parameter for write protection and parameter to hide respectively.

Errreturns an error code if there is an error during a parameter protection change. If the
parameter protection is applied successfully, Err returns a 0.

130 ABB drives system library

PAR_GRP_PROT

Summary

PAR_GRP_PROT block is used to protect a parameter group. This block enables write
protection and hides flags dynamically from the IEC application.

PAR_GRP_PROT
—Enable Errf—
—Group
—WR_Prot
— Hide

Connections

Inputs

Name Type Value Description

Enable BOOL TIF Enables protection at the rising edge
Group INT ANY Parameter group

WR_Prot UINT ANY Applies write protection

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ACS-AP-S control panel]

Hide UINT ANY Hides flags

0 = No protection

1 = Human WP [Drive Composer (Pro/Entry) and ACS-AP-
I/ACS-AP-S control panel]

Outputs

Name Type Value Description
Err INT ANY Error output
Description

The rising edge of Enable input implies the protection change of a parameter group. Group
defines the group to be changed. The inputs WR_Prot and Hide define the parameter group
to be write protected and hidden.

Err returns an error code if there is an error during a protection change. If the parameter
group protection is applied successfully, Err returns a 0.

ABB drives system library 131

Parameter read function blocks
ParReadBit

Summary

ParReadBit reads the value of a bit in a packed Boolean type parameter.

ParHeadBit
—Group Cutput -
—Index Errk-
—BitMro

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT ANY Bit number
Outputs

Name Type Value Description
Output BOOL T/IF Output value

Err INT ANY Error output
Description

The function block reads the value of a bit in a packed Boolean type parameter. Group and
Index define the parameter to be read and BitNro defines the number of the bit. The value
of the bit read is returned from Output.

Errreturns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

132 ABB drives system library

ParRead_INT

Summary
ParRead_INT reads the value of a INT/DINT/REAL type parameter.

ParRead_INT
—Group QutputF—
—Index Errf—

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output INT ANY Output value

Err INT ANY Error output
Description

The function block reads the value of a DINT or INT type parameter. Group and Index define
the parameter to be read. The value of the parameter is returned from Output. The type of
output is INT even if the parameter to be read is of the DINT/REAL type.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

ABB drives system library 133

ParRead_DINT

Summary
ParRead_DINT reads the value of a DINT/INT type parameter.

ParRead_DINT
—Group Cutput -
—Index Errk

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output DINT ANY Output value

Err INT ANY Error output
Description

The function block reads the value of a DINT or INT type parameter. Group and Index define
the parameter to be read. The value of the parameter is returned from Output. The type of
Output is DINT even if the parameter to be read is of the INT type.

Errreturns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

134 ABB drives system library

ParRead_REAL

Summary

ParRead_REAL reads the value of a REAL type parameter.

ParRead_REAL
—Group Cutput
—Index Err

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output REAL ANY Output value

Err INT ANY Error output
Description

The function block reads the value of a REAL type parameter. Group and Index define the
parameter to be read. The value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

ABB drives system library 135

ParRead_UDINT

Summary
ParRead_UDINT reads the value of a UDINT/UINT type parameter.

ParRead_UDINT
—Group Cutput -
—Index Errk

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output UDINT ANY Output value

Err INT ANY Error output
Description

The function block reads the value of UDINT or UINT type parameter. Group and Index
define the parameter to be read. The value of the parameter is returned from Output. The
type of the output is UDINT even if the parameter to be read is of the UINT type.

Errreturns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

136 ABB drives system library

Parameter write function blocks
ParWriteBit

Summary

ParWriteBit writes a value to a bit of the packed Boolean type parameter.

Parwnitebit
—Input Errt-
—Group
—Index
—BitMro
—Stare

Connections

Inputs

Name Type Value Description
Input BOOL TIF Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
BitNro INT ANY Bit number
Store BOOL TIF Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected bit of a packed Boolean type
parameter. Group and Index define the parameter to be written and BitNro define the number
of the bit. Store defines if the current written value of the parameter is stored to the flash
memory. During the power up of the drive, the value of the parameter is set to the latest
stored value.

Err returns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is successful,
Errreturns a 0.

ABB drives system library 137

ParWrite_DINT

Summary
ParWrite_DINT writes a value to a REAL/DINT/INT type parameter.

ParWnite_DINT
—Input Errt
—Group
—Index
— Stare

Connections

Inputs

Name Type Value Description
Input DINT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/IF Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected DINT or INT type parameter.
The type of the Input is DINT even if the parameter to be written is of the INT/REAL type.
Group and Index define the parameter to be written. Store defines if the current written value
of the parameter is stored to the flash memory. During the power-up of the drive, the value
of the parameter is set to the latest stored valued.

Errreturns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

138 ABB drives system library

ParWrite_INT

Summary
ParWrite_INT writes a value to an INT/DINT/REAL type parameter.

ParWrite_INT
—{Input Errf—
—Group
—Index
—Store

Connections

Inputs

Name Type Value Description
Input INT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL TIF Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected INT type parameter. The type of
the Input is INT even if the parameter to be written is of the DINT/REAL type. In case of
application parameter, select 16-bit interface support.

Group and Index define the parameter to be written. Store defines if the current written value
of the parameter is stored to the flash memory. During the power up of the drive, the value
of the parameter is set to the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is successful,
Errreturns a 0.

ABB drives system library 139

ParWrite_ REAL

Summary

ParWrite_REAL writes a value to a REAL type parameter.

Parwnite_REAL
—Input Errf-
—Group
—Index
—{Stare

Connections

Inputs

Name Type Value Description
Input REAL ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL T/IF Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected REAL type parameter. Group
and Index define the parameter to be written. Store defines if the current written value of
the parameter is stored to the flash memory. During the power up of the drive, the value of
the parameter is set to the latest stored value.

Errreturns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is successful,
Errreturns a 0.

140 ABB drives system library

ParWrite_UDINT

Summary
ParWrite_UDINT writes a value to a UDINT/UINT type parameter.

Parwnite_UDINT
—Input Errf-
—Group
—Index
—Store

Connections

Inputs

Name Type Value Description
Input UDINT ANY Input value
Group INT ANY Parameter group
Index INT ANY Parameter index
Store BOOL TIF Store input
Outputs

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected UDINT or UINT type parameter.
The type of Input is UDINT even if the parameter to be written is of the UINT type. Group
and Index define the parameter to be written. Store defines if the current written value of
the parameter is stored to the flash memory. During the power up of the drive, the value of
the parameter is set to the latest stored value.

Errreturns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is successful,
Errreturns a 0.

ABB drives system library 141

Pointer parameter read function block
ParRead_BitPTR

Summary
ParRead_BitPTR reads the pointed bit value from a bit pointer type parameter.

ParHead BEiiFTR
—Group Output
—Index Errf-

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output BOOL ANY Output value

Err WORD ANY Error output
Description

The function block reads the pointed value of a bit pointer type parameter. Group and Index
define the pointed parameter to be read. The pointed value of the parameter is returned
from Output.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

142 ABB drives system library

ParRead_ValPTR_DINT

Summary
ParRead_ValPTR_DINT reads a pointed DINT/INT value from a value pointer type parameter.

ParRead_ValFTH_DINT
Group Output
Index Errk-

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output DINT ANY Output value

Err INT ANY Error output
Description

The function block reads the pointed value of a DINT or INT pointer type parameter. Group
and Index define the pointed parameter to be read. The pointed value of the parameter is
returned from Output. The type of Output is DINT even if the parameter type is INT.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

ParRead_ValPTR_REAL

Summary

ABB drives system library 143

ParRead_ValPTR_REAL reads a pointed REAL value from a value pointer type parameter.

Group
Index

ParHead_ValPFTR_REAL

Output
Err

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output REAL ANY Output value

Err INT ANY Error output
Description

The function block reads the pointed value of a REAL pointer type parameter. Group and
Index define the pointed parameter to be read. The pointed value of the parameter is returned

from Output.

Errreturns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

144 ABB drives system library

ParRead_ValPTR_UDINT

Summary

ParRead_ValPTR_UDINT reads a pointed UDINT/UINT value from a value pointer type
parameter.

ParHead_ValFTH_UDINT
Group Output
Index Errk-

Connections

Inputs

Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs

Name Type Value Description
Output UDINT ANY Output value

Err INT ANY Error output
Description

The function block reads the pointed value of a UDINT or UINT pointer type parameter.
Group and Index define the pointed parameter to be read. The pointed value of the parameter
is returned from Output. The type of Output is UDINT even if the parameter type is UINT.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is successful,
Errreturns a 0.

GetPtrParConf

Summary

ABB drives system library 145

GetPtrParConf shows the source parameter settings. Source parameter must be value
pointer, bit pointer or formatted number (parameterindexFB).

GetPtrParConf
—5 _Group
—5_Index

Err

5 Type
T_Group
T_Index
BitNro
ListIdx

Format

Connections

Inputs
Name Type Value Description
S _Group INT ANY Parameter group
S_Index INT ANY Parameter index
Outputs
Name Type Value Description
Err INT ANY Error output
0=0K
3 = Invalid mapping index
S_Type INT 0-6 Source parameter type:
0 = Unsigned 16-bit integer
1 = Signed 16-bit integer
2 = Unsigned 32-bit integer
3 = Signed 32-bit integer
4 = 32-bit Value pointer
5 = 32-bit Floating pointer
6 = 32-bit Bit pointer
T_Group INT ANY Destination parameter group.
T_Index INT ANY Destination parameter index.
BitNro INT 0-31 Bit number, when bit mapping is used.
Listldx INT 0-N Index of list, when list is used.
Format INT 0-5 Shows the selected type of mapping (external interface).
Not available (0)
u32MAPFLAG_I116 (1)
u32MAPFLAG_U16 (2)
u32MAPFLAG_FLOAT (3)
u32MAPFLAG 132 (4)
u32MAPFLAG_U32 (5)

Description

146 ABB drives system library

The block shows the source parameter settings.

If the source parameter type is formatted number/parameterindexFB, then the parameter
supports additional selection dialog (Other) in tools (selection list), where external interface
selection can be changed. Format pin is showing the selection.

Based on this information (16bit/32bit/Float), original destination parameter(s) can be
referenced by other blocks.

This is useful for example in cases, where the same destination parameter has different
scaling factors, depending on mapped data type (16 bit or 32 bit).

Note that this selection is not affecting into interface, which is used by source parameter
and in case the source parameter is application parameter with option formatted
number/parameterindexFB, it cannot be directly used by any other blocks.

When value pointer type source parameter is mapped into some destination parameter,
T _Group and T_Index shows the destination parameter.

If the source parameter points into application variable, it cannot be mapped. All the other
outputs are 0.

If the source parameter (parameterindexFB) is supporting external interface settings with
Set pointer parameter/other, then the Format shows the selected external interface.

If the source parameter is mapped into list, then T_Group, T_Index shows the parameter,
which corresponds the list member. BitNro shows selected bit, and Listldx shows the selected
list index.

If the list member represent constant value, then T_Group = 0. T_index shows either 1 (list
member =TRUE) or 0O (list member=FALSE) value.

If the source parameter is mapped into bit (BitPtr), then BitNro shows selected bit number.
T _Group, T_Index indicates the destination parameter.

If the source parameter is mapped into formatted number with display format
parameterindexFB, then S_Type is NUMTYPE _u32 (2) and Format shows the selected
external interface.

Avoid to put this block into the fast cycle and keep the amount of blocks (instances) to
minimum.

ABB drives system library 147

Set pointer parameter to IEC variable function blocks

Note:

The old applications which are using these blocks of the earlier system library version
(1.9.0.x) must be updated to the new library version (1.9.1.0.) Otherwise the application
loading fault xxx occurs (aux code : 0x800A). You can also notice that the old
Par_set_ValPtr_IEC_xx are storing the value by default and new block must have store
input TRUE to have equal function. However it is not recommend to use Store option if the
value is changed repeatedly.

ParSet_BitPTR_IEC

Summary

ParSet_BitPTR_IEC sets a bit pointer parameter to point to a bit type IEC variable.

ParSet_BitPTR_IEC
Group Errp—
Index
BitNrao
Stare
IEC War

Connections

Inputs

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

BitNro INT 0 Bit setting is not supported.

Store BOOL T/F New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

IEC_Var BOOL TIF IEC variable

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a bit pointer type parameter to point to an IEC variable of the Boolean
type, that is, the IEC variable overwrites the value of the bit pointer. The parameter to point
must be bit pointer type. Group and Index define the parameter. The BitNro input must be
set to zero since (at least in this library version) the type of IEC_Var must be Boolean and
bit pointer type parameter. Therefore the bit number cannot be chosen. The Store pin is
used to save the pointer setting to the drive permanent memory. During next power up, the
drive memorizes the setting. The IEC_Var input is the IEC variable to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is successful,
then the Errreturns a 0.

148 ABB drives system library

ParSet_ValPTR_IEC_DINT

Summary

ParSet_ValPTR_IEC_DINT sets a value pointer parameter to point to a DINT type IEC
variable.

ParSet_ValPTR_IEC_DINT
Group Errf—
Index
Store
IEC_Var

Connections

Inputs

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL TIF New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

IEC_Var DINT ANY IEC variable

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point an IEC variable of the DINT
type, that is, the IEC variable value overwrites the value of the value pointer. The parameter
to point must be a value pointer to the DINT or INT type. Group and Index define the
parameter. The Store pin is used to save the pointer setting to the drive permanent memory.
During next power up, the drive memorizes this setting. The IEC_Varinputis the IEC variable
to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is successful,
Errreturns a 0.

ParSet_ValPTR_IEC_REAL

Summary

ABB drives system library 149

ParSet_ValPTR_IEC_REAL sets a value pointer parameter to point to a REAL type IEC

variable.

Group
Index
Stare
IEC_War

ParSet_ValPTR_IEC_REAL

Err

Connections

Inputs

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL T/IF New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

IEC_Var REAL ANY IEC variable

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point to an IEC variable of the
REAL type, that is, the IEC variable value overwrites the value of the value pointer. The
parameter to point must be a value pointer to the REAL type. Group and Index define the
parameter. The Store pin is used to save the pointer setting to the drive permanent memory.
During next power up, the drive memorizes this setting. The /EC_Varinput is the IEC variable

to be pointed.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is successful,
Errreturns a 0.

150 ABB drives system library

ParSet_ValPTR_IEC_UDINT

Summary

ParSet_ValPTR_IEC_UDINT sets a value pointer parameter to point to a UDINT type IEC
variable.

ParSet_ValPTR_IEC_UDINT
Group Errf—
Index
Stare
IEC Var

Connections

Inputs

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Store BOOL TIF New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

IEC_Var UDINT ANY IEC variable

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer type parameter to point an IEC variable of the UDINT
type, that is, the IEC variable value overwrites the value of the value pointer. The parameter
to point must be a value pointer to the UDINT or UINT type. Group and Index define the
parameter. The Store pin is used to save the pointer setting to the drive permanent memory.
During next power up, the drive memorizes this setting. The IEC_Varinputis the IEC variable
to be pointed.

Err returns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is successful,
Errreturns a 0.

ABB drives system library 151

Set pointer parameter to parameter function blocks
ParSet_BitPTR_Par

Summary

ParSet_BitPTR_Par sets a bit pointer parameter to point to a bit of a packed Boolean
parameter.

ParSet_BitPTR_Par
—5 Group Errf—
—5_Index
—5 BitNro
—T_Group
—T_Index
—5tare

Connections

Inputs

Name Type Value Description

S_Group INT ANY Source parameter group

S_Index INT ANY Source parameter index

S_BitNro INT ANY Source bit number

T_Group INT ANY Target parameter group

T _Index INT ANY Target parameter index

Store BOOL T/IF New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a bit pointer parameter to point to a bit of a packed Boolean type
parameter. S_Group and S_Index define the parameter to be pointed (the source) and
S_BitNro defines the number of the bit. T_Group and T_Index define the pointer parameter
(the target) which points to the source parameter. The target parameter must be a Bit Pointer
type and the source parameter must be a packed Boolean type. The Store pin is used to
save the pointer setting to the drive permanent memory. During next power up, the drive
memorizes this setting.

Errreturns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is successful,
Errreturns a 0.

152 ABB drives system library

ParSet_ValPTR_Par

Summary

ParSet_ValPTR_Par sets a value pointer parameter to point to a value parameter.

—5_Group
—5_Index

—T_Group
—T_Index

—5tare

Parset_ValPTR_Par

Err

Connections

Inputs

Name Type Value Description

S_Group INT ANY Source parameter group

S_Index INT ANY Source parameter index

T_Group INT ANY Target parameter group

T_Index INT ANY Target parameter index

Store BOOL TIF New value is stored to permanent memory of the drive.
Default is FALSE, but no storing.

Outputs

Name Type Value Description

Err INT ANY Error output

Description

The function block sets a value pointer parameter to point to a value parameter. S_Group
and S_/Index define the parameter to be pointed (the source). T_Group and T_Index define
the pointer parameter (the target) which points to the source parameter. The target parameter

must be a pointer parameter of the same type as the source parameter which must be a

value parameter. The Store pin is used to save the pointer setting to the drive permanent

memory. During next power up, the drive memorizes this setting.

Err returns an error code if there is an error during the set operation, for example, the

parameter is not found or it is a parameter of a wrong type. If the set operation is successful,

Errreturns a 0.

ABB drives system library 153

System time function blocks
SYS_TIME

Summary

SYS_TIME block returns to the previously set system date, time (broken time) and source.

SYS_TIME
—Enahble Errf—
—ExeCycle st_hourf—
st_minf—
st_secf—
st_yearf—
st_monf—
st_dayp—
st_wdayp—
st_TimeSrcp—
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enable/disable block execution (level sensitive).
ExeCycle INT ANY Execution cycle of this clock. Not used so far, leave uncon-
nected.
Outputs
Name Type Value Description
Err INT ANY Enable = 0, Err = 1. Otherwise the value must be 0.
st_hour, ..., UINT ANY Calendar time.
st_day
st_wday UINT 1.7 Day of the week. 1 = Monday, 7 = Sunday
st_TimeSrc UINT 0..13 Source where the time has been set last.
Description

The function block use the time as the parameters 96.24...96.26, separated for easy use.

To reduce

the application overload (quota), set Enable pin to TRUE to get the time, otherwise

set it to FALSE. You can put the block into slowest possible execution cycle like 500 ms.
Do not use several instances of this block, only one per application.

The possible time sources given by output st_TimeSrc are:
Value Description
0 Drive is maintaining its own Drive On Time.
1 User’s panel example, ACS-AP-I or DCP tool.
2 F-type of fieldbus module A.
3 D2D communication master.
4 ACS800M automation PLC via CI858, Modulebus.
5 System real time clock (RTC).

154 ABB drives system library

Value Description

6 F-type of fieldbus module B.

7 Embedded fieldbus.

8 Ethernet port in BCU (ABB SAP).

9 -

10 Drive composer tool in Ethernet link (ABB SAP).
1 INU-ISU link.

12 Master follower link.

13 Time via date and time parameters.

The figure below shows an example of SYS_TIME function block, where the drive time is
set by system RTC (real time clock).

(T e o el Cmer

ExeCycle st_hour 5 hﬂ'-' -
st_min St_man |
51_sec st_sec a

5
st_year 51 year I]
&1_mon 5t =
at_day = _!L-ﬂ%:_‘
st_wday r—| sl_wiay L«I—I

"y
st TimeSeeb———1 st sre =

ABB drives system library 155

SYS_TIME_UDINT

Summary

SYS_TIME_UDINT returns to the previously set system date and time (raw time) in native
format (1s units) and source.

SYS_TIME_UDINT
—Enable Errf—
—StartYear TimeUDINTF—
Timesrcf—

Connections

Inputs

Name Type Value Description

Enable BOOL T/IF Enable/disable block execution (level sensitive).
Start year UINT ANY Not used so far, leave unconnected.

Outputs

Name Type Value Description

Err INT ANY Enable = 0, Err = 1. Otherwise the value must be 0.
TimeUDINT UINT ANY Raw time (native time) in 1s units.

TimeSrc UINT 0...13 Source where the time has been set last.
Description

To reduce the application overload (quota), set Enable pin to TRUE to get the time, otherwise
set it to FALSE. You can put the block into slowest possible execution cycle like 500 ms
(exp.Task_3). Do not use several instances of this block.

The block is intended to use together with (raw) time manipulative blocks like UDINT_TO_DT
and UDINT_TO_DATE, which will convert (raw) time into IEC standard formats.

The possible time sources given by output TimeSrc are:

Value Description

0 Drive is maintaining its own Drive On Time.

1 User’s panel example, ACS-AP-I or DCP tool.
2 F-type of fieldbus module A.

3 D2D communication master.

4 ACS800M automation PLC via CI858, Modulebus.
5 System real time clock (RTC).

6 F-type of fieldbus module B.

7 Embedded fieldbus.

8 Ethernet port in BCU (ABB SAP).

9 -

156 ABB drives system library

Value Description

10 Drive composer tool in Ethernet link (ABB SAP).
1 INU-ISU link.

12 Master follower link.

13 Time via date and time parameters.

The below figure shows an example of SYS_TIME_UDINT function block, where the time
is set by target RTC (real time clock).

Exprésia Type Valug Prepared value
+ @512 S5 _TIME_UDINT
enalll Bt | True |
Emii INT 3
sAC UNT 5
OTO1 DATE_AND_TIME OTe2004-1-23-8:58:13
datedl DATE Celii4-1-1
* RawTime UDINT 1390467513
m
E!lmg: .
<11 . -
CTIME UT] | -
[Esr| 1 =
SeartYear TimeUDINT| -
TimnaSre
?E“'-IT?E ! 0T 1

ABB drives system library 157

Task time level function block

UsedTimelLevel

Summary

UsedTimeLevel block shows the time level (ms) of the program (task execution cycle) where
the function block is located.

UzedTimeleve

Output

Connections

Inputs

Name Type

Value

Description

NONE

Outputs

Name Type

Value

Description

Output INT

ANY

Used time level in ms

Description

The function block shows the time level of the program (task cycle) in which the particular
function block is located. Output gives the time level in milliseconds.

158 ABB drives system library

Error codes

The following list gives the most common error codes related to the function blocks of the
ABB drives system library. The error codes are received from the Err output and they indicate
if there is an error during the performance of the function block.

Error code Error code number Description

e_success 0 (hex 0) Success, no error.
e_WriteProtected 4 (hex 4) The parameter is write-protected.
e_Hidden 5 (hex 5) The parameter is hidden.
e_illegalOperation 6 (hex 6) lllegal operation, for example, the

parameter type is incorrect.

e_lowLimit 9 (hex 9) Parameter minimum value is ex-
ceeded.

e_highLimit 10 (hex A) Parameter maximum value is ex-
ceeded.

e_noValuelnList 11 (hex B) No value in the list.

e_parNotFound 13 (hex D) The parameter is not found.

e_OutsidelndexArea 774 (hex 306) Outside index area.

e_OverlLappingGroup 775 (hex 307) Overlapping group.

e_UffError 777 (hex 309) UFF error.

ABB D2D function blocks 159

ABB D2D function blocks

Contents of this chapter

This chapter contains detailed information of the drive to drive (D2D) communication function
blocks of the ABB drives D2DComm library AY2LB _D2DComm_ACS880 V3 5.

Introduction to ABB D2D function blocks

The ABB D2D function blocks are intended to use with the ACS880 drives. It provides drive
to drive communication and drive to drive configuration function blocks for application
programming in the Drive Application Builder environment. The description of the features
in this document is based on the ABB drives D2D communication library version 1.9.0.2.

Note:

In the Drive Composer Pro system information, make sure that the drive is installed with
the corresponding system library. In System info, the D2DComm library version is located
under the Products/ More view. The D2DComm library versions must be same in the drive
and the application program project.

160 ABB D2D function blocks

D2D communication library

Function block name

Description

Data read/write

DS_ReadLocal

Reads data from the local dataset.

DS_WriteLocal

Writes data to local dataset.

Drive to drive communic

ation

D2D_TRA Transmits data to a remote drive.

D2D_REC Receives data from the remote drive.
D2D_TRA_REC Transmits and receives data from the remote drive.
D2D_TRA_MC Transmits multicast messages to group of drives.

Drive to drive configurat

ion

D2D_Conf

Configures token management on master drive.

D2D_Conf_Token

Configures the node related transmission cycle of token on master drive.

D2D_Master_State

Returns status of master drive connected with D2D link, except its own status.

D2D block error codes

Bit | Value Description

0 D2D_MODE_ERR D2D is not active or message type is not supported in current D2D mode
(Master/ Follower).

1 LOCAL_DS_ERR Local dataset number out of range (1...255).

2 TARGET_NODE_ERR Target node out of range 1...62.

3 REMOTE_DS_ERR Remote dataset number out of range (128...255).

4 MSG_TYPE_ERR Unsupported message type (value out of range 0...5).

5 TOO_SHORT_CYCLE Communication overload (short token cycle).

6 INVALID_INPUT_VAL Input value out of range (Target node and/or cycle time).

7 GENERAL_D2D _ERR Some unspecified error situation in D2D driver.

8 RESPONSE_ERR Syntax error in the received response.

9 TRA_PENDING Message not sent.

10 | REC_PENDING Response not received.

11 | REC_TIMEOUT No response received.

12 | REC_ERROR Frame error in reception.

13 | REJECTED Message has been removed from the transmit buffer.

14 | BUFFER_FULL Transmit buffer is full.

15 | D2D_NOT_SUPPORTED | Target is not supporting D2D.

ABB D2D function blocks 161

Data read/write blocks
DS ReadLocal

Summary

DS_ReadLocal block reads the dataset value from the local dataset table. The 48-bit dataset
composes of 16-bit and 32-bit parts. The 32-bit part is available both in DWORD or REAL
data formats in the function block output. The input is a pointer to the actual data.

0% _ReadLocal
Lo canl Drs N Effar
Out1_16bit
Out2_32bit
Qut2_32bitReal

The dataset composes of three words in the output:
+ 16-bit (WORD)

+ 32-bit (DWORD or REAL)

Connections

Inputs

Name Type Value Description

LocalDsNr UINT 1...255 Local dataset number

Outputs
Name Type Value Description
Error UDINT | ANY Error output
Out1_16bit WORD | ANY 16-bit part of the dataset in WORD format
Out2_32bit DWORD | ANY 32-bit part of the dataset as DWORD format
Out2_32bitReal REAL ANY 32-bit part of the dataset as REAL format

Description

The function block reads the local dataset value from the local dataset table. LocalDsNr
defines the local dataset number.

* Output Out1_16bit returns the first 16-bit of dataset as WORD data.

* Output Out2_32bit returns 32-bit part of dataset as DWORD data.

* Output Out2_32bitReal returns 32-bit part of dataset as REAL data.

Error returns an error code if there is an error during the read operation, for example, the

dataset is not found or if the dataset is beyond the dataset number range of 1...255. If the
read operation is successful, Error returns a 0.

162 ABB D2D function blocks

DS_WriteLocal

Summary

DS_WriteLocal block writes data to local dataset. The 48-bit dataset composes of 16-bit
and 32-bit parts. Inputs are pointers to actual data.

DS_WriteLocal
—iLocaDshr Emor—
—ipDataln]_1&0it
—jpDataln2_32nit
Connections
Inputs
Name Type Value Description
LocalDsNr UINT 128...255 Local dataset number
pDataln1_16bit WORD - Pointer to 16-bit value
POINTER
pDataln2_32bit DWORD - Pointer to 32-bit data (REAL, DWORD)
POINTER
Outputs
Name Type Value Description
Error UDINT | ANY Error output
Description

The DS_WriteLocal function writes data to the local dataset. LocalDsNr defines the local
dataset number from 128...255. The input data of 16-bit and 32-bit is connected to the
pointer inputs pDataln1_16bit and pDataln2_32bit respectively using the ADR operand.

Note:

The data set numbers 128...255 are reserved for application programming. However, you
can set the data set numbers 1...127. There is risk of conflict with firmware dataset.

Error returns an error code if there is an error during the write operation, for example, the
dataset is not found or if the dataset is beyond the dataset number range of 128...255. If
the write operation is successful, Error returns a 0.

ABB D2D function blocks 163

D2D communication blocks

General

The D2D_TRA, D2D_REC and D2D_TRA_REC blocks can be used only in a master drive.
These blocks can work independently without token configuration. The D2D_TRA_MC block
can be used in both master and follower drives. When D2D_TRA_MC block is used in a
follower drive, the token send configuration must be done using D2D_Conf_Token and
D2D_Conf blocks.

The D2D_Master_State block can be used without token configuration in both the master
and follower drives as well as the local dataset blocks DS_ReadLocal and DS_WriteLocal.

D2D_TRA

Summary

D2D_TRA block sends data from a Master drive to a remote Follower drive. The 48-bit data
composes of 16-bit and 32-bit parts. The input data is directly given to the function block
inputs, so local datasets are not required.

D20 _TRA
Enable Errarb—
Pri SendMegCnt—
RemateMode
Remotelshs
phatalnl_16hit
pDatﬂ]rl-Hblt
Connections
Inputs
Name Type Value Description
Enable BOOL T/IF Enables/disables sending data.
Pri UINT 1/2 Defines the priority of sending data; Standard (1) or
Low priority (2).
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128...255| Defines the remote drive dataset number.
pDataln1_16bit WORD - Pointer to 16-bit value.
POINTER
pDataln2_32bit DWORD - Pointer to 32-bit data (REAL, DWORD).
POINTER
Outputs
Name Type Value Description
Error UDINT ANY Error output.

SendMsgCnt UDINT ANY Counts successfully transmitted messages.

164 ABB D2D function blocks

Description

The D2D_TRA function sends application variables data from the master drive to a remote
follower drive. The Enable input enables or disables sending data. At the rising edge of
Enable input Pri, RemoteNode and RemoteDsNr are used. The input Pri defines the priority
of data transmission.

« Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

* Low priority (2): The priority is set to Low priority if slow response is required. It is possible
to execute up to 64 blocks in the same cycle.
* 10 ms cycle time - 10 blocks are executed

* 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively, where the data is sent and stored. The input data of 16-bit and 32-bit
is connected to the pointer inputs pDataln1_16bit and pDataln2_32bit respectively using
ADR operand.

Error blocks input values and operation status if there is an error while sending data. If data
is sent successfully, Error returns a 0. The SendMsgCount tracks the number of successfully
sent messages.

For details of how data is sent in WORD and REAL data format to remote drive, see section
Example 1: D2D _TRA /D2D _REC blocks.

ABB D2D function blocks 165

D2D_REC

Summary

D2D_REC block enables the master drive to receive data from a remote follower drive. The
block receives one 48-bit dataset from the follower dataset table. The response is available
at the output signals in 16-bit and 32-bit parts. An additional 32-bit data is available in REAL
format as own output.

D2D_REC
—Enable Errorf—
—Pri RcwMsgCntf—
—RemoteMode Qutl_16bit}—
—RemoteDsNr Qut?_32bit}—
—suspendMode Out?_32bitRealf—
Connections
Inputs
Name Type Value Description
Enable BOOL T/F Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or
Low priority (2).
RemoteNode UINT 1..62 Defines the remote drive node address.
RemoteDsNr UINT 128...255| Defines the remote drive dataset number.
SuspendMode UINT 0N Defines the behaviour of the application task whether
the D2D message is sent.
0 = message not sent
1 = message sent
Outputs
Name Type Value Description
Error UDINT ANY Error output.
RcvMsgCnt UDINT ANY Counts successfully received messages
Out1_16bit WORD ANY 16-bit dataset output value
Out2_32bit DWORD ANY 32-bit dataset output value
Out2_32bitReal REAL ANY 32-bit dataset output value in Real format.
Description

The D2D_REC block receives data from the remote drive. The Enable input enables or
disables receiving data. At the rising edge of Enable input, the inputs Pri, RemoteNode,
RemoteDsNr and SuspendMode are used. The input Pri defines the priority of receiving
data.

» Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

166 ABB D2D function blocks

* Low priority (2): The priority is set to Low priority if slow response is required. It is possible
to execute up to 64 blocks in the same cycle.

* 10 ms cycle time - 10 blocks are executed
* 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively. The remote node number is set using parameter 60.02 in the ACS880
Primary Control Program. The input SuspendMode defines the behavior of the application
task whether the intended message is sent.

0 = continues actual application task execution

1 = indicates that actual application task execution is pending to send messages and to
receive response of messages sent.

Error blocks input values and operation status if there is an error while receiving data. If
receiving data is successful, Error returns a 0. The RevMsgCount tracks the number of
successfully received messages.

The 16-bit and 32-bit data at the output returns from Out1_16bit and Out2 _32bit respectively.
The 32-bit data of real data format returns from Out2_32bitReal.

For details of receiving data to master drive, see section Example 1: D2D _TRA/D2D REC
blocks.

D2D_TRA_REC

Summary

ABB D2D function blocks 167

D2D_TRA_REC block enables the master drive to send and receive data from the remote
drive. The 16-bit and 32-bit parts of the dataset are defined in the corresponding pointer
type inputs. The response is available at the output signal in 16-bit and 32-bit parts. An
additional 32-bit data is available in REAL format as own output.

D20 _TRA_REC
—Enable Error
—pr SendMsglnt
—RemoteNode Outl_16hit
—RemokeDshr Out2_32bit
—pDatalnl_16bit Out2_32bitReal
—{pDataln2_32bit
Connections
Inputs
Name Type Value Description
Enable BOOL T/IF Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or
Low priority (2).
RemoteNode UINT 1...62 Defines the remote drive node address.
RemoteDsNr UINT 128...255| Defines the remote drive dataset number.
pDataln1_16bit WORD ANY 16-bit value connecting through ADR block.
POINTER
pDataln2_32bit DWORD ANY 32-bit integer or real value connecting through ADR
POINTER block.
Outputs
Name Type Value Description
Error UDINT ANY Error output.
SendMsgCnt UDINT ANY Counts successfully transmitted messages
Out1_16bit WORD ANY 16-bit dataset output value
Out2_32bit DWORD ANY 32-bit dataset output value
Out2_32bitReal REAL ANY 32-bit dataset output value in Real format.

Description

The D2D_TRA_REC block sends data from the master drive and receives data from the
remote drive. The Enable input enables/disables sending or receiving data. At the rising
edge of Enable input, the inputs Pri, RemoteNode and RemoteDsNr are used. The input
Pri defines the priority of receiving data.

168 ABB D2D function blocks

« Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

* Low priority (2): The priority is set to Low priority if slow response is required. It is possible
to execute up to 64 blocks in the same cycle.
* 10 ms cycle time - 10 blocks are executed
* 100 ms cycle time - 64 blocks are executed

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively. The response data is read from the dataset number RemoteDsNr+1
of the remote drive. The data is selected using pointer inputs pDataln1_16bit and
pDataln2_32bit.

Error blocks input values and operation status if there is an error while sending or receiving
data. If sending or receiving data is successful, Errorreturns a 0. The SendMsgCount tracks
the number of successfully sent messages.

The 16-bit and 32-bit data at the output returns from Out1_16bit and Out2_32bit respectively.
The additional output Out2_32bitReal returns 32-bit data in REAL data format.

ABB D2D function blocks 169

D2D_TRA_MC

Summary

D2D_TRA_MC block enables the drive (Master or Follower) to send multicast messages
to a group of drives. The block also allows sending follower to follower point to point
messages.

D20 _TRA_MC
—IEnabft Errort—
—iPT SendMsgCntp—
—MultiCast Type
—HBampteNade
== ReEmotelishr

—piatalal_16ba
—pDatala2 32bit

The multicast address is defined in the D2D_Conf block.

Connections

Inputs
Name Type Value Description
Enable BOOL T/IF Enables/disables receiving data.
Pri UINT 1/2 Defines the priority of receiving data; Standard (1) or
Low priority (2).
MultiCastType UINT 01 Allows sending multicast message types.
RemoteNode UINT 1..62 Defines the remote drive node address.
RemoteDsNr UINT 128...255| Defines the remote drive dataset number.
pDataln1_16bit WORD ANY 16-bit value connecting through ADR block
POINTER
pDataln2_32bit DWORD ANY 32-bit integer or real value connecting through ADR
POINTER block
Outputs
Name Type Value Description
Error UDINT ANY Error output.
SendMsgCnt UDINT ANY Counts successfully transmitted messages
Description

The D2D_TRA_MC block sends multicast messages to a group of drives. It is possible for
the Master drive to receive messages from the Follower driver. For sending point to point
messages or standard multicast messages, the Follower drives need token messages from
the Master drive.

The Enable input enables/disables sending data. At the rising edge of Enable input the
inputs Pri, MultiCastType, RemoteNode and RemoteDsNr are used.

170 ABB D2D function blocks

The input Pri defines the priority of receiving data.

« Standard (1): The priority is set to Standard if fast response (2 ms) is required. However,
maximum of 2 blocks can be executed in the same cycle.

* Low priority (2): The priority is set to Low priority if slower response is sufficient. Up to
64 blocks can be executed in the same cycle.

* 10 ms cycle time - 10 blocks are executed
* 100 ms cycle time - 64 blocks are executed

The input MultiCastType enables sending multicast messages of 3 different types:
* Follower point to point transmit (3)

+ Standard Multicast (4): This message type requires all Follower/Master drives to have
a corresponding multicast address equal to the RemoteNode.

* Broadcast (5): In this message type all drives in the drive to drive link receive the
message including the Master drive. In this mode, the input RemoteNode must be set
to 255.

The inputs RemoteNode and RemoteDsNr define the remote drive node address and dataset
number respectively. The data is selected using pointer inputs pDataln1_16bit and
pDataln2_32bit.

Error blocks input values and operation status if there is an error while sending or receiving
data. If sending or receiving data is successful, Errorreturns a 0. The SendMsgCount tracks
the number of successfully sent messages.

ABB D2D function blocks 171

D2D configuration blocks
D2D Conf

Summary

D2D_Conf block configures token management on the master drive. The D2D_Conf_Token
block must be executed before the D2D_Conf block because configuration data is built
based on the node data in D2D_Conf_Token block.

D2D_Conf
—Enable Error
—{MCastGrp
— TokenTamCyde
Connections
Inputs
Name Type Value Description
Enable BOOL T/IF Enables/disables configuration data in Master
drive.
The value FALSE stops sending token from
master to follower(s).
MCastGrp UINT - Defines multicast group address.
TokenTxmCycle UINT 1000...10000 | Sends the interval of token message.
0 =indicates that current configuration is removed
Outputs
Name Type Value Description
Error UDINT ANY Error output.
Description

The D2D_Conf block is intended to execute only once, and for this reason, the block should
be assigned to Pre_Task. However, the block can be assigned to any task. In cyclic tasks,
the Enable input controls the execution, including run time configuration.

The configured data is effective on the master drive after enabling the D2D_Conf block.
The Enable input enables/disables the configuration data on the master drive. The rising
edge of Enable input triggers the configuration setup. The next rising edge overwrites the
Enable input of D2D_Conf_Token block, even if it is set to FALSE.

The input TokenTxmCycle is the base transmission cycle of token. The node related
transmission cycle is attained by multiplying this value set in the D2D_Conf_Token block.

Error blocks input values and operation status if there is an error in the configuration data.
If the configuration is successful, Error returns a 0.

Master use

The master drive has a message queue to handle cyclic transmission of the token messages
to follower drive. This queue can hold maximum 64 token messages. The standard multicast
group of master drive (address) is defined by the input MCastGrp.

172 ABB D2D function blocks

Follower use

In the follower drive, only the multicast group (MCastGrp) can be defined and the
TokenTxmCycle is not used. The master drive transmit the token messages to follower
drives. After receiving a token, the follower is able to transmit a message from the D2D
message queue.

For example of token configuration, see section Example 2: Token send configuration using
D2D_Conf_Token and D2D_Conf blocks.

ABB D2D function blocks 173

D2D_Conf_Token

Summary

D2D_Conf_Token block configures the follower drive related token message send cycle.
In the follower mode, the output Error is set.

D2D_Conf_Token
—Enable Errarf—
— RemoteNode
— TxmCycMultiplier

Connections

Inputs

Name Type Value Description

Enable BOOL Enables/disables the master drive from sending the
token to follower drive.

RemoteNode UINT 1...62 Defines the node address of the follower drive where
the token is transmitted.

TxmCycMultiplier UINT Token send cycle. Multiplies the input TokenTxmCycle
in block D2D_Conf. If the value is 0, node is removed
from the configuration.

Outputs
Name Type Value Description
Error UDINT ANY Error output.
Description

The D2D_Conf_Token block is used to configure the node related transmission cycle of
token on master drive. This block is intended to execute only once from the Pre_Task.
However, the block can be assigned to any task. In cyclic tasks, the Enable input controls
the execution, including run time configuration. The settings are effective in the master only
after executing the D2D_Conf block.

All node related D2D_Conf_Token blocks must be executed before D2D_Conf by setting
the input Enable to TRUE. On run time in the Master drive, the Enable input enables/disables
the use of follower node. However, this selection is overwritten at the next rising edge of
Enable in the D2D_Conf block.

The RemoteNode and TxmCycMultiplier are set on the rising edge of Enable. The
configuration is effective after the next rising edge of Enable in the block D2D_Conf. This
configuration can be done on run time.

By setting the TxmCycMultiplier = 0, the node related token send can be removed
permanently. At the next rising edge of Enable in D2D_Conf_Token and D2D_Conf blocks,
the node is removed from the token configuration.

Error blocks input values and operation status. The Error messages are listed below:

174 ABB D2D function blocks

Bit Error code Description

0 D2D_MODE_ERR D2D mode is not Master

5 TOO_SHORT_CYCLE Token interval(s) are short or communication is overloaded
6 INVALID_INPUT_VAL Input value (target node and/or cycle time) is out of range
7 GENERAL_D2D_ERR D2D driver failed to initialize message

For example of token configuration, see section Example 2: Token send configuration using
D2D _Conf_Token and D2D_Conf blocks.

ABB D2D function blocks 175

D2D_Master_State

Summary

D2D Master_State block reads bit related Master state of all the drives connected to D2D
link. From the master drive, this block broadcasts the master state to other drives using
node number. This block works without token management configuration.

D2D_Master_State
—Enable Errorp—
—Reset MstState1—
—Node MstState2b—

Connections

Inputs
Name Type Value Description
Enable BOOL T/IF Enables/disables block execution
Reset BOOL 0/1 Resets all master state bits on rising edge
Node UINT 1...62 Node address
Outputs
Name Type Value Description
Error UDINT ANY Error output.
MstState1 UDINT 0...31 Drive/node related master bits 0...31. Bit 0 == Node1
MstState2 UDINT 32...63 Drive/node related master bits 32...63.
Description

The D2D Master_State block is used when there is a risk to have multiple masters in same
D2D link. This enables creating systems with redundant masters. The block returns status
of all Master drives connected to the D2D link, except its own state, which can be set and
read using parameter 60.3 (M/F mode). As the Master drive broadcasts its state to other
drives based on Node address, the panel port communication port parameter 49.7 (Node
ID number) should also be using the same value.

The master drive state bits are updated when the input Reset is set FALSE. The reset
function can be used whenever there is a state change from Master to Slave.

The input Node is same as parameter 60.2 (M/F node address).

Error blocks input values and operation status. In the follower drive, the output Error returns
the D2D_MODE_ERR code to notify that the drive is not able to broadcast master state.
However the block is able to read other drive states.

The output MstState1 includes drive/node related master bits 0 to 31. If this output is set,
the drive is Master.

The output MstStateZ2 includes drive/note related master bits 32 to 63.

176 ABB D2D function blocks

Examples: D2D blocks

Example 1: D2D _TRA / D2D_REC blocks

The examples below describe how the D2D TRA and D2D _REC blocks are used for sending
and receiving data.

The D2D_TRA block is used to send data in WORD and REAL data format to remote drive
address 1 and dataset 128.

| 20 _TRA =
[TROE {Enakls Error
Praonity SendMsgCni
- 1 Femotadddr
ADH 0 Fesmobe D r
Wars_wodd I'—- Dimtslnd_ 16k
— Dataln 32ba
[Varl real }—

The DS _ReadLocal block is used to read the dataset in remote drive.

I

0%_FHeadiocal o
[il—Ln-calDSNr Error - =
DwtaOuti_16bit T e _ward 12)
Datalwt?_ 32t |- Forr
DataChut? AZHSHEAL { Flemote_Vart_real -

The DS_WriteLocal block is used to write WORD and UDINT values to remote drive dataset
129.

(=] - I [OS_Witelocll -
I—‘—FUH_L LocalDSMr Errce
[VS werd Dntale_ 168t
[Diatalrd 12t
AR
Vard_dwekd f——

The D2D_REC block is used to receive data from the master drive.

020_REC i

e |——————Enable Erroe |-
T —— Prionity SencMsglrt | N
T b Remateidar DataOutl_ 16kt Fem_vard fird
I8 [RemoteDNr DataOui2_320it Flom_vard_udini =
0 b SuspenaMode Dem0ut? I2eREAL |-

Example 2: Token send configuration blocks

The example below describes how the D2D Conf _Token and D2D Conf blocks are used
for sending tokens.

In token send configuration, the master drive configures the token. After the follower receives
a token from the master, the follower node sends follower to follower (point to point) or
multicast message.

Using the D2D_Conf_Token block, you can add a node into the token send configuration
with own instance or common instance. The example below is a common instance
configuration using the ConfToken. When all the nodes are included, the D2D_Confis
executed.

ABB D2D function blocks 177

In this example, a previous configuration with the following nodes existed: remoteNode 1
and remoteNode2. A new configuration is set that includes only remoteNode 1 for which
remoteNodeZ2 must be removed from the existing configuration.

D2D_Conf
D20 _Conf Token

Master
Dnve

Token send

remoteM ode1 remote Node?

Each testStep represents a separate executed run cycle.

+ testStep(1) - remoteNode1 is added into new configuration

+ testStep(3) - remoteNode2 is removed from configuration

+ testStep(4) - D2D_Conf is invoked and starts sending token to remoteNode1

VAR

ConfToken: D2D_Conf_Token;

ConfD2D: D2D_Conf;

VAR_END

CASE testStep OF

0: // Initialize configuration blocks

ConfToken(Enable:= FALSE);

ConfD2D(Enable:= FALSE);

testStep:= testStep + 1;

1: // Add remoteNode1 into configuration set-up (on rising edge of Enable)
ConfToken(Enable:= TRUE, TxmCycMultiplier:= 2, RemoteNode := remoteNode1);
testStep:= testStep + 1;

2: /I Reset Enable pin

ConfToken(Enable:= FALSE);

178 ABB D2D function blocks

testStep:= testStep + 1;

3: // Remove remoteNode2 from configuration set-up, by setting TxmCycMultiplier:= 0
ConfToken(Enable:= TRUE, TxmCycMultiplier:= 0, RemoteNode := remoteNode2);
testStep:= testStep + 1;

4: /I Launch new D2D configuration on rising edge of Enable (start of communication with
remoteNode1)

ConfD2D(Enable:= TRUE, TokenTxmCycle:= 1000);
testStep:= testStep + 1;

10: // Stop sending tokens (end of the communication)
ConfD2D(Enable:= FALSE);

testStep:= testStep + 1;

ABB drives standard library 179

ABB drives standard library

Contents of this chapter

This chapter contains detailed information of the basic and special functions of the ABB
drives standard library (AS1LB_Standard_ACS880_V3 5).

Overview

The ABB drives standard library is intended to use with the ACS880 drives. It provides
frequently used control elements for application programming in Drive Application Builder.
Unlike the standard libraries provided by 3S-Smart Software Solutions, most of the function
blocks in the library use floating point numbers. This provides more flexible development
environment as the programmer does not need to worry about handling wide numerical
ranges and scaling.

The drive version of the library is generated from the PLC version to make sure that the
code is not altered in any way. For compatibility, some functions are implemented as function
blocks because the PLC does not support multiple outputs for functions. The functions do
not have a state and thus require less memory. This is also why the drive version of the
library has these blocks as functions (that is, there are 2 versions available in the drive
version).

The input values must be within the defined limits. If the block detects that the value is out
of range, then it can:

* Limit the value to the maximum or minimum value. For example, if the time constant is
set to a very large value or a negative value, it is limited inside the block to make sure
that it is the correct execution.

* Produce an error signal. For example, if the low limit for the output is greater than the
high limit, the block cannot operate and produces an error.

The function blocks with a state has a balance reference and balance mode. This feature
provides the means to force the control system to a new state. By enabling the balance
mode, the blocks operate as if the balance reference is the calculated output of the block.

180 ABB drives standard library

Internal variables are also adjusted so that once the balance mode is disabled the process
continues from the balance reference value.

Basic functions
BGET

Summary
The BGET function reads one selected bit from a WORD or a DWORD (includes size check).

BGET_WORD
—BIT_NR BGET_WORDE
—IN

Connections

Inputs

Name Type Value Description

BIT_NR | UINT 0...31 Bit number

IN DWORD | ANY Data input
WORD
Outputs
Name Type Value Description

BGET BOOL TRUE Bit value
FALSE

Function
The output (BGET) is the selected bit (BIT_NR) of the input word (IN).
If BIT_NRis 0, the bitis 0. If BIT_NR is 31, the bit is 31.

If the bit number is not within the range of 0...31 (for DWORD) or 0...15 (for WORD), the
output is 0.

ABB drives standard library 181

BSET

Summary

The BSET function changes the state of one selected bit of a WORD or a DWORD (includes
size check).

BSET_WORD
—EN BSET_WORD F
—BIT_NR
—BIT_VALUE
—IN

Connections

Inputs
Name Type Value Description
EN BOOL TRUE Enable block
FALSE
BIT_NR UINT 0...31 Bit number

BIT_VALUE BOOL TRUE New value for bit

FALSE
IN DWORD | ANY Data input
WORD
Outputs
Name Type Value Description

BSET DWORD | ANY Changed word
WORD

Function

The value of a selected bit (BIT_NR) of the input (IN) is set based on the bit value input
(BIT_VALUE).

If BIT_NRis 0, the bitis 0. If BIT_NR is 31, the bit is 31. The function must be enabled by
the enable input (EN).

If the function is disabled or the bit number is not within the range of 0...31 (for DWORD)
or 0...15 (for WORD), the input value is stored to the output as it is (that is, no bit setting
occurs).

Example:

EN=1,BIT_NR =3, BIT_VALUE =0
IN = 0000 0000 1111 1111

BSET = 0000 0000 1111 0111

182 ABB drives standard library

DEMUX

Summary

The demultiplexer function block is available with 2, 4 and 8 inputs for the BOOL, DINT,
INT, REAL and UDINT data types.

—IN
—ADDR

DEMUX_E&_INT
OUTT§-
OUT2F
OUT3
OUT4F
OUTS |-
OUTE}-
OUT7 |-
OUTE}-

Connections

Inputs
Name Type Value Description
IN BOOL, DINT, INT, REAL, UDINT ANY Input
ADDR UINT 1.8 Address
Outputs
Name Type Value Description
OUT1...8| BOOL, | ANY Output 1...8
DINT,
INT,
REAL,
UDINT
Function

The input value (IN) is stored to the output (OUT1...8) selected by the address input (ADDR).
All other outputs are set to 0.

If the address input is not from 1 to 8, all outputs are set to 0.

ABB drives standard library 183

DEMUXM

Summary

The demultiplexer function block with an internal memory to store output values is available
with 2, 4 and 8 inputs for the BOOL, DINT, INT, REAL and UDINT data types.

DEMUXM_&_INT
—SET OUT1|-
—LOAD OUT2
—RESET OUT3E
—ADDR OUT4E
—IN OUTSE

OUTE}-
OUTT |-
OUTE}

Connections

Inputs

Name Type Value Description
SET BOOL TRUE, FALSE Set

LOAD BOOL TRUE, FALSE Load (Set only once)
RESET | BOOL TRUE, FALSE Reset
ADDR UINT 1.8 Address

IN BOOL, DINT, INT, REAL, UDINT ANY Input
Outputs

Name Type Value Description

OUT1...8 | BOOL, DINT, INT, REAL, UDINT ANY Output 1...8
Function

DEMUXM is used as a demultiplexer with the memory. It remembers the assigned value to
outputs and continue to send them until changed or reset.

The input value (IN) is stored to the output (OUTT1...8) selected by the address input (ADDR)
if the load input (LOAD) or the set input (SET) is 1.

When the load input is set to 1, the input value is stored to the output only once. When the
set input is set to 1, the input value is stored to the output every time the block is executed.
The new set input overrides the load input.

If the address input is not from 1...8, the outputs are not affected by the input value.

If RESET = 1, all outputs are set to 0 and the block’s memory is reset.

184 ABB drives standard library

MUX

Summary

The multiplexer function is for the REAL data type. Drive Application Builder version does
not support this function. The function block is available with 2, 4 and 8 inputs.

MUX_&_REAL
—ADDR MLUX_8_REAL |-
—IN1
—IM2
—IM2
—IN4
—IN%
—INE
—IN7
—INE

Connections

Inputs
Name Type Value Description
ADDR UINT 1.8 Address
IN1...8 REAL ANY Inputs 1...8
Outputs
Name Type Value Description

MUX REAL ANY Selected input value

Function

The value of an input (IN71...8) is selected by the address input (ADDR) and stored to the
output (MUX).

If the address input is not from 1...8, the output is set to 0.

ABB drives standard library 185

MUXM

Summary

The multiplexer function block with an internal memory to store the output is available with
2, 4 and 8 inputs for the BOOL, DINT, INT, REAL and UDINT data types.

MUXM_B8_INT
—SET OUTE
—LOAD
—RESET
—ADDR
—IN1
—IN2
—IN3
—IN4
—IN5
—INE
—IN7
—INE

Connections

Inputs
Name Type Value Description
SET BOOL TRUE, FALSE Set
LOAD BOOL TRUE, FALSE Load
RESET | BOOL TRUE, FALSE Reset
ADDR UINT 0..8 Address
IN1...8 BOOL, DINT, INT, REAL, UDINT ANY Inputs1...8
Outputs
Name Type Value Description

ouT BOOL, DINT, INT, REAL, UDINT ANY Output

Function

MUXM is used as a multiplexer with a memory. It remembers the assigned value of the
output and continue to send them until changed or reset.

The value of an input (/IN7...8) is selected by the address input (ADDR) and is stored to the
output (MUX) if the LOAD input or the SET input is 1.

When the load input is set to 1, the input value is stored to the output only once. When the
set input is set to 1, the input value is stored to the output every time the block is executed.
The new set input overrides the load input.

If the address input is not from 1...8, the output is not affected by input value. If RESET =
1, then the output is set to 0 and the block’s memory is reset.

186 ABB drives standard library

PACK

Summary
The PACK function sets the BOOL inputs into a WORD or a DWORD.

PACK_WORD
—IND PACK_WORD ¢
—IN1
—IN2
—IN3
—IN&
—IN%
—IN&
—IN7
—IN2
—INS
—IN10
—IN11
—IN12
—IN13
—IN14
—IN15

Connections

Inputs
Name Type Value Description
INO...31 | BOOL TRUE, FALSE Bits
Outputs
Name Type Value Description

PACK WORD, DWORD ANY Resulting pack of bits

Function

The PACK function takes an input set of bits and packs it in to a word.

ABB drives standard library 187

SR D
Summary

The SR-D function block is an extension to a normal SR trigger with an additional memory
input D trigger. The Reset signal overrides all other control signals and clears the internal
block state. The Set signal forces the output to the TRUE state.

SR_D
—SET OUTE
—DATA
—CLK
—RESET

Connections

Inputs

Name Type Value Description

SET BOOL TRUE, FALSE Set input

DATA BOOL TRUE, FALSE Data input

CLK BOOL TRUE, FALSE Clock, rising edge active
RESET | BOOL TRUE, FALSE Reset
Outputs

Name Type Value Description

ouT BOOL TRUE, FALSE Output signal
Function

The SR-D block implements D trigger with the SET, RESET controls. The data is stored
from D input when the clock changes from 0 to 1. The SET signal forces the output to the
TRUE state. If R is active, the output is always FALSE. The RESET signal overrides all
other control signals and clears the internal block state.

When the clock input (CLK) is set from 0 to 1, the DATA input value is stored to the output
(ourT).

When RESET is set to 1, the output is set to 0.

Truth table
SET RESET DATA CLK Previous output| OUT
ANY 1 Any Any Any 0
1 0 Any Any Any 1
0 0 Any 0 Qn-1 Qn-1
0 0 0 0—1 Any 0
0 0 1 0—1 Any 1

188 ABB drives standard library

SWITCH

Summary

The SWITCH function block sets the output same as the input if EN equals TRUE, otherwise
all outputs are 0. SWITCH is available with 2, 4 and 8 inputs and outputs for the BOOL,
DINT, INT, REAL and UDINT data types.

SWITCH_& INT

—EN OUT1§
—IN1 OUT2F
—IN2 OUT3F
—IN3 OUT4F
—IN2 OUTSE-
—INS OUTEE-
—INE OUT7
—IN7 OUTE
—INE

Connections

Inputs
Name Type Value Description
EN BOOL TRUE, FALSE Enable
IN1...8 BOOL, DINT, INT, REAL, UDINT ANY Input 1...8
Outputs
Name Type Value Description

OUT1...8 | BOOL, DINT, INT, REAL, UDINT ANY Output 1...8

Function

The output (OUT1...8) is equal to the corresponding input (/IN17...8) if the block is enabled
(EN = 1). Otherwise the output is 0.

ABB drives standard library 189

SWITCHC

Summary

The SWITCHC function block has two channels. A channel can be chosen by using the
SELECT signal. If SELECT equals FALSE, channel A is active. If SELECT equals TRUE,
channel B is active. If the EN signal is not active, all outputs are 0. SWITCHC is available
with 2, 4 and 8 input pairs and outputs for the BOOL, DINT, INT, REAL and UDINT data
types.

SWITCHC_E_INT
—EN OUT1|-
—SELECT OUT2 -
—INTA OUT3F
—IN2A OUT4E
—IN3A OUTSE
—IN4A OUTE}-
—INBA OUTT |-
—INEA OUTE}
—INTA
—INEA
—IN1E
—IN2E
—IN3E
—IN4E
—INSE
—INGE
—IN7E
—INEB

Connections

Inputs
Name Type Value Description
EN BOOL TRUE, FALSE Enable
SELECT | BOOL True, FALSE Select
IN1...8A | BOOL, DINT, INT, REAL, UDINT ANY Input A 1...8
IN1...8B | BOOL, DINT, INT, REAL, UDINT ANY Input B 1...8
Outputs
Name Type Value Description
OUT1...8 | BOOL, DINT, INT, REAL, UDINT ANY Output A 1...8

Function

190 ABB drives standard library

The output (OUT1...8) is equal to the corresponding channel A input (IN7...8A) if the activate
input signal (SELECT) is 0. The output is equal to the corresponding channel B input
(IN1...8B) if the activate input signal (SELECT) is 1.

If the block is disabled (EN = 0), all outputs are set to 0.
UNPACK

Summary
The UNPACK function block splits a WORD or a DWORD into a set of BOOL outputs.

UNPACK_WORD
—IN OUTOF-
OUT1 |-
OUT2F
OUT3
OUT4F
OUTSE-
OUTEE-
OUT7 |-
OUTE8}-
OUTSE-
OUT10F-
OUT11 |-
OUT12§
OUT13
OUT14F
OUT15F

Connections

Inputs

Name Type Value Description
IN WORD, DWORD ANY Input data
Outputs

Name Type Value Description
OuTO0...31| BOOL TRUE, FALSE Output bits
Function

The Unpack function takes an input word and returns it as a set of bits.

ABB drives standard library 191

Special functions

Drive control

Summary

The drive control program offers basic controls of an ACS880 drive to the application
programmers. A similar function block for the PLC to control the drive exists in the PS553
library.

DRIVE_CTRL
—EN DOMER
—START ERRE
—STOP_EMCY_COAST ERNO F
—STOP_EMCY_RAMP READY -
—STOP_COAST OPERATING |-
—RESET TRIPPED -
—EXT_CTRL_LOC ALARM
—SPEED_REF EXT_RUMN_EMAELE |-
—REF_VALUEZ LOCAL CTELE
EXT_CTRL_LOC_ACT |
ACT_SPEED k-
ACT_VALUEZ
ACT_SWE
USED _Cw -
MESSAGE |
Connections
Inputs
Name Type Value Description
EN BOOL TRUE, FALSE Enable function block - TRUE. Additionally con-
figures the drive to use the application program.
See parameters 19.11, 20.1, 20.6, 22.11 and
26.11.
START BOOL TRUE, FALSE TRUE = start drive
FALSE = stop along currently active stop ramp.
See parameter 6.2.0.
STOP_EMCY_COAST BOOL TRUE, FALSE Emergency coast stop to drive:
FALSE = stop by coast
TRUE = no stop
See parameter 6.2.1.
STOP_EMCY_RAMP BOOL TRUE, FALSE Emergency stop to drive
FALSE = stop by ramp
TRUE = no stop
See parameter 6.2.2.

192 ABB drives standard library

Name Type Value Description
STOP_COAST BOOL TRUE, FALSE TRUE = coast stop
FALSE = normal operation
See parameter 6.2.3.
RESET BOOL TRUE, FALSE Resets drive and internal parameter errors.
See parameter 6.2.7.
EXT_CTRL_LOC BOOL TRUE, FALSE Selects external control location (EXT1/EXT2).
See parameters 6.2.11 and 19.11.
SPEED_REF REAL ANY Speed reference value.
See parameter 22.11.
REF_VALUE2 REAL ANY Torque reference value.
See parameter 26.11.
Outputs
Name Type Value Description
DONE BOOL TRUE, FALSE Execution finished when output DONE = TRUE.
ERR BOOL TRUE, FALSE Error occurred during execution when output ERR
= TRUE
ERNO ENUM ANY Internal error code
READY BOOL TRUE, FALSE Ready to switch on
See parameter 6.11.0
OPERATING BOOL TRUE, FALSE Drive is operating.
TRIPPED BOOL TRUE, FALSE Drive FAULT
See parameter 6.711.3.
ALARM BOOL TRUE, FALSE Drive has an alarm
See parameter 6.11.7.
EXT_RUN_ENABLE BOOL TRUE, FALSE Run enable status
See parameter 6.718.5.
LOCAL_CTRL BOOL TRUE, FALSE Drive control location: LOCAL
See parameter 6.711.9.
EXT_CTRL_LOC_ACT BOOL TRUE, FALSE Actual external control location EXT2 selected
See parameter 6.16.71.
ACT_SPEED REAL ANY Actual speed (in rpm) read from drive
See parameter 1.01.
ACT_VALUE2 REAL ANY Actual torque (in %) read from drive
See parameter 1.10.
ACT_SW WORD | ANY Main status word read from drive
See parameter 6.71.
USED_CW WORD | ANY Application control word

See parameter 6.02.

ABB drives standard library 193

Name Type Value Description
MESSAGE ENUM ANY State of the function block
Function

The program uses drive parameters as an interface to the drive.

An application control word (06.02) is used to control the drive. It sets the EXT1 command
(20.07) and EXT2 command (20.06) parameters to Application Program. The control word
is defined in the ABB Drives control profile.

When the drive is in the operational state, the OPERATING output is set to TRUE to indicate
the current state.

You can enable the program by setting EN signal to TRUE. Once active, the block sets the
configuration parameters to the desired values: Parameters 19.711, 20.01, 20.06, 22.11 and
26.11 are set to Application Program. The parameters are intentionally changed once
(enabling the signal to TRUE) to change them manually while the program is running.

The drive status is obtained from the Main status word (06.77) and Status word 1 (06.16).
The actual speed (ACT_SPEED) and torque (ACT_VALUE?2) data are obtained from
parameters Motor speed used (07.07) and Motor torque % (01.10).

When the program is disabled, Application control word is set to 0 once.

If the EXT1 and EXT2 parameters are not set to the correct value while the program is
enabled, an error is produced.

Error codes and the ERR outputs are internal program errors and not drive fault codes.
Internal parameter errors do not prevent the program from functioning.

Limiting
Only one instance of drive control is allowed. This is why it is implemented as a program.

Filter

Summary

The FILT1_1 function block provides filtering of the high frequency part of the input signal.
The block acts as a single-pole low pass filter for the REAL numbers. The balancing function
permits the output signal to track an external reference.

FILT1_1
I ouTEH
TF

—BaL
—BALREF
~{TIMELEVEL

Connections

Inputs
Name Type Value Description
IN REAL ANY Input signal for the actual value.

TF REAL 0...ANY Filter time constant (ms).

194 ABB drives standard library

Name Type Value Description
BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.
BALREF | REAL ANY Value for the tracking mode.
TIME- INT 1...ANY Task interval in milliseconds, default = 10 ms.
LEVEL
Outputs
Name Type Value Description
ouT REAL ANY Filtered actual value
Function

The function filters the input signal using the current input and previous output.

The transfer function for a single-pole filter with no pass band gain is:
g 1
Gls) = (1+ sTF)
To get the function for the output, cross-multiply the equation.
O(s) * (1 + sTF) = 1 I(s)

Resolving the parenthesis gives:
O(s) + sTF* O(s) = I(s)

To get the equation to the time domain s has to be replaced by derivation.
O(t) +TF*O(t) = I(t)

Since this is a first order approximation function block, the derivation can be replaced by a
difference.
o)~ Ot —1) _

O(t) + TF)

1(t)
Where: Ts is the cycle time of the program in milliseconds (time difference between t and
t-1).

The final filtering algorithm is calculated by using the following formula that is obtained by
extracting O(t):
1+ (TF/TS) « O(t — 1)

TF/Ts + 1

o(t) =

If TF = 0 or negative, the output value is set to the input value.

Because of the REAL data type limitation, the TF/Ts ration is limited to 8000000, to make
sure that it is always possible to add 1 to the real value.

Function generator

Summary

The FUNG_1V function block is used to generate an optional function of one variable, y =
f(x). The function is described by a number of coordinates. Linear interpolation is used for
values between these coordinates. An array of 8, 16 or 32 coordinates can be specified.
The balancing function permits the output signal to track an external reference and gives a
smooth return to the normal operation.

ABB drives standard library 195

FUNG_1V_32 REAL
—BAL OUTE
—BALREF BALREFO R
—IN_XTAE ERRORE
—XTAE
—YTAB
Connections
Inputs
Name Type Value Description
BAL BOOL TRUE, FALSE Input to activate the balancing mode.
BALREF | REAL ANY Balance reference.
Input for the reference value in the balancing mode.
IN_XTAB | REAL ANY Input signal for the function.
XTAB REAL [N] ANY Table of X coordinates for the function.
YTAB REAL [N] ANY Table of Y coordinates for the function.
Outputs
Name Type Value Description
ouT REAL ANY Value of the function.
BALREFO | REAL ANY TRUE if the high limit is reached.
ERROR | BOOL TRUE, FALSE TRUE when the input is outside the table range or when the table
contains unsorted (low to high) data for the input coordinates.
Function

The function generator FUNG_1V calculates output signal Y for a value at input X. Calculation
is performed in accordance with a piece-by-piece linear function which is determined by
vectors XTAB and YTAB. For each X value in XTAB, there is a corresponding Y value in
YTAB. The Y value at the output is calculated by means of linear interpolation of the XTAB
values, between which lies the value of input X. The values in XTAB must increase from
low to high in the table.

The output of the block depends only on the current input values, in other words, it does
not have any state.

Interpolation

The generated function is performed as follows:

196 ABB drives standard library

o

Xk x Xk+1

X = Xi) (Vi1 — Y2)

(
Y=Y, + ,
T X X

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The X value
which corresponds to Y value is obtained at the BALREFO output. On balancing, the X
value is calculated by interpolation in the same way the Y value is calculated during the
normal operation. To permit balancing, the values in YTAB must increase from low to high
in the table.

Limiting
If input signal X is outside the range defined by XTAB, the Y value is set to the highest or
lowest value in YTAB. If BALREF is outside the YTAB value range in the BAL mode, the

value at Y is set to the value at the BALREF input and BALREFO is set to the highest or
lowest value in XTAB.

Integrator

Summary

The INT_REAL function block integrates the input. The output signal can be limited within
limit values. The balancing function permits the output signal to track an external reference
and gives a smooth return to the normal operation.

ABB drives standard library 197

INT_REAL
—IN OUTEH
—GAIN COUT_HI+-
—TI OUT_LOF
—RESET
—HOLD
—BAL
—{BALREF
—OHL
—OLL
—TIMELEVEL
Connections
Inputs
Name Type Value Description
IN REAL ANY Input signal for the actual value
GAIN REAL ANY Gain input
TI REAL 0...ANY Integration time (ms)
RESET | BOOL TRUE, FALSE Clear integrated value
HOLD BOOL TRUE, FALSE Stops integration when set to TRUE
BAL BOOL TRUE, FALSE Balance input, activates the tracking mode
BALREF | REAL ANY Value for the tracking mode
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
TIME- INT 1...ANY Task interval in milliseconds, default = 10 ms
LEVEL
Outputs
Name Type Value Description
ouT REAL ANY Output value.
OUT_HI | BOOL TRUE, FALSE TRUE if the high limit is reached.
OUT_LO | BOOL TRUE, FALSE TRUE if the low limit is reached.
Function

The INT function can be written in the time plane as:

O(t) = K/T(/ I(t)dt)

The main controlled property is that the output signal retains its value when the input signal

I(t) = 0.

198 ABB drives standard library

Clearing

The integrated value is cleared when RESET = TRUE (all internal variables are cleared).

Tracking

If BAL is set to TRUE, the integrator immediately goes into the tracking mode and the output
value is set to the value of the BALREF input. If the value at BALREF exceeds the output
signal limits, the output is set to the applicable limit value. On return to the normal operation
from the tracking mode, integration continues from the tracking reference.

Limiting
The output value is limited between OHL and OLL. If the actual value exceeds the upper
limit, the OUT_HI output is set to TRUE. If it falls below the lower limit, the OUT_LO output

is set to TRUE. If the limits have incorrect values, both OUT_H/ and OUT _LO are set to
TRUE.

Lead lag

Summary

The LEADLAG_REAL function block is used to filter the input signal and provide a phase
shifted output. This block acts as a lead/lag filter based on the COEF input value.

LEADLAG_REAL
—IM OUTE
—COEF
—TC
—RESET
—BAL
—BALREF
—TIMELEVEL

Connections

Inputs

Name Type Value Description

IN REAL ANY Input signal for the function block

COEF REAL ANY Constant that determines the filter type

TC REAL 0..ANY Time constant (ms)

RESET BOOL TRUE, FALSE Resets the function block

BAL BOOL TRUE, FALSE Activates the balance mode

BALREF REAL ANY Balance reference

Input for the reference value in the balancing mode.

TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms

ABB drives standard library 199

Outputs

Name Type Value Description

ouT REAL ANY Output signal

Function

The transfer function for the lead/lag filter is:
1+ al.s
1+ T

The lead/lag filter has two input parameters TC and a (COEF):
* Ifa>1, the filter acts as a lead filter.

* Ifa<1, the filter acts as a lag filter.

+ Ifa=1, nofilter is applied.

The filter algorithm is calculated using the following formula:
dn = X - B1*dnMem

Y = A0*dn + A1*dnMem

dnMem =dn

Where,

A0 =(1+a*Tc)/ (1 + Tc),
Al1=(1-a*Tc)/ (1 + Tc),
B1=(1-Tc)/(1+Tc)

Xis the input signal.

Y is the output signal.

The initial value of dnMem is set to zero.

Note:

If a or TC input to the block is negative, the corresponding negative input is assigned to
zero before the filter algorithm is calculated.

Because of the REAL data type limitation, the TC/Ts ration is limited to 8000000, to make
sure that it is always possible to add 1 to the real value.

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The block
operates normally during this time which means that the internal variable is always calculated.

Reset

If RESET is set to TRUE, the internal variable dnMem is set to zero and input value X is
returned.

200 ABB drives standard library

Motor potentiometer

Summary

The MOTPOT_REAL (motor potentiometer) function block is used to generate the reference
based on the activation of the Boolean (UP and DN) inputs. The rate of change of a reference
signal is controlled by the slope time and limits. The current value is retained after a power
cycle.

MOTPOT_REAL
—EN OUTE
—UP

—OM
—SLOPE
—BAL
—BALREF
—OHL

—OLL
—TIMELEVEL

Connections

Inputs
Name Type Value Description
EN BOOL TRUE, FALSE Enables operations.
UP BOOL TRUE, FALSE Enables count up.
DN BOOL TRUE, FALSE Enables count down.
SLOPE UINT 0...65535 Delay time to count from OLL to OHL and vice versa.
BAL BOOL TRUE, FALSE Sets the output to BALREF or limit if it exceeds the limit.
BALREF REAL ANY Sets the output value when the BAL input is active.
OHL REAL ANY High input limit.
OLL REAL ANY Low input limit.
TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms.
Outputs
Name Type Value Description

ouT REAL ANY Output value

Function

The MOTPOT functional block is used to control the rate of change of an output reference
signal. Digital inputs are normally used as the UP and DOWN inputs.

The rate of change of a reference signal is controlled by the slope time parameter. If the
enable pin (EN) is set to TRUE, the reference value rises from minimum to maximum during
the slope time.

ABB drives standard library 201

EN turns on the MOTPOT function. If EN is set to FALSE, the output is zero. Based on the
UP or DN inputs getting activated, the output reference increases or decreases to the
maximum or minimum value based on the slope. If both UP/DN inputs are
activated/deactivated, the output is neither incremented nor decremented and is in a steady
state.

Clearing

When EN is set to FALSE, the output and internal values are set to zero.

Tracking

If BAL is set to TRUE, the output is set to the value of the BALREF input. If the value at
BALREF exceeds the output signal limits, the output is set to the applicable limit value.

Limiting
The output value is limited between OHL and OLL. If the actual value is more than the upper

limit, the output is set to the OHL input value. If the actual value decreases below the lower
limit, the output is set to the OLL input value.

PID

Summary

The PID_REAL (Proportional-Integral-Derivative) element can be used as a generic PID
regulator in feedback systems. The main extension of the element is that a derivative
correction term with a filter is included. Another major extension is the antiwindup protection.
The output signal can be limited with limit values specified at special inputs (OHL and OLL).
The balancing function permits the output signal to track a gradual return to the normal
operation. After any parameter change or error condition, the integral term of the correction
is readjusted so that the output does not change suddenly (“bumpless transfer”).

PID_REAL
~IN_FB ouTH
~IN_REF DEVE
~GAIN OUT_HIF-
i oUT_LO}
4D

4TC

TF

~I_RST
-BAL
—BALREF
—OHL
HoLL

- TIMELEVEL

Connections

Inputs

Name Type Value Description

IN_FB REAL ANY Actual input value

202 ABB drives standard library

Name Type Value Description

IN_REF REAL ANY Reference input value

GAIN REAL ANY Proportional gain

TI REAL 0...ANY Integration time (ms)

TD REAL 0..ANY Derivation time (ms)

TC REAL 0..ANY Anti-windup correction time (ms)

TF REAL 0...ANY Filter time (ms)

I_RST BOOL TRUE, FALSE Clear integrator

BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.

BALREF REAL ANY Value for the tracking mode

OHL REAL ANY High input limit

OLL REAL ANY Low input limit

TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms
Outputs

Name Type Value Description

ouT REAL ANY Output signal

DEV REAL ANY Deviation (IN_FB - IN_REF)

OUT_HI | BOOL TRUE, FALSE TRUE if the high limit is reached.

OUT_LO | BOOL TRUE, FALSE TRUE if the low limit is reached.
Function

The differential equation describing the PID controller before saturation/limitation that is

implemented in this block is:
Output presar(t) = Up(t) + Ui(t) + Ud(t)

Where

OUT yresat is the PID output before saturation

Up is the proportional term

Ui is the integral term with saturation correction

Ud is the derivative term

tis time.

The proportional term is:
Up(t) = Kp x DEV(t)

ABB drives standard library 203

Where:
Kp = P is the proportional gain of the PID controller
DEV(t) is the control deviation (see below).

The integral correction term is:
. KP « , .
Ui(t) = % * / DEV(7)dr + K¢ % (OUT(t) — OUTpyesar(t))

Where:
Kc = integral antiwindup correction gain of the PID controller
OUT(t) = saturated/limited output signal of the controller

The antiwindup correction is thus taken to be part of the integral correction term.
Kr(: * (OUT(t) - OUY})I‘(iS(Lt(t))

Windup is a phenomenon that is caused by the interaction of an error integral action and
saturations. All actuators have limitations: a motor has limited speed, a valve cannot be
more than fully opened or fully closed, and so on. For a control system with a wide range
of operating conditions, it is possible that the control variable reaches the actuator limits.
When this happens, the feedback loop is broken and the system runs as an open loop
because the actuator remains at its limit independently of the process output. If a controller
with the integrating action is used, the error continues to be integrated. This means that the
integral term may become very large or, in other words, it “winds up”. Then it is required
that the error has the opposite sign for a long period before things return to normal. The
consequence is that any controller with the integral action may give large transients when
the actuator saturates.

The derivative term is:
N d(DEV(t))
Ud(t) = Kp * Td * 7(6%)
Where:
Td is the derivative time constant.

The differential equations above are transformed into difference equations by backward
approximation.

The term is also filtered to make it resistant to high frequency noise.
G(s)=1/(1+ s« TF)

Smooth transfer

The controller guarantees a smooth transfer in many special situations where, for example,

control parameters are suddenly changed. This means that in such a bumpless cycle the

output retains its previous value. This is performed by resetting the integrator term Ui to:
Ui(t) = OUT(t) — Up(t) — Ud(t)

Smooth functionality is not triggered in the first cycle by change in Ti, Tc, Td and Tf.

Gain, time constants

The proportional gain Kp is a direct input parameter. The integrator, derivative and antiwindup
gains Ki, Kd and Kc must be calculated from the corresponding time constants Ti, Td and
Tc which are input parameters. The derivative gain is:

Kd=Td/T

204 ABB drives standard library

Where:

T is the time level (execution cycle) of the block (in milliseconds as the time constants).
The integral gain is determined from Ti as follows:

Ki=0ifTi=0

Ki=T/Ti,if T <Ti

Ki=1,if T2Ti>0

The anti-windup gain is determined similarly by Tc:

Kc=0,ifTc=0
Ke=T/Tc,if T <Tc
Kc=1,ifT20

Thus the values of Ki and Kc are limited to the range 0 < Ki, Ti< 1.
If Tc = 0, Kc = 0 and anti-windup correction is disabled.

If Ti=0, Ki= 0, the module does not update the integral term Ui, not even by the anti-windup
correction. Thus the integrator term retains its original value as long as Ki remains zero.

The element stores the “current” set of gains Kp, Ki, Kc and Kd and time constants Ti, Tc
and Td, which it uses for calculating the control output(s).

Filtering

The derivative is filtered using a single-pole low pass filter. The following algorithm is used
to calculate the filtered value:

o Kdx (Up(t) — Up(t — 1)) + Lyt — 1)
U(t) = 1 Tf
Lf

Where,
T is the time level (execution time) of the block (in milliseconds as the time constants).

If the filter time constant is left unassigned, it defaults to 0 which means that the derivative
is calculated without filtering. The time constant is limited to 8000000*time level to avoid
underflow.

Tracking

If BAL is set to TRUE, the regulator goes into the tracking mode and the output follows the
value at BALREF. If the value at BALREF exceeds the output signal limits (OLL and OHL),
the output is set to the applicable limit value. The return from the tracking state is bumpless.

Limitation function

The limitation function limits the output signal to the value range from OLL to OHL. If the
presaturated output exceeds OHL, OUT is set to OHL and OUT_Hl is set to TRUE. If the
pre-saturated output decreases below OLL, OUT is setto OLL and OUT _LOis setto TRUE.
Bumpless return from limitation is requested if and only if the anti-windup correction is not
in use, thatis,. Ki=0 or Kc = 0.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value that
it had in the execution cycle before the error occurred. After the error, the return to the
normal operation is smooth.

ABB drives standard library 205

Limiting
The output value is limited between OHL and OLL. If the actual value is more than the upper

limit, OUT_Hl is set to TRUE. If the actual value decreases below the lower limit, OUT_LO
is set to TRUE.

Ramp

Summary

The RAMP is used to limit the rate of change of a signal. The output signal can be limited
with limit values specified at special inputs. The balancing function permits the output signal
to track an external reference.

RAMP
—IM OUTE
—STEP_UP OUT_HIE
—{STEP_DN OUT_LOF-
—SLOPE_UP
—SLOPE_DN
—BaL
—BALREF
—OHL
—OLL
—STOP
—TIMELEVEL
Connections
Inputs
Name Type Value Description
IN REAL ANY Input signal for the actual value
STEP_UP REAL 0...ANY The greatest allowed positive STEP change
STEP_DN REAL 0...ANY The greatest allowed negative STEP change
SLOPE_UP REAL 0...ANY Positive ramp for the output
SLOPE_DN REAL 0...ANY Negative ramp for the output
BAL BOOL TRUE, FALSE Balance input, activates the tracking mode.
BALREF REAL ANY Balance reference
Input for the reference value in the tracking mode
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
STOP BOOL TRUE, FALSE Holds the output (stops ramping)
TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms

206 ABB drives standard library

Outputs
Name Type Value Description
ouT REAL ANY Output value
OUT_HI BOOL TRUE, FALSE TRUE if the high limit is reached
OuUT_LO BOOL TRUE, FALSE TRUE if the low limit is reached
Function

The main property of the RAMP element is that the output signal tracks the input signal,
while the input signal is not changed more than the value specified at the step inputs. If the
input signal change is more than the specified step change, the output signal is first changed
by STEP_UP or STEP_DN depending on the direction of change. After the output signal is
changed by SLOPE_UP or SLOPE_DN per second, until the values at the input and output
are equal. This means that if STEP_DN = STEP_UP = 0, a pure ramp function, that is,
SLOPE/sec is obtained at the output. The greatest step change allowed at the output is
specified by the STEP_UP and STEP_DN inputs for the respective direction of change.

All parameters are specified as absolute values with the same unit as the input. Slopes
specify the change in units per second. Certain constants are pre-calculated to make the
execution time of the element as short as possible. The results are stored internally in the
element. These constants are recalculated if the SLOPE_UP or SLOPE_DN values are
changed.

Calculation of the output
If Input (t) = Output (t-1), then Output (t) = Input (t)
If Input (t) > Output (t-1), then the change of the output value is limited as follows:

* Aninternal auxiliary variable VPOS follows the input value with the maximum rate of
change defined by SLOPE_UP. If the input value is greater than VPOS + STEP_UP,
the output value is limited to the value VPOS +STEP_UP. If the input value is less than
VPOS + STEP_UP, the output value is set to be equal to the input.

If SLOPE _UP = 0, the output value does not rise.

If Input (t) < Output (t-1), then the change of the Output value is limited as follows:

* Aninternal auxiliary variable VPOS follows the input value, with the maximum rate of
change defined by SLOPE_DN. If the input value is less than VPOS — STEP_DN, the
output value is limited to the value VPOS — STEP_DN. If the input value is greater than
VPOS — STEP_DN, the output value is set to be equal to the input.

If SLOPE_DN = 0, the output value does not lower no matter what the value of STEP_DN
and IN is.

Tracking

If BAL is set to TRUE, the ramp immediately goes into the tracking mode and the output is
set to the value of BALREF. If the value at BALREF exceeds the output signal limits, the
output is set to the applicable limit value. During the tracking mode VPOS = Output =
BALREF. The return to the normal operation is done as if a unit step had occurred at the
input.

ABB drives standard library 207

Limiting
The limitation function limits the output signal to the values at the OHL inputs for the upper
limit and OLL for the lower limit. If the actual value exceeds the upper limit, OUT _Hl is set

to TRUE. If it falls below the lower limit, OUT_LO is set to TRUE. In the limiting state VPOS(t)
and OUT(t) are set to the applicable limit value.

If OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value that
it had in the execution cycle before the error occurred.

Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the type
designation and serial number of the unit in question. Alisting of ABB sales, support and service
contacts can be found by navigating to www.abb.com/searchchannels.

Product training

For information on ABB product training, navigate to new.abb.com/service/training.

Providing feedback on ABB manuals

Your comments on our manuals are welcome. Navigate to
new.abb.com/drives/manuals-feedback-form.

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet at
www.abb.com/drives/documents.

a2 (frozen)
PDF-Web
Created 2019-03-08, 09:55:56

www.abb.com/searchchannels
new.abb.com/service/training
new.abb.com/drives/manuals-feedback-form
www.abb.com/drives/documents

www.abb.com/drives

3AUA0000127808F

© 2019 ABB Oy. All Rights Reserved.
Specifications subject to change without notice.

3AUA0000127808 Rev F (EN) EFFECTIVE 2019-03-07

	Table of contents
	Introduction
	Contents of this chapter
	Compatibility
	Target audience
	Safety instructions
	Purpose of the manual
	Terms and abbreviations
	Related documents
	Cybersecurity disclaimer
	Notes

	Getting started
	Contents of this chapter
	Settings up the programming environment

	Overview of drive programming
	Contents of this chapter
	Drive application programming
	System diagram
	Programming work cycle
	Special tasks
	Programming languages and modules
	Libraries
	Program execution
	DriveInterface
	ApplicationParametersandEvents

	Creating application program
	Contents of this chapter
	Creating a new project
	Updating project information
	Appending a new POU
	Writing a program code
	Continuous function chart (CFC) program
	Adding elements
	Setting the execution order of the elements
	Adding comments to a CFC program
	Declaring variables
	Adding inputs and outputs
	CFC program

	Preparing a project for download
	Establishing online connection to the drive
	Downloading the program to the drive
	Creating a boot project
	Executing the program

	Features
	Contents of this chapter
	Device handling
	Viewing device information
	Upgrading or adding a new device
	Changing an existing device
	Viewing software updates

	Program organization units (POU)
	Data types
	Drive application programming license
	Application download options
	Removing the application from the target
	Retain variables
	Task configuration
	Adding tasks
	Monitoring tasks

	Uploading and downloading source code
	Adding symbol configuration
	Debugging and online changes
	Safe debugging

	Reset options
	Memory limits
	CPU limitation
	Application loading package
	Downloading loading package to a drive

	DriveInterface
	Contents of this chapter
	Implementing DriveInterface
	Selecting the parameter set
	Viewing parameter mapping report
	Mapping example

	Updating drive parameters from installed device
	Updating drive parameters from parameters file
	Setting parameter view

	Application parameters and events
	Contents of this chapter
	Application parameters and events
	Parameter manager
	Creating parameter groups
	Importing and exporting parameters
	Creating parameters
	Parameter settings
	Scaling
	Tool/Fieldbus 32-bit interface
	Fieldbus 16-bit interface
	Testing for scaling

	Linking parameter to application code
	Parameter types
	Parameter families
	Selection lists
	Units
	Application events

	Configuring extension I/O modules
	Contents of this chapter
	Configuring extension I/O module
	FEA-03
	Node numbers
	Selecting input signal type
	FDCO

	Extension I/O in drive application program
	Adding F-series module
	Setting module data
	Adding node number
	I/O mapping variables
	Using F-series I/O from the application

	Adding bus fault control
	FIO-01 Module data
	FIO-01 Channel descriptions

	FIO-11 Module data
	FIO-11 Channel descriptions

	FAIO-01 Module data
	FAIO-01 Channel descriptions

	Fault codes

	Libraries
	Contents of this chapter
	Library types
	Adding a library to the project
	Creating a new library
	Installing a new library
	Managing library versions
	Configuring a library with WIBU license

	Practical examples and tips
	Contents of this chapter
	Solving communication problems
	Solving other problems

	Unsupported features
	Contents of this chapter
	Unsupported features

	ABB drives system library
	Contents of this chapter
	Overview
	Function blocks of the system library
	Event function blocks
	EVENT
	Summary
	Connections
	Description

	ReadEventLog
	Summary
	Connections
	Description

	Parameter change function blocks
	PAR_UNIT_SEL
	Summary
	Connections
	Description

	PAR_SCALE_CHG
	Summary
	Connections
	Description
	External 32-bit scaling
	External 16-bit scaling

	Parameter limit change
	PAR_LIM_CHG_DINT
	Summary
	Connections
	Description

	PAR_LIM_CHG_REAL
	Summary
	Connections
	Description

	PAR_LIM_CHG_UDINT
	Summary
	Connections
	Description

	Parameter default value change
	PAR_DEF_CHG_DINT
	Summary
	Connections
	Description

	PAR_DEF_CHG_REAL
	Summary
	Connections
	Description

	PAR_DEF_CHG_UDINT
	Summary
	Connections
	Description

	Parameter decimal display
	PAR_DISP_DEC
	Summary
	Connections
	Description

	PAR_REFRESH
	Summary
	Connections
	Description

	Parameter protection
	PAR_PROT
	Summary
	Connections
	Description

	PAR_GRP_PROT
	Summary
	Connections
	Description

	Parameter read function blocks
	ParReadBit
	Summary
	Connections
	Description

	ParRead_INT
	Summary
	Connections
	Description

	ParRead_DINT
	Summary
	Connections
	Description

	ParRead_REAL
	Summary
	Connections
	Description

	ParRead_UDINT
	Summary
	Connections
	Description

	Parameter write function blocks
	ParWriteBit
	Summary
	Connections
	Description

	ParWrite_DINT
	Summary
	Connections
	Description

	ParWrite_INT
	Summary
	Connections
	Description

	ParWrite_REAL
	Summary
	Connections
	Description

	ParWrite_UDINT
	Summary
	Connections
	Description

	Pointer parameter read function block
	ParRead_BitPTR
	Summary
	Connections
	Description

	ParRead_ValPTR_DINT
	Summary
	Connections
	Description

	ParRead_ValPTR_REAL
	Summary
	Connections
	Description

	ParRead_ValPTR_UDINT
	Summary
	Connections
	Description

	GetPtrParConf
	Summary
	Connections
	Description

	Set pointer parameter to IEC variable function blocks
	ParSet_BitPTR_IEC
	Summary
	Connections
	Description

	ParSet_ValPTR_IEC_DINT
	Summary
	Connections
	Description

	ParSet_ValPTR_IEC_REAL
	Summary
	Connections
	Description

	ParSet_ValPTR_IEC_UDINT
	Summary
	Connections
	Description

	Set pointer parameter to parameter function blocks
	ParSet_BitPTR_Par
	Summary
	Connections
	Description

	ParSet_ValPTR_Par
	Summary
	Connections
	Description

	System time function blocks
	SYS_TIME
	Summary
	Connections
	Description

	SYS_TIME_UDINT
	Summary
	Connections
	Description

	Task time level function block
	UsedTimeLevel
	Summary
	Connections
	Description

	Error codes

	ABB D2D function blocks
	Contents of this chapter
	Introduction to ABB D2D function blocks
	D2D communication library
	D2D block error codes

	Data read/write blocks
	DS_ReadLocal
	Summary
	Connections
	Description

	DS_WriteLocal
	Summary
	Connections
	Description

	D2D communication blocks
	General
	D2D_TRA
	Summary
	Connections
	Description

	D2D_REC
	Summary
	Connections
	Description

	D2D_TRA_REC
	Summary
	Connections
	Description

	D2D_TRA_MC
	Summary
	Connections
	Description

	D2D configuration blocks
	D2D_Conf
	Summary
	Connections
	Description
	Master use
	Follower use

	D2D_Conf_Token
	Summary
	Connections
	Description

	D2D_Master_State
	Summary
	Connections
	Description

	Examples: D2D blocks
	Example 1: D2D_TRA / D2D_REC blocks
	Example 2: Token send configuration blocks

	ABB drives standard library
	Contents of this chapter
	Overview
	Basic functions
	BGET
	Summary
	Connections
	Function

	BSET
	Summary
	Connections
	Function

	DEMUX
	Summary
	Connections
	Function

	DEMUXM
	Summary
	Connections
	Function

	MUX
	Summary
	Connections
	Function

	MUXM
	Summary
	Connections
	Function

	PACK
	Summary
	Connections
	Function

	SR_D
	Summary
	Connections
	Function
	Truth table

	SWITCH
	Summary
	Connections
	Function

	SWITCHC
	Summary
	Connections
	Function

	UNPACK
	Summary
	Connections
	Function

	Special functions
	Drive control
	Summary
	Connections
	Function
	Limiting

	Filter
	Summary
	Connections
	Function

	Function generator
	Summary
	Connections
	Function
	Interpolation
	Balancing
	Limiting

	Integrator
	Summary
	Connections
	Function
	Clearing
	Tracking
	Limiting

	Lead lag
	Summary
	Connections
	Function
	Balancing
	Reset

	Motor potentiometer
	Summary
	Connections
	Function
	Clearing
	Tracking
	Limiting

	PID
	Summary
	Connections
	Function
	Smooth transfer
	Filtering
	Tracking
	Limitation function
	Limiting

	Ramp
	Summary
	Connections
	Function
	Tracking
	Limiting

	Further information

