
ABB Robotics

Technical reference manual
RAPID Instructions, Functions and Data types





©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Technical reference manual

RAPID Instructions, Functions and Data types
RobotWare 5.13

Document ID: 3HAC 16581-1

Revision: J



©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The information in this manual is subject to change without notice and should not be 
construed as a commitment by ABB. ABB assumes no responsibility for any errors that 
may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be 
construed as any kind of guarantee or warranty by ABB for losses, damages to persons 
or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from 
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written 
permission, and contents thereof must not be imparted to a third party nor be used for 
any unauthorized purpose. Contravention will be prosecuted. 

Additional copies of this manual may be obtained from ABB at its then current charge.

© Copyright 2004-2010 ABB All rights reserved.

ABB AB
Robotics Products

SE-721 68 Västerås
Sweden 



Table of Contents

33HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Instructions 15

1.1 AccSet - Reduces the acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 ActUnit - Activates a mechanical unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Add - Adds a numeric value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 AliasIO - Define I/O signal with alias name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 ":=" - Assigns a value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.6 BitClear - Clear a specified bit in a byte data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 BitSet - Set a specified bit in a byte data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8 BookErrNo - Book a RAPID system error number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.9 Break - Break program execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.10 CallByVar - Call a procedure by a variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.11 CancelLoad - Cancel loading of a module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.12 CheckProgRef - Check program references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.13 CirPathMode - Tool reorientation during circle path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.14 Clear - Clears the value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.15 ClearIOBuff - Clear input buffer of a serial channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.16 ClearPath - Clear current path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.17 ClearRawBytes - Clear the contents of rawbytes data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.18 ClkReset - Resets a clock used for timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.19 ClkStart - Starts a clock used for timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.20 ClkStop - Stops a clock used for timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.21 Close - Closes a file or serial channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
1.22 CloseDir - Close a directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.23 Comment - Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.24 Compact IF - If a condition is met, then... (one instruction)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
1.25 ConfJ - Controls the configuration during joint movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
1.26 ConfL - Monitors the configuration during linear movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.27 CONNECT - Connects an interrupt to a trap routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.28 CopyFile - Copy a file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.29 CopyRawBytes - Copy the contents of rawbytes data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.30 CorrClear - Removes all correction generators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.31 CorrCon - Connects to a correction generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.32 CorrDiscon - Disconnects from a correction generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.33 CorrWrite - Writes to a correction generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.34 DeactUnit - Deactivates a mechanical unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.35 Decr - Decrements by 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1.36 DitherAct - Enables dither for soft servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1.37 DitherDeact - Disables dither for soft servo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.38 DropWObj - Drop work object on conveyor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1.39 EOffsOff - Deactivates an offset for external axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1.40 EOffsOn - Activates an offset for external axes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1.41 EOffsSet - Activates an offset for external axes using known values . . . . . . . . . . . . . . . . . . . . . . . . . . 90
1.42 EraseModule - Erase a module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
1.43 ErrLog - Write an error message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
1.44 ErrRaise - Writes a warning and calls an error handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
1.45 ErrWrite - Write an error message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
1.46 EXIT - Terminates program execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1.47 ExitCycle - Break current cycle and start next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
1.48 FOR - Repeats a given number of times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.49 GetDataVal - Get the value of a data object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
1.50 GetSysData - Get system data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1.51 GetTrapData - Get interrupt data for current TRAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
1.52 GOTO - Goes to a new instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Table of Contents

4 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.53 GripLoad - Defines the payload for the robot  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
1.54 HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403 . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.55 IDelete - Cancels an interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
1.56 IDisable - Disables interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1.57 IEnable - Enables interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.58 IError - Orders an interrupt on errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
1.59 IF - If a condition is met, then ...; otherwise ...  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
1.60 Incr - Increments by 1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.61 IndAMove - Independent absolute position movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
1.62 IndCMove - Independent continuous movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
1.63 IndDMove - Independent delta position movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
1.64 IndReset - Independent reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
1.65 IndRMove - Independent relative position movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
1.66 InvertDO - Inverts the value of a digital output signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
1.67 IOBusStart - Start of I/O bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
1.68 IOBusState - Get current state of I/O bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
1.69 IODisable - Disable I/O unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
1.70 IOEnable - Enable I/O unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
1.71 IPers - Interrupt at value change of a persistent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1.72 IRMQMessage - Orders RMQ interrupts for a data type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
1.73 ISignalAI - Interrupts from analog input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
1.74 ISignalAO - Interrupts from analog output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
1.75 ISignalDI - Orders interrupts from a digital input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
1.76 ISignalDO - Interrupts from a digital output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
1.77 ISignalGI - Orders interrupts from a group of digital input signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 192
1.78 ISignalGO - Orders interrupts from a group of digital output signals . . . . . . . . . . . . . . . . . . . . . . . . . 195
1.79 ISleep - Deactivates an interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
1.80 ITimer - Orders a timed interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
1.81 IVarValue - orders a variable value interrupt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.82 IWatch - Activates an interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
1.83 Label - Line name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
1.84 Load - Load a program module during execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
1.85 LoadId - Load identification of tool or payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
1.86 MakeDir - Create a new directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
1.87 ManLoadIdProc - Load identification of IRBP manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
1.88 MechUnitLoad - Defines a payload for a mechanical unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
1.89 MotionSup - Deactivates/Activates motion supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
1.90 MoveAbsJ - Moves the robot to an absolute joint position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
1.91 MoveC - Moves the robot circularly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
1.92 MoveCDO - Moves the robot circularly and sets digital output in the corner. . . . . . . . . . . . . . . . . . . 242
1.93 MoveCSync - Moves the robot circularly and executes a RAPID procedure . . . . . . . . . . . . . . . . . . . 246
1.94 MoveExtJ - Move one or several mechanical units without TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
1.95 MoveJ - Moves the robot by joint movement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
1.96 MoveJDO - Moves the robot by joint movement and sets digital output in the corner . . . . . . . . . . . . 257
1.97 MoveJSync - Moves the robot by joint movement and executes a RAPID procedure . . . . . . . . . . . . 260
1.98 MoveL - Moves the robot linearly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
1.99 MoveLDO - Moves the robot linearly and sets digital output in the corner  . . . . . . . . . . . . . . . . . . . . 268
1.100 MoveLSync - Moves the robot linearly and executes a RAPID procedure . . . . . . . . . . . . . . . . . . . . 271
1.101 MToolRotCalib - Calibration of rotation for moving tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
1.102 MToolTCPCalib - Calibration of TCP for moving tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
1.103 Open - Opens a file or serial channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
1.104 OpenDir - Open a directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
1.105 PackDNHeader - Pack DeviceNet Header into rawbytes data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
1.106 PackRawBytes - Pack data into rawbytes data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
1.107 PathAccLim - Reduce TCP acceleration along the path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295



Table of Contents

53HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.108 PathRecMoveBwd - Move path recorder backwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
1.109 PathRecMoveFwd - Move path recorder forward  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
1.110 PathRecStart - Start the path recorder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
1.111 PathRecStop - Stop the path recorder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
1.112 PathResol - Override path resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
1.113 PDispOff - Deactivates program displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
1.114 PDispOn - Activates program displacement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
1.115 PDispSet - Activates program displacement using known frame  . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
1.116 ProcCall - Calls a new procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
1.117 ProcerrRecovery - Generate and recover from process-move error. . . . . . . . . . . . . . . . . . . . . . . . . . 325
1.118 PulseDO - Generates a pulse on a digital output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
1.119 RAISE - Calls an error handler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
1.120 RaiseToUser - Propagates an error to user level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
1.121 ReadAnyBin - Read data from a binary serial channel or file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
1.122 ReadBlock - read a block of data from device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
1.123 ReadCfgData - Reads attribute of a system parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
1.124 ReadErrData - Gets information about an error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
1.125 ReadRawBytes - Read rawbytes data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
1.126 RemoveDir - Delete a directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
1.127 RemoveFile - Delete a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
1.128 RenameFile - Rename a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
1.129 Reset - Resets a digital output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
1.130 ResetPPMoved - Reset state for the program pointer moved in manual mode  . . . . . . . . . . . . . . . . . 360
1.131 ResetRetryCount - Reset the number of retries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
1.132 RestoPath - Restores the path after an interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
1.133 RETRY - Resume execution after an error  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
1.134 RETURN - Finishes execution of a routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
1.135 Rewind - Rewind file position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
1.136 RMQEmptyQueue - Empty RAPID Message Queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
1.137 RMQFindSlot - Find a slot identity from the slot name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
1.138 RMQGetMessage - Get an RMQ message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
1.139 RMQGetMsgData - Get the data part from an RMQ message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
1.140 RMQGetMsgHeader - Get header information from an RMQ message . . . . . . . . . . . . . . . . . . . . . . 380
1.141 RMQReadWait - Returns message from RMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
1.142 RMQSendMessage - Send an RMQ data message. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
1.143 RMQSendWait - Send an RMQ data message and wait for a response. . . . . . . . . . . . . . . . . . . . . . . 390
1.144 Save - Save a program module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
1.145 SCWrite - Send variable data to a client application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
1.146 SearchC - Searches circularly using the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
1.147 SearchExtJ - Search with one or several mechanical units without TCP. . . . . . . . . . . . . . . . . . . . . . 410
1.148 SearchL - Searches linearly using the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
1.149 SenDevice - connect to a sensor device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1.150 Set - Sets a digital output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
1.151 SetAllDataVal - Set a value to all data objects in a defined set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
1.152 SetAO - Changes the value of an analog output signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
1.153 SetDataSearch - Define the symbol set in a search sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
1.154 SetDataVal - Set the value of a data object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
1.155 SetDO - Changes the value of a digital output signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
1.156 SetGO - Changes the value of a group of digital output signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
1.157 SetSysData - Set system data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
1.158 SingArea - Defines interpolation around singular points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
1.159 SkipWarn - Skip the latest warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
1.160 SocketAccept - Accept an incoming connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
1.161 SocketBind - Bind a socket to my IP-address and port  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
1.162 SocketClose - Close a socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455



Table of Contents

6 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.163 SocketConnect - Connect to a remote computer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
1.164 SocketCreate - Create a new socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
1.165 SocketListen - Listen for incoming connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
1.166 SocketReceive - Receive data from remote computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
1.167 SocketSend - Send data to remote computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
1.168 SoftAct - Activating the soft servo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
1.169 SoftDeact - Deactivating the soft servo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
1.170 SpeedRefresh - Update speed override for ongoing movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
1.171 SpyStart - Start recording of execution time data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
1.172 SpyStop - Stop recording of time execution data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
1.173 StartLoad - Load a program module during execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
1.174 StartMove - Restarts robot movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
1.175 StartMoveRetry - Restarts robot movement and execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
1.176 STCalib - Calibrate a Servo Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
1.177 STClose - Close a Servo Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
1.178 StepBwdPath - Move backwards one step on path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
1.179 STIndGun - Sets the gun in independent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
1.180 STIndGunReset - Resets the gun from independent mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
1.181 SToolRotCalib - Calibration of TCP and rotation for stationary tool . . . . . . . . . . . . . . . . . . . . . . . . 504
1.182 SToolTCPCalib - Calibration of TCP for stationary tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
1.183 Stop - Stops program execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
1.184 STOpen - Open a Servo Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
1.185 StopMove - Stops robot movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
1.186 StopMoveReset - Reset the system stop move state  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
1.187 StorePath - Stores the path when an interrupt occurs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
1.188 STTune - Tuning Servo Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
1.189 STTuneReset - Resetting Servo tool tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
1.190 SyncMoveOff - End coordinated synchronized movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
1.191 SyncMoveOn - Start coordinated synchronized movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
1.192 SyncMoveResume - Set synchronized coordinated movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
1.193 SyncMoveSuspend - Set independent-semicoordinated movements. . . . . . . . . . . . . . . . . . . . . . . . . 543
1.194 SyncMoveUndo - Set independent movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
1.195 SystemStopAction - Stop the robot system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
1.196 TEST - Depending on the value of an expression ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
1.197 TestSignDefine - Define test signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
1.198 TestSignReset - Reset all test signal definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
1.199 TextTabInstall - Installing a text table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
1.200 TPErase - Erases text printed on the FlexPendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
1.201 TPReadDnum - Reads a number from the FlexPendant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
1.202 TPReadFK - Reads function keys  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.203 TPReadNum - Reads a number from the FlexPendant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
1.204 TPShow - Switch window on the FlexPendant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
1.205 TPWrite - Writes on the FlexPendant  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
1.206 TriggC - Circular robot movement with events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
1.207 TriggCheckIO - Defines IO check at a fixed position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
1.208 TriggEquip - Define a fixed position and time I/O event on the path . . . . . . . . . . . . . . . . . . . . . . . . 582
1.209 TriggInt - Defines a position related interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
1.210 TriggIO - Define a fixed position or time I/O event near a stop point. . . . . . . . . . . . . . . . . . . . . . . . 592
1.211 TriggJ - Axis-wise robot movements with events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
1.212 TriggL - Linear robot movements with events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
1.213 TriggLIOs - Linear robot movements with I/O events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
1.214 TriggRampAO - Define a fixed position ramp AO event on the path . . . . . . . . . . . . . . . . . . . . . . . . 616
1.215 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event . 622
1.216 TriggStopProc - Generate restart data for trigg signals at stop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
1.217 TryInt - Test if data object is a valid integer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634



Table of Contents

73HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.218 TRYNEXT - Jumps over an instruction which has caused an error  . . . . . . . . . . . . . . . . . . . . . . . . . 636
1.219 TuneReset - Resetting servo tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
1.220 TuneServo - Tuning servos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
1.221 UIMsgBox - User Message Dialog Box type basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
1.222 UIShow - User Interface show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
1.223 UnLoad - UnLoad a program module during execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
1.224 UnpackRawBytes - Unpack data from rawbytes data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
1.225 VelSet - Changes the programmed velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662
1.226 WaitAI - Waits until an analog input signal value is set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
1.227 WaitAO - Waits until an analog output signal value is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
1.228 WaitDI - Waits until a digital input signal is set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
1.229 WaitDO - Waits until a digital output signal is set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
1.230 WaitGI - Waits until a group of digital input signals are set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
1.231 WaitGO - Waits until a group of digital output signals are set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
1.232 WaitLoad - Connect the loaded module to the task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
1.233 WaitRob - Wait until stop point or zero speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
1.234 WaitSyncTask - Wait at synchronization point for other program tasks . . . . . . . . . . . . . . . . . . . . . . 688
1.235 WaitTestAndSet - Wait until variable unset - then set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692
1.236 WaitTime - Waits a given amount of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
1.237 WaitUntil - Waits until a condition is met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
1.238 WaitWObj - Wait for work object on conveyor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
1.239 WarmStart - Restart the controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
1.240 WHILE - Repeats as long as .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
1.241 WorldAccLim - Control acceleration in world coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . 707
1.242 Write - Writes to a character-based file or serial channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
1.243 WriteAnyBin - Writes data to a binary serial channel or file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
1.244 WriteBin - Writes to a binary serial channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
1.245 WriteBlock - write block of data to device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
1.246 WriteCfgData - Writes attribute of a system parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
1.247 WriteRawBytes - Write rawbytes data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
1.248 WriteStrBin - Writes a string to a binary serial channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
1.249 WriteVar - write variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729
1.250 WZBoxDef - Define a box-shaped world zone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
1.251 WZCylDef - Define a cylinder-shaped world zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
1.252 WZDisable - Deactivate temporary world zone supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
1.253 WZDOSet - Activate world zone to set digital output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
1.254 WZEnable - Activate temporary world zone supervision  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742
1.255 WZFree - Erase temporary world zone supervision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744
1.256 WZHomeJointDef - Define a world zone for home joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
1.257 WZLimJointDef - Define a world zone for limitation in joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
1.258 WZLimSup - Activate world zone limit supervision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
1.259 WZSphDef - Define a sphere-shaped world zone  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

2 Functions 759

2.1 Abs - Gets the absolute value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
2.2 ACos - Calculates the arc cosine value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761
2.3 AOutput - Reads the value of an analog output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762
2.4 ArgName - Gets argument name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
2.5 ASin - Calculates the arc sine value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
2.6 ATan - Calculates the arc tangent value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
2.7 ATan2 - Calculates the arc tangent2 value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
2.8 BitAnd - Logical bitwise AND - operation on byte data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770
2.9 BitCheck - Check if a specified bit in a byte data is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
2.10 BitLSh - Logical bitwise LEFT SHIFT - operation on byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774
2.11 BitNeg - Logical bitwise NEGATION - operation on byte data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776



Table of Contents

8 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.12 BitOr - Logical bitwise OR - operation on byte data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778
2.13 BitRSh - Logical bitwise RIGHT SHIFT - operation on byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
2.14 BitXOr - Logical bitwise XOR - operation on byte data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
2.15 ByteToStr - Converts a byte to a string data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
2.16 CalcJointT - Calculates joint angles from robtarget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786
2.17 CalcRobT - Calculates robtarget from jointtarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
2.18 CalcRotAxFrameZ - Calculate a rotational axis frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
2.19 CalcRotAxisFrame - Calculate a rotational axis frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
2.20 CDate - Reads the current date as a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
2.21 CJointT - Reads the current joint angles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800
2.22 ClkRead - Reads a clock used for timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
2.23 CorrRead - Reads the current total offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803
2.24 Cos - Calculates the cosine value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
2.25 CPos - Reads the current position (pos) data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805
2.26 CRobT - Reads the current position (robtarget) data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807
2.27 CSpeedOverride - Reads the current override speed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810
2.28 CTime - Reads the current time as a string  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812
2.29 CTool - Reads the current tool data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
2.30 CWObj - Reads the current work object data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
2.31 DecToHex - Convert from decimal to hexadecimal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
2.32 DefAccFrame - Define an accurate frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.33 DefDFrame - Define a displacement frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2.34 DefFrame - Define a frame  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
2.35 Dim - Obtains the size of an array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
2.36 Distance - Distance between two points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
2.37 DnumToNum - Converts dnum to num . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829
2.38 DotProd - Dot product of two pos vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
2.39 DOutput - Reads the value of a digital output signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
2.40 EulerZYX - Gets euler angles from orient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
2.41 EventType - Get current event type inside any event routine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
2.42 ExecHandler - Get type of execution handler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
2.43 ExecLevel - Get execution level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840
2.44 Exp - Calculates the exponential value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
2.45 FileSize - Retrieve the size of a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842
2.46 FileTime - Retrieve time information about a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
2.47 FSSize - Retrieve the size of a file system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848
2.48 GetMecUnitName - Get the name of the mechanical unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
2.49 GetNextMechUnit - Get name and data for mechanical units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852
2.50 GetNextSym - Get next matching symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855
2.51 GetSysInfo - Get information about the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
2.52 GetTaskName - Gets the name and number of current task  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860
2.53 GetTime - Reads the current time as a numeric value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
2.54 GInputDnum - Read value of group input signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
2.55 GOutput - Reads the value of a group of digital output signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866
2.56 GOutputDnum - Read value of group output signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
2.57 HexToDec - Convert from hexadecimal to decimal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870
2.58 IndInpos - Independent axis in position status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
2.59 IndSpeed - Independent speed status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
2.60 IOUnitState - Get current state of I/O unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
2.61 IsFile - Check the type of a file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
2.62 IsMechUnitActive - Is mechanical unit active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882
2.63 IsPers - Is persistent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883
2.64 IsStopMoveAct - Is stop move flags active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
2.65 IsStopStateEvent - Test whether moved program pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 886
2.66 IsSyncMoveOn - Test if in synchronized movement mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888



Table of Contents

93HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.67 IsSysId - Test system identity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890
2.68 IsVar - Is variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891
2.69 MaxRobSpeed - Maximum robot speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
2.70 MirPos - Mirroring of a position  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893
2.71 ModExist - Check if program module exist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
2.72 ModTime - Get file modify time for the loaded module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896
2.73 MotionPlannerNo - Get connected motion planner number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898
2.74 NonMotionMode - Read the Non-Motion execution mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900
2.75 NOrient - Normalize orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
2.76 NumToDnum - Converts num to dnum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903
2.77 NumToStr - Converts numeric value to string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904
2.78 Offs - Displaces a robot position  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906
2.79 OpMode - Read the operating mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
2.80 OrientZYX - Builds an orient from euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
2.81 ORobT - Removes the program displacement from a position  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911
2.82 ParIdPosValid - Valid robot position for parameter identification  . . . . . . . . . . . . . . . . . . . . . . . . . . . 913
2.83 ParIdRobValid - Valid robot type for parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
2.84 PathLevel - Get current path level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
2.85 PathRecValidBwd - Is there a valid backward path recorded  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
2.86 PathRecValidFwd - Is there a valid forward path recorded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924
2.87 PFRestart - Check interrupted path after power failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
2.88 PoseInv - Inverts pose data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
2.89 PoseMult - Multiplies pose data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
2.90 PoseVect - Applies a transformation to a vector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
2.91 Pow - Calculates the power of a value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
2.92 PPMovedInManMode - Test whether the program pointer is moved in manual mode . . . . . . . . . . . . 936
2.93 Present - Tests if an optional parameter is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
2.94 ProgMemFree - Get the size of free program memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
2.95 RawBytesLen - Get the length of rawbytes data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
2.96 ReadBin - Reads a byte from a file or serial channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942
2.97 ReadDir - Read next entry in a directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
2.98 ReadMotor - Reads the current motor angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947
2.99 ReadNum - Reads a number from a file or serial channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949
2.100 ReadStr - Reads a string from a file or serial channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952
2.101 ReadStrBin - Reads a string from a binary serial channel or file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956
2.102 ReadVar - Read variable from a device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958
2.103 RelTool - Make a displacement relative to the tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
2.104 RemainingRetries - Remaining retries left to do  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
2.105 RMQGetSlotName - Get the name of an RMQ client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964
2.106 RobName - Get the TCP robot name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966
2.107 RobOS - Check if execution is on RC or VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
2.108 Round - Round is a numeric value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969
2.109 RunMode - Read the running mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
2.110 Sin - Calculates the sine value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972
2.111 SocketGetStatus - Get current socket state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
2.112 Sqrt - Calculates the square root value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976
2.113 STCalcForce - Calculate the tip force for a Servo Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
2.114 STCalcTorque - Calc. the motor torque for a servo tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
2.115 STIsCalib - Tests if a servo tool is calibrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981
2.116 STIsClosed - Tests if a servo tool is closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
2.117 STIsIndGun - Tests if a servo tool is in independent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985
2.118 STIsOpen - Tests if a servo tool is open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
2.119 StrDigCalc - Arithmetic operations with datatype stringdig  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
2.120 StrDigCmp - Compare two strings with only digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991
2.121 StrFind - Searches for a character in a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994



Table of Contents

10 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.122 StrLen - Gets the string length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
2.123 StrMap - Maps a string. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
2.124 StrMatch - Search for pattern in string. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
2.125 StrMemb - Checks if a character belongs to a set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
2.126 StrOrder - Checks if strings are ordered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003
2.127 StrPart - Finds a part of a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005
2.128 StrToByte - Converts a string to a byte data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007
2.129 StrToVal - Converts a string to a value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010
2.130 Tan - Calculates the tangent value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
2.131 TaskRunMec - Check if task controls any mechanical unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1013
2.132 TaskRunRob - Check if task controls some robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014
2.133 TasksInSync - Returns the number of synchronized tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1015
2.134 TestAndSet - Test variable and set if unset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017
2.135 TestDI - Tests if a digital input is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
2.136 TestSignRead - Read test signal value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
2.137 TextGet - Get text from system text tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022
2.138 TextTabFreeToUse - Test whether text table is free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
2.139 TextTabGet - Get text table number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026
2.140 Trunc - Truncates a numeric value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028
2.141 Type - Get the data type name for a variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030
2.142 UIAlphaEntry - User Alpha Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
2.143 UIClientExist - Exist User Client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037
2.144 UIDnumEntry - User Number Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038
2.145 UIDnumTune - User Number Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
2.146 UIListView - User List View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
2.147 UIMessageBox - User Message Box type advanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057
2.148 UINumEntry - User Number Entry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064
2.149 UINumTune - User Number Tune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
2.150 ValidIO - Valid I/O signal to access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076
2.151 ValToStr - Converts a value to a string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078
2.152 VectMagn - Magnitude of a pos vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1080

3 Data types 1083

3.1 aiotrigg - Analog I/O trigger condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
3.2 bool - Logical values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085
3.3 btnres - Push button result data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086
3.4 busstate - State of I/O bus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088
3.5 buttondata - Push button data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089
3.6 byte - Integer values 0 - 255. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091
3.7 clock - Time measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092
3.8 confdata - Robot configuration data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
3.9 corrdescr - Correction generator descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
3.10 datapos - Enclosing block for a data object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
3.11 dionum - Digital values (0 - 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
3.12 dir - File directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
3.13 dnum - Double numeric values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104
3.14 errdomain - Error domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
3.15 errnum - Error number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
3.16 errstr - Error string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114
3.17 errtype - Error type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
3.18 event_type - Event routine type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
3.19 exec_level - Execution level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117
3.20 extjoint - Position of external joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
3.21 handler_type - Type of execution handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
3.22 icondata - Icon display data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121



Table of Contents

113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.23 identno - Identity for move instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123
3.24 intnum - Interrupt identity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
3.25 iodev - Serial channels and files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
3.26 iounit_state - State of I/O unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128
3.27 jointtarget - Joint position data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129
3.28 listitem - List item data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
3.29 loaddata - Load data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132
3.30 loadidnum - Type of load identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
3.31 loadsession - Program load session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138
3.32 mecunit - Mechanical unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
3.33 motsetdata - Motion settings data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1141
3.34 num - Numeric values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146
3.35 opcalc - Arithmetic Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148
3.36 opnum - Comparison operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149
3.37 orient - Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
3.38 paridnum - Type of parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154
3.39 paridvalidnum - Result of ParIdRobValid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
3.40 pathrecid - Path recorder identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158
3.41 pos - Positions (only X, Y and Z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160
3.42 pose - Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162
3.43 progdisp - Program displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163
3.44 rawbytes - Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165
3.45 restartdata - Restart data for trigg signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
3.46 rmqheader - RAPID Message Queue Message header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
3.47 rmqmessage - RAPID Message Queue message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
3.48 rmqslot - Identity number of an RMQ client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1174
3.49 robjoint - Joint position of robot axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
3.50 robtarget - Position data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176
3.51 shapedata - World zone shape data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
3.52 signalxx - Digital and analog signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181
3.53 socketdev - Socket device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1183
3.54 socketstatus - Socket communication status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184
3.55 speeddata - Speed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1185
3.56 stoppointdata - Stop point data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
3.57 string - Strings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
3.58 stringdig - String with only digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
3.59 switch - Optional parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198
3.60 symnum - Symbolic number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199
3.61 syncident - Identity for synchronization point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200
3.62 System data - Current RAPID system data settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
3.63 taskid - Task identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
3.64 tasks - RAPID program tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204
3.65 testsignal - Test signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
3.66 tooldata - Tool data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
3.67 tpnum - FlexPendant window number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1211
3.68 trapdata - Interrupt data for current TRAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1212
3.69 triggdata - Positioning events, trigg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
3.70 triggios - Positioning events, trigg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1214
3.71 triggiosdnum - Positioning events, trigg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
3.72 triggstrgo - Positioning events, trigg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219
3.73 tunetype - Servo tune type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
3.74 uishownum - Instance ID for UIShow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
3.75 wobjdata - Work object data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224
3.76 wzstationary - Stationary world zone data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228
3.77 wztemporary - Temporary world zone data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230



Table of Contents

12 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.78 zonedata - Zone data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232

4 Programming type examples 1239

4.1 ERROR handler with movements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
4.2 Service routines with or without movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
4.3 System I/O interrupts with or without movements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
4.4 TRAP routines with movements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250

Index 1255



 Overview

133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Overview

About this manual

This is a technical reference manual intended for the RAPID programmer. The RAPID base 

instructions, functions and data types are detailed in this manual. 

Usage

This manual should be read during programming and when you need specific information 

about a RAPID instruction, function or data type.

Who should read this manual?

This manual is intended for someone with some previous experience in programming, for 

example, a robot programmer.

Prerequisites

The reader should have some programming experience and have studied

• Operating manual - Introduction to RAPID

• Technical reference manual - RAPID overview 

Organization of chapters

The manual is organized in the following chapters:

References

Chapter Contents

1. Instructions Detailed descriptions of all RAPID base 
instructions, including examples of how to use 
them.

2. Functions Detailed descriptions of all RAPID base 
functions, including examples of how to use 
them.

3. Data types Detailed descriptions of all RAPID base data 
types, including examples of how to use them.

4. Programming type examples A general view of how to write program code 
that contains different instructions/functions/
data types. The chapter contains also 
programming tips and explanations.

Reference Document ID

Operating manual - Introduction to RAPID 3HAC029364-001

Technical reference manual - RAPID 
overview

3HAC16580-1

Technical reference manual - RAPID kernel 3HAC16585-1

Continues on next page



 

 Overview

3HAC 16581-1  Revision: J14

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Revisions

Revision Description

F 7th edition. RobotWare 5.10.

New chapter added, 4 Programming type examples.

G 8th edition. RobotWare 5.11.

New instructions, functions and data types are added. Also a new 
programming type example is added.

H 9th edition. RobotWare 5.12.

New instructions, functions and data types are added.

J 10th edition. RobotWare 5.13.

The following new instructions, functions and data types are added:

• TPReadNum - Reads a number from the FlexPendant on page 564

• Type - Get the data type name for a variable on page 1030

• UIDnumEntry - User Number Entry on page 1038

• UIDnumTune - User Number Tune on page 1044

• triggiosdnum - Positioning events, trigg on page 1217

Updated safety signal graphics for the levels Danger and Warning.

Continued



1 Instructions

1.1. AccSet - Reduces the acceleration
RobotWare - OS

153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1 Instructions

1.1. AccSet - Reduces the acceleration

Usage

AccSet is used when handling fragile loads. It allows slower acceleration and deceleration, 

which results in smoother robot movements.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction AccSet are illustrated below.

Example 1

AccSet 50, 100;

The acceleration is limited to 50% of the normal value. 

Example 2

AccSet 100, 50;

The acceleration ramp is limited to 50% of the normal value. 

Arguments
AccSet Acc Ramp 

Acc

Data type: num

Acceleration and deceleration as a percentage of the normal values. 100% corresponds to 

maximum acceleration. Maximum value: 100%. Input value < 20% gives 20% of maximum 

acceleration.

Ramp

Data type: num

The rate at which acceleration and deceleration increases as a percentage of the normal 

values. Jerking can be restricted by reducing this value. 100% corresponds to maximum rate. 

Maximum value: 100%. Input value < 10% gives 10% of maximum rate.

Continues on next page



1 Instructions

1.1. AccSet - Reduces the acceleration
RobotWare - OS

3HAC 16581-1  Revision: J16

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The figures show that reducing the acceleration results in smoother movements.

xx0500002146

Program execution

The acceleration applies to both the robot and external axes until a new AccSet instruction 

is executed.

The default values (100%) are automatically set

• at a cold start.

• when a new program is loaded.

• when starting program execution from the beginning.

Syntax
AccSet

[ Acc ':=' ] < expression (IN) of num > ','

[ Ramp ':=' ] < expression (IN) of num > ';'

Related information

Ti

For information about See

Control acceleration in world coordinate 
system

WorldAccLim - Control acceleration in world 
coordinate system on page 707

Reduce TCP acceleration along the 
path

PathAccLim - Reduce TCP acceleration along the 
path on page 295

Positioning instructions Technical reference manual - RAPID overview

Continued



1 Instructions

1.2. ActUnit - Activates a mechanical unit
RobotWare - OS

173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.2. ActUnit - Activates a mechanical unit

Usage

ActUnit is used to activate a mechanical unit.

It can be used to determine which unit is to be active when, for example, common drive units 

are used.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

A basic example of the instruction ActUnit is illustrated below.

Example 1
ActUnit orbit_a;

Activation of the orbit_a mechanical unit.

Arguments
ActUnit MechUnit

MechUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit that is to be activated.

Program execution

When the robots and external axes actual path is ready, the path on current path level is 

cleared and the specified mechanical unit is activated. This means that it is controlled and 

monitored by the robot.

If several mechanical units share a common drive unit, activation of one of these mechanical 

units will also connect that unit to the common drive unit.

Limitations

If this instruction is preceded by a move instruction, that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point, otherwise restart after 

power failure will not be possible.

ActUnit cannot be executed in a RAPID routine connected to any of the following special 

system events: PowerOn, Stop, QStop, Restart, Reset.or Step.

It is possible to use ActUnit - DeactUnit on StorePath level, but the same mechanical 

units must be active when doing RestoPath as when StorePath was done. Such operation 

on the Path Recorder and the path on the base level will be intact, but the path on the 

StorePath level will be cleared.

Syntax
ActUnit 

[MechUnit ':=' ] < variable (VAR) of mecunit> ';'

Continues on next page



1 Instructions

1.2. ActUnit - Activates a mechanical unit
RobotWare - OS

3HAC 16581-1  Revision: J18

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Deactivating mechanical units DeactUnit - Deactivates a mechanical unit on page 79

Mechanical units mecunit - Mechanical unit on page 1139

More examples DeactUnit - Deactivates a mechanical unit on page 79

Path Recorder PathRecMoveBwd - Move path recorder backwards on 
page 298

Continued



1 Instructions

1.3. Add - Adds a numeric value
RobotWare - OS

193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.3. Add - Adds a numeric value

Usage

Add is used to add or subtract a value to or from a numeric variable or persistent.

Basic examples

Basic examples of the instruction Add are illustrated below.

Example 1
Add reg1, 3;

3 is added to reg1, i.e. reg1:=reg1+3.

Example 2
Add reg1, -reg2;

The value of reg2 is subtracted from reg1, i.e. reg1:=reg1-reg2.

Example 3
VAR dnum mydnum:=5;

Add mydnum, 500000000;

500000000 is added to mydnum, i.e. mynum:=mynum+500000000.

Example 4
VAR dnum mydnum:=5000;

VAR num mynum:=6000;

Add mynum, DnumToNum(mydnum \Integer);

5000 is added to mynum, i.e. mynum:=mynum+5000. You have to use DnumToNum to get a 

num numeric value that you can use together with the num variable mynum.

Arguments
Add Name | Dname AddValue | AddDvalue

Name

Data type: num

The name of the variable or persistent to be changed. 

Dname

Data type: dnum

The name of the variable or persistent to be changed. 

AddValue

Data type: num

The value to be added. 

AddDvalue

Data type: dnum

The value to be added. 

Continues on next page



1 Instructions

1.3. Add - Adds a numeric value
RobotWare - OS

3HAC 16581-1  Revision: J20

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

If the value to be added is of the type dnum, and the variable/persistent that should be changed 

is a num, a runtime error will be generated. The combination of arguments is not possible (see 

Example 4 above how to solve this).

Syntax
Add

[ Name ':=' ] < var or pers (INOUT) of num >

| [ Dname’ :=’ ] < var or pers (INOUT) of dnum > ’,’

[ AddValue ':=' ] < expression (IN) of num >

| [ AddDvalue’ :=’ ] < expression (IN) of dnum > ’;’

Related information

For information about See

Incrementing a variable by 1 Incr - Increments by 1 on page 131

Decrementing a variable by 1 Decr - Decrements by 1 on page 81

Changing data using an arbitrary 
expression, e.g. multiplication

":=" - Assigns a value on page 24

Continued



1 Instructions

1.4. AliasIO - Define I/O signal with alias name
RobotWare - OS

213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.4. AliasIO - Define I/O signal with alias name

Usage

AliasIO is used to define a signal of any type with an alias name or to use signals in built-

in task modules.

Signals with alias names can be used for predefined generic programs, without any 

modification of the program before running in different robot installations.

The instruction AliasIO must be run before any use of the actual signal. See Basic examples 

on page 21 for loaded modules, and More examples on page 22 for installed modules.

Basic examples

A basic example of the instruction AliasIO is illustrated below.

See also More examples on page 22.

Example 1
VAR signaldo alias_do;

PROC prog_start()

AliasIO config_do, alias_do;

ENDPROC

The routine prog_start is connected to the START event in system parameters. The 

program defining digital output signal alias_do is connected to the configured digital 

output signal config_do at program start.

Arguments
AliasIO FromSignal ToSignal

FromSignal

Data type: signalxx or string

Loaded modules:

The signal identifier named according to the configuration (data type signalxx) from which 

the signal descriptor is copied. The signal must be defined in the I/O configuration.

Installed modules or loaded modules:

A reference (CONST, VAR or parameter of these) containing the name of the signal (data type 

string) from which the signal descriptor after search in the system is copied. The signal 

must be defined in the I/O configuration.

ToSignal

Data type: signalxx

The signal identifier according to the program (data type signalxx) to which the signal 

descriptor is copied. The signal must be declared in the RAPID program.

The same data type must be used (or found) for the arguments FromSignal and ToSignal 

and must be one of type signalxx (signalai, signalao, signaldi, signaldo, 

signalgi, or signalgo).

Continues on next page



1 Instructions

1.4. AliasIO - Define I/O signal with alias name
RobotWare - OS

3HAC 16581-1  Revision: J22

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The signal descriptor value is copied from the signal given in argument FromSignal to the 

signal given in argument ToSignal.

Error handling
Following recoverable errors can be generated. The errors can be handled in an error handler. 
The system variable ERRNO will be set to:

More examples

More examples of the instruction AliasIO are illustrated below.

Example 1
VAR signaldi alias_di;

PROC prog_start()

CONST string config_string := "config_di";

AliasIO config_string, alias_di;

ENDPROC

The routine prog_start is connected to the START event in system parameters. The 

program defined digital input signal alias_di is connected to the configured digital input 

signal config_di (via constant config_string) at program start. 

Limitation

When starting the program, the alias signal cannot be used until the AliasIO instruction is 

executed.

Instruction AliasIO must be placed

• either in the event routine executed at program start (event START)

• or in the program part executed after every program start (before use of the signal)

In order to prevent mistakes it is not recommended to use dynamic reconnection of an 

AliasIO signal to different physical signals.

Syntax
AliasIO

[ FromSignal ':=' ] < reference (REF) of anytype> ','

[ ToSignal ':=' ] < variable (VAR) of anytype> ';'

ERR_ALIASIO_DEF The FromSignal is not defined in the IO configuration 

or the ToSignal is not declared in the RAPID program

or the ToSignal is defined in the IO configuration.

ERR_ALIASIO_TYPE The data types for the arguments FromSignal and 
ToSignal is not the same type.

Continued

Continues on next page



1 Instructions

1.4. AliasIO - Define I/O signal with alias name
RobotWare - OS

233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information 

For information about See

Input/Output instructions Technical reference manual - RAPID overview

Input/Output functionality in general Technical reference manual - RAPID overview

Configuration of I/O Technical reference manual - System parameters

Defining event routines Technical reference manual - System parameters

Loaded/Installed task modules Technical reference manual - System parameters

Continued



1 Instructions

1.5. ":=" - Assigns a value
RobotWare - OS

3HAC 16581-1  Revision: J24

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.5. ":=" - Assigns a value

Usage

The “:=” instruction is used to assign a new value to data. This value can be anything from a 

constant value to an arithmetic expression, e.g. reg1+5*reg3.

Basic examples

Basic examples of the instruction “:=” are illustrated below.

See also More examples on page 24.

Example 1
reg1 := 5;

reg1 is assigned the value 5.

Example 2
reg1 := reg2 - reg3;

reg1 is assigned the value that the reg2-reg3 calculation returns.

Example 3
counter := counter + 1;

counter is incremented by one.

Arguments
Data := Value

Data

Data type: All

The data that is to be assigned a new value.

Value

Data type: Same as Data

The desired value.

More examples

More examples of the instruction “:=” are illustrated below.

Example 1
tool1.tframe.trans.x := tool1.tframe.trans.x + 20;

The TCP for tool1 is shifted 20 mm in the X-direction. 

Example 2
pallet{5,8} := Abs(value);

An element in the pallet matrix is assigned a value equal to the absolute value of the value 

variable.

Continues on next page



1 Instructions

1.5. ":=" - Assigns a value
RobotWare - OS

253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The data (whose value is to be changed) must not be 

• a constant

• a non-value data type.

The data and value must have similar (the same or alias) data types. 

Syntax
(EBNF)

<assignment target> ':=' <expression> ';'

<assignment target> ::=

<variable>

| <persistent>

| <parameter>

| <VAR>

Related information

For information about See

Expressions Technical reference manual - RAPID overview

Non-value data types Technical reference manual - RAPID overview

Assigning an initial value to data Operating manual - IRC5 with FlexPendant

Continued



1 Instructions

1.6. BitClear - Clear a specified bit in a byte data
RobotWare - OS

3HAC 16581-1  Revision: J26

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.6. BitClear - Clear a specified bit in a byte data

Usage

BitClear is used to clear (set to 0) a specified bit in a defined byte data.

Basic examples

A basic example of the instruction BitClear is illustrated below.

Example 1
CONST num parity_bit := 8;

VAR byte data1 := 130;

BitClear data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 0, e.g. the content of the variable 

data1 will be changed from 130 to 2 (integer representation). Bit manipulation of data type 

byte when using BitClear is illustrated in the figure below.

xx0500002147

Arguments
BitClear BitData BitPos

BitData

Data type: byte

The bit data, in integer representation, to be changed.

BitPos

Bit Position

Data type: num

The bit position (1-8) in the BitData to be set to 0. 

Limitations

The range for a data type byte is 0 - 255 decimal. 

The bit position is valid from 1 - 8.

Continues on next page



1 Instructions

1.6. BitClear - Clear a specified bit in a byte data
RobotWare - OS

273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
BitClear

[ BitData ':=' ] < var or pers (INOUT) of byte > ','

[ BitPos ':=' ] < expression (IN) of num > ';'

Related information

For information about See

Set a specified bit in a byte data BitSet - Set a specified bit in a byte data on page 
28

Check if a specified bit in a byte data is set BitCheck - Check if a specified bit in a byte data 
is set on page 772

Other bit functions Technical reference manual - RAPID overview

Continued



1 Instructions

1.7. BitSet - Set a specified bit in a byte data
RobotWare - OS

3HAC 16581-1  Revision: J28

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.7. BitSet - Set a specified bit in a byte data

Usage

BitSet is used to set a specified bit to 1 in a defined byte data.

Basic examples

A basic example of the instruction BitSet is illustrated below.

Example 1
CONST num parity_bit := 8;

VAR byte data1 := 2;

BitSet data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 1, e.g. the content of the 

variable data1 will be changed from 2 to 130 (integer representation). Bit manipulation of 

data type byte when using BitSet is illustrated in the figure below.

xx0500002148

Arguments
BitSet BitData BitPos

BitData

Data type: byte

The bit data, in integer representation, to be changed.

BitPos

Bit Position

Data type: num

The bit position (1-8) in the BitData to be set to 1. 

Limitations

The range for a data type byte is integer 0 - 255. 

The bit position is valid from 1 - 8.

Continues on next page



1 Instructions

1.7. BitSet - Set a specified bit in a byte data
RobotWare - OS

293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
BitSet

[ BitData':=' ] < var or pers (INOUT) of byte > ','

[ BitPos':=' ] < expression (IN) of num > ';'

Related information

For information about See

Clear a specified bit in a byte data BitClear - Clear a specified bit in a byte data 
on page 26

Check if a specified bit in a byte data is set BitCheck - Check if a specified bit in a byte 
data is set on page 772

Other bit functions Technical reference manual - RAPID 
overview

Continued



1 Instructions

1.8. BookErrNo - Book a RAPID system error number
RobotWare - OS

3HAC 16581-1  Revision: J30

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.8. BookErrNo - Book a RAPID system error number

Usage

BookErrNo is used to book a new RAPID system error number.

Basic examples

A basic example of the instruction BookErrNo is illustrated below.

Example 1
! Introduce a new error number in a glue system 

! Note: The new error variable must be declared with the initial 

value -1

VAR errnum ERR_GLUEFLOW := -1;

! Book the new RAPID system error number 

BookErrNo ERR_GLUEFLOW;

The variable ERR_GLUEFLOW will be assigned to a free system error number for use in the 

RAPID code. 

! Use the new error number

IF di1 = 0 THEN

RAISE ERR_GLUEFLOW;

ELSE 

...

ENDIF

! Error handling

ERROR

IF ERRNO = ERR_GLUEFLOW THEN

...

ELSE

...

ENDIF

If the digital input di1 is 0, the new booked error number will be raised and the system error 

variable ERRNO will be set to the new booked error number. The error handling of those user 

generated errors can then be handled in the error handler as usual.

Arguments
BookErrNo ErrorName

ErrorName 

Data type: errnum

The new RAPID system error variable name.

Limitations

The new error variable must not be declared as a routine variable.

The new error variable must be declared with an initial value of -1, that gives the information 

that this error should be a RAPID system error.

Continues on next page



1 Instructions

1.8. BookErrNo - Book a RAPID system error number
RobotWare - OS

313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
BookErrNo 

[ ErrorName ':='] < variable (VAR) of errnum > ';'

Related information

For information about See

Error handling Technical reference manual - RAPID overview

Error number errnum - Error number on page 1108

Call an error handler RAISE - Calls an error handler on page 334

Continued



1 Instructions

1.9. Break - Break program execution
RobotWare - OS

3HAC 16581-1  Revision: J32

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.9. Break - Break program execution

Usage

Break is used to make an immediate break in program execution for RAPID program code 

debugging purposes. The robot movement is stopped at once.

Basic examples

A basic example of the instruction Break is illustrated below.

Example 1
...

Break;

...

Program execution stops and it is possible to analyze variables, values etc. for debugging 

purposes.

Program execution

The instruction stops program execution at once, without waiting for the robot and external 

axes to reach their programmed destination points for the movement being performed at the 

time. Program execution can then be restarted from the next instruction.

If there is a Break instruction in some routine event, the execution of the routine will be 

interrupted and no STOP routine event will be executed. The routine event will be executed 

from the beginning the next time the same event occurs.

Syntax
Break';'

Related information

For information about See

Stopping for program actions Stop - Stops program execution on page 510

Stopping after a fatal error EXIT - Terminates program execution on page 105

Terminating program execution EXIT - Terminates program execution on page 105

Only stopping robot movements StopMove - Stops robot movement on page 515



1 Instructions

1.10. CallByVar - Call a procedure by a variable
RobotWare - OS

333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.10. CallByVar - Call a procedure by a variable

Usage

CallByVar (Call By Variable) can be used to call procedures with specific names, e.g. 

proc_name1, proc_name2, proc_name3 ... proc_namex via a variable.

Basic examples

A basic example of the instruction CallByVar is illustrated below.

See also More examples on page 33.

Example 1
reg1 := 2;

CallByVar "proc", reg1;

The procedure proc2 is called.

Arguments
CallByVar Name Number

Name

Data type: string

The first part of the procedure name, e.g. proc_name.

Number

Data type: num

The numeric value for the number of the procedure. This value will be converted to a string 

and gives the 2nd part of the procedure name, e.g. 1. The value must be a positive integer.

More examples

More examples of how to make static and dynamic selection of procedure call.

Example 1 - Static selection of procedure call
TEST reg1 

CASE 1:

lf_door door_loc;

CASE 2:

rf_door door_loc;

CASE 3:

lr_door door_loc;

CASE 4:

rr_door door_loc;

DEFAULT:

EXIT;

ENDTEST

Depending on whether the value of register reg1 is 1, 2, 3, or 4, different procedures are 

called that perform the appropriate type of work for the selected door. The door location in 

argument door_loc.

Continues on next page



1 Instructions

1.10. CallByVar - Call a procedure by a variable
RobotWare - OS

3HAC 16581-1  Revision: J34

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2 - Dynamic selection of procedure call with RAPID syntax
reg1 := 2; 

%"proc"+NumToStr(reg1,0)% door_loc;

The procedure proc2 is called with argument door_loc.

Limitation: All procedures must have a specific name e.g. proc1, proc2, proc3.

Example 3 - Dynamic selection of procedure call with CallByVar
reg1 := 2;

CallByVar "proc",reg1;

The procedure proc2 is called.

Limitation: All procedures must have specific name, e.g. proc1, proc2, proc3, and no 

arguments can be used.

Limitations

Can only be used to call procedures without parameters.

Can not be used to call LOCAL procedures.

Execution of CallByVar takes a little more time than execution of a normal procedure call.

Error handling

In the argument Number is < 0 or is not an integer, the system variable ERRNO is set to 

ERR_ARGVALERR.

In reference to an unknown procedure, the system variable ERRNO is set to 

ERR_REFUNKPRC.

In procedure call error (not procedure), the system variable ERRNO is set to 

ERR_CALLPROC.

These errors can be handled in the error handler.

Syntax
CallByVar 

[Name ':='] <expression (IN) of string>','

[Number ':='] <expression (IN) of num>';'

Related information

For information about See

Calling procedures Technical reference manual - RAPID overview

Operating manual - IRC5 with FlexPendant

Continued



1 Instructions

1.11. CancelLoad - Cancel loading of a module
RobotWare - OS

353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.11. CancelLoad - Cancel loading of a module

Usage

CancelLoad can be used to cancel the loading operation generated from the instruction 

StartLoad.

CancelLoad can only be used between the instruction StartLoad and WaitLoad.

Basic examples

A basic example of the instruction CancelLoad is illustrated below.

See also More examples on page 35.

Example1
CancelLoad load1;

The load session load1 is cancelled.

Arguments
CancelLoad LoadNo

LoadNo

Data type: loadsession

Reference to the load session, created by the instruction StartLoad.

More examples

More examples of how to use the instruction CancelLoad are illustrated below.

Example 1
VAR loadsession load1;

StartLoad "HOME:"\File:="PART_B.MOD",load1;

...

IF ...

CancelLoad load1;

StartLoad "HOME:"\File:="PART_C.MOD",load1;

ENDIF

...

WaitLoad load1;

The instruction CancelLoad will cancel the on-going loading of the module PART_B.MOD 

and instead make it possible to load PART_C.MOD.

Error handling

If the variable specified in argument LoadNo is not in use, meaning that no load session is in 

use, the system variable ERRNO is set to ERR_LOADNO_NOUSE. This error can then be 

handled in the error handler.

Limitation

CancelLoad can only be used in the sequence after that instruction StartLoad is ready and 

before instruction WaitLoad is started.

Continues on next page



1 Instructions

1.11. CancelLoad - Cancel loading of a module
RobotWare - OS

3HAC 16581-1  Revision: J36

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
CancelLoad

[ LoadNo ':=' ] < variable (VAR) of loadsession >';'

Related information

For information about See

Load a program module during 
execution

StartLoad - Load a program module during 
execution on page 482

Connect the loaded module to the task WaitLoad - Connect the loaded module to the task 
on page 682

Load session loadsession - Program load session on page 1138

Load a program module Load - Load a program module during execution on 
page 208

Unload a program module UnLoad - UnLoad a program module during 
execution on page 655

Check program references CheckProgRef - Check program references on 
page 37

Continued



1 Instructions

1.12. CheckProgRef - Check program references
RobotWare - OS

373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.12. CheckProgRef - Check program references

Usage

CheckProgRef is used to check for unresolved references at any time during execution.

Basic examples

A basic example of the instruction CheckProgRef is illustrated below.

Example 1
Load \Dynamic, diskhome \File:="PART_B.MOD" \CheckRef;

Unload "PART_A.MOD";

CheckProgRef;

In this case the program contains a module called PART_A.MOD. A new module PART_B.MOD 

is loaded, which checks if all references are OK. Then PART_A.MOD is unloaded. To check 

for unresolved references after unload, a call to CheckProgRef is done.

Program execution

Program execution forces a new link of the program task and checks for unresolved 

references. 

If an error occurs during CheckProgRef, the program is not affected, it just tells you that an 

unresolved reference exists in the program task. Therefore, use CheckProgRef immediately 

after changing the number of modules in the program task (loading or unloading) to be able 

to know which module caused the link error.

This instruction can also be used as a substitute for using the optional argument \CheckRef 

in instruction Load or WaitLoad.

Error handling

If the program task contains unresolved references, the system variable ERRNO will be set 

to ERR_LINKREF, which can be handled in the error handler.

Syntax
CheckProgRef';'

Related information

For information about See

Load of a program module Load - Load a program module during 
execution on page 208

Unload of a program module UnLoad - UnLoad a program module during 
execution on page 655

Start loading of a program module StartLoad - Load a program module during 
execution on page 482

Finish loading of a program module WaitLoad - Connect the loaded module to the 
task on page 682



1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS

3HAC 16581-1  Revision: J38

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.13. CirPathMode - Tool reorientation during circle path

Usage

CirPathMode (Circle Path Mode) makes it possible to select different modes to reorientate 

the tool during circular movements.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system in 

Motion tasks.

Basic examples

Basic examples of the instruction CirPathMode are illustrated below.

Example 1
CirPathMode \PathFrame;

Standard mode for tool reorientation in the actual path frame from the start point to the 

ToPoint during all succeeding circular movements. This is default in the system.

Example 2
CirPathMode \ObjectFrame;

Modified mode for tool reorientation in actual object frame from the start point to the 

ToPoint during all succeeding circular movements.

Example 3
CirPathMode \CirPointOri;

Modified mode for tool reorientation from the start point via the programmed CirPoint 

orientation to the ToPoint during all succeeding circular movements.

Example 4
CirPathMode \Wrist45;

Modified mode such that the projection of the tool’s z-axis onto the cut plane will follow the 

programmed circle segment. Only wrist axes 4 and 5 are used. This mode should only be used 

for thin objects.

Example 5
CirPathMode \Wrist46;

Modified mode such that the projection of the tool’s z-axis onto the cut plane will follow the 

programmed circle segment. Only wrist axes 4 and 6 are used. This mode should only be used 

for thin objects.

Example 6
CirPathMode \Wrist56;

Modified mode such that the projection of the tool’s z-axis onto the cut plane will follow the 

programmed circle segment. Only wrist axes 5 and 6 are used. This mode should only be used 

for thin objects.

Continues on next page



1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS

393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Description

PathFrame
The figure in the table shows the tool reorientation for the standard mode \PathFrame.

The figure in the table shows the use of standard mode \PathFrame with fixed tool orienta-
tion.

Illustration Description

xx0500002152

The arrows shows the tool from wrist center 
point to tool center point for the programmed 
points. The path for the wrist center point is 
dotted in the figure.

The \PathFrame mode makes it easy to get 
the same angle of the tool around the 
cylinder. The robot wrist will not go through 
the programmed orientation in the 
CirPoint

Illustration Description

xx0500002153

This picture shows the obtained orientation of the 
tool in the middle of the circle using a leaning tool 
and \PathFrame mode.

Compare with the figure below when  
\ObjectFrame mode is used.

Continued

Continues on next page



1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS

3HAC 16581-1  Revision: J40

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ObjectFrame
The figure in the table shows the use of modified mode \ObjectFrame with fixed tool ori-
entation.

CirPointOri
The figure in the table shows the different tool reorientation between the standard mode 
\PathFrame and the modified mode \CirPointOri.

Wrist45 / Wrist46 / Wrist56
The figure in the table shows the frames involved when cutting a shape using axes 4 and 5..

Illustration Description

xx0500002151

This picture shows the obtained orientation of the 
tool in the middle of the circle using a leaning tool 
and \ObjectFrame mode.

This mode will make a linear reorientation of the 
tool in the same way as for MoveL. The robot wrist 
will not go through the programmed orientation in 
the CirPoint.

Compare with the figure above when 
\PathFrame mode is used.

Illustration Description

xx0500002150

The arrows show the tool from wrist center point 
to tool center point for the programmed points. 
The different paths for the wrist center point are 
dashed in the figure.

The \CirPointOri mode will make the robot 
wrist to go through the programmed orientation 
in the CirPoint.

Illustration Description

xx0800000294

It is assumed that the cutting beam is aligned 
with the tool’s z axis. The coordinate frame of the 
cut plane is defined by the robot’s starting 
position when executing the MoveC instruction.

Continued

Continues on next page



1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS

413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
CirPathMode [\PathFrame] | [\ObjectFrame] | [\CirPointOri] | 

[\Wrist45] | [\Wrist46] | [\Wrist56]

[ \PathFrame ]

Data type: switch

During the circular movement the reorientation of the tool is done continuously from the start 

point orientation to the ToPoint orientation in the actual path frame. This is the standard 

mode in the system.

[ \ObjectFrame ]

Data type: switch

During the circular movement the reorientation of the tool is done continuously from the start 

point orientation to the ToPoint orientation in the actual object frame.

[ \CirPointOri ]

Data type: switch

During the circular movement the reorientation of the tool is done continuously from the start 

point orientation to the programmed CirPoint orientation and further to the ToPoint 

orientation.

[ \Wrist45 ]

Data type: switch

The robot will move axes 4 and 5 such that the projection of the tool’s z-axis onto the cut 

plane will follow the programmed circle segment. This mode should only be used for thin 

objects as only 2 wrist axes are used and thus give us increased accuracy but also less control.

NOTE: This switch requires option Wrist Move.

[ \Wrist46 ]

Data type: switch

The robot will move axes 4 and 6 such that the projection of the tool’s z-axis onto the cut 

plane will follow the programmed circle segment. This mode should only be used for thin 

objects as only 2 wrist axes are used and thus give us increased accuracy but also less control.

NOTE: This switch requires option Wrist Move.

[ \Wrist56 ]

Data type: switch

The robot will move axes 5 and 6 such that the projection of the tool’s z-axis onto the cut 

plane will follow the programmed circle segment. This mode should only be used for thin 

objects as only 2 wrist axes are used and thus give us increased accuracy but also less control.

NOTE: This switch requires option Wrist Move.

If you use CirPathMode without any switch then result is the same as CirPointMode 

\PathFrame

Continued

Continues on next page



1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS

3HAC 16581-1  Revision: J42

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The specified circular tool reorientation mode applies for the next executed robot circular 

movements of any type (MoveC, SearchC, TriggC, MoveCDO, MoveCSync, ArcC, 

PaintC ... ) and is valid until a new CirPathMode (or obsolete CirPathReori) instruction 

is executed.

The standard circular reorientation mode (CirPathMode \PathFrame) is automatically set

• At a cold start-up.

• When a new program is loaded.

• When starting program execution from the beginning.

Limitations

The instruction only affects circular movements.

When using the \CirPointOri mode, the CirPoint must be between the points A and B 

according to the figure below to make the circle movement to go through the programmed 

orientation in the CirPoint.

xx0500002149

 

\Wrist45, \Wrist46, and \Wrist56 mode should only be used for cutting thin objects as 

the ability to control the angle of the tool is lost when using only two wrist axes. Coordinated 

movements are not possible since the main axis is locked.

If working in wrist singularity area and the instruction SingArea\Wrist has been executed, 

the instruction CirPathMode has no effect because the system then selects another tool 

reorientation mode for circular movements (joint interpolation).

This instruction replaces the old instruction CirPathReori (will work even in the future but 

will not be documented any more).

Syntax
CirPathMode

['\'PathFrame] | ['\'ObjectFrame] | ['\'CirPointOri] | 

['\'Wrist45] | ['\'Wrist46] | ['\'Wrist56] ';'

Related information

For information about See

Interpolation Technical reference manual - RAPID overview

Motion settings data motsetdata - Motion settings data on page 1141

Circular move instruction MoveC - Moves the robot circularly on page 236

Wrist movements Application manual - Motion Performance, 
section Wrist Move

Continued



1 Instructions

1.14. Clear - Clears the value
RobotWare - OS

433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.14. Clear - Clears the value

Usage

Clear is used to clear a numeric variable or persistent , i.e. set it to 0.

Basic examples

Basic examples of the instruction Clear are illustrated below.

Example 1
Clear reg1;

Reg1 is cleared, i.e. reg1:=0.

Example 2
CVAR dnum mydnum:=5;

Clear mydnum;

mydnum is cleared, i.e. mydnum:=0.

Arguments
Clear Name | Dname

Name

Data type: num

The name of the variable or persistent to be cleared. 

Dname

Data type: dnum

The name of the variable or persistent to be cleared. 

Syntax
Clear

[ Name ':=' ] < var or pers (INOUT) of num >

| [ Dname ':=' ] < var or pers (INOUT) of dnum > ';'

Related information

For information about See

Incrementing a variable by 1 Incr - Increments by 1 on page 131

Decrementing a variable by 1 Decr - Decrements by 1 on page 81

Adding any value to a variable Add - Adds a numeric value on page 19

Changing data using arbitrary ":=" - Assigns a value on page 24



1 Instructions

1.15. ClearIOBuff - Clear input buffer of a serial channel
RobotWare - OS

3HAC 16581-1  Revision: J44

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.15. ClearIOBuff - Clear input buffer of a serial channel

Usage

ClearIOBuff (Clear I/O Buffer) is used to clear the input buffer of a serial channel. All 

buffered characters from the input serial channel are discarded.

Basic examples

A basic example of the instruction ClearIOBuff is illustrated below.

Example 1
VAR iodev channel2;

...

Open "com2:", channel2 \Bin;

ClearIOBuff channel2;

WaitTime 0.1;

The input buffer for the serial channel referred to by channel2 is cleared. The wait time 

guarantees the clear operation enough time to finish.

Arguments
ClearIOBuff IODevice

IODevice

Data type: iodev

The name (reference) of the serial channel whose input buffer is to be cleared.

Program execution

All buffered characters from the input serial channel are discarded. Next read instructions will 

wait for new input from the channel.

Limitations

This instruction can only be used for serial channels. Do not wait for acknowledgement of the 

operation to finish. Allow a wait time 0.1 after the instruction is recommended to give the 

operation enough time in every application.

Error handling

If trying to use the instruction on a file, the system variable ERRNO is set to ERR_FILEACC. 

This error can then be handled in the error handler.

Syntax
ClearIOBuff

[IODevice ':='] <variable (VAR) of iodev>';'

Related information

For information about See

Opening a serial channel Technical reference manual - RAPID overview



1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS

453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.16. ClearPath - Clear current path

Usage

ClearPath (Clear Path) clears the whole motion path on the current motion path level (base 

level or StorePath level).

With motion path, meaning all the movement segments from any move instructions which 

have been executed in RAPID but not performed by the robot at the execution time of  

ClearPath.

The robot must be in a stop point position or must be stopped with StopMove before the 

instruction ClearPath can be executed.

Basic examples

Basic examples of the instruction ClearPath are illustrated below.

xx0500002154

In the following program example, the robot moves from the position home to the position 

p1. At the point px the signal di1 will indicate that the payload has been dropped. The 

execution continues in the trap routine gohome. The robot will stop moving (start the braking) 

at px, the path will be cleared, the robot will move to position home. The error will be raised 

up to the calling routine minicycle and the whole user defined program cycle proc1 .. 

proc2 will be executed from the beginning one more time.

Example 1
VAR intnum drop_payload;

VAR errnum ERR_DROP_LOAD := -1;

PROC minicycle()

BookErrNo ERR_DROP_LOAD;

proc1;

...

ERROR (ERR_DROP_LOAD)

RETRY;

ENDPROC

PROC proc1()

 ...

proc2;

...

ENDPROC

Continues on next page



1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS

3HAC 16581-1  Revision: J46

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROC proc2()

CONNECT drop_payload WITH gohome;

ISignalDI \Single, di1, 1, drop_payload;

MoveL p1, v500, fine, gripper;

...........

IDelete drop_payload

ENDPROC

TRAP gohome

StopMove \Quick;

ClearPath;

IDelete drop_payload;

StorePath;

MoveL home, v500, fine, gripper;

RestoPath;

RAISE ERR_DROP_LOAD;

ERROR

RAISE;

ENDTRAP

If the same program is being run but without StopMove and ClearPath in the trap routine 

gohome, the robot will continue to position p1 before going back to position home.

If programming MoveL home with flying-point (zone) instead of stop-point (fine), the 

movement is going on during the RAISE to the error handler in procedure minicycle and 

further until the movement is ready.

Limitations

Limitation examples of the instruction ClearPath are illustrated below.

Example 1 - Limitation
VAR intnum int_move_stop;

...

PROC test_move_stop()

CONNECT int_move_stop WITH trap_move_stop;

ISignalDI di1, 1, int_move_stop;

MoveJ p10, v200, z20, gripper;

MoveL p20, v200, z20, gripper;

ENDPROC

TRAP trap_move_stop

StopMove;

ClearPath;

StartMove;

StorePath;

MoveJ p10, v200, z20, gripper;

RestoPath;

ENDTRAP

Continued

Continues on next page



1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS

473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

This is an example of ClearPath limitation. During the robot movement to p10 and p20, 

the ongoing movement is stopped and the motion path is cleared, but no action is done to 

break off the active instruction MoveJ p10 or MoveL p20 in the PROC test_move_stop. 

So the ongoing movement will be interrupted and the robot will go to p10 in the TRAP 

trap_move_stop, but no further movement to p10 or p20 in the PROC test_move_stop 

will be done. The program execution will be hanging. 

This problem can be solved with either error recovery with long jump as described in example 

2 below or with asynchronously raised error with instruction ProcerrRecovery.

Example 2 - No limitations
VAR intnum int_move_stop;

VAR errnum err_move_stop := -1;

...

PROC test_move_stop()

BookErrNo err_move_stop;

CONNECT int_move_stop WITH trap_move_stop;

ISignalDI di1, 1, int_move_stop;

MoveJ p10, v200, z20, gripper;

MoveL p20, v200, z20, gripper;

ERROR (err_move_stop)

StopMove;

ClearPath;

StartMove;

StorePath;

MoveJ p10, v200, z20, gripper;

RestoPath;

RETRY;

ENDPROC

TRAP trap_move_stop

RAISE err_move_stop;

ERROR

RAISE;

ENDTRAP

This is an example of how to use error recovery with long jump together with ClearPath 

without any limitation. During the robot movement to p10 and p20, the ongoing movement 

is stopped. The motion path is cleared, and because of error recovery through execution level 

boundaries, break off is done of the active instruction MoveJ p10 or MoveL p20. So the 

ongoing movement will be interrupted and the robot will go to p10 in the ERROR handler, 

and once more execute the interrupted instruction MoveJ p10 or MoveL p20 in the PROC 

test_move_stop.

Syntax
ClearPath ';'

Continued

Continues on next page



1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS

3HAC 16581-1  Revision: J48

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Stop robot movements StopMove - Stops robot movement on page 515

Error recovery Technical reference manual - RAPID overview

Technical reference manual - RAPID kernel

Asynchronously raised error ProcerrRecovery - Generate and recover from process-move 
error on page 325

Continued



1 Instructions

1.17. ClearRawBytes - Clear the contents of rawbytes data
RobotWare - OS

493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.17. ClearRawBytes - Clear the contents of rawbytes data

Usage

ClearRawBytes is used to set all the contents of a rawbytes variable to 0.

Basic examples

A basic example of the instruction is illustrated below.

Example 1
VAR rawbytes raw_data;

VAR num integer := 8

VAR num float := 13.4;

PackRawBytes integer, raw_data, 1 \IntX := DINT;

PackRawBytes float, raw_data, (RawBytesLen(raw_data)+1) \Float4;

ClearRawBytes raw_data \FromIndex := 5;

In the first 4 bytes the value of integer is placed (from index 1) and in the next 4 bytes 

starting from index 5 the value of float.

The last instruction in the example clears the contents of raw_data, starting at index 5, i.e. 

float will be cleared, but integer is kept in raw_data. Current length of valid bytes in 

raw_data is set to 4.

Arguments
ClearRawBytes RawData [ \FromIndex ]

RawData

Data type: rawbytes

RawData is the data container which will be cleared.

[ \FromIndex ]

Data type: num

With \FromIndex it is specified where to start clearing the contents of RawData. Everything 

is cleared to the end.

If \FromIndex is not specified, all data starting at index 1 is cleared.

Program execution

Data from index 1 (default) or from \FromIndex in the specified variable is reset to 0.

The current length of valid bytes in the specified variable is set to 0 (default) or to 

(FromIndex - 1) if \FromIndex is programmed.

Syntax
ClearRawBytes

[RawData ':=' ] < variable (VAR) of rawbytes>

['\'FromIndex ':=' <expression (IN) of num>]';'

Continues on next page



1 Instructions

1.17. ClearRawBytes - Clear the contents of rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J50

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data 
on page 940

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of rawbytes 
data on page 67

Pack DeviceNet header into rawbytes 
data

PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data on 
page 290

Write rawbytes data WriteRawBytes - Write rawbytes data on page 
725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 
352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes 
data on page 658

Continued



1 Instructions

1.18. ClkReset - Resets a clock used for timing
RobotWare - OS

513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.18. ClkReset - Resets a clock used for timing

Usage

ClkReset is used to reset a clock that functions as a stop-watch used for timing.

This instruction can be used before using a clock to make sure that it is set to 0. 

Basic examples

A basic example of the instruction ClkReset is illustrated below.

Example 1
ClkReset clock1;

The clock clock1 is reset.

Arguments
ClkReset Clock

Clock

Data type: clock

The name of the clock to reset.

Program execution

When a clock is reset, it is set to 0.

If a clock is running it will be stopped and then reset.

Syntax
ClkReset

[ Clock ':=' ] < variable (VAR) of clock > ';'

Related Information

For information about See

Other clock instructions Technical reference manual - RAPID overview



1 Instructions

1.19. ClkStart - Starts a clock used for timing
RobotWare - OS

3HAC 16581-1  Revision: J52

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.19. ClkStart - Starts a clock used for timing

Usage

ClkStart is used to start a clock that functions as a stop-watch used for timing.

Basic examples

A basic example of the instruction ClkStart is illustrated below.

Example 1
ClkStart clock1;

The clock clock1 is started.

Arguments
ClkStart Clock

Clock

Data type: clock

The name of the clock to start.

Program execution

When a clock is started, it will run and continue counting seconds until it is stopped.

A clock continues to run when the program that started it is stopped. However, the event that 

you intended to time may no longer be valid. For example, if the program was measuring the 

waiting time for an input, the input may have been received while the program was stopped. 

In this case, the program will not be able to “see” the event that occurred while the program 

was stopped.

A clock continues to run when the robot is powered down as long as the battery back-up 

retains the program that contains the clock variable.

If a clock is running it can be read, stopped, or reset.

More examples

More examples of the instruction ClkStart are illustrated below.

Example 1
VAR clock clock2;

VAR num time;

ClkReset clock2; 

ClkStart clock2;

WaitUntil di1 = 1;

 ClkStop clock2;

time:=ClkRead(clock2);

The waiting time for di1 to become 1 is measured.

Continues on next page



1 Instructions

1.19. ClkStart - Starts a clock used for timing
RobotWare - OS

533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the clock runs for 4,294,967 seconds (49 days 17 hours 2 minutes 47 seconds) it becomes 

overflowed and the system variable ERRNO is set to ERR_OVERFLOW.

The error can be handled in the error handler.

Syntax
ClkStart

[ Clock ':=' ] < variable (VAR) of clock >';'

Related Information

For information about See

Other clock instructions Technical reference manual - RAPID overview

Continued



1 Instructions

1.20. ClkStop - Stops a clock used for timing
RobotWare - OS

3HAC 16581-1  Revision: J54

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.20. ClkStop - Stops a clock used for timing

Usage

ClkStop is used to stop a clock that functions as a stop-watch used for timing.

Basic examples

A basic example of the instruction ClkStop is illustrated below.

ClkStop clock1;

The clock clock1 is stopped.

Arguments
ClkStop Clock

Clock 

Data type: clock

The name of the clock to stop.

Program execution

When a clock is stopped, it will stop running.

If a clock is stopped, it can be read, started again, or reset.

Error handling

If the clock runs for 4,294,967 seconds (49 days 17 hours 2 minutes 47 seconds) it becomes 

overflowed and the system variable ERRNO is set to ERR_OVERFLOW.

The error can be handled in the error handler.

Syntax
ClkStop  

[ Clock ':=' ] < variable (VAR) of clock >';'

Related Information

For information about See

Other clock instructions Technical reference manual - RAPID overview

More examples ClkStart - Starts a clock used for timing on page 52



1 Instructions

1.21. Close - Closes a file or serial channel
RobotWare - OS

553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.21. Close - Closes a file or serial channel

Usage

Close is used to close a file or serial channel.

Basic examples

A basic example of the instruction Close is illustrated below.

Example 1
Close channel2;

The serial channel referred to by channel2 is closed.

Arguments
Close IODevice

IODevice

Data type: iodev

The name (reference) of the file or serial channel to be closed.

Program execution

The specified file or serial channel is closed and must be re-opened before reading or writing. 

If it is already closed the instruction is ignored.

Syntax
Close

[IODevice ':='] <variable (VAR) of iodev>';'

Related information

For information about See

Opening a file or serial channel Technical reference manual - RAPID overview



1 Instructions

1.22. CloseDir - Close a directory
RobotWare - OS

3HAC 16581-1  Revision: J56

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.22. CloseDir - Close a directory

Usage

CloseDir is used to close a directory in balance with OpenDir.

Basic examples

A basic example of the instruction CloseDir is illustrated below.

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified directory.

Arguments
CloseDir Dev

Dev

Data type: dir

A variable with reference to the directory fetched with instruction OpenDir.

Syntax
CloseDir

[ Dev ':=' ] < variable (VAR) of dir>';'

Related information

For information about See

Directory dir - File directory structure on page 1103

Make a directory MakeDir - Create a new directory on page 218

Open a directory OpenDir - Open a directory on page 285

Read a directory ReadDir - Read next entry in a directory on page 944

Remove a directory RemoveDir - Delete a directory on page 355

Remove a file RemoveFile - Delete a file on page 356

Rename a file RenameFile - Rename a file on page 357



1 Instructions

1.23. Comment - Comment
RobotWare - OS

573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.23. Comment - Comment

Usage

Comment is only used to make the program easier to understand. It has no effect on the 

execution of the program.

Basic examples

A basic example of the instruction Comment is illustrated below.

Example 1
! Goto the position above pallet

MoveL p100, v500, z20, tool1;

A comment is inserted into the program to make it easier to understand.

Arguments
! Comment

Comment

Text string

Any text.

Program execution

Nothing happens when you execute this instruction.

Syntax
(EBNF)

'!' {<character>} <newline>

Related information

For information about See

Characters permitted in a comment Technical reference manual - RAPID overview

Comments within data and routine dec-
larations

Technical reference manual - RAPID overview



1 Instructions

1.24. Compact IF - If a condition is met, then... (one instruction)
RobotWare - OS

3HAC 16581-1  Revision: J58

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.24. Compact IF - If a condition is met, then... (one instruction)

Usage

Compact IF is used when a single instruction is only to be executed if a given condition is 

met.

If different instructions are to be executed, depending on whether the specified condition is 

met or not, the IF instruction is used.

Basic examples

Basic examples of the instruction CompactIF are illustrated below.

Example 1
IF reg1 > 5 GOTO next;

If reg1 is greater than 5, program execution continues at the next label.

Example 2
IF counter > 10 Set do1;

The do1 signal is set if counter > 10.

Arguments
IF Condition ...

Condition

Data type: bool

The condition that must be satisfied for the instruction to be executed.

Syntax
(EBNF)

IF <conditional expression> ( <instruction> | <SMT>) ';'

Related information

For information about See

Conditions (logical expressions Technical reference manual - RAPID overview

IF with several instructions IF - If a condition is met, then ...; otherwise ... on 
page 129



1 Instructions

1.25. ConfJ - Controls the configuration during joint movement
RobotWare - OS

593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.25. ConfJ - Controls the configuration during joint movement

Usage

ConfJ (Configuration Joint) is used to specify whether or not the robot’s configuration is to 

be controlled during joint movement. If it is not controlled, the robot can sometimes use a 

different configuration than that which was programmed.

With ConfJ \Off, the robot cannot switch main axis configuration - it will search for a 

solution with the same main axis configuration as the current one, but it moves to the closest 

wrist configuration for axes 4 and 6.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction ConfJ are illustrated below.

Example 1
ConfJ \Off;

MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position and orientation. If this position can be reached 

in several different ways, with different axis configurations, the closest possible position is 

chosen.

Example 2
ConfJ \On;

MoveJ *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and axis configuration. If this is not 

possible, program execution stops.

Arguments
ConfJ [\On] | [\Off]

[ \On ]

Data type: switch

The robot always moves to the programmed axis configuration. If this is not possible using 

the programmed position and orientation, program execution stops.

The IRB5400 robot will move to the programmed axis configuration or to an axis 

configuration close the the programmed one. Program execution will not stop if it is 

impossible to reach the programmed axis configuration.

[ \Off ]

Data type: switch

The robot always moves to the closest axis configuration.

Continues on next page



1 Instructions

1.25. ConfJ - Controls the configuration during joint movement
RobotWare - OS

3HAC 16581-1  Revision: J60

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the argument \On (or no argument) is chosen, the robot always moves to the programmed 

axis configuration. If this is not possible using the programmed position and orientation, 

program execution stops before the movement starts.

If the argument \Off is chosen, the robot always moves to the closest axis configuration. This 

may be different to the programmed one if the configuration has been incorrectly specified 

manually, or if a program displacement has been carried out.

To control the configuration (ConfJ \On) is active by default. This is automatically set:

• At a cold start-up.

• When a new program is loaded.

• When starting program execution from the beginning.

Syntax
ConfJ

[ '\' On] | [ '\' Off]';'

Related information

For information about See

Handling different configurations Technical reference manual - RAPID overview

Robot configuration during linear 
movement

ConfL - Monitors the configuration during linear 
movement on page 61

Continued



1 Instructions

1.26. ConfL - Monitors the configuration during linear movement
RobotWare - OS

613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.26. ConfL - Monitors the configuration during linear movement

Usage

ConfL (Configuration Linear) is used to specify whether or not the robot’s configuration is 

to be monitored during linear or circular movement. If it is not monitored, the configuration 

at execution time may differ from that at programmed time. It may also result in unexpected 

sweeping robot movements when the mode is changed to joint movement.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

NOTE!

For the IRB 5400 robot monitoring is always off independent of what is specified in ConfL.

Basic examples

Basic examples of the instruction ConfL are illustrated below.

Example 1
ConfL \On;

MoveL *, v1000, fine, tool1;

Program execution stops when the programmed configuration is not possible to reach from 

the current position.

Example 2
SingArea \Wrist;

ConfL \On;

MoveL *, v1000, fine, tool1;

The robot moves to the programmed position, orientation and wrist axis configuration. If this 

is not possible, program execution stops.

Example 3
ConfL \Off;

MoveL *, v1000, fine, tool1;

The robot moves to the programmed position and orientation but to the closest possible axis 

configuration, which can be different from the programmed. 

Arguments
ConfL [\On]|[\Off]

[ \On ]

Data type: switch

The robot configuration is monitored. 

[ \Off ]

Data type: switch

The robot configuration is not monitored.

Continues on next page



1 Instructions

1.26. ConfL - Monitors the configuration during linear movement
RobotWare - OS

3HAC 16581-1  Revision: J62

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

During linear or circular movement, the robot always moves to the programmed position and 

orientation that has the closest possible axis configuration. If the argument \On (or no 

argument) is chosen, then the program execution stops as soon as there’s a risk that the 

configuration of the programmed position will not be attained from the current position. 

However, it is possible to restart the program again, although the wrist axes may continue to 

be the wrong configuration. At a stop point, the robot will check that the configurations of all 

axes are achieved, not only the wrist axes.

If SingArea\Wrist is also used, the robot always moves to the programmed wrist axis 

configuration and at a stop point the remaining axes configurations will be checked.

If the argument \Off is chosen, there is no monitoring. 

A simple rule to avoid problems, both for ConfL\On and \Off, is to insert intermediate 

points to make the movement of each axis less than 90 degrees between points. More 

precisely, the sum of movements for any of the par of axes (1+4), (1+6), (3+4) or (3+6) should 

not exceed 180 degrees. 

If ConfL\Off is used with a big movement, it can cause stops directly or later in the program 

with error 50050 Position outside reach or 50080 Position not compatible. In 

a program with ConfL\Off it is recommended to have movements to known configurations 

points with“ConfJ\On + MoveJ” or “ConfL\On + SingArea\Wrist + MoveL” as start 

points for different program parts.

Monitoring is active by default. This is automatically set:

• At a cold start-up.

• When a new program is loaded.

• When starting program execution from the beginning.

Syntax
ConfL

[ '\' On] | [ '\' Off]';'

Related information

For information about See

Handling different configurations Technical reference manual - RAPID overview

Robot configuration during joint 
movement

ConfJ - Controls the configuration during joint 
movement on page 59

Define interpolation around singular 
points

SingArea - Defines interpolation around singular 
points on page 447

Continued



1 Instructions

1.27. CONNECT - Connects an interrupt to a trap routine
RobotWare - OS

633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.27. CONNECT - Connects an interrupt to a trap routine 

Usage

CONNECT is used to find the identity of an interrupt and connect it to a trap routine. 

The interrupt is defined by ordering an interrupt event and specifying its identity. Thus, when 

that event occurs, the trap routine is automatically executed.

Basic examples

A basic example of the instruction CONNECT is illustrated below.

Example 1
VAR intnum feeder_low;

CONNECT feeder_low WITH feeder_empty;

ISignalDI di1, 1 , feeder_low;

An interrupt identity feeder_low is created which is connected to the trap routine 

feeder_empty. There will be an interrupt when input di1 is getting high. In other words, 

when this signal becomes high, the feeder_empty trap routine is executed.

Arguments
CONNECT Interrupt WITH Trap routine

Interrupt

Data type: intnum

The variable that is to be assigned the identity of the interrupt. This must not be declared 

within a routine (routine data).

Trap routine

Identifier

The name of the trap routine.

Program execution

The variable is assigned an interrupt identity which shall be used when ordering or disabling 

interrupts. This identity is also connected to the specified trap routine.

NOTE!

All interrupts in a task are cancelled when program pointer is set to main for that task and 

must be reconnected. The interrupts will not be affected by a power fail or a warm start.

Limitations

An interrupt (interrupt identity) cannot be connected to more than one trap routine. Different 

interrupts, however, can be connected to the same trap routine.

When an interrupt has been connected to a trap routine, it cannot be reconnected or 

transferred to another routine; it must first be deleted using the instruction IDelete.

Interrupts that come or have not been handled when program execution is stopped will be 

neglected. The interrupts are not considered when stopping the program.

Continues on next page



1 Instructions

1.27. CONNECT - Connects an interrupt to a trap routine
RobotWare - OS

3HAC 16581-1  Revision: J64

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the interrupt variable is already connected to a TRAP routine, the system variable ERRNO is 

set to ERR_ALRDYCNT.

If the interrupt variable is not a variable reference, the system variable ERRNO is set to 

ERR_CNTNOTVAR.

If no more interrupt numbers are available, the system variable ERRNO is set to ERR_INOMAX.

These errors can be handled in the ERROR handler.

Syntax
(EBNF)

CONNECT <connect target> WITH <trap>';'

<connect target> ::= <variable>

| <parameter>

| <VAR>

<trap> ::= <identifier>

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview

More information on interrupt management Technical reference manual - RAPID overview

Data type for interrupt intnum - Interrupt identity on page 1125

Cancelling an interrupt IDelete - Cancels an interrupt on page 123

Continued



1 Instructions

1.28. CopyFile - Copy a file
RobotWare - OS

653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.28. CopyFile - Copy a file

Usage

CopyFile is used to make a copy of an existing file. 

Basic examples

A basic example of the instruction CopyFile is illustrated below.

Example 1

CopyFile "HOME:/myfile", "HOME:/yourfile";

The file myfile is copied to yourfile. Both files are then identical.

CopyFile "HOME:/myfile", "HOME:/mydir/yourfile";

The file myfile is copied to yourfile in directory mydir.

Arguments
CopyFile OldPath NewPath

OldPath

Data type: string

The complete path of the file to be copied from.

NewPath

Data type: string

The complete path where the file is to be copied to.

Program execution

The file specified in OldPath will be copied to the file specified in NewPath.

Error Handling

If the file specified in NewPath already exists, the system variable ERRNO is set to 

ERR_FILEEXIST. This error can then be handled in the error handler.

Syntax
CopyFile 

[ OldPath ':=' ] < expression (IN) of string > ','

[ NewPath ':=' ] < expression (IN) of string >';'

Continues on next page



1 Instructions

1.28. CopyFile - Copy a file
RobotWare - OS

3HAC 16581-1  Revision: J66

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Make a directory MakeDir - Create a new directory on page 
218

Remove a directory RemoveDir - Delete a directory on page 355

Rename a file RenameFile - Rename a file on page 357

Remove a file RemoveFile - Delete a file on page 356

Check file type IsFile - Check the type of a file on page 878

Check file size FileSize - Retrieve the size of a file on page 
842

Check file system size FSSize - Retrieve the size of a file system on 
page 848

Continued



1 Instructions

1.29. CopyRawBytes - Copy the contents of rawbytes data
RobotWare - OS

673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.29. CopyRawBytes - Copy the contents of rawbytes data

Usage

CopyRawBytes is used to copy all or part of the contents from one rawbytes variable to 

another.

Basic examples

A basic example of the instruction CopyRawBytes is illustrated below.

Example 1
VAR rawbytes from_raw_data;

VAR rawbytes to_raw_data;

VAR num integer := 8

VAR num float := 13.4;

ClearRawBytes from_raw_data;

PackRawBytes integer, from_raw_data, 1 \IntX := DINT;

PackRawBytes float, from_raw_data, (RawBytesLen(from_raw_data)+1) 

\Float4;

CopyRawBytes from_raw_data, 1, to_raw_data, 3, 

RawBytesLen(from_raw_data);

In this example the variable from_raw_data of type rawbytes is first cleared,that is all 

bytes set to 0. Then in the first 4 bytes the value of integer is placed and in the next 4 bytes 

the value of float.

After having filled from_raw_data with data, the contents (8 bytes) is copied to 

to_raw_data, starting at position 3.

Arguments
CopyRawBytes FromRawData FromIndex ToRawData 

ToIndex [ \NoOfBytes ]

FromRawData

Data type: rawbytes

FromRawData is the data container from which the rawbytes data shall be copied.

FromIndex

Data type: num

FromIndex is the position in FromRawData where the data to be copied starts. Indexing 

starts at 1.

ToRawData

Data type: rawbytes

ToRawData is the data container to which the rawbytes data shall be copied.

ToIndex

Data type: num

ToIndex is the position in ToRawData where the data to be copied will be placed. Everything 

is copied to the end. Indexing starts at 1.

Continues on next page



1 Instructions

1.29. CopyRawBytes - Copy the contents of rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J68

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\NoOfBytes]

Data type: num

The value specified with \NoOfBytes is the number of bytes to be copied from 

FromRawData to ToRawData.

If \NoOfBytes is not specified, all bytes from FromIndex to the end of current length of 

valid bytes in FromRawData is copied.

Program execution

During program execution data is copied from one rawbytes variable to another.

The current length of valid bytes in the ToRawData variable is set to:

• (ToIndex + copied_number_of_bytes - 1)

• The current length of valid bytes in the ToRawData variable is not changed, if the 

complete copy operation is done inside the old current length of valid bytes in the 

ToRawData variable.

Limitations

CopyRawBytes can not be used to copy some data from one rawbytes variable to other part 

of the same rawbytes variable.

Syntax
CopyRawBytes

[FromRawData ':=' ] < variable (VAR) of rawbytes> ','

[FromIndex ':=' ] < expression (IN) of num> ','

[ToRawData ':=' ] < variable (VAR) of rawbytes> ','

[ToIndex ':=' ] < expression (IN) of num>

['\'NoOfBytes ':=' < expression (IN) of num> ]';'

Continued

Continues on next page



1 Instructions

1.29. CopyRawBytes - Copy the contents of rawbytes data
RobotWare - OS

693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data on 
page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of rawbytes data 
on page 49

Pack DeviceNet header into 
rawbytes data

PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data on 
page 290

Write rawbytes data WriteRawBytes - Write rawbytes data on page 725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes data 
on page 658

Continued



1 Instructions

1.30. CorrClear - Removes all correction generators
Path Offset

3HAC 16581-1  Revision: J70

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.30. CorrClear - Removes all correction generators

Descriptions

CorrClear is used to remove all connected correction generators. The instruction can be 

used to remove all offsets provided earlier by all correction generators.

Basic examples

Basic examples of the instruction CorrClear are illustrated below.

Example 1

CorrClear;

The instruction removes all connected correction generators.

NOTE!

An easy way to ensure that all correction generators (with corrections) are removed at 

program start, is to run CorrClear in a START event routine. 

See Technical reference manual - System parameters, topic Controller.

Syntax
CorrClear ';'

Related information

For information about See

Connects to a correction generator CorrCon - Connects to a correction generator on 
page 71

Disconnects from a correction generator CorrDiscon - Disconnects from a correction 
generator on page 76

Writes to a correction generator CorrWrite - Writes to a correction generator on 
page 77

Reads the current total offsets CorrRead - Reads the current total offsets on 
page 803

Correction descriptor corrdescr - Correction generator descriptor on 
page 1099



1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset

713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.31. CorrCon - Connects to a correction generator

Usage

CorrCon is used to connect to a correction generator.

Basic examples

A basic example of the instruction CorrCon is illustrated below.

See also More examples on page 71.

Example1
VAR corrdescr id;

...

CorrCon id;

The correction generator reference corresponds to the variable id reservation.

Arguments
CorrCon Descr

Descr

Data type: corrdescr

Descriptor of the correction generator.

More examples

More examples of the instruction CorrCon are illustrated below.

Path coordinate system

All path corrections (offsets on the path) are added in the path coordinate system. The path 

coordinate system is defined as illustrated below:

xx0500002156

• Path coordinate axis X is given as the tangent of the path.

• Path coordinate axis Y is derived as the cross product of tool coordinate axis Z and 

path coordinate axis X.

• Path coordinate axis Z is derived as the cross product of path coordinate axis X and 

path coordinate axis Y.

Continues on next page



1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset

3HAC 16581-1  Revision: J72

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Application example

An example of an application using path corrections is a robot holding a tool with two sensors 

mounted on it to detect the vertical and horizontal distances to a work object. The figure 

below illustrates a path correction device.

xx0500002155

Program example
NOTE! hori_sig and vert_sig are analog signals defined in system 

parameters.

CONST num TARGET_DIST := 5;

CONST num SCALE_FACTOR := 0.5;

VAR intnum intno1;

VAR corrdescr hori_id;

VAR corrdescr vert_id;

VAR pos total_offset;

VAR pos write_offset;

VAR bool conFlag;

PROC PathRoutine()

! Connect to the correction generators for horizontal and 

vertical correction.

CorrCon hori_id;

CorrCon vert_id;

conFlag := TRUE;

! Setup a 5 Hz timer interrupt. The trap routine will read the 

sensor values and

! compute the path corrections.

CONNECT intno1 WITH ReadSensors;

ITimer\Single, 0.2, intno1;

! Position for start of contour tracking

MoveJ p10,v100,z10,tool1;

! Run MoveL with both vertical and horizontal correction.

MoveL p20,v100,z10,tool1\Corr;

Continued

Continues on next page



1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset

733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

! Read the total corrections added by all connected correction 

generators.

total_offset := CorrRead();

! Write the total vertical correction on the FlexPendant.

TPWrite "The total vertical correction is:" 

\Num:=total_offset.z;

! Disconnect the correction generator for vertical correction.

! Horizontal corrections will be unaffected.

CorrDiscon vert_id;

conFlag := FALSE;

! Run MoveL with only horizontal interrupt correction.

MoveL p30,v100,z10,tool1\Corr;

! Remove all outstanding connected correction generators.

! In this case, the only connected correction generator is the 

one for horizontal

! correction.

CorrClear;

! Remove the timer interrupt.

IDelete intno1;

ENDPROC

TRAP ReadSensors

VAR num horiSig;

VAR num vertSig;

! Compute the horizontal correction values and execute the 

correction.

horiSig := hori_sig;

write_offset.x := 0;

write_offset.y := (hori_sig - TARGET_DIST)*SCALE_FACTOR;

write_offset.z := 0;

CorrWrite hori_id, write_offset;

IF conFlag THEN

! Compute the vertical correction values and execute the 

correction.

write_offset.x := 0;

write_offset.y := 0;

write_offset.z := (vert_sig - TARGET_DIST)*SCALE_FACTOR;

CorrWrite vert_id, write_offset;

ENDIF

!Setup interrupt again

IDelete intnol;

CONNECT intno1 WITH ReadSensors;

ITimer\single, 0.2, intno1;

ENDTRAP

Continued

Continues on next page



1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset

3HAC 16581-1  Revision: J74

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program explanation

Two correction generators are connected with the instruction CorrCon. Each correction 

generator is referenced by a unique descriptor (hori_id and vert_id) of the type 

corrdescr. The two sensors will use one correction generator each.

A timer interrupt is set up to call the trap routine ReadSensors with a frequency of 5 Hz. 

The offsets, needed for path correction, are computed in the trap routine and written to the 

corresponding correction generator (referenced by the descriptors hori_id and vert_id) 

by the instruction CorrWrite. All the corrections will have immediate effect on the path.

The MoveL instruction must be programmed with the switch argument Corr when path 

corrections are used. Otherwise, no corrections will be executed.

When the first MoveL instruction is ready, the function CorrRead is used to read the sum of 

all the corrections (the total path correction) given by all the connected correction generators. 

The result of the total vertical path correction is written to the FlexPendant with the 

instruction TPWrite.

CorrDiscon will then disconnect the correction generator for vertical correction (referenced 

by the descriptor vert_id). All corrections added by this correction generator will be 

removed from the total path correction. The corrections added by the correction generator for 

horizontal correction will still be preserved.

Finally, the function CorrClear will remove all remaining connected correction generators 

and their previously added corrections. In this case, it is only the correction generator for 

horizontal correction that will be removed. The timer interrupt will also be removed by the 

instruction IDelete.

The correction generators

The figure below illustrates the correction generators.

xx0500002160

Limitations

A maximum number of 5 correction generators can be connected simultaneously.

Connected Correction Generators do not survive a controller restart.

Syntax
CorrCon

[ Descr ':=' ] < variable (VAR) of corrdescr > ';'

Continued

Continues on next page



1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset

753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Disconnects from a correction generator CorrDiscon - Disconnects from a correction 
generator on page 76

Writes to a correction generator CorrWrite - Writes to a correction generator 
on page 77

Reads the current total offsets CorrRead - Reads the current total offsets 
on page 803

Removes all correction generators CorrClear - Removes all correction 
generators on page 70

Correction generator descriptor corrdescr - Correction generator descriptor 
on page 1099

Continued



1 Instructions

1.32. CorrDiscon - Disconnects from a correction generator
Path Offset

3HAC 16581-1  Revision: J76

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.32. CorrDiscon - Disconnects from a correction generator

Description

CorrDiscon is used to disconnect from a previously connected correction generator. The 

instruction can be used to remove corrections given earlier.

Basic examples

A basic example of the instruction CorrDiscon is illustrated below.

See also More examples on page 76.

Example 1
VAR corrdescr id;

...

CorrCon id;

...

CorrDiscon id;

CorrDiscon disconnects from the previously connected correction generator referenced by 

the descriptor id.

Arguments
CorrDiscon Descr

Descr

Data type: corrdescr

Descriptor of the correction generator.

More examples

For more examples of the instruction CorrDiscon, see CorrCon - Connects to a correction 

generator on page 71.

Syntax
CorrDiscon

[ Descr ':=' ] < variable (VAR) of corrdescr > ';'

Related information

For information about See

Connects to a correction generator CorrCon - Connects to a correction generator on 
page 71

Writes to a correction generator CorrWrite - Writes to a correction generator on 
page 77

Reads the current total offsets CorrRead - Reads the current total offsets on 
page 803

Removes all correction generators CorrClear - Removes all correction generators on 
page 70

Correction descriptor corrdescr - Correction generator descriptor on 
page 1099



1 Instructions

1.33. CorrWrite - Writes to a correction generator
Path Offset

773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.33. CorrWrite - Writes to a correction generator

Description

CorrWrite is used to write offsets in the path coordinate system to a correction generator.

Basic examples

A basic example of the instruction CorrWrite is illustrated below.

Example 1
VAR corrdescr id;

VAR pos offset;

...

CorrWrite id, offset;

The current offsets, stored in the variable offset, are written to the correction generator 

referenced by the descriptor id.

Arguments
CorrWrite Descr Data

Descr

Data type: corrdescr

Descriptor of the correction generator.

Data

Data type: pos

The offset to be written.

More examples

For more examples of the instruction CorrWrite, see CorrCon - Connects to a correction 

generator on page 71.

Limitations

The best performance is achieved on straight paths. As the speed and angles between 

consecutive linear paths increase, the deviation from the expected path will also increase. The 

same applies to circles with decreasing circle radius.

Syntax
CorrWrite

[ Descr ':=' ] < variable (VAR) of corrdescr > ','

[ Data ':=' ] < expression (IN) of pos > ';'

Continues on next page



1 Instructions

1.33. CorrWrite - Writes to a correction generator
Path Offset

3HAC 16581-1  Revision: J78

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Connects to a correction generator CorrCon - Connects to a correction generator on 
page 71

Disconnects from a correction generator CorrDiscon - Disconnects from a correction 
generator on page 76

Reads the current total offsets CorrRead - Reads the current total offsets on 
page 803

Removes all correction generators CorrClear - Removes all correction generators 
on page 70

Correction generator descriptor corrdescr - Correction generator descriptor on 
page 1099

Continued



1 Instructions

1.34. DeactUnit - Deactivates a mechanical unit
RobotWare - OS

793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.34. DeactUnit - Deactivates a mechanical unit

Usage

DeactUnit is used to deactivate a mechanical unit.

It can be used to determine which unit is to be active when, for example, common drive units 

are used.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Examples

Basic examples of the instruction DeactUnit are illustrated below.

Example 1
DeactUnit orbit_a;

Deactivation of the orbit_a mechanical unit.

Example 2
MoveL p10, v100, fine, tool1;

DeactUnit track_motion; 

MoveL p20, v100, z10, tool1;

MoveL p30, v100, fine, tool1;

ActUnit track_motion; 

MoveL p40, v100, z10, tool1;

The unit track_motion will be stationary when the robot moves to p20 and p30. After this, 

both the robot and track_motion will move to p40.

Example 3
MoveL p10, v100, fine, tool1; 

DeactUnit orbit1; 

ActUnit orbit2;

MoveL p20, v100, z10, tool1;

The unit orbit1 is deactivated and orbit2 is activated.

Arguments
DeactUnit MechUnit 

MechUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit that is to be deactivated.

Program execution

When the robot’s and external axes’ actual path is ready, the path on current path level is 

cleared and the specified mechanical unit is deactivated. This means that it will neither be 

controlled nor monitored until it is re-activated.

If several mechanical units share a common drive unit, deactivation of one of the mechanical 

units will also disconnect that unit from the common drive unit.

Continues on next page



1 Instructions

1.34. DeactUnit - Deactivates a mechanical unit
RobotWare - OS

3HAC 16581-1  Revision: J80

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Instruction DeactUnit cannot be used when one of the mechanical unit is in independent 

mode.

If this instruction is preceded by a move instruction, that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point, otherwise restart after 

power failure will not be possible.

DeactUnit cannot be executed in a RAPID routine connected to any of following special 

system events: PowerOn, Stop, QStop, Restart or Step.

It is possible to use ActUnit - DeactUnit on StorePath level, but the same mechanical 

units must be active when doing RestoPath as when StorePath was done. If such 

operation the Path Recorder and the path on the base level will be intact, but the path on the 

StorePath level will be cleared.

Syntax
DeactUnit

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Related information

For information about See

Activating mechanical units ActUnit - Activates a mechanical unit on page 17

Mechanical units mecunit - Mechanical unit on page 1139

Path Recorder PathRecMoveBwd - Move path recorder 
backwards on page 298

mecunit - Mechanical unit on page 1139

Continued



1 Instructions

1.35. Decr - Decrements by 1
RobotWare - OS

813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.35. Decr - Decrements by 1

Usage

Decr is used to subtract 1 from a numeric variable or persistent.

Basic examples

A basic example of the instruction Decr is illustrated below.

See also More examples on page 81.

Example 1
Decr reg1;

1 is subtracted from reg1, that is reg1:=reg1-1.

Arguments
Decr Name | Dname

Name

Data type: num

The name of the variable or persistent to be decremented. 

Dname

Data type: dnum

The name of the variable or persistent to be decremented. 

More examples

More examples of the instruction Decr are illustrated below.

Example 1
VAR num no_of_parts:=0;

...

TPReadNum no_of_parts, "How many parts should be produced? ";

WHILE no_of_parts>0 DO

produce_part;

Decr no_of_parts;

ENDWHILE

The operator is asked to input the number of parts to be produced. The variable 

no_of_parts is used to count the number that still have to be produced.

Example 2
VAR dnum no_of_parts:=0;

...

TPReadDnum no_of_parts, "How many parts should be produced? ";

WHILE no_of_parts>0 DO

produce_part;

Decr no_of_parts;

ENDWHILE

The operator is asked to input the number of parts to be produced. The variable 

no_of_parts is used to count the number that still have to be produced.

Continues on next page



1 Instructions

1.35. Decr - Decrements by 1
RobotWare - OS

3HAC 16581-1  Revision: J82

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
Decr

[ Name ':=' ] < var or pers (INOUT) of num >

| [ Dname ':=' ] < var or pers (INOUT) of dnum >' ;'

Related information

For information about See

Incrementing a variable by 1 Incr - Increments by 1 on page 131

Subtracting any value from a variable Add - Adds a numeric value on page 19

Changing data using an arbitrary 
expression, e.g. multiplication

":=" - Assigns a value on page 24

Continued



1 Instructions

1.36. DitherAct - Enables dither for soft servo
RobotWare - OS

833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.36. DitherAct - Enables dither for soft servo

Usage

DitherAct is used to enable the dither functionality, which will reduce the friction in soft 

servo for IRB 7600.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction DitherAct are illustrated below.

Example 1
SoftAct \MechUnit:=ROB_1, 2, 100;

WaitTime 2;

DitherAct \MechUnit:=ROB_1, 2;

WaitTime 1;

DitherDeact;

SoftDeact;

Dither is enabled only for one second while in soft servo.

Example 2
DitherAct \MechUnit:=ROB_1, 2;

SoftAct \MechUnit:=ROB_1, 2, 100;

WaitTime 1;

MoveL p1, v50, z20, tool1;

SoftDeact;

DitherDeact;

Dither is enabled for axis 2. Movement is delayed for one second to allow sufficient transition 

time for the SoftAct ramp. If DitherAct is called before SoftAct, dither will start 

whenever a SoftAct is executed for that axis. If no DitherDeact is called, dither will stay 

enabled for all subsequent SoftAct calls.

Arguments
DitherAct [\MechUnit] Axis [\Level]

[ \MechUnit ]

Mechanical Unit

Data type: mecunit

The name of the mechanical unit. If argument is omitted, it means activation of the soft servo 

for specified robot axis.

Axis

Data type: num

Axis number (1-6).

Continues on next page



1 Instructions

1.36. DitherAct - Enables dither for soft servo
RobotWare - OS

3HAC 16581-1  Revision: J84

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Level ]

Data type: num

Amplitude of dither (50-150%). At 50%, oscillations are reduced (increased friction). At 

150%, amplitude is maximum (may result in vibrations of endeffector). The default value is 

100%.

Program execution

DitherAct can be called before, or after SoftAct. Calling DitherAct after SoftAct is 

faster but it has other limitations.

Dither is usually not required for axis 1 of IRB 7600. Highest effect of friction reduction is 

on axes 2 and 3.

Dither parameters are self-adjusting. Full dither performance is achieved after three or four 

executions of SoftAct in process position.

Limitations

Calling DitherAct after SoftAct may cause unwanted movement of the robot. The only 

way to eliminate this behavior is to call DitherAct before SoftAct. If there still is 

movement, SoftAct ramp time should be increased.

The transition time is the ramp time, which varies between robots, multiplied with the ramp 

factor of the SoftAct-instruction.

Dithering is not available for axis 6.

Dither is always deactivated when there is a power failure.

The instruction is only to be used for IRB 7600.

WARNING!

When calling DitherAct before SoftAct the robot must be in a fine point. Also, leaving 
the fine point is not permitted until the transition time of the ramp is over. This might 
damage the gear boxes.

Syntax
DitherAct

[ '\' MechUnit ':=' < variable (VAR) of mecunit > ]

[Axis ':=' ] < expression (IN) of num >

[ '\' Level ':=' < expression (IN) of num > ] ';'

Related information

For information about See

Activating Soft Servo SoftAct - Activating the soft servo on page 473

Behavior with the soft servo engaged Technical reference manual - RAPID overview

Disable of dither DitherDeact - Disables dither for soft servo on 
page 85

Continued



1 Instructions

1.37. DitherDeact - Disables dither for soft servo
RobotWare - OS

853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.37. DitherDeact - Disables dither for soft servo

Usage

DitherDeact is used to disable the dither functionality for soft servo of IRB 7600.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

A basic example of the instruction DitherDeact is illustrated below.

Example 1
DitherDeact;

Deactivates dither on all axis.

Program execution

DitherDeact can be used at any time. If in soft servo, dither stops immediately on all axes. 

If not in soft servo, dither will not be active when next SoftAct is executed.

The dither is automatically disabled

• at a cold start-up

• when a new program is loaded

• when starting program execution from the beginning.

Syntax
DitherDeact';'

Related information

For information about See

Activating dither DitherAct - Enables dither for soft servo on page 
83



1 Instructions

1.38. DropWObj - Drop work object on conveyor
Conveyor Tracking

3HAC 16581-1  Revision: J86

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.38. DropWObj - Drop work object on conveyor

Usage

DropWObj (Drop Work Object) is used to disconnect from the current object and the program 

is ready for the next object on the conveyor.

Basic examples

A basic example of the instruction DropWObj is illustrated below.

Example 1
MoveL *, v1000, z10, tool, \WObj:=wobj_on_cnv1;

MoveL *, v1000, fine, tool, \WObj:=wobj0;

DropWObj wobj_on_cnv1;

MoveL *, v1000, z10, tool, \WObj:=wobj0;

Arguments
DropWObj WObj

WObj

Work Object

Data type: wobjdata

The moving work object (coordinate system) to which the robot position in the instruction is 

related. The mechanical unit conveyor is to be specified by the ufmec in the work object.

Program execution

Dropping the work object means that the encoder unit no longer tracks the object. The object 

is removed from the object queue and cannot be recovered.

Limitations

If the instruction is issued while the robot is actively using the conveyor coordinated work 

object, then the motion stops.

The instruction may be issued only after a fixed work object has been used in the preceding 

motion instructions with either a fine point or several (>1) corner zones.

Syntax
DropWObj

[ WObj ':='] < persistent (PERS) of wobjdata>';'

Related information

For information about See

Wait for work objects WaitWObj - Wait for work object on conveyor on 
page 701

Conveyor tracking Application manual - Conveyor tracking



1 Instructions

1.39. EOffsOff - Deactivates an offset for external axes
RobotWare - OS

873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.39. EOffsOff - Deactivates an offset for external axes

Usage

EOffsOff (External Offset Off) is used to deactivate an offset for external axes.

The offset for external axes is activated by the instruction EOffsSet or EOffsOn and applies 

to all movements until some other offset for external axes is activated or until the offset for 

external axes is deactivated.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction EOffsOff are illustrated below.

Example 1
EOffsOff;

Deactivation of the offset for external axes. 

Example 2
MoveL p10, v500, z10, tool1;

EOffsOn \ExeP:=p10, p11;

MoveL p20, v500, z10, tool1;

MoveL p30, v500, z10, tool1;

EOffsOff;

MoveL p40, v500, z10, tool1;

An offset is defined as the difference between the position of each axis at p10 and p11. This 

displacement affects the movement to p20 and p30, but not to p40.

Program execution

Active offsets for external axes are reset. 

Syntax
EOffsOff ';'

Related information

For information about See

Definition of offset using two positions EOffsOn - Activates an offset for external axes on 
page 88

Definition of offset using known values EOffsSet - Activates an offset for external axes 
using known values on page 90

Deactivation of the robot’s program dis-
placement

PDispOff - Deactivates program displacement on 
page 316



1 Instructions

1.40. EOffsOn - Activates an offset for external axes
RobotWare - OS

3HAC 16581-1  Revision: J88

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.40. EOffsOn - Activates an offset for external axes 

Usage

EOffsOn (External Offset On) is used to define and activate an offset for external axes using 

two positions.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction EOffsOn are illustrated below.

See also More examples on page 89.

Example 1
MoveL p10, v500, z10, tool1;

EOffsOn \ExeP:=p10, p20;

Activation of an offset for external axes. This is calculated for each axis based on the 

difference between positions p10 and p20. 

Example 2
MoveL p10, v500, fine \Inpos := inpos50, tool1;

EOffsOn *;

Activation of an offset for external axes. Since a stop point that is accurately defined has been 

used in the previous instruction, the argument \ExeP does not have to be used. The 

displacement is calculated on the basis of the difference between the actual position of each 

axis and the programmed point (*) stored in the instruction.

Arguments
EOffsOn [\ExeP] ProgPoint

[ \ExeP ]

Executed Point

Data type: robtarget

The new position, used for calculation of the offset. If this argument is omitted, the current 

position of the axes at the time of the program execution is used.

ProgPoint

Programmed Point

Data type: robtarget

The original position of the axes at the time of programming. 

Continues on next page



1 Instructions

1.40. EOffsOn - Activates an offset for external axes
RobotWare - OS

893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The offset is calculated as the difference between \ExeP and ProgPoint for each separate 

external axis. If \ExeP has not been specified, the current position of the axes at the time of 

the program execution is used instead. Since it is the actual position of the axes that is used, 

the axes should not move when EOffsOn is executed.

This offset is then used to displace the position of external axes in subsequent positioning 

instructions and remains active until some other offset is activated (the instruction EOffsSet 

or EOffsOn) or until the offset for external axes is deactivated (the instruction EOffsOff).

Only one offset for each individual external axis can be activated at the same time. Several 

EOffsOn, on the other hand, can be programmed one after the other and, if they are, the 

different offsets will be added.

The external axes offset is automatically reset:

• At a cold start-up.

• When a new program is loaded.

• When starting program execution from the beginning.

More examples

More examples of how to use the instruction EOffsOn are illustrated below.

Example 1
SearchL sen1, psearch, p10, v100, tool1;

PDispOn \ExeP:=psearch, *, tool1;

EOffsOn \ExeP:=psearch, *;

A search is carried out in which the searched position of both the robot and the external axes 

is stored in the position psearch. Any movement carried out after this starts from this 

position using a program displacement of both the robot and the external axes. This is 

calculated based on the difference between the searched position and the programmed point 

(*) stored in the instruction. 

Syntax
EOffsOn

[ '\' ExeP ':=' < expression (IN) of robtarget> ',']

[ ProgPoint ':=' ] < expression (IN) of robtarget> ';'

Related information

For information about See

Deactivation of offset for external axes EOffsOff - Deactivates an offset for external 
axes on page 87

Definition of offset using known values EOffsSet - Activates an offset for external axes 
using known values on page 90

Displacement of the robot’s movements PDispOn - Activates program displacement on 
page 317

Coordinate systems Technical reference manual - RAPID overview

Continued



1 Instructions

1.41. EOffsSet - Activates an offset for external axes using known values
RobotWare - OS

3HAC 16581-1  Revision: J90

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.41. EOffsSet - Activates an offset for external axes using known values

Usage

EOffsSet (External Offset Set) is used to define and activate an offset for external axes using 

known values.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

A basic example of the instruction EOffsSet is illustrated below.

Example 1
VAR extjoint eax_a_p100 := [100, 0, 0, 0, 0, 0];

...

EOffsSet eax_a_p100;

Activation of an offset eax_a_p100 for external axes, meaning (provided that the logical 

external axis "a" is linear) that:

• The ExtOffs coordinate system is displaced 100 mm for the logical axis "a" (see 

figure below).

• As long as this offset is active, all positions will be displaced 100 mm in the direction 

of the x-axis.

The figure shows displacement of an external axis.

xx0500002162

Arguments
EOffsSet EAxOffs

EAxOffs

External Axes Offset

Data type: extjoint

The offset for external axes is defined as data of the type extjoint, expressed in:

• mm for linear axes

• degrees for rotating axes

Continues on next page



1 Instructions

1.41. EOffsSet - Activates an offset for external axes using known values
RobotWare - OS

913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The offset for external axes is activated when the EOffsSet instruction is executed and 

remains active until some other offset is activated (the instruction EOffsSet or EOffsOn) or 

until the offset for external axes is deactivated (the instruction EOffsOff).

Only one offset for external axes can be activated at the same time. Offsets cannot be added 

to one another using EOffsSet.

The external axes offset is automatically reset:

• At a cold start-up.

• When a new program is loaded.

• When starting program executing from the beginning.

Syntax
EOffsSet

[ EAxOffs ':=' ] < expression (IN) of extjoint> ';'

Related information

For information about See

Activate an offset for external axes EOffsOn - Activates an offset for external axes 
on page 88

Deactivation of offset for external axes EOffsOff - Deactivates an offset for external 
axes on page 87

Displacement of the robot’s movements PDispOn - Activates program displacement on 
page 317

Definition of data of the type extjoint extjoint - Position of external joints on page 1118

Coordinate systems Technical reference manual - RAPID overview

Continued



1 Instructions

1.42. EraseModule - Erase a module
RobotWare - OS

3HAC 16581-1  Revision: J92

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.42. EraseModule - Erase a module

Usage

EraseModule is used to remove a module from the program memory during execution.

There are no restrictions on how the module was loaded. It could have been loaded manually, 

from the configuration, or with a combination of the instructions Load, StartLoad, and 

WaitLoad.

The module cannot be defined as Shared in the configuration.

Basic examples

A basic example of the instruction EraseModule is illustrated below.

Example 1
EraseModule "PART_A";

Erase the program module PART_A from the program memory.

Arguments
EraseModule ModuleName

ModuleName

Data type: string

The name of the module that should be removed. Please note that this is the name of the 

module, not the name of the file.

Program execution

The program execution waits for the program module to finish the removal process before the 

execution proceeds with the next instruction.

When the program module is removed the rest of the program modules will be linked.

Limitations

It is not allowed to remove a program module that is executing.

TRAP routines, system I/O events, and other program tasks cannot execute during the 

removal process.

Avoid ongoing robot movements during the removal.

Program stop during execution of EraseModule instruction results in guard stop with motors 

off and error message "20025 Stop order timeout" on the FlexPendant.

Error handling

If the file in the EraseModule instruction cannot be removed because it was not found, the 

system variable ERRNO is set to ERR_MODULE. This error can then be handled in the error 

handler.

Syntax
EraseModule

[ModuleName':=']<expression (IN) of string>';'

Continues on next page



1 Instructions

1.42. EraseModule - Erase a module
RobotWare - OS

933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Unload a program module UnLoad - UnLoad a program module during 
execution on page 655

Load a program module in parallel with 
another program execution

StartLoad - Load a program module during 
execution on page 482

WaitLoad - Connect the loaded module to the task 
on page 682

Accept unresolved reference Technical reference manual - System parameters, 
section Controller

Continued



1 Instructions

1.43. ErrLog - Write an error message
RobotWare - OS

3HAC 16581-1  Revision: J94

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.43. ErrLog - Write an error message

Usage

ErrLog is used to display an error message on the FlexPendant and write it in the event log. 

Error number and five error arguments must be stated. The message is stored in the process 

domain in the robot log. ErrLog can also be used to display warnings and information 

messages.

Basic examples

Basic examples of the instruction ErrLog are illustrated below.

Example 1

In case you do not want to make your own .xml file, you can use ErrorId 4800 like in the 

example below:

VAR errstr my_title := "myerror";

VAR errstr str1 := "errortext1";

VAR errstr str2 := "errortext2";

VAR errstr str3 := "errortext3";

VAR errstr str4 := "errortext4";

ErrLog 4800, my_title, str1,str2,str3,str4;

On the FlexPendant the message will look like this:

Event Message: 4800

myerror

errortext1

errortext2

errortext3

errortext4

Example 2

An ErrorId must be declared in an .xml file. The number must be between 5000 - 9999. The 

error message is written in the .xml file and the arguments to the message is sent in by the 

ErrLog instruction. The ErrorId in the .xml file is the same stated in the ErrLog 

instruction. 

NOTE: If using an ErrorId between 5000-9999 you have to install your own xml file.

Example of message in .xml file:

<Message number="5210" eDefine="ERR_INPAR_RDONLY">

<Title>Parameter error</Title>

<Description>Task:<arg format="%s" ordinal="1" />

<p />Symbol <arg format="%s" ordinal="2" />is read-only

<p />Context:<arg format="%s" ordinal="3" /><p />

</Description>

</Message>

Continues on next page



1 Instructions

1.43. ErrLog - Write an error message
RobotWare - OS

953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example of instruction:

MODULE MyModule

PROC main()

VAR num errorid := 5210;

VAR errstr arg := "P1";

ErrLog errorid, ERRSTR_TASK, arg, 

ERRSTR_CONTEXT,ERRSTR_UNUSED, ERRSTR_UNUSED;

ErrLog errorid \W, ERRSTR_TASK, arg, 

ERRSTR_CONTEXT,ERRSTR_UNUSED, ERRSTR_UNUSED;

ENDPROC

ENDMODULE

On the FlexPendant the message will look like this:

Event Message: 5210 

Parameter error

Task: T_ROB1

Symbol P1 is read-only.

Context: MyModule/main/ErrLog

The first ErrLog instruction generates an error message. The message is stored in the robot 

log in the process domain. It is also shown on the FlexPendant display.

The second instruction is a warning. A message is stored in the robot log only.

The program will in both cases continue its execution when the instruction is done.

Arguments
ErrLog ErrorID [\W] | [\I] Argument1 Argument2 Argument3 Argument4 

Argument5

ErrorId

Data type: num

The number of a specific error that is to be monitored. The error number must be in interval 

4800-4814 if using the preinstalled xml file, and between 5000 - 9999 if using an own xml 

file.

[ \W ]

Warning

Data type: switch

Gives a warning that is stored in the robot event log only (not shown directly on the 

FlexPendant display).

[ \I ]

Information

Data type: switch

Gives an information message that is stored in the event log only (not shown directly on the 

FlexPendant display).

If none of the arguments \W or \I are specified then the instruction will generate an error 

message directly on the flexpendant and also store it in the event log.

Continued

Continues on next page



1 Instructions

1.43. ErrLog - Write an error message
RobotWare - OS

3HAC 16581-1  Revision: J96

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Argument1

Data type: errstr

First argument in the error message. Any string or predefined data of type errstr can be 

used.

Argument2

Data type: errstr

Second argument in the error message. Any string or predefined data of type errstr can be 

used.

Argument3

Data type: errstr

Third argument in the error message. Any string or predefined data of type errstr can be 

used

Argument4

Data type: errstr

Fourth argument in the error message. Any string or predefined data of type errstr can be 

used.

Argument5

Data type: errstr

Fifth argument in the error message. Any string or predefined data of type errstr can be 

used.

Program execution

An error message (max 5 lines) is displayed on the FlexPendant and written in the event log.

In the case of argument \W or argument \I a warning or an information message is written 

in the event log.

ErrLog generates program errors between 4800-4814 if using the xml file that are installed 

by the system, and between 5000-9999 if installing an own xml file. The error generated 

depends on the ErrorID indicated.

The message is stored in the process domain in the event log.

How to install an own xml file is described in the Additional options manual, see Related 

information below.

Limitations

Total string length (Argument1-Argument5) is limited to 195 characters.

Continued

Continues on next page



1 Instructions

1.43. ErrLog - Write an error message
RobotWare - OS

973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ErrLog

[ErrorId ':=' ] < expression (IN) of num> ','

[ '\'W ] | [' \' I ] ','

[Argument1 ':=' ] < expression (IN) of errstr> ','

[Argument2 ':=' ] < expression (IN) of errstr> ','

[Argument3 ':=' ] < expression (IN) of errstr> ','

[Argument4 ':=' ] < expression (IN) of errstr> ','

[Argument5 ':=' ] < expression (IN) of errstr> ';'

Related information

For information about See

Predefined data of type errstr errstr - Error string on page 1114

Display message on the FlexPendant TPWrite - Writes on the FlexPendant on page 
568

UIMsgBox - User Message Dialog Box type basic 
on page 644

Event log Operating manual - IRC5 with FlexPendant

Event log messages, explanation of xml-
file

Application manual - Additional options, section 
Event log messages

How to install XML files when using 
additional options

Application manual - Additional options

Continued



1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS

3HAC 16581-1  Revision: J98

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.44. ErrRaise - Writes a warning and calls an error handler

Usage

ErrRaise is used to create an error in the program and then call the error handler of the 

routine. A warning is written in the event log. ErrRaise can also be used in the error handler 

to propagate the current error to the error handler of the calling routine.

Error name, error number, and five error arguments must be stated. The message is stored in 

the process domain in the robot log.

Basic examples

Basic examples of the instruction ErrRaise is illustrated below.

Example 1

In case you do not want to make your own .xml file, you can use ErrorId 4800 like in the 

example below:

MODULE MyModule

VAR errnum ERR_BATT:=-1;

PROC main()

VAR num errorid := 4800;

VAR errstr my_title := "Backup battery status";

VAR errstr str1 := "Bacup battery is fully charged";

BookErrNo ERR_BATT;

ErrRaise "ERR_BATT", errorid, my_title, ERRSTR_TASK, str1, 

ERRSTR_CONTEXT,ERRSTR_EMPTY;

ERROR

IF ERRNO = ERR_BATT THEN

TRYNEXT;

ENDIF

ENDPROC

ENDMODULE

On the FlexPendant the message will look like this (warning and/or an error):

Event Message: 4800

Backup battery status 

Task: main

Backup battery is fully charged

Context: MyModule/main/ErrRaise

An error number must be booked with the instruction BookErrNo. Corresponding string is 

stated as the first argument, ErrorName, in the ErrRaise. 

ErrRaise creates an error and then calls the error handler. If the error is taken care of, a 

warning is generated in the event log, in the process domain. Otherwise a fatal error is 

generated and the program stops.

ErrRaise can also be used in an error handler in a subroutine. In this case the execution 

continues in the error handler of the calling routine.

Continues on next page



1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS

993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2

An ErrorId must be declared in an .xml file. The number must be between 5000 - 9999. The 

error message is written in the .xml file and the arguments to the message are sent in by the 

ErrRaise instruction. The ErrorId in the .xml file is the same stated in the ErrRaise 

instruction.

NOTE: If using an ErrorId between 5000-9999 you have to install your own xml file.

Example of message in .xml file:

<Message number="7055" eDefine="SYS_ERR_ARL_INPAR_RDONLY">

<Title>Parameter error</Title>

<Description>Task:<arg format="%s" ordinal="1" />

<p />Symbol <arg format="%s" ordinal="2" />is read-only

<p />Context:<arg format="%s" ordinal="3" /><p /></

Description>

</Message> 

Example of instruction:

MODULE MyModule

VAR errnum ERR_BATT:=-1;

PROC main()

VAR num errorid := 7055;

BookErrNo ERR_BATT;

ErrRaise "ERR_BATT", errorid, ERRSTR_TASK, 

ERRSTR_CONTEXT,ERRSTR_UNUSED, ERRSTR_UNUSED, 

ERRSTR_UNUSED;

ERROR

IF ERRNO = ERR_BATT THEN

TRYNEXT;

ENDIF

ENDPROC

ENDMODULE

On the FlexPendant the message will look like this (warning and/or an error):

Event Message: 7055

Backup battery status 

Task: main

Backup battery is fully charged

Context: MyModule/main/ErrRaise

An error number must be booked with the instruction BookErrNo. Corresponding string is 

stated as the first argument, ErrorName, in the ErrRaise. 

ErrRaise creates an error and then calls the error handler. If the error is taken care of, a 

warning is generated in the event log, in the process domain. Otherwise a fatal error is 

generated and the program stops.

ErrRaise can also be used in an error handler in a subroutine. In this case the execution 

continues in the error handler of the calling routine.

Continued

Continues on next page



1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS

3HAC 16581-1  Revision: J100

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ErrRaise ErrorName ErrorId Argument1 Argument2 Argument3 Argument4 

Argument5

ErrorName

Data type: string

An error number must be booked using the instruction BookErrNo. Corresponding variable 

is stated as ErrorName.

ErrorId

Data type: num

The number of a specific error that is to be monitored. The error number must be in interval 

4800-4814 if using the preinstalled xml file, and between 5000 - 9999 if using an own xml 

file.

Argument1

Data type: errstr

First argument in the error message. Any string or predefined data of type errstr can be 

used.

Argument2

Data type: errstr

Second argument in the error message. Any string or predefined data of type errstr can be 

used.

Argument3

Data type: errstr

Third argument in the error message. Any string or predefined data of type errstr can be 

used

Argument4

Data type: errstr

Fourth argument in the error message. Any string or predefined data of type errstr can be 

used.

Argument5

Data type: errstr

Fifth argument in the error message. Any string or predefined data of type errstr can be 

used.

Continued

Continues on next page



1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS

1013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

ErrRaise generates program warningss between 4800-4814 if using the xml file that are 

installed by the system, and between 5000-9999 if installing an own xml file. The error 

generated depends on the ErrorID indicated. A warning is written in the robot message log 

in the domain process.

When the ErrRaise is executed the behavior depends on where it is executed:

• When executing instruction in the routine body, a warning is generated, and the 

execution continues in the error handler.

• When executing instruction in an error handler, the old warning is skipped, a new one 

is generated, and the control is raised to calling instruction.

Limitations

Total string length (Argument1-Argument5) is limited to 195 characters.

More examples

More examples of how to use the instruction ErrRaise are illustrated below.

Example 1
VAR errnum ERR_BATT:=-1;

VAR errnum ERR_NEW_ERR:=-1;

PROC main()

testerrraise;

ENDPROC

PROC testerrraise()

BookErrNo ERR_BATT;

BookErrNo ERR_NEW_ERR;

ErrRaise "ERR_BATT",7055,ERRSTR_TASK,ERRSTR_CONTEXT, 

ERRSTR_UNUSED,ERRSTR_UNUSED,ERRSTR_UNUSED;

ERROR

IF ERRNO = ERR_BATT THEN

ErrRaise "ERR_NEW_ERR",7156,ERRSTR_TASK,ERRSTR_CONTEXT, 

ERRSTR_UNUSED,ERRSTR_UNUSED, ERRSTR_UNUSED;

ENDIF

ENDPROC

Generate new warning 7156 from error handler. Raise control to calling routine and stop 

execution.

Continued

Continues on next page



1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS

3HAC 16581-1  Revision: J102

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ErrRaise

[ErrorName ':=' ] < expression (IN) of string> ','

[ErrorId ':=' ] < expression (IN) of num> ','

[Argument1 ':=' ] < expression (IN) of errstr> ','

[Argument2 ':=' ] < expression (IN) of errstr> ','

[Argument3 ':=' ] < expression (IN) of errstr> ','

[Argument4 ':=' ] < expression (IN) of errstr> ','

[Argument5 ':=' ] < expression (IN) of errstr> ';'

Related information

For information about See

Predefined data of type errstr errstr - Error string on page 1114

Booking error numbers BookErrNo - Book a RAPID system error number 
on page 30

Error handling Technical reference manual - RAPID overview

Continued



1 Instructions

1.45. ErrWrite - Write an error message
RobotWare - OS

1033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.45. ErrWrite - Write an error message

Usage

ErrWrite (Error Write) is used to display an error message on the FlexPendant and write it 

in the event log. It can also be used to display warnings and information messages.

Basic examples

Basic examples of the instruction ErrWrite are illustrated below.

Example 1
ErrWrite "PLC error", "Fatal error in PLC" \RL2:="Call service"; 

Stop;

A message is stored in the robot log. The message is also shown on the FlexPendant display.

Example 2
ErrWrite \W, "Search error", "No hit for the first search"; 

RAISE try_search_again;

A message is stored in the robot log only. Program execution then continues.

Arguments
ErrWrite [ \W ] | [\I] Header Reason [ \RL2] [ \RL3] [ \RL4]

[ \W ]

Warning

Data type: switch

Gives a warning that is stored in the robot error message log only (not shown directly on the 

FlexPendant display).

[ \I ]

Information

Data type: switch

Gives an information message that is stored in the event log only (not shown directly on the 

FlexPendant display).

If none of the arguments \W or \I are specified then the instruction will generate an error 

message directly on the flexpendant and also store it in the event log.

Header

Data type: string

Error message heading (max. 46 characters).

Reason

Data type: string

Reason for error.

[ \RL2]

Reason Line 2

Data type: string

Reason for error.

Continues on next page



1 Instructions

1.45. ErrWrite - Write an error message
RobotWare - OS

3HAC 16581-1  Revision: J104

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \RL3]

Reason Line 3

Data type: string

Reason for error.

[ \RL4]

Reason Line 4

Data type: string

Reason for error.

Program execution

An error message (max. 5 lines) is displayed on the FlexPendant and written in the robot 

message log. 

In the case of argument \W or argument \I a warning or an information message is written 

in the event log.

ErrWrite generates the program error no. 80001 for an error, no. 80002 for a warning (\W) 

and no. 80003 for an information message (\I).

Limitations

Total string length (Header+Reason+\RL2+\RL3+\RL4) is limited to 195 characters.

Syntax
ErrWrite

[ '\'W ] | [ '\' I ] ','

[ Header ':=' ] < expression (IN) of string>','

[ Reason ':=' ] < expression (IN) of string>

[ ’\’RL2 ':=' < expression (IN) of string> ]

[ ’\’RL3 ':=' < expression (IN) of string> ]

[ ’\’RL4 ':=' < expression (IN) of string> ] ';'

Related information

For information about See

Predefined data of type errstr errstr - Error string on page 1114

Display message on the FlexPendant TPWrite - Writes on the FlexPendant on page 
568

UIMsgBox - User Message Dialog Box type basic 
on page 644

Event log Operating manual - IRC5 with FlexPendant

Write error message - Err Log ErrLog - Write an error message on page 94

Continued



1 Instructions

1.46. EXIT - Terminates program execution
RobotWare - OS

1053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.46. EXIT - Terminates program execution 

Usage

EXIT is used to terminate program execution. Program restart will then be blocked, that is 

the program can only be restarted from the first instruction of the main routine.

The EXIT instruction should be used when fatal errors occur or when program execution is 

to be stopped permanently. The Stop instruction is used to temporarily stop program 

execution. After execution of the instruction EXIT the program pointer is gone. To continue 

program execution, the program pointer must be set.

Basic examples

A basic example of the instruction EXIT is illustrated below.

Example 1
ErrWrite "Fatal error","Illegal state";

EXIT;

Program execution stops and cannot be restarted from that position in the program.

Syntax
EXIT ';'

Related information

For information about See

Stopping program execution temporarily Stop - Stops program execution on page 510



1 Instructions

1.47. ExitCycle - Break current cycle and start next
RobotWare - OS

3HAC 16581-1  Revision: J106

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.47. ExitCycle - Break current cycle and start next

Usage

ExitCycle is used to break the current cycle and move the program pointer (PP) back to the 

first instruction in the main routine. 

If the program is executed in continuous mode, it will start to execute the next cycle.

If the execution is in cycle mode, the execution will stop at the first instruction in the main 

routine.

Basic examples

Basic examples of the instruction ExitCycle are illustrated below.

Example 1
VAR num cyclecount:=0;

VAR intnum error_intno;

PROC main()

IF cyclecount = 0 THEN

CONNECT error_intno WITH error_trap;

ISignalDI di_error,1,error_intno;

ENDIF

cyclecount:=cyclecount+1;

! start to do something intelligent

...

ENDPROC

TRAP error_trap

TPWrite "ERROR, I will start on the next item";

ExitCycle;

ENDTRAP

This will start the next cycle if the signal di_error is set.

Program execution

Execution of ExitCycle in a program task controlling mechanical units results in the 

following in the actual task:

• On-going robot movements stops.

• All robot paths that are not performed at all path levels (both normal and StorePath 

level) are cleared.

• All instructions that are started but not finished at all execution levels (both normal 

and TRAP level) are interrupted.

• The program pointer is moved to the first instruction in the main routine.

• The program execution continues to execute the next cycle.

Continues on next page



1 Instructions

1.47. ExitCycle - Break current cycle and start next
RobotWare - OS

1073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Execution of ExitCycle in some other program task, not controlling mechanical units, 

results in the following in the actual task:

• All instructions that are started but not finished on all execution levels (both normal 

and TRAP level) are interrupted.

• The program pointer is moved to the first instruction in the main routine.

• The program execution continues to execute the next cycle.

All other modal things in the program and system are not affected by ExitCycle such as:

• The actual value of variables or persistents.

• Any motion settings such as StorePath-RestoPath sequence, world zones, etc.

• Open files, directories, etc.

• Defined interrupts, etc.

When using ExitCycle in routine calls and the entry routine is defined with “Move PP to 

Routine ...” or “Call Routine ...”, ExitCycle breaks the current cycle and moves the program 

pointer back to the first instruction in the entry routine (instead of the main routine as 

specified above).

Syntax
ExitCycle';'

Related information

For information about See

Stopping after a fatal error EXIT - Terminates program execution on page 
105

Terminating program execution EXIT - Terminates program execution on page 
105

Stopping for program actions Stop - Stops program execution on page 510

Finishing execution of a routine RETURN - Finishes execution of a routine on 
page 365

Continued



1 Instructions

1.48. FOR - Repeats a given number of times
RobotWare - OS

3HAC 16581-1  Revision: J108

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.48. FOR - Repeats a given number of times

Usage

FOR is used when one or several instructions are to be repeated a number of times.

Basic examples

A basic example of the instruction FOR is illustrated below.

See also More examples on page 108.

Example 1
FOR i FROM 1 TO 10 DO 

routine1;

ENDFOR

Repeats the routine1 procedure 10 times.

Arguments
FOR Loop counter FROM Start value TO End value  [STEP Step value] 

DO ... ENDFOR

Loop counter

Identifier

The name of the data that will contain the value of the current loop counter. The data is 

declared automatically. 

If the loop counter name is the same as any data that already exists in the actual scope, the 

existing data will be hidden in the FOR loop and not affected in any way.

Start value

Data type: Num

The desired start value of the loop counter. (usually integer values)

End value

Data type: Num

The desired end value of the loop counter. (usually integer values)

Step value

Data type: Num

The value by which the loop counter is to be incremented (or decremented) each loop. 

(usually integer values)

If this value is not specified, the step value will automatically be set to 1 (or -1 if the start 

value is greater than the end value).

More examples

More examples of how to use the instruction FOR are illustrated below.

Example 1
FOR i FROM 10 TO 2 STEP -2 DO

a{i} := a{i-1};

ENDFOR

The values in an array are adjusted upwards so that a{10}:=a{9}, a{8}:=a{7} etc.
Continues on next page



1 Instructions

1.48. FOR - Repeats a given number of times
RobotWare - OS

1093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

1. The expressions for the start, end, and step values are evaluated.

2. The loop counter is assigned the start value.

3. The value of the loop counter is checked to see whether its value lies between the start 

and end value, or whether it is equal to the start or end value. If the value of the loop 

counter is outside of this range, the FOR loop stops and program execution continues 

with the instruction following ENDFOR.

4. The instructions in the FOR loop are executed.

5. The loop counter is incremented (or decremented) in accordance with the step value.

6. The FOR loop is repeated, starting from point 3.

Limitations

The loop counter (of data type num) can only be accessed from within the FOR loop and 

consequently hides other data and routines that have the same name. It can only be read (not 

updated) by the instructions in the FOR loop.

Decimal values for start, end, or stop values, in combination with exact termination 

conditions for the FOR loop, cannot be used (undefined whether or not the last loop is 

running).

Remarks

If the number of repetitions is to be repeated as long as a given expression is evaluated to a 

TRUE value, the WHILE instructions should be used instead.

Syntax
(EBNF)

FOR <loop variable> FROM <expression> TO <expression>

[ STEP <expression> ] DO

<instruction list>

ENDFOR

<loop variable> ::= <identifier>

Related information

For information about See

Expressions Technical reference manual - RAPID overview

Repeats as long as... WHILE - Repeats as long as ... on page 705

Identifiers Technical reference manual - RAPID overview

Continued



1 Instructions

1.49. GetDataVal - Get the value of a data object
RobotWare - OS

3HAC 16581-1  Revision: J110

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.49. GetDataVal - Get the value of a data object

Usage

GetDataVal (Get Data Value) makes it possible to get a value from a data object that is 

specified with a string variable.

Basic examples

Basic examples of the instruction GetDataVal are illustrated below.

Example 1
VAR num value;

...

GetDataVal "reg"+ValToStr(ReadNum(mycom)),value;

This will get the value of a register, with a number which is received from the serial channel 

mycom. The value will be stored in the variable value.

Example 2
VAR datapos block;

VAR string name;

VAR num valuevar;

...

SetDataSearch "num" \Object:="my.*" \InMod:="mymod";

WHILE GetNextSym(name,block) DO

GetDataVal name\Block:=block,valuevar;

TPWrite name+" "\Num:=valuevar;

ENDWHILE

This session will print out all num variables that begin with my in the module mymod with its 

value to the FlexPendant.

Example 3
VAR num NumArrConst_copy{2};

...

GetDataVal "NumArrConst", NumArrConst_copy;

TPWrite "Pos1 = " \Num:=NumArrConst_copy{1};

TPWrite "Pos2 = " \Num:=NumArrConst_copy{2};

This session will print out the num variables in the array NumArrConst.

Arguments
GetDataVal Object [\Block]|[\TaskRef]|[\TaskName]Value

Object

Data type: string

The name of the data object.

Continues on next page



1 Instructions

1.49. GetDataVal - Get the value of a data object
RobotWare - OS

1113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Block ]

Data type: datapos

The enclosed block to the data object. This can only be fetched with the GetNextSym 

function.

If this argument is omitted, the value of the visible data object in the current program 

execution scope will be fetched.

[\TaskRef]

Task Reference

Data type: taskid

The program task identity in which to search for the data object specified. When using this 

argument, you may search for PERS or TASK PERS declarations in other tasks, any other 

declarations will result in an error.

For all program tasks in the system the predefined variables of the data type taskid will be 

available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1 task the variable 

identity will be T_ROB1Id.

[\TaskName]

Data type: string

The program task name in which to search for the data object specified. When using this 

argument, you may search for PERS or TASK PERS declarations in other tasks, any other 

declarations will result in an error.

Value

Data type: anytype

Variable for storage of the get value. The data type must be the same as the data type for the 

data object to find. The get value can be fetched from a constant, variable, or persistent but 

must be stored in a variable.

Error handling

The system variable ERRNO is set to ERR_SYM_ACCESS if:

• the data object is non-existent

• the data object is routine data or routine parameter and is not located in the current 

active routine

• searching in other tasks for other declarations then PERS or TASK PERS

When using the arguments TaskRef or TaskName you may search for PERS or TASK PERS 

declarations in other tasks, any other declarations will result in an error and the system 

variable ERRNO is set to ERR_SYM_ACCESS. Searching for a PERS declared as LOCAL in other 

tasks will also result in an error and the system variable ERRNO is set to ERR_SYM_ACCESS.

The system variable ERRNO is set to ERR_INVDIM if the data object and the variable used in 

argument Value have different dimensions.

The error can be handled in the error handler of the routine.

Continued

Continues on next page



1 Instructions

1.49. GetDataVal - Get the value of a data object
RobotWare - OS

3HAC 16581-1  Revision: J112

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

For a semivalue data type, it is not possible to search for the associated value data type. E.g. 

if searching for dionum, no search hit for signals signaldi will be obtained and if searching 

for num, no search hit for signals signalgi or signalai will be obtained.

It is not possible to get the value of a variable declared as LOCAL in a built in RAPID module.

Syntax
GetDataVal

[ Object ’:=’ ] < expression (IN) of string >

[’\’Block’ :=’<variable (VAR) of datapos>]

|[ ’\’TaskRef’ :=’ <variable (VAR) of taskid>] 

|[ ’\’TaskName’ :=’ <expression (IN) of string>] ’,’]

[ Value ’:=’ ] <variable (VAR) of anytype>]’;’

Related information

For information about See

Define a symbol set in a search 
session

SetDataSearch - Define the symbol set in a search 
sequence on page 433

Get next matching symbol GetNextSym - Get next matching symbol on page 855

Set the value of a data object SetDataVal - Set the value of a data object on page 
437

Set the value of many data objects SetAllDataVal - Set a value to all data objects in a 
defined set on page 429

The related data type datapos datapos - Enclosing block for a data object on page 
1101

Continued



1 Instructions

1.50. GetSysData - Get system data
RobotWare - OS

1133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.50. GetSysData - Get system data

Usage

GetSysData fetches the value and the optional symbol name for the current system data of 

specified data type.

With this instruction it is possible to fetch data and the name of the current active Tool, Work 

Object, or PayLoad for the robot in actual or connected motion task.

Basic examples

Basic examples of the instruction GetSysData are illustrated below.

Example 1
PERS tooldata curtoolvalue := [TRUE, [[0, 0, 0], [1, 0, 0, 0]],  

[2, [0, 0, 2], [1, 0, 0, 0], 0, 0, 0]];

VAR string curtoolname;

GetSysData curtoolvalue;

Copy current active tool data value to the persistent variable curtoolvalue.

Example 2
GetSysData curtoolvalue \ObjectName := curtoolname;

Also copy current active tool name to the variable curtoolname.

Arguments
GetSysData DestObject [\ ObjectName ] 

DestObject

Data type: anytype

Persistent variable for storage of current active system data value.

The data type of this argument also specifies the type of system data (Tool, Work Object, or 

PayLoad) to fetch.

Array or record component can not be used.

[\ObjectName]

Data type: string

Option argument (variable or persistent) to also fetch the current active system data name.

Data type Type of system data

tooldata Tool

wobjdata Work Object

loaddata Payload

Continues on next page



1 Instructions

1.50. GetSysData - Get system data
RobotWare - OS

3HAC 16581-1  Revision: J114

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When running the instruction GetSysData the current data value is stored in the specified 

persistent variable in argument DestObject.

If argument \ObjectName is used, the name of the current data is stored in the specified 

variable or persistent in argument ObjectName.

Current system data for Tool or Work Object is activated by execution of any move 

instruction. Payload is activated by execution of the instruction GripLoad.

Syntax
GetSysData

[ DestObject ’:=’] < persistent(PERS) of anytype>

[’\’ObjectName’ :=’ < variable or persistent (INOUT) of string> 

] ’;’

Related information

For information about See

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Definition of payload loaddata - Load data on page 1132

Set system data SetSysData - Set system data on page 445

Continued



1 Instructions

1.51. GetTrapData - Get interrupt data for current TRAP
RobotWare - OS

1153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.51. GetTrapData - Get interrupt data for current TRAP

Usage

GetTrapData is used in a trap routine to obtain all information about the interrupt that 

caused the trap routine to be executed.

To be used in trap routines generated by instruction IError, before use of the instruction 

ReadErrData.

Basic examples

Basic examples of the instruction GetTrapData are illustrated below.

See also More examples on page 115.

Example 1
VAR trapdata err_data;

GetTrapData err_data;

Store interrupt information in the non-value variable err_data.

Arguments
GetTrapData TrapEvent

TrapEvent

Data type: trapdata

Variable for storage of the information about what caused the trap to be executed.

Limitation

This instruction can only be used in a TRAP routine.

More examples

More examples of the instruction GetTrapData are illustrated below.

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error number, 

and the error type are saved into appropriate non-value variables of the type trapdata.

Syntax
GetTrapData

[TrapEvent ’:=’] <variable (VAR) of trapdata>’;’

Continues on next page



1 Instructions

1.51. GetTrapData - Get interrupt data for current TRAP
RobotWare - OS

3HAC 16581-1  Revision: J116

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

More information on interrupt 
management

Technical reference manual - RAPID overview, 
section Basic characteristics- Interrupts

Interrupt data for current TRAP trapdata - Interrupt data for current TRAP on page 
1212

Orders an interrupt on errors IError - Orders an interrupt on errors on page 126

Gets information about an error ReadErrData - Gets information about an error on 
page 349

Continued



1 Instructions

1.52. GOTO - Goes to a new instruction
RobotWare - OS

1173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.52. GOTO - Goes to a new instruction

Usage

GOTO is used to transfer program execution to another line (a label) within the same routine. 

Basic examples

Basic examples of the instruction GOTO are illustrated below.

Example 1
GOTO next;

...

next:

Program execution continues with the instruction following next.

Example 2
reg1 := 1;

next:

...

reg1 := reg1 + 1;

IF reg1<=5 GOTO next;

The execution will be transferred to next four times (for reg1= 2, 3, 4, 5).

Example 3
IF reg1>100 THEN

GOTO highvalue

ELSE

GOTO lowvalue

ENDIF

lowvalue:

...

GOTO ready;

highvalue:

...

ready:

If reg1 is greater than 100, the execution will be transferred to the label highvalue, 

otherwise the execution will be transferred to the label lowvalue. 

Arguments
GOTO Label

Label

Identifier

The label from where program execution is to continue. 

Continues on next page



1 Instructions

1.52. GOTO - Goes to a new instruction
RobotWare - OS

3HAC 16581-1  Revision: J118

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

It is only possible to transfer program execution to a label within the same routine.

It is only possible to transfer program execution to a label within an IF or TEST instruction 

if the GOTO instruction is also located within the same branch of that instruction. 

It is only possible to transfer program execution to a label within a FOR or WHILE instruction 

if the GOTO instruction is also located within that instruction.

Syntax
(EBNF)

GOTO <identifier>’;’

Related information

For information about See

Label Label - Line name on page 207

Other instructions that change the 
program flow

Technical reference manual - RAPID overview, 
section RAPID summary - Controlling the program 
flow

Continued



1 Instructions

1.53. GripLoad - Defines the payload for the robot
RobotWare - OS

1193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.53. GripLoad - Defines the payload for the robot

Usage

GripLoad is used to define the payload which the robot holds in its gripper.

Description

When incorrect load data is specified, it can often lead to the following consequences:

If the value in the specified load data is greater than that of the value of the true load; 

• The robot will not be used to its maximum capacity

•  Impaired path accuracy including a risk of overshooting

If the value in the specified load data is less than the value of the true load;

• Impaired path accuracy including a risk of overshooting

• Risk of overloading the mechanical structure

WARNING!

It is important to always define the actual tool load and when used the payload of the robot 

too. Incorrect definitions of load data can result in overloading the robot mechanical 

structure.

Basic examples

Basic examples of the instruction GripLoad are illustrated below.

Example 1
GripLoad piece1;

The robot gripper holds a load called piece1.

Example 2
GripLoad load0;

The robot gripper releases all loads.

Arguments
GripLoad Load

Load

Data type: loaddata

The load data that describes the current payload. 

Program execution

The specified load affects the performance of the robot. 

The default load, 0 kg, is automatically set

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

The payload is updated for the mechanical unit that are controlled from current program task. 

If GripLoad is used from a non-motion task, the payload is updated for the mechanical unit 

controlled by the connected motion task.

Continues on next page



1 Instructions

1.53. GripLoad - Defines the payload for the robot
RobotWare - OS

3HAC 16581-1  Revision: J120

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
GripLoad

[ Load ’:=’ ] < persistent (PERS) of loaddata > ’;’

Related information

For information about See

Load identification of tool or payload Operating manual - IRC5 with FlexPendant, 
section Programming and testing - Service 
routines - Loadidentify, load identification 
service routine

Definition of load data loaddata - Load data on page 1132

Definition of tool load tooldata - Tool data on page 1207

Definition of work object load wobjdata - Work object data on page 1224

Continued



1 Instructions

1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403
RobotWare - OS

1213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403

Usage

HollowWristReset (Reset hollow wrist) resets the position of the wrist joints on hollow 

wrist manipulators, such as IRB5402 and IRB5403.

The instruction makes it possible to avoid rewinding the wrist joints 4 and 5 after they have 

been wound up one or more revolutions. After executing a HollowWristReset instruction, 

the wrist joints may continue to wind up in the same direction.

Description

HollowWristReset makes it easier to make application programs. You do not have to 

ensure that the wrist position is within ±2 revolutions at the time of programming, and it may 

save cycle time because the robot does not have to spend time rewinding the wrist. However, 

there is a limitation of ±144 revolutions for winding up joints 4 and 5 before the wrist position 

is reset by HollowWristReset. The robot programmer must be aware of this limitation and 

take it into consideration when planning the robot programs. To ensure that the 144 revolution 

limit is not exceeded after running a “wrist-winding” program several times, you should 

always let the robot come to a complete stop and reset the absolute position in every program 

(or cycle/routine/module etc. as necessary). Please note that all axes must remain stopped 

during the execution of the HollowWristReset instruction. As long as these limitations are 

taken into consideration, joints 4 and 5 can wind indefinitely and independently of joint 6 

during program execution.

Please use HollowWristReset instead of IndReset to reset the hollow wrist as this 

instruction preserves the joint limits for joint 6 in order to prevent too much twisting of the 

paint tubes/cables.

Basic examples

Basic examples of the instruction HollowWristReset are illustrated below.

Example 1
MoveL p10,v800,fine,paintgun1\WObj:=workobject1;

HollowWristReset;

All active axes are stopped by a stop point and the wrist is reset.

Limitations

All active axes must be stopped while the HollowWristReset instruction is executed.

The wrist joints must be reset before any of them reach the ±144 revolution limit (i.e. 

51840 degrees/ 904 rad).

Whenever a program stop, emergency stop, power failure stop, etc. occurs, the controller 

retains the path context in order to be able to return to the path and let the robot continue 

program execution from the point on the path at which it was stopped. In manual mode, if the 

manipulator has been moved out of the path between a stop and a restart, the operator is 

informed by the following message on the FlexPendant: “Not on path! Robot has been 
moved after program stop. Should the robot return to the path on Start? Yes/No/
Cancel”. This provides an opportunity of returning to the path before restart. In automatic 

mode, the robot automatically returns to the path.

Continues on next page



1 Instructions

1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403
RobotWare - OS

3HAC 16581-1  Revision: J122

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

HollowWristReset removes the path context. This means that it is not possible to return to 

the path in case of a program restart if the HollowWristReset instruction has been executed 

in the meantime. If this instruction is executed manually (“Debug + Call Service Rout.” in the 

Program Editor) it should only be executed at a time when returning to the path is not 

required. That is, after a program is completely finished, or an instruction is completely 

finished in step-by-step execution and the manipulator is not moved out of the path by 

jogging, etc.

Syntax
HollowWristReset ´;’

Related information

For information about See

Related system parameters Technical reference manual - System parameters, section 
Motion - Arm - Independent Joint

Return to path Technical reference manual - RAPID overview, section 
Motion and I/O principles - Positioning during program 
execution

Continued



1 Instructions

1.55. IDelete - Cancels an interrupt
IDelete

1233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.55. IDelete - Cancels an interrupt

Usage

IDelete (Interrupt Delete) is used to cancel (delete) an interrupt subscription.

If the interrupt is to be only temporarily disabled, the instruction ISleep or IDisable 

should be used.

Basic examples

Basic examples of the instruction IDelete are illustrated below.

Example 1
IDelete feeder_low;

The interrupt feeder_low is cancelled. 

Arguments
IDelete Interrupt

Interrupt

Data type: intnum

The interrupt identity.

Program execution 

The definition of the interrupt is completely erased. To define it again it must first be re-

connected to the trap routine. 

It is recommended to preceed IDelete with a stop point. Otherwise the interrupt will be 

deactivated before the end point of the movement path is reached.

Interrupts do not have to be erased; this is done automatically when

• a new program is loaded

• the program is restarted from the beginning

• the program pointer is moved to the start of a routine

Syntax
IDelete [ Interrupt ´:=’ ] < variable (VAR) of intnum > ´;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

More information about interrupt 
management

Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupt

Temporarily disabling an interrupt ISleep - Deactivates an interrupt on page 198

Temporarily disabling all interrupts IDisable - Disables interrupts on page 124



1 Instructions

1.56. IDisable - Disables interrupts
RobotWare - OS

3HAC 16581-1  Revision: J124

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.56. IDisable - Disables interrupts

Usage

IDisable (Interrupt Disable) is used to disable all interrupts temporarily. It may, for 

example, be used in a particularly sensitive part of the program where no interrupts may be 

permitted to take place in case they disturb normal program execution.

Basic examples

Basic examples of the instruction IDisable are illustrated below.

Example 1
IDisable;

FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);

ENDFOR

IEnable;

No interrupts are permitted as long as the serial channel is reading.

Program execution

Interrupts that occur during the time in which an IDisable instruction is in effect are placed 

in a queue. When interrupts are permitted once more, then the interrupt(s) immediately begin 

generating, executed in “first in - first out” order in the queue.

IEnable is active by default. IEnable is automatically set

• at a cold start-up

• when starting program execution from the beginning of main

• after executing one cycle (passing main) or executing ExitCycle

Syntax
IDisable´;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupt

More information about interrupt 
management

Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupt

Permitting interrupts IEnable - Enables interrupts on page 125



1 Instructions

1.57. IEnable - Enables interrupts
RobotWare - OS

1253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.57. IEnable - Enables interrupts

Usage

IEnable (Interrupt Enable) is used to enable interrupts during program execution.

Basic examples

Basic examples of the instruction IEnable are illustrated below.

Example 1
IDisable;

FOR i FROM 1 TO 100 DO

character[i]:=ReadBin(sensor);

ENDFOR

IEnable;

No interrupts are permitted as long as the serial channel is reading. When it has finished 

reading interrupts are once more permitted.

Program execution

Interrupts which occur during the time in which an IDisable instruction is in effect are 

placed in a queue. When interrupts are permitted once more (IEnable), the interrupt(s) then 

immediately begin generating, executed in“ first in - first out” order in the queue. Program 

execution then continues in the ordinary program and interrupts which occur after this are 

dealt with as soon as they occur.

Interrupts are always permitted when a program is started from the beginning. Interrupts 

disabled by the ISleep instruction are not affected by the IEnable instruction.

Syntax
IEnable´;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

More information about interrupt 
management

Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupt

Permitting no interrupts IDisable - Disables interrupts on page 124



1 Instructions

1.58. IError - Orders an interrupt on errors
RobotWare - OS

3HAC 16581-1  Revision: J126

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.58. IError - Orders an interrupt on errors

Usage

IError (Interrupt Errors) is used to order and enable an interrupt when an error occurs.

Error, warning, or state change can be logged with IError.

Basic examples

Basic examples of the instruction IError are illustrated below.

See also More examples on page 127.

Example 1
VAR intnum err_int;

...

CONNECT err_int WITH err_trap;

IError COMMON_ERR, TYPE_ALL, err_int;

Orders an interrupt in RAPID and execution of the TRAP routine err_trap each time an 

error, warning, or state change is generated in the system.

Arguments
IError ErrorDomain [\ErrorId] ErrorType Interrupt

ErrorDomain

Data type: errdomain

The error domain that is to be monitored. Refer to predefined data of type errdomain. To 

specify any domain use COMMON_ERR.

[ \ErrorId ]

Data type: num

Optionally, the number of a specific error that is to be monitored. The error number must be 

specified without the first digit (error domain) of the complete error number.

E.g. 10008 Program restarted, must be specified as 0008 or only 8.

ErrorType

Data type: errtype

The type of event such as error, warning, or state change that is to be monitored. Refer to 

predefined data of type errtype. To specify any type use TYPE_ALL.

Interrupt

Data type: intnum

The interrupt identity. This should have been previously connected to a trap routine by means 

of the instruction CONNECT.

Program execution

The corresponding trap routine is automatically called when an error occurs in the specified 

domain of the specified type and optionally with the specified error number. When this has 

been executed, program execution continues from where the interrupt occurred.

Continues on next page



1 Instructions

1.58. IError - Orders an interrupt on errors
RobotWare - OS

1273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction IError are illustrated below.

VAR intnum err_interrupt;

VAR trapdata err_data;

VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

...

CONNECT err_interrupt WITH trap_err;

IError COMMON_ERR, TYPE_ERR, err_interrupt;

...

IDelete err_interrupt;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

! Set domain no 1 ... 11

SetGO go_err1, err_domain;

! Set error no 1 ...9999

SetGO go_err2, err_number;

ENDTRAP

When an error occurs (only error, not warning or state change) the error number is retrieved 

in the trap routine, and its value is used to set 2 groups of digital output signals.

Limitation

It is not possible to order an interrupt on internal errors.

In a task of type NORMAL the event will be thrown away during program stop so not all events 

can be fetched in a NORMAL task. To fetch all events the task must be of static or semi-static 

type.

The same variable for interrupt identity cannot be used more than once without first deleting 

it. Interrupts should therefore be handled as shown in one of the alternatives below.

PROC main ( )

VAR intnum err_interrupt;

CONNECT err_interrupt WITH err_trap;

IError COMMON_ERR, TYPE_ERR, err_interupt;

WHILE TRUE DO

:

:

ENDWHILE

ENDPROC

Continued

Continues on next page



1 Instructions

1.58. IError - Orders an interrupt on errors
RobotWare - OS

3HAC 16581-1  Revision: J128

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Interrupts are activated at the beginning of the program. These instructions in the beginning 

are then kept outside the main flow of the program.

PROC main ( )

VAR intnum err_interrupt;

CONNECT err_interrupt WITH err_trap;

IError COMMON_ERR, TYPE_ERR, err_interupt;

:

:

IDelete err_interrupt;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. It should be noted, 

in this case, that the interrupt is inactive for a short period.

Syntax
IError

[ErrorDomain ’:=’] <expression (IN) of errdomain>

[’\’ErrorId’:=’ <expression (IN) of num>\\ ’,’

[ErrorType’ :=’] <expression (IN) of errtype> ´,’

[Interrupt’ :=’] <variable (VAR) of intnum>’;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

More information on interrupt management Technical reference manual - RAPID overview, 
section Basic characteristics- Interrupts

Error domains, predefined constants errdomain - Error domain on page 1106

Error types, predefined constants errtype - Error type on page 1115

Get interrupt data for current TRAP GetTrapData - Get interrupt data for current 
TRAP on page 115

Gets information about an error ReadErrData - Gets information about an error 
on page 349

Continued



1 Instructions

1.59. IF - If a condition is met, then ...; otherwise ...
RobotWare - OS

1293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.59. IF - If a condition is met, then ...; otherwise ...

Usage

IF is used when different instructions are to be executed depending on whether a condition 

is met or not.

Basic examples

Basic examples of the instruction IF are illustrated below.

See also More examples on page 130.

Example 1
IF reg1 > 5 THEN

Set do1;

Set do2;

ENDIF

The do1 and do2 signals are set only if reg1 is greater than 5.

Example 2
IF reg1 > 5 THEN

Set do1;

Set do2;

ELSE

Reset do1;

Reset do2;

ENDIF

The do1 and do2 signals are set or reset depending on whether reg1 is greater than 5 or not.

Arguments
IF Condition THEN ...

{ELSEIF Condition THEN ...}

[ELSE ...]

ENDIF

Condition

Data type: bool

The condition that must be satisfied for the instructions between THEN and ELSE/ELSEIF to 

be executed.

Continues on next page



1 Instructions

1.59. IF - If a condition is met, then ...; otherwise ...
RobotWare - OS

3HAC 16581-1  Revision: J130

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction IF are illustrated below.

Example 1
IF counter > 100 THEN 

counter := 100;

ELSEIF counter < 0 THEN

counter := 0;

ELSE

counter := counter + 1;

ENDIF

Counter is incremented by 1. However, if the value of counter is outside the limit 0-100, 

counter is assigned the corresponding limit value. 

Program execution

The conditions are tested in sequential order, until one of them is satisfied. Program execution 

continues with the instructions associated with that condition. If none of the conditions are 

satisfied, program execution continues with the instructions following ELSE. If more than one 

condition is met, only the instructions associated with the first of those conditions are 

executed.

Syntax
(EBNF)

IF <conditional expression> THEN

<instruction list>

{ELSEIF <conditional expression> THEN <instruction list> | <EIT>}

[ELSE 

<instruction list>]

ENDIF

Related information

For information about See

Conditions (logical expressions) Technical reference manual - RAPID overview, 
section Basic characteristics - Expressions

Continued



1 Instructions

1.60. Incr - Increments by 1
RobotWare - OS

1313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.60. Incr - Increments by 1

Usage

Incr is used to add 1 to a numeric variable or persistent.

Basic examples

Basic examples of the instruction Incr are illustrated below.

See also More examples on page 131.

Example 1
Incr reg1;

1 is added to reg1, i.e. reg1:=reg1+1.

Arguments
Incr Name | Dname

Name

Data type: num

The name of the variable or persistent to be changed. 

Dname

Data type: dnum

The name of the variable or persistent to be changed. 

More examples

More examples of the instruction Incr are illustrated below.

Example 1
VAR num no_of_parts:=0;

...

WHILE stop_production=0 DO

produce_part;

Incr no_of_parts;

TPWrite "No of produced parts= "\Num:=no_of_parts;

ENDWHILE

The number of parts produced is updated each cycle on the FlexPendant. Production 

continues to run as long as the input signal stop_production is not set. 

Example 2
VAR dnum no_of_parts:=0;

...

WHILE stop_production=0 DO

produce_part;

Incr no_of_parts;

TPWrite "No of produced parts= "\Dnum:=no_of_parts;

ENDWHILE

The number of parts produced is updated each cycle on the FlexPendant. Production 

continues to run as long as the input signal stop_production is not set. 

Continues on next page



1 Instructions

1.60. Incr - Increments by 1
RobotWare - OS

3HAC 16581-1  Revision: J132

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
Incr

[ Name ’:=’ ] < var or pers (INOUT) of num >

| [ Dname’ :=’ ] < var or pers (INOUT) of dnum >’ ;’

Related information

For information about See

Decrementing a variable by 1 Decr - Decrements by 1 on page 81

Adding any value to a variable Add - Adds a numeric value on page 19

Changing data using an arbitrary 
expression, e.g. multiplication

":=" - Assigns a value on page 24

Continued



1 Instructions

1.61. IndAMove - Independent absolute position movement
Independent Axis

1333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.61. IndAMove - Independent absolute position movement

Usage

IndAMove (Independent Absolute Movement) is used to change an axis to independent mode 

and move the axis to a specific position. 

An independent axis is an axis moving independently of other axes in the robot system. As 

program execution immediately continues, it is possible to execute other instructions 

(including positioning instructions) during the time the independent axis is moving.

If the axis is to be moved within a revolution, the instruction IndRMove should be used 

instead. If the move is to occur a short distance from the current position, the instruction 

IndDMove must be used.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction IndAMove are illustrated below.

See also More examples on page 135.

Example 1
IndAMove Station_A,2\ToAbsPos:=p4,20;

Axis 2 of Station_A is moved to the position p4 at the speed 20 degrees/s. 

Arguments
IndAMove MecUnit Axis [\ToAbsPos] | [\ToAbsNum] Speed [\Ramp]

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6)

[\ToAbsPos]

To Absolute Position

Data type: robtarget

Axis position specified as a robtarget. Only the component for this specific Axis is used. 

The value is used as an absolute position value in degrees (mm for linear axes).

The axis position will be affected if the axis is displaced using the instruction EOffsSet or 

EOffsOn.

For robot axes the argument \ToAbsNum is to be used instead.

Continues on next page



1 Instructions

1.61. IndAMove - Independent absolute position movement
Independent Axis

3HAC 16581-1  Revision: J134

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\ToAbsNum]

To Absolute Numeric value

Data type: num

Axis position defined in degrees (mm for linear axis). 

Using this argument, the position will NOT be affected by any displacement, e.g. EOffsSet 

or PDispOn.

Same function as \ToAbsPos but the position is defined as a numeric value to make it easy 

to manually change the position.

Speed

Data type: num

Axis speed in degrees/s (mm/s for linear axis).

[\Ramp]

Data type: num

Decrease acceleration and deceleration from maximum performance 

(1 - 100%, 100% = maximum performance).

Program execution

When IndAMove is executed the specified axis moves with the programmed speed to the 

specified axis position. If \Ramp is programmed there will be a reduction of acceleration/

deceleration.

To change the axis back to normal mode the IndReset instruction is used. In connection with 

this the logical position of the axis can be changed so that a number of revolutions are erased 

from the position, for example, to avoid rotating back for the next movement. 

The speed can be altered by executing another IndAMove instruction (or another IndXMove 

instruction). If a speed in the opposite direction is selected the axis stops and then accelerates 

to the new speed and direction. 

For stepwise execution of the instruction the axis is set in independent mode only. The axis 

begins its movement when the next instruction is executed and continues as long as program 

execution takes place. For more information see RAPID reference manual - RAPID overview, 

section Motion and I/O principles - Positioning during program execution - Independent 

axes.

When the program pointer is moved to the start of the program or to a new routine all axes 

are automatically set to normal, without changing the measurement system (equivalent to 

executing the instruction IndReset\Old).

NOTE!

An IndAMove instruction after an IndCMove operation can result in the axis spinning back 

to the movement performed in the IndCMove instruction. To prevent this, use an IndReset 

instruction before the IndAMove, or use an IndRMove instruction.

Continued

Continues on next page



1 Instructions

1.61. IndAMove - Independent absolute position movement
Independent Axis

1353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis 

manually, the axis will not move and an error message will be displayed. Execute an 

IndReset instruction or move the program pointer to main in order to leave independent 

mode. 

If a power fail occurs when an axis is in independent mode the program cannot be restarted. 

An error message is displayed and the program must be started from the beginning.

The instruction is not advisable for coupled robot wrist axes (see RAPID reference manual - 

RAPID overview, section Motion and I/O principles - Positioning during program execution 

- Independent axes).

More examples

More examples of the instruction IndAMove are illustrated below.

Example 1
ActUnit Station_A;

weld_stationA;

IndAMove Station_A,1\ToAbsNum:=90,20\Ramp:=50;

ActUnit Station_B;

weld_stationB_1;

WaitUntil IndInpos(Station_A,1 ) = TRUE;

WaitTime 0.2;

DeactUnit Station_A;

weld_stationB_2;

Station_A is activated and the welding is started in station A. 

Station_A (axis 1) is then moved to the 90 degrees position while the robot is welding in 

station B. The speed of the axis is 20 degrees/s. The speed is changed with acceleration/

deceleration reduced to 50% of max performance.

When station A reaches this position it is deactivated, and reloading can take place in the 

station at the same time as the robot continues to weld in station B.

Error handling

If the axis is not activated the system variable ERRNO is set to ERR_AXIS_ACT. This error can 

then be handled in the error handler.

Syntax
IndAMove

[ MecUnit’:=’ ] < variable (VAR) of mecunit>’ ,’

[ Axis’:=’ ] < expression (IN) of num>

[ ’\’ToAbsPos’:=’ < expression (IN) of robtarget> ]

| [ ’\’ ToAbsNum’:=’ < expression (IN) of num> ] ’,’

[ Speed ’:=’ ] < expression (IN) of num>

[ ’\’ Ramp’:=’ < expression (IN) of num > ] ’;’

Continued

Continues on next page



1 Instructions

1.61. IndAMove - Independent absolute position movement
Independent Axis

3HAC 16581-1  Revision: J136

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Independent axes in general Technical reference manual - RAPID 
overview, section Motion and I/O Principles - 
Positioning during program execution - 
Independent axes

Change back to normal mode IndReset - Independent reset on page 144

Reset the measurement system IndReset - Independent reset on page 144

Other independent axis movement IndRMove - Independent relative position 
movement on page 149

IndDMove - Independent delta position 
movement on page 141

IndCMove - Independent continuous 
movement on page 137

Check the speed status for independent axes IndSpeed - Independent speed status on 
page 873

Check the position status for independent 
axes

IndInpos - Independent axis in position status 
on page 871

Defining independent joints Technical reference manual - System 
parameters, section Motion - Arm - 
Independent Joint

Continued



1 Instructions

1.62. IndCMove - Independent continuous movement
Independent Axis

1373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.62. IndCMove - Independent continuous movement

Usage

IndCMove (Independent Continuous Movement) is used to change an axis to independent 

mode and start the axis moving continuously at a specific speed.

An independent axis is an axis moving independently of other axes in the robot system. As 

program execution continues immediately it is possible to execute other instructions 

(including positioning instructions) during the time the independent axis is moving.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction IndCMove are illustrated below.

See also More examples on page 139.

Example 1
IndCMove Station_A,2,-30.5;

Axis 2 of Station_A starts to move in a negative direction at a speed of 30.5 degrees/s.

Arguments
IndCMove MecUnit Axis Speed [\Ramp]

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6).

Speed

Data type: num

Axis speed in degrees/s (mm/s for linear axis).

The direction of movement is specified with the sign of the speed argument.

[\Ramp]

Data type: num

Decrease acceleration and deceleration from maximum performance 

(1 - 100%, 100% = maximum performance).

Continues on next page



1 Instructions

1.62. IndCMove - Independent continuous movement
Independent Axis

3HAC 16581-1  Revision: J138

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When IndCMove is executed the specified axis starts to move with the programmed speed. 

The direction of movement is specified as the sign of the speed argument. If \Ramp is 

programmed there will be a reduction of acceleration/deceleration.

To change the axis back to normal mode the IndReset instruction is used. The logical 

position of the axis can be changed in connection with this - a number of full revolutions can 

be erased, for example, to avoid rotating back for the next movement.

The speed can be changed by executing a further IndCMove instruction. If a speed in the 

opposite direction is ordered the axis stops and then accelerates to the new speed and 

direction. To stop the axis, speed argument 0 can be used. It will then still be in independent 

mode.

During stepwise execution of the instruction the axis is set in independent mode only. The 

axis starts its movement when the next instruction is executed and continues as long as 

program execution continues. For more information see RAPID reference manual - RAPID 

overview, section Motion and I/O principles - Positioning during program execution - 

Independent axes.

When the program pointer is moved to the beginning of the program or to a new routine, all 

axes are set automatically to normal mode without changing the measurement system 

(equivalent to executing the instruction IndReset\Old).

Limitations

The resolution of the axis position worsens the further it is moved from its logical zero 

position (usually the middle of the working area). To achieve high resolution again the logical 

working area can be set to zero with the instruction IndReset. For more information see 

RAPID reference manual - RAPID overview, section Motion and I/O Principles - Positioning 

during program execution - Independent axes.

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis 

manually, the axis will not move, and an error message will be displayed. Execute an 

IndReset instruction or move the program pointer to main in order to leave independent 

mode. 

If a power fail occurs when the axis is in independent mode the program cannot be restarted. 

An error message is displayed, and the program must be started from the beginning.

The instruction is not advisable for coupled robot wrist axes (see RAPID Reference Manual - 

RAPID overview, section Motion and I/O principles - Positioning during program execution - 

Independent Axes).

Continued

Continues on next page



1 Instructions

1.62. IndCMove - Independent continuous movement
Independent Axis

1393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction IndCMove are illustrated below.

IndCMove Station_A,2,20;

WaitUntil IndSpeed(Station_A,2 \InSpeed) = TRUE;

WaitTime 0.2;

MoveL p10, v1000, fine, tool1;

IndCMove Station_A,2,-10\Ramp:=50;

MoveL p20, v1000, z50, tool1;

IndRMove Station_A,2 \ToRelPos:=p1 \Short,10;

MoveL p30, v1000, fine, tool1;

WaitUntil IndInpos(Station_A,2 ) = TRUE;

WaitTime 0.2;

IndReset Station_A,2 \RefPos:=p40\Short;

MoveL p40, v1000, fine, tool1;

Axis 2 of Station_A starts to move in a positive direction at a speed of 20 degrees/s. When 

this axis has reached the selected speed the robot axes start to move. 

When the robot reaches position p10 the external axis changes direction and rotates at a speed 

of 10 degrees/s. The change of speed is performed with acceleration/deceleration reduced to 

50% of maximum performance. At the same time, the robot executes towards p20.

Axis 2 of Station_A is then stopped as quickly as possible in position p1 within the current 

revolution.

When axis 2 has reached this position, and the robot has stopped in position p30, axis 2 

returns to normal mode again. The measurement system offset for this axis is changes a whole 

number of axis revolutions so that the actual position is as close as possible to p40.

When the robot is then moved to position p40, axis 2 of Station_A will be moved by the 

instruction MoveL p40 via the shortest route to position p40 (max ±180 degrees).

Error handling

If the axis is not activated the system variable ERRNO is set to ERR_AXIS_ACT. This error can 

then be handled in the error handler.

Syntax
IndCMove

[ MecUnit’:=’ ] < variable (VAR) of mecunit> ’,’

[ Axis’:=’ ] < expression (IN) of num> ’,’

[ Speed ’:=’ ] < expression (IN) of num>

[ ’\’ Ramp’:=’ < expression (IN) of num > ] ’;’

Continued

Continues on next page



1 Instructions

1.62. IndCMove - Independent continuous movement
Independent Axis

3HAC 16581-1  Revision: J140

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Independent axes in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution - Independent axes

Change back to normal mode IndReset - Independent reset on page 144

Reset the measurement system IndReset - Independent reset on page 144

Other independent axis movement IndAMove - Independent absolute position 
movement on page 133

IndRMove - Independent relative position 
movement on page 149

IndDMove - Independent delta position movement 
on page 141

Check the speed status for independent 
axes

IndSpeed - Independent speed status on page 
873

Check the position status for 
independent axes

IndInpos - Independent axis in position status on 
page 871

Defining independent joints Technical reference manual - System parameters, 
section Motion - Arm - Independent Joint

Continued



1 Instructions

1.63. IndDMove - Independent delta position movement
Independent Axis

1413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.63. IndDMove - Independent delta position movement

Usage

IndDMove (Independent Delta Movement) is used to change an axis to independent mode 

and move the axis to a specific distance.

An independent axis is an axis moving independently of other axes in the robot system. As 

program execution continues immediately it is possible to execute other instructions 

(including positioning instructions) during the time the independent axis is moving.

If the axis is to be moved to a specific position, the instruction IndAMove or IndRMove must 

be used instead.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction IndDMove are illustrated below.

See also More examples on page 142.

Example 1
IndDMove Station_A,2,-30,20;

Axis 2 of Station_A is moved 30 degrees in a negative direction at a speed of 20 degrees/s.

Arguments
IndDMove MecUnit Axis Delta Speed [\Ramp] 

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6).

Delta

Data type: num

The distance which the current axis is to be moved, expressed in degrees (mm for linear axes). 

The sign specifies the direction of movement.

Speed

Data type: num

Axis speed in degrees/s (mm/s for linear axis).

[ \Ramp ]

Data type: num

Decrease acceleration and deceleration from maximum performance 

(1 - 100%, 100% = maximum performance).

Continues on next page



1 Instructions

1.63. IndDMove - Independent delta position movement
Independent Axis

3HAC 16581-1  Revision: J142

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When IndDMove is executed the specified axis moves with the programmed speed to the 

specified distance. The direction of movement is specified as the sign of the Delta argument. 

If \Ramp is programmed there will be a reduction of acceleration/deceleration.

If the axis is moving the new position is calculated from the momentary position of the axis 

when the instruction IndDMove is executed. If an IndDMove instruction with distance 0 is 

executed and the axis is already moving position, the axis will stop and then move back to the 

position which the axis had when the instruction was executed.

To change the axis back to normal mode the IndReset instruction is used. The logical 

position of the axis can be changed in connection with this - a number of full revolutions can 

be erased from the position, for example, to avoid rotating back for the next movement.

The speed can be changed by running a further IndDMove instruction (or another IndXMove 

instruction). If a speed in the opposite direction is selected the axis stops and then accelerates 

to the new speed and direction. 

During stepwise execution of the instruction the axis is set in independent mode only. The 

axis starts its movement when the next instruction is executed and continues as long as 

program execution continues. For more information see RAPID reference manual - RAPID 

overview, section Motion and I/O principles - Positioning during program execution - 

Independent axes.

When the program pointer is moved to the beginning of the program, or to a new routine, all 

axes are automatically set to normal mode without changing the measurement system 

(equivalent to running the instruction IndReset \Old).

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis 

manually the axis will not move, and an error message will be displayed. Execute an 

IndReset instruction or move the program pointer to main in order to leave independent 

mode. 

If a loss of power fail occurs when the axis is in independent mode the program cannot be 

restarted. An error message is displayed, and the program must be started from the beginning.

The instruction is not advisable for coupled robot wrist axes (see RAPID reference manual - 

RAPID overview, section Motion and I/O principles - Positioning during program execution 

- Independent axes.

More examples

More examples of the instruction IndDMove are illustrated below.

Example 1
IndAMove ROB_1,6\ToAbsNum:=90,20;

WaitUntil IndInpos(ROB_1,6) = TRUE;

WaitTime 0.2;

IndDMove Station_A,2,-30,20;

WaitUntil IndInpos(ROB_1,6) = TRUE;

WaitTime 0.2;

IndDMove ROB_1,6,400,20;

Continued

Continues on next page



1 Instructions

1.63. IndDMove - Independent delta position movement
Independent Axis

1433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Axis 6 of the robot is moved to the following positions:

• 90 degrees

• 60 degrees

• 460 degrees (1 revolution + 100 degrees)

Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_ACT. This error can 

then be handled in the error handler.

Syntax
IndDMove

[ MecUnit’:=’ ] < variable (VAR) of mecunit> ’,’

[ Axis’:=’ ] < expression (IN) of num> ’,’

[ Delta’:=’ ] < expression (IN) of num>’,’

[ Speed ’:=’ ] < expression (IN) of num>

[ ’\’ Ramp’:=’ < expression (IN) of num > ] ’;’

Related information

For information about See

Independent axes in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution - Independent axes

Change back to normal mode IndReset - Independent reset on page 144

Reset the measurement system IndReset - Independent reset on page 144

Other independent axis movement IndAMove - Independent absolute position 
movement on page 133

IndRMove - Independent relative position 
movement on page 149

IndCMove - Independent continuous movement 
on page 137

Check the speed status for independent 
axes

IndSpeed - Independent speed status on page 
873

Check the position status for 
independent axes

IndInpos - Independent axis in position status on 
page 871

Defining independent joints Technical reference manual - System parameters, 
section Motion - Arm - Independent Joint

Continued



1 Instructions

1.64. IndReset - Independent reset
Independent Axis

3HAC 16581-1  Revision: J144

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.64. IndReset - Independent reset

Usage

IndReset (Independent Reset) is used to change an independent axis back to normal mode. 

At the same time, the measurement system for rotational axes can be moved a number of axis 

revolutions.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction IndReset are illustrated below.

See also More examples on page 147.

IndCMove Station_A,2,5;

MoveL *,v1000,fine,tool1;

IndCMove Station_A,2,0;

WaitUntil IndSpeed(Station_A,2\ZeroSpeed);

WaitTime 0.2

IndReset Station_A,2;

Axis 2 of Station_A is first moved in independent mode and then changed back to normal 

mode. The axis will keep its position.

NOTE!

The current independent axis and the normal axes should not move when the instruction 

IndReset is executed. That is why previous position is a stop point, and an IndCMove 

instruction is executed at zero speed. Furthermore, a pause of 0.2 seconds is used to ensure 

that the correct status has been achieved.

Arguments
IndReset MecUnit Axis [\RefPos] | [\RefNum] [\Short] | [\Fwd] 

|[\Bwd] | \Old]

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6).

Continues on next page



1 Instructions

1.64. IndReset - Independent reset
Independent Axis

1453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \RefPos ]

Reference Position

Data type: robtarget

Reference axis position specified as a robtarget. Only the component for this specific Axis 

is used. The position must be inside the normal working range.

For robot axes, the argument \RefNum is to be used instead.

The argument is only to be defined together with the argument \Short, \Fwd or \Bwd. It is 

not allowed together with the argument \Old.

[ \RefNum ]

Reference Numeric value

Data type: num

Reference axis position defined in degrees (mm for linear axis). The position must be inside 

the normal working range.

The argument is only to be defined together with the argument \Short, \Fwd or \Bwd. It is 

not allowed together with the argument \Old.

Same function as \RefPos but the position is defined as a numeric value to make it easy to 

change the position manually. 

[ \Short ]

Data type: switch

The measurement system will change a whole number of revolutions on the axis side so that 

the axis will be as close as possible to the specified \RefPos or \RefNum position. If a 

positioning instruction with the same position is executed after IndReset the axis will travel 

the shortest route, less than ±180 degrees, in order to reach the position.

[ \Fwd ]

Forward

Data type: switch

The measurement system will change a whole number of revolutions on the axis side so that 

the reference position will be on the positive side of the specified \RefPos or \RefNum 

position. If a positioning instruction with the same position is executed after IndReset, the 

axis will turn in a positive direction less than 360 degrees in order to reach the position.

[ \Bwd ]

Backward

Data type: switch

The measurement system will change a whole number of revolutions on the axis side so that 

the reference position will be on the negative side of the specified \RefPos or \RefNum 

position. If a positioning instruction with the same position is executed after IndReset, the 

axis will turn in a negative direction less than 360 degrees in order to reach the position.

Continued

Continues on next page



1 Instructions

1.64. IndReset - Independent reset
Independent Axis

3HAC 16581-1  Revision: J146

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Old ]

Data type: switch

Keeps the old position.

NOTE!

Resolution is decreased in positions far away from zero.

If no argument \Short, \Fwd, \Bwd or \Old is specified - \Old is used as default value.

Program execution

When IndReset is executed it changes the independent axis back to normal mode. At the 

same time the measurement system for the axis can be moved by a whole number of axis 

revolutions. 

The instruction may also be used in normal mode in order to change the measurement system.

NOTE!

The position is used only to adjust the measurement system - the axis will not move to the 

position.

Limitations

The instruction may only be executed when all active axes running in normal mode are 

standing still. All active axis in every mechanical unit connected to the same motion planner 

need to stand still. The independent mode axis which is going to be changed to normal mode 

must also be stationary. For axes in normal mode this is achieved by executing a move 

instruction with the argument fine. The independent axis is stopped by an IndCMove with 

Speed:=0 (followed by a wait period of 0.2 seconds), IndRMove, IndAMove, or IndDMove 

instruction.

The resolution of positions is decreased when moving away from logical position 0. An axis 

which progressively rotates further and further from the position 0 should thus be set to zero 

using the instruction IndReset with an argument other than \Old.

The measurement system cannot be changed for linear axes.

To ensure a proper start after IndReset of an axis with a relative measured measurement 

system (synchronization switches) an extra time delay of 0.12 seconds must be added after 

the IndReset instruction.

Only robot axis 6 can be used as independent axis. The IndReset instruction can also be 

used for axis 4 on models IRB2400 and IRB 4400. If IndReset is used on robot axis 4 then 

axis 6 must not be in the independent mode.

If this instruction is preceded by a move instruction, that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

IndReset cannot be executed in a RAPID routine connected to any of following special 

system events: PowerOn, Stop, QStop, Restart or Step. 

IndReset only switches the independent state for an axis. It cannot be used to stop an 

Independent movement. To stop an independent motion it has to reach a stop condition ot the 

user has to for example move PP to main.

Continued

Continues on next page



1 Instructions

1.64. IndReset - Independent reset
Independent Axis

1473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction IndReset are illustrated below.

Example 1
IndAMove Station_A,1\ToAbsNum:=750,50;

WaitUntil IndInpos(Station_A,1);

WaitTime 0.2;

IndReset Station_A,1 \RefNum:=0 \Short;.

IndAMove Station_A,1\ToAbsNum:=750,50;

WaitUntil IndInpos(Station_A,1);

WaitTime 0.2;

IndReset Station_A,1 \RefNum:=300 \Short;

Axis 1 in Station_A is first moved independently to the 750 degrees position (2 revolutions 

and 30 degrees). At the same time as it changes to normal mode the logical position is set to 

30 degrees.

Axis 1 in Station_A is subsequently moved to the 750 degrees position (2 revolutions and 

30 degrees). At the same time as it changes to normal mode the logical position is set to 

390 degrees (1 revolution and 30 degrees).

Error handling

If the axis is moving the system variable ERRNO is set to ERR_AXIS_MOVING.

If the axis is not activated the system variable ERRNO is set to ERR_AXIS_ACT. This error can 

then be handled in the error handler.

Syntax
IndReset

[ MecUnit’:=’ ] < variable (VAR) of mecunit> ’,’

[ Axis’:=’ ] < expression (IN) of num> 

[ ’\’ RefPos’:=’ < expression (IN) of robtarget> ] |

[ ’\’ RefNum’:=’ < expression (IN) of num> ] 

[ ’\’ Short ] | [ ’\’ Fwd ] | [ ’\’ Bwd ] | [ ’\’ Old ]’;’

Continued

Continues on next page



1 Instructions

1.64. IndReset - Independent reset
Independent Axis

3HAC 16581-1  Revision: J148

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Independent axes in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution - Independent axes

Change an axis to independent mode IndAMove - Independent absolute position 
movement on page 133

IndCMove - Independent continuous movement 
on page 137

IndDMove - Independent delta position movement 
on page 141

IndRMove - Independent relative position 
movement on page 149

Check the speed status for independent 
axes

IndSpeed - Independent speed status on page 
873

Check the position status for 
independent axes

IndInpos - Independent axis in position status on 
page 871

Defining independent joints Technical reference manual - System parameters, 
section Motion - Arm - Independent Joint

Continued



1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis

1493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.65. IndRMove - Independent relative position movement

Usage

IndRMove (Independent Relative Movement) is used to change a rotational axis to 

independent mode and move the axis to a specific position within one revolution. 

An independent axis is an axis moving independently of other axes in the robot system. As 

program execution continues immediately it is possible to execute other instructions 

(including positioning instructions) during the time the independent axis is moving.

If the axis is to be moved to an absolute position (several revolutions) or if the axis is linear, 

the instruction IndAMove is used instead. If the movement is to take place a certain distance 

from the current position the instruction IndDMove must be used.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction IndRMove are illustrated below.

See also More examples on page 152.

Example 1
IndRMove Station_A,2\ToRelPos:=p5 \Short,20;

Axis 2 of Station_A is moved the shortest route to position p5 within one revolution 

(maximum rotation ± 180 degrees) at a speed of 20 degrees/s.

Arguments
IndRMove MecUnit Axis [\ToRelPos] | [\ToRelNum] [\Short] | [\Fwd] 

| [\Bwd] Speed [\Ramp] 

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6).

[ \ToRelPos ]

To Relative Position

Data type: robtarget

Axis position specified as a robtarget. Only the component for this specific Axis is used. 

The value is used as a position value in degrees within one axis revolution. This means that 

the axis moves less than one revolution. 

The axis position will be affected if the axis is displaced using the instruction EOffsSet or 

EOffsOn.

For robot axes the argument \ToRelNum is to be used instead.

Continues on next page



1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis

3HAC 16581-1  Revision: J150

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ToRelNum ]

To Relative Numeric value

Data type: num

Axis position defined in degrees.

Using this argument the position will NOT be affected by any displacement, e.g. EOffsSet 

or PDispOn.

Same function as \ToRelPos but the position is defined as a numeric value to make it easy 

to change the position manually.

[ \Short ]

Data type: switch

The axis is moved the shortest route to the new position. This means that the maximum 

rotation will be 180 degrees in any direction. The direction of movement therefore depends 

on the current location of the axis.

[ \Fwd ]

Forward

Data type: switch

The axis is moved in a positive direction to the new position. This means that the maximum 

rotation will be 360 degrees and always in a positive direction (increased position value).

[ \Bwd ]

Backward

Data type: switch

The axis is moved in a negative direction to the new position. This means that the maximum 

rotation will be 360 degrees and always in a negative direction (decreased position value).

If \Short, \Fwd or \Bwd argument is omitted, \Short is used as default value.

Speed

Data type: num

Axis speed in degrees/s.

[ \Ramp ]

Data type: num

Decrease acceleration and deceleration from maximum performance 

(1 - 100%, 100% = maximum performance).

Continued

Continues on next page



1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis

1513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When IndRMove is executed the specified axis moves with the programmed speed to the 

specified axis position, but only a maximum of one revolution. If \Ramp is programmed there 

will be a reduction of acceleration/deceleration.

To change the axis back to normal mode the IndReset instruction is used. The logical 

position of the axis can be changed in connection with this - a number of full revolutions can 

be erased from the position, for example, to avoid rotating back for the next movement.

The speed can be changed by running a further IndRMove instruction (or another IndXMove 

instruction). If a speed in the opposite direction is selected the axis stops and then accelerates 

to the new speed and direction. 

During stepwise execution of the instruction the axis is set in independent mode only. The 

axis starts its movement when the next instruction is executed and continues as long as 

program execution continues. For more information see RAPID reference manual - RAPID 

overview, section Motion and I/O principles - Positioning during program execution - 

Independent axes.

When the program pointer is moved to the beginning of the program or to a new routine, all 

axes are automatically set to normal mode without changing the measurement system 

(equivalent to running the instruction IndReset \Old).

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis 

manually the axis will not move, and an error message will be displayed. Execute an 

IndReset instruction or move the program pointer to main in order to leave independent 

mode. 

If a power fail occurs when the axis is in independent mode the program cannot be restarted. 

An error message is displayed, and the program must be started from the beginning.

The instruction is not advisable for coupled robot wrist axes (see RAPID reference manual - 

RAPID overview, section Motion and I/O principles - Positioning during program execution - 

Independent axes).

Continued

Continues on next page



1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis

3HAC 16581-1  Revision: J152

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction IndRMove are illustrated below.

Example 1
IndRMove Station_A,1\ToRelPos:=p5 \Fwd,20\Ramp:=50;

Axis 1 of Station_A starts to move in a positive direction to the position p5 within one 

revolution (maximum rotation 360 degrees) at a speed of 20 degrees/s. The speed is changed 

with acceleration/deceleration reduced to 50% of maximum performance.

IndAMove Station_A,1\ToAbsNum:=90,20;

WaitUntil IndInpos(Station_A,1 ) = TRUE;

IndRMove Station_A,1\ToRelNum:=80 \Fwd,20;

WaitTime 0.2;

WaitUntil IndInpos(Station_A,1 ) = TRUE;

WaitTime 0.2;

IndRMove Station_A,1\ToRelNum:=50 \Bwd,20;

WaitUntil IndInpos(Station_A,1 ) = TRUE;

WaitTime 0.2;

IndRMove Station_A,1\ToRelNum:=150 \Short,20;

WaitUntil IndInpos(Station_A,1 ) = TRUE;

WaitTime 0.2;

IndAMove Station_A,1\ToAbsNum:=10,20;

Axis 1 of Station_A is moved to the following positions:

• 90 degrees

• 440 degrees (1 revolution + 80 degrees)

• 410 degrees (1 revolution + 50 degrees)

• 510 degrees (1 revolution + 150 degrees)

• 10 degrees

Error handling

If the axis is not activated the system variable ERRNO is set to ERR_AXIS_ACT. This error can 

then be handled in the error handler.

Syntax
IndRMove

[ MecUnit’:=’ ] < variable (VAR) of mecunit> ’,’

[ Axis’:=’ ] < expression (IN) of num> 

[ ’\’ToRelPos’:=’ < expression (IN) of robtargets> ]

| [ ’\’ToRelNum’:=’ < expression (IN) of num> ]

[ ’\’Short ] | [ ’\’ Fwd ] | [ ’\’ Bwd ] ’,’

[ Speed ’:=’ ] < expression (IN) of num>

[ ’\’Ramp’:=’ < expression (IN) of num > ] ’;’

Continued

Continues on next page



1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis

1533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Independent axes in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution - Independent axes

Change back to normal mode IndReset - Independent reset on page 144

Reset the measurement system IndReset - Independent reset on page 144

Other independent axis movement IndAMove - Independent absolute position 
movement on page 133

IndDMove - Independent delta position 
movement on page 141

IndCMove - Independent continuous movement 
on page 137

Check the speed status for independent 
axes

IndSpeed - Independent speed status on page 
873

Check the position status for independent 
axes

IndInpos - Independent axis in position status on 
page 871

Defining independent joints Technical reference manual - System 
parameters, section Motion - Arm - Independent 
Joint

Continued



1 Instructions

1.66. InvertDO - Inverts the value of a digital output signal
RobotWare - OS

3HAC 16581-1  Revision: J154

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.66. InvertDO - Inverts the value of a digital output signal

Usage

InvertDO (Invert Digital Output) inverts the value of a digital output signal (0 -> 1 and 1 -

> 0).

Basic examples

Basic examples of the instruction InvertDO are illustrated below.

Example 1
InvertDO do15;

The current value of the signal do15 is inverted.

Arguments
InvertDO Signal

Signal

Data type: signaldo

The name of the signal to be inverted.

Program execution

The current value of the signal is inverted (see figure below).

The figure below shows inversion of digital output signal. 

xx0500002164

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. If there is no contact with the unit the system variable ERRNO will be set to:

ERR_NORUNUNIT

Syntax
InvertDO

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’;’

Related information

For information about See

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID summary - Input and output signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - I/O principles

Configuration of I/O Technical reference manual - System parameters



1 Instructions

1.67. IOBusStart - Start of I/O bus
RobotWare - OS

1553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.67. IOBusStart - Start of I/O bus

Usage

IOBusStart is used to start a certain I/O bus.

Basic examples

Basic example of the instruction IOBusStart is illustrated below.

Example 1
IOBusStart "IBS";

The instruction start the bus with the name IBS.

Arguments
IOBusStart BusName

BusName

Data type: string

The name of bus to start.

Program execution

Start the bus with the name specified in the parameter BusName.

Error handling

The system variable ERRNO will be set to ERR_NAME_INVALID if the bus name does not 

exist.That error can be handled in an ERROR handler.

Syntax
IOBusStart

[ BusName ’:=’ ] < expression (IN) of string>’;’

Related information

For information about See

How to get I/O bus state IOBusState - Get current state of I/O bus on 
page 156

Configuration of I/O Technical reference manual - System 
parameters



1 Instructions

1.68. IOBusState - Get current state of I/O bus
RobotWare - OS

3HAC 16581-1  Revision: J156

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.68. IOBusState - Get current state of I/O bus

Usage

IOBusState is used to read the state of a certain I/O bus. Its physical state and logical state 

define the status for an I/O bus.

Basic examples

Basic examples of the instruction IOBusState are illustrated below.

Example 1
VAR busstate bstate;

IOBusState "IBS", bstate \Phys;

TEST bstate

CASE IOBUS_PHYS_STATE_RUNNING:

! Possible to access the signals on the IBS bus

DEFAULT:

! Actions for not up and running IBS bus

ENDTEST

The instruction returns the physical bus state of IBS in the bstate variable of type 

busstate.

Example 2
VAR busstate bstate;

IOBusState "IBS", bstate \Logic;

TEST bstate

CASE IOBUS_LOG_STATE_STARTED:

! The IBS bus is started

DEFAULT:

! Actions for stopped IBS bus

ENDTEST

The instruction returns the logical bus state of IBS in the bstate variable of type busstate.

Arguments
IOBusState BusName State [\Phys] | [\Logic]

BusName

Data type: string

The name of bus to get state about.

State

Data type: busstate

The variable in which the bus state is returned. See predefined data of type busstate below 

at Program execution.

Continues on next page



1 Instructions

1.68. IOBusState - Get current state of I/O bus
RobotWare - OS

1573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Phys]

Physical

Data type: switch

If using this parameter the physical state of the bus is read.

[\Logic]

Logical

Data type: switch

If using this parameter the logical state of the bus is read.

Program execution

Returning in parameter State the state of the bus is specified in parameter BusName.

The I/O bus logical states describe the state a user can order the bus into. The state of the I/O 

bus is defined in the table below when using optional argument \Logic.

The I/O bus physical state describes the state that the fieldbus driver can order the bus into. 

The state of the I/O bus is defined in the table below when using optional argument \Phys.

-

NOTE!

For RobotWare 5.08 and earlier versions it is not possible to use the instruction IOBusState 

with optional argument \Phys or \Logic. From RobotWare 5.09 it is recommended to use 

the optional argument \Phys or \Logic.

Return value Symbolic constant Comment

10 IOBUS_LOG_STATE_STOPPED Bus is stopped due to error 2)

11 IOBUS_LOG_STATE_STARTED Bus is started 1)

Return value Symbolic constant Comment

20 IOBUS_PHYS_STATE_HALTED Bus is halted 3) 

21 IOBUS_PHYS_STATE_RUNNING Bus is up and running 1)

22 IOBUS_PHYS_STATE_ERROR Bus is not working 2)

23 IOBUS_PHYS_STATE_STARTUP Bus is in start up mode, is not com-
municating with any units.

24 IOBUS_PHYS_STATE_INIT Bus is only created 3)

Continued

Continues on next page



1 Instructions

1.68. IOBusState - Get current state of I/O bus
RobotWare - OS

3HAC 16581-1  Revision: J158

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The state of the I/O bus is defined in the table below when not using any of the optional 

argument \Phys or \Logic.

1) If the bus is up and running the state returned in argument State in instruction 

IOBusState can be either IOBUS_LOG_STATE_STARTED, IOBUS_PHYS_STATE_RUNNING, 

or BUSSTATE_RUN depending on if optional parameters are used or not in IOBusState.
2) If the bus is stopped due to some error the state returned in argument State can be either 

IOBUS_LOG_STATE_STOPPED, IOBUS_PHYS_STATE_ERROR, or BUSSTATE_ERROR 

depending on if optional parameters are used or not in IOBusState.
3) Not possible to get this state in the RAPID program with current version of Robotware - OS.

Error handling

The system variable ERRNO will be set to ERR_NAME_INVALID if the bus name does not 

exist.That error can be handled in an ERROR handler

Syntax
IOBusState

[ BusName ’:=’ ] < expression (IN) of string> ’,’

[ State ’:=’ ] < variable (VAR) of busstate>

[ ’\’ Phys] | [ ’\’ Logic]’;’

Related information

Return value Symbolic constant Comment

0 BUSSTATE_HALTED Bus is halted 3)

1 BUSSTATE_RUN Bus is up and running 1)

2 BUSSTATE_ERROR Bus is not working 2)

3 BUSSTATE_STARTUP Bus is in start up mode, is not com-
municating with any units.

4 BUSSTATE_INIT Bus is only created 3)

For information about See

Definition of bus state busstate - State of I/O bus on page 1088

Start of I/O bus IOBusStart - Start of I/O bus on page 155

Input/Output functionality in general Technical reference manual - RAPID overview, section 
Motion and I/O Principles -I/O principles

Configuration of I/O Technical reference manual - System parameters

Continued



1 Instructions

1.69. IODisable - Disable I/O unit
RobotWare - OS

1593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.69. IODisable - Disable I/O unit

Usage

IODisable is used to deactivate an I/O unit during program execution.

I/O units are automatically activated after start-up if they are defined in the system 

parameters. When required for some reason, I/O units can be deactivated or activated during 

program execution.

NOTE!

It is not possible to deactivate a unit with Trustlevel set to Required.

Basic examples

Basic examples of the instruction IODisable are illustrated below.

See also More examples on page 160.

Example 1
CONST string cell1:="cell1";

IODisable cell1, 5;

Deactivate an I/O unit with name cell1. Wait max. 5 s.

Arguments
IODisable UnitName MaxTime

UnitName

Data type: string

A name of an I/O unit (the unit name must be present in the system parameters).

MaxTime

Data type: num

The maximum period of waiting time permitted expressed in seconds. If this time runs out 

before the I/O unit has finished the deactivation steps the error handler will be called, if there 

is one, with the error code ERR_IODISABLE. If there is no error handler the program 

execution will be stopped. However, the I/O unit deactivationprocess will always continue 

regardless of the MaxTime or error.

To deactivate an I/O unit takes about 0-5 s.

Program execution

The specified I/O unit starts the deactivation steps. The instruction is ready when the 

deactivation steps are finished. If the MaxTime runs out before the I/O unit has finished the 

deactivation steps, a recoverable error will be generated.

After deactivation of an I/O unit, any setting of outputs in this unit will result in an error.

Continues on next page



1 Instructions

1.69. IODisable - Disable I/O unit
RobotWare - OS

3HAC 16581-1  Revision: J160

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling
The following recoverable errors can be generated. The errors can be handled in an error 
handler. The system variable ERRNO will be set to:

More examples

More examples of the instruction IODisable are illustrated below.

Example 1
PROC go_home()

VAR num recover_flag :=0; 

...

! Start to disable I/O unit cell1

recover_flag := 1;

IODisable "cell1", 0;

! Move to home position

MoveJ home, v1000,fine,tool1;

! Wait until deactivation of I/O unit cell1 is ready

recover_flag := 2;

IODisable "cell1", 5;

...

ERROR

IF ERRNO = ERR_IODISABLE THEN

IF recover_flag = 1 THEN

TRYNEXT;

ELSEIF recover_flag = 2 THEN

RETRY;

ENDIF

ELSEIF ERRNO <> ERR_EXCRTYMAX THEN

RAISE;

ELSE

ErrWrite "IODisable error", "Not possible to disable I/O 

unit cell1";

Stop;

ENDIF

ENDPROC

To save cycle time the I/O unit cell1 is deactivated during robot movement to the home 

position. With the robot at the home position a test is done to establish whether or not the I/O 

unit cell1 is fully deactivated. After the max. number of retries (5 with a waiting time of 

5 s), the robot execution will stop with an error message.

The same principle can be used with IOEnable (this will save more cycle time compared 

with IODisable).

ERR_IODISABLE if the time out time runs out before the unit is deactivated. 

ERR_TRUSTLEVEL if the trustlevel on the unit is set to 0, then the unit can´t be 
deactivated.

ERR_NAME_INVALID if the unit name don’t exist or if the unit isn’t allowed to be 
deactivated.

Continued

Continues on next page



1 Instructions

1.69. IODisable - Disable I/O unit
RobotWare - OS

1613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
IODisable

[ UnitName ’:=’ ] < expression (IN) of string> ’,’

[ MaxTime ’:=’ ] < expression (IN) of num> ’;’

Related information

For information about See

Enabling an I/O unit IOEnable - Enable I/O unit on page 162

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and output 
signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters

Continued



1 Instructions

1.70. IOEnable - Enable I/O unit
RobotWare - OS

3HAC 16581-1  Revision: J162

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.70. IOEnable - Enable I/O unit

Usage

IOEnable is used to activate an I/O unit during program execution.

I/O units are automatically activated after start-up if they are defined in the system 

parameters. When required for some reason I/O units can be deactivated or activated during 

program execution.

The controller action when activating a unit depends on the set unit Trustlevel. See System 

Parameters Unit Trustlevel.

Basic examples

Basic examples of the instruction IOEnable are illustrated below.

See also More examples on page 163. 

Example 1
CONST string cell1:="cell1";

IOEnable cell1, 5;

Enable I/O unit with name cell1. Wait max. 5 s.

Arguments
IOEnable UnitName MaxTime

UnitName

Data type: string

A name of an I/O unit (the unit name must be present in the system parameters).

MaxTime

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the I/O unit has finished the activation steps the error handler will be called, if there is 

one, with the error code ERR_IOENABLE. If there is no error handler the execution will be 

stopped. The I/O unit activation process will however always continue regardless of 

MaxTime or error.

To activate an I/O unit takes about 2-5 s.

Program execution

The specified I/O unit starts the activation steps. The instruction is ready when the activation 

steps are finished. If the MaxTime runs out before the I/O unit has finished the activation steps 

a recoverable error will be generated.

After a sequence of IODisable - IOEnable, all outputs for the current I/O unit will be set 

to the old values (before IODisable).

Continues on next page



1 Instructions

1.70. IOEnable - Enable I/O unit
RobotWare - OS

1633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling
The following recoverable errors can be generated. The errors can be handled in an error 
handler. The system variable ERRNO will be set to:

More examples

IOEnable can also be used to check whether some I/O unit is disconnected for some reason.

More examples of how to use the instruction IOEnable are illustrated below.

Example 1
VAR num max_retry:=0;

...

IOEnable "cell1", 0;

SetDO cell1_sig3, 1;

...

ERROR

IF ERRNO = ERR_IOENABLE THEN

WaitTime 1;

RETRY;

ELSEIF ERRNO <> Err_EXCRTYMAX THEN

RAISE;

ELSE

ErrWrite "IOEnable error", "Not possible to enable I/O

unit cell";

Stop;

ENDIF

ENDIF

Before using signals on the I/O unit cell1, a test is done by trying to activate the I/O unit 

with timeout after 0 sec. If the test fails a jump is made to the error handler. In the error 

handler the program execution waits for 1 sec. and a new retry is made. After 5 retry attempts 

the error ERR_IOENABLE is propagated to the caller of this routine.

Syntax
IOEnable

[ UnitName ’:=’ ] < expression (IN) of string>’ ,’

[ MaxTime’ :=’ ] < expression (IN) of num > ’;’

ERR_IOENABLE if the time out time runs out before the unit is activated.

ERR_NAME_INVALID if the unit name don’t exist or if the unit isn’t allowed to be 
activated.

ERR_BUSSTATE if an IOEnable is done, and the bus is in error state or 
enter error state before the unit is activated.

Continued

Continues on next page



1 Instructions

1.70. IOEnable - Enable I/O unit
RobotWare - OS

3HAC 16581-1  Revision: J164

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Disabling an I/O unit IODisable - Disable I/O unit on page 159

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output Signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O principles

Configuration of I/O Technical reference manual - System parameters

Continued



1 Instructions

1.71. IPers - Interrupt at value change of a persistent variable
RobotWare - OS

1653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.71. IPers - Interrupt at value change of a persistent variable

Usage

IPers (Interrupt Persistent) is used to order and enable interrupts to be generated when the 

value of a persistent variable is changed.

Basic examples

Basic examples of the instruction IPers are illustrated below.

Example 1
VAR intnum pers1int;

PERS num counter := 0;

PROC main()

CONNECT pers1int WITH iroutine1;

IPers counter, pers1int;

...

Idelete pers1int;

ENDPROC

TRAP iroutine1

TPWrite "Current value of counter = " \Num:=counter;

ENDTRAP

Orders an interrupt which is to occur each time the persistent variable counter is changed. 

A call is then made to the iroutine1 trap routine.

Arguments
IPers Name Interrupt

Name

Data type: anytype

The persistent variable that is to generate interrupts.

All type of data could be used such as atomic, record, record component, array, or array 

element.

Interrupt

Data type: intnum

The interrupt identity. This should have previously been connected to a trap routine by means 

of the instruction CONNECT.

Program execution

When the persistent variable changes value a call is made to the corresponding trap routine. 

When this routine has been executed program execution continues from where the interrupt 

occurred.

If the persistent variable changes value during a program stop no interrupt will occur when 

the program starts again.

Continues on next page



1 Instructions

1.71. IPers - Interrupt at value change of a persistent variable
RobotWare - OS

3HAC 16581-1  Revision: J166

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The same variable for interrupt identity cannot be used more than once without first deleting 

it. See Instructions - ISignalDI. 

If subscribed on data such as record component or array element specified in parameter Name, 

the interrupt will occur every time any part of the data is changed.

When executing the trap routine and reading the value of the persistent, there is no guarantee 

that the value read is the one that triggered the interrupt.

Syntax
IPers

[ Name ’:=’ ] < persistent (PERS) of anytype > ’,’

[ Interrupt’ :=’ ] < variable (VAR) of intnum > ’;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID summary - 
Interrupts

Interrupt from an input signal ISignalDI - Orders interrupts from a digital 
input signal on page 186

More information about interrupt 
management

Technical reference manual - RAPID 
overview, section Basic characteristics - 
Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Continued



1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

1673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.72. IRMQMessage - Orders RMQ interrupts for a data type

Usage

IRMQMessage (Interrupt RAPID Message Queue Message) is used to order and enable 

interrupts for a specific data type when using RMQ functionality.

Basic examples

Basic examples of the instruction IRMQMessage are illustrated below.

See also More Examples.

Example 1
VAR intnum rmqint;

VAR string dummy;

...

CONNECT rmqint WITH iroutine1;

IRMQMessage dummy, rmqint;

Orders an interrupt which is to occur each time a new rmqmessage containing the data type 

string is received. A call is then made to the iroutine1 TRAP routine.

Arguments
IRMQMessage InterruptDataType Interrupt

InterruptDataType

Data type: anytype

A reference to a variable, persistent or constant of a data type that will generate an interrupt 

when a rmqmessage with the specified data type is received.

Interrupt

Data type: intnum

The interrupt identity. This should have previously been connected to a TRAP routine by 

means of the instruction CONNECT.

Continues on next page



1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J168

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When the RMQ message with the specified data type is received, a call is made to the 

corresponding TRAP routine. When this has been executed, program execution continues 

from where the interrupt occurred.

All messages containing data of the same data type regardless of number of dimensions will 

be handled by the same interrupt. If using different dimensions, use RMQGetMsgHeader to 

adapt for this.

Any message containing data of a data type that no interrupt is connected to will genererate 

a warning.

The RMQSendWait instruction has the highest priority if a message is received and it fits the 

description for both the expected answer and a message connected to a TRAP routine with 

instruction IRMQMessage.

Not all data types can be used in argument InterruptDataType (see limitations).

The interrupt is considered to be a safe interrupt. A safe interrupt can not be put in sleep with 

instruction ISleep. The safe interrupt event will be queued at program stop and stepwise 

execution, and when starting in continious mode again, the interrupt will be executed. The 

only time a safe interrupt will be thrown is when the interrupt queue is full. Then an error will 

be reported. The interrupt will not survive program reset, e.g. PP to main.

More examples 

More examples of how to use the instruction IRMQMessage are illustrated below.

Example 1
MODULE ReceiverMod

VAR intnum intno1;

VAR rmqheader rmqheader1;

VAR rmqslot rmqslot1;

VAR rmqmessage rmqmessage1;

PROC main()

VAR string interrupt_on_str := stEmpty;

CONNECT intno1 WITH RecMsgs;

! Set up interrupts for data type string

IRMQMessage interrupt_on_str, intno1;

! Perform cycle

WHILE TRUE DO

...

ENDWHILE

ENDPROC

Continued

Continues on next page



1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

1693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TRAP RecMsgs

VAR string receivestr;

VAR string client_name;

VAR num userdef;

! Get the message from the RMQ

RMQGetMessage rmqmessage1;

! Get information about the message

RMQGetMsgHeader rmqmessage1 \Header:=rmqheader1 

\SenderId:=rmqslot1 \UserDef:=userdef;

IF rmqheader1.datatype = "string" AND rmqheader1.ndim = 0 THEN

! Get the data received in rmqmessage1

RMQGetMsgData rmqmessage1, receivestr;

client_name := RMQGetSlotName(rmqslot1);

TPWrite "Rec string: " + receivestr;

TPWrite "User Def: " + ValToStr(userdef);

TPWrite "From: " + client_name;

ELSE

TPWrite "Faulty data received!"

ENDIF

ENDTRAP

ENDMODULE

The example show how to set up interrupts for a specific data type. When a message is 

received, the TRAP RecMsgs is executed and the received data in the message is printed to 

the FlexPendant. If the data type received or the dimension of the data is different from the 

expected, this is printed to the FlexPendant.

Limitations

It is not allowed to execute IRMQMessage in synchronous mode. That will cause a fatal 

runtime error.

It is not possible to setup interrupts, send or receive data instances of data types that are of 

non-value, semi-value types or data type motsetdata.

The same variable for interrupt identity can not be used more than once without first deleting 

it. Interrupts should therefore be handled as shown in one of the alternatives below.

PROC main ()

VAR intnum rmqint;

VAR mytype dummy;

CONNECT rmq1int WITH iroutine1;

IRMQMessage dummy, rmqint;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

Continued

Continues on next page



1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J170

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

All activation of interrupts is done at the beginning of the program. These beginning 

instructions are then kept outside the main flow of the program.

PROC main ( )

VAR intnum rmqint;

VAR mytype dummy;

CONNECT rmqint WITH iroutine1;

IRMQMessage dummy, rmqint;

...

IDelete rmqint;

ENDPROC

The interrupt is deleted at the end of the program, and is then reactivated. It should be noted, 

in this case, that the interrupt is inactive for a short period.

Syntax
IRMQMessage

[ InterruptDataType‘ :=’ ] < reference (REF) of anytype >

[ Interrupt‘ :=’ ] < variable (VAR) of intnum >‘;‘

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Send data to the queue of a RAPID task or 
Robot Application Builder client.

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client.

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the header data from a rmqmessage. RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Send data to the queue of a RAPID task or 
Robot Application Builder client.

RMQSendMessage - Send an RMQ data 
message on page 386

Extract the data from a rmqmessage. RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Get the slot name from a specified slot 
identity.

RMQGetSlotName - Get the name of an 
RMQ client on page 964

Continued



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

1713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.73. ISignalAI - Interrupts from analog input signal

Usage

ISignalAI (Interrupt Signal Analog Input) is used to order and enable interrupts from an 

analog input signal.

Basic examples

Basic examples of the instruction ISignalAI are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalAI \Single, ai1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog input signal 

ai1 is between 0.5 and 1.5. A call is then made to the iroutine1 trap routine.

Example 2
ISignalAI ai1, AIO_BETWEEN, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog input signal 

ai1 is between 0.5 and 1.5, and the absolute signal difference compared to the stored 

reference value is bigger than 0.1.

Example 3
ISignalAI ai1, AIO_OUTSIDE, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog input signal 

ai1 is lower than 0.5 or higher than 1.5, and the absolute signal difference compared to the 

stored reference value is bigger than 0.1.

Arguments
ISignalAI [\Single] | [\SingleSafe] Signal Condition HighValue 

LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

[\Single]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically. If the argument Single is set, 

the interrupt occurs once at the most. If the Single and SingleSafe arguments is omitted, 

an interrupt will occur each time its condition is satisfied.

[\SingleSafe]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed. The only time a safe interrupt will be 

thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will 

not survive program reset, e.g. PP to main.

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

3HAC 16581-1  Revision: J172

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Signal

Data type: signalai

The name of the signal that is to generate interrupts.

Condition

Data type: aiotrigg

Specifies how HighValue and LowValue define the condition to be satisfied:

HighValue

Data type: num

High logical value to define the condition.

LowValue

Data type: num

Low logical value to define the condition.

DeltaValue

Data type: num

Defines the minimum logical signal difference before generation of a new interrupt. The 

current signal value compared to the stored reference value must be greater than the specified 

DeltaValue before generation of a new interrupt.

[\DPos]

Data type: switch

Specifies that only positive logical signal differences will give new interrupts.

[\DNeg]

Data type: switch

Specifies that only negative logical signal differences will give new interrupts.

If none of \DPos and \DNeg argument is used, both positive and negative differences will 

generate new interrupts.

Interrupt

Data type: intnum

The interrupt identity. This interrupt should have previously been connected to a trap routine 

by means of the instruction CONNECT.

Value Symbolic constant Comment

1 AIO_ABOVE_HIGH Signal will generate interrupts if above specified high value

2 AIO_BELOW_HIGH Signal will generate interrupts if below specified high value

3 AIO_ABOVE_LOW Signal will generate interrupts if above specified low value

4 AIO_BELOW_LOW Signal will generate interrupts if below specified low value

5 AIO_BETWEEN Signal will generate interrupts if between specified low and 
high values

6 AIO_OUTSIDE Signal will generate interrupts if below specified low value 
or above specified high value

7 AIO_ALWAYS Signal will always generate interrupts

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

1733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When the signal fulfils the specified conditions (both Condition and DeltaValue) a call 

is made to the corresponding trap routine. When this has been executed, program execution 

continues from where the interrupt occurred.

Conditions for interrupt generation

Before the interrupt subscription is ordered, each time the signal is sampled, the value of the 

signal is read, saved, and later used as a reference value for the DeltaValue condition. 

At the interrupt subscription time if specified DeltaValue = 0 and after the interrupt 

subscription time, the signal is sampled. The signal value is then compared to HighValue 

and LowValue according to Condition and with consideration to DeltaValue to decide if 

an interrupt should be generated or not. If the new read value satisfies the specified 

HighValue and LowValue Condition, but its difference compared to the last stored 

reference value is less or equal to the DeltaValue argument, no interrupt occurs. If the signal 

difference is not in the specified direction no interrupts will occur (argument \DPos or 

\DNeg).

The stored reference value for the DeltaValue condition is updated with a newly read value 

for later use at any sample if the following conditions are satisfied:

• Argument Condition with specified HighValue and LowValue (within limits)

• Argument DeltaValue (sufficient signal change in any direction independently of 

specified switch \DPos or \DNeg)

The reference value is only updated at the sample time, not at the interrupt subscription time.

An interrupt is also generated at the sample for update of the reference value if the direction 

of the signal difference is in accordance with the specified argument (any direction, \DPos0, 

or \DNeg).

When the \Single switch is used only one interrupt at the most will be generated. If the 

switch \Single (cyclic interrupt) is not used a new test of the specified conditions (both 

Condition and DeltaValue) is made at every sample of the signal value. Acomparison is 

made between the current signal value and the last stored reference value to decide if an 

interrupt should be generated or not.

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

3HAC 16581-1  Revision: J174

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Condition for interrupt generation at interrupt subscription time

xx0500002165

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

1753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Condition for interrupt generation at each sample after interrupt subscription

xx0500002166

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

3HAC 16581-1  Revision: J176

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 1 of interrupt generation

xx0500002167

Assuming the interrupt is ordered between sample 0 and 1, the following instruction will give 

the following results:

ISignalAI ai1, AIO_BETWEEN, 6.1, 2.2, 1.0, sig1int;

Sample 1 will generate an interrupt because the signal value is between HighValue and 

LowValue and the signal difference compared to Sample 0 is more than DeltaValue.

Sample 2 will generate an interrupt because the signal value is between HighValue and 

LowValue and the signal difference compared to Sample 1 is more than DeltaValue.

Samples 3, 4, 5 will not generate any interrupt because the signal difference is less than 

DeltaValue.

Sample 6 will generate an interrupt.

Samples 7 to 10 will not generate any interrupt because the signal is above  HighValue.

Sample 11 will not generate any interrupt because the signal difference compared to Sample 

6 is equal to DeltaValue.

Sample 12 will not generate any interrupt because the signal difference compared to Sample 

6 is less than DeltaValue.

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

1773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2 of interrupt generation

xx0500002168

Assuming the interrupt is ordered between sample 0 and 1, the following instruction will give 

the following results:

ISignalAI ai1, AIO_BETWEEN, 6.1, 2.2, 1.0 \DPos, sig1int;

A new reference value is stored at sample 1 and 2 because the signal is within limits and the 

absolute signal difference between the current value and the last stored reference value is 

greater than 1.0. No interrupt will be generated because the signal changes are in the negative 

direction.

Sample 6 will generate an interrupt because the signal value is between HighValue and 

LowValue, and the signal difference in the positive direction compared to sample 2 is more 

than DeltaValue.

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

3HAC 16581-1  Revision: J178

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 3 of interrupt generation

xx0500002169

Assuming the interrupt is ordered between sample 0 and 1, the following instruction will give 

the following results:

ISignalAI \Single, ai1, AIO_OUTSIDE, 6.1, 2.2, 1.0 \DPos, sig1int;

A new reference value is stored at sample 7 because the signal is within limits and the 

absolute signal difference between the current value and the last stored reference value is 

greater than 1.0

sample 8 will generate an interrupt because the signal value is above HighValue, and the 

signal difference in the positive direction compared to sample 7 is more than DeltaValue.

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

1793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 4 of interrupt generation

xx0500002170

Assuming the interrupt is ordered between sample 0 and 1, the following instruction will give 

the following results:

ISignalAI ai1, AIO_ALWAYS, 6.1, 2.2, 1.0 \DPos, sig1int;

A new reference value is stored at sample 1 and 2 because the signal is within limits and the 

absolute signal difference between the current value and the last stored reference value is 

greater than 1.0

Sample 6 will generate an interrupt because the signal difference in the positive direction 

compared to sample 2 is more than DeltaValue.

Sample 7 and 8 will generate an interrupt because the signal difference in the positive 

direction compared to previous sample is more than DeltaValue.

A new reference value is stored at sample 11 and 12 because the signal is within limits, and 

the absolute signal difference between the current value and the last stored reference value is 

greater than 1.0

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

3HAC 16581-1  Revision: J180

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If there is a subscription of interrupt on an analog input signal, an interrupt will be given for 

every change in the analog value that satisfies the condition specified when ordering the 

interrupt subscription. If the analog value is noisy many interrupts can be generated even if 

only one or two bits in the analog value are changed. 

To avoid generating interrupts for small changes of the analog input value, set the 

DeltaValue to a level greater than 0. Then no interrupts will be generated until a change of 

the analog value is greater than the specified DeltaValue.

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

ERR_AO_LIM

if the programmed HighValue or LowValue argument for the specified analog input signal 

Signal is outside limits.

Limitations

The HighValue and LowValue arguments should be in the range: logical maximum value, 

logical minimum value defined for the signal.

HighValue must be above LowValue.

DeltaValue must be 0 or positive.

The limitations for the interrupt identity are the same as for ISignalDI.

Syntax
ISignalAI 

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Signal’:=’ ]<variable (VAR) of signalai>’,’

[ Condition’:=’ ]<expression (IN) of aiotrigg>’,’

[ HighValue’:=’ ]<expression (IN) of num>’,’

[ LowValue’:=’ ]<expression (IN) of num>’,’

[ DeltaValue’:=’ ]<expression (IN) of num>

[[’\’DPos] | [ ’\’DNeg] ’,’]

[ Interrupt’:=’ ]<variable (VAR) of intnum>’;’

Continued

Continues on next page



1 Instructions

1.73. ISignalAI - Interrupts from analog input signal
RobotWare - OS

1813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

Definition of constants aiotrigg - Analog I/O trigger condition on page 
1083

Interrupt from analog output signal ISignalAO - Interrupts from analog output 
signal on page 182

Interrupt from digital input signal ISignalDI - Orders interrupts from a digital input 
signal on page 186

Interrupt from digital output signal ISignalDO - Interrupts from a digital output 
signal on page 189

More information on interrupt management Technical reference manual - RAPID overview, 
section Basic Characteristics - Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Related system parameters (filter) Technical reference manual - System 
parameters, section IO signals

Continued



1 Instructions

1.74. ISignalAO - Interrupts from analog output signal
RobotWare - OS

3HAC 16581-1  Revision: J182

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.74. ISignalAO - Interrupts from analog output signal

Usage

ISignalAO (Interrupt Signal Analog Output) is used to order and enable interrupts from an 

analog output signal.

Basic examples

Basic examples of the instruction ISignalAO are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalAO \Single, ao1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog output signal 

ao1 is between 0.5 and 1.5. A call is then made to the iroutine1 trap routine.

Example 2
ISignalAO ao1, AIO_BETWEEN, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog output signal 

ao1 is between 0.5 and 1.5, and the absolute signal difference compared to the previous 

stored reference value is bigger than 0.1.

Example 3
ISignalAO ao1, AIO_OUTSIDE, 1.5, 0.5, 0.1, sig1int;

Orders an interrupt which is to occur each time the logical value of the analog output signal 

ao1 is lower than 0.5 or higher than 1.5, and the absolute signal difference compared to the 

previous stored reference value is bigger than 0.1.

Arguments
ISignalAO [\Single] | [\SingleSafe] Signal Condition HighValue 

LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

[\Single]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically. If the argument Single is set 

the interrupt occurs once at the most. If the Single and SingleSafe argument is omitted an 

interrupt will occur each time its condition is satisfied.

[\SingleSafe]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed. The only time a safe interrupt will be 

thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will 

not survive program reset, e.g. PP to main.

Continues on next page



1 Instructions

1.74. ISignalAO - Interrupts from analog output signal
RobotWare - OS

1833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Signal

Data type: signalao

The name of the signal that is to generate interrupts.

Condition

Data type: aiotrigg

Specifies how HighValue and LowValue define the condition to be satisfied:

HighValue

Data type: num

High logical value to define the condition.

LowValue

Data type: num

Low logical value to define the condition.

DeltaValue

Data type: num

Defines the minimum logical signal difference before generation of a new interrupt. The 

current signal value compared to the previous stored reference value must be greater than the 

specified DeltaValue before generation of a new interrupt.

[\DPos]

Data type: switch

Specifies that only positive logical signal differences will give new interrupts.

[\DNeg]

Data type: switch

Specifies that only negative logical signal differences will give new interrupts.

If neither of the \DPos and \DNeg arguments are used, both positive and negative differences 

will generate new interrupts.

Interrupt

Data type: intnum

The interrupt identity. This interrupt should have previously been connected to a trap routine 

by means of the instruction CONNECT.

Value Symbolic constant Comment

1 AIO_ABOVE_HIGH Signal will generate interrupts if above specified high value

2 AIO_BELOW_HIGH Signal will generate interrupts if below specified high value

3 AIO_ABOVE_LOW Signal will generate interrupts if above specified low value

4 AIO_BELOW_LOW Signal will generate interrupts if below specified low value

5 AIO_BETWEEN Signal will generate interrupts if between specified low and 
high values

6 AIO_OUTSIDE Signal will generate interrupts if below specified low value 
or above specified high value

7 AIO_ALWAYS Signal will always generate interrupts

Continued

Continues on next page



1 Instructions

1.74. ISignalAO - Interrupts from analog output signal
RobotWare - OS

3HAC 16581-1  Revision: J184

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See instruction ISignalAI for information about:

• Program execution

• Condition for interrupt generation

• More examples

Same principles are valid for ISignalAO as for ISignalAI.

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

ERR_AO_LIM

if the programmed HighValue or LowValue argument for the specified analog output signal 

Signal is outside limits.

Limitations

The HighValue and LowValue arguments should be in the range: logical maximum value, 

logical minimum value, defined for the signal.

HighValue must be above LowValue.

DeltaValue must be 0 or positive.

The limitations for the interrupt identity are the same as for ISignalDO.

Syntax
ISignalAO

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Signal’:=’ ]<variable (VAR) of signalao>’,’

[ Condition’:=’ ]<expression (IN) of aiotrigg>’,’

[ HighValue’:=’ ]<expression (IN) of num>’,’

[ LowValue’:=’ ]<expression (IN) of num>’,’

[ DeltaValue’:=’ ]<expression (IN) of num>

[’\’DPos] | [ ’\’DNeg] ’,’]

[ Interrupt’:=’ ]<variable (VAR) of intnum>’;’

Continued

Continues on next page



1 Instructions

1.74. ISignalAO - Interrupts from analog output signal
RobotWare - OS

1853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID Summary - 
Interrupts

Definition of constants aiotrigg - Analog I/O trigger condition on page 
1083

Interrupt from analog input signal ISignalAI - Interrupts from analog input signal 
on page 171

Interrupt from digital input signal ISignalDI - Orders interrupts from a digital 
input signal on page 186

Interrupt from digital output signal ISignalDO - Interrupts from a digital output 
signal on page 189

More information on interrupt management RAPID reference manual - RAPID overview, 
section Basic Characteristics - Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Related system parameters (filter) Technical reference manual - System 
parameters, section IO signals

Continued



1 Instructions

1.75. ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS

3HAC 16581-1  Revision: J186

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.75. ISignalDI - Orders interrupts from a digital input signal

Usage

ISignalDI (Interrupt Signal Digital In) is used to order and enable interrupts from a digital 

input signal.

Basic examples

Basic examples of the instruction ISignalDI are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDI di1,1,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set to 1. A call 

is then made to the iroutine1 trap routine.

Example 2
ISignalDI di1,0,sig1int;

Orders an interrupt which is to occur each time the digital input signal di1 is set to 0.

Example 3
ISignalDI \Single, di1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital input signal di1 is set to 1.

Arguments
ISignalDI [ \Single] | [ \SingleSafe] Signal TriggValue Interrupt

[ \Single ]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the Single and 

SingleSafe arguments is omitted, an interrupt will occur each time its condition is satisfied.

[ \SingleSafe ]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed. The only time a safe interrupt will be 

thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will 

not survive program reset, e.g. PP to main.

Signal

Data type: signaldi

The name of the signal that is to generate interrupts.

Continues on next page



1 Instructions

1.75. ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS

1873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TriggValue

Data type: dionum

The value to which the signal must change for an interrupt to occur.

The value is specified as 0 or 1 or as a symbolic value (e.g. high/low). The signal is edge-

triggered upon changeover to 0 or 1.

TriggValue 2 or symbolic value edge can be used for generation of interrupts on both 

positive flank (0 -> 1) and negative flank (1 -> 0).

Interrupt

Data type: intnum

The interrupt identity. This should have previously been connected to a trap routine by means 

of the instruction CONNECT.

Program execution

When the signal assumes the specified value a call is made to the corresponding trap routine. 

When this has been executed, program execution continues from where the interrupt 

occurred.

If the signal changes to the specified value before the interrupt is ordered no interrupt occurs. 

Interrupts from a digital input signal at signal level 1 is illustrated in the figure below.

xx0500002189

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Continued

Continues on next page



1 Instructions

1.75. ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS

3HAC 16581-1  Revision: J188

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The same variable for interrupt identity cannot be used more than once without first deleting 

it. Interrupts should therefore be handled as shown in one of the alternatives below.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDI di1, 1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning 

instructions are then kept outside the main flow of the program.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDI di1, 1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. It should be noted, 

in this case, that the interrupt is inactive for a short period.

Syntax
ISignalDI

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Signal ’:=’ ] < variable (VAR) of signaldi > ’,’

[ TriggValue’ :=’ ] < expression (IN) of dionum > ’,’

[ Interrupt’ :=’ ] < variable (VAR) of intnum > ’;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID Summary - Interrupts

Interrupt from an output signal ISignalDO - Interrupts from a digital output signal on 
page 189

More information on interrupt 
management

Technical reference manual - RAPID overview, 
section Basic Characteristics - Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Continued



1 Instructions

1.76. ISignalDO - Interrupts from a digital output signal
RobotWare - OS

1893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.76. ISignalDO - Interrupts from a digital output signal

Usage

ISignalDO (Interrupt Signal Digital Out) is used to order and enable interrupts from a digital 

output signal.

Basic examples

Basic examples of the instruction ISignalDO are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDO do1,1,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is set to 1. A call 

is then made to the iroutine1 trap routine.

Example 2
ISignalDO do1,0,sig1int;

Orders an interrupt which is to occur each time the digital output signal do1 is set to 0.

Example 3
ISignalDO\Single, do1,1,sig1int;

Orders an interrupt which is to occur only the first time the digital output signal do1 is set to 1.

Arguments
ISignalDO [ \Single ] | [ \SingleSafe ] Signal TriggValue Interrupt

[ \Single ]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the Single and 

SingleSafe arguments is omitted, an interrupt will occur each time its condition is satisfied.

[ \SingleSafe ]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed. The only time a safe interrupt will be 

thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will 

not survive program reset, e.g. PP to main.

Signal

Data type: signaldo

The name of the signal that is to generate interrupts.

Continues on next page



1 Instructions

1.76. ISignalDO - Interrupts from a digital output signal
RobotWare - OS

3HAC 16581-1  Revision: J190

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TriggValue 

Data type: dionum

The value to which the signal must change for an interrupt to occur.

The value is specified as 0 or 1 or as a symbolic value (e.g. high/low). The signal is edge-

triggered upon changeover to 0 or 1.

TriggValue 2 or symbolic value edge can be used for generation of interrupts on both 

positive flank (0 -> 1) and negative flank (1 -> 0).

Interrupt

Data type: intnum

The interrupt identity. This should have previously been connected to a trap routine by means 

of the instruction CONNECT.

Program execution

When the signal assumes the specified value 0 or 1, a call is made to the corresponding trap 

routine. When this has been executed program execution continues from where the interrupt 

occurred.

If the signal changes to the specified value before the interrupt is ordered no interrupt occurs. 

Interrupts from a digital output signal at signal level 1 is illustrated in the figure below.

xx0500002190

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Continued

Continues on next page



1 Instructions

1.76. ISignalDO - Interrupts from a digital output signal
RobotWare - OS

1913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The same variable for interrupt identity cannot be used more than once without first deleting 

it. Interrupts should therefore be handled as shown in one of the alternatives below.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDO do1, 1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning 

instructions are then kept outside the main flow of the program.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDO do1, 1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. It should be noted, 

in this case, that the interrupt is inactive for a short period.

Syntax
ISignalDO

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’,’

[ TriggValue’ :=’ ] < expression (IN) of dionum > ’,’

[ Interrupt’ :=’ ] < variable (VAR) of intnum > ’;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID Summary - 
Interrupts

Interrupt from an input signal ISignalDI - Orders interrupts from a digital 
input signal on page 186

More information on interrupt management Technical reference manual - RAPID 
overview, section Basic Characteristics- 
Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Continued



1 Instructions

1.77. ISignalGI - Orders interrupts from a group of digital input signals
RobotWare - OS

3HAC 16581-1  Revision: J192

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.77. ISignalGI - Orders interrupts from a group of digital input signals

Usage

ISignalGI  (Interrupt Signal Group Digital In) is used to order and enable interrupts from 

a group of digital input signals.

Basic examples

Basic examples of the instruction ISignalGI are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalGI gi1,sig1int;

Orders an interrupt when a digital input group signal changes value.

Arguments
ISignalGI [ \Single ] | [ \SingleSafe ] Signal Interrupt

[ \Single ]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs once at the most. If the Single and 

SingleSafe arguments is omitted, an interrupt will occur each time its condition is satisfied.

[ \SingleSafe ]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed. The only time a safe interrupt will be 

thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will 

not survive program reset, e.g. PP to main.

Signal

Data type: signalgi

The name of the group input signal that generates interrupts.

Interrupt

Data type: intnum

The interrupt identity. This should have previously been connected to a trap routine by means 

of the instruction CONNECT.

Program execution

When the group signal changes value a call is made to the corresponding trap routine. When 

this has been executed program execution continues from where the interrupt occurred.

If the signal changes before the interrupt is ordered no interrupt occurs.

Continues on next page



1 Instructions

1.77. ISignalGI - Orders interrupts from a group of digital input signals
RobotWare - OS

1933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Limitations

Maximum number of signals that can be used for a group is 32.

Numeric value condition can not be used in the instruction to specify that an interrupt should 

occur on changes to that specific value. This must be handled in the user program by reading 

the group signal value at execution of the TRAP.

The interrupts are generated as bit interrupts, e.g. interrupts on single digital input signal 

change within the group. If the bits in the group signal change value with a delay between 

settings, several interrupts will be generated. Knowledege about how the I/O board works is 

necessary to get right functionality when using ISignalGI. If several interrupts are 

generated at group input settings, use instead ISignalDI on a strobe signal that are set when 

all bits in the group signal have been set.

The same variable for interrupt identity cannot be used more than once without first deleting 

it. Interrupts should therefore be handled as shown in one of the alternatives below.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalGI gi1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning 

instructions are then kept outside the main flow of the program.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalGI gi1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. It should be noted, 

in this case, that the interrupt is inactive for a short period.

Syntax
ISignalGI

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Signal ’:=’ ] < variable (VAR) of signalgi > ’,’

[ Interrupt’:=’ ] < variable (VAR) of intnum > ’;’

Continued

Continues on next page



1 Instructions

1.77. ISignalGI - Orders interrupts from a group of digital input signals
RobotWare - OS

3HAC 16581-1  Revision: J194

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID Summary - Interrupts

Interrupt from an input signal ISignalDI - Orders interrupts from a digital input signal 
on page 186

Interrupt from group output signals ISignalGO - Orders interrupts from a group of digital 
output signals on page 195

More information on interrupt 
management

Technical reference manual - RAPID overview, 
section Basic Characteristics - Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Continued



1 Instructions

1.78. ISignalGO - Orders interrupts from a group of digital output signals
RobotWare - OS

1953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.78. ISignalGO - Orders interrupts from a group of digital output signals

Usage

ISignalGO (Interrupt Signal Group Digital Out) is used to order and enable interrupts from 

a group of digital output signals.

Basic examples

Basic examples of the instruction ISignalGO are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalGO go1,sig1int;

Orders an interrupt when a digital output group signal change value.

Arguments
ISignalGO [ \Single ] | [ \SingleSafe ] Signal Interrupt

[ \Single ]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument \Single is set, the interrupt occurs once at the most. If the Single and 

SingleSafe arguments is omitted, an interrupt will occur each time its condition is satisfied.

[ \SingleSafe ]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed. The only time a safe interrupt will be 

thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will 

not survive program reset, e.g. PP to main.

Signal

Data type: signalgo

The name of the group output signal that generates interrupts.

Interrupt

Data type: intnum

The interrupt identity. This should have previously been connected to a trap routine by means 

of the instruction CONNECT.

Program execution

When the group signal changes value a call is made to the corresponding trap routine. When 

this has been executed program execution continues from where the interrupt occurred.

If the signal changes before the interrupt is ordered no interrupt occurs.

Continues on next page



1 Instructions

1.78. ISignalGO - Orders interrupts from a group of digital output signals
RobotWare - OS

3HAC 16581-1  Revision: J196

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Limitations

Maximum number of signals that can be used for a group is 32.

Numeric value condition can not be used in the instruction to specify that an interrupt should 

occur on changes to that specific value. This must be handled in the user program by reading 

the group signal value at execution of the TRAP.

The same variable for interrupt identity cannot be used more than once without first deleting 

it. Interrupts should therefore be handled as shown in one of the alternatives below.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalGO go1, sig1int;

WHILE TRUE DO

...

ENDWHILE

ENDPROC

All activation of interrupts is done at the beginning of the program. These beginning 

instructions are then kept outside the main flow of the program.

PROC main ( )

VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalGO go1, sig1int;

...

IDelete sig1int;

ENDPROC

The interrupt is deleted at the end of the program and is then reactivated. It should be noted, 

in this case, that the interrupt is inactive for a short period.

Syntax
ISignalGO

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Signal ’:=’ ] < variable (VAR) of signalgo > ’,’

[ Interrupt’:=’ ] < variable (VAR) of intnum > ’;’

Continued

Continues on next page



1 Instructions

1.78. ISignalGO - Orders interrupts from a group of digital output signals
RobotWare - OS

1973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID Summary - 
Interrupts

Interrupt from an output signal ISignalDO - Interrupts from a digital output 
signal on page 189

Interrupt from group input signals ISignalGI - Orders interrupts from a group of 
digital input signals on page 192

More information on interrupt management Technical reference manual - RAPID 
overview, section Basic Characteristics - 
Interrupts

Interrupt identity intnum - Interrupt identity on page 1125

Continued



1 Instructions

1.79. ISleep - Deactivates an interrupt
RobotWare - OS

3HAC 16581-1  Revision: J198

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.79. ISleep - Deactivates an interrupt

Usage

ISleep (Interrupt Sleep) is used to deactivate an individual interrupt temporarily.

During the deactivation time any generated interrupts of the specified type are discarded 

without any trap execution.

Basic examples

Basic examples of the instruction are illustrated below.

See also More examples on page 198.

Example 1
ISleep sig1int;

The interrupt sig1int is deactivated.

Arguments
ISleep Interrupt

Interrupt

Data type: intnum

The variable (interrupt identity) of the interrupt.

Program execution

Any generated interrupts of the specified type are discarded without any trap execution until 

the interrupt has been re-activated by means of the instruction IWatch. Interrupts which are 

generated while ISleep is in effect are ignored.

More examples

More examples of the instruction ISleep are illustrated below.

Example 1
VAR intnum timeint;

CONNECT timeint WITH check_serialch;

ITimer 60, timeint;

...

ISleep timeint;

WriteBin ch1, buffer, 30;

IWatch timeint;

...

TRAP check_serialch

WriteBin ch1, buffer, 1;

IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite "The serial communication is broken";

EXIT;

ENDIF

ENDTRAP

Continues on next page



1 Instructions

1.79. ISleep - Deactivates an interrupt
RobotWare - OS

1993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Communication across the ch1 serial channel is monitored by means of interrupts which are 

generated every 60 seconds. The trap routine checks whether the communication is working. 

When, however, communication is in progress these interrupts are not permitted.

Error handling

Interrupts which have neither been ordered nor enabled are not permitted. If the interrupt 

number is unknown the system variable ERRNO will be set to ERR_UNKINO (see errnum - 

Error number on page 1108). If trying to deactivate a safe interrupt temporarily with ISleep, 

the system variable ERRNO is set to ERR_INOISSAFE. These errors can be handled in an error 

handler.

Syntax
ISleep

[ Interrupt ‘:=’ ] < variable (VAR) of intnum > ‘;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

Enabling an interrupt IWatch - Activates an interrupt on page 205

Disabling all interrupts IDisable - Disables interrupts on page 124

Cancelling an interrupt IDelete - Cancels an interrupt on page 123

Continued



1 Instructions

1.80. ITimer - Orders a timed interrupt
RobotWare - OS

3HAC 16581-1  Revision: J200

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.80. ITimer - Orders a timed interrupt

Usage

ITimer (Interrupt Timer) is used to order and enable a timed interrupt.

This instruction can be used, for example, to check the status of peripheral equipment once 

every minute.

Basic examples

Basic examples of the instruction ITimer are illustrated below.

See also More examples on page 201.

Example 1
VAR intnum timeint;

CONNECT timeint WITH iroutine1;

ITimer 60, timeint;

Orders an interrupt that is to occur cyclically every 60 seconds. A call is then made to the trap 

routine iroutine1.

Example 2
ITimer \Single, 60, timeint;

Orders an interrupt that is to occur once, after 60 seconds. 

Arguments
ITimer [ \Single ] | [ \SingleSafe ] Time Interrupt

[ \Single ]

Data type: switch

Specifies whether the interrupt is to occur once or cyclically.

If the argument Single is set, the interrupt occurs only once. If the Single and 

SingleSafe arguments is omitted, an interrupt will occur each time at the specified time.

[ \SingleSafe ]

Data type: switch

Specifies that the interrupt is single and safe. For definition of single, see description of 

Single argument. A safe interrupt can not be put in sleep with instruction ISleep. The safe 

interrupt event will be queued at program stop and stepwise execution, and when starting in 

continious mode again, the interrupt will be executed.

Time

Data type: num

The amount of time that must lapse before the interrupt occurs.

The value is specified in seconds. If Single or SingleSafe is set this time may not be less 

than 0.01 seconds. The corresponding time for cyclical interrupts is 0.1 seconds.

Interrupt

Data type: intnum

The variable (interrupt identity) of the interrupt. This should have previously been connected 

to a trap routine by means of the instruction CONNECT.

Continues on next page



1 Instructions

1.80. ITimer - Orders a timed interrupt
RobotWare - OS

2013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The corresponding trap routine is automatically called at a given time following the interrupt 

order. When this has been executed program execution continues from where the interrupt 

occurred. 

If the interrupt occurs cyclically a new computation of time is started from when the interrupt 

occurs.

More examples

More examples of the instruction ITimer are illustrated below.

Example 1
VAR intnum timeint;

CONNECT timeint WITH check_serialch;

ITimer 60, timeint;

...

TRAP check_serialch

WriteBin ch1, buffer, 1;

IF ReadBin(ch1\Time:=5) < 0 THEN

TPWrite "The serial communication is broken";

EXIT;

ENDIF

ENDTRAP

Communication across the ch1 serial channel is monitored by means of interrupts which are 

generated every 60 seconds. The trap routine checks whether the communication is working. 

If it is not program execution is terminated and an error message appears.

Limitations

The same variable for interrupt identity cannot be used more than once without being first 

deleted. See Instructions - ISignalDI.

Syntax
ITimer

[ ’\’ Single ] | [ ’\’ SingleSafe ] ’,’

[ Time ’:=’ ] < expression (IN) of num >’,’

[ Interrupt’ :=’ ] < variable (VAR) of intnum > ’;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID summary - 
Interrupts

More information on interrupt management Technical reference manual - RAPID 
overview, section Basic Characteristics- 
Interrupts

Continued



1 Instructions

1.81. IVarValue - orders a variable value interrupt
Optical Tracking

3HAC 16581-1  Revision: J202

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.81. IVarValue - orders a variable value interrupt

Usage

IVarValue (Interrupt Variable Value) is used to order and enable an interrupt when the value 

of a variable accessed via the serial sensor interface has been changed.

This instruction can be used, for example, to get seam volume or gap values from a seam 

tracker.

Basic examples

Basic examples of the instruction IVarValue are illustrated below.

Example 1
LOCAL PERS num 

adptVlt{25}:=[1,1.2,1.4,1.6,1.8,2,2.16667,2.33333,2.5,...]; 

LOCAL PERS num 

adptWfd{25}:=[2,2.2,2.4,2.6,2.8,3,3.16667,3.33333,3.5,...];

LOCAL PERS num 

adptSpd{25}:=10,12,14,16,18,20,21.6667,23.3333,25[,...];

LOCAL CONST num GAP_VARIABLE_NO:=11;

PERS num gap_value;

VAR intnum IntAdap;

PROC main()

! Setup the interrupt. The trap routine AdapTrp will be called    

! when the gap variable with number ´GAP_VARIABLE_NO’ in the

!sensor interface has been changed. The new value will be 

! available in the PERS gp_value variable.

! Connect to the sensor device "sen1:" (defined in sio.cfg).

SenDevice "sen1:";

CONNECT IntAdap WITH AdapTrp;

IVarValue "sen1:", GAP_VARIABLE_NO, gap_value, IntAdap;

! Start welding

ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;

ArcL\On,*,v100,adaptSm,adaptWd,adaptWv,z10,tool\j\Track:=track;

ENDPROC

Continues on next page



1 Instructions

1.81. IVarValue - orders a variable value interrupt
Optical Tracking

2033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TRAP AdapTrap

VAR num ArrInd;

!Scale the raw gap value received

ArrInd:=ArrIndx(gap_value);

! Update active welddata PERS variable ‘adaptWd’ with new data   

! from the arrays of predefined parameter arrays. The scaled gap 

! value is used as index in the voltage, wirefeed and 

! speed arrays.

adaptWd.weld_voltage:=adptVlt{ArrInd};

adaptWd.weld_wirefeed:=adptWfd{ArrInd};

adaptWd.weld_speed:=adptSpd{ArrInd};

!Request a refresh of AW parameters using the new data i adaptWd 

ArcRefresh;

ENDTRAP

Arguments
IVarValue device VarNo Value Interrupt [ \Unit ] [ \DeadBand ]

device

Data type: string

The I/O device name configured in sio.cfg for the sensor used.

VarNo

Data type: num

The number of the variable to be supervised.

Value

Data type: num

A PERS variable which will hold the new value of VarNo.

Interrupt

Data type: intnum

The variable (interrupt identity) of the interrupt. This should have previously been connected 

to a trap routine by means of the instruction CONNECT.

[ \Unit ]

Data type: num

Scale factor with which the sensor value for VarNo is multiplied before check and before it 

is saved in Value.

[ \DeadBand ]

Data type: num

If the value for Varno, returned by the sensor, is within +/- DeadBand no interrupt is 

generated.

Continued

Continues on next page



1 Instructions

1.81. IVarValue - orders a variable value interrupt
Optical Tracking

3HAC 16581-1  Revision: J204

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The corresponding trap routine is automatically called at a given time following the interrupt 

order. When this has been executed program execution continues from where the interrupt 

occurred. 

Limitations

The same variable for interrupt identity cannot be used more than five times without first 

being deleted.

CAUTION!

Too high interrupt frequency will stall the whole RAPID execution.

Syntax
IVarValue

[ device ’:=’ ] < expression (IN) of string>’,’

[ VarNo ’:=’ ] < expression (IN) of num >’,’

[ Value ’:=’ ] < persistent (PERS) of num >’,’

[ Interrupt’ :=’ ] < variable (VAR) of intnum > ’,’

[ ’\’ Unit’ :=’ ] < expression (IN) of num >’,’

[ ’\’ DeadBand’ :=’ ] < expression (IN) of num > ’;’

Related information

For information about See

Connect to a sensor device SenDevice - connect to a sensor device on page 
425

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

More information on interrupt 
management

Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupts

Optical Tracking Application manual - Continuous application 
platform

Optical Tracking Art Application manual - Arc and Arc Sensor

Continued



1 Instructions

1.82. IWatch - Activates an interrupt
RobotWare - OS

2053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.82. IWatch - Activates an interrupt

Usage

IWatch (Interrupt Watch) is used to activate an interrupt which was previously ordered but 

was deactivated with ISleep.

Basic examples

Basic examples of the instruction IWatch are illustrated below.

See also More examples on page 205.

Example 1
IWatch sig1int;

The interrupt sig1int that was previously deactivated is activated.

Arguments
IWatch Interrupt

Interrupt

Data type: intnum

Variable (interrupt identity) of the interrupt.

Program execution

Re-activates interrupts of the specified type once again. However, interrupts generated during 

the time the ISleep instruction was in effect are ignored.

More examples

More examples of the instruction IWatch are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalDI di1,1,sig1int;

...

ISleep sig1int;

weldpart1;

IWatch sig1int;

During execution of the weldpart1 routine no interrupts are permitted from the signal di1. 

Error handling

Interrupts which have not been ordered are not permitted. If the interrupt number is unknown 

the system variable ERRNO is set to ERR_UNKINO (see errnum - Error number on page 1108). 

The error can be handled in the error handler.

Syntax
IWatch

[ Interrupt ‘:=’ ] < variable (VAR) of intnum > ‘;’

Continues on next page



1 Instructions

1.82. IWatch - Activates an interrupt
RobotWare - OS

3HAC 16581-1  Revision: J206

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID summary - 
Interrupts

Deactivating an interrupt ISleep - Deactivates an interrupt on page 198

Continued



1 Instructions

1.83. Label - Line name
RobotWare - OS

2073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.83. Label - Line name

Usage

Label is used to name a line in the program. Using the GOTO instruction this name can then 

be used to move program execution within the same routine.

Basic examples

Basic examples of the instruction Label are illustrated below.

Example 1
GOTO next;

...

next:

Program execution continues with the instruction following next.

Arguments
Label:

Label

Identifier

The name you wish to give the line.

Program execution

Nothing happens when you execute this instruction.

Limitations

The label must not be the same as

• any other label within the same routine.

• any data name within the same routine.

A label hides global data and routines with the same name within the routine it is located in.

Syntax
(EBNF)

<identifier>’:’

Related information

For information about See

Identifiers Technical reference manual - RAPID overview, 
section Basic characteristics - Basic elements

Moving program execution to a label GOTO - Goes to a new instruction on page 117



1 Instructions

1.84. Load - Load a program module during execution
RobotWare - OS

3HAC 16581-1  Revision: J208

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.84. Load - Load a program module during execution

Usage

Load is used to load a program module into the program memory during execution.

The loaded program module will be added to the already existing modules in the program 

memory.

A program or system module can be loaded in static (default) or dynamic mode.

Both static and dynamic loaded modules can be unloaded by the instruction UnLoad.

Static mode 
The following table describes how different operations affect static loaded program or system 
modules.

Dynamic mode 
The following table describes how different operations affect dynamic loaded program or 
system modules.

Basic examples

Basic examples of the instruction Load are illustrated below.

See also More examples on page 210.

Example 1
Load \Dynamic, diskhome \File:="PART_A.MOD";

Loads the program module PART_A.MOD from the diskhome into the program memory. 

diskhome is a predefined string constant "HOME:". Load the program module in the 

dynamic mode.

Example 2
Load \Dynamic, diskhome \File:="PART_A.MOD";

Load \Dynamic, diskhome \File:="PART_B.MOD" \CheckRef;

Loads the program module PART_A.MOD into the program memory, then PART_B.MOD is 

loaded. If PART_A.MOD contains references to PART_B.MOD, \CheckRef can be used to 

check for unresolved references only when the last module is loaded. IF \CheckRef is used 

on PART_A.MOD, a link error would occur and the module would not be loaded.

Type of module
Set PP to main from 
FlexPendant

Open new RAPID program

Program Module Not affected Unloaded

System Module Not affected Not affected

Type of module
Set PP to main from 
FlexPendant

Open new RAPID program

Program Module Unloaded Unloaded

System Module Unloaded Unloaded

Continues on next page



1 Instructions

1.84. Load - Load a program module during execution
RobotWare - OS

2093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
Load [\Dynamic] FilePath [\File] [\CheckRef]

[\Dynamic]

Data type: switch

The switch enables load of a module in dynamic mode. Otherwise the load is in static mode.

FilePath

Data type: string

The file path and the file name to the file that will be loaded into the program memory. The 

file name shall be excluded when the argument \File is used.

[\File]

Data type: string

When the file name is excluded in the argument FilePath then it must be defined with this 

argument.

[\CheckRef]

Data type: switch

Check after loading of the module for unsolved references in the program task. If not used no 

check for unsolved references are done.

Program execution

Program execution waits for the program module to finish loading before proceeding with the 

next instruction.

Unresolved references will always be accepted for the loading operation,  if parameter 

\CheckRef is not used, but it will be a run time error on execution of an unresolved 

reference. 

After the program module is loaded it will be linked and initialized. The initialization of the 

loaded module sets all variables at module level to their unit values.

If any error from the loading operation, including unresolved references if use of switch 

\CheckRef, the loaded module will not be available any more in the program memory.

To obtain a good program structure that is easy to understand and maintain, all loading and 

unloading of program modules should be done from the main module which is always present 

in the program memory during execution.

For loading of program that contains a main procedure to a main program (with another main 

procedure), see example in More examples on page 210 below.

Continued

Continues on next page



1 Instructions

1.84. Load - Load a program module during execution
RobotWare - OS

3HAC 16581-1  Revision: J210

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction Load are illustrated below.

More general examples
Load \Dynamic, "HOME:/DOORDIR/DOOR1.MOD";

Loads the program module DOOR1.MOD from HOME: at the directory DOORDIR into the 

program memory. The program module is loaded in the dynamic mode.

Load "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as above but another syntax, and the module is loaded in the static mode.

Load\Dynamic, "HOME:/DOORDIR/DOOR1.MOD";

%"routine_x"%;

UnLoad "HOME:/DOORDIR/DOOR1.MOD";

Procedure routine_x, will be binded during execution (late binding).

Loaded program contains a main procedure

xx0500002104

The above example shows how you can load a program which includes a main procedure. 

This program can have been developed and tested separately and later loaded with Load or 

StartLoad... WaitLoad into the system using some type of main program framework. In 

this example car.prg, which loads other programs door.prg or window.prg.

In the program car.prg you load door.prg or window.prg located at "HOME:". Because 

the main procedures in door.prg and window.prg after the loading are considered 

LOCAL in the module by the system, the procedure calls are made in the following way: 

%"door:main"% or %"window: main"%. This syntax is used when you want to get access 

to LOCAL procedures in other modules in this example procedure main in module door or 

module window.

Unloading the modules with \Save argument will again make the main procedures global in 

the saved program.

If you, when the module car or window are loaded in the system, set program pointer to main 

from any part of the program, the program pointer will always be set to the global main 

procedure in the main program, car.prg in this example.

Continued

Continues on next page



1 Instructions

1.84. Load - Load a program module during execution
RobotWare - OS

2113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Avoid ongoing robot movements during the loading.

Error handling

If the file specified in the Load instruction cannot be found the system variable ERRNO is set 

to ERR_FILNOTFND at execution.

If some other type of problems to read the file to load the system variable ERRNO will be set 

to ERR_IOERROR.

If the module cannot be loaded because the program memory is full the system variable 

ERRNO is set to ERR_PRGMEMFULL.

If the module is already loaded into the program memory the system variable ERRNO is set to 

ERR_LOADED.

If the loaded module contains syntax errors the system variable ERRNO is set to ERR_SYNTAX.

If the loaded module result in fatal link errors the system variable ERRNO is set to 

ERR_LINKREF.

If  Load is used with the switch \CheckRef to check for any reference error and the program 

memory contains unresolved references the system variable ERRNO is set to ERR_LINKREF.

These errors can then be handled in the ERROR handler. If some of these error occurs the actual 

module will be unloaded and will not be available in the ERROR handler.

Syntax
Load

[´\´Dynamic´,´]

[FilePath´:=´]<expression (IN) of string>

[´\´File´:=´ <expression (IN) of string>]

[´\´CheckRef]´;´

Related information

For information about See

Unload a program module UnLoad - UnLoad a program module during 
execution on page 655

Load a program module in parallel with 
another program execution

StartLoad - Load a program module during 
execution on page 482

WaitLoad - Connect the loaded module to the 
task on page 682

Check program references CheckProgRef - Check program references 
on page 37

Continued



1 Instructions

1.85. LoadId - Load identification of tool or payload
RobotWare-OS

3HAC 16581-1  Revision: J212

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.85. LoadId - Load identification of tool or payload

Usage

LoadId (Load Identification) can be used for load identification of tool (also gripper tool if 

roomfix TCP) or payload (activates with instruction GripLoad) by executing a user defined 

RAPID program.

NOTE!

An easier way to identify the tool load or payload is to use the interactive dialogue RAPID 

program LoadIdentify. This program can be started from the menu  

Program Editor/Debug/Call Service Rout./LoadIdentify.

Basic examples

Basic examples of the instruction LoadId are illustrated below.

See also More examples on page 216.

Example 1
VAR bool invalid_pos := TRUE;

VAR jointtarget joints;

VAR bool valid_joints{12};

CONST speeddata low_ori_speed := [20, 5, 20, 5];

VAR bool slow_test_flag := TRUE;

PERS tooldata grip3 := [ TRUE, [[97.4, 0, 223.1], [0.924, 0, 0.383 

,0]], [0, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0]];

! Check if valid robot type

IF ParIdRobValid(TOOL_LOAD_ID) <> ROB_LOAD_VAL THEN

EXIT;

ENDIF

! Check if valid robot position

WHILE invalid_pos = TRUE DO

joints := CJointT();

IF ParIdPosValid (TOOL_LOAD_ID, joints, valid_joints) = TRUE 

THEN

! Valid position

invalid_pos := FALSE;

ELSE

! Invalid position

! Adjust the position by program movements (horizontal tilt 

house)

MoveAbsJ joints, low_ori_speed, fine, tool0;

ENDIF

ENDWHILE

! Do slow test for check of free working area

IF slow_test_flag = TRUE THEN

LoadId TOOL_LOAD_ID, MASS_WITH_AX3, grip3 \SlowTest;

ENDIF

! Do measurement and update all load data in grip3

LoadId TOOL_LOAD_ID, MASS_WITH_AX3, grip3;

Continues on next page



1 Instructions

1.85. LoadId - Load identification of tool or payload
RobotWare-OS

2133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Load identification of tool grip3.

Condition

The following conditions should be fulfilled before load measurements with LoadId:

• Make sure that all loads are correctly mounted on the robot

• Check whether valid robot type with ParIdRobValid

• Check whether valid position with ParIdPosValid: 

- Axes 3, 5, and 6 not close to their corresponding working range 

- Tilt housing almost horizontal, i.e. that axis 4 is in zero position

• The following data should be defined in system parameters and in arguments to 

LoadId before running LoadId

The table below illustrates the load identification of tool.

The table below illustrates the load identification of payload.

• Operating mode and speed override: 

- Slow test in manual mode reduced speed  

- Load measurements in automatic mode (or manual mode full speed) with speed 

override 100%

Load identification 
modes / 
Defined data before 
LoadId

Moving 
TCP Mass 
Known

Moving 
TCP Mass 
Unknown

Roomfix 
TCP Mass 
Known

Roomfix 
TCP Mass 
Unknown

Upper arm load 
(System parameter)

Defined Defined

Mass in tool Defined Defined

Load identification 
modes / 
Defined data before 
LoadId

Moving 
TCP Mass 
Known

Moving 
TCP Mass 
Unknown

Roomfix 
TCP Mass 
Known

Roomfix 
TCP Mass 
Unknown

Upper arm load 
(System parameters)

Defined Defined

Load data in tool Defined Defined Defined Defined

Mass in payload Defined Defined

Tool frame in tool Defined Defined

User frame in work object Defined Defined

Object frame in work object Defined Defined

Continued

Continues on next page



1 Instructions

1.85. LoadId - Load identification of tool or payload
RobotWare-OS

3HAC 16581-1  Revision: J214

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
LoadId ParIdType LoadIdType Tool [\PayLoad] [\WObj] [\ConfAngle] 

[\SlowTest] [\Accuracy]

ParIdType

Data type: paridnum

Type of load identification as defined in the table below.

LoadIdType

Data type: loadidnum

Type of load identification as defined in the table below.

Tool

Data type: tooldata

Persistent variable for the tool to be identified. If argument \PayLoad is specified, the 

persistent variable for the tool in use.

For load identification of tool, the following arguments \PayLoad and \WObj should not be 

specified.

[ \ PayLoad ]

Data type: loaddata

Persistent variable for the payload to be identified.

This option argument must always be specified for load identification of payload.

[ \ WObj ]

Data type: wobjdata

Persistent variable for the work object in use.

This option argument must always be specified for load identification of payload with 

roomfix TCP.

 Value Symbolic constant Comment

1 TOOL_LOAD_ID Identify tool load

2 PAY_LOAD_ID Identify payload (Ref. instruction GripLoad)

 Value Symbolic constant Comment

1 MASS_KNOWN Known mass in tool or payload respectively. (Mass in 
specified Tool or PayLoad must be specified)

2 MASS_WITH_AX3 Unknown mass in tool or payload respectively. 
Identification of mass in tool or payload will be done 
with movements of axis 3 

Continued

Continues on next page



1 Instructions

1.85. LoadId - Load identification of tool or payload
RobotWare-OS

2153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ ConfAngle ]

Data type: num

Option argument for specification of a specific configuration angle ± degrees to be used for 

the parameter identification.

xx0500002198

Default + 90 degrees if this argument is not specified. Min. + or - 30 degrees. Optimum + or 

- 90 degrees.

[ \ SlowTest ]

Data type: switch

Option argument to specify whether only slow test for checking of free working area should 
be done. See table below:

[ \ Accuracy ]

Data type: num

Variable for output of calculated measurement accuracy in % for the whole load identification 

calculation (100% means maximum accuracy).

Program execution

The robot will carry out a large number of relative small transport and measurement 

movements on axes 5 and 6. For identification of mass, movements will also be made with 

axis 3.

After all measurements, movements, and load calculations the load data is returned in 

argument Tool or PayLoad. The following load data is calculated:

• Mass in kg (if mass is unknown otherwise not affected)

• Center of gravity x, y, z, and axes of moment

• Inertia ix, iy, iz in kgm

LoadId ... \SlowTest Run only slow test

LoadId ... Run only measurement and update tool or payload

Continued

Continues on next page



1 Instructions

1.85. LoadId - Load identification of tool or payload
RobotWare-OS

3HAC 16581-1  Revision: J216

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction LoadId are illustrated below.

Example 1
PERS tooldata grip3 := [ FALSE, [[97.4, 0, 223.1], [0.924, 0, 0.383 

,0]], [6, [10, 10, 100], [0.5, 0.5, 0.5, 0.5], 1.2, 2.7, 

0.5]]; 

PERS loaddata piece5 := [ 5, [0, 0, 0], [1, 0, 0, 0], 0, 0, 0]; 

PERS wobjdata wobj2 := [ TRUE, TRUE, "", [ [34, 0, -45], [0.5, -

0.5, 0.5 ,-0.5] ], [ [0.56, 10, 68], [0.5, 0.5, 0.5 ,0.5] ] ]; 

VAR num load_accuracy; 

! Do measurement and update all payload data except mass in piece5

LoadId PAY_LOAD_ID, MASS_KNOWN, grip3 \PayLoad:=piece5 

\WObj:=wobj2 \Accuracy:=load_accuracy; 

TPWrite " Load accuracy for piece5 (%) = " \Num:=load_accuracy;

Load identification of payload piece5 with known mass in installation with roomfix TCP.

Limitations

Usually load identification of tool or payload for the robot is done with the service routine 

LoadIdentify. It is also possible to do this identification with this RAPID instruction 

LoadId. Before loading or executing the program with LoadId following modules must be 

loaded to the system: 

Load \Dynamic, "RELEASE:/system/mockit.sys";

Load \Dynamic, "RELEASE:/system/mockit1.sys";

It is not possible to restart the load identification movements after any type of stop such as 

program stop, emergency stop, or power failure. The load identification movements must 

then be started from the beginning.

Error handling

At any error during execution of the RAPID NOSTEPIN routine LoadId, the system variable 

ERRNO is set to ERR_PID_MOVESTOP, ERR_PID_RAISE_PP or ERR_LOADID_FATAL and the 

program pointer is raised to the user call of LoadId.

Syntax
LoadId

[ ParIdType ’:=’ ] <expression (IN) of paridnum>´,’

[ LoadIdType’ :=’ ] <expression (IN) of loadidnum> ´,’

[ Tool ’:=’ ] <persistent (PERS) of tooldata>

[ ‘\’ PayLoad’ :=’ <persistent (PERS) of loaddata> ]

[ ‘\’ WObj’ :=’ <persistent (PERS) of wobjdata> ]

[ ‘\’ ConfAngle’ :=’ <expression (IN) of num> ]

[ ´\’ SlowTest ]

[ ´\’ Accuracy’ :=’ <variable (VAR) of num> ] ´;’

Continued

Continues on next page



1 Instructions

1.85. LoadId - Load identification of tool or payload
RobotWare-OS

2173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Predefined program Load Identify Operating manual - IRC5 with FlexPendant, section 
Programming and testing - Service routines - Load-
Identify, load identification and service routines

Type of parameter identification paridnum - Type of parameter identification on page 
1154

Result of ParIdRobValid paridvalidnum - Result of ParIdRobValid on page 
1156

Type of load identification loadidnum - Type of load identification on page 1137

Valid robot type ParIdRobValid - Valid robot type for parameter iden-
tification on page 916

Valid robot position ParIdPosValid - Valid robot position for parameter 
identification on page 913

Continued



1 Instructions

1.86. MakeDir - Create a new directory
RobotWare - OS

3HAC 16581-1  Revision: J218

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.86. MakeDir - Create a new directory

Usage

MakeDir is used to create a new directory. The user must have write and execute permission 

for the parent directory under which the new directory is created.

Basic examples

Basic examples of the instruction MakeDir are illustrated below.

Example 1
MakeDir "HOME:/newdir";

This example creates a new directory, called newdir, under HOME:

Arguments
MakeDir Path

Path

Data type:string

The name of the new directory specified with full or relative path.

Error handling

If the directory cannot be created the system variable ERRNO is set to ERR_FILEACC. This 

error can then be handled in the error handler.

Syntax
MakeDir 

[ Path’:=’ ] < expression (IN) of string>’;’

Related information

For information about See

Remove a directory RemoveDir - Delete a directory on page 355

Rename a file RenameFile - Rename a file on page 357

Remove a file RemoveFile - Delete a file on page 356

Copy a file CopyFile - Copy a file on page 65

Check file type IsFile - Check the type of a file on page 878

Check file size FileSize - Retrieve the size of a file on page 
842

Check file system size FSSize - Retrieve the size of a file system on 
page 848



1 Instructions

1.87. ManLoadIdProc - Load identification of IRBP manipulators
RobotWare-OS

2193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.87. ManLoadIdProc - Load identification of IRBP manipulators

Usage

ManLoadIdProc (Manipulator Load Identification Procedure) is used for load identification 

of payload for external manipulators by executing a user defined RAPID program.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

NOTE!

An easier way to identify the payload is to use the interactive dialogue RAPID program 

ManLoadIdentify.This program can be started from the menu  

Program Editor/Debug/Call Routine.../ManLoadIdentify.

Basic examples

Basic examples of the instruction ManLoadIdProc are illustrated below.

PERS loaddata myload := [6,[0,0,0],[1,0,0,0],0,0,0]; 

VAR bool defined; 

ActUnit STN1;

ManLoadIdProc \ParIdType := IRBP_L

\MechUnit := STN1 

\PayLoad := myload 

\ConfigAngle := 60

\AlreadyActive

\DefinedFlag := defined;

DeactUnit STN1;

Load identification of payload myload mounted on the mechanical unit STN1. The external 

manipulator is of type IRBP-L. The configuration angle is set to 60 degrees. The manipulator 

is activated before the load identification and deactivated after. After the identification 

myload has been updated and defined it is set to TRUE.

Arguments
ManLoadIdProc [\ParIdType] [\MechUnit] | [\MechUnitName] 

[\AxisNumber] [\PayLoad] [\ConfigAngle] [\DeactAll] | 

[\AlreadyActive] [DefinedFlag] [DoExit]

[ \ ParIdType ]

Data type: paridnum

Type of parameter identification. Predefined constants are found under the datatype 

paridnum.

[ \ MechUnit ]

Data type: mecunit

Mechanical unit used for the load identification. Can not be used together with argument 

\MechUnitName.

Continues on next page



1 Instructions

1.87. ManLoadIdProc - Load identification of IRBP manipulators
RobotWare-OS

3HAC 16581-1  Revision: J220

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ MechUnitName ]

Data type: string

Mechanical unit used for the load identification given as a string. Can not be used together 

with argument \MechUnit.

[ \ AxisNumber ]

Data type: num

Axis number within the mechanical unit, which holds the load to be identified.

[ \ PayLoad ]

Data type: loaddata

Variable for the payload to be identified. The component mass must be specified.

This variable will be updated after the identification is done.

[ \ ConfigAngle ]

Data type: num

Specification of a specific configuration angle ± degrees to be used for the parameter 

identification.

xx0500002197

Min. + or - 30 degrees. Optimum + or - 90 degrees.

[ \ DeactAll ]

Data type: switch

If this switch is used all mechanical units in the system will be deactivated before 

identification is done. The mechanical unit to identify will then be activated. It cannot be used 

together with argument \AlreadyActive.

[ \ AlreadyActive ]

Data type: switch

This switch is used if the mechanical unit to identify is active. It cannot be used together with 

argument \DeactAll.

[ \ DefinedFlag ]

Data type: bool

This argument will be set to TRUE if the identification has been made, FALSE otherwise.

Continued

Continues on next page



1 Instructions

1.87. ManLoadIdProc - Load identification of IRBP manipulators
RobotWare-OS

2213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ DoExit]

Data type: bool

If set to TRUE the load identification will end up with an EXIT command to force the user to 

set PP to main before continuing the execution. If not present or set to FALSE no EXIT will 

be done. Note that ManLoadIdProc always clears the current path.

Program Execution

All arguments are optional. If an argument is not given the user will be asked for the value 

from the FlexPendant (except for \DoExit).

The user will always be asked to give the mass and if the manipulator is of type IRBP R, z in 

mm.

The mechanical unit will carry out a large number of relative small transport and 

measurement movements.

After all measurements, movements, and load calculations the load data is returned in 

argument Payload if used. The following load data is calculated.

The calculated data will be displayed on the FlexPendant.

Limitations

Usually load identification of load for the external manipulator is done with the service 

routine ManLoadIdentify. It is also possible to do this identification with this RAPID 

instruction ManLoadIdProc.

Any path in progress will be cleared before the load identification. The program pointer will 

be lost after the load identification if argument \DoExit:=TRUE is used.

It is not possible to restart the load identification movements after any type of stop, such as 

program stop, emergency stop, or power failure. The load identification movements must be 

again restarted from the beginning.

Error handling

At any error during execution of the RAPID NOSTEPIN routine ManLoadIdProc the system 

variable ERRNO is set to ERR_PID_MOVESTOP, ERR_PID_RAISE_PP, or 

ERR_LOADID_FATAL and the program pointer is raised to the user call of ManLoadIdProc.

Manipulator type/ 
Calculated load data

IRBP-K
IRBP-L
IRBP-C
IRBP_T

IRBP-R
IRBP-A
IRBP-B
IRBP-D

Parameter PayLoad -

cog.x, cog.y, cog.z in loaddata in mm

cog.x cog.y cog.x cog.y cog.x cog.y cog.x cog.y 
cog.z

Parameter PayLoad - ix, iy, iz in 
loaddata in kgm2

iz iz

ix

iy

iz

ix

iy

iz

Continued

Continues on next page



1 Instructions

1.87. ManLoadIdProc - Load identification of IRBP manipulators
RobotWare-OS

3HAC 16581-1  Revision: J222

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ManLoadIdProc

[ ´\’ParIdType ’:=’ <expression (IN) of paridnum>]

[ ´\’MechUnit ’:=’ <variable (VAR) of mecunit> ]

|[´\’MechUnitName ’:=’ <expression (IN) of string>]

[´\’ AxisNumber ’:=’ <expression (IN) of num> ]

[´\’ PayLoad ’:=’ <var or pers (INOUT) of loaddata>

[ ´\’ ConfigAngle ’:=’ <expression (IN) of num>]

[ ´\’ DeactAll] | [´\’AlreadyActive]

[ ´\’ DefinedFlag ’:=’ <variable (VAR) of bool> ]

[ ´\’ DoExit ’:=’ <expression (IN) of bool> ] ´;’

Related information

For information about See

Type of parameter identification paridnum - Type of parameter identification on 
page 1154

Mechanical unit mecunit - Mechanical unit on page 1139

PayLoad loaddata - Load data on page 1132

Continued



1 Instructions

1.88. MechUnitLoad - Defines a payload for a mechanical unit
RobotWare - OS

2233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.88. MechUnitLoad - Defines a payload for a mechanical unit

Usage

MechUnitLoad is used to define a payload for an external mechanical unit. (The payload for 

the robot is defined with instruction GripLoad.)

This instruction should be used for all mechanical units with dynamic model in servo to 

achieve the best motion performance.

The MechUnitLoad instruction should always be executed after execution of the instruction 

ActUnit.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MechUnitLoad are illustrated below.

Illustration

The following figure shows a mechanical unit named IRBP_L of type IRBP L.

xx0500002142

Example 1
ActUnit IRBP_L;

MechUnitLoad IRBP_L, 1, load0;

Activate mechanical unit IRBP_L and define the payload load0 corresponding to no load (at 

all) mounted on axis 1.

Example 2
ActUnit IRBP_L;

MechUnitLoad IRBP_L, 1, fixture1;

Activate mechanical unit IRBP_L and define the payload fixture1 corresponding to fixture 

fixture1 mounted on axis 1.

Example 3
ActUnit IRBP_L;

MechUnitLoad IRBP_L, 1, workpiece1;

Activate mechanical unit IRBP_L and define the payload workpiece1 corresponding to 

fixture and work piece named workpiece1 mounted on axis 1.

Continues on next page



1 Instructions

1.88. MechUnitLoad - Defines a payload for a mechanical unit
RobotWare - OS

3HAC 16581-1  Revision: J224

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
MechUnitLoad MechUnit AxisNo Load

MechUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

AxisNo

Axis Number

Data type: num

The axis number within the mechanical unit that holds the load.

Load

Data type: loaddata

The load data that describes the current payload to be defined.

Program execution

After execution of MechUnitLoad, when the robot and external axes have come to a 

standstill, the specified load is defined for the specified mechanical unit and axis. This means 

that the payload is controlled and monitored by the control system.

The default payload at cold start-up, for a certain mechanical unit type, is the predefined 

maximal payload for this mechanical unit type.

When some other payload is used the actual payload for the mechanical unit and axis should 

be redefined with this instruction. This should always be done after activation of the 

mechanical unit.

The defined payload will survive a power failure restart. The defined payload will also 

survive a restart of the program after manual activation of some other mechanical units from 

the jogging window.

The following figure shows a payload mounted on the end-effector of a mechanical unit.

xx0500002143

Continued

Continues on next page



1 Instructions

1.88. MechUnitLoad - Defines a payload for a mechanical unit
RobotWare - OS

2253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction MechUnitLoad are illustrated below.

Illustration

The following figure shows a mechanical unit named IRBP_K of type IRBP K with three 

axes.

xx0500002144

Example 1
MoveL homeside1, v1000, fine, gun1;

...

ActUnit IRBP_K;

The whole mechanical unit IRBP_K is activated.

Example 2
MechUnitLoad IRBP_K, 2, workpiece1;

Defines payload workpiece1 on the mechanical unit IRBP_K axis 2.

Example 3
MechUnitLoad IRBP_K, 3, workpiece2;

Defines payload workpiece2 on the mechanical unit IRBP_K axis 3.

Example 4
MoveL homeside2, v1000, fine, gun1;

The axes of the mechanical unit IRBP_K move to the switch position homeside2 with 

mounted payload on both axes 2 and 3.

Limitations

If this instruction is preceded by a move instruction, that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

MechUnitLoad cannot be executed in a RAPID routine connected to any of the following 

special system events: PowerOn, Stop, QStop, Restart or Step.

Continued

Continues on next page



1 Instructions

1.88. MechUnitLoad - Defines a payload for a mechanical unit
RobotWare - OS

3HAC 16581-1  Revision: J226

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
MechUnitLoad 

[MechUnit ’:=’ ] <variable (VAR) of mecunit>’ ,’

[AxisNo ´:=’ ] <expression (IN) of num> ´,’

[Load ’:=’ ] <persistent (PERS) of loaddata>’;’

Related information

For information about See

Identification of payload for external 
mechanical units

Application manual - Additional axes and stand 
alone controller

Mechanical units mecunit - Mechanical unit on page 1139

Definition of load data loaddata - Load data on page 1132

Definition of payload for the robot GripLoad - Defines the payload for the robot on 
page 119

Continued



1 Instructions

1.89. MotionSup - Deactivates/Activates motion supervision
Collision Detection

2273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.89. MotionSup - Deactivates/Activates motion supervision

Usage

MotionSup (Motion Supervision) is used to deactivate or activate the motion supervision 

function for robot movements during program execution.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Description

Motion supervision is the name of a collection of functions for high sensitivity, model-based 

supervision of the robot. Currently it contains functionality for load supervision, jam 

supervision, and collision detection. Because the supervision is designed to be very sensitive 

it may trip if there are large process forces acting on the robot.

If the load is not correctly defined use the load identification function to specify it. If large 

external process forces are present in most parts of the application, such as during deburring, 

then use the system parameters to raise the supervision level of the motion supervision until 

it no longer triggers. If, however, the external forces are only temporary, such as during the 

closing of a large spotweld gun, then the MotionSup instruction should be used to raise the 

supervision level (or turn the function off) for those parts of the application where the 

disturbance acts.

Basic examples

Basic examples of the instruction MotionSup are illustrated below.

Example 1
! If the motion supervision is active in the system parameters,

! then it is active by default during program execution

...

! If the motion supervision is deactivated through the system

! parameters,

! then it cannot be activated through the MotionSup instruction

...

! Deactivate motion supervision during program execution

MotionSup \Off;

...

! Activate motion supervision again during program execution

MotionSup \On;

...

! Tune the supervision level to 200% (makes the function less 

! sensitive) of the level in

! the system parameters

MotionSup \On \TuneValue:= 200;

...

Continues on next page



1 Instructions

1.89. MotionSup - Deactivates/Activates motion supervision
Collision Detection

3HAC 16581-1  Revision: J228

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
MotionSup[\On] | [\Off] [\TuneValue]

[ \On ] 

Data type: switch

Activate the motion supervision function during program execution (if it has already been 

activated in system parameters).

[ \Off ] 

Data type: switch

Deactivate the motion supervision function during program execution.

One of the arguments \On or \Off must be specified.

[ \TuneValue ] 

Data type: num

Tuning the motion supervision sensitivity level in percent (1 - 300%) of system parameter 

level. A higher level gives more robust sensitivity. This argument can only be combined with 

argument \On.

Program execution

If the function motion supervision is active both in the system parameters and in the RAPID 

program and the motion supervision is triggered because of a collision etc., then

• the robot will stop as quickly as possible

• the robot will back up to remove any residual forces

• the program execution will stop with an error message

If motion supervision is active in system parameters it is then active by default during 

program execution (TuneValue 100%). These values are set automatically

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Limitations

Motion supervision is never active for external axes or when one or more joints are run in 

independent joint mode. When using the robot in the soft servo mode it may be necessary to 

turn the motion supervision off to avoid accidental tripping.

Syntax
MotionSup 

[ ’\’ On] | [ ’\’ Off ]

[’\’ Tunevalue’:=’< expression (IN) of num> ] ’;´

Continued

Continues on next page



1 Instructions

1.89. MotionSup - Deactivates/Activates motion supervision
Collision Detection

2293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

General description of the function Technical reference manual - RAPID overview, 
section Motion and I/O principles - Motion 
supervision/collision detection

Tuning using system parameters Technical reference manual - System parameters, 
section Motion - Motion Planner - Use Motion 
Supervision

Continued



1 Instructions

1.90. MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS

3HAC 16581-1  Revision: J230

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.90. MoveAbsJ - Moves the robot to an absolute joint position

Usage

MoveAbsJ (Move Absolute Joint) is used to move the robot and external axes to an absolute 

position defined in axes positions. 

Examples of use:

• the end point is a singular point

• for ambiguous positions on the IRB 6400C, e.g. for movements with the tool over the 

robot

The final position of the robot during a movement with MoveAbsJ is neither affected by the 

given tool and work object nor by active program displacement. However, the robot uses this 

data to calculate the load, TCP velocity, and the corner path. The same tools can be used in 

adjacent movement instructions.

The robot and external axes move to the destination position along a non-linear path. All axes 

reach the destination position at the same time.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveAbsJ are illustrated below.

See also More examples on page 233.

Example 1
MoveAbsJ p50, v1000, z50, tool2;

The robot with the tool tool2 is moved along a non-linear path to the absolute axis position, 

p50, with velocity data v1000 and zone data z50.

Example 2
MoveAbsJ *, v1000\T:=5, fine, grip3;

The robot with the tool grip3 is moved along a non-linear path to a stop point which is stored 

as an absolute axis position in the instruction (marked with an *). The entire movement takes 

5 seconds.

Continues on next page



1 Instructions

1.90. MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS

2313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
MoveAbsJ [\Conc] ToJointPos [\ID] [\NoEOffs] Speed [\V] | [\T] 

Zone [\Z] [\Inpos] Tool [\WObj]

[\Conc]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is usually not 

used but is used to shorten the cycle time when, for example, communicating with external 

equipment if synchronization is not required.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToJointPos is not a stop point, the subsequent instruction 

is executed some time before the robot has reached the programmed zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

System.

ToJointPos

To Joint Position

Data type: jointtarget

The destination absolute joint position of the robot and external axes. It is defined as a named 

position or stored directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

[ \NoEOffs ]

No External Offsets

Data type: switch

If the argument \NoEOffs is set then the movement with MoveAbsJ is not affected by active 

offsets for external axes.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the tool reorientation, and external axes. 

Continued

Continues on next page



1 Instructions

1.90. MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS

3HAC 16581-1  Revision: J232

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \V ]

Velocity

Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the instruction. 

It is then substituted for the corresponding velocity specified in the speed data.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

[ \Z ]

Zone

Data type: num

This argument is used to specify the position accuracy of the robot TCP directly in the 

instruction. The length of the corner path is given in mm, which is substituted for the 

corresponding zone that is specified in the zone data.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robots TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use during the movement.

The position of the TCP and the load on the tool are defined in the tool data. The TCP position 

is used to calculate the velocity and the corner path for the movement.

[ \WObj ]

Work Object

Data type: wobjdata

The work object used during the movement. 

This argument can be omitted if the tool is held by the robot. However, if the robot holds the 

work object, i.e. the tool is stationary, or with coordinated external axes, then the argument 

must be specified.

In the case of a stationary tool or coordinated external axes, the data used by the system to 

calculate the velocity and the corner path for the movement is defined in the work object. 

Continued

Continues on next page



1 Instructions

1.90. MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS

2333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

A movement with MoveAbsJ is not affected by active program displacement and if executed 

with switch \NoEOffs there will be no offset for external axes. Without switch \NoEOffs the 

external axes in the destination target are affected by active offset for external axes.

The tool is moved to the destination absolute joint position with interpolation of the axis 

angles. This means that each axis is moved with constant axis velocity and that all axes reach 

the destination joint position at the same time, which results in a non-linear path.

Generally speaking, the TCP is moved at approximate programmed velocity. The tool is 

reoriented and the external axes are moved at the same time as the TCP moves. If the 

programmed velocity for reorientation or for the external axes cannot be attained, the velocity 

of the TCP will be reduced. 

A corner path is usually generated when movement is transferred to the next section of the 

path. If a stop point is specified in the zone data program execution only continues when the 

robot and external axes have reached the appropriate joint position.

More examples

More examples of how to use the instruction MoveAbsJ are illustrated below.

Example 1
MoveAbsJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The tool, grip3, is moved along a non-linear path to an absolute joint position stored in the 

instruction. The movement is carried out with data set to v2000 and z40. The velocity and 

zone size of the TCP are 2200 mm/s and 45 mm respectively.

Example 2
MoveAbsJ p5, v2000, fine \Inpos := inpos50, grip3;

The tool, grip3, is moved along a non-linear path to an absolute joint position p5. The robot 

considers it to be in the point when 50% of the position condition and 50% of the speed 

condition for a stop point fine are satisfied. It waits at most for 2 seconds for the conditions 

to be satisfied. See predefined data inpos50 of data type stoppointdata.

Example 3
MoveAbsJ \Conc, *, v2000, z40, grip3;

The tool, grip3, is moved along a non-linear path to an absolute joint position stored in the 

instruction. Subsequent logical instructions are executed while the robot moves.

Example 4
MoveAbsJ \Conc, * \NoEOffs, v2000, z40, grip3;

Same movement as above but the movement is not affected by active offsets for external axes.

Example 5
GripLoad obj_mass;

MoveAbsJ start, v2000, z40, grip3 \WObj:= obj;

The robot moves the work object obj in relation to the fixed tool grip3 along a non-linear 

path to an absolute axis position start.

Continued

Continues on next page



1 Instructions

1.90. MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS

3HAC 16581-1  Revision: J234

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

In order to be able to run backwards with the instruction MoveAbsJ involved and avoiding 

problems with singular points or ambiguous areas, it is essential that the subsequent 

instructions fulfil certain requirements as follows (see figure below).

The figure shows limitation for backward execution with MoveAbsJ.

xx0500002201

Syntax
MoveAbsJ 

[ ’\’ Conc ’,’ ]

[ ToJointPos’ :=’ ] < expression (IN) of jointtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]

[ ’\’ NoEoffs ] ’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ V ’:=’ < expression (IN) of num > ]

| [ ’\’ T’ :=’ < expression (IN) of num > ] ’,’

[Zone ’:=’ ] < expression (IN) of zonedata>

[’\’ Z ´:=’ ] < expression (IN) of num >

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata > ] ´,’ 

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ] ’;’

.

Continued

Continues on next page



1 Instructions

1.90. MoveAbsJ - Moves the robot to an absolute joint position
RobotWare - OS

2353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Definition of jointtarget jointtarget - Joint position data on page 1129

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Concurrent program execution Technical reference manual - RAPID overview, 
section Motion and I/O principles - Synchronization 
with logical instructions

Continued



1 Instructions

1.91. MoveC - Moves the robot circularly
RobotWare - OS

3HAC 16581-1  Revision: J236

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.91. MoveC - Moves the robot circularly

Usage

MoveC is used to move the tool center point (TCP) circularly to a given destination. During 

the movement the orientation normally remains unchanged relative to the circle.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveC are illustrated below.

See also More examples on page 239.

Example 1
MoveC p1, p2, v500, z30, tool2;

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data v500 and 

zone data z30. The circle is defined from the start position, the circle point p1, and the 

destination point p2.

Example 2
MoveC *, *, v500 \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved circularly to a fine point stored in the instruction 

(marked by the second *). The circle point is also stored in the instruction (marked by the first 

*). The complete movement takes 5 seconds.

Example 3
MoveL p1, v500, fine, tool1;

MoveC p2, p3, v500, z20, tool1;

MoveC p4, p1, v500, fine, tool1;

The figure shows how a complete circle is performed by two MoveC instructions.

xx0500002212

Continues on next page



1 Instructions

1.91. MoveC - Moves the robot circularly
RobotWare - OS

2373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
MoveC [\Conc] CirPoint ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] 

[\Inpos] Tool [\WObj] [\Corr]

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is usually not 

used but can be used to avoid unwanted stops caused by overloaded CPU when using fly-by 

points. This is useful when the programmed points are very close together at high speeds. The 

argument is also useful when, for example, communicating with external equipment and 

synchronization between the external equipment and robot movement is not required.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath, movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point then the subsequent instruction 

is executed some time before the robot has reached the programmed zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

System.

CirPoint

Data type: robtarget

The circle point of the robot. The circle point is a position on the circle between the start point 

and the destination point. To obtain the best accuracy it should be placed about halfway 

between the start and destination points. If it is placed too close to the start or destination 

point, the robot may give a warning. The circle point is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction). The position of the external 

axes are not used.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the TCP, the tool 

reorientation, and external axes. 

Continued

Continues on next page



1 Instructions

1.91. MoveC - Moves the robot circularly
RobotWare - OS

3HAC 16581-1  Revision: J238

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \V ]

Velocity

Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the instruction. 

It is then substituted for the corresponding velocity specified in the speed data.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot and external 

axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

[ \Z ]

Zone

Data type: num

This argument is used to specify the position accuracy of the robot TCP directly in the 

instruction. The length of the corner path is given in mm, which is substituted for the 

corresponding zone specified in the zone data.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination point.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (object coordinate system) to which the robot position in the instruction is 

related.

This argument can be omitted and if it is then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used this 

argument must be specified in order for a circle relative to the work object to be executed.

[ \Corr ]

Correction

Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be added to 

the path and destination position if this argument is present.

Continued

Continues on next page



1 Instructions

1.91. MoveC - Moves the robot circularly
RobotWare - OS

2393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The robot and external units are moved to the destination point as follows:

• The TCP of the tool is moved circularly at a constant programmed velocity.

• The tool is reoriented at a constant velocity from the orientation at the start position to 

the orientation at the destination point. 

• The reorientation is performed relative to the circular path. Thus, if the orientation 

relative to the path is the same at the start and the destination points, the relative 

orientation remains unchanged during the movement (see figure below).

The figure shows tool orientation during circular movement.

xx0500002214

The orientation in the circle point is not reached. It is only used to distinguish between two 

possible directions of reorientation. The accuracy of the reorientation along the path depends 

only on the orientation at the start and destination points.

Different modes for tool orientation during circle path are described in instruction 

CirPathMode.

Uncoordinated external axes are executed at constant velocity in order for them to arrive at 

the destination point at the same time as the robot axes. The position in the circle position is 

not used.

If it is not possible to attain the programmed velocity for the reorientation or for the external 

axes, the velocity of the TCP will be reduced. 

A corner path is usually generated when movement is transferred to the next section of a path. 

If a stop point is specified in the zone data, program execution only continues when the robot 

and external axes have reached the appropriate position.

More examples

More examples of how to use the instruction MoveC are illustrated below.

Example 1
MoveC *, *, v500 \V:=550, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the instruction. The 

movement is carried out with data set to v500 and z40; the velocity and zone size of the TCP 

are 550 mm/s and 45 mm respectively. 

Continued

Continues on next page



1 Instructions

1.91. MoveC - Moves the robot circularly
RobotWare - OS

3HAC 16581-1  Revision: J240

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
MoveC p5, p6, v2000, fine \Inpos := inpos50, grip3;

The TCP of the tool, grip3, is moved circularly to a stop point p6. The robot considers it to 

be in the point when 50% of the position condition and 50% of the speed condition for a stop 

point fine are satisfied. It waits at most for 2 seconds for the conditions to be satisfied. See 

predefined data inpos50 of data type stoppointdata.

Example 3
MoveC \Conc, *, *, v500, z40, grip3;

The TCP of the tool, grip3, is moved circularly to a position stored in the instruction. The 

circle point is also stored in the instruction. Subsequent logical instructions are executed 

while the robot moves.

Example 4
MoveC cir1, p15, v500, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved circularly to a position, p15 via the circle point cir1. 

These positions are specified in the object coordinate system for fixture.

Limitations

There are some limitations in how the CirPoint and the ToPoint can be placed, as shown 

in the figure below.

xx0500002213

• Minimum distance between start and ToPoint is 0.1 mm

• Minimum distance between start and CirPoint is 0.1 mm

• Minimum angle between CirPoint and ToPoint from the start point is 1 degree

The accuracy can be poor near the limits, e.g. if the start point and the ToPoint on the circle 

are close to each other then the fault caused by the leaning of the circle can be much greater 

than the accuracy with which the points have been programmed.

Make sure that the robot can reach the circle point during program execution and divide the 

circle segment if necessary.

A change of execution mode from forward to backward or vice versa while the robot is 

stopped on a circular path is not permitted and will result in an error message.

Continued

Continues on next page



1 Instructions

1.91. MoveC - Moves the robot circularly
RobotWare - OS

2413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

WARNING!

The instruction MoveC (or any other instruction including circular movement) should never 

be started from the beginning with TCP between the circle point and the end point. Otherwise 

the robot will not take the programmed path (positioning around the circular path in another 

direction compared with that which is programmed).

To minimize the risk set the system parameter Restrict placing of circlepoints to TRUE (type 

Motion Planner, topic Motion). The parameter adds a supervision that the circle path not turns 

around more than 240 degrees and that the circle point is placed in the middle part of the circle 

path.

Syntax
MoveC

[ ’\’ Conc ’,’ ]

[ CirPoint’ :=’ ] < expression (IN) of robtarget> ’,’

[ ToPoint’ :=’ ] < expression (IN) of robtarget> ’,’

[ ’\’ ID ’:=’ < expression (IN) of identno>]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata>

[ ’\’ V ’:=’ < expression (IN) of num> ]

[ ’\’ T ’:=’ < expression (IN) of num> ] ’,’

[Zone ’:=’ ] < expression (IN) of zonedata>

[ ’\’ Z ’:=’ < expression (IN) of num> ]

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata> ] ´,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata>

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata> ]

[ ’\’ Corr ]’;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, section 
RAPID summary - Motion

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Writes to a corrections entry CorrWrite - Writes to a correction generator on page 77

Tool reorientation during circle 
path

CirPathMode - Tool reorientation during circle path on 
page 38

Motion in general Technical reference manual - RAPID overview, section 
Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, section 
Motion and I/O principles - Coordinate systems

Concurrent program execution Technical reference manual - RAPID overview, section 
Motion and I/O principles - Synchronization with logical 
instructions

System parameters Technical reference manual - System parameters

Continued



1 Instructions

1.92. MoveCDO - Moves the robot circularly and sets digital output in the corner
RobotWare - OS

3HAC 16581-1  Revision: J242

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.92. MoveCDO - Moves the robot circularly and sets digital output in the corner

Usage

MoveCDO (Move Circular Digital Output) is used to move the tool center point (TCP) 

circularly to a given destination. The specified digital output is set/reset in the middle of the 

corner path at the destination point. During the movement the orientation normally remains 

unchanged relative to the circle.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveCDO are illustrated below.

Example 1
MoveCDO p1, p2, v500, z30, tool2, do1,1;

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data v500 and 

zone data z30. The circle is defined from the start position, the circle point p1, and the 

destination point p2. Output do1 is set in the middle of the corner path at p2.

Arguments
MoveCDO CirPoint ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal 

Value

CirPoint

Data type: robtarget

The circle point of the robot. The circle point is a position on the circle between the start point 

and the destination point. To obtain the best accuracy it should be placed about halfway 

between the start and destination points. If it is placed too close to the start or destination point 

the robot may give a warning. The circle point is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction). The position of the external 

axes are not used.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System, if coordinated synchronized movement, 

and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Continues on next page



1 Instructions

1.92. MoveCDO - Moves the robot circularly and sets digital output in the corner
RobotWare - OS

2433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the TCP, the tool 

reorientation, and external axes. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot and external 

axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination point.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (object coordinate system) to which the robot position in the instruction is 

related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified in order for a circle relative to the work object to be executed.

Signal

Data type: signaldo

The name of the digital output signal to be changed.

Value

Data type: dionum

The desired value of signal (0 or 1).

Continued

Continues on next page



1 Instructions

1.92. MoveCDO - Moves the robot circularly and sets digital output in the corner
RobotWare - OS

3HAC 16581-1  Revision: J244

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveC for more information about circular movement.

The digital output signal is set/reset in the middle of the corner path for flying points, as 

shown in figure below.

The figure shows set/reset of digital output signal in the corner path with MoveCDO.

xx0500002215

For stop points we recommend the use of“ normal” programming sequence with MoveC + 

SetDO. But when using stop point in instruction MoveCDO the digital output signal is set/reset 

when the robot reaches the stop point.

The specified I/O signal is set/reset in execution mode continuously and stepwise forward, 

but not in stepwise backward.

Limitations

General limitations according to instruction MoveC.

Syntax
MoveCDO 

[ CirPoint ’:=’ ] < expression (IN) of robtarget > ’,’

[ ToPoint’ :=’ ] < expression (IN) of robtarget > ’,’

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata > 

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Zone ’:=’ ] < expression (IN) of zonedata > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ] ’,’

[ Signal ’:=’ ] < variable (VAR) of signaldo > ] ´,’

[ Value ´:=’ ] < expression (IN) of dionum > ] ’;’

Continued

Continues on next page



1 Instructions

1.92. MoveCDO - Moves the robot circularly and sets digital output in the corner
RobotWare - OS

2453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Move the robot circularly MoveC - Moves the robot circularly on page 236

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Movements with I/O settings Technical reference manual - RAPID overview, 
section Motion and I/O principles - Synchronization 
with logical instructions

Continued



1 Instructions

1.93. MoveCSync - Moves the robot circularly and executes a RAPID procedure
RobotWare - OS

3HAC 16581-1  Revision: J246

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.93. MoveCSync - Moves the robot circularly and executes a RAPID procedure

Usage

MoveCSync (Move Circular Synchronously) is used to move the tool center point (TCP) 

circularly to a given destination. The specified RAPID procedure is ordered to execute at the 

middle of the corner path in the destination point. During the movement the orientation 

normally remains unchanged relative to the circle.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveCSync are illustrated below.

Example 1
MoveCSync p1, p2, v500, z30, tool2, "proc1";

The TCP of the tool, tool2, is moved circularly to the position p2 with speed data v500 and 

zone data z30. The circle is defined from the start position, the circle point p1, and the 

destination point p2. Procedure proc1 is executed in the middle of the corner path at p2.

Example 2
MoveCSync p1, p2, v500, z30, tool2, "MyModule:proc1";

The same as in example 1 above, but here the locally declared procedure proc1 in module 

MyModule will be called in the middle of the corner path.

Arguments
MoveCSync CirPoint ToPoint [\ID] Speed [\T] Zone Tool [\WObj] 

ProcName

CirPoint

Data type: robtarget

The circle point of the robot. The circle point is a position on the circle between the start point 

and the destination point. To obtain the best accuracy it should be placed about halfway 

between the start and destination points. If it is placed too close to the start or destination point 

the robot may give a warning. The circle point is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction). The position of the external 

axes are not used.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

Continues on next page



1 Instructions

1.93. MoveCSync - Moves the robot circularly and executes a RAPID procedure
RobotWare - OS

2473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the TCP, the tool 

reorientation and external axes. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot and external 

axes move. It is then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination point.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (object coordinate system) to which the robot position in the instruction is 

related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used, this 

argument must be specified.

ProcName

Procedure Name

Data type: string

Name of the RAPID procedure to be executed at the middle of the corner path in the 

destination point.

Continued

Continues on next page



1 Instructions

1.93. MoveCSync - Moves the robot circularly and executes a RAPID procedure
RobotWare - OS

3HAC 16581-1  Revision: J248

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveC for more information about circular movements.

The specified RAPID procedure is ordered to execute when the TCP reaches the middle of 

the corner path in the destination point of the MoveCSync instruction, as shown in the figure 

below.

The figure shows that the order to execute the user defined RAPID procedure is done at the 

middle of the corner path.

xx0500002216

For stop points we recommend the use of“ normal” programming sequence with MoveC + and 

other RAPID instructions in sequence.

The table describes execution of the specified RAPID procedure in different execution 
modes:

Limitation

General limitations according to instruction MoveC.

When the robot reaches the middle of the corner path there is normally a delay of 2-30 ms 

until the specified RAPID routine is executed depending on what type of movement is being 

performed at the time.

Switching execution mode after program stop from continuously or cycle to stepwise forward 

or backward results in an error. This error tells the user that the mode switch can result in 

missed execution of the RAPID procedure in the queue for execution on the path.

Instruction MoveCSync cannot be used on TRAP level. The specified RAPID procedure 

cannot be tested with stepwise execution.

Execution mode Execution of RAPID procedure

Continuously or Cycle According to this description

Forward step In the stop point

Backward step Not at all

Continued

Continues on next page



1 Instructions

1.93. MoveCSync - Moves the robot circularly and executes a RAPID procedure
RobotWare - OS

2493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
MoveCSync

[ CirPoint ’:=’ ] < expression (IN) of robtarget > ’,’

[ ToPoint’ :=’ ] < expression (IN) of robtarget > ’,’

[’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata > 

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Zone ’:=’ ] < expression (IN) of zonedata > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ] ’,’

[ ProcName ´:=’ ] < expression (IN) of string > ] ’;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Moves the robot circularly MoveC - Moves the robot circularly on page 236

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Defines a position related interrupt TriggInt - Defines a position related interrupt on 
page 588

Continued



1 Instructions

1.94. MoveExtJ - Move one or several mechanical units without TCP
RobotWare - OS

3HAC 16581-1  Revision: J250

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.94. MoveExtJ - Move one or several mechanical units without TCP

Usage

MoveExtJ (Move External Joints) is used to move linear or rotating external axes. The 

external axes can belong to one or several mechanical units without TCP.

This instruction can only be used with an actual program task defined as a Motion Task and 

if the task controls one or several mechanical units without TCP.

Basic examples

Basic examples of the instruction MoveExtJ are illustrated below.

See also More examples on page 252.

Example 1
MoveExtJ jpos10, vrot10, z50;

Move rotational external axes to joint position jpos10 with speed 10 degrees/s with zone 

data z50.

Example 2
MoveExtJ \Conc, jpos20, vrot10 \T:=5, fine \InPos:=inpos20;

Move external axes to joint position jpos20 in 5. The program execution goes forward at 

once but the external axes stops in the position jpos20 until the convergence criteria in 

inpos20 are fulfilled.

Arguments
MoveExtJ [\Conc] ToJointPos [\ID] [\UseEOffs] Speed [\T] Zone 

[\Inpos]

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the external axis is moving. The argument is 

usually not used but can be used to avoid unwanted stops caused by overloaded CPU when 

using fly-by points. This is useful when the programmed points are very close together at high 

speeds. The argument is also useful when, for example, communicating with external 

equipment and synchronization between the external equipment and robot movement is not 

required.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToJointPos is not a stop point then the subsequent 

instruction is executed some time before the external axes has reached the programmed zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

System.

Continues on next page



1 Instructions

1.94. MoveExtJ - Move one or several mechanical units without TCP
RobotWare - OS

2513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ToJointPos

To Joint Position

Data type: jointtarget

The destination absolute joint position of the external axes. It is defined as a named position 

or stored directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization ID

Data type: identno

This argument must be used in a MultiMove System, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

[ \UseEOffs ]

Use External Offset

Data type: switch

The offset for external axes, setup by instruction EOffsSet, is activated for MoveExtJ 

instruction when the argument UseEOffs is used. See instruction EOffsSet for more 

information about external offset.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the linear or 

rotating external axis.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the external axes 

move. It is then substituted for the corresponding speed data.

Zone 

Data type: zonedata

Zone data for the movement. Zone data defines stop point or fly-by point. If it is a fly-by point 

then the zone size describes the deceleration and acceleration for the linear or rotational 

external axes.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the external axis 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Program execution

The linear or rotating external axes are moved to the programmed point with the programmed 

velocity.

Continued

Continues on next page



1 Instructions

1.94. MoveExtJ - Move one or several mechanical units without TCP
RobotWare - OS

3HAC 16581-1  Revision: J252

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples
CONST jointtarget j1 := 

[[9E9,9E9,9E9,9E9,9E9,9E9],[0,9E9,9E9,9E9,9E9,9E9]];

CONST jointtarget j2 := 

[[9E9,9E9,9E9,9E9,9E9,9E9],[30,9E9,9E9,9E9,9E9,9E9]]; 

CONST jointtarget j3 := 

[[9E9,9E9,9E9,9E9,9E9,9E9],[60,9E9,9E9,9E9,9E9,9E9]]; 

CONST jointtarget j4 := 

[[9E9,9E9,9E9,9E9,9E9,9E9],[90,9E9,9E9,9E9,9E9,9E9]]; 

CONST speeddata rot_ax_speed := [0, 0, 0, 45];

MoveExtJ j1, rot_ax_speed, fine;

MoveExtJ j2, rot_ax_speed, z20;

MoveExtJ j3, rot_ax_speed, z20;

MoveExtJ j4, rot_ax_speed, fine;

In this example the rotating single axis is moved to joint position 0, 30, 60, and 90 degrees 

with the speed of 45 degrees/s.

Syntax
MoveExtJ

[ ’\’ Conc ’,’ ]

[ ToJointPos’ :=’ ] < expression (IN) of jointtarget >

[’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ ’\’ UseEOffs’ ,’ ]

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata >]‘;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section Motion

Definition of jointtarget jointtarget - Joint position data on page 1129

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles 

Concurrent program execution Technical reference manual - RAPID overview, 
section Motion and I/O principles - Synchronization 
with logical instructions

Continued



1 Instructions

1.95. MoveJ - Moves the robot by joint movement
RobotWare - OS

2533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.95. MoveJ - Moves the robot by joint movement

Usage

MoveJ is used to move the robot quickly from one point to another when that movement does 

not have to be in a straight line.

The robot and external axes move to the destination position along a non-linear path. All axes 

reach the destination position at the same time.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveJ are illustrated below.

See also More examples on page 255.

Example 1
MoveJ p1, vmax, z30, tool2;

The tool center point (TCP) of the tool, tool2, is moved along a non-linear path to the 

position, p1, with speed data vmax and zone data z30.

Example 2
MoveJ *, vmax \T:=5, fine, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a stop point stored in the 

instruction (marked with an *). The entire movement takes 5 seconds.

Arguments
MoveJ [\Conc] ToPoint [\ID] Speed [\V] | [\T] Zone [\Z] [\Inpos] 

Tool [\WObj]

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is usually not 

used but can be used to avoid unwanted stops caused by overloaded CPU when using fly-by 

points. This is useful when the programmed points are very close together at high speeds. The 

argument is also useful when, for example, communicating with external equipment and 

synchronization between the external equipment and robot movement is not required.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point, the subsequent instruction is 

executed some time before the robot has reached the programmed zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

system.

Continues on next page



1 Instructions

1.95. MoveJ - Moves the robot by joint movement
RobotWare - OS

3HAC 16581-1  Revision: J254

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if coordinated synchronized movement, 

and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the tool reorientation, and external axes. 

[ \V ]

Velocity

Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the instruction. 

It is then substituted for the corresponding velocity specified in the speed data.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

[ \Z ]

Zone

Data type: num

This argument is used to specify the position accuracy of the robot TCP directly in the 

instruction. The length of the corner path is given in mm, which is substituted for the 

corresponding zone specified in the zone data.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Continued

Continues on next page



1 Instructions

1.95. MoveJ - Moves the robot by joint movement
RobotWare - OS

2553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified 

destination point.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified.

Program execution

The tool center point is moved to the destination point with interpolation of the axis angles. 

This means that each axis is moved with constant axis velocity and that all axes reach the 

destination point at the same time, which results in a non-linear path.

Generally speaking, the TCP is moved at the approximate programmed velocity (regardless 

of whether or not the external axes are coordinated). The tool is reoriented and the external 

axes are moved at the same time that the TCP moves. If the programmed velocity for 

reorientation or for the external axes cannot be attained then the velocity of the TCP will be 

reduced. 

A corner path is usually generated when movement is transferred to the next section of the 

path. If a stop point is specified in the zone data the program execution only continues when 

the robot and external axes have reached the appropriate position.

More examples

More examples of how to use the instruction MoveJ are illustrated below.

Example 1
MoveJ *, v2000\V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stored in the 

instruction. The movement is carried out with data set to v2000 and z40; the velocity and 

zone size of the TCP are 2200 mm/s and 45 mm respectively. 

Example 2
MoveJ p5, v2000, fine \Inpos := inpos50, grip3;

The TCP of the tool, grip3, is moved in a non-linear path to a stop point p5. The robot 

considers it to be in the point when 50% of the position condition and 50% of the speed 

condition for a stop point fine are satisfied. It waits at most for 2 seconds for the conditions 

to be satisfied. See predefined data inpos50 of data type stoppointdata.

Example 3
MoveJ \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved along a non-linear path to a position stored in the 

instruction. Subsequent logical instructions are executed while the robot moves.

Continued

Continues on next page



1 Instructions

1.95. MoveJ - Moves the robot by joint movement
RobotWare - OS

3HAC 16581-1  Revision: J256

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 4
MoveJ start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved along a non-linear path to a position, start. This 

position is specified in the object coordinate system for fixture.

Syntax
MoveJ

[ ’\’ Conc ’,’ ]

[ ToPoint’ :=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ V ’:=’ < expression (IN) of num > ]

| [ ’\’ ’:=’ < expression (IN) of num > ] ’,’

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Z ‘:=’ < expression (IN) of num > ]

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata > ] ´,’

[ Tool’ :=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ] ’;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Concurrent program execution Technical reference manual - RAPID overview, 
section Motion and I/O principles - Synchronization 
with logical instructions

Continued



1 Instructions

1.96. MoveJDO - Moves the robot by joint movement and sets digital output in the corner
RobotWare - OS

2573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.96. MoveJDO - Moves the robot by joint movement and sets digital output in the 
corner

Usage

MoveJDO (Move Joint Digital Output) is used to move the robot quickly from one point to 

another when that movement does not have to be in a straight line. The specified digital output 

signal is set/reset at the middle of the corner path.

The robot and external axes move to the destination position along a non-linear path. All axes 

reach the destination position at the same time.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveJDO are illustrated below.

Example 1
MoveJDO p1, vmax, z30, tool2, do1, 1;

The tool center point (TCP) of the tool, tool2 , is moved along a non-linear path to the 

position, p1, with speed data vmax and zone data z30. Output do1 is set in the middle of the 

corner path at p1.

Arguments
MoveJDO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal Value

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the tool reorientation, and external axes. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Continues on next page



1 Instructions

1.96. MoveJDO - Moves the robot by joint movement and sets digital output in the corner
RobotWare - OS

3HAC 16581-1  Revision: J258

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified 

destination point.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified.

Signal

Data type: signaldo

The name of the digital output signal to be changed.

Value

Data type: dionum

The desired value of signal (0 or 1).

Program execution

See the instruction MoveJ for more information about joint movement.

The digital output signal is set/reset in the middle of the corner path for flying points, as 

shown in figure below.

The figure shows set/reset of digital output signal in the corner path with MoveJDO.

xx0500002196

For stop points we recommend the use of“ normal” programming sequence with MoveJ + 

SetDO. But when using stop point in instruction MoveJDO, the digital output signal is set/reset 

when the robot reaches the stop point.

The specified I/O signal is set/reset in execution mode continuously and stepwise forward, 

but not in stepwise backward.

Continued

Continues on next page



1 Instructions

1.96. MoveJDO - Moves the robot by joint movement and sets digital output in the corner
RobotWare - OS

2593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
MoveJDO

[ ToPoint ’:=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Zone ’:=’ ] < expression (IN) of zonedata > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata>

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ] ’,’

[ Signal ’:=’ ] < variable (VAR) of signaldo>] ´,’

[ Value ´:=’ ] < expression (IN) of dionum > ] ’;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Moves the robot by joint movement MoveJ - Moves the robot by joint movement on page 
253

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Movements with I/O settings Technical reference manual - RAPID overview, 
section Synchronization with logical instructions

Continued



1 Instructions

1.97. MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS

3HAC 16581-1  Revision: J260

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.97. MoveJSync - Moves the robot by joint movement and executes a RAPID 
procedure

Usage

MoveJSync (Move Joint Synchronously) is used to move the robot quickly from one point 

to another when that movement does not have to be in a straight line. The specified RAPID 

procedure is ordered to execute at the middle of the corner path in the destination point.

The robot and external axes move to the destination position along a non-linear path. All axes 

reach the destination position at the same time.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveJSync are illustrated below.

Example 1
MoveJSync p1, vmax, z30, tool2, "proc1";

The tool center point (TCP) of the tool, tool2, is moved along a non-linear path to the 

position, p1, with speed data vmax and zone data z30. Procedure proc1 is executed in the 

middle of the corner path at p1.

Example 2
MoveJSync p1, vmax, z30, tool2, "MyModule:proc1";

The same as in example 1 above, but here the locally declared procedure proc1 in module 

MyModule will be called in the middle of the corner path.

Arguments
MoveJSync ToPoint [\ID] Speed [\T] Zone Tool [\WObj] ProcName

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the tool reorientation, and external axes. 

Continues on next page



1 Instructions

1.97. MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS

2613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified 

destination point.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified.

ProcName

Procedure Name

Data type: string

Name of the RAPID procedure to be executed at the middle of the corner path in the 

destination point. The procedure call is a late binding call, and therefore inherits its properties.

Program execution

See the instruction MoveJ for more information about joint movements.

The specified RAPID procedure is ordered to execute when the TCP reaches the middle of 

the corner path in the destination point of the MoveJSync instruction, as shown in the figure

below.

xx0500002195

Continued

Continues on next page



1 Instructions

1.97. MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS

3HAC 16581-1  Revision: J262

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

For stop points we recommend the use of “normal” programming sequence with MoveJ + 

other RAPID instructions in sequence. 

The table describes execution of the specified RAPID procedure in different execution 
modes:

Limitation

When the robot reaches the middle of the corner path there is normally a delay of 2-30 ms 

until the specified RAPID routine is executed, depending on what type of movement is being 

performed at the time.

Switching execution mode after program stop from continuously or cycle to stepwise forward 

or backward results in an error. This error tells the user that the mode switch can result in 

missed execution of the RAPID procedure in the queue for execution on the path.

Instruction MoveJSync cannot be used on TRAP level. The specified RAPID procedure 

cannot be tested with stepwise execution.

Syntax
MoveJSync

[ ToPoint ’:=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >] ’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num >] ’,’

[ Zone ’:=’ ] < expression (IN) of zonedata >´,´

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj ´:=’ < persistent (PERS) of wobjdata > ] ’,’

[ ProcName ´:=’ ] < expression (IN) of string > ] ’;’

Execution mode Execution of RAPID procedure

Continuously or Cycle According to this description

Forward step In the stop point

Backward step Not at all

Continued

Continues on next page



1 Instructions

1.97. MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
RobotWare - OS

2633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, section 
RAPID summary - Motion

Moves the robot by joint movement MoveJ - Moves the robot by joint movement on page 
253

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, section 
Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, section 
Motion and I/O principles - Coordinate systems

Defines a position related interrupt TriggInt - Defines a position related interrupt on page 
588

Continued



1 Instructions

1.98. MoveL - Moves the robot linearly
RobotWare - OS

3HAC 16581-1  Revision: J264

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.98. MoveL - Moves the robot linearly

Usage

MoveL is used to move the tool center point (TCP) linearly to a given destination. When the 

TCP is to remain stationary then this instruction can also be used to reorientate the tool.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove System, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveL are illustrated below.

See also More examples on page 266.

Example 1
MoveL p1, v1000, z30, tool2;

The TCP of the tool, tool2, is moved linearly to the position p1, with speed data v1000 

and zone data z30.

Example 2
MoveL *, v1000\T:=5, fine, grip3;

The TCP of the tool, grip3, is moved linearly to a stop point stored in the instruction (marked 

with an *). The complete movement takes 5 seconds.

Arguments
MoveL [\Conc] ToPoint [\ID] Speed [\V] | [ \T] Zone [\Z] [\Inpos] 

Tool [\WObj] [\Corr] 

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is usually not 

used but can be used to avoid unwanted stops caused by overloaded CPU when using fly-by 

points. This is useful when the programmed points are very close together at high speeds. The 

argument is also useful when, for example, communicating with external equipment and 

synchronization between the external equipment and robot movement is not required.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath, movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point then the subsequent instruction 

is executed some time before the robot has reached the programmed zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

System.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

Continues on next page



1 Instructions

1.98. MoveL - Moves the robot linearly
RobotWare - OS

2653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified id number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center 

point, the tool reorientation, and external axes. 

[ \V ]

Velocity

Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the instruction. 

It is then substituted for the corresponding velocity specified in the speed data.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

[ \Z ]

Zone

Data type: num

This argument is used to specify the position accuracy of the robot TCP directly in the 

instruction. The length of the corner path is given in mm, which is substituted for the 

corresponding zone specified in the zone data.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified 

destination position.

Continued

Continues on next page



1 Instructions

1.98. MoveL - Moves the robot linearly
RobotWare - OS

3HAC 16581-1  Revision: J266

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary tool or coordinated external axes are used then this 

argument must be specified in order to perform a linear movement relative to the work object.

[ \Corr ]

Correction

Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be added to 

the path and destination position if this argument is present.

Program execution

The robot and external units are moved to the destination position as follows:

• The TCP of the tool is moved linearly at constant programmed velocity.

• The tool is reoriented at equal intervals along the path.

• Uncoordinated external axes are executed at a constant velocity in order for them to 

arrive at the destination point at the same time as the robot axes.

If it is not possible to attain the programmed velocity for the reorientation or for the external 

axes then the velocity of the TCP will be reduced. 

A corner path is usually generated when movement is transferred to the next section of a path. 

If a stop point is specified in the zone data then program execution only continues when the 

robot and external axes have reached the appropriate position.

More examples

More examples of how to use the instruction MoveL are illustrated below.

Example 1
MoveL *, v2000 \V:=2200, z40 \Z:=45, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the instruction. The 

movement is carried out with data set to v2000 and z40. The velocity and zone size of the 

TCP are 2200 mm/s and 45 mm respectively. 

Example 2
MoveL p5, v2000, fine \Inpos := inpos50, grip3;

The TCP of the tool, grip3, is moved linearly to a stop point p5. The robot considers it to be 

in the point when 50% of the position condition and 50% of the speed condition for a stop 

point fine are satisfied. It waits at most for 2 seconds for the conditions to be satisfied. See 

predefined data inpos50 of data type stoppointdata.

Example 3
MoveL \Conc, *, v2000, z40, grip3;

The TCP of the tool, grip3, is moved linearly to a position stored in the instruction. 

Subsequent logical instructions are executed while the robot moves.

Continued

Continues on next page



1 Instructions

1.98. MoveL - Moves the robot linearly
RobotWare - OS

2673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 4
MoveL start, v2000, z40, grip3 \WObj:=fixture;

The TCP of the tool, grip3, is moved linearly to a position, start. This position is specified 

in the object coordinate system for fixture.

Syntax
MoveL

[ ’\’ Conc ’,’ ]

[ ToPoint’ :=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >] ’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ V ’:=’ < expression (IN) of num > ]

| [ ’\’ T’ :=’ < expression (IN) of num > ] ’,’

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Z ’:=’< expression (IN) of num > ]

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata > ] ´,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ]

[ ’\’ Corr ] ’;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Writes to a corrections entry CorrWrite - Writes to a correction generator on page 
77

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Concurrent program execution Technical reference manual - RAPID overview, 
section Motion and I/O principles - Synchronization 
with logical instructions

Continued



1 Instructions

1.99. MoveLDO - Moves the robot linearly and sets digital output in the corner
RobotWare - OS

3HAC 16581-1  Revision: J268

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.99. MoveLDO - Moves the robot linearly and sets digital output in the corner

Usage

MoveLDO (Move Linearly Digital Output) is used to move the tool center point (TCP) linearly 

to a given destination. The specified digital output signal is set/reset at the middle of the 

corner path.

When the TCP is to remain stationary then this instruction can also be used to reorient the 

tool.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveLDO are illustrated below.

Example 1
MoveLDO p1, v1000, z30, tool2, do1,1;

The TCP of the tool, tool2, is moved linearly to the position p1 with speed data v1000 and 

zone data z30. Output do1 is set in the middle of the corner path at p1.

Arguments
MoveLDO ToPoint [\ID] Speed [\T] Zone Tool [\WObj] Signal Value

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if coordinated synchronized movement, 

and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center 

point, the tool reorientation, and external axes. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Continues on next page



1 Instructions

1.99. MoveLDO - Moves the robot linearly and sets digital output in the corner
RobotWare - OS

2693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified 

destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified.

Signal

Data type: signaldo

The name of the digital output signal to be changed.

Value

Data type: dionum

The desired value of signal (0 or 1).

Program execution

See the instruction MoveL for more information about linear movements.

The digital output signal is set/reset in the middle of the corner path for flying points, as 

shown in the figure below.

The figure shows set/reset of digital output signal in the corner path with MoveLDO.

xx0500002193

For stop points we recommend the use of“ normal” programming sequence with MoveL + 

SetDO. But when using stop point in instruction MoveLDO, the digital output signal is set/reset 

when the robot reaches the stop point.

The specified I/O signal is set/reset in execution mode continuously and stepwise forward, 

but not in stepwise backward.

Continued

Continues on next page



1 Instructions

1.99. MoveLDO - Moves the robot linearly and sets digital output in the corner
RobotWare - OS

3HAC 16581-1  Revision: J270

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
MoveLDO

[ ToPoint ’:=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Zone ’:=’ ] < expression (IN) of zonedata > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ ] < persistent (PERS) of wobjdata > ’,’

[ Signal ’:=’ ] < variable (VAR) of signaldo >] ´,’

[ Value ´:=’ ] < expression (IN) of dionum > ] ’;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Moves the robot linearly MoveL - Moves the robot linearly on page 264

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Movements with I/O settings Technical reference manual - RAPID overview, 
section Motion and I/O principles - Synchronization 
with logical instructions

Continued



1 Instructions

1.100. MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS

2713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.100. MoveLSync - Moves the robot linearly and executes a RAPID procedure

Usage

MoveLSync (Move Linearly Synchronously) is used to move the tool center point (TCP) 

linearly to a given destination. The specified RAPID procedure is ordered to execute at the 

middle of the corner path in the destination point.

When the TCP is to remain stationary then this instruction can also be used to reorient the 

tool.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction MoveLSync are illustrated below.

Example 1
MoveLSync p1, v1000, z30, tool2, "proc1";

The TCP of the tool, tool2, is moved linearly to the position p1 with speed data v1000 and 

zone data z30. Procedure proc1 is executed in the middle of the corner path at p1.

Example 2
MoveLSync p1, v1000, z30, tool2, "proc1";

The same as in example 1 above, but here the locally declared procedure proc1 in module 

MyModule will be called in the middle of the corner path.

Arguments
MoveLSync ToPoint [\ID] Speed [\T] Zone Tool [\WObj] ProcName

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the tool center 

point, the tool reorientation, and external axes. 

Continues on next page



1 Instructions

1.100. MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS

3HAC 16581-1  Revision: J272

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point moved to the specified 

destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified.

ProcName

Procedure Name

Data type: string

Name of the RAPID procedure to be executed at the middle of the corner path in the 

destination point. The procedure call is a late binding call, and therefore inherits its properties.

Continued

Continues on next page



1 Instructions

1.100. MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS

2733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveL for more information about linear movements.

The specified RAPID procedure is ordered to execute when the TCP reaches the middle of 

the corner path in the destination point of the MoveLSync instruction, as shown in the figure 

below.

The figure shows that the order to execute the user defined RAPID procedure is done in the 

middle of the corner path.

xx0500002194

For stop points we recommend the use of“ normal” programming sequence with MoveL + 

other RAPID instructions in sequence. 

The table describes execution of the specified RAPID procedure in different execution 
modes:

Limitation

When the robot reaches the middle of the corner path there is normally a delay of 2-30 ms 

until the specified RAPID routine is executed, depending on what type of movement is being 

performed at the time.

Switching execution mode after program stop from continuously or cycle to stepwise forward 

or backward results in an error. This error tells the user that the mode switch can result in 

missed execution of the RAPID procedure in the queue for execution on the path.

Instruction MoveLSync cannot be used on TRAP level. The specified RAPID procedure 

cannot be tested with stepwise execution.

Execution mode: Execution of RAPID procedure:

Continuously or Cycle According to this description

Forward step In the stop point

Backward step Not at all

Continued

Continues on next page



1 Instructions

1.100. MoveLSync - Moves the robot linearly and executes a RAPID procedure
RobotWare - OS

3HAC 16581-1  Revision: J274

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
MoveLSync

[ ToPoint ’:=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Zone ’:=’ ] < expression (IN) of zonedata > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj ´:=’ < persistent (PERS) of wobjdata > ] ’,’

[ ProcName ´:=’ ] < expression (IN) of string > ] ´;’

Related information

For information about See

Other positioning instructions Technical reference manual - RAPID overview, 
section Motion

Moves the robot linearly MoveL - Moves the robot linearly on page 264

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Defines a position related interrupt TriggInt - Defines a position related interrupt on 
page 588

Continued



1 Instructions

1.101. MToolRotCalib - Calibration of rotation for moving tool
RobotWare - OS

2753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.101. MToolRotCalib - Calibration of rotation for moving tool

Usage

MToolRotCalib (Moving Tool Rotation Calibration) is used to calibrate the rotation of a 

moving tool.

The position of the robot and its movements are always related to its tool coordinate system, 

i.e. the TCP and tool orientation. To get the best accuracy it is important to define the tool 

coordinate system as correctly as possible.

The calibration can also be done with a manual method using the FlexPendant (described in 

Operating manual - IRC5 with FlexPendant, section Programming and testing).

Description

To define the tool orientation, you need a world fixed tip within the robot’s working space.

Before using the instruction MToolRotCalib some preconditions must be fulfilled:

• The tool that is to be calibrated must be mounted on the robot and defined with correct 

component robhold (TRUE).

• If using the robot with absolute accuracy then the load and center of gravity for the 

tool should already be defined.  LoadIdentify can be used for the load definition.

• The TCP value of the tool must already be defined. The calibration can be done with 

the instruction MToolTCPCalib.

• tool0, wobj0, and PDispOff must be activated before jogging the robot.

• Jog the TCP of the actual tool as close as possible to the world fixed tip (origin of the 

tool coordinate system) and define a jointtarget for the reference point RefTip.

• Jog the robot without changing the tool orientation so the world fixed tip is pointing 

at some point on the positive z-axis of the tool coordinate system, and define a 

jointtarget for point ZPos.

• Optionally jog the robot without changing the tool orientation so the world fixed tip is 

pointing at some point on the positive x-axis of the tool coordinate system, and define 

a jointtarget for point XPos.

As a help for pointing out the positive z-axis and x-axis, some type of elongator tool can be 

used.

See the figure below for a definition of jointtarget for RefTip, ZPos, and optional XPos.

xx0500002192

Continues on next page



1 Instructions

1.101. MToolRotCalib - Calibration of rotation for moving tool
RobotWare - OS

3HAC 16581-1  Revision: J276

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

NOTE!

It is not recommended to modify the positions RefTip, ZPos, and XPos in the instruction 

MToolRotCalib.

Basic examples

Basic examples of the instruction MToolRotCalib are illustrated below.

Example 1
! Created with the world fixed tip pointing at origin, positive

! z-axis, and positive x-axis of the wanted tool coordinate

! system.

CONST jointtarget pos_tip := [...];

CONST jointtarget pos_z := [...];

CONST jointtarget pos_x := [...];

PERS tooldata tool1:= [ TRUE, [[20, 30, 100], [1, 0, 0 ,0]], 

[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

! Instructions for creating or ModPos of pos_tip, pos_z, and pos_x

MoveAbsJ pos_tip, v10, fine, tool0;

MoveAbsJ pos_z, v10, fine, tool0; 

MoveAbsJ pos_x, v10, fine, tool0;

! Only tool calibration in the z direction

MToolRotCalib pos_tip, pos_z, tool1;

The tool orientation (tframe.rot) in the z direction of tool1 is calculated. The x and y 

directions of the tool orientation are calculated to coincide with the wrist coordinate system.

Example 2
! Calibration with complete tool orientation

MToolRotCalib pos_tip, pos_z \XPos:=pos_x, tool1;

The complete tool orientation (tframe.rot) of tool1 is calculated.

Arguments
MToolRotCalib RefTip ZPos [\XPos]Tool

RefTip

Data type: jointtarget

The point where the TCP of the tool is pointing at the world fixed tip.

ZPos

Data type: jointtarget

The elongator point that defines the positive z direction.

Continued

Continues on next page



1 Instructions

1.101. MToolRotCalib - Calibration of rotation for moving tool
RobotWare - OS

2773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\XPos]

Data type: jointtarget

The elongator point that defines the x positive direction. If this point is omitted then the x and 

y directions of the tool will coincide with the corresponding axes in the wrist coordinate 

system.

Tool 

Data type: tooldata

The persistent variable of the tool that is to be calibrated.

Program execution

The system calculates and updates the tool orientation (tfame.rot) in the specified tooldata. 

The calculation is based on the specified 2 or 3 jointtarget. The remaining data in tooldata 

such as TCP (tframe.trans) is not changed.

Syntax
MToolRotCalib 

[ RefTip ’:=’ ] < expression (IN) of jointtarget > ’,’

[ ZPos ’:=’ ] < expression (IN) of jointtarget >

[ ’\’XPos ’:=’ < expression (IN) of jointtarget > ] ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata > ’;’

Related information

For information about See

Calibration of TCP for a moving tool MToolTCPCalib - Calibration of TCP for moving 
tool on page 278

Calibration of TCP for a stationary tool SToolTCPCalib - Calibration of TCP for stationary 
tool on page 507

Calibration of TCP and rotation for a 
stationary tool

SToolRotCalib - Calibration of TCP and rotation 
for stationary tool on page 504

Continued



1 Instructions

1.102. MToolTCPCalib - Calibration of TCP for moving tool
RobotWare - OS

3HAC 16581-1  Revision: J278

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.102. MToolTCPCalib - Calibration of TCP for moving tool

Usage

MToolTCPCalib (Moving Tool TCP Calibration) is used to calibrate Tool Center Point - 

TCP for a moving tool.

The position of the robot and its movements are always related to its tool coordinate system, 

i.e. the TCP and tool orientation. To get the best accuracy it is important to define the tool 

coordinate system as correctly as possible.

The calibration can also be done with a manual method using the FlexPendant (described in 

Operating manual - IRC5 with FlexPendant, section Programming and testing).

Description

To define the TCP of a tool you need a world fixed tip within the robot’s working space.

Before using the instruction MToolTCPCalib some preconditions must be fulfilled:

• The tool that is to be calibrated must be mounted on the robot and defined with correct 

component robhold (TRUE).

• If using the robot with absolute accuracy then the load and center of gravity for the 

tool should already be defined.  LoadIdentify can be used for the load definition.

• tool0, wobj0, and PDispOff must be activated before jogging the robot.

• Jog the TCP of the actual tool as close as possible to the world fixed tip and define a 

jointtarget for the first point p1.

• Define the further three positions (p2, p3, and p4) all with different orientations.

Definition of 4 jointtargets p1....p4, see figure below.

xx0500002191

NOTE!

It is not recommended to modify the positions Pos1 to Pos4 in the instruction 

MToolTCPCalib.

The reorientation between the 4 positions should be as big as possible, putting the robot in 

different configurations.Its also good practice to check the quality of the TCP after a 

calibration. Which can be performed by reorientation of the tool to check if the TCP is 

standing still. 

Continues on next page



1 Instructions

1.102. MToolTCPCalib - Calibration of TCP for moving tool
RobotWare - OS

2793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the instruction MToolTCPCalib are illustrated below.

Example 1
! Created with actual TCP pointing at the world fixed tip

CONST jointtarget p1 := [...];

CONST jointtarget p2 := [...];

CONST jointtarget p3 := [...];

CONST jointtarget p4 := [...];

PERS tooldata tool1:= [TRUE, [[0, 0, 0], [1, 0, 0 ,0]], [0.001, 

[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]]; 

VAR num max_err;

VAR num mean_err;

...

! Instructions for createing or ModPos of p1 - p4

MoveAbsJ p1, v10, fine, tool0;

MoveAbsJ p2, v10, fine, tool0;

MoveAbsJ p3, v10, fine, tool0;

MoveAbsJ p4, v10, fine, tool0;

...

MToolTCPCalib p1, p2, p3, p4, tool1, max_err, mean_err;

The TCP value (tframe.trans) of tool1 will be calibrated and updated.  max_err and 

mean_err will hold the max. error in mm from the calculated TCP and the mean error in mm 

from the calculated TCP, respectively.

Arguments
MToolTCPCalib Pos1 Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Pos1

Data type: jointtarget

The first approach point.

Pos2

Data type: jointtarget

The second approach point.

Pos3

Data type: jointtarget

The third approach point.

Pos4

Data type: jointtarget

The fourth approach point.

Tool

Data type: tooldata

The persistent variable of the tool that is to be calibrated.

Continued

Continues on next page



1 Instructions

1.102. MToolTCPCalib - Calibration of TCP for moving tool
RobotWare - OS

3HAC 16581-1  Revision: J280

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

MaxErr

Data type: num

The maximum error in mm for one approach point.

MeanErr

Data type: num

The average distance that the approach points are from the calculated TCP, i.e. how accurately 

the robot was positioned relative to the tip.

Program execution

The system calculates and updates the TCP value in the wrist coordinate system 

(tfame.trans) in the specified tooldata. The calculation is based on the specified 4 

jointtarget. The remaining data in tooldata, such as tool orientation (tframe.rot), is not 

changed.

Syntax
MToolTCPCalib

[ Pos1 ’:=’ ] < expression (IN) of jointtarget > ’,’

[ Pos2 ’:=’ ] < expression (IN) of jointtarget > ’,’

[ Pos3 ’:=’ ] < expression (IN) of jointtarget > ’,’

[ Pos4 ’:=’ ] < expression (IN) of jointtarget > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata > ’,’

[ MaxErr ’:=’ ] < variable (VAR) of num > ’,’

[ MeanErr’ :=’ ] < variable (VAR) of num > ’;’

Related information

For information about See

Calibration of rotation for a moving tool MToolRotCalib - Calibration of rotation for moving 
tool on page 275

Calibration of TCP for a stationary tool SToolTCPCalib - Calibration of TCP for stationary 
tool on page 507

Calibration of TCP and rotation for a 
stationary tool

SToolRotCalib - Calibration of TCP and rotation for 
stationary tool on page 504

Continued



1 Instructions

1.103. Open - Opens a file or serial channel
RobotWare - OS

2813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.103. Open - Opens a file or serial channel

Usage

Open is used to open a file or serial channel for reading or writing.

Basic examples

Basic examples of the instruction Open are illustrated below.

See also More examples on page 283.

Example 1
VAR iodev logfile;

...

Open "HOME:" \File:= "LOGFILE1.DOC", logfile \Write;

The file LOGFILE1.DOC in unit HOME: is opened for writing. The reference name logfile 

is used later in the program when writing to the file.

Example 2
VAR iodev logfile;

...

Open "LOGFILE1.DOC", logfile \Write;

Same result as example 1.The default directory is HOME:.

Arguments
Open Object [\File] IODevice [\Read] | [\Write] | [\Append] [\Bin]

Object

Data type: string

The I/O object (I/O device) that is to be opened, e.g. "HOME:", "TEMP:", "com1:" or 

"pc:"(option).

The table describes different I/O devices on the robot controller.

I/O device name Full file path Type of I/O device

"HOME:" or diskhome1 "/hd0a/xxxx/HOME/"2 Flashdisk or Hard 
Drive

"TEMP:" or disktemp1 "/hd0a/temp/" Flashdisk or Hard 
Drive

"RemovableDisk1:" or usbdisk11

"RemovableDisk2:" or usbdisk21

"RemovableDisk3:" or usbdisk31

"RemovableDisk4:" or usbdisk41

"RemovableDisk5:" or usbdisk51

"RemovableDisk6:" or usbdisk61

"RemovableDisk7:" or usbdisk71

"RemovableDisk8:" or usbdisk81

"RemovableDisk9:" or usbdisk91

"RemovableDisk10:" or usbdisk101

"/bd0/"

"/bd1/"

"/bd2/"

"/bd3/"

"/bd4/"

"/bd5/"

"/bd6/"

"/bd7/"

"/bd8/"

"/bd9/"

e.g. USB memory 
stick3

"com1:"4

"com2:"4

"com3:"4

- Serial channel

Continues on next page



1 Instructions

1.103. Open - Opens a file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J282

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1. RAPID string defining device name

2. "xxxx" means the system name defined when booting the system

3. Note! RemovableDisk1 could be e.g. USB memory on one system but USB floppy on 

another.

4. User defined serial channel name defined in system parameters

5. Application protocol, server path defined in system parameters

6. Application protocol, server path defined in system parameters

The following table describes different I/O devices on the virtual controller.

1. RAPID string defining the device name

2. "xxxx" means the path to the system directory defined when creating the system

3. "yyyy" means a directory named as System ID

4. Note! RemovableDisk1 could be e.g. USB memory on one system but USB floppy on 

another.

[\File]

Data type: string

The name of the file to be opened, e.g. "LOGFILE1.DOC" or  "LOGDIR/LOGFILE1.DOC"

The complete path can also be specified in the argument Object, "HOME:/LOGDIR/

LOGFILE.DOC".

IODevice

Data type: iodev

A reference to the file or serial channel to open. This reference is then used for reading from 

and writing to the file or serial channel.

[\Read]

Data type: switch

Opens a file or serial channel for reading. When reading from a file the reading is started from 

the beginning of the file.

"pc:"5 "/c:/temp/"6 Mounted disk

I/O device name Full file path Type of I/O device

"HOME:" or diskhome1 "/xxxx/HOME/"2

"TEMP:" or disktemp "/c:/temp/yyyy/"3 Hard Drive

"RemovableDisk1:" or usbdisk1

"RemovableDisk2:" or usbdisk2

"RemovableDisk3:" or usbdisk3

"RemovableDisk4:" or usbdisk4

"/xxxx/HOME/

RemovableDisk1/"

"/xxxx/HOME/

RemovableDisk2/"

"/xxxx/HOME/

RemovableDisk3/"

"/xxxx/HOME/

RemovableDisk4/"

e.g. USB memory stick4

I/O device name Full file path Type of I/O device

Continued

Continues on next page



1 Instructions

1.103. Open - Opens a file or serial channel
RobotWare - OS

2833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Write]

Data type: switch

Opens a file or serial channel for writing. If the selected file already exists then its contents 

are deleted. Anything subsequently written is written at the start of the file.

[\Append]

Data type: switch

Opens a file or serial channel for writing. If the selected file already exists then anything 

subsequently written is written at the end of the file.

Open a file or serial channel with \Append and without the \Bin arguments. The instruction 

opens a character-based file or serial channel for writing.

Open a file or serial channel with \Append and \Bin arguments. The instruction opens a 

binary file or serial channel for both reading and writing. The arguments \Read, \Write, 

\Append are mutually exclusive. If none of these are specified then the instruction acts in the 

same way as the \Write argument for character-based files or a serial channel (instruction 

without \Bin argument) and in the same way as the \Append argument for binary files or a 

serial channel (instruction with \Bin argument).

[\Bin]

Data type: switch

The file or serial channel is opened in a binary mode. If none of the arguments \Read, 

\Write or \Append are specified then the instruction opens a binary file or serial channel 

for both reading and writing, with the file pointer at the end of the file. 

The Rewind instruction can be used to set the file pointer to the beginning of the file if 

desirable.

The set of instructions to access a binary file or serial channel is different from the set of 

instructions to access a character-based file.

More examples

More examples of how to use the instruction Open are illustrated below.

Example 1
VAR iodev printer;

...

Open "com2:", printer \Bin;

WriteStrBin printer, "This is a message to the printer\0D";

Close printer;

The serial channel com2: is opened for binary reading and writing. The reference name 

printer is used later when writing to and closing the serial channel.

Continued

Continues on next page



1 Instructions

1.103. Open - Opens a file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J284

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The specified file or serial channel is opened so that it is possible to read from or write to it.

It is possible to open the same physical file several times at the same time but each invocation 

of the Open instruction will return a different reference to the file (data type iodev). E.g. it 

is possible to have one write pointer and one different read pointer to the same file at the same 

time.

The iodev variable used when opening a file or serial channel must be free from use. If it has 

been used previously to open a file then this file must be closed prior to issuing a new Open 

instruction with the same iodev variable.

At Program Stop and moved PP to Main, any open file or serial channel in the program task 

will be closed and the I/O descriptor in the variable of type iodev will be reset. An exception 

to the rule is variables that are installed shared in the system of type global VAR or LOCAL 

VAR. Such file or serial channel belonging to the whole system will still be open.

At power fail restart, any open file or serial channel in the system will be closed and the I/O 

descriptor in the variable of type iodev will be reset.

Error handling

If a file cannot be opened then the system variable ERRNO is set to ERR_FILEOPEN. This error 

can then be handled in the error handler.

Syntax
Open  [Object’ :=’] <expression (IN) of string> 

[’\’File’:=’ <expression (IN) of string>] ’,’ 

[IODevice ’:=’] <variable (VAR) of iodev> 

[’\’Read] | 

[’\’Write] | 

[’\’Append] 

[’\’Bin] ’;’

Related information

For information about See

Writing to, reading from and closing files 
or serial channels

Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Continued



1 Instructions

1.104. OpenDir - Open a directory
RobotWare - OS

2853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.104. OpenDir - Open a directory

Usage

OpenDir is used to open a directory for further investigation.

Basic examples

Basic examples of the instruction OpenDir are illustrated below.

Example 1
PROC lsdir(string dirname)   

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified directory.

Arguments
OpenDir Dev Path

Dev

Data type: dir

A variable with reference to the directory, fetched by OpenDir. This variable is then used for 

reading from the directory.

Path

Data type: string

Path to the directory.

Limitations

Open directories should always be closed by the user after reading (instruction CloseDir).

Error handling

If the path points to a non-existing directory or if there are too many directories open at the 

same time then the system variable ERRNO is set to ERR_FILEACC. This error can then be 

handled in the error handler.

Syntax
OpenDir 

[ Dev’:=’ ] < variable (VAR) of dir>’,’

[ Path’:=’ ] < expression (IN) of string>’;’

Continues on next page



1 Instructions

1.104. OpenDir - Open a directory
RobotWare - OS

3HAC 16581-1  Revision: J286

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Directory dir - File directory structure on page 1103

Make a directory MakeDir - Create a new directory on page 218

Remove a directory RemoveDir - Delete a directory on page 355

Read a directory ReadDir - Read next entry in a directory on page 
944

Close a directory CloseDir - Close a directory on page 56

Remove a file RemoveFile - Delete a file on page 356

Rename a file RenameFile - Rename a file on page 357

Continued



1 Instructions

1.105. PackDNHeader - Pack DeviceNet Header into rawbytes data
RobotWare - OS

2873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.105. PackDNHeader - Pack DeviceNet Header into rawbytes data

Usage

PackDNHeader is used to pack the header of a DeviceNet explicit message into a container 

of type rawbytes.

The data part of the DeviceNet message can afterwards be set with the instruction 

PackRawBytes.

Basic examples

Basic examples of the instruction PackDNHeader are illustrated below.

Example 1
VAR rawbytes raw_data;

PackDNHeader "0E", "6,20 01 24 01 30 06,9,4", raw_data;

Pack the header for DeviceNet explicit message with service code "0E" and path string 

"6,20 01 24 01 30 06,9,4" into raw_data corresponding to get the serial number from 

some I/O unit.

This message is ready to send without filling the message with additional data.

Example 2
VAR rawbytes raw_data;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data;

Pack the header for DeviceNet explicit message with service code "10" and path string 

"20 1D 24 01 30 64" into raw_data corresponding to set the filter time for the rising 

edge on insignal 1 for some I/O unit.

This message must be increased with data for the filter time. This can be done with instruction 

PackRawBytes starting at index  RawBytesLen(raw_data)+1 (done after 

PackDNHeader).

Arguments
PackDNHeader Service Path RawData

Service

Data type: string

The service to be done such as get or set attribute. To be specified with a hexadecimal code 

in a string e.g. "IF".

The values for the Service is found in the EDS file. For a more detailed description see the 

Open DeviceNet Vendor Association ODVA DeviceNet Specification revision 2.0.

String length 2 characters

Format ’0’ -’ 9’, ’a’ -’f’, ’A’ - ’F’

Range  "00" - "FF

Continues on next page



1 Instructions

1.105. PackDNHeader - Pack DeviceNet Header into rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J288

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Path

Data type: string

The values for the Path is found in the EDS file. For a more detailed description see the Open 

DeviceNet Vendor Association ODVA DeviceNet Specification revision 2.0.

Support for both long string format (e.g. "6,20 1D 24 01 30 64,8,1") and short string 

format (e.g. "20 1D 24 01 30 64").

RawData

Data type: rawbytes

Variable container to be packed with message header data starting at index 1 in RawData.

Program execution

During program execution the DeviceNet message RawData container is:

• first completely cleared

• and then the header part is packed with data

Format DeviceNet Header

The instruction PackDNHeader will create a DeviceNet message header with following 

format:

The data part of the DeviceNet message can afterwards be set with the instruction 

PackRawBytes starting at index fetched with (RawBytesLen(my_rawdata)+1).

Syntax
PackDNHeader

[Service ´:=´ ] < expression (IN) of string> ´,´

[Path ´:=´ ] < expression (IN) of string> ´,´

[RawData ´:=´ ] < variable (VAR) of rawbytes> ´;´

RawData 
Header Format

No of 
bytes

Note

Format 1 Internal IRC5 code for DeviceNet

Service 1 Hex code for service

Size of Path 1 In bytes

Path x ASCII chars

Continued

Continues on next page



1 Instructions

1.105. PackDNHeader - Pack DeviceNet Header into rawbytes data
RobotWare - OS

2893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data on 
page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of rawbytes 
data on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of rawbytes data 
on page 67

Pack data to rawbytes data PackRawBytes - Pack data into rawbytes data on 
page 290

Write rawbytes data WriteRawBytes - Write rawbytes data on page 725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes data 
on page 658

Bit/Byte Functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics - Bit 
Functions

String functions Technical reference manual - RAPID overview, 
section RAPID Summary - String Functions

Continued



1 Instructions

1.106. PackRawBytes - Pack data into rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J290

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.106. PackRawBytes - Pack data into rawbytes data

Usage

PackRawBytes is used to pack the contents of variables of type num, dnum, byte, or string 

into a container of type rawbytes.

Basic examples

Basic examples of the instruction PackRawBytes are illustrated below.

VAR rawbytes raw_data;

VAR num integer := 8;

VAR dnum bigInt := 4294967295;

VAR num float := 13.4;

VAR byte data1 := 122;

VAR byte byte1;

VAR string string1:="abcdefg";

PackDNHeader "10", "20 1D 24 01 30 64", raw_data;

Pack the header for DeviceNet into raw_data.

Then pack requested field bus data in raw_data with PackRawBytes. The example below 

shows how different data can be added.

Example 1
PackRawBytes integer, raw_data, (RawBytesLen(raw_data)+1) \IntX := 

DINT;

The contents of the next 4 bytes after the header in raw_data will be 8 decimal.

Example 2
PackRawBytes bigInt, raw_data, (RawBytesLen(raw_data)+1) \IntX := 

UDINT;

The contents of the next 4 bytes after the header in raw_data will be 4294967295 decimal.

Example 3
PackRawBytes bigInt, raw_data, (RawBytesLen(raw_data)+1) \IntX := 

LINT;

The contents of the next 8 bytes after the header in raw_data will be 4294967295 decimal.

Example 4
PackRawBytes float, raw_data, RawBytesLen(raw_data)+1) \Float4;

The contents of the next 4 bytes in raw_data will be 13.4 decimal.

Example 5
PackRawBytes data1, raw_data, (RawBytesLen(raw_data)+1) \ASCII;

The contents of the next byte in raw_data will be 122, the ASCII code for "z".

Example 6
PackRawBytes string1, raw_data, (RawBytesLen(raw_data)+1) \ASCII;

The contents of next 7 bytes in raw_data will be "abcdefg", coded in ASCII.

Continues on next page



1 Instructions

1.106. PackRawBytes - Pack data into rawbytes data
RobotWare - OS

2913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 7
byte1 := StrToByte("1F" \Hex);

PackRawBytes byte1, raw_data, (RawBytesLen(raw_data)+1) \Hex1;

The contents of the next byte in raw_data will be "1F", hexadecimal.

Arguments
PackRawBytes Value RawData [ \Network ] StartIndex 

[ \Hex1 ] | [ \IntX ] | [ \Float4 ] | [ \ASCII ]

Value

Data type: anytype

Data to be packed into RawData.

Allowed data types are: num, dnum, byte, or string. Array can not be used.

RawData

Data type: rawbytes

Variable container to be packed with data.

[ \Network ]

Data type: switch

Indicates that integer and float shall be packed in big-endian (network order) 

representation in RawData. ProfiBus and InterBus use big-endian.

Without this switch, integer and float will be packed in little-endian (not network order) 

representation in RawData. DeviceNet uses little-endian.

Only relevant together with option parameter \IntX - UINT, UDINT, INT, DINT and 

\Float4.

StartIndex

Data type: num

StartIndex between 1 and 1024 indicates where the first byte contained in Value shall be 

placed in RawData.

[ \Hex1 ]

Data type: switch

The Value to be packed has byte format and shall be converted to hexadecimal format and 

stored in 1 byte in RawData.

[ \IntX ]

Data type: inttypes

The Value to be packed has num or dnum format. It is an integer and shall be stored in 

RawData according to this specified constant of data type inttypes .

See Predefined data on page 293.

[ \Float4 ]

Data type: switch

The Value to be packed has num format and shall be stored as float, 4 bytes, in RawData.

Continued

Continues on next page



1 Instructions

1.106. PackRawBytes - Pack data into rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J292

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ASCII ]

Data type: switch

The Value to be packed has byte or string format.

If the Value to be packed has byte format then it will be stored in RawData as 1 byte 

interpreting Value as ASCII code for a character.

If the Value to be packed has string format (1-80 characters) then it will be stored in 

RawData as ASCII characters with the same number of characters as contained in Value. 

String data is not NULL terminated by the system in data of type rawbytes. It is up to the 

programmer to add string header if necessary (required for DeviceNet).

One of the arguments \Hex1, \IntX, \Float4, or \ASCII must be programmed.

The following combinations are allowed:

*) Must be an integer within the value range of selected symbolic constant USINT, UINT, 

UDINT, SINT, INT or DINT.

**) Must be an integer within the value range of selected symbolic constant USINT, UINT, 

UDINT, ULINT, SINT, INT, DINT or LINT.

Program execution

During program execution the data is packed from the variable of type anytype into a 

container of type rawbytes.

The current length of valid bytes in the RawData variable is set to:

• (StartIndex + packed_number_of_bytes - 1)

• The current length of valid bytes in the RawData variable is not changed if the 

complete pack operation is done inside the old current length of valid bytes in the 

RawData variable.

Data type of Value: Allowed option parameters:

num *) \IntX

dnum **) \IntX

num \Float4

string \ASCII (1-80 characters)

byte \Hex1 \ASCIIob

Continued

Continues on next page



1 Instructions

1.106. PackRawBytes - Pack data into rawbytes data
RobotWare - OS

2933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data

The following symbolic constants of the data type inttypes are predefined and can be used 

to specify the integer in parameter \IntX.

*) RAPID limitation for storage of integer in data type num.

**) RAPID limitation for storage of integer in data type dnum.

***) Range when using a dnum variable and inttype DINT.

****) Range when using a dnum variable and inttype UDINT.

Syntax
PackRawBytes

[Value ´:=´ ] < expression (IN) of anytype> ´,´

[RawData ´:=´ ] < variable (VAR) of rawbytes>

[ ’\’ Network ] ´,´

[StartIndex ´:=´ ] < expression (IN) of num>

[ ’\’ Hex1 ] 

| [ ’\’ IntX’ :=’ < expression (IN) of inttypes>]

|[ ’\’ Float4 ]

| [ ’\’ ASCII]’ ;’

Symbolic 
constant

Constant 
value

Integer format Integer value range

USINT 1 Unsigned 1 byte integer 0 ... 255

UINT 2 Unsigned 2 byte integer 0 ... 65 535

UDINT 4 Unsigned 4 byte integer 0 ... 8 388 608 *)

0 ... 4 294 967 295 ****) 

ULINT 8 Unsigned 8 byte integer 0 ... 4 503 599 627 370 496**)

SINT - 1 Signed 1 byte integer - 128... 127

INT - 2 Signed 2 byte integer - 32 768 ... 32 767

DINT - 4 Signed 4 byte integer - 8 388 607 ... 8 388 608 *)

-2 147 483 648 ... 2 147 483 
647 ***)

LINT - 8 Signed 8 byte integer - 4 503 599 627 370 496...  4 
503 599 627 370 496 **)

Continued

Continues on next page



1 Instructions

1.106. PackRawBytes - Pack data into rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J294

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data 
on page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of 
rawbytes data on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of 
rawbytes data on page 67

Pack DeviceNet header into rawbytes 
data

PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Write rawbytes data WriteRawBytes - Write rawbytes data on page 
725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 
352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from 
rawbytes data on page 658

Bit/Byte Functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics - 
Bit Functions

String functions Technical reference manual - RAPID overview, 
section RAPID Summary - String Functions

Continued



1 Instructions

1.107. PathAccLim - Reduce TCP acceleration along the path
RobotWare - OS

2953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.107. PathAccLim - Reduce TCP acceleration along the path

Usage

PathAccLim (Path Acceleration Limitation) is used to set or reset limitations on TCP 

acceleration and/or TCP deceleration along the movement path.

The limitation will be performed along the movement path, i.e. the acceleration in the path 

frame. It is the tangential acceleration/deceleration in the path direction that will be limited.

The instruction does not limit the total acceleration of the equipment, i.e. the acceleration in 

world frame, so it can not be directly used to protect the equipment from large accelerations.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

xx0500002184

Basic examples

Basic examples of the instruction PathAccLim are illustrated below.

See also More examples on page 296.

Example 1
PathAccLim TRUE \AccMax := 4, TRUE \DecelMax := 4;

TCP acceleration and TCP deceleration are limited to 4 m/s2.

Example 2
PathAccLim FALSE, FALSE;

The TCP acceleration and deceleration is reset to maximum (default).

Continues on next page



1 Instructions

1.107. PathAccLim - Reduce TCP acceleration along the path
RobotWare - OS

3HAC 16581-1  Revision: J296

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
PathAccLim AccLim [\AccMax] DecelLim [\DecelMax]

AccLim

Data type: bool

TRUE if there is to be a limitation of the acceleration, FALSE otherwise.

[ \AccMax ]

Data type: num

The absolute value of the acceleration limitation in m/s2. Only to be used when AccLim is 

TRUE.

DecelLim

Data type: bool

TRUE if there is to be a limitation of the deceleration, FALSE otherwise.

[ \DecelMax ]

Data type: num

The absolute value of the deceleration limitation in m/s2. Only to be used when DecelLim is 

TRUE.

Program execution

The acceleration/deceleration limitations applies for the next executed robot segment and is 

valid until a new PathAccLim instruction is executed.

The maximum acceleration/deceleration (PathAccLim FALSE, FALSE) are automatically 

set

• at a cold start-up

• when a new program is loaded

• when starting program execution from the beginning.

If there is a combination of instructions AccSet and PathAccLim the system reduces the 

acceleration/deceleration in the following order:

• according AccSet

• according PathAccLim

More examples 

More examples of how to use the instruction PathAccLim are illustrated below.

xx0500002183

Continued

Continues on next page



1 Instructions

1.107. PathAccLim - Reduce TCP acceleration along the path
RobotWare - OS

2973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 1
MoveL p1, v1000, fine, tool0;

PathAccLim TRUE\AccMax := 4, FALSE;

MoveL p2, v1000, z30, tool0;

MoveL p3, v1000, fine, tool0;

PathAccLim FALSE, FALSE;

TCP acceleration is limited to 4 m/s2 between p1 and p3.

Example 2
MoveL p1, v1000, fine, tool0;

MoveL p2, v1000, z30, tool0;

PathAccLim TRUE\AccMax :=3, TRUE\DecelMax := 4;

MoveL p3, v1000, fine, tool0;

PathAccLim FALSE, FALSE;

TCP acceleration is limited to 3 m/s2 between p2’ and p3.

TCP deceleration is limited to 4 m/s2 between p2’ and p3.

Error handling

If the parameters \AccMax or \DecelMax is set to a value too low, the system variable 

ERRNO is set to ERR_ACC_TOO_LOW. This error can then be handled in the error handler.

Limitations

The minimum acceleration/deceleration allowed is 0.5 m/s2.

Syntax
PathAccLim

[ AccLim ’:=’ ] < expression (IN) of bool >

[´\’AccMax’ :=’ <expression (IN) of num >]’,’

[DecelLim ´:=’ ] < expression (IN) of bool>

[´\’DecelMax ´:=’ <expression (IN) of num >]’;’

Related information

For information about See

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Motion settings data motsetdata - Motion settings data on page 1141

Reduction of acceleration AccSet - Reduces the acceleration on page 15

Continued



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

3HAC 16581-1  Revision: J298

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.108. PathRecMoveBwd - Move path recorder backwards

Usage

PathRecMoveBwd is used to move the robot backwards along a recorded path.

Basic examples

Basic examples of the instruction PathRecMoveBwd are illustrated below.

See also More examples on page 300.

Example 1
VAR pathrecid fixture_id;

PathRecMoveBwd \ID:=fixture_id \ToolOffs:=[0, 0, 10] \Speed:=v500;

The robot is moved backwards to the position in the program where the instruction 

PathRecStart planted the fixture_id identifier. The TCP offset is 10 mm in Z direction 

and the speed is set to 500 mm/s.

Arguments
PathRecMoveBwd [\ID] [\ToolOffs] [\Speed]

[\ID]

Identifier

Data type: pathrecid

Variable that specifies the ID position to move backward to. Data type pathrecid is a non-

value type, only used as an identifier for naming the recording position.

If no ID position is specified then the backward movement is in a single system done to the 

closest recorded ID position. But in a MultiMove Synchronized Mode, the backward 

movements is done to the closest of the following positions: 

• Back to the position where the synchronized movement started

• Back to the closest recorded ID position

[\ToolOffs]

Tool Offset

Data type: pos

Provides clearance offset for TCP during motion. A cartesian offset coordinate is applied to 

the TCP coordinates. Positive Z offset value indicates clearance. This is useful when the robot 

runs a process adding material. If running synchronized motion then all or none of the 

mechanical units needs to use the argument. If no offset is desired for some of the mechanical 

units then a zero offset can be applied. Even non TCP mechanical units need to use the 

argument if a TCP robot in a different task is used.

[\Speed]

Data type: speeddata

Speed replaces the speed original used during forward motion. Speeddata defines the velocity 

for the tool center point, the tool reorientation, and the external axis. If present, this speed will 

be used throughout the backward movement. If omitted, the backward motion will execute 

with the speed in the original motion instructions.

Continues on next page



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

2993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The path recorder is activated with the PathRecStart instruction. After the recorder has 

been started then all move instructions will be recorded and the robot can be moved 

backwards along its recorded path at any point by executing PathRecMoveBwd.

Synchronized motion

Running the path recorder in synchronization motion adds a few considerations.

• All tasks involved in the synchronization recorded motion must order 

PathRecMoveBwd before any of the robots start to move.

• All synchronization handling is recorded and executed in reverse. For example, if 

PathRecMoveBwd is ordered from within a synchronization block to an independent 

position then the path recorder will automatically change state to independent at the 

SyncMoveOn instruction.

• SyncMoveOn is considered as a breakpoint without path identifier. That is, if the path 

recorder has been started by means of PathRecStart and PathRecMoveBwd without 

the optional argument \ID is executed within a synchronized motion block, then the 

robot will move backwards to the position the robot was at when SyncMoveOn was 

executed. Since the backward movement stops before SyncMoveOn, the state will be 

changed to independent.

• WaitSyncTask is considered as a breakpoint without path identifier. That is, if the 

path recorder has been started by the means of PathRecStart and 

PathRecMoveBwd is executed then the robot will move back no longer than to the 

position the robot was at when WaitSyncTask was executed.

Continued

Continues on next page



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

3HAC 16581-1  Revision: J300

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction PathRecMoveBwd are illustrated below.

Example 1 - Independent motion
VAR pathrecid safe_id;

CONST robtarget p0 := [...];

...

CONST robtarget p4 := [...];

VAR num choice;

MoveJ p0, vmax, z50, tool1;

PathRecStart safe_id;

MoveJ p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

ERROR:

TPReadFK choice,"Go to 

safe?",stEmpty,stEmpty,stEmpty,stEmpty,"Yes";

IF choice=5 THEN

IF PathRecValidBwd(\ID:=safe_id) THEN

StorePath;

PathRecMoveBwd \ID:=safe_id \ToolOffs:=[0, 0 , 10];

Stop;

!Fix problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

ENDIF

Continued

Continues on next page



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

3013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xx0500002135

This example shows how the path recorder can be utilized to extract the robot from narrow 

spaces upon error without programming a designated path.

A part is being manufactured. At the approach point, p0, the path recorder is started and 

given the path recorder identifier safe_id. Assume that when the robot moves from p3 to 

p4 that a recoverable error arises. At that point the path is stored by executing StorePath. 

By storing the path the error handler can start a new movement and later on restart the original 

movement. When the path has been stored the path recorder is used to move the robot out to 

the safe position, p0, by executing PathRecMoveBwd.

Note that a tool offset is applied to provide clearance from, for example, a newly added weld. 

When the robot has been moved out the operator can do what is necessary to fix the error (for 

example clean the torch of welding). Then the robot is moved back to the error location by 

the means of PathRecMoveFwd. At the error location the path level is switched back to base 

level by RestoPath and a retry attempt is made.

Continued

Continues on next page



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

3HAC 16581-1  Revision: J302

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2 - Synchronized motion

T_ROB1

VAR pathrecid HomeROB1;

CONST robtarget pR1_10:=[...];

...

CONST robtarget pR1_60:=[...];

PathRecStart HomeROB1;

MoveJ pR1_10, v1000, z50, tGun;

MoveJ pR1_20, v1000, z50, tGun;

MoveJ pR1_30, v1000, z50, tGun;

SyncMoveOn sync1, tasklist;

MoveL pR1_40 \ID:=1, v1000, z50, tGun\wobj:=pos1;

MoveL pR1_50 \ID:=2, v1000, z50, tGun\wobj:=pos1;

MoveL pR1_60 \ID:=3, v1000, z50, tGun\wobj:=pos1;

SyncMoveOff sync2;

ERROR

StorePath \KeepSync;

TEST ERRNO

CASE ERR_PATH_STOP:

PathRecMoveBwd \ID:= HomeROB1\ToolOffs:=[0,0,10];

ENDTEST

!Perform service action

PathRecMoveFwd \ToolOffs:=[0,0,10];

RestoPath;

StartMove;

T_ROB2

VAR pathrecid HomeROB2;

CONST robtarget pR2_10:=[...];

...

CONST robtarget pR2_50:=[...];

PathRecStart HomeROB2;

MoveJ pR2_10, v1000, z50, tGun;

MoveJ pR2_20, v1000, z50, tGun;

SyncMoveOn sync1, tasklist;

MoveL pR2_30 \ID:=1, v1000, z50, tGun\wobj:=pos1;

MoveL pR2_40 \ID:=2, v1000, z50, tGun\wobj:=pos1;

MoveL pR2_50 \ID:=3, v1000, z50, tGun\wobj:=pos1;

SyncMoveOff sync2;

ERROR

StorePath \KeepSync;

TEST ERRNO

CASE ERR_PATH_STOP:

PathRecMoveBwd \ToolOffs:=[0,0,10];

Continued

Continues on next page



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

3033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ENDTEST

!Perform service action

PathRecMoveFwd \ToolOffs:=[0,0,10];

RestoPath;

StartMove;

T_ROB3

VAR pathrecid HomePOS1;

CONST jointtarget jP1_10:=[...];

...

CONST jointtarget jP1_40:=[...];

PathRecStart HomePOS1;

MoveExtJ jP1_10, v1000, z50;

SyncMoveOn sync1, tasklist;

MoveExtJ jP1_20 \ID:=1, v1000, z50;

MoveExtJ jP1_30 \ID:=2, v1000, z50;

MoveExtJ jP1_40 \ID:=3, v1000, z50;

SyncMoveOff sync2;

ERROR

StorePath \KeepSync;

TEST ERRNO

CASE ERR_PATH_STOP:

PathRecMoveBwd \ToolOffs:=[0,0,0];

DEFAULT:

PathRecMoveBwd \ID:=HomePOS1\ToolOffs:=[0,0,0];

ENDTEST

!Perform service action

PathRecMoveFwd \ToolOffs:=[0,0,0];

RestoPath;

StartMove;

A system is consisting of three manipulators that all run in separate tasks. Assume that 

T_ROB1 experiences an error ERR_PATH_STOP within the synchronized block, sync1. Upon 

error it is desired to move back to the home position marked with the path recorder identifier 

HomeROB1 to perform service of the robot’s external equipment. This is done by using 

PathRecMoveBwd and suppling the pathrecid identifier.

Since the error occurred during synchronized motion it is necessary that the second TCP 

robotT_ROB2 and the external axis T_POS1 also orders PathRecMoveBwd. These 

manipulators do not have to move back further than before the synchronized motion started. 

By not suppling PathRecMoveBwd at ERR_PATH_STOP with a path recorder identifier the 

path recorder ability to stop after SyncMoveOn is utilized. Note that the external axis that does 

not have a TCP still adds a zero tool offset to enable the possibility for the TCP robots to do 

so.

The DEFAULT behavior in the ERROR handler in this example is that all manipulators first do 

the synchronized movements backwards and then the independent movements backwards to 

the start point of the recorded path. This is obtained by specifying \ID in PathRecMoveBwd 

for all manipulators.

Continued

Continues on next page



1 Instructions

1.108. PathRecMoveBwd - Move path recorder backwards
Path Recovery

3HAC 16581-1  Revision: J304

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Movements using the path recorder cannot be performed on base level, i.e. StorePath has 

to be executed prior to PathRecMoveBwd.

It is never possible to move backwards through a SynchMoveOff statement.

It is never possible to move backwards through a WaitSyncTask statement.

SyncMoveOn must be preceded by at least one independent movement if it is desired to move 

back to the position where the synchronized movement started.

If it is not desired to return to the point where PathRecMoveBwd was executed (by executing 

PathRecMoveFwd) then the PathRecorder has to be stopped by the means of PathRecStop. 

PathRecStop\Clear also clears the recorded path.

PathRecMoveBwd cannot be executed in a RAPID routine connected to any of the following 

special system events: PowerOn, Stop, QStop, Restart, Reset or Step.

Syntax
PathRecMoveBwd 

[ ´\’ ID ´:=’ < variable (VAR) of pathrecid > ]

[ ´\’ ToolOffs´:=’ <expression (IN) of pos> ]

[ ´\’ Speed‘:=’ <expression (IN) of speeddata> ]’;’

Related information

For information about See

Path Recorder Identifier pathrecid - Path recorder identifier on page 1158

Start - stop the path recorder PathRecStart - Start the path recorder on page 
308

PathRecStop - Stop the path recorder on page 
311

Check for valid recorded path PathRecValidBwd - Is there a valid backward 
path recorded on page 921

PathRecValidFwd - Is there a valid forward path 
recorded on page 924

Move path recorder forward PathRecMoveFwd - Move path recorder forward 
on page 305

Store - restore paths StorePath - Stores the path when an interrupt 
occurs on page 521

RestoPath - Restores the path after an interrupt 
on page 362

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Error Recovery Technical reference manual - RAPID overview, 
section Basic characteristics - Error recovery

Continued



1 Instructions

1.109. PathRecMoveFwd - Move path recorder forward
PathRecovery

3053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.109. PathRecMoveFwd - Move path recorder forward

Usage

PathRecMoveFwd is used to move the robot back to the position where PathRecMoveBwd 

was executed. It is also possible to move the robot partly forward by supplying an identifier 

that has been passed during the backward movement.

Basic examples

Basic examples of how to use the instruction PathRecMoveFwd are illustrated below.

See also More examples on page 306.

Example 1
PathRecMoveFwd;

The robot is moved back to the position where the path recorder started the backward 

movement.

Arguments
PathRecMoveFwd [\ID] [\ToolOffs] [\Speed]

[\ID]

Identifier

Data type: pathrecid

Variable that specifies the ID position to move forward to. Data type pathrecid is a non-

value type only used as an identifier for naming the recording position.

If no ID position is specified then the forward movement will always be done to interrupt 

position on the original path.

[\ToolOffs]

Tool Offset

Data type: pos

Provides clearance offset for TCP during motion. A cartesian coordinate is applied to the TCP 

coordinates. This is useful when the robot runs a process adding material.

[\Speed]

Data type: speeddata

Speed overrides the original speed used during forward motion. Speeddata defines the 

velocity for the tool center point, the tool reorientation, and the external axis. If present, this 

speed will be used throughout the forward movement. If omitted, the forward motion will 

execute with the speed in the original motion instructions.

Program execution

The path recorder is activated with the PathRecStart instruction. After the recorder has 

been started the robot can be moved backwards along its executed path by executing 

PathRecMoveBwd. The robot can thereafter be ordered back to the position where the 

backward execution started by calling PathRecMoveFwd. It is also possible to move the 

robot partly forward by supplying an identifier that has been passed during the backward 

movement. 

Continues on next page



1 Instructions

1.109. PathRecMoveFwd - Move path recorder forward
PathRecovery

3HAC 16581-1  Revision: J306

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction PathRecMoveFwd are illustrated below.

VAR pathrecid start_id;

VAR pathrecid mid_id;

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

PathRecStart start_id;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart mid_id;

MoveL p3, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=start_id;

PathRecMoveFwd \ID:=mid_id;

PathRecMoveFwd;

RestoPath;

xx0500002133

The example above will start the path recorder and the starting point will be tagged with the 

path identifier start_id. Thereafter the robot will move forward with traditional move 

instructions and then move back to the path recorder identifier start_id using the recorded 

path. Finally it will move forward again in two steps by the means of PathRecMoveFwd.

Limitations

Movements using the path recorder have to be performed on trap-level, i.e. StorePath must 

execute prior to PathRecMoveFwd.

To be able to execute PathRecMoveFwd a PathRecMoveBwd must have been executed 

before.

If it is not desired to return to the point where PathRecMoveBwd was executed (by executing 

PathRecMoveFwd) then the PathRecorder has to be stopped by the means of PathRecStop. 

PathRecStop\Clear also clears recorded path.

PathRecMoveFwd cannot be executed in a RAPID routine connected to any of the following 

special system events: PowerOn, Stop, QStop, Restart, Reset or Step.

Continued

Continues on next page



1 Instructions

1.109. PathRecMoveFwd - Move path recorder forward
PathRecovery

3073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
PathRecMoveFwd’ (’

[ ‘\’ ID‘ :=’ < variable (VAR) of pathid > ]

[ ‘\’ ToolOffs‘ :=’ <expression (IN) of pos> ]

[ ‘\’ Speed‘ :=’ <expression (IN) of speeddata> ]’;’

Related information

For information about See

Path Recorder Identifiers pathrecid - Path recorder identifier on page 1158

Start - stop the path recorder PathRecStart - Start the path recorder on page 308

PathRecStop - Stop the path recorder on page 311

Check for valid recorded path PathRecValidBwd - Is there a valid backward path 
recorded on page 921

PathRecValidFwd - Is there a valid forward path 
recorded on page 924

Move path recorder backward PathRecMoveBwd - Move path recorder backwards 
on page 298

Store - restore paths StorePath - Stores the path when an interrupt 
occurs on page 521

RestoPath - Restores the path after an interrupt on 
page 362

Other positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Error Recovery Technical reference manual - RAPID overview, 
section RAPID summary - Error recovery

Technical reference manual - RAPID overview, 
section Basic characteristics - Error recovery

Continued



1 Instructions

1.110. PathRecStart - Start the path recorder
Path Recovery

3HAC 16581-1  Revision: J308

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.110. PathRecStart - Start the path recorder

Usage

PathRecStart is used to start recording the robot’s path. The path recorder will store path 

information during execution of the RAPID program.

Basic examples

Basic examples of the instruction PathRecStart are illustrated below.

Example 1
VAR pathrecid fixture_id;

PathRecStart fixture_id;

The path recorder is started and the starting point (the instruction’s position in the RAPID 

program) is tagged with the identifier fixture_id.

Arguments
PathRecStart ID

ID

Identifier

Data type: pathrecid

Variable that specifies the name of the recording start position. Data type pathrecid is a 

non-value type only used as an identifier for naming the recording position.

Program execution

When the path recorder is ordered to start the robot path will be recorded internally in the 

robot controller. The recorded sequence of program positions can be traversed backwards by 

means of PathRecMoveBwd causing the robot to move backwards along its executed path.

Continues on next page



1 Instructions

1.110. PathRecStart - Start the path recorder
Path Recovery

3093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction PathRecStart are illustrated below.

Example 1
VAR pathrecid origin_id;

VAR pathrecid corner_id;

VAR num choice;

MoveJ p1, vmax, z50, tool1;

PathRecStart origin_id;

MoveJ p2, vmax, z50, tool1;

PathRecStart corner_id;

MoveL p3, vmax, z50, tool1;

MoveAbsJ jt4, vmax, fine, tool1;

ERROR

TPReadFK choice,"Extract 

to:",stEmpty,stEmpty,stEmpty,"Origin","Corner";

IF choice=4 OR choice=5 THEN

StorePath;

IF choice=4 THEN

PathRecMoveBwd \ID:=origin_id;

ELSE

PathRecMoveBwd \ID:=corner_id;

ENDIF

Stop;

!Fix problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

In the example above the path recorder is used for moving the robot to a service position if 

an error during normal execution occurs.

The robot is executing along a path. After the position p1 the path recorder is started. After 

the point p2 another path identifier is inserted. Assume that a recoverable error occurs while 

moving from position p3 to position jt4. The error handler will now be invoked, and the user 

can choose between extracting the robot to position Origin (point p1) or Corner (point p2). 

Then the path level is switched with StorePath to be able to restart at the error location 

later on. When the robot has backed out from the error location it’s up to the user solving the 

error (usually fixing the robots surrounding equipment).

Then the robot is ordered back to the error location. The path level is switched back to normal, 

and a retry attempt is made.

Limitations

The path recorder can only be started and will only record the path in the base path level, i.e. 

movements at StorePath level are not recorded.

Continued

Continues on next page



1 Instructions

1.110. PathRecStart - Start the path recorder
Path Recovery

3HAC 16581-1  Revision: J310

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
PathRecStart 

[ ID ’:=’] < variable (VAR) of pathrecid> ´;´

Related information

For information about See

Path Recorder Identifiers pathrecid - Path recorder identifier on page 1158

Stop the path recorder PathRecStop - Stop the path recorder on page 311

Check for valid recorded path PathRecValidBwd - Is there a valid backward path 
recorded on page 921

PathRecValidFwd - Is there a valid forward path 
recorded on page 924

Play the path recorder backward PathRecMoveBwd - Move path recorder 
backwards on page 298

Play the path recorder forward PathRecMoveFwd - Move path recorder forward 
on page 305

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles 

Continued



1 Instructions

1.111. PathRecStop - Stop the path recorder
Path Recovery

3113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.111. PathRecStop - Stop the path recorder

Usage

PathRecStop is used to stop recording the robot’s path.

Basic examples

Basic examples of the instruction PathRecStop are illustrated below.

See also More examples below.

Example 1
PathRecStop \Clear;

The path recorder is stopped and the buffer of stored path information is cleared.

Arguments
PathRecStop [\Clear]

[\Clear]

Data type: switch

Clear the recorded path.

Program execution

When the path recorder is ordered to stop the recording of the path will stop. The optional 

argument \Clear will clear the buffer of stored path information preventing the recorded 

path to be executed by mistake.

After the recorder has been stopped with PathRecStop, earlier recorded paths cannot be 

used for back-up movements (PathRecMoveBwd). However, it is possible to use earlier 

recorded paths if PathRecStart is ordered again from the same position that the path 

recorder was stopped in. See the example below.

More examples

More examples of how to use the instruction PathRecStop are illustrated below.

LOCAL VAR pathrecid id1;

LOCAL VAR pathrecid id2;

LOCAL CONST robtarget p0:= [...];

......

LOCAL CONST robtarget p6 := [...];

PROC example1()

MoveL p0, vmax, z50, tool1;

PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart id2;

Continues on next page



1 Instructions

1.111. PathRecStop - Stop the path recorder
Path Recovery

3HAC 16581-1  Revision: J312

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

MoveL p5, vmax, z50, tool1;

MoveL p6, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=id1;

PathRecMoveFwd;

RestoPath;

StartMove;

MoveL p7, vmax, z50, tool1;

ENDPROC

PROC example2()

MoveL p0, vmax, z50, tool1;

PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

PathRecStart id2;

MoveL p2, vmax, z50, tool1;

MoveL p5, vmax, z50, tool1;

MoveL p6, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=id1;

PathRecMoveFwd;

RestoPath;

StartMove;

MoveL p7, vmax, z50, tool1;

ENDPROC

xx0500002101

The above examples describe recording of the robot path when the recording is stopped in the 

middle of the sequence. In example1 the PathRecMoveBwd \ID:=id1; order is valid and 

the robot will execute the following path: p6 -> p5 -> p2 -> p1 -> p0

The reason that the order is valid is due to the recorder being stopped and started in the exact 

same robot position. If this behavior isn’t desirable the stop order should include the optional 

argument \Clear. In that way the recorded path will be cleared and it will never be possible 

to back-up to previous path recorder identifiers.

Continued

Continues on next page



1 Instructions

1.111. PathRecStop - Stop the path recorder
Path Recovery

3133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The only difference in example2 is where the recorder was started the second time. In this 

case PathRecMoveBwd \ID:=id1 will cause an error. This is because no recorded path 

exists between p4, p3 and p2. However, it is possible to execute PathRecMoveBwd 

\ID:=id2.

Syntax
PathRecStop 

[ ´\’switch Clear ] ´;’

Related information

For information about See

Path Recorder Identifiers pathrecid - Path recorder identifier on page 1158

Start the path recorder PathRecStart - Start the path recorder on page 308

Check for valid recorded path PathRecValidBwd - Is there a valid backward path 
recorded on page 921

PathRecValidFwd - Is there a valid forward path 
recorded on page 924

Play the recorder backward PathRecMoveBwd - Move path recorder 
backwards on page 298

Play the recorder forwards PathRecMoveFwd - Move path recorder forward 
on page 305

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles 

Continued



1 Instructions

1.112. PathResol - Override path resolution
RobotWare - OS

3HAC 16581-1  Revision: J314

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.112. PathResol - Override path resolution

Usage

PathResol (Path Resolution) is used to override the configured geometric path sample time 

defined in the system parameters for the mechanical units that are controlled from current 

program task.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

any motion tasks.

Description

The path resolution affects the accuracy of the interpolated path and the program cycle time. 

The path accuracy is improved and the cycle time is often reduced when the parameter 

PathSampleTime is decreased. A value for parameter PathSampleTime, which is too low, 

may cause CPU load problems in some demanding applications. However, use of the standard 

configured path resolution (PathSampleTime 100%) will avoid CPU load problems and 

provide sufficient path accuracy in most situations.

Example of PathResol usage:

Dynamically critical movements (max payload, high speed, combined joint motions close to 

the border of the work area) may cause CPU load problems. Increase the parameter 

PathSampleTime.

Low performance external axes may cause CPU load problems during coordination. Increase 

the parameter PathSampleTime.

Arc-welding with high frequency weaving may require high resolution of the interpolated 

path. Decrease the parameter PathSampleTime.

Small circles or combined small movements with direction changes can decrease the path 

performance quality and increase the cycle time. Decrease the parameter PathSampleTime.

Gluing with large reorientations and small corner zones can cause speed variations. Decrease 

the parameter PathSampleTime.

Basic examples

Basic examples of the instruction PathResol are illustrated below.

MoveJ p1,v1000,fine,tool1;

PathResol 150;

With the robot at a stop point the path sample time is increased to 150 % of the configured.

Arguments
PathResol PathSampleTime

PathSampleTime

Data type: num

Override as a percent of the configured path sample time. 100% corresponds to the configured 

path sample time. Within the range 25-400%.

A lower value of the parameter PathSampleTime improves the path resolution (path 

accuracy).

Continues on next page



1 Instructions

1.112. PathResol - Override path resolution
RobotWare - OS

3153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The path resolutions of all subsequent positioning instructions are affected until a new 

PathResol instruction is executed. This will affect the path resolution during all program 

execution of movements (default path level and path level after StorePath) and also during 

jogging.

In a MultiMove system at synchronized coordinated mode the following points are valid:

• All mechanical units involved in synchronized coordinated mode will run with the 

current path resolution for actual (used) motion planner.

• New path resolution order against actual motion planner affects the synchronized 

coordinated movement and future independent movement in that motion planner.

• New path resolution order against another motion planner only affects future 

independent movement in that motion planner.

About connection between program task and motion planner see Application manual - 

MultiMove.

The default value for override of path sample time is 100%. This value is automatically set

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

The current override of path sample time can be read from the variable C_MOTSET (data type 

motsetdata) in the component pathresol.

Limitation

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

PathResol cannot be executed in a RAPID routine connected to any of following special 

system events: PowerOn, Stop, QStop, Restart, or Step.

Syntax
PathResol

[PathSampleTime ’:=’ ] < expression (IN) of num> ’;’

Related information

For information about See

Positioning instructions Technical reference manual - RAPID overview, section 
Motion and I/O principles

Motion settings Technical reference manual - RAPID overview, section 
RAPID summary - Motion settings

Configuration of path resolution Technical reference manual - System parameters, 
section Motion Planner - CPU Load Equalization

Continued



1 Instructions

1.113. PDispOff - Deactivates program displacement
RobotWare - OS

3HAC 16581-1  Revision: J316

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.113. PDispOff - Deactivates program displacement 

Usage

PDispOff (Program Displacement Off) is used to deactivate a program displacement. 

Program displacement is activated by the instruction PDispSet or PDispOn and applies to 

all movements until some other program displacement is activated or until program 

displacement is deactivated.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction PDispOff are illustrated below.

Example 1
PDispOff;

Deactivation of a program displacement. 

Example 2
MoveL p10, v500, z10, tool1;

PDispOn \ExeP:=p10, p11, tool1;

MoveL p20, v500, z10, tool1;

MoveL p30, v500, z10, tool1;

PDispOff;

MoveL p40, v500, z10, tool1;

A program displacement is defined as the difference between the positions p10 and p11. This 

displacement affects the movement to p20 and p30 but not to p40.

Program execution 

Active program displacement is reset. This means that the program displacement coordinate 

system is the same as the object coordinate system, and thus all programmed positions will 

be related to the latter.

Syntax
PDispOff ´;’

Related information

For information about See

Definition of program displacement using 
two positions

PDispOn - Activates program displacement on 
page 317

Definition of program displacement using 
known frame

PDispSet - Activates program displacement 
using known frame on page 321



1 Instructions

1.114. PDispOn - Activates program displacement
RobotWare - OS

3173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.114. PDispOn - Activates program displacement

Usage

PDispOn  (Program Displacement On) is used to define and activate a program displacement 

using two robot positions.

Program displacement is used, for example, after a search has been carried out or when 

similar motion patterns are repeated at several different places in the program.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction PDispOn are illustrated below.

See also More examples on page 319.

Example 1
MoveL p10, v500, z10, tool1;

PDispOn \ExeP:=p10, p20, tool1;

Activation of a program displacement (parallel displacement). This is calculated based on the 

difference between positions p10 and p20. 

Example 2
MoveL p10, v500, fine \Inpos := inpos50, tool1;

PDispOn *, tool1;

Activation of a program displacement (parallel displacement). Since a stop point that is 

accurately defined has been used in the previous instruction the argument \ExeP does not 

have to be used. The displacement is calculated on the basis of the difference between the 

robot’s actual position and the programmed point (*) stored in the instruction.

Example 3
PDispOn \Rot \ExeP:=p10, p20, tool1;

Activation of a program displacement including a rotation. This is calculated based on the 

difference between positions p10 and p20.

Arguments
PDispOn [\Rot] [\ExeP] ProgPoint Tool [\WObj]

[ \Rot ]

Rotation

Data type: switch

The difference in the tool orientation is taken into consideration and this involves a rotation 

of the program.

[ \ExeP ]

Executed Point

Data type: robtarget

The new robot position used for calculation of the displacement. If this argument is omitted 

then the robot’s current position at the time of the program execution is used.

Continues on next page



1 Instructions

1.114. PDispOn - Activates program displacement
RobotWare - OS

3HAC 16581-1  Revision: J318

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ProgPoint

Programmed Point

Data type: robtarget

The robot’s original position at the time of programming. 

Tool

Data type: tooldata

The tool used during programming, i.e. the TCP to which the ProgPoint position is related.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the ProgPoint position is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. However, if a stationary TCP or coordinated external axes are used then this 

argument must be specified.

The arguments Tool and \WObj are used both to calculate the ProgPoint during 

programming and to calculate the current position during program execution if no \ExeP 

argument is programmed.

Program execution

Program displacement means that the ProgDisp coordinate system is translated in relation 

to the object coordinate system. Since all positions are related to the ProgDisp coordinate 

system, all programmed positions will also be displaced. See figure below, which shows 

parallel displacement of a programmed position using program displacement.

xx0500002186

Program displacement is activated when the instruction PDispOn is executed and remains 

active until some other program displacement is activated (the instruction PDispSet or 

PDispOn) or until program displacement is deactivated (the instruction PDispOff).

Only one program displacement can be active at the same time. Several PDispOn 

instructions, on the other hand, can be programmed one after the other and in this case the 

different program displacements will be added.

Program displacement is calculated as the difference between ExeP and ProgPoint. If ExeP 

has not been specified then the current position of the robot at the time of the program 

execution is used instead. Since it is the actual position of the robot that is used, the robot 

should not move when PDispOn is executed.

Continued

Continues on next page



1 Instructions

1.114. PDispOn - Activates program displacement
RobotWare - OS

3193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

If the argument \Rot is used then the rotation is also calculated based on the tool orientation 

at the two positions. The displacement will be calculated in such a way that the new position 

(ExeP) will have the same position and orientation in relation to the displaced coordinate 

system, ProgDisp, as the old position (ProgPoint) had in relation to the original object 

coordinate system. See the figure below, which shows translation and rotation of a 

programmed position.

xx0500002187

The program displacement is automatically reset

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

More examples

More examples of how to use the instruction PDispOn are illustrated below.

Example 1
PROC draw_square()

PDispOn *, tool1;

MoveL *, v500, z10, tool1;

MoveL *, v500, z10, tool1;

MoveL *, v500, z10, tool1;

MoveL *, v500, z10, tool1;

PDispOff;

ENDPROC

...

MoveL p10, v500, fine \Inpos := inpos50, tool1;

draw_square;

MoveL p20, v500, fine \Inpos := inpos50, tool1;

draw_square;

MoveL p30, v500, fine \Inpos := inpos50, tool1;

draw_square;

Continued

Continues on next page



1 Instructions

1.114. PDispOn - Activates program displacement
RobotWare - OS

3HAC 16581-1  Revision: J320

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The routine draw_square is used to execute the same motion pattern at three different 

positions based on the positions p10, p20, and p30. See the figure below, which shows that 

when using program displacement the motion patterns can be reused.

xx0500002185

Example 2
SearchL sen1, psearch, p10, v100, tool1\WObj:=fixture1;

PDispOn \ExeP:=psearch, *, tool1 \WObj:=fixture1;

A search is carried out in which the robot’s searched position is stored in the position 

psearch. Any movement carried out after this starts from this position using a program 

displacement (parallel displacement). The latter is calculated based on the difference between 

the searched position and the programmed point (*) stored in the instruction. All positions are 

based on the fixture1 object coordinate system.

Syntax
PDispOn

[ [ ’\’ Rot ]

[’\’ ExeP ’:=’ < expression (IN) of robtarget>]’,’]

[ ProgPoint’ :=’ ] < expression (IN) of robtarget> ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata>

[ ´\’WObj’ :=’ < persistent (PERS) of wobjdata> ] ´;’

Related information

For information about See

Deactivation of program displacement PDispOff - Deactivates program displacement 
on page 316

Definition of program displacement using 
known frame

PDispSet - Activates program displacement 
using known frame on page 321

Coordinate systems Technical reference manual - System 
parameters, section Motion and I/O principles - 
Coordinate systems

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Continued



1 Instructions

1.115. PDispSet - Activates program displacement using known frame
RobotWare - OS

3213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.115. PDispSet - Activates program displacement using known frame

Usage

PDispSet (Program Displacement Set) is used to define and activate a program 

displacement using known frame. 

Program displacement is used, for example, when similar motion patterns are repeated at 

several different places in the program.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction PDispSet are illustrated below.

Example 1
VAR pose xp100 := [ [100, 0, 0], [1, 0, 0, 0] ];

...

PDispSet xp100;

Activation of the xp100 program displacement meaning that:

• The ProgDisp coordinate system is displaced 100 mm from the object coordinate 

system in the direction of the positive x-axis (see figure below).

• As long as this program displacement is active all positions will be displaced 100 mm 

in the direction of the x-axis.

The figure shows a 100 mm program displacement along the x-axis.

xx0500002199

Arguments
PDispSet DispFrame

DispFrame

Displacement Frame

Datatype: pose

The program displacement is defined as data of the type pose.

Continues on next page



1 Instructions

1.115. PDispSet - Activates program displacement using known frame
RobotWare - OS

3HAC 16581-1  Revision: J322

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Program displacement involves translating and/or rotating the ProgDisp coordinate system 

relative to the object coordinate system. Since all positions are related to the ProgDisp 

coordinate system, all programmed positions will also be displaced. See the figure below, 

which shows translation and rotation of a programmed position.

xx0500002204

Program displacement is activated when the instruction PDispSet is executed and remains 

active until some other program displacement is activated (the instruction PDispSet or 

PDispOn) or until program displacement is deactivated (the instruction PDispOff).

Only one program displacement can be active at the same time. Program displacements 

cannot be added to one another using PDispSet.

The program displacement is automatically reset

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Syntax
PDispSet

[ DispFrame ’:=’ ] < expression (IN) of pose> ’;’

Related information

For information about See

Deactivation of program displacement PDispOff - Deactivates program displacement 
on page 316

Definition of program displacement using 
two positions

PDispOn - Activates program displacement on 
page 317

Definition of data of the type pose pose - Coordinate transformations on page 1162

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Examples of how program displacement 
can be used

PDispOn - Activates program displacement on 
page 317

Continued



1 Instructions

1.116. ProcCall - Calls a new procedure
RobotWare - OS

3233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.116. ProcCall - Calls a new procedure

Usage

A procedure call is used to transfer program execution to another procedure. When the 

procedure has been fully executed the program execution continues with the instruction 

following the procedure call.

It is usually possible to send a number of arguments to the new procedure. These control the 

behavior of the procedure and make it possible for the same procedure to be used for different 

things.

Basic examples

Basic examples of the instruction ProcCall are illustrated below.

Example 1
weldpipe1;

Calls the weldpipe1  procedure.

Example 2
errormessage;

Set do1;

...

PROC errormessage()

TPWrite "ERROR";

ENDPROC

The errormessage procedure is called. When this procedure is ready the program 

execution returns to the instruction following the procedure call, Set do1.

Arguments
Procedure { Argument }

Procedure

Identifier

The name of the procedure to be called.

Argument

Data type: In accordance with the procedure declaration.

The procedure arguments (in accordance with the parameters of the procedure).

Basic examples

Basic examples of the instruction ProcCall are illustrated below.

Example 1
weldpipe2 10, lowspeed;

Calls the weldpipe2 procedure including two arguments.

Example 2
weldpipe3 10 \speed:=20;

Calls the weldpipe3 procedure including one mandatory and one optional argument.

Continues on next page



1 Instructions

1.116. ProcCall - Calls a new procedure
RobotWare - OS

3HAC 16581-1  Revision: J324

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The procedure’s arguments must agree with its parameters:

• All mandatory arguments must be included.

• They must be placed in the same order.

• They must be of the same data type.

• They must be of the correct type with respect to the access-mode (input, variable, or 

persistent).

A routine can call a routine which, in turn, calls another routine, etc. A routine can also call 

itself, i.e. a recursive call. The number of routine levels permitted depends on the number of 

parameters. More than 10 levels are usually permitted. 

Syntax
(EBNF)

<procedure> [ <argument list> ] ’;’

<procedure> ::= <identifier>

Related information

For information about See

Arguments, parameters Technical reference manual - RAPID overview, 
section Basic characteristics - Routines

Continued



1 Instructions

1.117. ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

3253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.117. ProcerrRecovery - Generate and recover from process-move error

Usage

ProcerrRecovery can be used to generate process error during robot movement and get the 

possibility to handle the error and restart the process and the movement from an ERROR 

handler.

Basic examples

Basic examples of the instruction ProcerrRecovery are illustrated below.

See also More examples on page 327.

The examples below are not realistic but are shown for pedagogic reasons.

Example 1
MoveL p1, v50, z30, tool2;

ProcerrRecovery \SyncOrgMoveInst;

MoveL p2, v50, z30, tool2; 

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StartMove;

RETRY;

ENDIF

The robot movement stops on its way to p1 and the program execution transfers to the ERROR 

handler in the routine that created the actual path on which the error occurred, in this case the 

path to MoveL p1. The movement is restarted with StartMove and the execution is 

continued with RETRY.

Example 2
MoveL p1, v50, fine, tool2;

ProcerrRecovery \SyncLastMoveInst;

MoveL p2, v50, z30, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StartMove;

RETRY;

ENDIF

The robot movement stops at once on its way to p2. The program execution transfers to the 

ERROR handler in the routine where the program is currently executing or is going to execute 

a move instruction when the error occurred, in this case MoveL p2. The movement is 

restarted with StartMove and the execution is continued with RETRY.

Continues on next page



1 Instructions

1.117. ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

3HAC 16581-1  Revision: J326

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ProcerrRecovery[\SyncOrgMoveInst] | [\SyncLastMoveInst] 

[\ProcSignal]

[\SyncOrgMoveInst] 

Data type: switch

The error can be handled in the routine that created the actual path on which the error 

occurred.

[\SyncLastMoveInst] 

Data type: switch

The error can be handled in the routine where the program is currently executing a move 

instruction when the error occurred.

If the program is currently not executing a move instruction when the error occurred then the 

transfer of the execution to the ERROR handler will be delayed until the program executes the 

next move instruction. This means that the transfer to the ERROR handler will be delayed if 

the robot is in a stop point or between the prefetch point and the middle of the corner path. 

The error can be handled in that routine.

[\ProcSignal]

Data type: signaldo

Optional parameter that let the user turn on/off the use of the instruction. If this parameter is 

used and the signal value is 0, an recoverable error will be thrown, and no process error will 

be generated.

Program execution

Execution of ProcerrRecovery in continuous mode results in the following:

• At once the robot is stopped on its path.

• The variable ERRNO is set to ERR_PATH_STOP.

• The execution is transferred to some ERROR handler according the rules for 

asynchronously raised errors.

This instruction does nothing in any step mode.

For description of asynchronously raised errors that are generated with  ProcerrRecovery 

see RAPID kernel reference/Error recovery/Asynchronously raised errors.

ProcerrRecovery can also be used in MultiMove system to transfer the execution to the 

ERROR handler in several program tasks if running in synchronized mode.

Continued

Continues on next page



1 Instructions

1.117. ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

3273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction ProcerrRecovery are illustrated below.

Example with ProcerrRecovery\SyncOrgMoveInst
MODULE user_module 

VAR intnum proc_sup_int; 

PROC main()

...

MoveL p1, v1000, fine, tool1;

do_process;

...

ENDPROC

PROC do_process()

my_proc_on;

MoveL p2, v200, z10, tool1;

MoveL p3, v200, fine, tool1;

my_proc_off;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

my_proc_on;

StartMove;

RETRY;

ENDIF

ENDPROC

TRAP iprocfail

my_proc_off;

ProcerrRecovery \SyncOrgMoveInst;

ENDTRAP

PROC my_proc_on()

SetDO do_myproc, 1;

CONNECT proc_sup_int WITH iprocfail;

ISignalDI di_proc_sup, 1, proc_sup_int;

ENDPROC

PROC my_proc_off()

SetDO do_myproc, 0;

IDelete proc_sup_int;

ENDPROC

ENDMODULE

Continued

Continues on next page



1 Instructions

1.117. ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

3HAC 16581-1  Revision: J328

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Asynchronously raised errors generated by ProcerrRecovery with switch 

\SyncOrgMoveInst can, in this example, be treated in the routine do_process because the 

path on which the error occurred is always created in the routine do_process.

A process flow is started by setting the signal do_myproc to 1. The signal di_proc_sup 

supervise the process, and an asynchronous error is raised if di_proc_sup becomes 1. In 

this simple example the error is resolved by setting do_myproc to 1 again before resuming 

the movement.

Example with ProcerrRecovery\SyncLastMoveInst
MODULE user_module

PROC main()

...

MoveL p1, v1000, fine, tool1;

do_process;

...

ENDPROC

PROC do_process()

proc_on;

proc_move p2, v200, z10, tool1;

proc_move p3, v200, fine, tool1;

proc_off;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StorePath;

p4 := CRobT(\Tool:=tool1);

! Move to service station and fix the problem

MoveL p4, v200, fine, tool1; 

RestoPath;

proc_on; 

StartMoveRetry;

ENDIF

ENDPROC

ENDMODULE

MODULE proc_module (SYSMODULE, NOSTEPIN)

VAR intnum proc_sup_int;

VAR num try_no := 0;

TRAP iprocfail

proc_off;

ProcerrRecovery \SyncLastMoveInst;

ENDTRAP

Continued

Continues on next page



1 Instructions

1.117. ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

3293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROC proc_on()

SetDO do_proc, 1;

CONNECT proc_sup_int WITH iprocfail;

ISignalDI di_proc_sup, 1, proc_sup_int;

ENDPROC

PROC proc_off()

SetDO do_proc, 0;

IDelete proc_sup_int;

ENDPROC

PROC proc_move (robtarget ToPoint, speeddata Speed, zonedata Zone, 

PERS tooldata Tool)

MoveL ToPoint, Speed, Zone, Tool; 

ERROR

IF ERRNO = ERR_PATH_STOP THEN

try_no := try_no + 1;

IF try_no < 4 THEN 

proc_on; 

StartMoveRetry;

ELSE 

RaiseToUser \Continue;

ENDIF

ENDPROC

ENDMODULE

Asynchronously raised errors generated by ProcerrRecovery with switch 

\SyncLastMoveInst can in this example be treated in the routine proc_move because all 

move instructions are always created in the routine proc_move. When program pointer is in 

routine do_process the transfer to ERROR handler will be delayed until running the next 

MoveL in routine proc_move. Note that the movements are always stopped at once.

A process flow is started by setting the signal do_myproc to 1. The signal di_proc_sup 

supervise the process, and an asynchronous error is raised if di_proc_sup becomes 1. In 

this simple example the error is resolved by setting do_myproc to 1 again before resuming 

the movement.

When using predefined NOSTEPIN routine we recommend using the option switch parameter 

\SyncLastMoveInst because then the predefined routine can make the decision to handle 

some error situation within the routine while others must be handled by the end user.

Error handling

Following recoverable errors can be generated. The errors can be handled in an error handler.

If the optional parameter \ProcSignal is used and if the signal is off when the instruction 

is executed, the system variable ERRNO is set to ERR_PROCSIGNAL_OFF and the execution 

continues in the error handler.

If there is no contact with the I/O unit, the system variable ERRNO is set to ERR_NORUNUNIT 

and the execution continues in the error handler.

Continued

Continues on next page



1 Instructions

1.117. ProcerrRecovery - Generate and recover from process-move error
RobotWare - OS

3HAC 16581-1  Revision: J330

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Error recovery from asynchronously raised process errors can only be done if the motion task 

with the process move instruction is executing on base level when the process error occurs. 

So error recovery can not be done if the program task with the process instruction executes in:

• any event routine

• any routine handler (ERROR, BACKWARD or UNDO)

• user execution level (service routine)

See RAPID reference manual - RAPID kernel, Error recovery, Asynchronously raised errors.

If no error handler with a StartMove + RETRY or a StartMoveRetry is used, the program 

execcution will hang. The only way to reset this is to do a PP to main.

Syntax
ProcerrRecovery

[ ’\’ SyncOrgMoveInst ] | [’ \’ SyncLastMoveInst ]

[ ’\’ ProcSignal’ :=’ ] < variable (VAR) of signaldo > ’;’

Related information

For information about See

Error handlers Technical reference manual - RAPID overview, 
section Basic Characteristics - Error Recovery

Asynchronously raised errors RAPID reference manual - RAPID kernel - Error 
recover

Propagates an error to user level RaiseToUser - Propagates an error to user level 
on page 337

Resume movement and program 
execution

StartMoveRetry - Restarts robot movement and 
execution on page 489

Continued



1 Instructions

1.118. PulseDO - Generates a pulse on a digital output signal
RobotWare - OS

3313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.118. PulseDO - Generates a pulse on a digital output signal

Usage

PulseDO is used to generate a pulse on a digital output signal.

Basic examples

Basic examples of the instruction PulseDO are illustrated below.

Example 1
PulseDO do15;

A pulse with a pulse length of 0.2 s is generated on the output signal do15.

Example 2
PulseDO \PLength:=1.0, ignition;

A pulse of length 1.0 s is generated on the signal ignition.

Example 3
! Program task MAIN

PulseDO \High, do3;

! At almost the same time in program task BCK1

PulseDO \High, do3;

Positive pulse (value 1) is generated on the signal do3 from two program tasks at almost the 

same time. It will result in one positive pulse with a pulse length longer than the default 0.2 

s or two positive pulses after each other with a pulse length of 0.2 s.

Arguments
PulseDO [ \High ] [ \PLength ] Signal

[ \High ]

High level

Data type: switch

Specifies that the signal value should always be set to high (value 1) when the instruction is 

executed independently of its current state.

[ \PLength ]

Pulse Length

Data type: num

The length of the pulse in seconds (0.001 - 2000 s). If the argument is omitted a 0.2 second 

pulse is generated.

Signal

Data type: signaldo

The name of the signal on which a pulse is to be generated.

Continues on next page



1 Instructions

1.118. PulseDO - Generates a pulse on a digital output signal
RobotWare - OS

3HAC 16581-1  Revision: J332

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The next instruction after PulseDO is executed directly after the pulse starts. The pulse can 

then be set/reset without affecting the rest of the program execution.

The figure below shows examples of generation of pulses on a digital output signal.

xx0500002217

The next instruction is executed directly after the pulse starts. The pulse can then be set/reset 

without affecting the rest of the program execution.

Limitations

The length of the pulse has a resolution off 0.001 seconds. Programmed values that differ 

from this are rounded off.

Continued

Continues on next page



1 Instructions

1.118. PulseDO - Generates a pulse on a digital output signal
RobotWare - OS

3333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

Following a recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT 

if there is no contact with the unit.

Syntax
PulseDO

[ ’\’High]

[ ’\’PLength’ :=’ < expression (IN) of num >] ´,’

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’;’

Related information

For information about See

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID summary - Input and output signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - I/O principles

Configuration of I/O Technical reference manual - System parameters

Continued



1 Instructions

1.119. RAISE - Calls an error handler
RobotWare-OS

3HAC 16581-1  Revision: J334

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.119. RAISE - Calls an error handler

Usage

RAISE is used to create an error in the program and then to call the error handler of the 

routine.

RAISE can also be used in the error handler to propagate the current error to the error handler 

of the calling routine.

This instruction can, for example, be used to jump back to a higher level in the structure of 

the program, e.g. to the error handler in the main routine if an error occurs at a lower level.

Basic examples

Basic examples of the instruction RAISE are illustrated below.

See also More examples on page 335.

Example 1
MODULE MainModule .

VAR errnum ERR_MY_ERR := -1;

PROC main()

BookErrNo ERR_MY_ERR;

IF di1 = 0 THEN

RAISE ERR_MY_ERR;

ENDIF

ERROR

IF ERRNO = ERR_MY_ERR THEN

TPWrite "di1 equals 0";

ENDIF

ENDPROC

ENDMODULE

For this implementation di1 equals 0 is regarded as an error. RAISE will force the execution 

to the error handler. In this example the user has created his own error number to handle the 

specific error. BookErrNo belongs to the base functionality Advanced RAPID.

Continues on next page



1 Instructions

1.119. RAISE - Calls an error handler
RobotWare-OS

3353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
RAISE [ Error no. ]

Error no.

Data type: errnum

Error number: Any number between 1 and 90 which the error handler can use to locate the 

error that has occurred (the ERRNO system variable).

It is also possible to book an error number outside the range 1-90 with the instruction 

BookErrNo.

The error number must be specified outside the error handler in a RAISE instruction in order 

to be able to transfer execution to the error handler of that routine.

If the instruction is present in a routine’s error handler then the error is propagated to the error 

handler of the calling routine. In this case the error number does not have to be specified.

More examples

More examples of the instruction RAISE are illustrated below.

Example 1
MODULE MainModule 

VAR num value1 := 10;

VAR num value2 := 0;

PROC main()

routine1;

ERROR

IF ERRNO = ERR_DIVZERO THEN

value2 := 1; 

RETRY;

ENDIF

ENDPROC

PROC routine1()

value1 := 5/value2;!This will lead to an error when value2 is 

equal to 0.

ERROR

RAISE;

ENDPROC

ENDMODULE

In this example the division with zero will result in an error. In the ERROR-handler RAISE will 

propagate the error to the ERROR-handler in the calling routine "main". The same error 

number remains active. RETRY will re-run the whole routine "routine1".

Continued

Continues on next page



1 Instructions

1.119. RAISE - Calls an error handler
RobotWare-OS

3HAC 16581-1  Revision: J336

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Program execution continues in the routine’s error handler. After the error handler has been 

executed the program execution can continue with: 

• the routine that called the routine in question (RETURN).

• the error handler of the routine that called the routine in question (RAISE).

A RAISE instruction in a routine’s error handler also has another feature. It can be used for 

long jump (see“ Error Recovery With Long Jump”). With a long jump it is possible to 

propagate an error from an error handler from a deep nested call chain to a higher level in one 

step.

If the RAISE instruction is present in a trap routine, the error is dealt with by the system’s 

error handler.

Error handling

If the error number is out of range then the system variable ERRNO is set to ERR_ILLRAISE 

(see "Data types - errnum"). This error can be handled in the error handler.

Syntax
(EBNF)

RAISE [<error number>] ’;’

<error number> ::= <expression>

Related information

For information about See

Error handling Technical reference manual - System parameters, 
section Basic Characteristics - Error Recovery

Error recovery with long jump Technical reference manual - System parameters, 
section Basic Characteristics - Error Recovery

Booking error numbers BookErrNo - Book a RAPID system error number 
on page 30

Continued



1 Instructions

1.120. RaiseToUser - Propagates an error to user level
RobotWare - OS

3373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.120. RaiseToUser - Propagates an error to user level

Usage

RaiseToUser is used in an error handler in nostepin routines to propagate the current error 

or any other defined error to the error handler at user level. User level is in this case the first 

routine in a call chain above a nostepin routine.

Basic examples

Basic examples of the instruction RaiseToUser are illustrated below.

Example 1
MODULE MyModule

VAR errnum ERR_MYDIVZERO:= -1;

PROC main()

BookErrNo ERR_MYDIVZERO;

...

routine1;

...

ERROR

IF ERRNO = ERR_MYDIVZERO THEN

TRYNEXT;

ELSE

RETRY;

ENDIF

ENDPROC

ENDMODULE

MODULE MySysModule (SYSMODULE, NOSTEPIN, VIEWONLY)

PROC routine1()

...

routine2;

...

UNDO

! Free allocated resources

ENDPROC

PROC routine2()

VAR num n:=0;

...

reg1:=reg2/n;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

RaiseToUser \Continue \ErrorNumber:=ERR_MYDIVZERO;

Continues on next page



1 Instructions

1.120. RaiseToUser - Propagates an error to user level
RobotWare - OS

3HAC 16581-1  Revision: J338

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ELSE

RaiseToUser \BreakOff;

ENDIF

ENDPROC

ENDMODULE

The division by zero in routine2 will propagate up to the error handler in main routine with 

the errno set to ERR_MYDIVZERO. The TRYNEXT instruction in main error handler will then 

cause the program execution to continue with the instruction after the division by zero in 

routine2. The \Continue switch controls this behavior.

If any other errors occur in routine2 then the \BreakOff switch forces the execution to 

continue from the error handler in the main routine. In this case the undo handler in routine1 

will be executed while raising it to user level. The RETRY instruction in the error handler in 

the main routine will execute routine1 from the beginning once again.

The undo handler in routine1 will also be executed in the \Continue case if a following RAISE 

or RETURN is done on the user level.

Arguments
RaiseToUser[ \Continue] | [ \BreakOff][ \ErrorNumber]

[\Continue]

Data type: switch

Continue the execution in the routine that caused the error.

[\BreakOff]

Data type:switch

Break off the call chain and continue the execution at the user level. Any undo handler in the 

call chain will be executed apart from the undo handler in the routine that raised the error.

One of the arguments \Continue or \BreakOff must be programmed to avoid an execution 

error.

[\ErrorNumber]  

Data type: errnum

Any number between 1 and 90 that the error handler can use to locate the error that has 

occurred (the ERRNO system variable).

It is also possible to book an error number outside the range 1-90 with the instruction 

BookErrNo.

If the argument \ErrorNumber is not specified then the original error number propagates to 

the error handler in the routine at user level.

Continued

Continues on next page



1 Instructions

1.120. RaiseToUser - Propagates an error to user level
RobotWare - OS

3393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

RaiseToUser can only be used in an error handler in a nostepin routine.

Program execution continues in the error handler of the routine at user level. The error 

number remains active if the optional parameter \ErrorNumber is not present. The system’s 

error handler deals with the error if there is no error handler on user level. The system’s error 

handler is called if none of the argument \Continue or \BreakOff is specified.

There are two different behaviors after the error handler has been executed. The program 

execution continues in the routine with RaiseToUser if the \Continue switch is on. The 

program execution continues at the user level if the \BreakOff switch is on. 

Program execution can continue with: 

• the instruction that caused the error (RETRY)

• the following instruction (TRYNEXT)

• the error handler of the routine that called the routine at user level (RAISE)

• the routine that called the routine at user level (RETURN)

Error handling

If the error number is out of range then the system variable ERRNO is set to ERR_ILLRAISE 

(see "Data types - errnum"). The system’s error handler deals with this error.

Syntax
RaiseToUser 

[ ‘\’Continue ] 

´|’ [ ‘\’BreakOff ] 

[ ‘\’ErrorNumber’ :=’ ] < expression (IN) of errnum>‘;’

Related information

For information about See

Error handling Technical reference manual - RAPID overview, 
section Basic Characteristics - Error Recovery

Undo handling Technical reference manual - RAPID overview, 
section Basic Characteristics - UNDO

Booking error numbers BookErrNo - Book a RAPID system error number 
on page 30

Continued



1 Instructions

1.121. ReadAnyBin - Read data from a binary serial channel or file
RobotWare - OS

3HAC 16581-1  Revision: J340

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.121. ReadAnyBin - Read data from a binary serial channel or file

Usage

ReadAnyBin (Read Any Binary) is used to read any type of data from a binary serial channel 

or file.

Basic examples

Basic examples of the instruction ReadAnyBin are illustrated below.

See also More examples on page 341.

Example 1
VAR iodev channel2;

VAR robtarget next_target;

... 

Open "com2:", channel2 \Bin;

ReadAnyBin channel2, next_target;

The next robot target to be executed, next_target, is read from the channel referred to by 

channel2.

Arguments
ReadAnyBin IODevice Data [\Time]

IODevice

Data type: iodev

The name (reference) of the binary serial channel or file to be read.

Data

Data type: ANYTYPE

The VAR or PERS to which the read data will be stored.

[\Time]

Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is not specified 

then the max. time is set to 60 seconds. To wait forever, use the predefined constant 

WAIT_MAX.

If this time runs out before the read operation is finished then the error handler will be called 

with the error code ERR_DEV_MAXTIME. If there is no error handler then the execution will 

be stopped.

The timeout function is also in use during program stop and will be noticed by the RAPID 

program at program start.

Program execution

As many bytes as are required for the specified data are read from the specified binary serial 

channel or file.

Continues on next page



1 Instructions

1.121. ReadAnyBin - Read data from a binary serial channel or file
RobotWare - OS

3413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction ReadAnyBin are illustrated below.

Example 1
CONST num NEW_ROBT:=12;

CONST num NEW_WOBJ:=20;

VAR iodev channel; 

VAR num input;

VAR robtarget cur_robt;

VAR wobjdata cur_wobj;

Open "com2:", channel\Bin;

! Wait for the opcode character

input := ReadBin (channel \Time:= 0.1);

TEST input

CASE NEW_ROBT:

ReadAnyBin channel, cur_robt;

CASE NEW_WOBJ:

ReadAnyBin channel, cur_wobj;

ENDTEST

Close channel;

As a first step the opcode of the message is read from the serial channel. According to this 

opcode a robtarget or a wobjdata is read from the serial channel.

Error handling

If an error occurs during reading then the system variable ERRNO is set to ERR_FILEACC.

If timeout before the read operation is finished then the system variable ERRNO is set to 

ERR_DEV_MAXTIME.

If there is a checksum error in the data read then the system variable ERRNO is set to 

ERR_RANYBIN_CHK. 

If the end of the file is detected before all the bytes are read then the system variable ERRNO 

is set to ERR_RANYBIN_EOF.

These errors can then be dealt with by the error handler.

Limitations

This instruction can only be used for serial channels or files that have been opened for binary 

reading.

The data to be read by this instruction ReadAnyBin must be a value data type such as num, 

bool, or string. Record, record component, array, or array element of these value data types 

can also be used. Entire data or partial data with semi-value or non-value data types cannot 

be used.

NOTE!

The VAR or PERS variable, for storage of the read data, can be updated in several steps. 

Therefore, always wait until the whole data structure is updated before using read data from 

a TRAP or another program task.

Continued

Continues on next page



1 Instructions

1.121. ReadAnyBin - Read data from a binary serial channel or file
RobotWare - OS

3HAC 16581-1  Revision: J342

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Because WriteAnyBin-ReadAnyBin are designed to only handle internal binary controller 

data with serial channel or files between or within IRC5 control systems, no data protocol is 

released and the data cannot be interpreted on any PC.

Control software development can break the compatibility so it is not possible to use 

WriteAnyBin-ReadAnyBin between different software versions of RobotWare. If a 

WriteAnyBin to file is done with RobotWare version 5.07, the file cannot be read by 

instruction ReadAnyBin with RobotWare version 5.08. And the opposite case, if a 

WriteAnyBin to file is done with RobotWare version 5.08, the file cannot be read by 

instruction ReadAnyBin with RobotWare version 5.07.

Version 0 for IRC5 controller software equal or less than RW5.07

Version 1 for IRC5 controller software equal or greater than RW5.08

Always compatible within all revisions of any software versions.

Syntax
ReadAnyBin

[IODevice’:=’] <variable (VAR) of iodev>’,’

[Data’:=’] <var or pers (INOUT) of ANYTYPE>

[’\’Time’:=’ <expression (IN) of num>]’;’

Related information

For information about See

Opening, etc. of serial channels or files Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Write data to a binary serial channel or 
file

WriteAnyBin - Writes data to a binary serial 
channel or file on page 713

Continued



1 Instructions

1.122. ReadBlock - read a block of data from device
Sensor Interface

3433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.122. ReadBlock - read a block of data from device

Usage

ReadBlock is used to read a block of data from a device connected to the serial sensor 

interface. The data is stored in a file.

The sensor interface communicates with two sensors over serial channels using the RTP1 

transport protocol.

This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

• Name “COM1:”

• Connector “COM1”

• Baudrate 19200

COM_TRP:

• Name “sen1:” 

• Type “RTP1”

• PhyChannel “COM1”

Basic examples

Basic examples of the instruction ReadBlock are illustrated below.

Example 1
CONST string SensorPar := "flp1:senpar.cfg";

CONST num ParBlock:= 1;

! Connect to the sensor device "sen1:" (defined in sio.cfg).

SenDevice "sen1:";

! Read sensor parameters from sensor datablock 1

! and store on flp1:senpar.cfg

ReadBlock "sen1:", ParBlock, SensorPar;

Arguments
ReadBlock device BlockNo FileName [ \TaskName ]

device

Data type: string

The I/O device name configured in sio.cfg for the sensor used.

BlockNo

Data type: num

The argument BlockNo is used to select the data block in the sensor to be read.

Continues on next page



1 Instructions

1.122. ReadBlock - read a block of data from device
Sensor Interface

3HAC 16581-1  Revision: J344

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

FileName

Data type: string

The argument FileName is used to define a file to which data is written from the data block 

in the sensor selected by the BlockNo argument.

[ \TaskName ]

Data type: string

The argument TaskName makes it possible to access devices in other RAPID tasks.

Fault management

Syntax
ReadBlock

[ device ‘:=’ ] < expression(IN) of string>’,’

[ BlockNo’ :=’ ] < expression (IN) of num > ‘,’

[ FileName’ :=’ ] < expression (IN) of string > ‘,’

[ ’\’ TaskName’ :=’ < expression (IN) of string > ] ‘;’

Related information

Error constant (ERRNO value) Description

SEN_NO_MEAS Measurement failure

SEN_NOREADY Sensor unable to handle command

SEN_GENERRO General sensor error

SEN_BUSY Sensor busy

SEN_UNKNOWN Unknown sensor

SEN_EXALARM External sensor error

SEN_CAALARM Internal sensor error

SEN_TEMP Sensor temperature error

SEN_VALUE Illegal communication value

SEN_CAMCHECK Sensor check failure

SEN_TIMEOUT Communication error

For information about See

Connect to a sensor device SenDevice - connect to a sensor device on page 425

Write a sensor variable WriteVar - write variable on page 729

Read a sensor variable ReadVar - Read variable from a device on page 958

Write a sensor data block WriteBlock - write block of data to device on page 719

Configuration of sensor com-
munication

Technical reference manual - System parameters, section 
Communication

Continued



1 Instructions

1.123. ReadCfgData - Reads attribute of a system parameter
RobotWare - OS

3453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.123. ReadCfgData - Reads attribute of a system parameter

Usage

ReadCfgData is used to read one attribute of a system parameter (configuration data).

Besides to reading named parameters it is also possible to search for unnamed parameters.

Basic examples

Basic examples of the instruction ReadCfgData are illustrated below. Both of these 

examples show how to read named parameters.

Example 1
VAR num offset1;

...

ReadCfgData "/MOC/MOTOR_CALIB/rob1_1","cal_offset",offset1;

Reads the value of the calibration offset for axis 1 for rob_1 into the num variable offset1.

Example 2
VAR string io_unit;

...

ReadCfgData "/EIO/EIO_SIGNAL/process_error","Unit",io_unit;

Reads the name of the I/O unit where the signal process_error is defined into the string 

variable io_unit.

Arguments
ReadCfgData InstancePath Attribute CfgData [\ListNo]

InstancePath

Data type: string

Specifies a path to the parameter to be accessed. 

For named parameters the format of this string is /DOMAIN/TYPE/ParameterName.

For unnamed parameters the format of this string is /DOMAIN/TYPE/Attribute/

AttributeValue.

Attribute

Data type: string

The name of the attribute of the parameter to be read.

CfgData

Data type: any type

The variable where the attribute value will be stored. Depending on the attribute type the valid 

types are bool, num, or string.

Continues on next page



1 Instructions

1.123. ReadCfgData - Reads attribute of a system parameter
RobotWare - OS

3HAC 16581-1  Revision: J346

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\ListNo]

Data type: num

Variable holding the instance number of the Attribute + AttributeValue to be found. 

First occurrence of the Attribute + AttributeValue has an instance number 0. If more 

instances are searched for then the returned value in \ListNo will be incremented with 1. 

Otherwise, if there are no more instances then the returned value will be -1. The predefined 

constant END_OF_LIST can be used to check if more instances are to be search for.

Program execution

The value of the attribute specified by the Attribute argument is stored in the variable 

specified by the CfgData argument.

If using format /DOMAIN/TYPE/ParameterName in InstancePath, only named 

parameters can be accessed, i.e. parameters where the first attribute is name, Name, or NAME.

For unnamed parameters use the optional parameter \ListNo to selects from which instance 

to read the attribute value. It is updated after each successful read to the next available 

instance.

More examples

More examples of the instruction ReadCfgdata are illustrated below. Both these examples 

show how to read unnamed parameters.

Example 1
VAR num list_index;

VAR string read_str;

...

list_index:=0;

ReadCfgData "/EIO/EIO_CROSS/Act1/do_13", "Res", read_str, 

\ListNo:=list_index;

TPWrite "Resultant signal for signal do_13 is: " + read_str;

Reads the resultant signal for the unnamed digital actor signal di_13 and places the name in 

the string variable read_str.

In this example domain EIO has the following cfg code:

EIO_CROSS:

-Res "di_1" -Act1 "do_2"

-Res "di_2" -Act1 "do_2"

-Res "di_13" -Act1 "do_13"

Continued

Continues on next page



1 Instructions

1.123. ReadCfgData - Reads attribute of a system parameter
RobotWare - OS

3473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
VAR num list_index;

VAR string read_str;

...

list_index:=0;

WHILE list_index <> END_OF_LIST DO

ReadCfgData "/EIO/EIO_SIGNAL/Unit/USERIO", "Name", read_str, 

\ListNo:=list_index;

IF list_index <> END_OF_LIST THEN

TPWrite "Signal: " + read_str;

ENDIF

ENDWHILE

Read the names of all signals defined for the I/O unit USERIO.

In this example domain EIO has the following cfg code:

EIO_SIGNAL:

-Name "USERDO1" -SignalType "DO" -Unit "USERIO" -UnitMap "0"

-Name "USERDO2" -SignalType "DO" -Unit "USERIO" -UnitMap "1"

-Name "USERDO3" -SignalType "DO" -Unit "USERIO" -UnitMap "2"

Error handling

If it is not possible to find the data specified with “InstancePath + Attribute” in the 

configuration database then the system variable ERRNO is set to ERR_CFG_NOTFND. 

If the data type for parameter CfgData is not equal to the real data type for the found data 

specified with“InstancePath + Attribute” in the configuration database then the system 

variable ERRNO is set to ERR_CFG_ILLTYPE.

If trying to read internal data then the system variable ERRNO is set to ERR_CFG_INTERNAL.

If variable in argument \ListNo has a value outside range of available instances (0 ... n) 

when executing the instruction then ERRNO is set to ERR_CFG_OUTOFBOUNDS.

These errors can then be handled in the error handler.

Limitations

The conversion from system parameter units (m, radian, second, etc.) to RAPID program 

units (mm, degree, second, etc.) for CfgData of data type num must be done by the user in 

the RAPID program.

If using format /DOMAIN/TYPE/ParameterName in InstancePath then only named 

parameters can be accessed, i.e. parameters where the first attribute is name, Name, or NAME.

RAPID strings are limited to 80 characters. In some cases this can be in theory too small for 

the definition InstancePath, Attribute or CfgData.

Predefined data

The predefined constant END_OF_LIST with value -1 can be used to stop reading when no 

more instances can be found.

Continued

Continues on next page



1 Instructions

1.123. ReadCfgData - Reads attribute of a system parameter
RobotWare - OS

3HAC 16581-1  Revision: J348

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ReadCfgData

[ InstancePath ’:=’ ] < expression (IN) of string >’,’

[ Attribute’ :=’ ] < expression (IN) of string >’,’

[ CfgData’ :=’ ] < variable (VAR) of anytype >

[’\’ListNo’:=’ < variable (VAR) of num >]’;’

Related information

For information about See

Definition of string string - Strings on page 1195

Write attribute of a system parameter WriteCfgData - Writes attribute of a system 
parameter on page 721

Get robot name in current task RobName - Get the TCP robot name on page 966

Configuration Technical reference manual - System parameters

Continued



1 Instructions

1.124. ReadErrData - Gets information about an error
RobotWare - OS

3493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.124. ReadErrData - Gets information about an error

Usage

ReadErrData is to be used in a trap routine, to get information (domain, type, number and 

intermixed strings %s etc.) about an error, a state change, or a warning that caused the trap 

routine to be executed.

Basic examples

Basic examples of the instruction ReadErrData are illustrated below.

See also More examples on page 350

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

VAR string string1;

VAR string string2;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number,

err_type \Str1:=string1 \Str2:=string2;

ENDTRAP

When an error is trapped to the trap routine trap_err the error domain, the error number, 

the error type, and the two first intermixed strings in the error message are saved into 

appropriate variables.

Arguments
ReadErrData TrapEvent ErrorDomain ErrorId ErrorType 

[\Str1] [\Str2] [\Str3] [\Str4] [\Str5]

TrapEvent

Data type: trapdata

Variable containing the information about what caused the trap to be executed.

ErrorDomain

Data type: errdomain

Variable to store the error domain to which the error, state change, or warning that occurred 

belongs. Ref. to predefined data of type errdomain.

ErrorId

Data type: num

Variable to store the number of the error that occurred. The error number is returned without 

the first digit (error domain) and without the initial zeros of the complete error number.

E.g. 10008 Program restarted is returned as 8.

Continues on next page



1 Instructions

1.124. ReadErrData - Gets information about an error
RobotWare - OS

3HAC 16581-1  Revision: J350

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ErrorType

Data type: errtype

Variable to store the type of event such as error, state change, or warning that occurred. Ref. 

to predefined data of type errtype.

[ \Str1 ] ... [ \Str5 ]

Data type: string

Update the specified string variable with argument that is intermixed in the error message. 

There could be up to five arguments in a message of type %s, %f, %d or %ld, which always 

will be converted to a string at execution of this instruction. Str1 will hold the first argument, 

Str2 will hold the second argument, and so on. Information about how many arguments there 

are in a message is found in Operating manual - Trouble shooting. The intermixed arguments 

is marked as arg in that document.

Program execution

The ErrorDomain, ErrorId, ErrorType and Str1 ... Str5 variables are updated 

according to the contents of TrapEvent.

If different events are connected to the same trap routine then the program must make sure 

that the event is related to error monitoring. This can be done by testing that INTNO matches 

the interrupt number used in the instruction IError;

More examples

More examples of the instruction ReadErrData are illustrated below.

Example 1
VAR intnum err_interrupt;

VAR trapdata err_data;

VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

...

CONNECT err_interrupt WITH trap_err;

IError COMMON_ERR, TYPE_ERR, err_interupt;

...

IDelete err_interrupt;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

! Set domain no 1 ... 11

SetGO go_err1, err_domain;

! Set error no 1 ...9999

SetGO go_err2, err_number;

ENDTRAP

When an error occurs (only errors, not warning or state change) the error number is retrieved 

in the trap routine and its value is used to set 2 groups of digital output signals.

Continued

Continues on next page



1 Instructions

1.124. ReadErrData - Gets information about an error
RobotWare - OS

3513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitation

It is not possible obtain information about internal errors.

Syntax
ReadErrData

[TrapEvent ’:=’] <variable (VAR) of trapdata>’,’

[ErrorDomain’ :=’] <variable (VAR) of errdomain>’,’

[ErrorId’:=’] <variable (VAR) of num>’,’

[ErrorType’ :=’] <variable (VAR) of errtype>

[‘\’Str1 ´:=’<variable (VAR) of string>]

[‘\’Str2 ´:=’<variable (VAR) of string>]

[‘\’Str3 ´:=’<variable (VAR) of string>]

[‘\’Str4 ´:=’<variable (VAR) of string>]

[‘\’Str5 ´:=’<variable (VAR) of string>]’;’

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID summary - Interrupts

More information on interrupt 
management

Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupts

Error domains, predefined constants errdomain - Error domain on page 1106

Error types, predefined constants errtype - Error type on page 1115

Orders an interrupt on errors IError - Orders an interrupt on errors on page 126

Get interrupt data for current TRAP GetTrapData - Get interrupt data for current TRAP on 
page 115

Continued



1 Instructions

1.125. ReadRawBytes - Read rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J352

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.125. ReadRawBytes - Read rawbytes data

Usage

ReadRawBytes is used to read data of type rawbytes from a device opened with Open\Bin.

Basic examples

Basic examples of the instruction ReadRawBytes are illustrated below.

Example 1
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num float := 0.2;

VAR string answer;

ClearRawBytes raw_data_out;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data_out;

PackRawBytes float, raw_data_out, (RawBytesLen(raw_data_out)+1) 

\Float4;

Open "/FC1:/dsqc328_1", io_device \Bin;

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in \Time:=1;

Close io_device;

UnpackRawBytes raw_data_in, 1, answer \ASCII:=10;

In this example raw_data_out is cleared and then packed with DeviceNet header and a float 

with value 0.2.

A device, "/FC1:/dsqc328_1", is opened and the current valid data in raw_data_out is 

written to the device. Then the program waits for at most 1 second to read from the device, 

which is stored in the raw_data_in.

After having closed the device "/FC1:/dsqc328_1", the read data is unpacked as a string 

of characters and stored in answer.

Arguments
ReadRawBytes IODevice RawData [\Time]

IODevice

Data type: iodev

IODevice is the identifier of the device from which data shall be read.

RawData

Data type: rawbytes

RawData is the data container that stores read data from IODevice starting at index 1.

Continues on next page



1 Instructions

1.125. ReadRawBytes - Read rawbytes data
RobotWare - OS

3533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Time]

Data type: num

The max. time for the reading operation (timeout) in seconds (resolution 0,001s). If this 

argument is not specified then the max. time is set to 60 seconds. To wait forever, use the 

predefined constant WAIT_MAX.

If this time runs out before the reading operation is finished then the error handler will be 

called with the error code ERR_DEV_MAXTIME. If there is no error handler then the execution 

will be stopped.

The timeout function is also in use during program stop and will be noticed by the RAPID 

program at program start.

Program execution

During program execution the data is read from the device indicated by IODevice.

If using WriteRawBytes for field bus commands such as DeviceNet then the field bus 

always sends an answer. The answer must be handled in RAPID with the ReadRawBytes 

instruction.

The current length of valid bytes in the RawData variable is set to the read number of bytes. 

The data starts at index 1 in RawData.

Error handling

If an error occurs during reading then the system variable ERRNO is set to ERR_FILEACC.

If time out before the read operation is finished then nothing in the variable RawData is 

affected, and the system variable ERRNO is set to ERR_DEV_MAXTIME. 

These errors can then be dealt with by the error handler.

Syntax
ReadRawBytes

[IODevice ’:=’ ] < variable (VAR) of iodev>’ ,’

[RawData ’:=’ ] < variable (VAR) of rawbytes> ’,’

[ ’\’ Time ´:=’ < expression (IN) of num>] ’;’

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data 
on page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of 
rawbytes data on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of 
rawbytes data on page 67

Pack DeviceNet header into rawbytes 
data

PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data 
on page 290

Write rawbytes data WriteRawBytes - Write rawbytes data on page 
725

Continued

Continues on next page



1 Instructions

1.125. ReadRawBytes - Read rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J354

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes 
data on page 658

For information about See

Continued



1 Instructions

1.126. RemoveDir - Delete a directory
RobotWare - OS

3553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.126. RemoveDir - Delete a directory

Usage

RemoveDir is used to remove a directory. 

The user must have write and execute permission for the directory and the directory must be 

empty.

Basic examples

Basic examples of the instruction RemoveDir are illustrated below.

Example 1
RemoveDir "HOME:/mydir";

In this example the mydir directory under HOME: is deleted.

Arguments
RemoveDir Path

Path

Data type: string

The name of the directory to be removed, specified with full or relative path.

Error handling

If the directory does not exist, or the directory is not empty, or the user does not have write 

and execute permission to the library then the system variable ERRNO is set to ERR_FILEACC. 

This error can then be handled in the error handler.

Syntax
RemoveDir 

[ Path’:=’ ] < expression (IN) of string>’;’

Related information

For information about See

Directory dir - File directory structure on page 1103

Open a directory OpenDir - Open a directory on page 285

Read a directory ReadDir - Read next entry in a directory on 
page 944

Close a directory CloseDir - Close a directory on page 56

Make a directory MakeDir - Create a new directory on page 
218

Rename a file RenameFile - Rename a file on page 357

Remove a file RemoveFile - Delete a file on page 356

Copy a file CopyFile - Copy a file on page 65

Check file type IsFile - Check the type of a file on page 878

Check file size FileSize - Retrieve the size of a file on page 
842

Check file system size FSSize - Retrieve the size of a file system on 
page 848



1 Instructions

1.127. RemoveFile - Delete a file
RobotWare - OS

3HAC 16581-1  Revision: J356

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.127. RemoveFile - Delete a file

Usage

RemoveFile is used to remove a file. The user must have write and execute permission for 

the directory where the file resides and the user must have write permission for the file itself.

Basic examples

Basic examples of the instruction RemoveFile are illustrated below.

Example 1
RemoveFile "HOME:/mydir/myfile.log";

In this example the file myfile.log in directory mydir on disk HOME: is deleted.

Arguments
RemoveFile Path

Path

Data type: string

The name of the file to be deleted, specified with full or relative path.

Error handling

If the file does not exist then the system variable ERRNO is set to ERR_FILEACC. This error 

can then be handled in the error handler.

Syntax
RemoveFile 

[ Path’:=’ ] < expression (IN) of string>’;’

Related information

For information about See

Make a directory MakeDir - Create a new directory on page 
218

Remove a directory RemoveDir - Delete a directory on page 355

Rename a file RenameFile - Rename a file on page 357

Copy a file CopyFile - Copy a file on page 65

Check file type IsFile - Check the type of a file on page 878

Check file size FileSize - Retrieve the size of a file on page 
842

Check file system size FSSize - Retrieve the size of a file system on 
page 848



1 Instructions

1.128. RenameFile - Rename a file
RobotWare - OS

3573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.128. RenameFile - Rename a file

Usage

RenameFile is used to give a new name to an existing file. It can also be used to move a file 

from one place to another in the directory structure.

Basic examples

Basic examples of the instruction RenameFile are illustrated below.

Example 1
RenameFile "HOME:/myfile", "HOME:/yourfile;

The file myfile is given the name yourfile.

RenameFile "HOME:/myfile", "HOME:/mydir/yourfile";

The file myfile is given the name yourfile and is moved to the directory mydir.

Arguments
RenameFile OldPath NewPath

OldPath

Data type: string

The complete path of the file to be renamed.

NewPath

Data type: string

The complete path of the renamed file.

Program execution

The file specified in OldPath will be given the name specified in NewPath. If the path in 

NewPath is different from the path in OldPath then the file will also be moved to the new 

location.

Error Handling

If the file specified in NewPath already exists then the system variable ERRNO is set to 

ERR_FILEEXIST. This error can then be handled in the error handler.

Syntax
RenameFile

[ OldPath’ :=’ ] < expression (IN) of string > ’,’

[ NewPath’ :=’ ] < expression (IN) of string >’;’

Continues on next page



1 Instructions

1.128. RenameFile - Rename a file
RobotWare - OS

3HAC 16581-1  Revision: J358

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Make a directory MakeDir - Create a new directory on page 
218

Remove a directory RemoveDir - Delete a directory on page 355

Remove a file RemoveFile - Delete a file on page 356

Copy a file CopyFile - Copy a file on page 65

Check file type IsFile - Check the type of a file on page 878

Check file size FileSize - Retrieve the size of a file on page 
842

Check file system size FSSize - Retrieve the size of a file system on 
page 848

Continued



1 Instructions

1.129. Reset - Resets a digital output signal
RobotWare - OS

3593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.129. Reset - Resets a digital output signal

Usage

Reset is used to reset the value of a digital output signal to zero.

Basic examples

Basic examples of the instruction Reset are illustrated below.

Example 1
Reset do15;

The signal do15 is set to 0.

Example 2
Reset weld;

The signal weld is set to 0.

Arguments
Reset Signal

Signal

Data type: signaldo

The name of the signal to be reset to zero.

Program execution

The true value depends on the configuration of the signal. If the signal is inverted in the 

system parameters then this instruction causes the physical channel to be set to 1.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if there is no contact with the unit.

Syntax
Reset

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’;’

Related information

For information about See

Setting a digital output signal Set - Sets a digital output signal on page 427

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID summary - Input and output 
signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - I/O principles

Configuration of I/O Technical reference manual - System 
parameters



1 Instructions

1.130. ResetPPMoved - Reset state for the program pointer moved in manual mode
RobotWare - OS

3HAC 16581-1  Revision: J360

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.130. ResetPPMoved - Reset state for the program pointer moved in manual mode

Usage

ResetPPMoved reset state for the program pointer moved in manual mode. 

PPMovedInManMode returns TRUE if the user has moved the program pointer while the 

controller is in manual mode - that is, the operator key is at Man Reduced Speed or Man Full 

Speed. The program pointer moved state is reset when the key is switched from Auto to Man, 

or when using the instruction ResetPPMoved.

Basic examples

Basic example of the instruction ResetPPMoved is illustrated below.

Example 1
IF PPMovedInManMode() THEN

WarnUserOfPPMovement;

! DO THIS ONLY ONCE

ResetPPMoved;

DoJob;

ELSE

DoJob;

ENDIF

Program execution

Resets state for the program pointer moved in manual mode for current program task.

Syntax
ResetPPMoved’;’

Related information

For information about See

Test whether program pointer has been 
moved in manual mode

PPMovedInManMode - Test whether the 
program pointer is moved in manual mode on 
page 936



1 Instructions

1.131. ResetRetryCount - Reset the number of retries
RobotWare - OS

3613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.131. ResetRetryCount - Reset the number of retries

Usage

ResetRetryCount is used to reset the number of retries that has been done from an error 

handler. The maximum number of retries that can be done is defined in the configuration.

Basic examples

Basic examples of the instruction ResetRetryCount are illustrated below.

Example 1
VAR num myretries := 0;

...

ERROR

IF myretries > 2 THEN

ResetRetryCount;

myretries := 0;

TRYNEXT;

ENDIF

myretries:= myretries + 1;

RETRY;

...

This program will retry the faulty instruction 3 times and then try the next instruction. The 

internal system retry counter is reset before trying the next instruction (even if this is done by 

the system at TRYNEXT).

Program execution

For every RETRY made from an error handler an internal system counter will check that the 

maximum number of retries, specified in the configuration, isn’t exceeded. Executing the 

instruction ResetRetryCount will reset the counter and make it possible to redo a 

maximum number of retries again.

Syntax
ResetRetryCount ’;’

Related information

For information about See

Error handlers Technical reference manual - RAPID overview, section 
Basic Characteristics - Error Recovery

Resume execution after an error RETRY - Resume execution after an error on page 364

Configure maximum number of 
retries

Technical reference manual - System parameters, 
section System Misc

Number of remaining retries RemainingRetries - Remaining retries left to do on page 
963



1 Instructions

1.132. RestoPath - Restores the path after an interrupt
RobotWare - OS

3HAC 16581-1  Revision: J362

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.132. RestoPath - Restores the path after an interrupt

Usage

RestoPath is used to restore a path that was stored at a previous stage using the instruction 

StorePath.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction RestoPath are illustrated below.

See also More examples below.

Example 1
RestoPath;

Restores the path that was stored earlier using StorePath.

Program execution

The current movement path of the robot and the external axes are deleted and the path stored 

earlier using StorePath is restored. Note that nothing moves until the instruction 

StartMove is executed or a return is made using RETRY from an error handler.

More examples

More examples of how to use the instruction RestoPath are illustrated below.

Example 1
ArcL p100, v100, seam1, weld5 \Weave:=weave1, z10, gun1;

...

ERROR

IF ERRNO=AW_WELD_ERR THEN

gun_cleaning;

StartMoveRetry;

ENDIF

...

PROC gun_cleaning()

VAR robtarget p1;

StorePath;

p1 := CRobT();

MoveL pclean, v100, fine, gun1;

...

MoveL p1, v100, fine, gun1;

RestoPath;

ENDPROC

In the event of a welding error the program execution continues in the error handler of the 

routine which in turn calls gun_cleaning. The movement path being executed at the time 

is then stored and the robot moves to the position pclean where the error is rectified. When 

this has been done, the robot returns to the position where the error occurred, p1, and stores 

Continues on next page



1 Instructions

1.132. RestoPath - Restores the path after an interrupt
RobotWare - OS

3633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

the original movement once again. The weld then automatically restarts, meaning that the 

robot is first reversed along the path before welding starts and ordinary program execution 

can continue.

Limitations

Only the movement path data is stored with the instruction StorePath. If the user wants to 

order movements on the new path level then the actual stop position must be stored directly 

after StorePath and before RestoPath make a movement to the stored stop position on the 

path.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point, otherwise restart after 

power failure will not be possible.

RestoPath cannot be executed in a RAPID routine connected to any of following special 

system events: PowerOn, Stop, QStop, Restart or Step.

Syntax
RestoPath´;´

Related information

For information about See

Storing paths StorePath - Stores the path when an interrupt occurs on 
page 521

More examples StorePath - Stores the path when an interrupt occurs on 
page 521

PathRecStart - Start the path recorder on page 308

SyncMoveSuspend - Set independent-semicoordinated 
movements on page 543

Continued



1 Instructions

1.133. RETRY - Resume execution after an error
RobotWare - OS

3HAC 16581-1  Revision: J364

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.133. RETRY - Resume execution after an error

Usage

The RETRY instruction is used to resume program execution after an error starting with (re-

executing) the instruction that caused the error.

Basic examples

Basic examples of the instruction RETRY are illustrated below.

Example 1
reg2 := reg3/reg4;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

reg4 :=1;

RETRY;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero) then a 

jump is made to the error handler, which initializes reg4. The RETRY instruction is then used 

to jump from the error handler and another attempt is made to complete the division.

Program execution

Program execution continues with (re-executes) the instruction that caused the error. 

Error handling

If the maximum number of retries (4 retries) is exceeded then the program execution stops 

with an error message. The maximum number of retries can be configured in System 

Parameters (type System Misc).

Limitations

The instruction can only exist in a routine’s error handler. If the error was created using a 

RAISE instruction then program execution cannot be restarted with a RETRY instruction. Then 

the instruction TRYNEXT should be used.

Syntax
RETRY ’;’

Related information

For information about See

Error handlers Technical reference manual - RAPID overview, 
section Basic Characteristics-Error Recovery

Configure maximum number of retries Technical reference manual - System 
parameters, section System Misc

Continue with the next instruction TRYNEXT - Jumps over an instruction which has 
caused an error on page 636



1 Instructions

1.134. RETURN - Finishes execution of a routine
RobotWare - OS

3653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.134. RETURN - Finishes execution of a routine

Usage

RETURN is used to finish the execution of a routine. If the routine is a function then the 

function value is also returned.

Basic examples

Basic examples of the instruction RETURN are illustrated below.

Example 1
errormessage;

Set do1;

...

PROC errormessage()

IF di1=1 THEN

RETURN;

ENDIF

TPWrite "Error";

ENDPROC

The errormessage procedure is called. If the procedure arrives at the RETURN instruction 

then program execution returns to the instruction following the procedure call, Set do 1.

Example 2
FUNC num abs_value(num value)

IF value<0 THEN

RETURN -value;

ELSE

RETURN value;

ENDIF

ENDFUNC

The function returns the absolute value of a number.

Arguments
RETURN [ Return value ]

Return value 

Data type: According to the function declaration.

The return value of a function.

The return value must be specified in a RETURN instruction present in a function.

If the instruction is present in a procedure or trap routine then a return value shall not be 

specified.

Continues on next page



1 Instructions

1.134. RETURN - Finishes execution of a routine
RobotWare - OS

3HAC 16581-1  Revision: J366

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The result of the RETURN instruction may vary depending on the type of routine it is used in:

• Main routine: If a program has run mode single cycle then the program stops. 

Otherwise, program execution continues with the first instruction of the main routine. 

• Procedure: Program execution continues with the instruction following the procedure 

call.

• Function: Returns the value of the function.

• Trap routine: Program execution continues from where the interrupt occurred.

• Error handler in a procedure: Program execution continues with the routine that called 

the routine with the error handler (with the instruction following the procedure call).

• Error handler in a function: The function value is returned.

Syntax
(EBNF)

RETURN [ <expression> ]’;’

Related information

For information about See

Functions and Procedures Technical reference manual - RAPID overview, 
section Basic characteristics - Routines

Trap routines Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupts

Error handlers Technical reference manual - RAPID overview, 
section Basic characteristics - Error recovery

Continued



1 Instructions

1.135. Rewind - Rewind file position
RobotWare - OS

3673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.135. Rewind - Rewind file position

Usage

Rewind sets the file position to the beginning of the file.

Basic examples

Basic examples of the instruction Rewind are illustrated below.

See also More examples on page 367.

Example 1
Rewind iodev1;

The file referred to by iodev1 will have the file position set to the beginning of the file.

Arguments
Rewind IODevice

IODevice

Data type: iodev

Name (reference) of the file to be rewound.

Program execution

The specified file is rewound to the beginning.

More examples

More examples of the instruction Rewind are illustrated below.

Example 1
! IO device and numeric variable for use together with a binary 

! file

VAR iodev dev; 

VAR num bindata;

! Open the binary file with \Write switch to erase old contents

Open "HOME:"\File := "bin_file",dev \Write;

Close dev; 

! Open the binary file with \Bin switch for binary read and write 

! acess

Open "HOME:"\File := "bin_file",dev \Bin;

WriteStrBin dev,"Hello world";

! Rewind the file pointer to the beginning of the binary file

! Read contents of the file and write the binary result on TP

! (gives 72 101 108 108 111 32 119 111 114 108 100 )

Rewind dev; 

bindata := ReadBin(dev);

Continues on next page



1 Instructions

1.135. Rewind - Rewind file position
RobotWare - OS

3HAC 16581-1  Revision: J368

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

WHILE bindata <> EOF_BIN DO

TPWrite " " \Num:=bindata; bindata := ReadBin(dev);

ENDWHILE 

! Close the binary file 

Close dev;

The instruction Rewind is used to rewind a binary file to the beginning so that the contents 

of the file can be read back with ReadBin

Limitations

For theVirtual Controller there is a limitation, if the used file has been opened with a 

\Bin or \Bin \Append switch, a Rewind before any type of aWrite instruction will be 

ineffective. The writing will be done at the end of the file.

Error handling

If an error occurs during the rewind then the system variable ERRNO is set to ERR_FILEACC. 

This error can then be handled in the error handler.

Syntax
Rewind [IODevice ’:=’] <variable (VAR) of iodev>’;’

Related information

For information about See

Opening, etc. of files Technical reference manual - RAPID overview , 
section RAPID summary - Communication

Continued



1 Instructions

1.136. RMQEmptyQueue - Empty RAPID Message Queue
RobotWare - OS

3693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.136. RMQEmptyQueue - Empty RAPID Message Queue

Usage

RMQEmptyQueue empties the RAPID Message Queue (RMQ) in the task that is executing the 

instruction.

Basic examples

A basic example of the instruction RMQEmptyQueue is illustrated below.

Example
RMQEmptyQueue;

The RMQEmptyQueue instruction removes all messages from RMQ in the executing task.

Program execution

The RAPID Message Queue owned by the executing task is emptied. The instruction can be 

used on all execution levels.

Limitations

RMQEmptyQueue only empties the RAPID Message Queue in the task that is executing the 

instruction. All other RAPID Message Queues are left as is.

Syntax
RMQEmptyQueue ';'

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

rmqmessage data type rmqmessage - RAPID Message Queue 
message on page 1173.

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386.

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371.

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380.

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377.

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167.

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964.

Continues on next page



1 Instructions

1.136. RMQEmptyQueue - Empty RAPID Message Queue
RobotWare - OS

3HAC 16581-1  Revision: J370

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Receive message from RMQ RMQReadWait - Returns message from 
RMQ on page 383.

Get the first message from a RAPID Message 
Queue

RMQGetMessage - Get an RMQ message on 
page 373.

For information about See

Continued



1 Instructions

1.137. RMQFindSlot - Find a slot identity from the slot name
FlexPendant Interface, PC Interface, or Multitasking

3713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.137. RMQFindSlot - Find a slot identity from the slot name

Usage

RMQFindSlot (RAPID Message Queue Find Slot) is used to find the slot identity to an RMQ 

configured for a RAPID task, or the slot identity to a Robot Application Builder client.

Basic examples

Basic examples of the instruction RMQFindSlot name are illustrated below.

Example 1
VAR rmqslot myrmqslot;

RMQFindSlot myrmqslot, "RMQ_T_ROB2";

Get the identity number for the RMQ "RMQ_T_ROB2" configured for the RAPID task 

"T_ROB2".

Arguments
RMQFindSlot Slot Name

Slot

Data type: rmqslot

The variable in which the numeric identifier is returned.

Name

Data type: string

The name of the client to find the identity number for. The name must be right regarding small 

and big letters. If the RAPID task is named T_ROB1, and using the name RMQ_t_rob1 for 

the RMQ, this will end up in a error (see error handling chapter below.)

Program execution

The RMQFindSlot instruction is used to find the slot identity for a named RMQ or Robot 

Application Builder client.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
RMQFindSlot

[ Slot ‘:=’ ] < variable (VAR) of rmqslot > ’,’

[ Name ‘:=’ ] < expression (IN) of string >‘;‘

ERR_RMQ_NAME The given slot name is not valid or not found.

Continues on next page



1 Instructions

1.137. RMQFindSlot - Find a slot identity from the slot name
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J372

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the header data from a rmqmessage RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Extract the data from a rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964

RMQ Slot rmqslot - Identity number of an RMQ client on 
page 1174

Continued



1 Instructions

1.138. RMQGetMessage - Get an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.138. RMQGetMessage - Get an RMQ message

Usage

RMQGetMessage (RAPID Message Queue Get Message) is used to fetch the first RMQ 

message from the queue for the actual program task.

Basic examples

Basic examples of the instruction RMQGetMessage are illustrated below.

See also More examples on page 374.

Example 1
TRAP msghandler

VAR rmqmessage myrmqmsg;

RMQGetMessage myrmqmsg;

...

ENDTRAP

In the TRAP routine msghandler the rmqmessage is fetched from the RMQ and copied to 

the variable myrmqmsg.

Arguments
RMQGetMessage Message

Message

Data type: rmqmessage

Variable for storage of the RMQ message.

The maximum size of the data that can be received in a rmqmessage is about 3000 bytes.

Program execution

The instruction RMQGetMessage is used to get the first message from the queue of the task 

executing the instruction. If there is a message, it will be copied to the Message variable, and 

then removed from the queue to make room for new messages. The instruction is only 

supported on the TRAP level.

Continues on next page



1 Instructions

1.138. RMQGetMessage - Get an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J374

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples 

More examples of how to use the instruction RMQGetMessage are illustrated below.

Example 1
RECORD mydatatype

int x;

int y;

ENDRECORD

VAR intnum msgreceive;

VAR mydatatype mydata;

PROC main()

! Setup interrupt

CONNECT msgreceive WITH msghandler;

! Order cyclic interrupt to occur for data type mydatatype

IRMQMessage mydata, msgreceive;

WHILE TRUE DO

! Performing cycle

...

ENDWHILE

ENDPROC

TRAP msghandler

VAR rmgmessage message;

VAR rmqheader header;

! Get the RMQ message

RMQGetMessage message;

! Copy RMQ header information

RMQGetMsgHeader message \Header:=header;

IF header.datatype = "mydatatype" AND header.ndim = 0 THEN

! Copy the data from the message

RMQGetMsgData message, mydata;

ELSE

TPWrite "Received a type not handled or with wrong dimension";

ENDIF

ENDTRAP

When a new message is received, the TRAP routine msghandler is executed and the new 

message is copied to the variable message (instruction RMQGetMessage). Then the RMQ 

header data is copied (instruction RMQGetMsgHeader). If the message is of the expected data 

type and has the right dimension, the data is copied to the variable mydata (instruction 

RMQGetMsgData).

Continued

Continues on next page



1 Instructions

1.138. RMQGetMessage - Get an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Limitations

RMQGetMessage is not supported on the user execution level (i.e. in service routines) or 

normal execution level.

The maximum size of the data that can be received in a rmqmessage is about 3000 bytes.

A recommendation is to reuse a variable of the data type rmqmessage as much as possible 

to save RAPID memory.

Syntax
RMQGetMessage

[ Message ‘:=’ ] < variable (VAR) of rmqmessage >‘;‘

Related information

ERR_RMQ_NOMSG No message for the moment in the queue. If executing 
RMQGetMessage twice in a TRAP routine, this can happen. The 
error can also be generated if there is a power failure between 
the TRAP being ordered and the instruction RMQGetMessage 
being executed.The messages in the RMQ will be lost at power 
fail.

ERR_RMQ_INVMSG This error will be thrown if the message is invalid. This may for 
instance happen if a PC application sends a corrupt message.

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964

Continued

Continues on next page



1 Instructions

1.138. RMQGetMessage - Get an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J376

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

RMQ Message rmqmessage - RAPID Message Queue 
message on page 1173

For information about See

Continued



1 Instructions

1.139. RMQGetMsgData - Get the data part from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.139. RMQGetMsgData - Get the data part from an RMQ message

Usage

RMQGetMsgData (RAPID Message Queue Get Message Data) is used to get the actual data 

within the RMQ message.

Basic examples

Basic examples of the instruction RMQGetMsgData are illustrated below.

See also More Examples.

Example 1
VAR rmqmessage myrmqmsg;

VAR num data;

...

RMQGetMsgData myrmqmsg, data;

! Handle data

Data of the data type num is fetched from the variable myrmqmsg and stored in the variable 

data.

Arguments
RMQGetMsgData Message Data

Message

Data type: rmqmessage

Varible containing the received RMQ message.

Data

Data type: anytype

Variable of the expected data type, used for storage of the received data.

Program execution

The instruction RMQGetMsgData is used to get the actual data within the RMQ message, 

convert it from ASCII character format to binary data, compile the data to see if it is possible 

to store it in the variable specified in the instruction, and then copy it to the variable.

Continues on next page



1 Instructions

1.139. RMQGetMsgData - Get the data part from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J378

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples 

More examples of how to use the instruction RMQGetMsgData are illustrated below.

Example 1
RECORD mydatatype

int x;

int y;

ENDRECORD

VAR intnum msgreceive;

VAR mydatatype mydata;

PROC main()

! Setup interrupt

CONNECT msgreceive WITH msghandler;

! Order cyclic interrupt to occur for data type mydatatype

IRMQMessage mydata, msgreceive;

WHILE TRUE DO

! Performing cycle

...

ENDWHILE

ENDPROC

TRAP msghandler

VAR rmgmessage message;

VAR rmqheader header;

! Get the RMQ message

RMQGetMessage message;

! Copy RMQ header information

RMQGetMsgHeader message \Header:=header;

IF header.datatype = "mydatatype" AND header.ndim = 0 THEN

! Copy the data from the message

RMQGetMsgData message, mydata;

ELSE

TPWrite "Received a type not handled or with wrong dimension";

ENDIF

ENDTRAP

When a new message is received, the TRAP routine msghandler is executed and the new 

message is copied to the variable message (instruction RMQGetMessage). Then the RMQ 

header data is copied (instruction RMQGetMsgHeader). If the message is of the expected data 

type and has the right dimension, the data is copied to the variable mydata (instruction 

RMQGetMsgData).

Continued

Continues on next page



1 Instructions

1.139. RMQGetMsgData - Get the data part from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
RMQGetMsgData

[ Message ‘:=’ ] < variable (VAR) of rmqmessage > ’,’

[ Data ‘:=’ ] < reference (VAR) of anytype >‘;‘

Related information

ERR_RMQ_VALUE The received message and the data type used in argument 
Data does not have the same data type.

ERR_RMQ_DIM The data types are equal, but the dimensions differ between the 
data in the message and the variable used in argument Data.

ERR_RMQ_MSGSIZE The size of the received data is bigger than the maximum 
configured size for the RMQ for the receiving task.

ERR_RMQ_INVMSG This error will be thrown if the message is invalid. This may for 
instance happen if a PC application sends a corrupt message.

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964

RMQ Message rmqmessage - RAPID Message Queue 
message on page 1173

Continued



1 Instructions

1.140. RMQGetMsgHeader - Get header information from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J380

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.140. RMQGetMsgHeader - Get header information from an RMQ message

Usage

RMQGetMsgHeader (RAPID Message Queue Get Message Header) get the header 

information within the received RMQ message and store it in variables of type rmqheader, 

rmqslot or num.

Basic examples

Basic examples of the instruction RMQGetMsgHeader are illustrated below.

See also More examples on page 381.

Example 1
VAR rmqmessage myrmqmsg;

VAR rmqheader myrmqheader;

...

RMQGetMsgHeader myrmqmsg, \Header:=myrmqheader;

In this example the variable myrmqheader is filled with data copied from the rmqheader 

part of the variable myrmqmsg.

Example 2
VAR rmqmessage rmqmessage1;

VAR rmqheader rmqheader1;

VAR rmqslot rmqslot1;

VAR num userdef := 0;

...

RRMQGetMsgHeader rmqmessage1 \Header:=rmqheader1 

\SenderId:=rmqslot1 \UserDef:=userdef;

In this example the variables rmqheader1, rmqslot1 and userdef are filled with data 

copied from the variable rmqmessage1.

Arguments
RMQGetMsgHeader Message [\Header] [\SenderId] [\UserDef]

Message

Data type: rmqmessage

Variable containing the received RMQ message from which the information about the 

message should be copied.

[\Header]

Data type: rmqheader

Variable for storage of the RMQ header information that is copied from the variable specified 

as the parameter Message.

[\SenderId]

Data type: rmqslot

Variable for storage of the sender identity information that is copied from the variable 

specified as the parameter Message.

Continues on next page



1 Instructions

1.140. RMQGetMsgHeader - Get header information from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\UserDef]

User Defined data

Data type: num

Variable for storage of user-defined data that is copied from the variable specified as the 

parameter Message. To get any valid data in this variable, the sender needs to specify that 

this should be included when sending an RMQ message. If it is not used, the value will be set 

to -1.

Program execution

The instruction RMQGetMsgHeader gets the header information within the received RMQ 

message and copies it to to variables of type rmqheader, rmqslot or num depending on 

what arguments are used.

More examples 

More examples of how to use the instruction RMQGetMsgHeader are illustrated below.

Example 1
RECORD mydatatype

int x;

int y;

ENDRECORD

VAR intnum msgreceive;

VAR mydatatype mydata;

PROC main()

! Setup interrupt

CONNECT msgreceive WITH msghandler;

! Order cyclic interrupt to occur for data type mydatatype

IRMQMessage mydata, msgreceive;

WHILE TRUE DO

! Performing cycle

...

ENDWHILE

ENDPROC

TRAP msghandler

VAR rmgmessage message;

VAR rmqheader header;

! Get the RMQ message

RMQGetMessage message;

! Copy RMQ header information

RMQGetMsgHeader message \Header:=header;

Continued

Continues on next page



1 Instructions

1.140. RMQGetMsgHeader - Get header information from an RMQ message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J382

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

IF header.datatype = "mydatatype" AND header.ndim = 0 THEN

! Copy the data from the message

RMQGetMsgData message, mydata;

ELSE

TPWrite "Received a type not handled or with wrong dimension";

ENDIF

ENDTRAP

When a new message is received, the TRAP routine msghandler is executed and the new 

message is copied to the variable message (instruction RMQGetMessage). Then the RMQ 

header data is copied (instruction RMQGetMsgHeader). If the message is of the expected data 

type and has the right dimension, the data is copied to the variable mydata (instruction 

RMQGetMsgData).

Syntax
RMQGetMsgHeader

[ Message ‘:=’ ] < variable (VAR) of rmqmessage > ’,’

[ ‘\’ Header‘ :=’ < variable (VAR) of rmqheader >

[ ‘\’ SenderId‘ :=’ < variable (VAR) of rmqslot >

[ ‘\’ UserDef‘ :=’ < variable (VAR) of num >‘;‘

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964

RMQ Slot rmqslot - Identity number of an RMQ client on 
page 1174

RMQ Header rmqmessage - RAPID Message Queue 
message on page 1173

RMQ Message rmqheader - RAPID Message Queue 
Message header on page 1171

Continued



1 Instructions

1.141. RMQReadWait - Returns message from RMQ
RobotWare - OS

3833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.141. RMQReadWait - Returns message from RMQ

Usage

RMQReadWait is used in synchronous mode to receive any type of message.

Basic examples

A basic example of the instruction RMQReadWait is illustrated below.

See also More examples on page 383.

Example
VAR rmqmessage myrmqmsg;

RMQReadWait myrmqmsg;

The first message in the queue is received in the variable myrmqmsg.

Arguments
RMQReadWait Message [\TimeOut]

Message

Data type: rmqmessage

The variable in which the received message is placed.

[\Timeout]

Data type: num

The maximum amount of time [s] that program execution waits for a message. If this time 

runs out before the condition is met, the error handler will be called, if there is one, with the 

error code ERR_RMQ_TIMEOUT. If there is no error handler, the execution will be stopped. It 

is possible to set the timeout to 0 (zero) seconds, so that there is no wait at all.

If the parameter \Timeout is not used, the waiting time is 60 sec. To wait forever, use the 

predefined constant WAIT_MAX.

Program execution

All incoming messages are queued and RMQReadWait handles the messages in FIFO order, 

one message at a time. It is the users responsibility to avoid a full queue and to be prepared 

to handle any type of message supported by RAPID Message Queue.

More examples

More examples of how to use the instruction RMQReadWait are illustrated below.

Example 1
VAR rmqmessage myrmqmsg;

RMQReadWait myrmqmsg \TimeOut:=30;

The first message in the queue is received in the variable myrmqmsg. If no message is 

received within 30 seconds the program execution is stopped.

Continues on next page



1 Instructions

1.141. RMQReadWait - Returns message from RMQ
RobotWare - OS

3HAC 16581-1  Revision: J384

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
PROC main()

VAR rmqmessage myrmqmsg;

FOR i FROM 1 TO 25 DO

RMQReadWait myrmqmsg \TimeOut:=30;

...

ENDFOR

ERROR

IF ERRNO = ERR_RMQ_TIMEOUT THEN

TPWrite "ERR_RMQ_TIMEOUT error reported";

...

ENDIF

ENDPROC

Messages are received from the queue and stored in the variable myrmqmsg. If receiving a 

message takes longer than 30 seconds, the error handler is called.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Limitations

RMQReadWait is only supported in synchronous mode. Executing this instruction in interrupt 

based mode will cause a fatal runtime error.

RMQReadWait is not supported in trap execution level or user execution level. Executing this 

instruction in either of these levels will cause a fatal runtime error.

Syntax
RMQReadWait

[ Message ':=' ] < variable (VAR) of rmqmessage>

[ '\' TimeOut':=' < expression (IN) of num > ] ';'

Related information

Error code Description

ERR_RMQ_TIMEOUT No answer has been received within the time-out time

ERR_RMQ_INVMSG This error will be thrown if the message is invalid. This can for 
example happen if a PC application sends a corrupt message

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Description of task execution modes Technical reference manual - System 
parameters, section Topic Controller, Type 
Task.

Continued

Continues on next page



1 Instructions

1.141. RMQReadWait - Returns message from RMQ
RobotWare - OS

3853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

rmqmessage data type rmqmessage - RAPID Message Queue 
message on page 1173.

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386.

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client.

RMQFindSlot - Find a slot identity from the 
slot name on page 371.

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380.

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377.

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167.

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964.

Empty RAPID Message Queue RMQEmptyQueue - Empty RAPID Message 
Queue on page 369

rmqmessage - RAPID Message Queue 
message on page 1173

Get the first message from a RAPID Message 
Queue

RMQGetMessage - Get an RMQ message on 
page 373.

For information about See

Continued



1 Instructions

1.142. RMQSendMessage - Send an RMQ data message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J386

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.142. RMQSendMessage - Send an RMQ data message

Usage

RMQSendMessage (RAPID Message Queue Send Message) is used to send data to an RMQ 

configured for a RAPID task, or to a Robot Application Builder client.

Basic examples

Basic examples of the instruction RMQSendMessage are illustrated below.

See also More examples on page 387.

Example 1
VAR rmqslot destination_slot;

VAR string data:="Hello world";

..

RMQFindSlot destination_slot,"RMQ_Task2";

RMQSendMessage destination_slot,data;

The example shows how to send the value in the variable data to the RAPID task "Task2"  

with the configured RMQ "RMQ_Task2".

Example 2
VAR rmqslot destination_slot;

CONST robtarget p5:=[ [600, 500, 225.3], [1, 0, 0, 0], [1, 1, 0, 

0], [ 11, 12.3, 9E9, 9E9, 9E9, 9E9] ];

VAR num my_id:=1;

..

RMQFindSlot destination_slot,"RMQ_Task2";

RMQSendMessage destination_slot, p5 \UserDef:=my_id;

my_id:=my_id + 1;

The example shows how to send the value in the constant p5 to the RAPID task "Task2" 

with the configured RMQ "RMQ_Task2". A user-defined number is also sent. This number 

can be used by the receiver as an identifier.

Arguments
RMQSendMessage Slot SendData [\UserDef]

Slot

Data type: rmqslot

The identity slot number of the client that should receive the message.

SendData

Data type: anytype

Reference to a variable, persistent or constant containing the data to be sent to the client with 

identity as in argument Slot.

Continues on next page



1 Instructions

1.142. RMQSendMessage - Send an RMQ data message
FlexPendant Interface, PC Interface, or Multitasking

3873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\UserDef]

User Defined data 

Data type: num

Data specifying user-defined information to the receiver of the SendData, i.e the client with 

identity number as in variable Slot. The value must be an integer between 0 and 32767.

Program execution

The instruction RMQSendMessage is used to send data to a specified client. The instruction 

packs the indata in a storage container and sends it. 

If the receiving client is not interested in receiving messages, i.e has not setup any interrupt 

to occur for the data type specified in the RMQSendMessage instruction or is not waiting in 

an RMQSendWait instruction, the message will be discarded, and a warning will be generated.

Not all data types can be sent with the instruction (see limitations).

More examples 

More examples of how to use the instruction RMQSendMessage are illustrated below.

Example 1
MODULE SenderMod

RECORD msgrec

num x;

num y;

ENDRECORD

PROC main()

VAR rmqslot destinationSlot;

VAR msgrec msg :=[0, 0, 0];

! Connect to a Robot Application Builder client

RMQFindSlot destinationSlot ”My_RAB_client”;

! Perform cycle

WHILE TRUE DO

! Update msg with valid data

...

! Send message

RMQSendMessage destinationSlot, msg;

...

ENDWHILE

Continued

Continues on next page



1 Instructions

1.142. RMQSendMessage - Send an RMQ data message
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J388

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ERROR

IF ERRNO = ERR_RMQ_INVALID THEN

! Handle destination client lost

WaitTime 1;

! Reconnect to Robot Application Builder client

RMQFindSlot destinationSlot ”My_RAB_client”;

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ELSIF ERRNO = ERR_RMQ_FULL THEN

! Handle destination queue full

WaitTime 1;

! Avoid execution stop due to retry count exceed

ResetRetryCount;

RETRY;

ENDIF

ENDPROC

ENDMODULE

The example shows how to use instruction RMQSendMessage with errorhandling of occuring 

run-time errors. The program sends user-defined data of the type msgrec to a Robot 

Application Builder client called "My_RAB_client".

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Limitations

It is not possible to set up interrupts, or send or receive data instances of data types that are 

of non-value, semi-value types or data type motsetdata.

The maximum size of data that can be sent to a Robot Application Builder client is about 5000 

bytes. The maximum size of data that can be received by a RMQ and stored in a rmqmessage 

data type is about 3000 bytes. The size of the data that can be received by an RMQ can be 

configured (default size 400, max size 3000).

Syntax
RMQSendMessage

[ Slot ‘:=’ ] < variable (VAR) of rmqslot > ’,’

[ SendData‘ :=’ ] < reference (REF) of anytype >

[ ‘\’ UserDef‘ :=’ < expression (IN) of num > ] ‘;‘

ERR_RMQ_MSGSIZE The size of message is too big. Either the data exceeds the 
maximum allowed message size, or the receiving client is not 
configured to receive the size of the data that is sent.

ERR_RMQ_FULL The destination message queue is full

ERR_RMQ_INVALID The destination slot has not been connected or the destination 
slot is no longer available. If not connected, a call to 
RMQFindSlot must be done. If not available, the reason is that 
a remote client has disconnected from the controller.

Continued

Continues on next page



1 Instructions

1.142. RMQSendMessage - Send an RMQ data message
FlexPendant Interface, PC Interface, or Multitasking

3893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964

RMQ Slot rmqslot - Identity number of an RMQ client on 
page 1174

Continued



1 Instructions

1.143. RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J390

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.143. RMQSendWait - Send an RMQ data message and wait for a response

Usage

With the RMQSendWait (RAPID Message Queue Send Wait) instruction it is possible to send 

data to an RMQ or to a Robot Application Builder client, and wait for an answer from the 

specified client. If using this instruction, the user needs to know what kind of data type will 

be sent in the answer from the client.

Basic examples

Basic examples of the instruction RMQSendWait are illustrated below.

See also More examples on page 393.

Example 1
VAR rmqslot destination_slot;

VAR string sendstr:="This string is from T_ROB1";

VAR rmqmessage receivemsg;

VAR num mynum;

..

RMQFindSlot destination_slot, "RMQ_T_ROB2";

RMQSendWait destination_slot, sendstr, receivemsg, mynum;

RMQGetMsgData receivemsg, mynum;

The example shows how to send the data in the variable sendstr to the RAPID task 

"T_ROB2" with the configured RMQ "RMQ_T_ROB2". Now the instruction RMQSendWait 

waits for a reply from the task "T_ROB2". The instruction in "T_ROB2" needs to send data 

that is stored in a num data type to terminate the waiting instruction RMQSendWait. When the 

message has been received, the data is copied to the variable mynum from the variable 

receivemsg with the instruction RMQGetMsgData.

Example 2
VAR rmqslot rmqslot1;

VAR string mysendstr;

VAR rmqmessage rmqmessage1;

VAR string receivestr;

VAR num mysendid:=1;

..

mysendstr:="Message from Task1";

RMQFindSlot rmqslot1, "RMQ_Task2";

RMQSendWait rmqslot1, mysendstr \UserDef:=mysendid, rmqmessage1, 

receivestr \TimeOut:=20;

RMQGetMsgData rmqmessage1, receivestr;

mysendid:=mysendid + 1;

The example shows how to send the data in the variable mysendstr to the RAPID task 

"Task2" with the configured RMQ "RMQ_Task2". A user-defined number is also sent. This 

number can be used by the receiver as an identifier and must be bounced back to the sender 

Continues on next page



1 Instructions

1.143. RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

3913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

to terminate the waiting RMQSendWait instruction. Another demand to terminate the waiting 

instruction is that the right data type is sent from the client. That data type is specified by the 

variable receivestr in the RMQSendWait instruction. After the message has been received, 

the actual data is copied to the variable receivestr with the instruction RMQGetMsgData.

Arguments
RMQSendWait Slot SendData [\UserDef] Message ReceiveDataType 

[\TimeOut]

Slot

Data type: rmqslot

The identity number of the client that should receive the message.

SendData

Data type: anytype

Reference to a variable, persistent or constant containing the data to be sent to the client with 

identity number as in the variable Slot.

[\UserDef]

User Defined data 

Data type: num

Data specifying user-defined information to the receiver of the SendData, that is, the client 

with the identity number as in the variable Slot. If using this optional argument, the 

RMQSendWait instruction will only terminate if the ReceiveDataType and the specified 

UserDef is as specified in the message answer. The value must be an integer between 0 and 

32767.

Message

Data type: rmqmessage

The variable in which the received message is placed.

ReceiveDataType

Data type: anytype

A reference to a persistent, variable or constant of the data type that the instruction is waiting 

for. The actual data is not copied to this variable when the RMQSendWait is executed. This 

argument is only used to specify the actual data type the RMQSendWait instruction is waiting 

for.

[\Timeout]

Data type: num

The maximum amount of time [s] that program execution waits for an answer. If this time 

runs out before the condition is met, the error handler will be called, if there is one, with the 

error code ERR_RMQ_TIMEOUT. If there is no error handler, the execution will be stopped.

If the parameter \Timeout is not used, the waiting time is 60 s. To wait forever, use the 

predefined constant WAIT_MAX.

Continued

Continues on next page



1 Instructions

1.143. RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J392

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The instruction RMQSendWait sends data and waits for an answer from the client with the 

specified slot identity. The answer must be an rmqmessage from the client that got the 

message and the answer must be of the same data type that is specified in the argument 

ReceiveDataType. The message will be sent in the same way as when using 

RMQSendMessage, i.e.the receiver will get a normal RAPID Message Queue message. It is 

the responsibility of the sender that the receiver knows that a reply is needed. If the optional 

argument UserDef is used in the RMQSendWait, the demand is that the receiving client uses 

the same UserDef in the answer.

If the receiving client is not interested in receiving messages, that is, has not set up any 

interrupt to occur for the data type specified in the RMQSendWait instruction, the message 

will be discarded, and a warning will be generated. The instruction returns an error after the 

time used in the argument TimeOut, or the default time-out time 60 s. This error can be dealt 

with in an error handler.

The RMQSendWait instruction has the highest priority if a message is received and it fits the 

description for both the expected answer and a message connected to a TRAP routine (see 

instruction IRMQMessage).

If a power failure occurs when waiting for an answer from the client, the variable used in the 

argument Slot is set to 0 and the instruction is executed again. The instruction will then fail 

due to an invalid slot identity and the error handler will be called, if there is one, with the error 

code ERR_RMQ_INVALID. The slot identity can be reinitialized there.

Not all data types can be sent with the instruction (see limitations).

Continued

Continues on next page



1 Instructions

1.143. RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

3933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction RMQSendWait are illustrated below.

Example 1
MODULE RMQ_Task1_mod

PROC main()

VAR rmqslot destination_slot;

VAR string mysendstr:="String sent from RMQ_Task1_mod";

VAR string myrecstr;

VAR rmqmessage recmsg;

VAR rmqheader header;

!Get slot identity to client called RMQ_Task2

RMQFindSlot destination_slot, "RMQ_Task2";

WHILE TRUE DO

! Do something

...

!Send data in mysendstr, wait for an answer of type string

RMQSendWait destination_slot, mysendstr, recmsg, myrecstr;

!Get information about the received message

RMQGetMsgHeader recmsg \Header:=header;

IF header.datatype = "string" AND header.ndim = 0 THEN

! Copy the data in recmsg

RMQGetMsgData recmsg, myrecstr;

TPWrite "Received string: " + myrecstr;

ELSE

TPWrite "Not a string that was received";

ENDIF

ENDWHILE

ENDPROC

ENDMODULE

The data in the variable mysendstr is sent to the RAPID task "Task2" with the configured 

RAPID Message Queue "RMQ_Task2" with the instruction RMQSendWait. The answer from 

the RAPID task "Task2" should be a string (specified of the data type of the variable 

myrecstr). The RMQ message received as an answer is received in the variable recmsg. 

The use of the variable myrecstr in the call to RMQSendWait is just specification of the data 

type the sender is expecting as an answer. No valid data is placed in the variable in the 

RMQSendWait call.

Continued

Continues on next page



1 Instructions

1.143. RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J394

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Limitations

It is not allowed to execute RMQSendWait in synchronous mode. That will cause a fatal 

runtime error.

It is not possible to set up interrupts, or send or receive data instances of data types that are 

of non-value, semi-value types or data type motsetdata.

The maximum size of data that can be sent to a Robot Application Builder client is about 5000 

bytes. The maximum size of data that can be received by an RMQ and stored in an 

rmqmessage data type is about 3000 bytes. The size of the data that can be received by an 

RMQ can be configured (default size 400, max size 3000).

Syntax
RMQSendWait

[ Slot ‘:=’ ] < variable (VAR) of rmqslot > ’,’

[ SendData‘ :=’ ] < reference (REF) of anytype >

[ ‘\’ UserDef‘ :=’ < expression (IN) of num > ] ’,’

[ Message‘ :=’ ] < variable (VAR) of rmqmessage > ’,’

[ ReceiveDataType‘ :=’ ] < reference (REF) of anytype > ’,’

[ ‘\’ Timeout‘ :=’ < expression (IN) of num > ] ‘;‘

Related information

ERR_RMQ_MSGSIZE The size of message is too big. Either the data exceeds the 
maximum allowed message size, or the receiving client is not 
configured to receive the size of the data that is sent.

ERR_RMQ_FULL The destination message queue is full.

ERR_RMQ_INVALID The rmqslot has not been initialized, or the destination slot is 
no longer available. This can happen if the destination slot is a 
remote client and the remote client has disconnected from the 
controller. RMQSendWait was interrupted by a power failure, 
and at restart the rmqslot is set to 0.

ERR_RMQ_TIMEOUT No answer has been received within the time-out time.

ERR_RMQ_INVMSG This error will be thrown if the message is invalid. This may for 
instance happen if a PC application sends a corrupt message.

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Continued

Continues on next page



1 Instructions

1.143. RMQSendWait - Send an RMQ data message and wait for a response
FlexPendant Interface, PC Interface, or Multitasking

3953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964

RMQ Slot rmqslot - Identity number of an RMQ client on 
page 1174

RMQ Message rmqmessage - RAPID Message Queue 
message on page 1173

For information about See

Continued



1 Instructions

1.144. Save - Save a program module
RobotWare - OS

3HAC 16581-1  Revision: J396

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.144. Save - Save a program module

Usage

Save is used to save a program module.

The specified program module in the program memory will be saved with the original 

(specified in Load or StartLoad) or specified file path.

It is also possible to save a system module at the specified file path.

Basic examples

Basic examples of the instruction Save are illustrated below.

See also More examples on page 397.

Example 1
Load "HOME:/PART_B.MOD";

...

Save "PART_B";

Load the program module with the file name PART_B.MOD from HOME: into the program 

memory.

Save the program module PART_B with the original file path HOME: and with the original file 

name PART_B.MOD.

Arguments
Save [\TaskRef]|[\TaskName] ModuleName [\FilePath] [\File]

[\TaskRef]

Task Reference

Data type: taskid

The program task identity in which the program module should be saved.

For all program tasks in the system the predefined variables of the data type taskid will be 

available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1 task the variable 

identity will be T_ROB1Id.

[\TaskName]

Data type: string

The program task name in which the program module should be saved.

If none of the arguments \TaskRef or \TaskName is specified then the specified program 

module in the current (executing) program task will be saved.

ModuleName

Data type: string

The program module to save.

[\FilePath]

Data type: string

The file path and the file name to the place where the program module is to be saved. The file 

name shall be excluded when the argument \File is used.

Continues on next page



1 Instructions

1.144. Save - Save a program module
RobotWare - OS

3973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\File]

Data type: string

When the file name is excluded in the argument \FilePath it must be specified with this 

argument.

The argument \FilePath \File can only be omitted for program modules loaded with 

Load or StartLoad-WaitLoad and the program module will be stored at the same 

destination as specified in these instructions. To store the program module at another 

destination it is also possible to use the argument \FilePath \File.

The argument \FilePath \File  must be used to be able to save a program module that 

previously was loaded from the FlexPendant, external computer, or system configuration.

Program execution

Program execution waits for the program module to finish saving before proceeding with the 

next instruction.

More examples

More examples of how to use the instruction Save are illustrated below.

Example 1
Save "PART_A" \FilePath:="HOME:/DOORDIR/PART_A.MOD";

Save the program module PART_A to HOME: in the file PART_A.MOD and in the directory 

DOORDIR.

Example 2
Save "PART_A" \FilePath:="HOME:" \File:="DOORDIR/PART_A.MOD";

Same as in the above example 1 but another syntax.

Example 3
Save \TaskRef:=TSK1Id, "PART_A" \FilePath:="HOME:/DOORDIR/

PART_A.MOD";

Save program module PART_A in program task TSK1 to the specified destination. This is an 

example where the instruction Save is executing in one program task and the saving is done 

in another program task.

Example 4
Save \TaskName:="TSK1", "PART_A" \FilePath:="HOME:/DOORDIR/

PART_A.MOD";

Save program module PART_A in program task TSK1 to the specified destination. This is 

another example of where the instruction Save is executing in one program task and the 

saving is done in another program task.

Continued

Continues on next page



1 Instructions

1.144. Save - Save a program module
RobotWare - OS

3HAC 16581-1  Revision: J398

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

TRAP routines, system I/O events, and other program tasks cannot execute during the saving 

operation. Therefore, any such operations will be delayed.

The save operation can interrupt update of PERS data done step by step from other program 

tasks. This will result in inconsistent whole PERS data.

A program stop during execution of the Save instruction can result in a guard stop with 

motors off. The error message "20025 Stop order timeout" will be displayed on the 

FlexPendant.

Avoid ongoing robot movements during the saving.

Error handling

If the program task name in argument \TaskName cannot be found in the system, the system 

variable ERRNO is set to ERR_TASKNAME.

If the program module cannot be saved because there is no module name, unknown, or 

ambiguous module name then the system variable ERRNO is set to ERR_MODULE.

If the save file cannot be opened because of denied permission, no such directory, or no space 

left on device then the system variable ERRNO is set to ERR_IOERROR. 

If argument \FilePath is not specified for program modules loaded from the FlexPendant, 

System Parameters, or an external computer then the system variable ERRNO is set to 

ERR_PATH.

The errors above can be handled in the error handler.

Syntax
Save

[[ ’\’ TaskRef ’:=’ <variable (VAR) of taskid>]

|[ ’\’ TaskName’ :=’ <expression (IN) of string>] ’,’]

[ ModuleName’ :=’ ] <expression (IN) of string>

[ ’\’ FilePath’ :=’<expression (IN) of string> ]

[ ’\’ File’ :=’ <expression (IN) of string>] ’;’

Related information

For information about See

Program tasks taskid - Task identification on page 1203

Continued



1 Instructions

1.145. SCWrite - Send variable data to a client application
PC interface/backup

3993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.145. SCWrite - Send variable data to a client application

Usage

SCWrite (Superior Computer Write) is used to send the name, type, dimension, and value of 

a persistent variable to a client application. It is possible to send both single variables and 

arrays of variables.

Basic examples

Basic examples of the instruction instruction name are illustrated below.

Example 1
PERS num cycle_done;

PERS num numarr{2}:=[1,2];

SCWrite cycle_done;

The name, type, and value of the persistent variable cycle_done is sent to all client 

applications.

Example 2
SCWrite \ToNode := "138.221.228.4", cycle_done;

The name, type, and value of the persistent variable cycle_done is sent to all client 

applications. The argument \ToNode will be ignored.

Example 3
SCWrite numarr;

The name, type, dim, and value of the persistent variable numarr is sent to all client 

applications.

Example 4
SCWrite \ToNode := "138.221.228.4", numarr;

The name, type, dim, and value of the persistent variable numarr is sent to all client 

applications. The argument \ToNode will be ignored.

Arguments
SCWrite [ \ToNode ] Variable

[\ToNode]

Data type: datatype

The argument will be ignored.

Variable

Data type: anytype

The name of a persistent variable.

Program execution

The name, type, dim, and value of the persistent variable is sent to all client applications. 

‘dim’ is the dimension of the variable and is only sent if the variable is an array.

Continues on next page



1 Instructions

1.145. SCWrite - Send variable data to a client application
PC interface/backup

3HAC 16581-1  Revision: J400

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

The SCWrite instruction will return an error in the following cases:

The variable could not be sent to the client. This can have the following cause:

• The SCWrite messages comes so close so that they cannot be sent to the client. 

Solution: Put in a WaitTime instruction between the SCWrite instructions.

• The variable value is too large decreasing the size of the ARRAY or RECORD.

• The error message will be: 

41473 System access error  

Failed to send YYYYYY

Where YYYY is the name of the variable.

When an error occurs the program halts and must be restarted. The ERRNO system variable 

will contain the value ERR_SC_WRITE.

The SCWrite instruction will not return an error if the client application may, for example, 

be closed down or the communication is down. The program will continue executing.

SCWrite error recovery

To avoid stopping the program when a error occurs in a SCWrite instruction it has to be 

handled by an error handler. The error will only be reported to the log, and the program will 

continue running.

Remember that the error handling will make it more difficult to find errors in the client 

communication since the error is never reported to the display on the FlexPendant (but it can 

be found in the log).

Continued

Continues on next page



1 Instructions

1.145. SCWrite - Send variable data to a client application
PC interface/backup

4013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Using RobotWare 5.0 or later

The RAPID program looks as follows:

xx0500002139

Continued



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J402

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.146. SearchC - Searches circularly using the robot

Usage

SearchC (Search Circular) is used to search for a position when moving the tool center point 

(TCP) circularly. 

During the movement the robot supervises a digital input signal. When the value of the signal 

changes to the requested one the robot immediately reads the current position.

This instruction can typically be used when the tool held by the robot is a probe for surface 

detection. The outline coordinates of a work object can be obtained using the SearchC 

instruction.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

When using search instructions it is important to configure the I/O system to have a very short 

time from setting the physical signal to the system to get information about the setting (use I/

O unit with interrupt control, not poll control). How to do this can differ between fieldbuses. 

If using DeviceNet then the ABB units DSQC 651 (AD Combi I/O) and DSQC 652 (Digital 

I/O) will give short times since they are using connection type Change of State. If using other 

fieldbuses make sure to configure the network in a proper way to get the right conditions.

Basic examples

Basic examples of the instruction SearchC are illustrated below.

See also More examples on page 406.

Example 1
SearchC di1, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10 at a speed of v100. 

When the value of the signal di1 changes to active the position is stored in sp.

Example 1
SearchC \Stop, di2, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the value of the 

signal di2 changes to active the position is stored in sp and the robot stops immediately.

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

4033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
SearchC [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal [\Flanks] 

SearchPoint CirPoint ToPoint [\ID] Speed [\V] | [\T] Tool 

[\WObj] [\Corr]

[ \Stop ]

Stiff Stop

Data type: switch

The robot movement is stopped as quickly as possible without keeping the TCP on the path 

(hard stop) when the value of the search signal changes to active. However, the robot is 

moved a small distance before it stops and is not moved back to the searched position, i.e. to 

the position where the signal changed.

-

WARNING!

To stop the searching with stiff stop (switch \Stop) is only allowed if the TCP-speed is lower 

than 100 mm/s. At a stiff stop with higher speeds some axes can move in unpredictable 

direction.

[ \PStop ]

Path Stop

Data type: switch

The robot movement is stopped as quickly as possible while keeping the TCP on the path (soft 

stop), when the value of the search signal changes to active. However, the robot is moved a 

distance before it stops and is not moved back to the searched position, i.e. to the position 

where the signal changed.

[ \SStop ]

Soft Stop

Data type: switch

The robot movement is stopped as quickly as possible while keeping the TCP close to or on 

the path (soft stop) when the value of the search signal changes to active. However, the robot 

is moved only a small distance before it stops and is not moved back to the searched position, 

i.e. to the position where the signal changed. SStop is faster then PStop. But when the robot 

is running faster than 100 mm/s it stops in the direction of the tangent of the movement which 

causes it to marginally slide of the path.

Continued

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J404

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Sup ]

Supervision

Data type: switch

The search instruction is sensitive to signal activation during the complete movement (flying 

search), i.e. even after the first signal change has been reported. If more than one match 

occurs during a search then a recoverable error is generated with the robot in the ToPoint.

If the argument \Stop, \PStop, \SStop, or \Sup is omitted (no switch used at all):

• the movement continues (flying search) to the position specified in the ToPoint 

argument (same as with argument \Sup)

• error is reported for none search hit but is not reported for more than one search hit 

(first search hit is returned as the SearchPoint)

Signal

Data type: signaldi

The name of the signal to supervise.

[ \Flanks ]

Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted then only the positive edge of the signal is valid for a 

search hit, and a signal supervision will be activated at the beginning of a search process. This 

means that if the signal has a positive value already at the beginning of the search process or 

the communication with the signal is lost, then the robot movement is stopped as quickly as 

possible, while keeping the TCP on the path (soft stop). However, the robot is moved a small 

distance before it stops and is not moved back to the start position. A user recovery error 

(ERR_SIGSUPSEARCH) will be generated and can be dealt with by the error handler.

SearchPoint

Data type: robtarget

The position of the TCP and external axes when the search signal has been triggered. The 

position is specified in the outermost coordinate system taking the specified tool, work object, 

and active ProgDisp/ExtOffs coordinate system into consideration.

CirPoint

Data type: robtarget

The circle point of the robot. See the instruction MoveC for a more detailed description of 

circular movement. The circle point is defined as a named position or stored directly in the 

instruction (marked with an * in the instruction). 

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction). SearchC always uses a stop 

point as zone data for the destination.

Continued

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

4053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the external axes and the tool reorientation. 

[ \V ]

Velocity

Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the instruction. 

It is then substituted for the corresponding velocity specified in the speed data.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot positions in the instruction are 

related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified for a linear movement relative to the work object to be performed.

[ \Corr ]

Correction

Data type: switch

When this argument is present the correction data written to a corrections entry by the 

instruction CorrWrite will be added to the path and destination position.

Continued

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J406

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveC for information about circular movement.

The movement is always ended with a stop point, i.e. the robot stops at the destination point.

When a flying search is used, i.e. the \Sup argument is specified or none switch at all is 

specified, the robot movement always continues to the programmed destination point. When 

a search is made using the switch \Stop, \PStop, or \SStop the robot movement stops 

when the first search hit is detected.

The SearchC instruction returns the position of the TCP when the value of the digital signal 

changes to the requested one, as illustrated in figure below.

The figure shows how flank-triggered signal detection is used (the position is stored when the 

signal is changed the first time only).

xx0500002237

More examples

More examples of how to use the instruction SearchC are illustrated below.

Example 1
SearchC \Sup, di1\Flanks, sp, cirpoint, p10, v100, probe;

The TCP of the probe is moved circularly towards the position p10. When the value of the 

signal di1 changes to active or passive the position is stored in sp. If the value of the signal 

changes twice then program generates an error.

Limitations

General limitations according to instruction MoveC.

Zone data for the positioning instruction that precedes SearchC must be used carefully. The 

start of the search, i.e. when the I/O signal is ready to react, is not, in this case, the 

programmed destination point of the previous positioning instruction but a point along the 

real robot path. The figure below illustrates an example of something that may go wrong 

when zone data other than fine is used.

The instruction SearchC should never be restarted after the circle point has been passed. 

Otherwise the robot will not take the programmed path (positioning around the circular path 

in another direction compared to that which is programmed).

Continued

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

4073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The figure shows how a match is made on the wrong side of the object because the wrong 

zone data was used.

xx0500002238

WARNING!

Limitations for searching if coordinated synchronized movements:

• If using SearchL, SearchC or SearchExtJ for one program task and some other 

move instruction in other program task, it is only possible to use flying search with 

switch \Sup. Besides that, only possible to do error recovery with TRYNEXT.

• It’s possible to use all searching functionality, if using some of the instructions  

SearchL, SearchC or SearchExtJ in all involved program tasks with coordinated 

synchronized movements and generate search hit from same digital input signal. This 

will generate search hit synchronously in all search instructions. Any error recovery 

must also be the same in all involved program tasks. 

While searching is active, it isn’t possible to store current path with instruction StorePath.

Repetition accuracy for search hit position with TCP speed 20 - 1000 mm/s 0.1 - 0.3 mm.

Typical stop distance using a search velocity of 50 mm/s: 

• without TCP on path (switch \Stop) 1-3 mm

• with TCP on path (switch \PStop) 15-25 mm

• with TCP near path (switch \SStop) 4-8 mm

Limitations for searching on a conveyor:

• a search will stop the robot when hit or if the search fails, so make the search in the 

same direction as the conveyor moves and continue after the search-stop with a move 

to a safe position. Use error handling to move to a safe position when search fails.

• the repetition accuracy for the search hit position will be poorer when searching on a 

conveyor and depends on the speed of the conveyor and how stabil the speed is.

Continued

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J408

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

An error is reported during a search when:

• no signal detection occurred - this generates the error ERR_WHLSEARCH.

• more than one signal detection occurred – this generates the error 

ERR_WHLSEARCH only if the \Sup argument is used.

• the signal already has a positive value at the beginning of the search process or the 

communication with the signal is lost. This generates the error 

ERR_SIGSUPSEARCH only if the \Flanks argument is omitted.

Errors can be handled in different ways depending on the selected running mode:

• Continuous forward / Instruction forward / ERR_WHLSEARCH: No position is 

returned and the movement always continues to the programmed destination point. 

The system variable ERRNO is set to ERR_WHLSEARCH and the error can be 

handled in the error handler of the routine.

• Continuous forward / Instruction forward / ERR_SIGSUPSEARCH: No position 

is returned and the movement always stops as quickly as possible at the beginning of 

the search path. The system variable ERRNO is set to ERR_SIGSUPSEARCH and the 

error can be handled in the error handler of the routine.

• Instruction backward: During backward execution the instruction carries out the 

movement without any signal supervision.

Syntax
SearchC

[ ’\’ Stop’,’ ] | [ ’\’ PStop ’,’] | [ ’\’ SStop ’,’ ] | [ ’\’ 

Sup ’,’ ]

[ Signal’:=’ ] < variable (VAR) of signaldi >

[‘\’ Flanks]’,’

[ SearchPoint’:=’ ] < var or pers (INOUT) of robtarget > ’,’ 

[ CirPoint’:=’ ] < expression (IN) of robtarget > ’,’

[ ToPoint’:=’ ] < expression (IN) of robtarget > ’,’

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed’:=’ ] < expression (IN) of speeddata >

[ ’\’ V ’:=’ < expression (IN) of num > ]|

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’:=’ < persistent (PERS) of wobjdata > ]

[ ’\’ Corr ]’;’

Continued

Continues on next page



1 Instructions

1.146. SearchC - Searches circularly using the robot
RobotWare - OS

4093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Linear searches SearchL - Searches linearly using the robot on page 
416

Writes to a corrections entry CorrWrite - Writes to a correction generator on page 
77

Moves the robot circularly MoveC - Moves the robot circularly on page 236

Circular movement Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning during 
program execution

Definition of velocity speeddata - Speed data on page 1185

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Using error handlers Technical reference manual - RAPID overview, 
section RAPID summary - Error recovery

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Continued



1 Instructions

1.147. SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

3HAC 16581-1  Revision: J410

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.147. SearchExtJ - Search with one or several mechanical units without TCP

Usage

SearchExtJ (Search External Joints) is used to search for an external axes position when 

moving only linear or rotating external axes. The external axes can belong to one or several 

mechanical units without TCP.

During the movement the system supervises a digital input signal. When the value of the 

signal changes to the requested one the system immediately reads the current position.

This instruction can only be used if:

• The actual program task is defined as a Motion Task

• The task controls one or several mechanical units without TCP

When using search instructions it is important to configure the I/O system to have a very short 

time delay from setting the physical signal until the system gets the information about the 

setting (use I/O unit with interrupt control, not poll control). How to do this can differ between 

fieldbuses. If using DeviceNet, the ABB units DSQC 651 (AD Combi I/O) and DSQC 652 

(Digital I/O) will give a short time delay since they are using the connection type Change of 

State. If using other fieldbuses, make sure the network is properly configured in order to get 

the correct conditions.

Basic examples

Basic examples of the instruction SearchExtJ are illustrated below.

See also More examples on page 413.

Example 1
SearchExtJ di1, searchp, jpos10, vrot20;

The mec. unit with rotational axes is moved towards the position jpos10 at a speed of 

vrot20. When the value of the signal di1 changes to active, the position is stored in 

searchp.

Example 2
SearchExJ \Stop, di2, posx, jpos20, vlin50;

The mec. unit with linear axis is moved towards the position jpos20. When the value of the 

signal di2 changes to active, the position is stored in posx and the ongoing movement is 

stopped immediately.

Arguments
SearchExtJ [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal [\Flanks] 

SearchJointPos ToJointPos [\ID] [\UseEOffs] Speed [\T]

[ \Stop ]

Stiff Stop

Data type: switch

The movement is stopped as quickly as possible with hard stop when the value of the search 

signal changes to active. However, the external axes are moved a small distance before they 

stop and are not moved back to the searched position, i.e. to the position where the signal 

changed.

Continues on next page



1 Instructions

1.147. SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

4113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \PStop ]

Path Stop

Data type: switch

The movement is stopped with path stop (Program Stop) when the value of the search signal 

changes to active. However, the external axes are moved a rather long distance before they 

stop and are not moved back to the searched position, i.e. to the position where the signal 

changed.

[ \SStop ]

Soft Stop

Data type: switch

The movement is stopped as quickly as possible with fast soft stop when the value of the 

search signal changes to active. However, the external axes are moved only a small distance 

before they stop and are not moved back to the searched position, i.e. to the position where 

the signal changed. 

Stop is faster compare to SStop. SStop is faster compare to PStop.

[ \Sup ]

Supervision

Data type: switch

The search instruction is sensitive to signal activation during the complete movement (flying 

search), i.e. even after the first signal change has been reported. If more than one match 

occurs during a search a recoverable error is generated with the mec. units in the 

ToJointPos.

If the argument \Stop, \PStop, \SStop or \Sup is omitted (no switch used at all):

• The movement continues (flying search) to the position specified in the ToJointPos 

argument (same as with argument \Sup)

• An error is reported for one search hit but is not reported for more than one search hit 

(the first search hit is returned as the SearchJointPos)

Signal 

Data type: signaldi

The name of the signal to supervise.

[ \Flanks ]

Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted, only the positive edge of the signal is valid for a search 

hit and a signal supervision will be activated at the beginning of a search process. This means 

that if the signal already has the positive value at the beginning of a search process or the 

communication with the signal is lost, the movement is stopped as quickly as possible with 

soft stop. A user recovery error (ERR_SIGSUPSEARCH) will be generated and can be 

handled in the error handler.

Continued

Continues on next page



1 Instructions

1.147. SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

3HAC 16581-1  Revision: J412

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

SearchJointPos

Data type: jointtarget

The position of the external axes when the search signal has been triggered. The position 

takes any active ExtOffs into consideration.

ToJointPos

Data type: jointtarget

The destination point for the external axes. It is defined as a named position or stored directly 

in the instruction (marked with an * in the instruction). SearchExtJ always uses a stop point 

as zone data for the destination.

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if coordinated synchronized movement, 

and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

[ \UseEOffs ]

Use External Offset

Data type: switch

The offset for external axes, setup by instruction EOffsSet, is activated for SearchExtJ 

instruction when the argument UseEOffs is used. See instruction EOffsSet for more 

information about external offset.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the linear or 

rotating external axis.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the mec. units move. 

It is then substituted for the corresponding speed data.

Continued

Continues on next page



1 Instructions

1.147. SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

4133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveExtJ for information about movement of mechanical units without 

TCP.

The movement always ends with a stop point, i.e. the external axes stop at the destination 

point. If a flying search is used, that is, the \Sup argument is specified or no switch is 

specified the movement always continues to the programmed destination point. If a search is 

made using the switch \Stop, \PStop or \SStop, the movement stops when the first search 

hit is detected.

The SearchExtJ instruction stores the position of the external axes when the value of the 

digital signal changes to the requested one, as illustrated in figure below.

The figure shows how flank-triggered signal detection is used (the position is only stored 

when the signal is changed the first time).

xx0500002243

More examples

More examples of how to use the instruction SearchExtJ are illustrated below.

Example 1
SearchExtJ \Sup, di1\Flanks, searchp,jpos10, vrot20;

The mec. unit is moved towards the position jpos10. When the value of the signal di1 

changes to active or passive, the position is stored in searchp. If the value of the signal 

changes twice, the program generates an error after the search process is finished.

Example 2
SearchExtJ \Stop, di1, sp, jpos20, vlin50;

MoveExtJ sp, vlin50, fine \Inpos := inpos50;

A check on the signal dil will be made at the beginning of the search process and if the signal 

already has a positive value or the communication with the signal is lost, the movement stops. 

Otherwise the mec. unit is moved towards the position jpos20. When the value of the signal 

di1 changes to active, the position is stored in sp. The mec. unit is moved back to this point 

using an accurately defined stop point. 

Continued

Continues on next page



1 Instructions

1.147. SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

3HAC 16581-1  Revision: J414

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

An error is reported during a search when:

• No signal detection occurred - this generates the error ERR_WHLSEARCH.

• More than one signal detection occurred – this generates the error 

ERR_WHLSEARCH, but only if the \Sup argument is used.

• The signal already has a positive value at the beginning of the search process or the 

communication with the signal is lost - this generates the error 

ERR_SIGSUPSEARCH, but only if the \Flanks argument is omitted.

Errors can be handled in different ways depending on the selected running mode:

• Continuous forward / Instruction forward / ERR_WHLSEARCH: No position is 

returned and the movement always continues to the programmed destination point. 

The system variable ERRNO is set to ERR_WHLSEARCH and the error can be 

handled in the error handler of the routine. 

• Continuous forward / Instruction forward / ERR_SIGSUPSEARCH: No position 

is returned and the movement always stops as quickly as possible at the beginning of 

the search movement. The system variable ERRNO is set to ERR_SIGSUPSEARCH 

and the error can be handled in the error handler of the routine.

• Instruction backward: During backward execution, the instruction just carries out 

the movement without any signal supervision.

Example
VAR num fk;

...

MoveExtJ jpos10, vrot100, fine;

SearchExtJ \Stop, di1, sp, jpos20, vrot5;

...

ERROR

IF ERRNO=ERR_WHLSEARCH THEN

StorePath;

MoveExtJ jpos10, vrot50, fine;

RestoPath;

RETRY;

ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN

TPWrite "The signal of the SearchExtJ instruction is already 

high!";

TPReadFK fk,"Try again after manual reset of signal 

?","YES","stEmpty","stEmpty","stEmpty","NO";

IF fk = 1 THEN

MoveExtJ jpos10, vrot50, fine;

RETRY;

ELSE

Stop;

ENDIF

ENDIF

Continued

Continues on next page



1 Instructions

1.147. SearchExtJ - Search with one or several mechanical units without TCP
RobotWare - OS

4153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

If the signal is already active at the beginning of the search process or the communication 

with the signal is lost, a user dialog will be activated (TPReadFK ...;). Reset the signal and 

push YES on the user dialog and the mec. unit moves back to jpos10 and tries once more. 

Otherwise program execution will stop.

If the signal is passive at the beginning of the search process, the mec. unit searches from 

position jpos10 to jpos20. If no signal detection occurs, the robot moves back to jpos10 

and tries once more.

Limitations

Limitations for searching if coordinated synchronized movements:

• If using SearchL, SearchC or SearchExtJ for one program task and some other 

move instruction in another program task, it is only possible to use flying search with 

switch \Sup. Besides that, it is only possible to do error recovery with TRYNEXT.

• It is possible to use all searching functions if using some of the instructions SearchL, 

SearchC or SearchExtJ in all involved program tasks with coordinated 

synchronized movements and generate search hits from the same digital input signal. 

This will generate search hits synchronously in all search instructions. Any error 

recovery must also be the same in all involved program tasks.

• While searching is active, it isn’t possible to store current path with instruction 

StorePath.

Syntax
SearchExtJ

[ ’\’ Stop ’,’ ] | [ ’\’ PStop ’,’] | [ ’\’ SStop ’,’] | [ ’\’ 

Sup ’,’ ]

[ Signal ’:=’ ] < variable (VAR) of signaldi >

[‘\’ Flanks]’,’

[ SearchJointPos’ :=’ ] < var or pers (INOUT) of jointtarget > ’,’

[ ToJointPos’  :=’ ] < expression (IN) of jointtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ ’\’ UseEOffs’ ,’ ]

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ] ’;’

Related information

For information about See

Move mec. units without TCP MoveExtJ - Move one or several mechanical units 
without TCP on page 250

Definition of jointtarget jointtarget - Joint position data on page 1129

Definition of velocity speeddata - Speed data on page 1185

Using error handlers Technical reference manual - RAPID overview, section 
RAPID summary - Error recovery

Motion in general Technical reference manual - RAPID overview, section 
Motion and I/O principles

Continued



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J416

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.148. SearchL - Searches linearly using the robot

Usage

SearchL (Search Linear) is used to search for a position when moving the tool center point 

(TCP) linearly. 

During the movement the robot supervises a digital input signal. When the value of the signal 

changes to the requested one the robot immediately reads the current position.

This instruction can typically be used when the tool held by the robot is a probe for surface 

detection. Using the SearchL instruction the outline coordinates of a work object can be 

obtained.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

When using search instructions it is important to configure the I/O system to have a very short 

time from setting the physical signal to the system to getting the information regarding the 

setting (use I/O unit with interrupt control, not poll control). How to do this can differ between 

fieldbuses. If using DeviceNet the ABB units DSQC 651 (AD Combi I/O) and DSQC 652 

(Digital I/O) will give short times since they are using connection type Change of State. If 

using other fieldbuses make sure to configure the network in a proper way to get right 

conditions.

Basic examples

Basic examples of the instruction SearchL are illustrated below.

See also More examples on page 420.

Example 1
SearchL di1, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10 at a speed of v100. When 

the value of the signal di1 changes to active the position is stored in sp.

Example 2
SearchL \Stop, di2, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the value of the 

signal di2 changes to active the position is stored in sp and the robot stops immediately.

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

4173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
SearchL [\Stop] | [\PStop] | [\SStop] | [\Sup] Signal [\Flanks] 

SearchPoint ToPoint [\ID] Speed [\V] | [\T] Tool [\WObj] 

[\Corr]

[ \Stop ]

Stiff Stop

Data type: switch

The robot movement is stopped as quickly as possible without keeping the TCP on the path 

(hard stop) when the value of the search signal changes to active. However, the robot is 

moved a small distance before it stops and is not moved back to the searched position, i.e. to 

the position where the signal changed.

-

WARNING!

To stop the searching with stiff stop (switch \Stop) is only allowed if the TCP-speed is lower 

than 100 mm/s. At a stiff stop with higher speeds some axes can move in unpredictable 

directions.

[ \PStop ]

Path Stop

Data type: switch

The robot movement is stopped as quickly as possible while keeping the TCP on the path (soft 

stop) when the value of the search signal changes to active. However, the robot is moved a 

distance before it stops and is not moved back to the searched position, i.e. to the position 

where the signal changed.

[ \SStop ]

Soft Stop

Data type: switch

The robot movement is stopped as quickly as possible while keeping the TCP close to or on 

the path (soft stop) when the value of the search signal changes to active. However, the robot 

is only moved a small distance before it stops and is not moved back to the searched position, 

i.e. to the position where the signal changed. SStop is faster than PStop. But when the robot 

is running faster than 100 mm/s it stops in the direction of the tangent of the movement which 

causes it to marginally slide off the path.

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J418

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Sup ]

Supervision

Data type: switch

The search instruction is sensitive to signal activation during the complete movement (flying 

search), i.e. even after the first signal change has been reported. If more than one match 

occurs during a search then a recoverable error is generated with the robot in the ToPoint.

If the argument \Stop, \PStop, \SStop, or \Sup is omitted then (no switch used at all):

• the movement continues (flying search) to the position specified in the ToPoint 

argument (same as with argument \Sup)

• error is reported for none search hit but is not reported for more than one search hit 

(first search hit is returned as the SearchPoint)

Signal

Data type: signaldi

The name of the signal to supervise.

[ \Flanks ]

Data type: switch

The positive and the negative edge of the signal is valid for a search hit.

If the argument \Flanks is omitted, only the positive edge of the signal is valid for a search 

hit and a signal supervision will be activated at the beginning of a search process. This means 

that if the signal has the positive value already at the beginning of a search process or the 

communication with the signal is lost then the robot movement is stopped as quickly as 

possible, while keeping the TCP on the path (soft stop). A user recovery error 

(ERR_SIGSUPSEARCH) will be generated and can be handled in the error handler.

SearchPoint

Data type: robtarget

The position of the TCP and external axes when the search signal has been triggered. The 

position is specified in the outermost coordinate system taking the specified tool, work object, 

and active ProgDisp/ExtOffs coordinate system into consideration. 

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction). SearchL always uses a stop 

point as zone data for the destination.

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

4193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the external axes, and the tool reorientation. 

[ \V ]

Velocity

Data type: num

This argument is used to specify the velocity of the TCP in mm/s directly in the instruction. 

It is then substituted for the corresponding velocity specified in the speed data.

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified for a linear movement relative to the work object to be performed.

[ \Corr ]

Correction

Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be added to 

the path and destination position if this argument is present.

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J420

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveL for information about linear movement.

The movement always ends with a stop point, i.e. the robot stops at the destination point. If a 

flying search is used, i.e. the \Sup argument is specified or none switch at all is specified 

then the robot movement always continues to the programmed destination point. If a search 

is made using the switch \Stop, \PStop, or \SStop the robot movement stops when the 

first search hit is detected.

The SearchL instruction stores the position of the TCP when the value of the digital signal 

changes to the requested one, as illustrated in figure below.

The figure shows how flank-triggered signal detection is used (the position is stored when the 

signal is changed the first time only).

xx0500002243

More examples

More examples of how to use the instruction SearchL are illustrated below.

Example 1
SearchL \Sup, di1\Flanks, sp, p10, v100, probe;

The TCP of the probe is moved linearly towards the position p10. When the value of the 

signal di1 changes to active or passive the position is stored in sp. If the value of the signal 

changes twice then the program generates an error after the search process is finished.

Example 2
SearchL \Stop, di1, sp, p10, v100, tool1;

MoveL sp, v100, fine \Inpos := inpos50, tool1;

PDispOn *, tool1;

MoveL p100, v100, z10, tool1;

MoveL p110, v100, z10, tool1;

MoveL p120, v100, z10, tool1;

PDispOff;

At the beginning of the search process, a check on the signal di1 will be done and if the signal 

already has a positive value or the communication with the signal is lost, the robot stops. 

Otherwise the TCP of tool1 is moved linearly towards the position p10. When the value of 

the signal di1 changes to active, the position is stored in sp. The robot is moved back to 

this point using an accurately defined stop point. Using program displacement, the robot then 

moves relative to the searched position, sp. 

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

4213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Zone data for the positioning instruction that precedes SearchL must be used carefully. The 

start of the search, i.e. when the I/O signal is ready to react, is not, in this case, the 

programmed destination point of the previous positioning instruction but a point along the 

real robot path. The figures below illustrate examples of things that may go wrong when zone 

data other than fine is used.

The following figure shows that a match is made on the wrong side of the object because the 

wrong zone data was used.

xx0500002244

The following figure shows that no match was detected because the wrong zone data was 

used.

xx0500002245

The following figure shows that no match was detected because the wrong zone data was 

used.

xx0500002246

Limitations for searching if coordinated synchronized movements:

• If using SearchL, SearchC or SearchExtJ for one program task and some other 

move instruction in other program task, it is only possible to use flying search with 

switch \Sup. Besides that, only possible to do error recovery with TRYNEXT.

• It’s possible to use all searching functionality, if using some of the instructions  

SearchL, SearchC or SearchExtJ in all involved program tasks with coordinated 

synchronized movements and generate search hit from same digital input signal. This 

will generate search hit synchronously in all search instructions. Any error recovery 

must also be the same in all involved program tasks.

While searching is active, it isn’t allowed to store current path with instruction StorePath.

Repetition accuracy for search hit position with TCP speed 20 - 1000 mm/s 0.1 - 0.3 mm.

Typical stop distance using a search velocity of 50 mm/s: 

• without TCP on path (switch \Stop) 1-3 mm

• with TCP on path (switch \PStop) 15-25 mm

• with TCP near path (switch \SStop) 4-8 mm

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J422

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations for searching on a conveyor:

• a search will stop the robot when hit or if the search fails, so make the search in the 

same direction as the conveyor moves and continue after the search-stop with a move 

to a safe position. Use error handling to move to a safe position when search fails.

• the repetition accuracy for the search hit position will be poorer when searching on a 

conveyor and depends on the speed of the conveyor and how stabil the speed is.

Error handling

An error is reported during a search when:

• no signal detection occurred - this generates the error ERR_WHLSEARCH.

• more than one signal detection occurred – this generates the error 

ERR_WHLSEARCH only if the \Sup argument is used.

• the signal already has a positive value at the beginning of the search process or the 

communication with the signal is lost - this generates the error 

ERR_SIGSUPSEARCH only if the \Flanks argument is omitted.

Errors can be handled in different ways depending on the selected running mode:

• Continuous forward / Instruction forward / ERR_WHLSEARCH: No position is 

returned and the movement always continues to the programmed destination point. 

The system variable ERRNO is set to ERR_WHLSEARCH and the error can be 

handled in the error handler of the routine. 

• Continuous forward / Instruction forward / ERR_SIGSUPSEARCH No position is 

returned and the movement always stops as quickly as possible at the beginning of the 

search path. The system variable ERRNO is set to ERR_SIGSUPSEARCH and the 

error can be handled in the error handler of the routine.

• Instruction backward: During backward execution the instruction carries out the 

movement without any signal supervision.

Example
VAR num fk;

...

MoveL p10, v100, fine, tool1;

SearchL \Stop, di1, sp, p20, v100, tool1;

...

ERROR

IF ERRNO=ERR_WHLSEARCH THEN

StorePath;

MoveL p10, v100, fine, tool1;

RestoPath;

RETRY;

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

4233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ELSEIF ERRNO=ERR_SIGSUPSEARCH THEN

TPWrite "The signal of the SearchL instruction is already 

high!";

TPReadFK fk,"Try again after manual reset of signal 

?","YES","stEmpty","stEmpty","stEmpty","NO";

IF fk = 1 THEN

MoveL p10, v100, fine, tool1;

RETRY;

ELSE

Stop;

ENDIF

ENDIF

If the signal is already active at the beginning of the search process or the communication 

with the signal is lost then a user dialog will be activated (TPReadFK ...;). Reset the signal 

and push YES on the user dialog, and the robot moves back to p10 and tries once more. 

Otherwise program execution will stop.

If the signal is passive at the beginning of the search process then the robot searches from 

position p10 to p20. If no signal detection occurs then the robot moves back to p10 and tries 

once more.

Syntax
SearchL

[ ’\’ Stop ’,’ ] | [ ’\’ PStop ’,’] | [ ’\’ SStop ’,’] | [ ’\’ 

Sup ’,’ ]

[ Signal ’:=’ ] < variable (VAR) of signaldi >

[‘\’ Flanks]’,’

[ SearchPoint’ :=’ ] < var or pers (INOUT) of robtarget > ’,’

[ ToPoint’ :=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ V ’:=’ < expression (IN) of num > ] |

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[ Tool ´:=´ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ]

[ ’\’ Corr ]’;’

Related information

For information about See

Circular searches SearchC - Searches circularly using the robot on page 
402

Writes to a corrections entry CorrWrite - Writes to a correction generator on page 77

Moves the robot linearly MoveL - Moves the robot linearly on page 264

Linear movement Technical reference manual - RAPID overview, section 
Motion and I/O principles - Positioning during program 
execution

Definition of velocity speeddata - Speed data on page 1185

Definition of tools tooldata - Tool data on page 1207

Continued

Continues on next page



1 Instructions

1.148. SearchL - Searches linearly using the robot
RobotWare - OS

3HAC 16581-1  Revision: J424

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Definition of work objects wobjdata - Work object data on page 1224

Using error handlers Technical reference manual - RAPID overview, section 
RAPID summary - Error recovery

Motion in general Technical reference manual - RAPID overview, section 
Motion and I/O principles

For information about See

Continued



1 Instructions

1.149. SenDevice - connect to a sensor device
Sensor Interface

4253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.149. SenDevice - connect to a sensor device

Usage

SenDevice is used to connect to a sensor device connected to the serial sensor interface.

The sensor interface communicates with sensors over serial channels using the RTP1 

transport protocol.

This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

• Name “COM1:” 

• Connector “COM1”

• Baudrate 19200

COM_TRP:

• Name “sen1:”

• Type “RTP1” 

• PhyChannel “COM1”

Basic examples

Basic examples of the instruction SenDevice are illustrated below.

Example 1
! Define variable numbers

CONST num SensorOn := 6;

CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Connect to the sensor device“ sen1:” (defined in sio.cfg).

SenDevice "sen1:";

! Request start of sensor meassurements

WriteVar "sen1:", SensorOn, 1;

! Read a cartesian position from the sensor.

SensorPos.x := ReadVar "sen1:", XCoord;

SensorPos.y := ReadVar "sen1:", YCoord;

SensorPos.z := ReadVar "sen1:", ZCoord;

! Stop sensor

WriteVar "sen1:", SensorOn, 0;

Continues on next page



1 Instructions

1.149. SenDevice - connect to a sensor device
Sensor Interface

3HAC 16581-1  Revision: J426

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
SenDevice device

device

Data type: string

The I/O device name configured in sio.cfg for the sensor used.

Syntax
ReadBlock

[ device‘ :=’ ] < expression(IN) of string>’,’

[ BlockNo’ :=’ ] < expression (IN) of num > ‘,’

[ FileName’ :=’ ] < expression (IN) of string > ‘;’

Related information

For information about See

Write a sensor variable WriteVar - write variable on page 729

Read a sensor variable ReadVar - Read variable from a device on page 958

Write a sensor data block WriteBlock - write block of data to device on page 719

Configuration of sensor com-
munication

Technical reference manual - System parameters, section 
Communication

Continued



1 Instructions

1.150. Set - Sets a digital output signal
RobotWare - OS

4273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.150. Set - Sets a digital output signal

Usage

Set is used to set the value of a digital output signal to one.

Basic examples

Basic examples of the instruction Set are illustrated below.

Example 1
Set do15;

The signal do15 is set to 1.

Example 2
Set weldon;

The signal weldon is set to 1.

Arguments
Set Signal

Signal

Data type: signaldo

The name of the signal to be set to one.

Program execution

There is a short delay before the signal physically gets its new value. If you do not want the 

program execution to continue until the signal has got its new value then you can use the 

instruction SetDO with the optional parameter \Sync.

The true value depends on the configuration of the signal. If the signal is inverted in the 

system parameters then this instruction causes the physical channel to be set to zero.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if there is no contact with the unit.

Syntax
Set

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’;’

Continues on next page



1 Instructions

1.150. Set - Sets a digital output signal
RobotWare - OS

3HAC 16581-1  Revision: J428

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Setting a digital output signal to zero Reset - Resets a digital output signal on page 
359

Change the value of a digital output signal SetDO - Changes the value of a digital output 
signal on page 440

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and output 
signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System 
parameters

Continued



1 Instructions

1.151. SetAllDataVal - Set a value to all data objects in a defined set
RobotWare - OS

4293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.151. SetAllDataVal - Set a value to all data objects in a defined set

Usage

SetAllDataVal(Set All Data Value) makes it possible to set a new value to all data objects 

of a certain type that match the given grammar.

Basic examples

Basic examples of the instruction SetAllDataVal are illustrated below.

VAR mydata mydata0:=0;

...

SetAllDataVal "mydata"\TypeMod:="mytypes"\Hidden,mydata0;

This will set all data objects of data type mydata in the system to the same value that the 

variable mydata0 has (in the example to 0). The user defined data type mydata is defined in 

the module mytypes.

Arguments
SetAllDataVal Type [\TypeMod] [\Object] [\Hidden] Value

Type

Data type: string

The type name of the data objects to be set.

[ \TypeMod ]

Type Module

Data type: string

The module name where the data type is defined if using user defined data types.

[ \Object ]

Data type: string

The default behavior is to set all data object of the data type above but this option makes it 

possible to name one or several objects with a regular expression. (see also instruction 

SetDataSearch)

[ \Hidden ]

Data type: switch

This also matches data objects that are in routines (routine data or parameters) hidden by 

some routine in the call chain.

Value

Data type: anytype

Variable which holds the new value to be set. The data type must be the same as the data type 

for the object to be set.

Continues on next page



1 Instructions

1.151. SetAllDataVal - Set a value to all data objects in a defined set
RobotWare - OS

3HAC 16581-1  Revision: J430

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program running

The instruction will fail if the specification for Type or TypeMod is wrong.

If the matching data object is an array then all elements of the array will be set to the specified 

value.

If the matching data object is read-only data then the value will not be changed.

If the system doesn’t have any matching data objects then the instruction will accept it and 

return successfully.

Limitations

For a semivalue data type it is not possible to search for the associated value data type. E.g. 

if searching for dionum then there are no search hits for signal signaldi and if searching 

for num then there are no search hits for signals signalgi or signalai.

It is not possible to set a value to a variable declared as LOCAL in a built in RAPID module.

Syntax
SetAllDataVal  

[ Type ’:=’ ] < expression (IN) of string >

[’\’TypeMod’ :=’<expression (IN) of string>]

[’\’Object’ :=’<expression (IN) of string>]

[’\’Hidden ] ’,’

[ Value ’:=’] <variable (VAR) of anytype>’;’

Related information

For information about See

Define a symbol set in a search 
session

SetDataSearch - Define the symbol set in a search 
sequence on page 433

Get next matching symbol GetNextSym - Get next matching symbol on page 855

Get the value of a data object GetDataVal - Get the value of a data object on page 110

Set the value of a data object SetDataVal - Set the value of a data object on page 437

The related data type datapos datapos - Enclosing block for a data object on page 1101

Continued



1 Instructions

1.152. SetAO - Changes the value of an analog output signal
RobotWare - OS

4313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.152. SetAO - Changes the value of an analog output signal

Usage

SetAO is used to change the value of an analog output signal.

Basic examples

Basic examples of the instruction SetAO are illustrated below.

See also More examples on page 432.

Example 1
SetAO ao2, 5.5;

The signal ao2 is set to 5.5.

Arguments
SetAO Signal Value

Signal

Data type: signalao

The name of the analog output signal to be changed.

Value

Data type: num

The desired value of the signal.

Program execution

The programmed value is scaled (in accordance with the system parameters) before it is sent 

on the physical channel. A diagram of how analog signal values are scaled is shown in the 

figure below.

xx0500002408

Continues on next page



1 Instructions

1.152. SetAO - Changes the value of an analog output signal
RobotWare - OS

3HAC 16581-1  Revision: J432

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

ERR_AO_LIM

if the programmed Value argument for the specified analog output signal Signal is outside 

limits. 

More examples

More examples of the instruction SetAO are illustrated below.

Example 1
SetAO weldcurr, curr_outp;

The signal weldcurr is set to the same value as the current value of the variable curr_outp.

Syntax
SetAO

[ Signal ’:=’ ] < variable (VAR) of signalao > ’,’

[ Value ’:=’ ] < expression (IN) of num > ’;’

Related information

For information about See

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and output signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O principles

Configuration of I/O Technical reference manual - System parameters

Continued



1 Instructions

1.153. SetDataSearch - Define the symbol set in a search sequence
RobotWare - OS

4333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.153. SetDataSearch - Define the symbol set in a search sequence

Usage

SetDataSearch is used together with function GetNextSym to retrieve data objects from 

the system.

Basic examples

Basic examples of the instruction SetDataSearch are illustrated below.

Example 1
VAR datapos block;

VAR string name;

...

SetDataSearch "robtarget"\InTask;

WHILE GetNextSym(name,block \Recursive) DO

...

This session will find all robtarget’s object in the task.

Arguments
SetDataSearch Type [\TypeMod] [\Object] [\PersSym] 

[\VarSym][\ConstSym] [\InTask] | [\InMod] 

[\InRout][\GlobalSym] | [\LocalSym]

Type

Data type: string

The data type name of the data objects to be retrieved.

[ \TypeMod ] 

Type Module

Data type: string

The module name where the data type is defined, if using user defined data types.

[ \Object ]

Data type: string

The default behavior is to set all data objects of the data type above, but this option makes it 

possible to name one or several data objects with a regular expression.

A regular expression is a powerful mechanism to specify a grammar to match the data object 

names. The string could consist of either ordinary characters and meta characters. A meta 

character is a special operator used to represent one or more ordinary characters in the string 

with the purpose to extend the search. It is possible to see if a string matches a specified 

pattern as a whole or search within a string for a substring matching a specified pattern.

Within a regular expression all alphanumeric characters match themselves. That is to say that 

the pattern "abc" will only match a data object named "abc". To match all data object names 

containing the character sequence "abc" it is necessary to add some meta characters. The 

regular expression for this is ".*abc.*".

Continues on next page



1 Instructions

1.153. SetDataSearch - Define the symbol set in a search sequence
RobotWare - OS

3HAC 16581-1  Revision: J434

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The available meta character set is shown below.

The default behavior is to accept any symbols but if one or several of following PersSym, 

VarSym, or ConstSym is specified then only symbols that match the specification are 

accepted:

[ \PersSym ] 

Persistent Symbols

Data type: switch

Accept persistent variable (PERS) symbols. 

[ \VarSym ]

Variable Symbols

Data type: switch

Accept variable (VAR) symbols.

[ \ConstSym ]

Constant Symbols

Data type: switch

Accept constant (CONST) symbols.

If not one of the flags \InTask or \InMod are specified then the search is started at system 

level. The system level is the root to all other symbol definitions in the symbol tree. At the 

system level all build- in symbols are located plus the handle to the task level. At the task 

level all loaded global symbols are located plus the handle to the modules level. 

If the \Recursive flag is set in GetNextSym then the search session will enter all loaded 

modules and routines below the system level.

Expression Meaning

. Any single character.

[s] Any single character in the non-empty set s, where s is a 
sequence of characters. Ranges may be specified as c-c.

[^s] Any single character not in the set s.

r* Zero or more occurrences of the regular expression r.

r+ One or more occurrences of the regular expression r

r? Zero or one occurrence of the regular expression r.

(r) The regular expression r. Used for separate that regular 
expression from another.

r | r’ The regular expressions r or r’.

.* Any character sequence (zero, one, or several characters).

Continued

Continues on next page



1 Instructions

1.153. SetDataSearch - Define the symbol set in a search sequence
RobotWare - OS

4353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \InTask ]

In Task

Data type: switch

Start the search at the task level. At the task level all loaded global symbols are located plus 

the handle to the modules level.

If the \Recursive flag is set in GetNextSym then the search session will enter all loaded 

modules and routines below the task level.

[ \InMod ]

In Module

Data type: string

Start the search at the specified module level. At the module level all loaded global and local 

symbols declared in the specified module are located plus the handle to the routines level. 

If the \Recursive flag is set in GetNextSym then the search session will enter all loaded 

routines below the specified module level (declared in the specified module).

[ \InRout ]

In Routine

Data type: string

Search only at the specified routine level.

The module name for the routine must be specified in the argument \InMod.

The default behavior is to match both local and global module symbols, but if one of 

following \GlobalSym or \LocalSym is specified then only symbols that match the 

specification are accepted:

[ \GlobalSym ]

Global Symbols

Data type: switch

Skip local module symbols.

[ \LocalSym ]

Local Symbols

Data type: switch

Skip global module symbols.

Program running

The instruction will fail if the specification for one of Type, TypeMod, InMod, or InRout is 

wrong.

If the system doesn’t have any matching objects the instruction will accept it and return 

successfully but the first GetNextSym will return FALSE.

Continued

Continues on next page



1 Instructions

1.153. SetDataSearch - Define the symbol set in a search sequence
RobotWare - OS

3HAC 16581-1  Revision: J436

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Array data objects cannot be defined in the symbol search set and cannot be found in a search 

sequence.

For a semivalue data type it is not possible to search for the associated value data type. E.g. 

if searching for dionum then there are no search hits for signal signaldi and if searching 

for num then there are no search hits for signals signalgi or signalai.

Installed built-in symbols declared as LOCAL will never be found, irrespective of use of 

argument \GlobalSym, \LocalSym or none of these.

Installed built-in symbols declared as global or as TASK will always be found, irrespective of 

use of argument \GlobalSym, \LocalSym or none of these.

It is not possible to use SetDataSearch for searching for data of some ALIAS data type 

defined with RAPID code. No limitation for predefined ALIAS data type.

Syntax
SetDataSearch  

[ Type ’:=’ ] < expression (IN) of string >

[’\’TypeMod ’:=’<expression (IN) of string>]

[’\’Object ’:=’<expression (IN) of string>]  

[’\’PersSym ]

[’\’VarSym ]

[’\’ConstSym ]

[’\’InTask ]

| [’\’InMod’ :=’<expression (IN) of string>]

[’\’InRout ’:=’<expression (IN) of string>]  

[’\’GlobalSym ]

| [’\’LocalSym]’ ;’

Related information

For information about See

Get next matching symbol GetNextSym - Get next matching symbol on page 855

Get the value of a data object GetDataVal - Get the value of a data object on page 
110

Set the value of many data objects SetAllDataVal - Set a value to all data objects in a 
defined set on page 429

The related data type datapos datapos - Enclosing block for a data object on page 
1101

Continued



1 Instructions

1.154. SetDataVal - Set the value of a data object
RobotWare - OS

4373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.154. SetDataVal - Set the value of a data object

Usage

SetDataVal (Set Data Value) makes it possible to set a value for a data object that is 

specified with a string variable.

Basic examples

Basic examples of the instruction SetDataVal are illustrated below.

Example 1
VAR num value:=3;

...

SetDataVal "reg"+ValToStr(ReadNum(mycom)),value;

This will set the value 3 to a register with a number that is received from the serial channel 

mycom.

Example 2
VAR datapos block; 

VAR bool truevar:=TRUE; 

...

SetDataSearch "bool" \Object:="my.*" \InMod:="mymod"\LocalSym; 

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar; 

ENDWHILE

This session will set all local bool that begin with my in the module mymod to TRUE.

Example 3
VAR string StringArrVar_copy{2}; 

...

StringArrVar_copy{1} := "test1";

StringArrVar_copy{2} := "test2";

SetDataVal "StringArrVar", StringArrVar_copy;

This session will set the array StringArrVar to contain the two strings test1 and test2.

Arguments
SetDataVal Object [\Block]|[\TaskRef]|[\TaskName] Value

Object

Data type: string

The name of the data object.

[ \Block ]

Data type: datapos

The enclosed block to the data object. This can only be fetched with the GetNextSym 

function. 

If this argument is omitted then the value of the visible data object in the current program 

execution scope will be set.

Continues on next page



1 Instructions

1.154. SetDataVal - Set the value of a data object
RobotWare - OS

3HAC 16581-1  Revision: J438

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\TaskRef]

Task Reference

Data type: taskid

The program task identity in which to search for the data object specified. When using this 

argument, you may search for PERS or TASK PERS declarations in other tasks, any other 

declarations will result in an error.

For all program tasks in the system the predefined variables of the data type taskid will be 

available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1 task the variable 

identity will be T_ROB1Id.

[\TaskName]

Data type: string

The program task name in which to search for the data object specified. When using this 

argument, you may search for PERS or TASK PERS declarations in other tasks, any other 

declarations will result in an error.

Value

Data type: anytype

Variable which holds the new value to be set. The data type must be the same as the data type 

for the data object to be set. The set value must be fetched from a variable but can be stored 

in a variable or persistent.

Error handling

The system variable ERRNO is set to ERR_SYM_ACCESS if:

• the data object is non-existent

• the data object is read-only data

• the data object is routine data or routine parameter and not located in the current active 

routine

• searching in other tasks for other declarations then PERS or TASK PERS

When using the arguments TaskRef or TaskName you may search for PERS or TASK PERS 

declarations in other tasks, any other declarations will result in an error and the system 

variable ERRNO is set to ERR_SYM_ACCESS. Searching for a PERS declared as LOCAL in other 

tasks will also result in an error and the system variable ERRNO is set to ERR_SYM_ACCESS.

The system variable ERRNO is set to ERR_INVDIM if the data object and the variable used in 

argument Value have different dimensions.

The error can be handled in the error handler of the routine.

Limitations

For a semivalue data type it is not possible to search for the associated value data type. E.g. 

if searching for dionum then no search hit for signal signaldi will be obtained and if 

searching for num then no search hit for signals signalgi or signalai will be obtained.

It is not possible to set a value to a variable declared as LOCAL in a built-in RAPID module.

Continued

Continues on next page



1 Instructions

1.154. SetDataVal - Set the value of a data object
RobotWare - OS

4393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
SetDataVal  

[ Object ’:=’ ] < expression (IN) of string > 

[’\’Block’ :=’<variable (VAR) of datapos>] 

|[ ’\’TaskRef’ :=’ <variable (VAR) of taskid>] 

|[ ’\’TaskName’ :=’ <expression (IN) of string>] ’,’]

[ Value ’:=’ ] <variable (VAR) of anytype>]’;’

Related information

For information about See

Define a symbol set in a search session SetDataSearch - Define the symbol set in a 
search sequence on page 433

Get next matching symbol GetNextSym - Get next matching symbol on page 
855

Get the value of a data object GetDataVal - Get the value of a data object on 
page 110

Set the value of many data objects SetAllDataVal - Set a value to all data objects in a 
defined set on page 429

The related data type datapos datapos - Enclosing block for a data object on 
page 1101 

Continued



1 Instructions

1.155. SetDO - Changes the value of a digital output signal
RobotWare - OS

3HAC 16581-1  Revision: J440

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.155. SetDO - Changes the value of a digital output signal

Usage

SetDO is used to change the value of a digital output signal, with or without a time delay or 

synchronization.

Basic examples

Basic examples of the instruction SetDO are illustrated below.

Example 1
SetDO do15, 1;

The signal do15 is set to 1.

Example 2
SetDO weld, off;

The signal weld is set to off.

Example 3
SetDO \SDelay := 0.2, weld, high;

The signal weld is set to high with a delay of 0.2 s. However, program execution continues 

with the next instruction.

Example 4
SetDO \Sync ,do1, 0;

The signal do1 is set to 0. Program execution waits until the signal is physically set to the 

specified value.

Arguments
SetDO [ \SDelay ]|[ \Sync ] Signal Value

[ \SDelay ]

Signal Delay

Data type: num

Delays the change for the amount of time given in seconds (max. 2000 s). Program execution 

continues directly with the next instruction. After the given time delay the signal is changed 

without the rest of the program execution being affected. 

[ \Sync ]

Synchronization

Data type: switch

If this argument is used then the program execution will wait until the signal is physically set 

to the specified value.

Signal

Data type: signaldo

The name of the signal to be changed.

Continues on next page



1 Instructions

1.155. SetDO - Changes the value of a digital output signal
RobotWare - OS

4413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Value

Data type: dionum

The desired value of the signal 0 or 1.

Program execution

The true value depends on the configuration of the signal. If the signal is inverted in the 

system parameters then the value of the physical channel is the opposite.

If neither of the arguments \SDelay or \Sync are used then the signal will be set as fast as 

possible, and the next instruction will be executed at once without waiting for the signal to be 

physically set.

Limitations

If a SetDO with a \SDelay argument is followed by a new SetDO on the same signal, with 

or without \SDelay argument, then the first SetDO will be cancelled if the second SetDO is 

executed before the delay time of the first SetDO have expired.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

ERR_ARGVALERR

if the value for the SDelay argument exceeds the maximum value allowed (2000 s).

Syntax
SetDO

[ ’\’ SDelay ’:=’ < expression (IN) of num > ’,’ ]

|[ ’\’ Sync ’,’ ]

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’,’

[ Value ’:=’ ] < expression (IN) of dionum > ’;’

Related information

Specified Value Set digital output to

0 0

Any value except 0 1

For information about See

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - input and output signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters

Continued



1 Instructions

1.156. SetGO - Changes the value of a group of digital output signals
RobotWare - OS

3HAC 16581-1  Revision: J442

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.156. SetGO - Changes the value of a group of digital output signals

Usage

SetGO is used to change the value of a group of digital output signals with or without a time 

delay.

Basic examples

Basic examples of the instruction SetGO are illustrated below.

Example 1
SetGO go2, 12;

The signal go2 is set to 12. If go2 comprises 4 signals, e.g. outputs 6-9, then outputs 6 and 

7 are set to zero while outputs 8 and 9 are set to one.

Example 2
SetGO \SDelay := 0.4, go2, 10;

The signal go2 is set to 10. If go2 comprises 4 signals, e.g. outputs 6-9, then outputs 6 and 

8 are set to zero while outputs 7 and 9 are set to one with a delay of 0.4 s. However program 

execution continues with the next instruction.

Example 3
SetGO go32, 4294967295;

The signal go32 is set to 4294967295. go32 comprises 32 signals, which are all set to one.

Arguments
SetGO [ \SDelay ] Signal Value | Dvalue

[ \SDelay ] 

Signal Delay

Data type: num

Delays the change for the period of time stated in seconds (max. 2000 s). Program execution 

continues directly with the next instruction. After the specified time delay the value of the 

signals is changed without the rest of the program execution being affected. 

If the argument is omitted then the signal values are changed directly.

Signal

Data type: signalgo

The name of the signal group to be changed.

Value

Data type: num

The desired value of the signal group (a positive integer) is shown in the table below. 

The permitted value is dependent on the number of signals in the group. A num datatype can 

hold the value for a group of 23 signals or less.

Continues on next page



1 Instructions

1.156. SetGO - Changes the value of a group of digital output signals
RobotWare - OS

4433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Dvalue

Data type: dnum

The desired value of the signal group (a positive integer) is shown in the table below. 

The permitted value is dependent on the number of signals in the group. A dnum datatype can 

hold the value for a group of 32 signals or less.

*) The Value argument of type num can only hold up to 23 signals compared to the Dvalue 

argument of typednum that can hold up to 32 signals. 

No. of signals Permitted Value Permitted Dvalue

1 0-1 0-1

2 0-3 0-3

3 0-7 0-7

4 0-15 0-15

5 0-31 0-31

6 0-63 0-63

7 0-127 0-127

8 0-255 0-255

9 0-511 0-511

10 0-1023 0-1023

11 0-2047 0-2047

12 0-4095 0-4095

13 0-8191 0-8191

14 0-16383 0-16383

15 0-32767 0-32767

16 0-65535 0-65535

17 0-131071 0-131071

18 0-262143 0-262143

19 0-524287 0-524287

20 0-1048575 0-1048575

21 0-2097151 0-2097151

22 0-4194303 0-4194303

23 0-8388607 0-8388607

24 * 0-16777215

25 * 0-33554431

26 * 0-67108863

27 * 0-134217727

28 * 0-268435455

29 * 0-536870911

30 * 0-1073741823

31 * 0-2147483647

32 * 0-4294967295

Continued

Continues on next page



1 Instructions

1.156. SetGO - Changes the value of a group of digital output signals
RobotWare - OS

3HAC 16581-1  Revision: J444

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The programmed value is converted to an unsigned binary number. This binary number is sent 

on the signal group with the result that individual signals in the group are set to 0 or 1. Due 

to internal delays the value of the signal may be undefined for a short period of time.

Limitations

Maximum number of signals that can be used for a group is 23 if argument Value is used and 

32 if argument Dvalue is used. This limitation is valid for all instructions and functions using 

group signals.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

ERR_ARGVALERR

if the value for the SDelay argument exceeds the maximum value allowed (2000 s).

ERR_GO_LIM

if the programmed Value or Dvalue argument for the specified digital group output signal 

Signal is outside limits.

Syntax
SetGO

[ ’\’ SDelay ’:=’ < expression (IN) of num > ’,’ ]

[ Signal ’:=’ ] < variable (VAR) of signalgo > ’,’

[ Value ’:=’ ] < expression (IN) of num > 

| [ Dvalue’ :=’ ] < expression (IN) of dnum > ’;’

Related information

For information about See

Other input/output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and output 
signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O principles

Configuration of I/O (system parameters) Technical reference manual - System parameters

Continued



1 Instructions

1.157. SetSysData - Set system data
RobotWare - OS

4453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.157. SetSysData - Set system data

Usage

SetSysData activates the specified system data name for the specified data type.

With this instruction it is possible to change the current active Tool, Work Object, or PayLoad 

for the robot in actual or connected motion task.

Basic examples

Basic examples of the instruction SetSysData are illustrated below.

Example 1
SetSysData tool5;

The tool tool5 is activated.

SetSysData tool0 \ObjectName := "tool6";

The tool tool6 is activated.

SetSysData anytool \ObjectName := "tool2";

The tool tool2 is activated.

Arguments
SetSysData SourceObject [\ObjectName]

SourceObject

Data type: anytype

Persistent variable that should be active as current system data.

The data type of this argument also specifies the type of system data to be activated for the 

robot in actual or connected motion task.

Entire array or record component can not be used.

[ \ObjectName ]

Data type: string

If this optional argument is specified then it specifies the name of the data object to be active 

(overrides name specified in argument SourceObject). The data type of the data object to 

be active is always fetched from the argument SourceObject.

Program execution

The current active system data object for the Tool, Work Object, or PayLoad is set according 

to the arguments.

Note that this instruction only activates a new data object (or the same as before) and never 

changes the value of any data object.

Data type Type of system data

tooldata Tool

wobjdata Work Object

loaddata Payload

Continues on next page



1 Instructions

1.157. SetSysData - Set system data
RobotWare - OS

3HAC 16581-1  Revision: J446

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
SetSysData 

[ SourceObject’:=’] < persistent(PERS) of anytype>  

[’\’ObjectName’:=’ < expression (IN) of string> ] ’;’

Related information

For information about See

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Definition of payload loaddata - Load data on page 1132

Get system data GetSysData - Get system data on page 113

Continued



1 Instructions

1.158. SingArea - Defines interpolation around singular points
RobotWare - OS

4473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.158. SingArea - Defines interpolation around singular points

Usage

SingArea is used to define how the robot is to move in the proximity of singular points.

SingArea is also used to define linear and circular interpolation for robots with less than six 

axes.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction SingArea are illustrated below.

Example 1
SingArea \Wrist;

The orientation of the tool may be changed slightly in order to pass a singular point (axes 4 

and 6 in line).

Robots with less than six axes may not be able to reach an interpolated tool orientation. By 

using SingArea \Wrist the robot can achieve the movement but the orientation of the tool 

will be slightly changed.

Example 2
SingArea \Off;

The tool orientation is not allowed to differ from the programmed orientation. If a singular 

point is passed then one or more axes may perform a sweeping movement resulting in a 

reduction in velocity.

Robots with less than six axes may not be able to reach a programmed tool orientation. As a 

result the robot will stop.

Arguments
SingArea [\Wrist]|[\Off]

[ \Wrist ]

Data type: switch

The tool orientation is allowed to differ somewhat in order to avoid wrist singularity. Used 

when axes 4 and 6 are parallel (axis 5 at 0 degrees). Also used for linear and circular 

interpolation of robots with less than six axes where the tool orientation is allowed to differ.

[ \Off ]

Data type: switch

The tool orientation is not allowed to differ. Used when no singular points are passed or when 

the orientation is not permitted to be changed.

If none of the arguments are specified the system will be set to \Off.

Continues on next page



1 Instructions

1.158. SingArea - Defines interpolation around singular points
RobotWare - OS

3HAC 16581-1  Revision: J448

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the arguments \Wrist is specified then the orientation is joint-interpolated to avoid 

singular points. In this way the TCP follows the correct path, but the orientation of the tool 

deviates somewhat. This will also happen when a singular point is not passed.

The specified interpolation applies to all subsequent movements until a new SingArea 

instruction is executed. 

The movement is only affected on execution of linear or circular interpolation.

By default, program execution automatically uses the Off argument for robots with six axes. 

Robots with less than six axes may use either the Off argument or the /Wrist argument by 

default. This is automatically set in event routine SYS_RESET.

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Syntax
SingArea

[ ’\’ Wrist ] | [’\’ Off ] ’;’

Related information

For information about See

Singularity Technical reference manual - RAPID overview, 
section Motion and I/O principles - Singularities

Interpolation Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution

Continued



1 Instructions

1.159. SkipWarn - Skip the latest warning
RobotWare-OS

4493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.159. SkipWarn - Skip the latest warning

Usage

SkipWarn (Skip Warning) is used to skip the latest generated warning message to be stored 

in the Event Log during execution in running mode continuously or cycle (no warnings 

skipped in FWD or BWD step).

With SkipWarn it is possible to repeatedly do error recovery in RAPID without filling the 

Event Log with only warning messages.

Basic examples

Basic examples of the instruction SkipWarn are illustrated below.

Example 1
%"notexistingproc"%;

nextinstruction;

ERROR

IF ERRNO = ERR_REFUNKPRC THEN

SkipWarn;

TRYNEXT;

ENDIF

ENDPROC

The program will execute the nextinstruction and no warning message will be stored in 

the Event Log.

Syntax
SkipWarn ’;’

Related information

For information about See

Error recovery Technical reference manual - RAPID overview, section 
RAPID Summary - Error Recovery

Technical reference manual - RAPID overview, section 
Basic Characteristics - Error Recovery

Error number errnum - Error number on page 1108



1 Instructions

1.160. SocketAccept - Accept an incoming connection
Socket Messaging

3HAC 16581-1  Revision: J450

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.160. SocketAccept - Accept an incoming connection

Usage

SocketAccept is used to accept incoming connection requests. SocketAccept can only be 

used for server applications.

Basic examples

Basic examples of the instruction SocketAccept are illustrated below.

See also More examples on page 451.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

...

SocketCreate server_socket;

SocketBind server_socket,"192.168.0.1", 1025;

SocketListen server_socket;

SocketAccept server_socket, client_socket;

A server socket is created and bound to port 1025 on the controller network address 

192.168.0.1. After execution of SocketListen the server socket starts to listen for 

incoming connections on this port and address. SocketAccept waits for any incoming 

connections, accepts the connection request, and returns a client socket for the established 

connection.

Arguments
SocketAccept Socket ClientSocket [\ClientAddress] [ \Time ]

Socket

Data type: socketdev

The server sockets that are waiting for incoming connections. The socket must already be 

created, bounded, and ready for listening.

ClientSocket

Data type: socketdev

The returned new client socket that will be updated with the accepted incoming connection 

request.

[\ClientAddress]

Data type: string

The variable that will be updated with the IP-address of the accepted incoming connection 

request.

Continues on next page



1 Instructions

1.160. SocketAccept - Accept an incoming connection
Socket Messaging

4513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Time]

Data type: num

The maximum amount of time [s] that program execution waits for incoming connections. If 

this time runs out before any incoming connection then the error handler will be called, if 

there is one, with the error code ERR_SOCK_TIMEOUT. If there is no error handler then the 

execution will be stopped.

If parameter \Time is not used then the waiting time is 60 s. To wait forever, use the 

predefined constant WAIT_MAX.

Program execution

The server socket will wait for any incoming connection requests. When accepting the 

incoming connection request the instruction is ready and the returned client socket is by 

default connected and can be used in SocketSend and SocketReceive instructions.

More examples

More examples of the instruction SocketAccept are illustrated below.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

VAR string receive_string;

VAR string client_ip;

...

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

SocketListen server_socket;

WHILE TRUE DO

SocketAccept server_socket, client_socket 

\ClientAddress:=client_ip;

SocketReceive client_socket \Str := receive_string;

SocketSend client_socket \Str := "Hello client with ip-address " 

+client_ip;

! Wait for client acknowledge

...

SocketClose client_socket;

ENDWHILE

ERROR

RETRY;

UNDO

SocketClose server_socket;

SocketClose client_socket;

A server socket is created and bound to port 1025 on the controller network address 

192.168.0.1. After execution of SocketListen the server socket starts to listen for 

incoming connections on this port and address. SocketAccept will accept the incoming 

connection from some client and store the client address in the string client_ip. Then the 

server receives a string message from the client and stores the message in receive_string. 

Then the server responds with the message " Hello client with ip-address 

xxx.xxx.x.x" and closes the client connection.

Continued

Continues on next page



1 Instructions

1.160. SocketAccept - Accept an incoming connection
Socket Messaging

3HAC 16581-1  Revision: J452

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

After that the server is ready for a connection from the same or some other client in the WHILE 

loop. If PP is moved to main in the program then all open sockets are closed (SocketClose 

can always be done even if the socket is not created).

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
SocketAccept

[ Socket ´:=´ ] < variable (VAR) of socketdev > ’,’

[ ClientSocket ´:=´ ] < variable (VAR) of socketdev >

[ ’\’ ClientAddress ´:=´ < variable (VAR) of string> ]

[ ’\’ Time ´:=´ < expression (IN) of num > ] ’;’

Related information

ERR_SOCK_CLOSED The socket is closed (has been closed or is not created). 
Use SocketCreate to create a new socket.

ERR_SOCK_TIMEOUT The connection was not established within the time out time

For information about See

Socket communication in general Application manual - Robot communication and I/
O control, section Socket Messaging

Create a new socket SocketCreate - Create a new socket on page 460

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Close the socket SocketClose - Close a socket on page 455

Bind a socket (only server) SocketBind - Bind a socket to my IP-address and 
port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections 
on page 462

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Example of server socket application SocketReceive - Receive data from remote 
computer on page 464

Continued



1 Instructions

1.161. SocketBind - Bind a socket to my IP-address and port
Socket Messaging

4533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.161. SocketBind - Bind a socket to my IP-address and port

Usage

SocketBind is used to bind a socket to the specified server IP-address and port number. 

SocketBind can only be used for server applications.

Basic examples

Basic examples of the instruction SocketBind are illustrated below.

Example 1
VAR socketdev server_socket;

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

A server socket is created and bound to port 1025 on the controller network address 

192.168.0.1. The server socket can now be used in an SocketListen instruction to listen 

for incoming connections on this port and address.

Arguments
SocketBind Socket LocalAddress LocalPort

Socket

Data type: socketdev

The server socket to bind. The socket must be created but not already bound.

LocalAddress

Data type: string

The server network address to bind the socket to. The only valid addresses are any public 

LAN addresses or the controller service port address 192.168.125.1.

LocalPort

Data type: num

The server port number to bind the socket to. Generally ports 1025-4999 are free to use. Ports 

below 1025 can already be taken.

Program execution

The server socked is bound to the specified server port and IP-address.

An error is generated if the specified port is already in use.

Use the SocketBind and SocketListen instructions in the startup of the program to 

associate a local address with a socket and then listen for incoming connections on the 

specified port. This is recommended to do only once for each socket and port that is used.

Continues on next page



1 Instructions

1.161. SocketBind - Bind a socket to my IP-address and port
Socket Messaging

3HAC 16581-1  Revision: J454

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
SocketBind

[ Socket ´:=´ ] < variable (VAR) of socketdev > ’,’

[ LocalAddress ´:=´ ] < expression (IN) of string > ’,’

[ LocalPort ´:=´ ] < expression (IN) of num > ’;’

Related information

ERR_SOCK_CLOSED The socket is closed (has been closed or is not created)

Use SocketCreate to create a new socket.

ERR_SOCK_ADDR_INUSE The address and port is already in use and can not be used 
again. Use a different port number..

For information about See

Socket communication in general Application manual - Robot communication and I/
O control, section Socket Messaging

Create a new socket SocketCreate - Create a new socket on page 460

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Close the socket SocketClose - Close a socket on page 455

Listening connections (only server) SocketListen - Listen for incoming connections on 
page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Example server socket application SocketReceive - Receive data from remote 
computer on page 464

Continued



1 Instructions

1.162. SocketClose - Close a socket
Socket Messaging

4553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.162. SocketClose - Close a socket

Usage

SocketClose is used when a socket connection is no longer going to be used.

After a socket has been closed it cannot be used in any socket call except SocketCreate.

Basic examples

Basic examples of the instruction SocketClose are illustrated below.

Example 1
SocketClose socket1;

The socket is closed and can not be used anymore.

Arguments
SocketClose Socket

Socket

Data type: socketdev

The socket to be closed.

Program execution

The socket will be closed and its allocated resources will be released.

Any socket can be closed at any time. The socket can not be used after closing. However it 

can be reused for a new connection after a call to SocketCreate.

Limitations

Closing the socket connection immediately after sending the data with SocketSend can lead 

to loss of sent data. This is because TCP/IP socket has built-in functionality to resend the data 

if there is some communication problem.

To avoid such problems with loss of data, do the following before SocketClose:

• handshake the shutdown or

• WaitTime 2

Avoid fast loops with SocketCreate ... SocketClose, because the socket is not really 

closed until a certain time (TCP/IP functionality).

Syntax
SocketClose 

[ Socket ’:=’ ] < variable (VAR) of socketdev > ’;’

Continues on next page



1 Instructions

1.162. SocketClose - Close a socket
Socket Messaging

3HAC 16581-1  Revision: J456

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Socket communication in general Application manual - Robot communication and I/
O control, section Socket Messaging

Create a new socket SocketCreate - Create a new socket on page 460

Connect to a remote computer 
(only client)

SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Bind a socket (only server) SocketBind - Bind a socket to my IP-address and 
port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections on 
page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450t

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Example server socket application SocketReceive - Receive data from remote 
computer on page 464

Continued



1 Instructions

1.163. SocketConnect - Connect to a remote computer
Socket Messaging

4573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.163. SocketConnect - Connect to a remote computer

Usage

SocketConnect is used to connect the socket to a remote computer in a client application.

Basic examples

Basic examples of the instruction SocketConnect are illustrated below.

See also More examples on page 458.

Example 1
SocketConnect socket1, "192.168.0.1", 1025;

Trying to connect to a remote computer at ip-address 192.168.0.1 and port 1025.

Arguments
SocketConnect Socket Address Port [\Time]

Socket

Data type: socketdev

The client socket to connect. The socket must be created but not already connected.

Address

Data type: string

The address of the remote computer. The remote computer must be specified as an IP address. 

It is not possible to use the name of the remote computer.

Port

Data type: num

The port on the remote computer. Generally ports 1025-4999 are free to use. Ports below 1025 

can already be taken.

[ \Time ]

Data type: num

The maximum amount of time [s] that program execution waits for the connection to be 

accepted or denied. If this time runs out before the condition is met then the error handler will 

be called, if there is one, with the error code ERR_SOCK_TIMEOUT. If there is no error handler 

then the execution will be stopped.

If parameter \Time is not used the waiting time is 60 s. To wait forever, use the predefined 

constant WAIT_MAX.

Program execution

The socket tries to connect to the remote computer on the specified address and port. The 

program execution will wait until the connection is established, failed, or a timeout occurs.

Continues on next page



1 Instructions

1.163. SocketConnect - Connect to a remote computer
Socket Messaging

3HAC 16581-1  Revision: J458

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction SocketConnect are illustrated below.

Example 1
VAR num retry_no := 0;

VAR socketdev my_socket;

...

SocketCreate my_socket;

SocketConnect my_socket, "192.168.0.1", 1025;

...

ERROR

IF ERRNO = ERR_SOCK_TIMEOUT THEN

IF retry_no < 5 THEN

WaitTime 1;

retry_no := retry_no + 1;

RETRY;

ELSE

RAISE;

ENDIF

ENDIF

A socket is created and tries to connect to a remote computer. If the connection is not 

established within the default time-out time, i.e. 60 seconds, then the error handler retries to 

connect. Four retries are attemped then the error is reported to the user.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
SocketConnect

[ Socket ´:=´ ] < variable (VAR) of socketdev > ’,’

[ Address ´:=´ ] < expression (IN) of string > ’,’

[ Port ´:=´ ] < expression (IN) of num >

[ ’\’ Time ´:=´ < expression (IN) of num > ] ’;’

ERR_SOCK_CLOSED The socket is closed (has been closed or is not created). 

Use SocketCreate to create a new socket.

ERR_SOCK_TIMEOUT The connection was not established within the time-out time.

Continued

Continues on next page



1 Instructions

1.163. SocketConnect - Connect to a remote computer
Socket Messaging

4593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about Described in:

Socket communication in general Application manual - Robot communication and 
I/O control

Create a new socket SocketCreate - Create a new socket on page 460

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Bind a socket (only server) SocketBind - Bind a socket to my IP-address and 
port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections 
on page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Example server socket application SocketReceive - Receive data from remote 
computer on page 464

Continued



1 Instructions

1.164. SocketCreate - Create a new socket
Socket Messaging

3HAC 16581-1  Revision: J460

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.164. SocketCreate - Create a new socket

Usage

SocketCreate is used to create a new socket for connection based communication.

The socket messaging is of stream type protocol TCP/IP with delivery guarantee. Both server 

and client application can be developed. Datagram protocol UDP/IP with broadcast is not 

supported.

Basic examples

Basic examples of the instruction SocketCreate are illustrated below.

Example 1
VAR socketdev socket1;

...

SocketCreate socket1;

A new socket device is created and assigned into the variable socket1. 

Arguments
SocketCreate Socket

Socket

Data type: socketdev

The variable for storage of the system’s internal socket data.

Program execution

The instruction creates a new socket device. 

The socket must not already be in use. The socket is in use between SocketCreate and 

SocketClose.

Limitations

Any number of sockets can be declared but it is only possible to use 8 sockets at the same 

time.

Avoid fast loops with SocketCreate ... SocketClose, because the socket is not really 

closed until a certain time (TCP/IP functionality).

Syntax
SocketCreate

[ Socket ’:=’ ] < variable (VAR) of socketdev > ’;’

Continues on next page



1 Instructions

1.164. SocketCreate - Create a new socket
Socket Messaging

4613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Socket communication in general Application manual - Robot communication and 
I/O control, section Socket Messaging

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Close the socket SocketClose - Close a socket on page 455

Bind a socket (only server) SocketBind - Bind a socket to my IP-address 
and port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections 
on page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Example server socket application SocketReceive - Receive data from remote 
computer on page 464

Continued



1 Instructions

1.165. SocketListen - Listen for incoming connections
Socket Messaging

3HAC 16581-1  Revision: J462

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.165. SocketListen - Listen for incoming connections

Usage

SocketListen is used to start listening for incoming connections, i.e. start acting as a server. 

SocketListen can only used for server applications.

Basic examples

Basic examples of the instruction SocketListen are illustrated below.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

...

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

SocketListen server_socket;

WHILE listening DO;

! Waiting for a connection request

SocketAccept server_socket, client_socket;

A server socket is created and bound to port 1025 on the controller network address 

192.168.0.1. After execution of SocketListen the server socket starts to listen for 

incoming connections on this port and address.

Arguments
SocketListen Socket

Socket

Data type: socketdev

The server socket that should start listening for incoming connections. The socket must 

already be created and bound.

Program execution

The server socket start listening for incoming connections. When the instruction is ready the 

socket is ready to accept an incoming connection. 

Use the SocketBind and SocketListen instructions in the startup of the program to 

associate a local address with a socket and then listen for incoming connections on the 

specified port. This is recommended to do only once for each socket and port that is used.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
SocketListen

[ Socket ’:=’ ] < variable (VAR) of socketdev > ’;’

ERR_SOCK_CLOSED The socket is closed (has been closed or is not created).

Use SocketCreate to create a new socket.

Continues on next page



1 Instructions

1.165. SocketListen - Listen for incoming connections
Socket Messaging

4633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Socket communication in general Application manual - Robot communication and 
I/O control, section Socket Messaging

Create a new socket SocketCreate - Create a new socket on page 
460

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Close the socket SocketClose - Close a socket on page 455

Bind a socket (only server) SocketBind - Bind a socket to my IP-address and 
port on page 453

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Example server socket application SocketReceive - Receive data from remote 
computer on page 464

Continued



1 Instructions

1.166. SocketReceive - Receive data from remote computer
Socket Messaging

3HAC 16581-1  Revision: J464

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.166. SocketReceive - Receive data from remote computer

Usage

SocketReceive is used for receiving data from a remote computer. SocketReceive can 

be used both for client and server applications.

Basic examples

Basic examples of the instruction SocketReceive are illustrated below.

See also More examples on page 466.

Example 1
VAR string str_data;

...

SocketReceive socket1 \Str := str_data;

Receive data from a remote computer and store it in the string variable str_data.

Arguments
SocketReceive Socket [ \Str ] | [ \RawData ] | [ \Data ] 

[\ReadNoOfBytes] [\NoRecBytes] [\Time]

Socket

Data type: socketdev

In a client application where the socket receives the data, the socket must already be created 

and connected.

In a server application where the socket receives the data, the socket must already be 

accepted.

[ \Str ]

Data type: string

The variable in which the received string data should be stored. Max. number of characters 

80 can be handled.

[ \RawData ]

Data type: rawbytes

The variable in which the received rawbytes data should be stored. Max. number of 

rawbytes 1024 can be handled.

[ \Data ]

Data type: array of byte

The variable in which the received byte data should be stored. Max. number of byte 1024 

can be handled.

Only one of the optional parameters \Str, \RawData, and \Data can be used at the same 

time.

Continues on next page



1 Instructions

1.166. SocketReceive - Receive data from remote computer
Socket Messaging

4653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ReadNoOfBytes ]

Read number of Bytes

Data type: num

The number of bytes to read. The minimum value of bytes to read is 1, and the maximum 

amount is the value of the size of the data type used, i.e. 80 bytes if using a variable of the 

data type string.

If communicating with a client that always sends a fixed number of bytes, this optional 

parameter can be used to specify that the same amount of bytes should be read for each 

SocketReceive instruction.

If the sender sends RawData, the receiver needs to specify that 4 bytes should be received for 

each rawbytes sent.

[ \NoRecBytes ]

Number Received Bytes

Data type: num

Variable for storage of the number of bytes needed from the specified socketdev.

The same result can also be achieved with

• function StrLen on varable in argument \Str

• function RawBytesLen on variable in argument \RawData

[ \Time ]

Data type: num

The maximum amount of time [s] that program execution waits for the data to be received. If 

this time runs out before the data is transferred then the error handler will be called, if there 

is one, with the error code ERR_SOCK_TIMEOUT. If there is no error handler then the 

execution will be stopped.

If parameter \Time is not used then the waiting time is 60 s. To wait forever, use the 

predefined constant WAIT_MAX.

Program execution

The execution of SocketReceive will wait until the data is available or fail with a timeout 

error. 

The amount of bytes read is specified by the the data type used in the instruction. If using a 

string data type to receive data in, 80 bytes is received if there is 80 bytes that can be read. 

If using optional argument ReadNoOfBytes the user can specify how many bytes that should 

be received for each SocketReceive.

The data that is transferred on the cable is always bytes, max. 1024 bytes in one message. No 

header is added by default to the message. The usage of any header is reserved for the actual 

application.

Parameter Input data Cable data Output data

\Str 1 char 1 byte (8 bits) 1 char

\RawData 1 rawbytes 1 byte (8 bits) 1 rawbytes

\Data 1 byte 1 byte (8 bits) 1 byte

Continued

Continues on next page



1 Instructions

1.166. SocketReceive - Receive data from remote computer
Socket Messaging

3HAC 16581-1  Revision: J466

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

It is possible to mix the used data type (string, rawbytes, or array of byte) between 

SocketSend and SocketReceive.

More examples

More examples of the instruction SocketReceive are illustrated below.

Example 1
VAR socketdev server_socket;

VAR socketdev client_socket;

VAR string client_ip;

PROC server_messaging()

VAR string receive_string;

...

! Create, bind, listen and accept of sockets in error handlers

SocketReceive client_socket \Str := receive_string;

SocketSend client_socket \Str := "Hello client with 

ip-address "+client_ip;

! Wait for acknowlegde from client

...

SocketClose server_socket;

SocketClose client_socket;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=SOCK_CLOSED THEN

server_recover;

RETRY;

ELSE

! No error recovery handling

ENDIF

ENDPROC

PROC server_recover()

SocketClose server_socket;

SocketClose client_socket;

SocketCreate server_socket;

SocketBind server_socket, "192.168.0.1", 1025;

SocketListen server_socket;

SocketAccept server_socket, 

client_socket\ClientAddress:=client_ip;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

RETURN;

ELSE

! No error recovery handling

Continued

Continues on next page



1 Instructions

1.166. SocketReceive - Receive data from remote computer
Socket Messaging

4673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ENDIF

ENDPROC

This is an example of a server program with creation, binding, listening, and accepting of 

sockets in error handlers. In this way the program can handle power fail restart.

In the procedure server_recover, a server socket is created and bound to port 1025 on the 

controller network address 192.168.0.1. After execution of SocketListen the server 

socket starts to listen for incoming connections on this port and address. SocketAccept will 

accept the incoming connection from some client and store the client address in the string 

client_ip. 

In the communication procedure server_messaging the server receives a string message 

from the client and stores the message in receive_string. Then the server responds with 

the message "Hello client with ip-address xxx.xxx.x.x".

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Limitations

There is no built-in synchronization mechanism in Socket Messaging to avoid received 

messages that are compounded of several sent messages. It is up to the programmer to handle 

the synchronization with “Ack” messages (one sequence of SocketSend - 

SocketReceive in the client or server program must be completed before next sequence of 

SocketSend - SocketReceive).

All sockets are closed after power fail restart. This problem can be handled by error recovery. 

See example above.

Avoid fast loops with SocketCreate ... SocketClose because the socket is not really 

closed until a certain time (TCP/IP functionality).

The maximum size of the data that can be received in one call is limited to 1024 bytes.

Syntax
SocketReceive 

[ Socket ’:=’ ] < variable (VAR) of socketdev >

[ ’\’ Str’ :=’ < variable (VAR) of string > ]

| [ ’\’ RawData ´:=´ < variable (VAR) of rawbytes > ]

| [ ’\’ Data ´:=´ < array {*} (VAR) of byte > ]

[ ’\’ ReadNoOfBytes’ :=’ < expression (IN) of num > ]

[ ’\’ NoRecBytes’ :=’ < variable (VAR) of num > ]

[ ’\’ Time ´:=´ < expression (IN) of num > ] ’;’

ERR_SOCK_CLOSED The socket is closed. Broken connection.

ERR_SOCK_TIMEOUT No data was received within the time out time.

Continued

Continues on next page



1 Instructions

1.166. SocketReceive - Receive data from remote computer
Socket Messaging

3HAC 16581-1  Revision: J468

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Socket communication in general Application manual - Robot communication and I/
O control, section Socket Messaging

Create a new socket SocketCreate - Create a new socket on page 460

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Close the socket SocketClose - Close a socket on page 455

Bind a socket (only server) SocketBind - Bind a socket to my IP-address and 
port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections 
on page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example client socket application SocketSend - Send data to remote computer on 
page 469

Continued



1 Instructions

1.167. SocketSend - Send data to remote computer
Socket Messaging

4693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.167. SocketSend - Send data to remote computer

Usage

SocketSend is used to send data to a remote computer. SocketSend can be used both for 

client and server applications.

Basic examples

Basic examples of the instruction SocketSend are illustrated below.

See also More examples on page 470.

Example 1
SocketSend socket1 \Str := "Hello world";

Sends the message "Hello world" to the remote computer.

Arguments
SocketSend Socket [ \Str ] | [ \RawData ] | [ \Data] [ \NoOfBytes ]

Socket

Data type: socketdev

In client application the socket to send from must already be created and connected.

In server application the socket to send to must already be accepted.

[ \Str ]

Data type: string

The string to send to the remote computer.

[ \RawData ]

Data type: rawbytes

The rawbytes data to send to the remote computer.

[ \Data ]

Data type: array of byte

The data in the byte array to send to the remote computer.

Only one of the option parameters \Str, \RawData, or \Data can be used at the same time.

[ \NoOfBytes ]

Data type: num

If this argument is specified only this number of bytes will be sent to the remote computer. 

The call to SocketSend will fail if \NoOfBytes is larger than the actual number of bytes in 

the data structure to send.

If this argument is not specified then the whole data structure (valid part of rawbytes) will 

be sent to the remote computer.

Continues on next page



1 Instructions

1.167. SocketSend - Send data to remote computer
Socket Messaging

3HAC 16581-1  Revision: J470

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The specified data is sent to the remote computer. If the connection is broken an error is 

generated.

The data that is transferred on the cable is always bytes, max. 1024 bytes in one message. No 

header is added by default to the message. The usage of any header is reserved for the actual 

application.

It’s possible to mix the used data type (string, rawbytes, or array of byte) between  

SocketSend and SocketReceive.

More examples

More examples of the instruction SocketSend are illustrated below.

Example 1
VAR socketdev client_socket;

VAR string receive_string;

PROC client_messaging()

...

! Create and connect the socket in error handlers

SocketSend client_socket \Str := "Hello server";

SocketReceive client_socket \Str := receive_string;

...

SocketClose client_socket;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

client_recover;

RETRY;

ELSE

! No error recovery handling

ENDIF

ENDPROC

PROC client_recover()

SocketClose client_socket;

SocketCreate client_socket;

SocketConnect client_socket, "192.168.0.2", 1025;

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

Parameter Input data Cable data Output data

\Str 1 char 1 byte (8 bits) 1 char

\RawData 1 rawbytes 1 byte (8 bits) 1 rawbytes

\Data 1 byte 1 byte (8 bits) 1 byte

Continued

Continues on next page



1 Instructions

1.167. SocketSend - Send data to remote computer
Socket Messaging

4713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

RETURN;

ELSE

! No error recovery handling

ENDIF

ENDPROC

This is an example of a client program with creation and connection of socket in error 

handlers. In this way the program can handle power fail restart.

In the procedure client_recover the client socket is created and connected to a remote 

computer server with IP-address 192.168.0.2 on port 1025.

In the communication procedure client_messaging the client sends "Hello server" to 

the server and the server responds with "Hello client" to the client, which is stored in the 

variable receive_string.

Example 2
VAR socketdev client_socket;

VAR string receive_string;

PROC client_messaging()

...

! Send cr and lf to the server

SocketSend client_socket \Str := "\0D\0A";

...

ENDPROC

This is an example of a client program that sends non printable characters (binary data) in a 

string. This can be useful if communicating with sensors or other clients that requires such 

characters.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Limitations

There is no built-in synchronization mechanism in Socket Messaging to avoid received 

messages that are compounded of several sent messages. It’s up to the programmer to handle 

the synchronization with “Ack” messages (one sequence of SocketSend - 

SocketReceive in the client or server program must be completed before the next sequence 

of SocketSend - SocketReceive).

All sockets are closed after power fail restart. This problem can be handled by error recovery. 

See example above.

Avoid fast loops with SocketCreate ... SocketClose because the socket is not really 

closed until a certain time (TCP/IP functionality).

The size of the data to send is limited to 1024 bytes.

ERR_SOCK_CLOSED The socket is closed. Broken connection.

Continued

Continues on next page



1 Instructions

1.167. SocketSend - Send data to remote computer
Socket Messaging

3HAC 16581-1  Revision: J472

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
SocketSend

[ Socket ´:=´ ] < variable (VAR) of socketdev >

[ \Str ´:=´ < expression (IN) of string > ]

| [ \RawData ´:=´ < variable (VAR) of rawdata > ]

| [ \Data ´:=´ < array {*} (IN) of byte > ]

[ ’\’ NoOfBytes ´:=´ < expression (IN) of num > ] ’;’

Related information

For information about See

Socket communication in general Application manual - Robot communication and 
I/O control, section Socket Messaging

Create a new socket SocketCreate - Create a new socket on page 
460

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Close the socket SocketClose - Close a socket on page 455

Bind a socket (only server) SocketBind - Bind a socket to my IP-address 
and port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections 
on page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Get current socket state SocketGetStatus - Get current socket state on 
page 973

Example server socket application SocketReceive - Receive data from remote 
computer on page 464

Use of non printable characters (binary 
data) in string literals.

Technical reference manual - RAPID kernel, 
section String literals

Continued



1 Instructions

1.168. SoftAct - Activating the soft servo
RobotWare - OS

4733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.168. SoftAct - Activating the soft servo

Usage

SoftAct (Soft Servo Activate) is used to activate the so called “soft” servo on any axis of the 

robot or external mechanical unit.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

any motion tasks.

Basic examples

Basic examples of the instruction SoftAct are illustrated below.

Example 1
SoftAct 3, 20;

Activation of soft servo on robot axis 3 with softness value 20%.

Example 2
SoftAct 1, 90 \Ramp:=150;

Activation of the soft servo on robot axis 1 with softness value 90% and ramp factor 150%.

Example 3
SoftAct \MechUnit:=orbit1, 1, 40 \Ramp:=120;

Activation of soft servo on axis 1 for the mechanical unit orbit1 with softness value 40% 

and ramp factor 120%.

Arguments
SoftAct[\MechUnit] Axis Softness [\Ramp]

[ \MechUnit ]

Mechanical Unit

Data type: mecunit

The name of the mechanical unit. If this argument is omitted then it means activation of the 

soft servo for specified robot axis in the current program task.

Axis

Data type: num

Number of the robot or external axis to work with soft servo.

Softness

Data type: num

Softness value in percent (0 - 100%). 0% denotes min. softness (max. stiffness), and 100% 

denotes max. softness.

[ \Ramp ]

Data type: num

Ramp factor in percent (>= 100%). The ramp factor is used to control the engagement of the 

soft servo. A factor 100% denotes the normal value; with greater values the soft servo is 

engaged more slowly (longer ramp). The default value for ramp factor is 100 %.

Continues on next page



1 Instructions

1.168. SoftAct - Activating the soft servo
RobotWare - OS

3HAC 16581-1  Revision: J474

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Softness is activated at the value specified for the current axis. The softness value is valid for 

all movement until a new softness value is programmed for the current axis or until the soft 

servo is deactivated by the instruction SoftDeact.

Limitations

Soft servo for any robot or external axis is always deactivated when there is a power failure. 

This limitation can be handled in the user program when restarting after a power failure.

The same axis must not be activated twice unless there is a moving instruction in between. 

Thus, the following program sequence should be avoided. Otherwise there will be a jerk in 

the robot movement:

SoftAct n , x ;

SoftAct n , y ;

(n = robot axis n, x, and y softness values)

Syntax
SoftAct

[’\’MechUnit ’:=’ < variable (VAR) of mecunit>´,´]

[Axis ’:=’ ] < expression (IN) of num> ’,’ 

[Softness’:=’ ] < expression (IN) of num> ´,´

[ ’\’Ramp’:=’ < expression (IN) of num> ]’;’

Related information

For information about See

Deactivate soft servo SoftDeact - Deactivating the soft servo on page 
475

Behavior with the soft servo engaged Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution

Configuration of external axes Application manual - Additional axes and stand 
alone controller, section Axes Configuration - Soft 
servo 

Continued



1 Instructions

1.169. SoftDeact - Deactivating the soft servo
RobotWare - OS

4753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.169. SoftDeact - Deactivating the soft servo

Usage

SoftDeact (Soft Servo Deactivate) is used to deactivate the so called “soft” servo.

Basic examples

Basic examples of the instruction SoftDeact are illustrated below.

Example 1
SoftDeact;

Deactivating the soft servo on all axes.

Example 2
SoftDeact \Ramp:=150;

Deactivating the soft servo on all axes, with ramp factor 150 %.

Arguments
SoftDeact [\Ramp]

[ \Ramp ]

Data type: num

Ramp factor in percent (>= 100 %). The ramp factor is used to control the deactivating of the 

soft servo. A factor 100% denotes the normal value. With greater values the soft servo is 

deactivated more slowly (longer ramp). The default value for ramp factor is 100 %.

Program execution

The soft servo is deactivated for the mechanical units that are controlled from current 

program task. If SoftDeact is done from a non-motion task, the soft servo is deactivated for 

the mechanical unit controlled by the connected motion task. Executing a SoftDeact when 

in synchronized movement mode, soft servo will be deactivated for all mechanical units that 

are synchronized.

When deactivating soft servo with SoftDeact the robot will move to the programmed 

position even if the robot has moved out of position during soft servo activation.

Syntax
SoftDeact 

[ ’\’Ramp ’:=’ < expression (IN) of num> ]’;’

Related information

For information about See

Activating the soft servo SoftAct - Activating the soft servo on page 473



1 Instructions

1.170. SpeedRefresh - Update speed override for ongoing movement
RobotWare - OS

3HAC 16581-1  Revision: J476

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.170. SpeedRefresh - Update speed override for ongoing movement

Usage

SpeedRefresh is used to change the movement speed for the ongoing robot movement in 

current motion program task. With this instruction it is possible to create some type of coarse 

speed adaptation from some sensor input.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

any Motion tasks.

Basic examples

Basic examples of the instruction SpeedRefresh are illustrated below.

Example 1
VAR num change_speed:=70;

SpeedRefresh change_speed;

This will change the current speed override to 70%. 

Arguments
SpeedRefresh Override

Override

Data type: num

The speed override value within range 0 ... 100 %.

Program execution

The actual speed override value for the ongoing movements of robot and external units in 

current motion program task will be updated.

All speed data components for any mechanical units in current motion task will be influenced.

This speed override value generated with this instruction will replace any speed override 

value generated from FlexPendant for this motion task (no influence on other motion tasks).

If the override speed used for the instruction SpeedRefresh exceeds the value set from the 

FlexPendant, the lowest value will be used. This means, that the speed can not be increased 

above the speed set from the FlexPendant.

If a PP to main is done or if a new program is loaded, the speed that was set with 

SpeedRefresh will be resetted, and the speed set from the FlexPendant will be applied.

Continues on next page



1 Instructions

1.170. SpeedRefresh - Update speed override for ongoing movement
RobotWare - OS

4773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction SpeedRefresh are illustrated below.

Example 1
VAR intnum time_int;

VAR num override;

...

CONNECT time_int WITH speed_refresh;

ITimer 0.1, time_int;

ISleep time_int;

...

MoveL p1, v100, fine, tool2;

! Read current speed override set from FlexPendant

override := CSpeedOverride (\CTask);

IWatch time_int;

MoveL p2, v100, fine, tool2;

IDelete time_int;

! Reset to FlexPendant old speed override

WaitTime 0.5;

SpeedRefresh override;

...

TRAP speed_refresh

VAR speed_corr;

! Analog input signal value from sensor, value 0 ... 10

speed_corr := (ai_sensor * 10);

SpeedRefresh speed_corr;

ERROR

IF ERRNO = ERR_SPEED_REFRESH_LIM THEN

IF speed_corr > 100 speed_corr := 100;

IF speed_corr < 0 speed_corr := 0;

RETRY;

ENDIF

ENDTRAP

During the robot movement from position p1 to p2, the speed override value is updated every 

0.1 s in the TRAP speed_refresh. The analog input signal ai_sensor is used for 

calculation of Overide value for the instruction SpeedRefresh. There is no TRAP 

execution before and after the robot movement between p1 and p2. The manual speed 

override from FlexPendant is restored. After that the robot has to reach p2.

Error handling

If Override has a value outside the range of 0 to 100 % then the ERRNO variable will be s et 

to ERR_SPEED_REFRESH_LIM. This error is recoverable and can be handled in the ERROR 

handler.

Continued

Continues on next page



1 Instructions

1.170. SpeedRefresh - Update speed override for ongoing movement
RobotWare - OS

3HAC 16581-1  Revision: J478

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Note that with SpeedRefresh the speed override will not be done momentary. Instead there 

will be a lag of 0,3 - 0,5 seconds between order and influence on the physical robot.

The user is responsible to reset the speed override value from the RAPID program after the 

SpeedRefresh sequence.

The override speed can not be increased above the speed override set from the FlexPendant.

If SpeedRefresh is used in the START or in the RESET event routine, the speed that is set 

is always the actual FlexPendant speed override.

Syntax
SpeedRefresh

[ Override ’:=’ ] < expression (IN) of num > ’;’

Related information

For information about See

Positioning instructions Technical reference manual - RAPID 
overview, section RAPID summary - Motion

Definition of velocity speeddata - Speed data on page 1185

Read current speed override CSpeedOverride - Reads the current override 
speed on page 810

Continued



1 Instructions

1.171. SpyStart - Start recording of execution time data
RobotWare - OS

4793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.171. SpyStart - Start recording of execution time data

Usage

SpyStart is used to start the recording of instruction and time data during execution.

The execution data will be stored in a file for later analysis.

The stored data is intended for debugging RAPID programs, specifically for multi-tasking 

systems (only necessary to have SpyStart - SpyStop in one program task).

Basic examples

Basic examples of the instruction SpyStart are illustrated below.

Example 1
SpyStart "HOME:/spy.log";

Starts recording the execution time data in the file spy.log on the HOME: disk.

Arguments
SpyStart File

File

Data type: string

The file path and the file name to the file that will contain the execution data.

Program execution

The specified file is opened for writing and the execution time data begins recording in the 

file.

Recording of execution time data is active until:

• execution of instruction SpyStop

• starting program execution from the beginning

• loading a new program

• next warm start-up

Limitations

Avoid using the floppy disk (option) for recording since writing to the floppy is very time 

consuming.

Never use the spy function in production programs because the function increases the cycle 

time and consumes memory on the mass memory device in use.

Error handling

If the file in the SpyStart instruction can’t be opened then the system variable ERRNO is set 

to ERR_FILEOPEN (see "Data types - errnum"). This error can then be handled in the error 

handler.

Continues on next page



1 Instructions

1.171. SpyStart - Start recording of execution time data
RobotWare - OS

3HAC 16581-1  Revision: J480

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

File format

TASK column shows executed program task. 

INSTR column shows executed instruction in specified program task.

IN column shows the time in ms when entering the executed instruction.

CODE column shows if the instruction is READY or the instruction WAIT for completion at 

OUT time. 

OUT column shows the time in ms upon leaving the executed instruction.

All times are given in ms (relative values).

SYSTEM TRAP means that the system is doing something else than execution of RAPID 

instructions.

If the procedure calls to some NOSTEPIN procedure (module) then the output list shows only 

the name of the called procedure. This is repeated for every executed instruction in the 

NOSTEPIN routine.

Syntax
SpyStart 

[File’:=’]<expression (IN) of string>’;’

Related information

TASK INSTR IN CODE OUT

MAIN FOR i FROM 1 TO 3 DO 0 READY 0

MAIN mynum:=mynum+i; 1 READY 1

MAIN ENDFOR 2 READY 2

MAIN mynum:=mynum+i; 2 READY 2

MAIN ENDFOR 2 READY 2

MAIN mynum:=mynum+i; 2 READY 2

MAIN ENDFOR 2 READY 3

MAIN SetDo1,1; 3 READY 3

MAIN IF di1=0 THEN 3 READY 4

MAIN MoveL p1, v1000, fine, tool0; 4 WAIT 14

SYSTEM 
TRAP

MAIN MoveL p1, v1000, fine, tool0; 111 READY 111

MAIN ENDIF 108 READY 108

MAIN MoveL p2, v1000, fine, tool0; 111 WAIT 118

SYSTEM 
TRAP

MAIN MoveL p2, v1000, fine, tool0; 326 READY 326

MAIN SpyStop; 326 READY

For information about See

Stop recording of execution data SpyStop - Stop recording of time execution 
data on page 481

Continued



1 Instructions

1.172. SpyStop - Stop recording of time execution data
RobotWare - OS

4813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.172. SpyStop - Stop recording of time execution data

Usage

SpyStop is used to stop the recording of time data during execution.

The data, which can be useful for optimizing the execution cycle time, is stored in a file for 

later analysis.

Basic examples

Basic examples of the instruction SpyStop are illustrated below.

See also More examples on page 481.

Example 1
SpyStop;

Stops recording the execution time data in the file specified by the previous SpyStart 

instruction.

Program execution

The execution data recording is stopped and the file specified by the previous SpyStart 

instruction is closed. If no SpyStart instruction has been executed before then the SpyStop 

instruction is ignored.

More examples

More examples of the instruction SpyStop are illustrated below.

Example 1
IF debug = TRUE SpyStart "HOME:/spy.log";

produce_sheets;

IF debug = TRUE SpyStop;

If the debug flag is true then start recording execution data in the file spy.log on the HOME: 

disk. Perform actual production; stop recording, and close the file spy.log.

Limitations

Avoid using the floppy disk (option) for recording since writing to the floppy is very time 

consuming.

Never use the spy function in production programs because the function increases the cycle 

time and consumes memory on the mass memory device in use.

Syntax
SpyStop’;’

Related information

For information about See

Start recording of execution data SpyStart - Start recording of execution time data 
on page 479



1 Instructions

1.173. StartLoad - Load a program module during execution
RobotWare - OS

3HAC 16581-1  Revision: J482

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.173. StartLoad - Load a program module during execution

Usage

StartLoad is used to start the loading of a program module into the program memory during 

execution.

When loading is in progress other instructions can be executed in parallel. The loaded module 

must be connected to the program task with the instruction WaitLoad before any of its 

symbols/routines can be used.

The loaded program module will be added to the modules already existing in the program 

memory.

A program or system module can be loaded in static (default) or dynamic mode. Depending 

on the used mode, some operations will unload the module or not affect the module at all.

Static mode 
The following table shows how two different operations affect a static loaded program or 
system modules.

Dynamic mode 
The following table shows how two different operations affect a dynamic loaded program or 
system modules.

Both static and dynamic loaded modules can be unloaded by the instruction UnLoad.

Set PP to main from TP Open new RAPID program

Program Module Not affected Unloaded

System Module Not affected Not affected

Set PP to main from TP Open new RAPID program

Program Module Unloaded Unloaded

System Module Unloaded Unloaded

Continues on next page



1 Instructions

1.173. StartLoad - Load a program module during execution
RobotWare - OS

4833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the instruction StartLoad are illustrated below.

See also More examples on page 484.

Example 1
VAR loadsession load1;

! Start loading of new program module PART_B containing routine 

routine_b in dynamic mode

StartLoad \Dynamic, diskhome \File:="PART_B.MOD", load1;

! Executing in parallel in old module PART_A containing routine_a

%"routine_a"%;

! Unload of old program module PART_A

UnLoad diskhome \File:="PART_A.MOD";

! Wait until loading and linking of new program module PART_B is 

ready

WaitLoad load1;

! Execution in new program module PART_B

%"routine_b"%;

Starts the loading of program module PART_B.MOD from diskhome into the program 

memory with instruction StartLoad. In parallel with the loading the program executes 

routine_a in module PART_A.MOD. Then instruction WaitLoad waits until the loading 

and linking is finished. The module is loaded in dynamic mode.

Variable load1 holds the identity of the load session updated by StartLoad and referenced 

by WaitLoad.

To save linking time the instruction UnLoad and WaitLoad can be combined in the 

instruction WaitLoad by using the option argument \UnLoadPath.

Arguments
StartLoad [\Dynamic] FilePath [\File] LoadNo

[\Dynamic]

Data type: switch

The switch enables loading of a program module in dynamic mode. Otherwise the loading is 

in static mode.

FilePath

Data type: string

The file path and the file name to the file that will be loaded into the program memory. The 

file name shall be excluded when the argument \File is used.

[\File]

Data type: string

When the file name is excluded in the argument FilePath it must be defined with this 

argument.

Continued

Continues on next page



1 Instructions

1.173. StartLoad - Load a program module during execution
RobotWare - OS

3HAC 16581-1  Revision: J484

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

LoadNo

Data type: loadsession

This is a reference to the load session that should be used in the instruction WaitLoad to 

connect the loaded program module to the program task.

Program execution

Execution of StartLoad will only order the loading and then proceed directly with the next 

instruction without waiting for the loading to be completed.

The instruction WaitLoad will then wait at first for the loading to be completed if it is not 

already finished, and then it will be linked and initialized. The initiation of the loaded module 

sets all variables at module level to their initial values. 

Unresolved references will default be accepted for this loading operation StartLoad - 

WaitLoad, but it will be a run time error on execution of an unresolved reference.

To obtain a good program structure that is easy to understand and maintain, all loading and 

unloading of program modules should be done from the main module, which is always 

present in the program memory during execution.

For loading of program that contains a main procedure to a main program (with another 

main procedure), see instruction Load.

More examples

More examples of how to use the instruction StartLoad are illustrated below.

Example 1
StartLoad \Dynamic, "HOME:/DOORDIR/DOOR1.MOD", load1;

Loads the program module DOOR1.MOD from the HOME: at the directory DOORDIR into the 

program memory. The program module is loaded in dynamic mode.

Example 2
StartLoad \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD", load1;

Same as in example 1 but with another syntax.

Example 3
StartLoad "HOME:" \File:="/DOORDIR/DOOR1.MOD", load1;

Same as in examples 1 and 2 above but the module is loaded in static mode.

Example 4
StartLoad \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD", load1;

WaitLoad load1;

is the same as 

Load \Dynamic, "HOME:" \File:="/DOORDIR/DOOR1.MOD";

Error handling

If the file specified in the instruction cannot be found then the system variable ERRNO is set 

to ERR_FILNOTFND. This error can then be handled in the error handler.

If the variable specified in argument LoadNo is already in use then the system variable 

ERRNO is set to ERR_LOADNO_INUSE. This error can then be handled in the error handler.

Continued

Continues on next page



1 Instructions

1.173. StartLoad - Load a program module during execution
RobotWare - OS

4853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
StartLoad

[´\´Dynamic ´,´]

[FilePath’ :=’] <expression (IN) of string> 

[’\’File ’:=’ <expression (IN) of string> ] ’,’

[LoadNo ’:=’] <variable (VAR) of loadsession>’;’

Related information

For information about See

Connect the loaded module to the task WaitLoad - Connect the loaded module to the task 
on page 682

Load session loadsession - Program load session on page 1138

Load a program module Load - Load a program module during execution 
on page 208

Unload a program module UnLoad - UnLoad a program module during 
execution on page 655

Cancel loading of a program module CancelLoad - Cancel loading of a module on page 
35

Procedure call with Late binding Technical reference manual - RAPID overview, 
section Basic characteristics - Routines - 
Procedure call

Continued



1 Instructions

1.174. StartMove - Restarts robot movement
RobotWare - OS

3HAC 16581-1  Revision: J486

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.174. StartMove - Restarts robot movement

Usage

StartMove is used to resume robot, external axes movement and belonging process after 

the movement has been stopped

• by the instruction StopMove.

• after execution of StorePath ... RestoPath sequence.

• after asynchronously raised movements errors, such as ERR_PATH_STOP or specific 

process error after handling in the ERROR handler.

For base system it is possible to use this instruction in the following type of program tasks:

• main task T_ROB1 for restart of the movement in that task.

• any other task for restart of the movements in the main task.

For MultiMove system it is possible to use this instruction in the following type of program 

tasks:

• motion task, for restart of the movement in that task.

• non motion task, for restart of the movement in the connected motion task. Besides 

that, if movement is restarted in one connected motion task belonging to a coordinated 

synchronized task group, the movement is restarted in all the cooperating tasks.

Basic examples

Basic examples of the instruction StartMove are illustrated below.

Example 1
StopMove;

WaitDI ready_input,1;

StartMove;

The robot starts to move again when the input ready_input is set.

Example 2
...

MoveL p100, v100, z10, tool1;

StorePath;

p:= CRobT(\Tool:=tool1);

! New temporary movement

MoveL p1, v100, fine, tool1;

...

MoveL p, v100, fine, tool1;

RestoPath; 

StartMove;

...

After moving back to a stopped position p (in this example equal to p100), the robot starts to 

move again on the basic path level.

Continues on next page



1 Instructions

1.174. StartMove - Restarts robot movement
RobotWare - OS

4873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
StartMove [\AllMotionTasks]

[\AllMotionTasks]

Data type: switch

Restart the movement of all mechanical units in the system. The switch 

[\AllMotionTasks] can only be used from a non-motion program task.

Program execution

Any processes associated with the stopped movement are restarted at the same time that the 

motion resumes.

To restart a MultiMove application in synchronized coordinated mode, StartMove must be 

executed in all motion tasks that are involved in coordination.

With the switch \AllMotionTasks (only allowed from non-motion program task) the 

movements for all mechanical units in the system are restarted.

In a base system without the switch \AllMotionTasks, the movements for following 

mechanical units are restarted:

• always the mechanical units in the main task, independent of which task executes the 

StartMove instruction.

In a MultiMove system without the switch \AllMotionTasks the movements for the 

following mechanical units are restarted:

• the mechanical units in the motion task executing StartMove.

• the mechanical units in the motion task that are connected to the non motion task 

executing StartMove. Besides that, if mechanical units are restarted in one connected 

motion task belonging to a coordinated synchronized task group then the mechanical 

units are restarted in all the cooperated tasks.

Error handling

If the robot is too far from the path (more than 10 mm or 20 degrees) to perform a restart of 

the interrupted movement then the system variable ERRNO is set to ERR_PATHDIST.

If the robot is in a hold state at the time StartMove is executed then the system variable 

ERRNO is set to ERR_STARTMOVE

If the program execution is stopped several times while regaining path movement with 

StartMove then the system variable ERRNO is set to ERR_PROGSTOP

If the robot is moving at the time StartMove is executed then the system variable ERRNO is 

set to ERR_ALRDY_MOVING. 

These errors can then be handled in the error handler:

• at ERR_PATHDIST move the robot closer to the path before attempting RETRY.

• at ERR_STARTMOVE, ERR_PROGSTOP, or ERR_ALRDY_MOVING wait some time before 

attempting RETRY.

Continued

Continues on next page



1 Instructions

1.174. StartMove - Restarts robot movement
RobotWare - OS

3HAC 16581-1  Revision: J488

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Only one of several non-motion tasks is allowed at the same time to do StopMove - 

StartMove sequence against some motion task.

It is not possible to do any error recovery if StartMove is executed in any error handler.

Syntax
StartMove

[’\’AllMotionTasks]’;’

Related information

For information about See

Stopping movements StopMove - Stops robot movement on page 515

Continuing a movement StartMoveRetry - Restarts robot movement and execution 
on page 489

More examples StorePath - Stores the path when an interrupt occurs on 
page 521

RestoPath - Restores the path after an interrupt on page 
362

Continued



1 Instructions

1.175. StartMoveRetry - Restarts robot movement and execution
RobotWare - OS

4893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.175. StartMoveRetry - Restarts robot movement and execution

Usage

StartMoveRetry is used to resume robot and external axes movements and belonging 

processes and also retry the execution from an ERROR handler.

This instruction can be used in an ERROR handler in the following types of program tasks:

• main task T_ROB1 in a base system

• any motion task in a MultiMove system

Basic examples

Basic examples of the instruction StartMoveRetry are illustrated below.

Example 1
VAR robtarget p_err;

...

MoveL p1\ID:=50, v1000, z30, tool1 \WObj:=stn1;

...

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StorePath;

p_err := CRobT(\Tool:= tool1 \WObj:=wobj0);

! Fix the problem

MoveL p_err, v100, fine, tool1;

RestoPath;

StartMoveRetry;

ENDIF

ENDPROC

This is an example from a MultiMove system with coordinated synchronized movements 

(two robots working on some rotated work object).

During the movement to position p1, the other cooperated robot gets some process error so 

that the coordinated synchronized movements stops. This robots then gets the error 

ERR_PATH_STOP, and the execution is transferred to the ERROR handler.

In the ERROR handler, do the following:

• StorePath stores the original path, goes to a new path level, and sets the MultiMove 

system in independent mode.

• If there are problems with the robot then initiate movements on the new path level.

• Before RestoPath go back to the error position.

• RestoPath goes back to the original path level and sets the MultiMove system back 

to synchronized mode again.

• StartMoveRetry restarts the interrupted movement and any process. It also transfers 

the execution back to resume the normal execution.

Continues on next page



1 Instructions

1.175. StartMoveRetry - Restarts robot movement and execution
RobotWare - OS

3HAC 16581-1  Revision: J490

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

StartMoveRetry does the following sequence:

• regain to path

• restart any processes associated with the stopped movement

• restart the interrupted movement

• RETRY of the program execution

StartMoveRetry does the same as StartMove and RETRY together in one indivisible 

operation.

Only the mechanical units in the program task that execute StartMoveRetry are restarted.

Limitations

Can only be used in an ERROR handler in a motion task.

In a MultiMove system executing coordinated synchronized movements the following 

programming rules must be followed in the ERROR handler:

• StartMoveRetry must be used in all cooperated program tasks.

• If need movement is needed in any ERROR handler then the instructions  

StorePath ... RestoPath must be used in all cooperated program tasks.

• The program must move the robot back to the error position before RestoPath is 

executed if the robot was moved on the StorePath level.

Error handling

If the robot is too far from the path (more than 10 mm or 20 degrees) to perform a restart of 

the interrupted movement then the system variable ERRNO is set to ERR_PATHDIST.

If the robot is in hold state at the time StartMoveRetry is executed then the system variable 

ERRNO is set to ERR_STARTMOVE.

If the program execution is stopped several times during the regain to path movement with 

StartMoveRetry then the system variable ERRNO is set to ERR_PROGSTOP.

If the robot is moving at the time StartMoveRetry is executed then the system variable 

ERRNO is set to ERR_ALRDY_MOVING.

It is not possible to do any error recovery from these errors because StartMoveRetry can 

only be executed in some error handler.

Syntax
StartMoveRetry ’;’

Continued

Continues on next page



1 Instructions

1.175. StartMoveRetry - Restarts robot movement and execution
RobotWare - OS

4913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Stopping movements StopMove - Stops robot movement on page 515

Continuing a movement StartMove - Restarts robot movement on page 486

Resume execution after an error RETRY - Resume execution after an error on page 364

Store/restore path StorePath - Stores the path when an interrupt occurs on 
page 521

RestoPath - Restores the path after an interrupt on page 
362

Continued



1 Instructions

1.176. STCalib - Calibrate a Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J492

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.176. STCalib - Calibrate a Servo Tool

Usage

STCalib is used to calibrate the distance between the tool tips. This is necessary after tip 

change or tool change, and it is recommended after performing a tip dress or after using the 

tool for a while. 

Note! The tool performs two close/open movements during the calibration. The first close 

movement will detect the tip contact position.

Basic examples

Basic examples of the instruction STCalib are illustrated below.

Example 1
VAR num curr_tip_wear;

VAR num retval;

CONST num max_adjustment := 20;

STCalib gun1 \ToolChg;

Calibrate a servo gun after a toolchange. Wait until the gun calibration has finished before 

continuing with the next Rapid instruction.

Example 2
STCalib gun1 \ToolChg \Conc;

Calibrate a servo gun after a toolchange. Continue with the next Rapid instruction without 

waiting for the gun calibration to be finished.

Example 3
STCalib gun1 \TipChg;

Calibrate a servo gun after a tipchange.

Example 4
STCalib gun1 \TipWear \RetTipWear := curr_tip_wear;

Calibrate a servo gun after tip wear. Save the tip wear in variable curr_tip_wear. 

Example 5
STCalib gun1 \TipChg \RetPosAdj:=retval;

IF retval > max_adjustment THEN

TPWrite "The tips are lost!";

...

Calibrate a servo gun after a tipchange. Check if the tips are missing.

Example 6
STCalib gun1 \TipChg \PrePos:=10;

Calibrate a servo gun after a tipchange. Move fast to position 10 mm then start to search for 

contact position with slower speed.

Continues on next page



1 Instructions

1.176. STCalib - Calibrate a Servo Tool
Servo Tool Control

4933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 7

Example of non valid combination:

STCalib gun1 \TipWear \RetTipWear := curr_tip_wear \Conc;

Perform a tip wear calibration. Continue with the next Rapid instruction without waiting for 

the gun calibration to be finished. The parameter curr_tip_wear will in this case not hold 

any valid value since the \Conc switch is used (The next Rapid instruction will start to 

execute before the calibration process is finished).

Arguments
STCalib ToolName [\ToolChg] | [\TipChg] | [\TipWear] [\RetTipWear] 

[\RetPosAdj] [\PrePos] [\Conc]

ToolName

Data type: string

The name of the mechanical unit.

[\ToolChg]

Data type: switch

Calibration after a tool change.

[\TipChg]

Data type: switch

Calibration after a tip change.

[\TipWear]

Data type: switch

Calibration after tip wear.

[\RetTipWear]

Data type: num

The achieved tip wear [mm].

[\RetPosAdj]

Data type: num

The positional adjustment since the last calibration [mm].

[\PrePos]

Data type: num

The position to move with high speed before the search for contact position with slower speed 

is started [mm].

[\Conc]

Data type: switch

Subsequent instructions are executed while the gun is moving. The argument can be used to 

shorten cycle time. This is useful when, for example, two guns are controlled at the same 

time. 

Continued

Continues on next page



1 Instructions

1.176. STCalib - Calibrate a Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J494

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Calibration modes

If the mechanical unit exists then the servo tool is ordered to calibrate. The calibration is done 

according to the switches, see below. If the RetTipWear parameter is used then the tip wear 

is updated.

Calibration after toolchange: 

The tool will close with slow speed waiting for tips in contact to open fast, close fast to a low 

force, and open again in one sequence. The tip wear will remain unchanged.

Calibration after tipchange:

The tool will close with slow speed waiting for tips in contact to open fast, close fast to a low 

force, and open again in one sequence. The tip wear will be reset.

Calibration after tipwear:

The tool will close with high speed to the contact position, open fast, close fast to a low force, 

and open again in one sequence. The tip wear will be updated.

NOTE! If the switch Conc is used then the instruction will be considered ready once started 

and therefore the return value RetTipWear will not be available. In this case the 

RetTipWear will be returned by the function STIsOpen. For more details, see 

RobotWare OS functions - STIsOpen.

Positional adjustment

The optional argument RetPosAdj can be used to detect, for example, if the tips are lost after 

a tip change. The parameter will hold the value of the positional adjustment since the last 

calibration. The value can be negative or positive.

Using a pre-position

In order to speed up the calibration it is possible to define a pre-position. When the calibration 

starts the gun arm will run fast to the pre-position, stop, and then continue slowly*) forward 

in order to detect the tip contact position. If a pre-position is used then select it carefully! It 

is important that the tips do not get in contact until after the pre-position is reached! 

Otherwise the accuracy of the calibration will become poor and motion supervision errors 

may possibly occur. A pre-position will be ignored if it is larger than the current gun position 

(in order not to slow down the calibration).

*) The second movement will also be fast if the \TipWear option is used.

Continued

Continues on next page



1 Instructions

1.176. STCalib - Calibrate a Servo Tool
Servo Tool Control

4953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the specified servo tool name is not a configured servo tool then the system variable ERRNO 

is set to ERR_NO_SGUN.

If the gun is not open when STCalib is invoked then the system variable ERRNO is set to 

ERR_SGUN_NOTOPEN.

If the servo tool mechanical unit is not activated then the system variable ERRNO is set to 

ERR_SGUN_NOTACT. Use instruction ActUnit to activate the servo tool.

If the servo tool position is not initialized then the system variable ERRNO is set to 

ERR_SGUN_NOTINIT. The servo tool position must be initialized the first time the gun is 

installed or after a fine calibration is made. Use the service routine ManServiceCalib or 

perform a tip change calibration. The tip wear will be reset.

If the servo tool tips are not synchronized then the system variable ERRNO is set to 

ERR_SGUN_NOTSYNC. The servo tool tips must be synchronized if the revolution counter has 

been lost and/or updated. No process data such as tip wear will be lost.

If the instruction is invoked from a background task and there is an emergency stop, the 

instruction will be finished, and the system variable ERRNO is set to ERR_SGUN_ESTOP. Note 

that if the instruction is invoked from the main task then the program pointer will be stopped 

at the instruction, and the instruction will be restarted from the beginning at program restart.

If the argument PrePos is specified with a value less than zero then the system variable 

ERRNO is set to ERR_SGUN_NEGVAL.

If the instruction is invoked from a background task and the system is in motors off state then 

the system variable ERRNO will be set to ERR_SGUN_MOTOFF.

All above errors can be handled in a RAPID error handler.

Syntax
STCalib

[ ’ToolName’ :=’ ] < expression (IN) of string > ‘,’

[ ’\’ToolChg] | [’\’TipChg] | [ ’\’TipWear]

[’ \’RetTipWear’ :=’ < variable or persistent(INOUT) of num > 

]’;’

[ ’\’RetPosAdj’ :=’ < variable or persistent(INOUT) of num > ]’;’ 

[ ’\’PrePos’ :=’ < expression (IN) of num > ]’

[ ’\’Conc’ ];’

Related information

For information about See

Open a servo tool STOpen - Open a Servo Tool on page 513

Close a servo tool STClose - Close a Servo Tool on page 496

Continued



1 Instructions

1.177. STClose - Close a Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J496

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.177. STClose - Close a Servo Tool

Usage

STClose is used to close the Servo Tool.

Basic examples

Basic examples of the instruction STClose are illustrated below.

Example 1
VAR num curr_thickness1;

VAR num curr_thickness2;

STClose gun1, 1000, 5;

Close the servo gun with tip force 1000 N and plate thickness 5 mm. Wait until the gun is 

closed before continuing with the next Rapid instruction.

Example 2
STClose gun1, 2000, 3\RetThickness:=curr_thickness;

Close the servo gun with tip force 2000 N and plate thickness 3 mm. Get the measured 

thickness in variable curr_thickness.

Example 3

Concurrent mode:

STClose gun1, 1000, 5 \Conc;

STClose gun2, 2000, 3 \Conc;

Close the servo gun1 with tip force 1000 N and plate thickness 5 mm. Continue the program 

execution without waiting for gun1 to be closed, and close the servo gun2 with tip force 

2000 N and plate thickness 3 mm. Continue the execution of the Rapid program without 

waiting for gun2 to be closed.

Example 4
IF STIsClosed (gun1)\RetThickness:=curr_thickness1 THEN

IF curr_thickness1 < 0.2 Set weld_start1;

ENDIF

IF STIsClosed (gun2)\RetThickness:=curr_thickness2 THEN

IF curr_thickness2 < 0.2 Set weld_start2;

ENDIF

Get the measured thickness in the function STIsClosed variable curr_thickness1 and 

curr_thickness2.

Example 5

Example of non valid combination:

STClose gun1, 2000, 3\RetThickness:=curr_thickness \Conc;

Close the servo gun and continue with the Rapid program execution. The parameter 

curr_thickness will in this case not hold any valid value since the \Conc switch is used 

(The next Rapid instruction will start to execute before the gun is closed).

Continues on next page



1 Instructions

1.177. STClose - Close a Servo Tool
Servo Tool Control

4973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
STClose ToolName TipForce Thickness [\RetThickness][\Conc]

ToolName

Data type: string

The name of the mechanical unit.

TipForce

Data type: num

The desired tip force [N].

Thickness

Data type: num

The expected contact position for the servo tool [mm].

[\RetThickness]

Data type: num

The achieved thickness [mm], will only get a value if the \Conc switch is not used.

[\Conc]

Data type: switch

Subsequent instructions are executed while the gun is moving. The argument can be used to 

shorten cycle time. This is useful when e.g. two guns are controlled at the same time. 

Program execution

If the mechanical unit exists then the servo tool is ordered to close to the expected thickness 

and force.

The closing will start to move the tool arm to the expected contact position (thickness). The 

movement is stopped in this position, and a switch from position control mode to force 

control mode is done. 

The tool arm is moved with max speed and acceleration as it is defined in the system 

parameters for corresponding external axis. As for other axes movements, the speed is 

reduced in manual mode.

When the desired tip force is achieved the instruction is ready and the achieved thickness is 

returned if the optional argument RetThickness is specified.

NOTE! If the switch Conc is used then the instruction will be considered to be ready once 

started and therefore the return value RetThickness will not be available. In this case the 

RetThickness will be returned by the function STIsClosed. For more details see 

RobotWare OS functions - STIsClosed.

It is possible to close the tool during a programmed robot movement as long as the robot 

movement does not include a movement of the tool arm.

For more details see Servo tool motion control.

Continued

Continues on next page



1 Instructions

1.177. STClose - Close a Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J498

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the specified servo tool name is not a configured servo tool then the system variable ERRNO 

is set to ERR_NO_SGUN.

If the gun is not open when STClose is invoked then the system variable ERRNO is set to 

ERR_SGUN_NOTOPEN.

If the servo tool mechanical unit is not activated then the system variable ERRNO is set to 

ERR_SGUN_NOTACT. Use instruction ActUnit to activate the servo tool.

If the servo tool position is not initialized then the system variable ERRNO is set to 

ERR_SGUN_NOTINIT. The servo tool position must be initialized the first time the gun is 

installed or after a fine calibration is made. Use the service routine ManServiceCalib or 

perform a tip change calibration. The tip wear will be reset.

If the servo tool tips are not synchronized then the system variable ERRNO is set to 

ERR_SGUN_NOTSYNC. The servo tool tips must be synchronized if the revolution counter has 

been lost and/or updated. No process data such as tip wear will be lost.

If the instruction is invoked from a background task and if there is an emergency stop then 

the instruction will be finished and the system variable ERRNO is set to ERR_SGUN_ESTOP. 

Note that if the instruction is invoked from the main task then the program pointer will be 

stopped at the instruction, and the instruction will be restarted from the beginning at program 

restart.

If the instruction is invoked from a background task and if the system is in motors off state 

then the system variable ERRNO will be set to ERR_SGUN_MOTOFF.

All errors above can be handled in a Rapid error handler.

Syntax
STClose

[ ’ToolName ’:=’ ] < expression (IN) of string > ‘,’

[ ’Tipforce’ :=’ ] < expression (IN) of num > ‘,’

[ ’Thickness’ :=’] < expression (IN) of num > ]

[‘\’ ’RetThickness’ :=’ < variable or persistent (INOUT) of num 

> ]

[’\’Conc]

Related information

For information about See

Open a servo tool STOpen - Open a Servo Tool on page 513

Continued



1 Instructions

1.178. StepBwdPath - Move backwards one step on path
RobotWare - OS

4993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.178. StepBwdPath - Move backwards one step on path

Usage

StepBwdPath is used to move the TCP backwards on the robot path from a RESTART event 

routine.

It is up to the user to introduce a restart process flag so StepBwdPath in the RESTART event 

routine is only executed at process restart and not at all program restarts.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove System, in 

Motion tasks.

Basic examples

Basic examples of the instruction StepBwdPath are illustrated below.

Example 1
StepBwdPath 30, 1;

Move backwards 30 mm in 1 second.

Arguments
StepBwdPath StepLength StepTime 

StepLength

Data type: num

Specifies the distance, in millimeters, to move backwards during this step. This argument 

must be a positive value.

StepTime

Data type: num

Specifies the time, in seconds, the movement will take. This argument must have a positive 

value.

Program execution

The robot moves back on its path for the specified distance. The path is exactly the same in 

the reverse way as it was before the stop occurred. In the case of a quick stop or emergency 

stop, the RESTART event routine is called after the regain phase has completed so the robot 

will already be back on its path when this instruction is executed.

The actual speed for this movement is the lowest of: 

• StepLength / StepTime 

• The programmed speed on the segment 

• 250 mm/s

Following properties are valid in MultiMove System - Synchronized Coordinated 

Movements:

• All involved mechanical units are moved backward simultaneously and coordinated

• Each executed StepBwdPath in any involved program task results in one new 

backward movement step (without need of any StartMove)

• To restart and continue the interrupted process movements, instruction StartMove 

must be executed in all involved program tasks

Continues on next page



1 Instructions

1.178. StepBwdPath - Move backwards one step on path
RobotWare - OS

3HAC 16581-1  Revision: J500

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

After the program has been stopped it is possible to step backwards on the path with the 

following limits:

• The 1st StepBwdPath movements step will be reduced to the current segment for the 

robot 

• Further StepBwdPath movements steps will be limited to the segment before the 

previous segment (possible to step backward within two segment before the interupted 

segment).

If an attempt is made to move beyond these limits then the error handler will be called with 

ERRNO set to ERR_BWDLIMIT.

Syntax
StepBwdPath 

[ StepLength’:=’ ] < expression (IN) of num >’,’

[ StepTime ’:=’ ] < expression (IN) of num >’;’

Related information

For information about See

Motion in general Technical reference manual - RAPID overview,

section Motion and I/O principle

Positioning instructions Technical reference manual - RAPID overview,

section RAPID summary - Motion

Continued



1 Instructions

1.179. STIndGun - Sets the gun in independent mode
Servo Tool Control

5013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.179. STIndGun - Sets the gun in independent mode

Usage

STIndGun (Servo Tool independent gun) is used to set the gun in independent mode and 

thereafter move the gun to a specified independent position. The gun will stay in independent 

mode until the instruction STIndGunReset is executed.

During independent mode the control of the gun is separated from the robot. The gun can be 

closed, opened, calibrated, or moved to a new independent position, but it will not follow 

coordinated robot movements.

Independent mode is useful if the gun performs a task that is independent of the robot’s task, 

e.g. tip dressing of a stationary gun.

Basic examples

Basic examples of the instruction STIndGun are illustrated below.

Example 1

This procedure could be run from a background task while the robot in the main task can 

continue with, for example, move instructions.

PROC tipdress()

! Note that the gun will move to current robtarget position, if 

! already in independent mode.

STIndGunReset gun1;

...

STIndGun gun1, 30;

StClose gun1, 1000, 5;

WaitTime 10;

STOpen gun1;

...

STIndGunReset gun1;

ENDPROC

Independent mode is activated and the gun is moved to an independent position (30 mm). 

During independent mode the instructions StClose, WaitTime, and STOpen are executed 

without interfering with robot motion. The instruction StIndGunReset will take the gun out 

of independent mode and move the gun to current robtarget position.

Continues on next page



1 Instructions

1.179. STIndGun - Sets the gun in independent mode
Servo Tool Control

3HAC 16581-1  Revision: J502

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xx0500002342

The position p1 depends on the position of the gun given in the robtarget just performed by 

the robot.

Arguments
STIndGun ToolName GunPos

ToolName

Data type: string

The name of the mechanical unit.

GunPos

Data type: num

The position (stroke) of the servo gun in mm.

Syntax
STIndGun

[ ToolName ’:=’ ] < expression (IN) of string > ‘,’

[ GunPos ’:=’ < expression (IN) of num > ]’;’

Continued



1 Instructions

1.180. STIndGunReset - Resets the gun from independent mode
Servo Tool Control

5033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.180. STIndGunReset - Resets the gun from independent mode

Usage

STIndGunReset (Servo Tool independent gun reset) is used to reset the gun from 

independent mode and thereafter move the gun to current robtarget position.

Basic examples

Basic examples of the instruction STIndGunReset are illustrated below.

STIndGunReset gun1;

Arguments
STIndGunReset ToolName

ToolName

Data type: string

The name of the mechanical unit.

Program execution

The instruction will reset the gun from independent mode and move the gun to current 

robtarget position. During this movement the coordinated speed of the gun must be zero 

otherwise an error will occur. The coordinated speed will be zero if the robot is standing still 

or if the current robot movement includes a “zero movement” from the gun.

Syntax
STIndGunReset

[ToolName ´:=´]<expression (IN) of string>´;´



1 Instructions

1.181. SToolRotCalib - Calibration of TCP and rotation for stationary tool
RobotWare - OS

3HAC 16581-1  Revision: J504

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.181. SToolRotCalib - Calibration of TCP and rotation for stationary tool

Usage

SToolRotCalib (Stationary Tool Rotation Calibration) is used to calibrate the TCP and 

rotation of a stationary tool.

The position of the robot and its movements are always related to its tool coordinate system, 

i.e. the TCP and tool orientation. To get the best accuracy it is important to define the tool 

coordinate system as correctly as possible.

The calibration can also be done with a manual method using the FlexPendant (described in 

Operating manual - IRC5 with FlexPendant, section Programming and testing).

Description

To define the TCP and rotation of a stationary tool, you need a movable pointing tool mounted 

on the end effector of the robot.

Before using the instruction SToolRotCalib, some preconditions must be fulfilled:

• The stationary tool that is to be calibrated must be mounted stationary and defined 

with the correct component robhold (FALSE).

• The pointing tool (robhold TRUE) must be defined and calibrated with the correct 

TCP values.

• If using the robot with absolute accuracy then the load and center of gravity for the 

pointing tool should be defined. LoadIdentify can be used for the load definition.

• The pointing tool, wobj0, and PDispOff must be activated before jogging the robot.

• Jog the TCP of the pointing tool as close as possible to the TCP of the stationary tool 

(origin of the tool coordinate system) and define a robtarget for the reference point 

RefTip.

• Jog the robot without changing the tool orientation so the TCP of the pointing tool is 

pointing at some point on the positive z-axis of the tool coordinate system, and define 

a robtarget for point ZPos.

• Jog the robot without changing the tool orientation so the TCP of the pointing tool is 

pointing at some point on the positive x-axis of the tool coordinate system, and define 

a robtarget for point XPos.

As a help for pointing out the positive z-axis and x-axis, some type of elongator tool can be 

used.

Definition of robtargets RefTip, ZPos, and XPos. See figure below.

xx0500002343

Continues on next page



1 Instructions

1.181. SToolRotCalib - Calibration of TCP and rotation for stationary tool
RobotWare - OS

5053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

NOTE!

It is not recommended to modify the positions RefTip, ZPos, and XPos in the instruction 

SToolRotCalib.

Basic examples

Basic examples of the instruction SToolRotCalib are illustrated below.

Example 1
! Created with pointing TCP pointing at the stationary tool 

! coordinate system

CONST robtarget pos_tip := [...];

CONST robtarget pos_z := [...];

CONST robtarget pos_x := [...];

PERS tooldata tool1:= [ FALSE, [[0, 0, 0], [1, 0, 0 ,0]],  [0, [0, 

0, 0], [1, 0, 0, 0], 0, 0, 0]];

!Instructions for creating or ModPos of pos_tip, pos_z and pos_x 

MoveJ pos_tip, v10, fine, point_tool;

MoveJ pos_z, v10, fine, point_tool;

MoveJ pos_x, v10, fine, point_tool;

SToolRotCalib pos_tip, pos_z, pos_x, tool1;

The position of the TCP (tframe.trans) and the tool orientation (tframe.rot) of tool1 

in the world coordinate system is calculated and updated.

Arguments
SToolRotCalib RefTip ZPos XPos Tool

RefTip

Data type: robtarget

The point where the TCP of the pointing tool is pointing at the stationary tool TCP to 

calibrate.

ZPos

Data type: robtarget

The elongator point that defines the positive z direction.

XPos

Data type: robtarget

The elongator point that defines the positive x direction.

Tool

Data type: tooldata

The persistent variable of the tool that is to be calibrated.

Continued

Continues on next page



1 Instructions

1.181. SToolRotCalib - Calibration of TCP and rotation for stationary tool
RobotWare - OS

3HAC 16581-1  Revision: J506

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The system calculates and updates the TCP (tframe.trans) and the tool orientation 

(tfame.rot) in the specified tooldata. The calculation is based on the specified 3  

robtarget. The remaining data in tooldata is not changed.

Syntax
SToolRotCalib 

[ RefTip ’:=’ ] < expression (IN) of robtarget > ’,’

[ ZPos ’:=’ ] < expression (IN) of robtarget > ’,’

[ XPos ’:=’ ] < expression (IN) of robtarget > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata > ’;’

Related information

For information about See

Calibration of TCP for a moving tool MToolTCPCalib - Calibration of TCP for moving 
tool on page 278

Calibration of rotation for a moving tool MToolRotCalib - Calibration of rotation for moving 
tool on page 275

Calibration of TCP for a stationary tool MToolTCPCalib - Calibration of TCP for moving 
tool on page 278

Continued



1 Instructions

1.182. SToolTCPCalib - Calibration of TCP for stationary tool
RobotWare - OS

5073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.182. SToolTCPCalib - Calibration of TCP for stationary tool

Usage

SToolTCPCalib (Stationary Tool TCP Calibration) is used to calibrate the Tool Center Point 

- TCP for a stationary tool.

The position of the robot and its movements are always related to its tool coordinate system, 

i.e. the TCP and tool orientation. To get the best accuracy it is important to define the tool 

coordinate system as correctly as possible.

The calibration can also be done with a manual method using the FlexPendant (described in 

Operating manual - IRC5 with FlexPendant, section Programming and testing).

Description

To define the TCP of a stationary tool, you need a movable pointing tool mounted on the end 

effector of the robot.

Before using the instruction SToolTCPCalib, some preconditions must be fulfilled:

• The stationary tool that is to be calibrated must be mounted stationary and defined 

with the correct component robhold (FALSE).

• The pointing tool (robhold TRUE) must be defined and calibrated with the correct 

TCP values.

• If using the robot with absolute accuracy then the load and center of gravity for the 

pointing tool should be defined.  LoadIdentify can be used for the load definition.

• The pointing tool, wobj0 and PDispOff, must be activated before jogging the robot.

• Jog the TCP of the pointing tool as close as possible to the TCP of the stationary tool 

and define a robtarget for the first point p1.

• Define the further three positions p2, p3, and p4, all with different orientations.

• It is recommended that the TCP is pointed out with different orientations to obtain a 

reliable statistical result. However, it is not necessary.

Definition of 4 robtargets p1...p4. See figure below.

xx0500002344

Continues on next page



1 Instructions

1.182. SToolTCPCalib - Calibration of TCP for stationary tool
RobotWare - OS

3HAC 16581-1  Revision: J508

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

NOTE!

It is not recommended to modify the positions Pos1 to Pos4 in the instruction 

SToolTCPCalib.

The reorientation between the 4 positions should be as big as possible, putting the robot in 

different configurations.Its also good practice to check the quality of the TCP after a 

calibration. Which can be performed by reorientation of the tool to check if the TCP is 

standing still.

Basic example

Basic examples of the instruction SToolTCPCalib are illustrated below.

Example 1
! Created with pointing TCP pointing at the stationary TCP 

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

CONST robtarget p4 := [...];

PERS tooldata tool1:= [ FALSE, [[0, 0, 0], [1, 0, 0 ,0]], [0,001, 

[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0]];

VAR num max_err;

VAR num mean_err;

! Instructions for creating or ModPos of p1 - p4

MoveJ p1, v10, fine, point_tool;

MoveJ p2, v10, fine, point_tool;

MoveJ p3, v10, fine, point_tool;

MoveJ p4, v10, fine, point_tool;

SToolTCPCalib p1, p2, p3, p4, tool1, max_err, mean_err;

The TCP value (tframe.trans) of tool1 will be calibrated and updated.  max_err and 

mean_err will hold the max error in mm from the calculated TCP and the mean error in mm 

from the calculated TCP, respectively.

Arguments
SToolTCPCalib Pos1 Pos2 Pos3 Pos4 Tool MaxErr MeanErr

Pos1

Data type: robtarget

The first approach point.

Pos2

Data type: robtarget

The second approach point.

Pos3

Data type: robtarget

The third approach point.

Continued

Continues on next page



1 Instructions

1.182. SToolTCPCalib - Calibration of TCP for stationary tool
RobotWare - OS

5093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Pos4

Data type: robtarget

The fourth approach point.

Tool

Data type: tooldata

The persistent variable of the tool that is to be calibrated.

MaxErr

Data type: num

The maximum error in mm for one approach point.

MeanErr

Data type: num

The average distance that the approach points are from the calculated TCP, i.e. how accurately 

the robot was positioned relative to the stationary TCP.

Program execution

The system calculates and updates the TCP value in the world coordinate system 

(tfame.trans) in the specified tooldata. The calculation is based on the specified 4 

robtarget. The remaining data in tooldata, such as tool orientation (tframe.rot), is not 

changed.

Syntax
SToolTCPCalib

[ Pos1 ’:=’ ] < expression (IN) of robtarget > ’,’

[ Pos2 ’:=’ ] < expression (IN) of robtarget > ’,’

[ Pos3 ’:=’ ] < expression (IN) of robtarget > ’,’

[ Pos4 ’:=’ ] < expression (IN) of robtarget > ’,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata > ’,’

[ MaxErr ’:=’ ] < variable (VAR) of num > ’,’

[ MeanErr’ :=’ ] < variable (VAR) of num > ’;’

Related information

For information about See

Calibration of TCP for a moving tool SToolTCPCalib - Calibration of TCP for stationary 
tool on page 507

Calibration of rotation for a moving tool MToolRotCalib - Calibration of rotation for moving 
tool on page 275

Calibration of TCP and rotation for a 
stationary tool

SToolRotCalib - Calibration of TCP and rotation 
for stationary tool on page 504

Continued



1 Instructions

1.183. Stop - Stops program execution
RobotWare - OS

3HAC 16581-1  Revision: J510

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.183. Stop - Stops program execution

Usage

Stop is used to stop the program execution. Any movement performed at the time will be 

finished before the Stop instruction is ready.

Basic examples

Basic examples of the instruction Stop are illustrated below.

See also More examples on page 512.

Example 1
TPWrite "The line to the host computer is broken";

Stop;

Program execution stops after a message has been written on the FlexPendant.

Arguments
Stop [ \NoRegain ] | [ \AllMoveTasks ]

[ \NoRegain ]

Data type: switch

Specifies for the next program start, whether or not the affected mechanical unit should return 

to the stop position.

If the argument \NoRegain is set then the robot and external axes will not return to the stop 

position (if they have been jogged away from it).

If the argument is omitted and if the robot or external axes have been jogged away from the 

stop position then the robot displays a question on the FlexPendant. The user can then answer 

whether or not the robot should return to the stop position.

[ \AllMoveTasks ]

Data type: switch

Specifies that programs in all running normal tasks besides the actual task should be stopped.

If the argument is omitted then only the program in the task that executes the instruction will 

be stopped.

Continues on next page



1 Instructions

1.183. Stop - Stops program execution
RobotWare - OS

5113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The instruction stops program execution when the affected mechanical units in the actual 

motion task have reached zero speed for the movement it is performing at the time, and stands 

still. Program execution can then be restarted from the next instruction.

If the instruction is used without any switches then only the program in that task will be 

affected.

If the AllMoveTasks switch is used in a task (Normal, Static, or Semistatic) then the 

program in that task and all normal tasks will stop. See more about declaration of tasks in 

documentation for System Parameters

 The NoRegain switch is only possible to use in motion tasks since it only concerns the 

motion path.

If there is a Stop instruction in some event routine then the execution of the routine will be 

stopped, and the execution continue as described in TABLE 1.

If there is a Stop\AllMoveTasks instruction in some event routine in a MultiMove 

system, then the task containing the instruction continue as described in TABLE 1 and all 

other motion tasks executing an event routine continues as described in TABLE 2 (same 

affect as for normal program stop during execution of the event routine).

TABLE 1

Event routines Affect by Stop instruction

POWER ON The execution is stopped. STOP event 
routines are executed. The execution does not 
continue in the event routine at the next start 
order..

START The execution is stopped. STOP event 
routines are executed. The execution does not 
continue in the event routine at the next start 
order.

RESTART The execution is stopped. STOP event routines 
are executed. The execution does not 
continue in the event routine at the next start 
order.

STOP The execution is stopped. No other event 
routines are executed. The execution does not 
continue in the event routine at the next start 
order.

QSTOP The execution is stopped. STOP event routines 
are executed. The execution does not 
continue in the event routine at the next start 
order.

RESET The execution is stopped. STOP event routines 
are executed. The execution does not 
continue in the event routine at the next start 
order.

Continued

Continues on next page



1 Instructions

1.183. Stop - Stops program execution
RobotWare - OS

3HAC 16581-1  Revision: J512

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction Stop are illustrated below.

Example 1
MoveL p1, v500, fine, tool1;

TPWrite "Jog the robot to the position for pallet corner 1"; 

Stop \NoRegain;

p1_read := CRobT(\Tool:=tool1 \WObj:=wobj0);

MoveL p2, v500, z50, tool1;

Program execution stops with the robot at p1. The operator jogs the robot to p1_read. For 

the next program start the robot does not regain to p1, so the position p1_read can be stored 

in the program.

Syntax
Stop 

[ ’\’ NoRegain ]’|’

[ ’\’ AllMoveTasks ]’;’

Related information

TABLE 2

Event routines Affect by Stop \AllMoveTasks

POWER ON The POWER ON event routine completes its 
execution. No STOP event routines are 
executed.

START The execution is stopped, and continues at the 
next ordered start. No STOP event routines 
are executed.

RESTART The execution is stopped, and continues at the 
next ordered start. No STOP event routines are 
executed.

STOP The STOP event routine completes its 
execution.

QSTOP The QSTOP event routine completes its 
execution.

RESET The execution is stopped, and continues at the 
next ordered start. No STOP event routines are 
executed.

For information about See

Terminating program execution EXIT - Terminates program execution on page 
105

Only stopping robot movements StopMove - Stops robot movement on page 
515

Stop program for debugging Break - Break program execution on page 32

Continued



1 Instructions

1.184. STOpen - Open a Servo Tool
Servo Tool Control

5133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.184. STOpen - Open a Servo Tool

Usage

STOpen is used to open the Servo Tool.

Basic examples

Basic examples of the instruction STOpen are illustrated below.

Example 1
STOpen gun1;

Open the servo tool gun1. Wait until the gun is opened before continuing with the next Rapid 

instruction.

Example 2
STOpen gun1 \Conc;

Open the servo tool gun1. Continue with the next Rapid instruction without waiting for the 

gun to be opened.

Example 3
STOpen "SERVOGUN"\WaitZeroSpeed;

Stop the servo tool SERVOGUN, wait until any coordinated movement has finished, and then 

open the servo tool SERVOGUN.

Arguments
STOpen ToolName

ToolName

Data type: string

The name of the mechanical unit.

[\WaitZeroSpeed]

Data type: switch

Stop the servo tool, wait until any coordinated movement has finished, and then open the 

servo tool.

[\Conc]

Data type: switch

Subsequent instructions are executed while the gun is moving. The argument can be used to 

shorten cycle time. This is useful when, for example, two guns are controlled at the same 

time. 

Continues on next page



1 Instructions

1.184. STOpen - Open a Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J514

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the mechanical unit exists then the servo tool is ordered to open. The tip force is reduced 

to zero and the tool arm is moved back to the pre_close position.

The tool arm is moved with max speed and acceleration as it is defined in the system 

parameters for the corresponding external axis. As for other axes movements, the speed is 

reduced in manual mode.

It is possible to open the tool during a programmed robot movement as long as the robot 

movement does not include a movement of the tool arm. If the tool is opened during such 

movement then an error 50251 Tool opening failed will be displayed. The switch 

WaitZeroSpeed can be used to reduce the risk for this error.

If the switch Conc is used then the instruction will be considered to be ready before the servo 

tool is opened. It is recommended that the function STIsOpen is used after STOpen to avoid 

any problems in concurrent mode.

For more details, see Servo tool motion control.

Error handling

If the specified servo tool name is not a configured servo tool then the system variable ERRNO 

is set to ERR_NO_SGUN.

If the servo tool mechanical unit is not activated then the system variable ERRNO is set to 

ERR_SGUN_NOTACT. Use instruction ActUnit to activate the servo tool.

If the servo tool position is not initialized then the system variable ERRNO is set to 

ERR_SGUN_NOTINIT. The servo tool position must be initialized the first time the gun is 

installed or after a fine calibration is made. Use the service routine ManServiceCalib, or 

perform a tip change calibration. The tip wear will be reset.

If the servo tool tips are not synchronized then the system variable ERRNO is set to 

ERR_SGUN_NOTSYNC. The servo tool tips must be synchronized if the revolution counter has 

been lost and/or updated. No process data such as tip wear will be lost.

All above errors can be handled in a RAPID error handler.

NOTE!

If the instruction is invoked from a background task and there is an emergency stop then the 

instruction will be finished without an error.

Syntax
STOpen

[ ’ToolName ’:=’ ] < expression (IN) of string > ‘,’

[ ’\’WaitZeroSpeed]‘ ,’

[’\’Conc]’

Related information

For information about See

Close a servo tool STClose - Close a Servo Tool on page 496

Continued



1 Instructions

1.185. StopMove - Stops robot movement
RobotWare - OS

5153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.185. StopMove - Stops robot movement

Usage

StopMove is used to stop robot and external axes movements and any belonging process 

temporarily. If the instruction StartMove is given then the movement and process resumes.

This instruction can, for example, be used in a trap routine to stop the robot temporarily when 

an interrupt occurs.

For base system it is possible to use this instruction in the following type of program tasks:

• main task T_ROB1 for stopping the movement in that task.

• any other task for stopping the movements in the main task.

For MultiMove systems it is possible to use this instruction in following type of program 

tasks:

• motion task for stopping the movement in that task.

• non-motion task for stopping the movement in the connected motion task. Besides 

that, if movement is stopped in one motion task belonging to a coordinated 

synchronized task group then the movement is stopped in all the cooperated tasks.

Basic examples

Basic examples of the instruction StopMove are illustrated below.

See also More examples on page 517.

Example 1
StopMove;

WaitDI ready_input, 1;

StartMove;

The robot movement is stopped until the input, ready_input is set.

Arguments
StopMove [\Quick] [\AllMotionTasks]

[\Quick]

Data type: switch

Stops the robot on the path as fast as possible.

Without the optional parameter \Quick, the robot stops on the path, but the braking distance 

is longer (same as for normal Program Stop).

[\AllMotionTasks]

Data type: switch

Stop the movement of all mechanical units in the system. The switch [\AllMotionTasks] 

can only be used from a non-motion program task.

Continues on next page



1 Instructions

1.185. StopMove - Stops robot movement
RobotWare - OS

3HAC 16581-1  Revision: J516

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The movements of the robot and external axes stop without the brakes being engaged. Any 

processes associated with the movement in progress are stopped at the same time as the 

movement is stopped.

Program execution continues after waiting for the robot and external axes to stop (standing 

still). 

With the switch \AllMotionTasks (only allowed from non-motion program task) the 

movements for all mechanical units in the system are stopped.

In a base system without the switch \AllMotionTasks, the movements for the following 

mechanical units are stopped:

• always the mechanical units in the main task, independent of which task executes the 

StopMove instruction.

In a MultiMove system without the switch \AllMotionTasks, the movements for the 

following mechanical units are stopped:

• the mechanical units in the motion task executing StopMove.

• the mechanical units in the motion task that are connected to the non-motion task 

executing StopMove. Besides that, if mechanical units are stopped in one connected 

motion task belonging to a coordinated synchronized task group then the mechanical 

units are stopped in all the cooperated tasks.

The StopMove state in the motion task generated from the motion task itself will 

automatically be reset when starting that task from the beginning.

The StopMove state in connected motion task, generated from the some non-motion task, 

will automatically be reset:

• if normal non-motion task, at the start of that task from the beginning.

• if semi-static non-motion task, at power fail restart when the task is starting from the 

beginning.

• if static non-motion task, at installation start when the task is starting from the 

beginning.

Continued

Continues on next page



1 Instructions

1.185. StopMove - Stops robot movement
RobotWare - OS

5173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction StopMove are illustrated below.

Example 1
VAR intnum intno1;

...

CONNECT intno1 WITH go_to_home_pos;

ISignalDI di1,1,intno1;

TRAP go_to_home_pos

VAR robtarget p10;

StopMove;

StorePath;

p10:=CRobT(\Tool:=tool1 \WObj:=wobj0);

MoveL home,v500,fine,tool1;

WaitDI di1,0;

Move L p10,v500,fine,tool1;

RestoPath;

StartMove;

ENDTRAP

When the input di1 is set to 1 an interrupt is activated which in turn activates the interrupt 

routine go_to_home_pos. The current movement is stopped, and the robot moves instead to 

the home position. When di1 is set to 0 the robot returns to the position at which the interrupt 

occurred and continues to move along the programmed path.

Example 2
VAR intnum intno1;

...

CONNECT intno1 WITH go_to_home_pos;

ISignalDI di1,1,intno1;

TRAP go_to_home_pos ()

VAR robtarget p10;

StorePath;

p10:=CRobT(\Tool:=tool1 \WObj:=wobj0);

MoveL home,v500,fine,tool1;

WaitDI di1,0;

MoveL p10,v500,fine,tool1;

RestoPath;

StartMove;

ENDTRAP

Similar to the previous example but the robot does not move to the home position until the 

current movement instruction is finished.

Limitations

Only one of several non-motion tasks is allowed at the same time to do StopMove - 

StartMove sequence against some motion task.

Continued

Continues on next page



1 Instructions

1.185. StopMove - Stops robot movement
RobotWare - OS

3HAC 16581-1  Revision: J518

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
StopMove

[’\’Quick]

[’\’AllMotionTasks]’;’

Related information 

For information about See

Continuing a movement StartMove - Restarts robot movement on page 486

StartMoveRetry - Restarts robot movement and 
execution on page 489

Store - restore path StorePath - Stores the path when an interrupt occurs 
on page 521

RestoPath - Restores the path after an interrupt on 
page 362

Continued



1 Instructions

1.186. StopMoveReset - Reset the system stop move state
RobotWare - OS

5193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.186. StopMoveReset - Reset the system stop move state

Usage

StopMoveReset is used to reset the system stop move state without starting any movements.

Asynchronously raised movements errors, such as ERR_PATH_STOP or specific process error 

during the movements, can be handled in the ERROR handler. When such an error occurs the 

movements are stopped at once, and the system stop move flag is set for actual program tasks. 

This means that the movement is not restarted if doing any program start while program 

pointer is inside the ERROR handler.

Restart of the movements after such movement error will be done after one of these action:

• Execute StartMove or StartMoveRetry.

• Execute StopMoveReset and the movement will restart at the next program start.

Basic examples

Basic examples of the instruction StopMoveReset are illustrated below.

Example 1
... 

ArcL p101, v100, seam1, weld1, weave1, z10, gun1;

...

ERROR

IF ERRNO=AW_WELD_ERR OR ERRNO=ERR_PATH_STOP THEN

! Execute something but without any restart of the movement

! ProgStop - ProgStart must be allowed

...

! No idea to try to recover from this error, so let the error 

! stop the program

...

! Reset the move stop flag, so it’s possible to manual restart

! the program and the movement after that the program has 

! stopped

StopMoveReset;

ENDIF 

ENDPROC

After that above ERROR handler has executed the ENDPROC, the program execution stops and 

the pointer is at the beginning of the ArcL instruction. Next program start restarts the program 

and movement from the position where the original movement error occurred.

Arguments
StopMoveReset [\AllMotionTasks]

[\AllMotionTasks]

Data type: switch

Reset the system stop move state for all mechanical units in the system. The switch 

[\AllMotionTasks] can only be used from a non-motion program task.

Continues on next page



1 Instructions

1.186. StopMoveReset - Reset the system stop move state
RobotWare - OS

3HAC 16581-1  Revision: J520

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

To reset a MultiMove application in synchronized coordinated mode, StopMoveReset must 

be executed in all motion tasks that are involved in coordination. 

With the switch \AllMotionTasks (only allowed from non-motion program task) the reset 

is done for all all mechanical units in the system.

In a base system without the switch \AllMotionTasks, the reset is always done for the main 

task, independent of which task that executes the StopMoveReset instruction.

For base system it is possible to use StopMoveReset in the following type of program tasks:

• main task T_ROB1 to reset the stop move state in that task.

• any other task to reset the stop move state in the main task.

For MultiMove system it is possible to use this instruction in the following type of program 

tasks:

• motion task, to reset the stop move state in that task.

• non motion task, to reset the stop move state in the connected motion task. Besides 

that, if the reset of the stop move state in one connected motion task belonging to a 

coordinated synchronized task group, the stop move state is reset in all the cooperating 

tasks.

Syntax
StopMoveReset

[’\’AllMotionTasks]’;’

Related information 

For information about See

Stop the movement StopMove - Stops robot movement on page 515

Continuing a movement StartMove - Restarts robot movement on page 
486

StartMoveRetry - Restarts robot movement and 
execution on page 489

Store - restore path StorePath - Stores the path when an interrupt 
occurs on page 521

RestoPath - Restores the path after an interrupt 
on page 362

Continued



1 Instructions

1.187. StorePath - Stores the path when an interrupt occurs
RobotWare - OS

5213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.187. StorePath - Stores the path when an interrupt occurs

Usage

StorePath is used to store the movement path being executed, e.g. when an error or interrupt 

occurs. The error handler or a trap routine can then start a new temporary movement and 

finally restart the original movement that was stored earlier.

For example, this instruction can be used to go to a service position or to clean the gun when 

an error occurs.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction StorePath are illustrated below.

See also More examples on page 522.

Example 1
StorePath;

The current movement path is stored for later use. Set the system to independent movement 

mode.

Example 2
StorePath \KeepSync;

The current movement path is stored for later use. Keep synchronized movement mode.

Arguments
StorePath [\KeepSync]

[\KeepSync]

Keep Synchronization

Data type: switch

Keeps synchronized movement mode after the StorePath \KeepSync. The KeepSync 

switch can only be used if the system is in synchronized movement mode before the 

StorePath \KeepSync call.

Without the optional parameter \KeepSync, in a MultiMove coordinated synchronized 

system, the system is set to independent-semicoordinated movement mode. After execution 

of StorePath in all involved tasks, the system is in semicoordinated mode if further on use 

of coordinated work object. Otherwise it is in independent mode. If in semicoordinated mode 

it is recommended to always start with a movement in the mechanical unit that controls the 

user frame before WaitSyncTask in all involved tasks.

Program execution

The current movement path of the robot and external axes are saved. After this, another 

movement can be started in a trap routine or in an error handler. When the reason for the error 

or interrupt has been rectified then the saved movement path can be restarted.

Continues on next page



1 Instructions

1.187. StorePath - Stores the path when an interrupt occurs
RobotWare - OS

3HAC 16581-1  Revision: J522

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction StorePath are illustrated below.

Example 1
TRAP machine_ready

VAR robtarget p1;

StorePath;

p1 := CRobT();

MoveL p100, v100, fine, tool1;

...

MoveL p1, v100, fine, tool1;

RestoPath;

StartMove;

ENDTRAP

When an interrupt occurs that activates the trap routine machine_ready, the movement path 

which the robot is executing at the time is stopped at the end of the instruction (ToPoint) and 

stored. After this the robot remedies the interrupt by, for example, replacing a part in the 

machine. Then the normal movement is restarted.

Limitations

Only the movement path data is stored with the instruction StorePath.

If the user wants to order movements on the new path level then the actual stop position must 

be stored directly after StorePath and before RestoPath makes a movement to the stored 

stop position on the path.

Only one movement path can be stored at a time. 

Syntax
StorePath

[’\’KeepSync]’;’

Related information

For information about See

Restoring a path RestoPath - Restores the path after an interrupt on page 
362

More examples RestoPath - Restores the path after an interrupt on page 
362

PathRecStart - Start the path recorder on page 308

SyncMoveResume - Set synchronized coordinated 
movements on page 541

SyncMoveSuspend - Set independent-semicoordinated 
movements on page 543

Continued



1 Instructions

1.188. STTune - Tuning Servo Tool
Servo Tool Control

5233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.188. STTune - Tuning Servo Tool

Usage

STTune is used to tune/change a servo tool parameter. The parameter is changed temporarily 

from the original value, which is set up in the system parameters. The new tune value will be 

active immediately after executing the instruction.

STTune is useful in tuning procedures. A tuning procedure is typically used to find an optimal 

value for a parameter. An experiment (i.e. a program execution with a servo tool movement) 

is repeated when using different parameter tune values.

STTune shall not be used during calibration or tool closure.

Basic examples

Basic examples of the instruction STTune are illustrated below.

Example 1
STTune SEOLO_RG, 0.050, CloseTimeAdjust;

The servo tool parameter CloseTimeAdjust is temporarily set to 0.050 seconds.

Arguments
STTune MecUnit TuneValue Type

MecUnit

Data type: mecunit

The name of the mechanical unit.

TuneValue

Data type: num

New tuning value.

Type

Data type: tunegtype

Parameter type. Servo tool parameters available for tuning are RampTorqRefOpen, 

RampTorqRefClose, KV, SpeedLimit, CollAlarmTorq, CollContactPos, 

CollisionSpeed, CloseTimeAdjust, ForceReadyDelayT, PostSyncTime, 

CalibTime, CalibForceLow, CalibForceHigh. These types are predefined in the system 

parameters and defines the original values.

Description

RampTorqRefOpen

Tunes the system parameter Ramp when decrease force, which decides how fast force 

is released while opening the tool. The unit is Nm/s and a typical value 200.

Corresponding system parameter: topic Motion, type Force master, parameter 

ramp_torque_ref_opening.

Continues on next page



1 Instructions

1.188. STTune - Tuning Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J524

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

RampTorqRefClose

Tunes the system parameter Ramp when increase force, which decides how fast force 

is built up while opening the tool. The unit is Nm/s and a typical value 80.

Corresponding system parameter: topic Motion, type Force master, parameter 

ramp_torque_ref_closing.

KV

Tunes the system parameter KV, which is used for speed limitation. The unit is Nms/rad and 

a typical value 1. For more details, see the external axis documentation.

Corresponding system parameter: topic Motion, type Force master, parameter Kv.

SpeedLimit

Tunes the system parameter Speed limit, which is used for speed limitation. The unit is 

rad/s (motor speed) and a typical value 60. For more details, see the external axis 

documentation.

Corresponding system parameter: topic Motion, type Force master, parameter 

speed_limit.

CollAlarmTorq

Tunes the system parameter Collision alarm torque, which is used for the automatic 

calibration of new tips. The unit is Nm (motor torque) and a typical value 1. For more details, 

see the external axis documentation.

Corresponding system parameter: topic Motion, type Force master, parameter 

alarm_torque.

CollContactPos

Tunes the system parameter Collision delta pos, which is used for automatic calibration 

of new tips. The unit is m and a typical value 0,002. For more details, see the external axis 

documentation.

Corresponding system parameter: topic Motion, type Force master, parameter 

distance_to_contact_position.

CollisionSpeed

Tunes the system parameter Collision speed, which is used for automatic calibration of 

new tips. The unit is m/s and a typical value 0,02. For more details, see the external axis 

documentation.

Corresponding system parameter: topic Motion, type Force master, parameter col_speed.

CloseTimeAdjust

Constant time adjustment (s), positive or negative, of the moment when the tool tips reaches 

contact during a tool closure. May be used to delay the closing slightly when the synchronized 

pre-closing is used for welding. 

Corresponding system parameter: topic Motion, type SG process, parameter 

min_close_time_adjust.

Continued

Continues on next page



1 Instructions

1.188. STTune - Tuning Servo Tool
Servo Tool Control

5253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ForceReadyDelayT

Constant time delay (s) before sending the weld ready signal after reaching the programmed 

force.

Corresponding system parameter: topic Motion, type SG process, parameter 

pre_sync_delay_time.

PostSyncTime

Release time anticipation (s) of the next robot movement after a weld. This tune type can be 

tuned to synchronize the gun opening with the next robot movement. The synchronization 

may fail if the parameters is set too high.

Corresponding system parameter: topic Motion, type SG process, parameter 

post_sync_time.

CalibTime

The wait time (s) during a calibration before the positional tool tip correction is done. For best 

results do not use too low a value like 0.5 s.

Corresponding system parameter: topic Motion, type SG process, parameter calib_time.

CalibForceLow

The minimum tip force (N) used during a TipWear calibration. For best result of the thickness 

detection it is recommended to use the minimum programmed weld force.

Corresponding system parameter: topic Motion, type SG process, parameter 

calib_force_low.

CalibForceHigh

The maximum tip force (N) used during a TipWear calibration. For best result of the thickness 

detection it is recommended to use the max programmed weld force.

Corresponding system parameter: topic Motion, type SG process, parameter 

calib_force_high.

Program execution

The specified tuning type and tuning value are activated for the specified mechanical unit. 

This value is applicable for all movements until a new value is programmed for the current 

mechanical unit or until the tuning types and values are reset using the instruction 

STTuneReset. 

The original tune values may be permanently changed in the system parameters.

The default servo tool tuning values are automatically set

• by executing instruction STTuneReset.

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Error handling

If the specified servo tool name is not a configured servo tool then the system variable ERRNO 

is set to ERR_NO_SGUN.

The error can be handled in a Rapid error handler.

Continued

Continues on next page



1 Instructions

1.188. STTune - Tuning Servo Tool
Servo Tool Control

3HAC 16581-1  Revision: J526

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
STTune

[ MecUnit ’:=’ ] < variable (VAR) of mecunit > ‘,’

[ TuneValue’ :=’ ] < expression (IN) of num > ‘,’

[ ’Type ’:=’] < expression (IN) of tunegtype > ]’;’

Related information

For information about See

Restore of servo tool parameters TuneReset - Resetting servo tuning on page 637

Tuning of servo tool Application manual - Additional axes and stand 
alone controller

Continued



1 Instructions

1.189. STTuneReset - Resetting Servo tool tuning
Servo Tool Control

5273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.189. STTuneReset - Resetting Servo tool tuning

Usage

STTuneReset is used to restore original values of servo tool parameters if they have been 

changed by the STTune instruction.

Basic examples

Basic examples of the instruction STTuneReset are illustrated below.

Example 1
STTuneReset SEOLO_RG;

Restore original values of servo tool parameters for the mechanical unit SEOLO_RG.

Arguments
STTuneReset MecUnit 

MecUnit

Data type: mecunit

The name of the mechanical unit.

Program execution

The original servo tool parameters are restored.

This is also achieved

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Error handling

If the specified servo tool name is not a configured servo tool then the system variable ERRNO 

is set to ERR_NO_SGUN.

The error can be handled in a Rapid error handler.

Syntax
STTuneReset

[ MecUnit ’:=’ ] < variable (VAR) of mecunit > ‘,’

Related information

For information about See

Tuning of servo tool parameters STTune - Tuning Servo Tool on page 523

Tuning of servo tool parameters Application manual - Additional axes and stand 
alone controller



1 Instructions

1.190. SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

3HAC 16581-1  Revision: J528

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.190. SyncMoveOff - End coordinated synchronized movements

Usage

SyncMoveOff is used to end a sequence of synchronized movements and, in most cases, 

coordinated movements. First, all involved program tasks will wait to synchronize in a stop 

point, and then the motion planners for the involved program tasks are set to independent 

mode.

The instruction SyncMoveOff can only be used in a MultiMove system with option 

Coordinated Robots and only in program tasks defined as Motion Task.

WARNING!

To reach safe synchronization functionality every meeting point (parameter  SyncID) must 

have a unique name. The name of the meeting point must also be the same for all the program 

tasks that should meet.

Basic examples

Basic examples of the instruction SyncMoveOff are illustrated below.

See also More examples on page 530.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ]; 

VAR syncident sync1; 

VAR syncident sync2;

... 

SyncMoveOn sync1, task_list; 

...

SyncMoveOff sync2;

...

!Program example in task T_ROB2

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ]; 

VAR syncident sync1; 

VAR syncident sync2;

... 

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

The program task that first reaches SyncMoveOff with identity sync2 waits until the other 

tasks reach SyncMoveOff with the same identity sync2. At that synchronization point 

sync2, the motion planners for the involved program tasks are set to independent mode. 

After that, both task T_ROB1 and T_ROB2 continue their execution.

Continues on next page



1 Instructions

1.190. SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

5293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
SyncMoveOff SyncID [\TimeOut]

SyncID

Synchronization Identity

Data type: syncident

Variables that specify the name of the unsynchronization (meeting) point. Data type 

syncident is a non-value type. It is only used as an identifier for naming the 

unsynchronization point.

The variable must be defined and have an equal name in all cooperated program tasks. It is 

recommended to always define the variable global in each task (VAR syncident ...).

[\TimeOut]

Data type: num

The max. time to wait for the other program tasks to reach the unsynchronization point. The 

time-out is defined in seconds (resolution 0,001s).

If this time runs out before all program tasks have reached the unsynchronization point then 

the error handler will be called, if there is one, with the error code ERR_SYNCMOVEOFF. If 

there is no error handler then the execution will be stopped.

If this argument is omitted then the program task will wait forever.

Program execution

The program task that first reaches SyncMoveOff waits until all other specified tasks reach 

SyncMoveOff with the same SyncID identity. At that SyncID unsynchronization point the 

motion planner for the involved program tasks is set to independent mode. After that, 

involved program tasks continue their execution.

The motion planner for the involved program tasks are set to unsynchronized mode. This 

means the following:

• All RAPID program tasks and all movements from these tasks are working 

independently of each other again.

• Any move instruction must not be marked with any ID number. See instruction 

MoveL.

It is possible to exclude program tasks for testing purpose from FlexPendant - Task Selection 

Panel. The instructions SyncMoveOn and SyncMoveOff will still work with the reduced 

number of program tasks, even for only one program task.

Continued

Continues on next page



1 Instructions

1.190. SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

3HAC 16581-1  Revision: J530

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction SyncMoveOff are illustrated below.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main() 

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove() 

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, obj2;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, obj2;

syncmove;

... 

ENDPROC

Continued

Continues on next page



1 Instructions

1.190. SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

5313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, obj2;

MoveL * \ID:=20, v100, fine, obj2 ;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

First program tasks T_ROB1 and T_ROB2 are waiting at WaitSyncTask with identity sync1 

for each other, programmed with corner path for the preceding movements for saving cycle 

time.

Then the program tasks are waiting at SyncMoveOn with identity sync2 for each other, 

programmed with a necessary stop point for the preceding movements. After that, the motion 

planner for the involved program tasks is set to synchronized mode.

After that, T_ROB2 is moving the obj2 to ID point 10 and 20 in world coordinate system 

while T_ROB1 is moving the tcp1 to ID point 10 and 20 on the moving object obj2.

Then the program tasks are waiting at SyncMoveOff with identity sync3 for each other, 

programmed with a necessary stop point for the preceding movements. After that, the motion 

planner for the involved program tasks is set to independent mode.

Example 2
!Program example with use of time-out function

VAR syncident sync3;

... 

SyncMoveOff sync3 \TimeOut := 60;

...

ERROR

IF ERRNO = ERR_SYNCMOVEOFF THEN

RETRY;

ENDIF

The program task waits for an instruction SyncMoveOff and for some other program task to 

reach the same synchronization point sync3. After waiting 60 seconds, the error handler is 

called with ERRNO equal to ERR_SYNCMOVEOFF. Then the instruction SyncMoveOff is 

called again for an additional wait of 60 seconds.

Continued

Continues on next page



1 Instructions

1.190. SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

3HAC 16581-1  Revision: J532

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 3
!Example with with semicoordinated and syncronized movement

!Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

VAR syncident sync2;

..

PROC main() 

...

MoveL p1_90, v100, fine, tcp1 \WOBJ:= rob2_obj;

WaitSyncTask sync1, task_list;

SyncMoveOn sync2, task_list;

MoveL p1_100 \ID:=10, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

WaitSyncTask sync3, task_list;

MoveL p1_120, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL p1_130, v100, fine, tcp1 \WOBJ:= rob2_obj;

WaitSyncTask sync4, task_list;

...

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

VAR syncident sync2;

..

PROC main()

...

MoveL p_fine, v1000, fine, tcp2;

WaitSyncTask sync1, task_list;

SyncMoveOn sync2, task_list;

MoveL p2_100 \ID:=10, v100, fine, tcp2;

SyncMoveOff sync3;

MoveL p2_100, v100, fine, tcp2;

WaitSyncTask sync3, task_list;

WaitSyncTask sync4, task_list;

MoveL p2_110, v100, z10, tcp2;

...

ENDPROC

When switching between semicoordinated to syncronized movement, a WaitSyncTask is 

needed (when using identity sync1). 

When switching between syncronized to semicoordinated movement, the task that move the 

work object (rob2_obj) needs to move to the desired position. After that a WaitSyncTask 

is needed (identity sync3) before the semicoordinated movement.

Continued

Continues on next page



1 Instructions

1.190. SyncMoveOff - End coordinated synchronized movements
RW-MRS Synchronized

5333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If time-out is reached because SyncMoveOff is not ready in time then the system variable 

ERRNO is set to ERR_SYNCMOVEOFF.

This error can be handled in the ERROR handler.

Limitations

The SyncMoveOff instruction can only be executed if all involved robots stand still in a stop 

point.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

SyncMoveOff cannot be executed in a RAPID routine connected to any of the following 

special system events: PowerOn, Stop, QStop, Restart, Reset, or Step.

Syntax
SyncMoveOff 

[ SyncID ’:=’ ] < variable (VAR) of syncident>

[ ’\’TimeOut’ :=’ < expression (IN) of num> ] ’;’

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Identity for synchronization point syncident - Identity for synchronization point 
on page 1200

Start coordinated synchronized movements SyncMoveOn - Start coordinated synchro-
nized movements on page 534

Set independent movements SyncMoveUndo - Set independent 
movements on page 545

Test if in synchronized mode IsSyncMoveOn - Test if in synchronized 
movement mode on page 888

MultiMove system with option Coordinated 
robots

Application manual - MultiMove

Continued



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

3HAC 16581-1  Revision: J534

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.191. SyncMoveOn - Start coordinated synchronized movements

Usage

SyncMoveOn is used to start a sequence of synchronized movements and in most cases, 

coordinated movements. First, all involved program tasks will wait to synchronize in a stop 

point and then the motion planner for the involved program tasks is set to synchronized mode.

The instruction SyncMoveOn can only be used in a MultiMove system with option 

Coordinated Robots and only in program tasks defined as Motion Task.

WARNING!

To reach safe synchronization functionality every meeting point (parameter  SyncID) must 

have a unique name. The name of the meeting point must also be the same for all the program 

tasks that should meet in the meeting point.

Basic examples

Basic examples of the instruction SyncMoveOn are illustrated below.

See also More examples on page 536.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ]; 

VAR syncident sync1;

VAR syncident sync2;

... 

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

!Program example in task T_ROB2

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ]; 

VAR syncident sync1;

VAR syncident sync2;

...

SyncMoveOn sync1, task_list;

...

SyncMoveOff sync2;

...

The program task that first reaches SyncMoveOn with identity sync1 waits until the other 

task reaches its SyncMoveOn with the same identity sync1. At that synchronization point, 

sync1, the motion planner for the involved program tasks is set to synchronized mode. After 

that, both task T_ROB1 and T_ROB2 continue their execution, synchronized until they reach 

SyncMoveOff with the same identity sync2.

Continues on next page



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

5353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
SyncMoveOn SyncID TaskList [\TimeOut]

SyncID

Synchronization Identity

Data type: syncident

Variable that specifies the name of the synchronization (meeting) point. Data type 

syncident is a non-value type that is only used as an identifier for naming the 

synchronization point.

The variable must be defined and have an equal name in all cooperated program tasks. It is 

recommended to always define the variable global in each task (VAR syncident ...).

TaskList

Data type: tasks

Persistent variable that in a task list (array) specifies the name (string) of the program tasks 

that should meet in the synchronization point with name according argument SyncID.

The persistent variable must be defined and have equal name and equal contents in all 

cooperated program tasks. It is recommended to always define the variable global in the 

system (PERS tasks ...).

[\TimeOut]

Data type: num

The max. time to wait for the other program tasks to reach the synchronization point. The 

time-out is defined in seconds (resolution 0.001s).

If this time runs out before all program tasks have reached the synchronization point then the 

error handler will be called, if there is one, with the error code ERR_SYNCMOVEON. If there is 

no error handler then the execution will be stopped.

If this argument is omitted then the program task will wait for ever.

Program execution

The program task that first reaches SyncMoveOn waits until all other specified tasks reach 

their SyncMoveOn with the same SyncID identity. At that SyncID synchronization point the 

motion planner for the involved program tasks is set to synchronized mode. After that, 

involved program tasks continue their execution.

The motion planner for the involved program tasks is set to synchronized mode. This means 

the following:

• Each movement instruction in any program task in the TaskList is working 

synchronous with movement instructions in other program tasks in the TaskList.

• All cooperated movement instructions are planned and interpolated in the same 

Motion Planner.

• All movements start and end at the same time. The movement that takes the longest 

time will be the speed master with reduced speed in relation to the work object for the 

other movements.

• All cooperated move instruction must be marked with the same ID number. See 

instruction MoveL.

Continued

Continues on next page



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

3HAC 16581-1  Revision: J536

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

It is possible to exclude program tasks for testing purpose from FlexPendant - Task Selection 

Panel. The instruction SyncMoveOn will still work with the reduced number of program tasks 

even for only one program task.

More examples

More examples of how to use the instruction SyncMoveOn are illustrated below.

Example 1
!Program example in task T_ROB1

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

!Program example in task T_ROB2

PERS tasks task_list{2} := [["T_ROB1"], ["T_ROB2"]];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, obj2;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, obj2;

syncmove;

...

ENDPROC

Continued

Continues on next page



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

5373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, obj2;

MoveL * \ID:=20, v100, fine, obj2;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

First, program tasks T_ROB1 and T_ROB2 are waiting at WaitSyncTask with identity sync1 

for each other. They are programmed with corner path for the preceding movements for 

saving cycle time.

Then the program tasks are waiting at SyncMoveOn with identity sync2 for each other. They 

are programmed with a necessary stop point for the preceding movements. After that the 

motion planner for the involved program tasks is set to synchronized mode.

After that, T_ROB2 is moving the obj2 to ID point 10 and 20 in world coordinate system 

while T_ROB1 is moving the tcp1 to ID point 10 and 20 on the moving object obj2.

Example 2
!Program example with use of time-out function

VAR syncident sync3;

...

SyncMoveOn sync3, task_list \TimeOut :=60;

...

ERROR

IF ERRNO = ERR_SYNCMOVEON THEN

RETRY;

ENDIF

The program task waits for instruction SyncMoveOn for the program task T_ROB2 to reach 

the same synchronization point sync3. After waiting 60 seconds, the error handler is called 

with ERRNO equal to ERR_SYNCMOVEON. Then the instruction SyncMoveOn is called again for 

an additional wait of 60 seconds.

Continued

Continues on next page



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

3HAC 16581-1  Revision: J538

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 3- Program example with three tasks
!Program example in task T_ROB1

PERS tasks task_list1 {2} :=[["T_ROB1"], ["T_ROB2"]];

PERS tasks task_list2 {3} :=[["T_ROB1"], ["T_ROB2"], ["T_ROB3"]];

VAR syncident sync1;

...

VAR syncident sync5;

...

SyncMoveOn sync1, task_list1;

...

SyncMoveOff sync2;

WaitSyncTask sync3, task_list2;

SyncMoveOn sync4, task_list2;

...

SyncMoveOff sync5;

...

!Program example in task T_ROB2

PERS tasks task_list1 {2} := [["T_ROB1"], ["T_ROB2"]];

PERS tasks task_list2 {3} := [["T_ROB1"], ["T_ROB2"], ["T_ROB3"]];

VAR syncident sync1;

...

VAR syncident sync5;

...

SyncMoveOn sync1, task_list1;

...

SyncMoveOff sync2;

WaitSyncTask sync3, task_list2;

SyncMoveOn sync4, task_list2;

...

SyncMoveOff sync5;

...

!Program example in task T_ROB3

PERS tasks task_list2 {3} := [["T_ROB1"], ["T_ROB2"], ["T_ROB3"]];

VAR syncident sync3;

VAR syncident sync4;

VAR syncident sync5;

Continued

Continues on next page



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

5393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

...

WaitSyncTask sync3, task_list2;

SyncMoveOn sync4, task_list2;

...

SyncMoveOff sync5;

...

In this example, at first, program task T_ROB1 and T_ROB2 are moving synchronized and 

T_ROB3 is moving independent. Further on in the program all three tasks are moving 

synchronized. To prevent the instruction of SyncMoveOn to be executed in T_ROB3 before 

the first synchronization of T_ROB1 and T_ROB2 have ended, the instruction WaitSyncTask 

is used.

Error handling

If time-out is reached because SyncMoveOn is not ready in time then the system variable 

ERRNO is set to ERR_SYNCMOVEON.

This error can be handled in the ERROR handler.

Limitations

The SyncMoveOn instruction can only be executed if all involved robots stand still in a stop 

point. 

Only one coordinated synchronized movement group can be active at the same time.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

SyncMoveOn cannot be executed in a RAPID routine connected to any of the following 

special system events: PowerOn, Stop, QStop, Restart, Reset, or Step.

Syntax
SyncMoveOn

[ SyncID ´:=’ ] < variable (VAR) of syncident> ´,’

[ TaskList ‘:=’ ] < persistent array {*} (PERS) of tasks> ´,’

[ ´\’TimeOut ´:=’ < expression (IN) of num > ]’;’

Related information 

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Identity for synchronization point syncident - Identity for synchronization point 
on page 1200

End coordinated synchronized movements SyncMoveOff - End coordinated synchro-
nized movements on page 528

Set independent movements SyncMoveUndo - Set independent 
movements on page 545

Test if in synchronized mode IsSyncMoveOn - Test if in synchronized 
movement mode on page 888

MultiMove system with option Coordinated 
Robots

Application manual - MultiMove

Continued

Continues on next page



1 Instructions

1.191. SyncMoveOn - Start coordinated synchronized movements
RW-MRS Independent

3HAC 16581-1  Revision: J540

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Wait for synchronized tasks WaitSyncTask - Wait at synchronization point 
for other program tasks on page 688

For information about See

Continued



1 Instructions

1.192. SyncMoveResume - Set synchronized coordinated movements
Path Recovery

5413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.192. SyncMoveResume - Set synchronized coordinated movements

Usage

SyncMoveResume is used to go back to synchronized movements from independent 

movement mode. The instruction can only be used on StorePath level, e.g. after a 

StorePath \KeepSync has been executed and the system is in independent motion mode 

after SyncMoveSuspend has been executed. To be able to use the instruction the system must 

have been in synchronized motion mode before executing the StorePath and 

SyncMoveSuspend instruction. 

The instruction SyncMoveResume can only be used in a MultiMove system with options 

Coordinated Robots and Path Recovery and only in program tasks defined as Motion Task.

Basic examples

Basic examples of the instruction SyncMoveResume are illustrated below.

Example 1
ERROR

StorePath \KeepSync;

! Save position

p11 := CRobT(\Tool:=tool2);

! Move in syncronized motion mode

MoveL p12\ID:=111, v50, fine, tool2;

SyncMoveSuspend;

! Move in independent mode somewhere, e.g. to a cleaning station

p13 := CRobT();

MoveL p14, v100, fine, tool2;

! Do something at cleaning station

MoveL p13, v100, fine, tool2;

SyncMoveResume;

! Move in syncronized motion mode back to start position p11

MoveL p11\ID:=111, fine, z20, tool2;

RestoPath;

StartMove;

RETRY;

Some kind of recoverable error occurs. The system is kept in synchronized mode, and a 

synchronized movement is done to a point, e.g. moving backwards on path. After that, an 

independent movement is done to a cleaning station. Then the robot is moved back to the 

point where the error occurred and the program continues where it was interrupted by the 

error.

Continues on next page



1 Instructions

1.192. SyncMoveResume - Set synchronized coordinated movements
Path Recovery

3HAC 16581-1  Revision: J542

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

SyncMoveResume forces resume of synchronized mode when system is in independent 

movement mode on StorePath level.

SyncMoveResume is required in all tasks that were executing in synchronized movement 

before entering independent movement mode. If one Motion task executes a 

SyncMoveResume then that task will wait until all tasks that earlier were in synchronized 

movement mode execute a SyncMoveResume instruction. After that, involved program tasks 

continue their execution.

Limitations

The SyncMoveResume can only be used to go back to synchronized movement mode and can 

only be used on StorePath level.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

SyncMoveResume cannot be executed in a RAPID routine connected to any of the following 

special system events: PowerOn, Stop, QStop, Restart, Reset, or Step.

Syntax
SyncMoveResume ’;’

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Start coordinated synchronized 
movements

SyncMoveOn - Start coordinated synchronized 
movements on page 534

End coordinated synchronized 
movements

SyncMoveOff - End coordinated synchronized 
movements on page 528

Test if in synchronized mode SyncMoveOn - Start coordinated synchronized 
movements on page 534

Stores the path StorePath - Stores the path when an interrupt 
occurs on page 521

Restores the path RestoPath - Restores the path after an interrupt on 
page 362

Suspends synchronized movements SyncMoveSuspend - Set independent-semicoordi-
nated movements on page 543

Continued



1 Instructions

1.193. SyncMoveSuspend - Set independent-semicoordinated movements
Path Recovery

5433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.193. SyncMoveSuspend - Set independent-semicoordinated movements

Usage

SyncMoveSuspend is used to suspend synchronized movements mode and set the system to 

independent-semicoordinated movement mode. The instruction can only be used on 

StorePath level, e.g. after a StorePath or StorePath \KeepSync has been executed and 

the system is in synchronized movement mode.

The instruction SyncMoveSuspend can only be used in a MultiMove System with options 

Coordinated Robots and Path Recovery and only in program tasks defined as Motion Task.

Basic examples

Basic examples of the instruction SyncMoveSuspend are illustrated below.

Example 1
ERROR

StorePath \KeepSync;

! Save position

p11 := CRobT(\Tool:=tool2);

! Move in syncronized motion mode

MoveL p12\ID:=111, v50, fine, tool2;

SyncMoveSuspend;

! Move in independent mode somewhere, e.g. to a cleaning station

p13 := CRobT();

MoveL p14, v100, fine, tool2;

 ! Do something at cleaning station

MoveL p13, v100, fine, tool2;

SyncMoveResume;

! Move in syncronized motion mode back to start position p11

MoveL p11\ID:=111, fine, z20, tool2;

RestoPath;

StartMove;

RETRY;

Some kind of recoverable error occurs. The system is kept in synchronized mode, and a 

synchronized movement is done to a point, e.g. moving backwards on path. After that, an 

independent movement is done to a cleaning station. Then the robot is moved back to the 

point where the error occurred and the program continues where it was interrupted by the 

error.

Continues on next page



1 Instructions

1.193. SyncMoveSuspend - Set independent-semicoordinated movements
Path Recovery

3HAC 16581-1  Revision: J544

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

SyncMoveSuspend forces reset of synchronized movements and sets the system to 

independent-semicoordinated movement mode.

SyncMoveSuspend is required in all synchronized Motion tasks to set the system in 

independent-semicoordinated movement mode. If one Motion tasks executes a 

SyncMoveSuspend then that task waits until the other tasks have executed a 

SyncMoveSuspend instruction.

After execution of SyncMoveSuspend in all involved tasks, the system is in semicoordinated 

mode if it further uses a coordinated work object. Otherwise, it is in independent mode. If in 

semicoordinated mode, it is recommended to always start with a movement in the mechanical 

unit that controls the user frame before WaitSyncTask in all involved tasks.

Limitations

The SyncMoveSuspend instruction suspends synchronized mode only on StorePath level. 

After returning from StorePath level, the system is set to the mode that it was in before the 

StorePath.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

SyncMoveSuspend cannot be executed in a RAPID routine connected to any of the 

following special system events: PowerOn, Stop, QStop, Restart, Reset, or Step.

Syntax
SyncMoveSuspend’ ;’

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Start coordinated synchronized 
movements

SyncMoveOn - Start coordinated synchronized 
movements on page 534

End coordinated synchronized 
movements

SyncMoveOff - End coordinated synchronized 
movements on page 528

Test if in synchronized mode IsSyncMoveOn - Test if in synchronized movement 
mode on page 888

Stores the path StorePath - Stores the path when an interrupt 
occurs on page 521

Restores the path RestoPath - Restores the path after an interrupt on 
page 362

Resume synchronized movements SyncMoveResume - Set synchronized 
coordinated movements on page 541

Continued



1 Instructions

1.194. SyncMoveUndo - Set independent movements
RobotWare - OS

5453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.194. SyncMoveUndo - Set independent movements

Usage

SyncMoveUndo is used to force a reset of synchronized coordinated movements and set the 

system to independent movement mode.

The instruction SyncMoveUndo can only be used in a MultiMove system with option 

Coordinated Robots and only in program tasks defined as Motion Task.

Basic examples

Basic examples of the instruction SyncMoveUndo are illustrated below.

Example 1

Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

If the program is stopped while the execution is inside the procedure syncmove and the 

program pointer is moved out of the procedure syncmove then all instruction inside the UNDO 

handler is executed. In this example, the instruction  SyncMoveUndo is executed and the 

system is set to independent movement mode.

Continues on next page



1 Instructions

1.194. SyncMoveUndo - Set independent movements
RobotWare - OS

3HAC 16581-1  Revision: J546

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Force reset of synchronized coordinated movements and set the system to independent 

movement mode.

It is enough to execute SyncMoveUndo in one program task to set the whole system to the 

independent movement mode. The instruction can be executed several times without any 

error if the system is already in independent movement mode.

The system is set to the default independent movement mode also

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

• when moving program pointer to the beginning.

Syntax
SyncMoveUndo ’;’

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Identity for synchronization point syncident - Identity for synchronization point on 
page 1200

Start coordinated synchronized 
movements

SyncMoveOn - Start coordinated synchronized 
movements on page 534

End coordinated synchronized 
movements

SyncMoveOff - End coordinated synchronized 
movements on page 528

Test if in synchronized mode IsSyncMoveOn - Test if in synchronized 
movement mode on page 888

Continued



1 Instructions

1.195. SystemStopAction - Stop the robot system
RobotWare - OS

5473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.195. SystemStopAction - Stop the robot system

Usage

SystemStopAction can be used to stop the robot system in different ways depending how 

serious the error or problem is.

Basic examples

Basic examples of the instruction SystemStopAction are illustrated below.

Example 1
SystemStopAction \Stop;

This will stop program execution and robot movements in all motion tasks. No specific action 

is needed to be done before restarting the program execution.

Example 2
SystemStopAction \StopBlock;

This will stop program execution and robot movements in all motion tasks. All program 

pointers must be moved before the program execution can be restarted.

Example 3
SystemStopAction \Halt;

This will result in motors off, stop program execution, and robot movements in all motion 

tasks. Motors on must be done before the program execution can be restarted.

Arguments
SystemStopAction [\Stop] [\StopBlock] [\Halt]

[\Stop]

Data type: switch

\Stop is used to stop program execution and robot movements in all motion tasks. No 

specific action is needed to be done before restart of the program execution.

[\StopBlock]

Data type: switch

\StopBlock is used stop program execution and robot movements in all motion tasks. All 

program pointers must be moved before the program execution can be restarted.

[\Halt]

Data type: switch

\Halt will result in motors off state, stop of program execution and robot movements in all 

motion tasks. Motors on must be done before the program execution can be restarted.

Limitations

If the robot is performing a circular movement during a SystemStopAction \StopBlock 

then the program pointer and the robot have to be moved to the beginning of the circular 

movement before the program execution is restarted.

Continues on next page



1 Instructions

1.195. SystemStopAction - Stop the robot system
RobotWare - OS

3HAC 16581-1  Revision: J548

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
SystemStopAction

[ ’\’Stop ]

| [ ’\’StopBlock ]

| [ ’\’Halt ]’;’

Related information

For information about See

Stop program execution Stop - Stops program execution on page 510

Terminate program execution EXIT - Terminates program execution on 
page 105

Only stop robot movements StopMove - Stops robot movement on page 
515

Write some error message ErrLog - Write an error message on page 94

Continued



1 Instructions

1.196. TEST - Depending on the value of an expression ...
RobotWare - OS

5493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.196. TEST - Depending on the value of an expression ...

Usage

TEST is used when different instructions are to be executed depending on the value of an 

expression or data.

If there are not too many alternatives then the IF..ELSE instruction can also be used.

Basic examples

Basic examples of the instruction TEST are illustrated below.

Example 1
TEST reg1

CASE 1,2,3 :

routine1;

CASE 4 : 

routine2;

DEFAULT :

TPWrite "Illegal choice";

Stop;

ENDTEST

Different instructions are executed depending on the value of reg1. If the value is 1-3 

routine1 is executed. If the value is 4, routine2 is executed. Otherwise, an error message 

is printed and execution stops.

Arguments
TEST Test data {CASE Test value {, Test value} : ...}  [ DEFAULT: 

...] ENDTEST

Test data

Data type: All

The data or expression with which the test value will be compared.

Test value

Data type: Same as test data

The value which the test data must have for the associated instructions to be executed.

Program execution

The test data is compared with the test values in the first CASE condition. If the comparison 

is true then the associated instructions are executed. After that, program execution continues 

with the instruction following ENDTEST.

If the first CASE condition is not satisfied then other CASE conditions are tested and so on. If 

none of the conditions are satisfied then the instructions associated with DEFAULT are 

executed (if this is present).

Continues on next page



1 Instructions

1.196. TEST - Depending on the value of an expression ...
RobotWare - OS

3HAC 16581-1  Revision: J550

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
(EBNF)

TEST <expressio

{( CASE<test value> { ’,’ <test value> } ’:’

<instruction list> ) | <CSE> }

[ DEFAULT ’:’ <instruction list> ]

ENDTEST

<test value> ::= <expression>

Related information

For information about See

Expressions Technical reference manual - RAPID Instructions, 
Functions and Data types, section Basic character-
istics - Expressions

Continued



1 Instructions

1.197. TestSignDefine - Define test signal
RobotWare - OS

5513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.197. TestSignDefine - Define test signal

Usage

TestSignDefine is used to define one test signal for the robot motion system.

A test signal continuously mirrors some specified motion data stream. For example, torque 

reference for some specified axis. The actual value at a certain time can be read in RAPID 

with the function TestSignRead.

Only test signals for external axes can be reached. Test signals are also available on request 

for the robot axes and for not predefined test signals for external axes.

Basic examples

Basic examples of the instruction TestSignDefine are illustrated below.

Example 1
TestSignDefine 1, resolver_angle, Orbit, 2, 0.1;

Test signal resolver_angle connected to channel 1 will give the value of the resolver angle 

for external axis 2 on the orbit manipulator, sampled at 100 ms rate.

Arguments
TestSignDefine Channel SignalId MechUnit Axis SampleTime

Channel

Data type: num

The channel numbers 1-12 to be used for the test signal. The same number must be used in 

the function TestSignRead for reading the actual value of the test signal.

SignalId

Data type: testsignal

The name or number of the test signal. Refer to predefined constants described in data type 

testsignal.

MechUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The axis number within the mechanical unit.

Continues on next page



1 Instructions

1.197. TestSignDefine - Define test signal
RobotWare - OS

3HAC 16581-1  Revision: J552

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

SampleTime 

Data type: num

Sample time in seconds.

For sample time < 0.004 s, the function TestSignRead returns the mean value of the latest 

available internal samples as shown in the table below.

Program execution

The definition of test signal is activated and the robot system starts the sampling of the test 

signal.

The sampling of the test signal is active until:

• A new TestSignDefine instruction for the actual channel is executed.

• All test signals are deactivated with execution of instruction TestSignReset.

• All test signals are deactivated with a warm start of the system.

Error handling

If there is an error in the parameter MechUnit then the variable ERRNO is set to 

ERR_UNIT_PAR. If there is an error in the parameter Axis then ERRNO is set to 

ERR_AXIS_PAR.

Syntax
TestSignDefine

[ Channel ’:=’ ] < expression (IN) of num>’ ,’

[ SignalId’ :=’ ] < expression (IN) of testsignal> ’,’

[ MechUnit’ :=’ ] < variable (VAR) of mecunit> ’,’

[ Axis ’:=’ ] < expression (IN) of num> ’,’

[ SampleTime’ :=’ ] < expression (IN) of num > ’;’

Related information

Sample Time in 
seconds

Result from TestSignRead

0 Mean value of the latest 8 samples generated each 0.5 ms

0.001 Mean value of the latest 4 samples generated each 1 ms

0.002 Mean value of the latest 2 samples generated each 2 ms

Greater or equal to 0.004 Momentary value generated at specified sample time

0.1 Momentary value generated at specified sample time 100 ms

For information about See

Test signal testsignal - Test signal on page 1206

Read test signal TestSignRead - Read test signal value on page 
1020

Reset test signals TestSignReset - Reset all test signal definitions on 
page 553

Continued



1 Instructions

1.198. TestSignReset - Reset all test signal definitions
RobotWare - OS

5533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.198. TestSignReset - Reset all test signal definitions

Usage

TestSignReset is used to deactivate all previously defined test signals.

Basic examples

Basic examples of the instruction TestSignReset are illustrated below.

Example 1
TestSignReset;

Deactivate all previously defined test signals.

Program execution

The definitions of all test signals are deactivated, and the robot system stops the sampling of 

any test signals.

The sampling of defined test signals is active until:

• A warm start of the system

• Execution of this instruction TestSignReset

Syntax
TestSignReset’;’

Related information

For information about See

Define test signal TestSignDefine - Define test signal on page 551

Read test signal TestSignRead - Read test signal value on page 
1020



1 Instructions

1.199. TextTabInstall - Installing a text table
RobotWare - OS

3HAC 16581-1  Revision: J554

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.199. TextTabInstall - Installing a text table

Usage

TextTabInstall is used to install a text table in the system.

Basic examples

Basic examples of the instruction TextTabInstall are illustrated below.

Example 1
! System Module with Event Routine to be executed at event  

! POWER ON, RESET or START

PROC install_text() 

IF TextTabFreeToUse("text_table_name") THEN

TextTabInstall "HOME:/text_file.eng";

ENDIF 

ENDPROC

The first time the event routine install_text is executed the function 

TextTabFreeToUse returns TRUE, and the text file text_file.eng is installed in the 

system. After that, the installed text strings can be fetched from the system to RAPID by the 

functions TextTabGet and TextGet.

The next time the event routine install_text is executed, the function  

TextTabFreeToUse returns FALSE, and the installation is not repeated.

Arguments
TextTabInstall File

File

Data type: string

The file path and the file name to the file that contains text strings to be installed in the system.

Limitations

Limitations for installation of text tables (text resources) in the system:

• It is not possible to install the same text table more than once in the system.

• It is not possible to uninstall (free) a single text table from the system. The only way 

to uninstall text tables from the system is to cold start the system. All text tables (both 

system and user defined) will then be uninstalled.

Error handling

If the file in the TextTabInstall instruction cannot be opened then the system variable 

ERRNO is set to ERR_FILEOPEN. This error can then be handled in the error handler.

Syntax
TextTabInstall 

[ File ’:=’ ] < expression (IN) of string >’;’

Continues on next page



1 Instructions

1.199. TextTabInstall - Installing a text table
RobotWare - OS

5553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Test whether text table is free TextTabFreeToUse - Test whether text table is free on 
page 1024

Format of text files Technical reference manual - RAPID kernel, section 
Text files

Get text table number TextTabGet - Get text table number on page 1026

Get text from system text tables TextGet - Get text from system text tables on page 1022

String functions Technical reference manual - RAPID overview, section 
Basic RAPID summary - String Functions

Definition of string string - Strings on page 1195

Continued



1 Instructions

1.200. TPErase - Erases text printed on the FlexPendant

3HAC 16581-1  Revision: J556

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.200. TPErase - Erases text printed on the FlexPendant

Usage

TPErase (FlexPendant Erase) is used to clear the display of the FlexPendant.

Basic examples

Basic examples of the instruction TPErase are illustrated below.

Example 1
TPErase;

TPWrite "Execution started";

The FlexPendant display is cleared before Execution started is written.

Program execution

The FlexPendant display is completely cleared of all text. The next time text is written it will 

be entered on the uppermost line of the display. 

Syntax
TPErase;

Related information

For information about See

Writing on the FlexPendant Technical reference manual - RAPID overview, 
section RAPID summary - Communication



1 Instructions

1.201. TPReadDnum - Reads a number from the FlexPendant
RobotWare - OS

5573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.201. TPReadDnum - Reads a number from the FlexPendant

Usage

TPReadDnum (FlexPendant Read Numerical) is used to read a number from the FlexPendant

Basic examples

Basic examples of the instruction TPReadDnum are illustrated below.

Example 1
VAR dnum value;

TPReadDnum value, "How many units should be produced?";

The text How many units should be produced? is written on the FlexPendant display. 

Program execution waits until a number has been input from the numeric keyboard on the 

FlexPendant. That number is stored in value.

Arguments
TPReadDnum TPAnswer TPText [\MaxTime] [\DIBreak] [\DOBreak] 

[\BreakFlag]

TPAnswer

Data type: dnum

The variable for which the number input via the FlexPendant is returned.

TPText

Data type: string

The information text to be written on the FlexPendant (a maximum of 80 characters with 40 

characters row).

[\MaxTime]

Data type: num

The maximum amount of time that program execution waits. If no number is input within this 

time, the program continues to execute in the error handler unless the BreakFlag is used (see 

below). The constant ERR_TP_MAXTIME can be used to test whether or not the maximum time 

has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital signal that may interrupt the operator dialog. If no number is input when the signal 

is set to 1 (or is already 1), the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be used to test whether 

or not this has occurred.

Continues on next page



1 Instructions

1.201. TPReadDnum - Reads a number from the FlexPendant
RobotWare - OS

3HAC 16581-1  Revision: J558

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital signal that support termination request from other tasks. If no button is selected 

when the signal is set to 1 (or is already 1), the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable that will hold the error code if MaxTime, DIBreak or DOBreak is used. If this 

optional variable is omitted, the error handler will be executed. The constants 

ERR_TP_MAXTIME, ERR_TP_DIBREAK and ERR_TP_DOBREAK can be used to select the 

reason.

Program execution

The information text is always written on a new line. If the display is full of text, this body of 

text is moved up one line first. There can be up to 7 lines above the new text written.

Program execution waits until a number is typed on the numeric keyboard (followed by Enter 

or OK) or the instruction is interrupted by a time out or signal action..

Reference to TPReadFK about description of concurrent TPReadFK or TPReadDnum request 

on FlexPendant from same or other program tasks.

Error handling

If time out (parameter \MaxTime) before input from the operator, the system variable ERRNO 

is set to ERR_TP_MAXTIME and the execution continues in the error handler.

If digital input set (parameter \DIBreak) before input from the operator, the system variable 

ERRNO is set to ERR_TP_DIBREAK and the execution continues in the error handler.

If a digital output occurred (parameter \DOBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the error 

handler.

If there is no client, e.g. a Flex Pendant, to take care of the instruction, the system variable 

ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error handler.

These situations can then be dealt with by the error handler.

Syntax
TPReadDnum

[TPAnswer’:=’] <var or pers (INOUT) of dnum>’,’

[TPText’:=’] <expression (IN) of string>

[’\’MaxTime’:=’ <expression (IN) of num>]

[’\’DIBreak’:=’ <variable (VAR) of signaldi>]

[’\’DOBreak’:=’ <variable (VAR) of signaldo>]

[’\’BreakFlag’:=’ <var or pers (INOUT) of errnum>] ’;’

Continued

Continues on next page



1 Instructions

1.201. TPReadDnum - Reads a number from the FlexPendant
RobotWare - OS

5593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Writing to and reading from the 
FlexPendant

Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Entering a number on the FlexPendant Operating manual - IRC5 with FlexPendant, 
section Running in production

Examples of how to use the arguments 
MaxTime, DIBreak and BreakFlag

TPReadFK - Reads function keys on page 560

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



1 Instructions

1.202. TPReadFK - Reads function keys
RobotWare - OS

3HAC 16581-1  Revision: J560

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.202. TPReadFK - Reads function keys

Usage

TPReadFK (FlexPendant Read Function Key) is used to write text on the functions keys and 

to find out which key is depressed.

Basic examples

Basic examples of the instruction TPReadFK are illustrated below.

See also More examples on page 562.

Example 1
TPReadFK reg1, "More?", stEmpty, stEmpty, stEmpty, "Yes", "No";

The text More? is written on the FlexPendant display and the function keys 4 and 5 are 

activated by means of the text strings Yes and No respectively (see figure below ). Program 

execution waits until one of the function keys 4 or 5 is pressed. In other words, reg1 will be 

assigned 4 or 5 depending on which of the keys are pressed.

The figure shows that the operator can put in information via the function keys.

xx0500002345

Arguments
TPReadFK TPAnswer TPText TPFK1 TPFK2 TPFK3 TPFK4 TPFK5 [\MaxTime] 

[\DIBreak] [\DOBreak] [\BreakFlag]

TPAnswer

Data type: num

The variable for which, depending on which key is pressed, the numeric value 1..5 is returned. 

If the function key 1 is pressed then 1 is returned, and so on.

TPText 

Data type: string

The information text to be written on the display (a maximum of 80 characters, with 40 

characters/row).

Continues on next page



1 Instructions

1.202. TPReadFK - Reads function keys
RobotWare - OS

5613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TPFKx

Function key text

Data type: string

The text to be written on the appropriate function key (a maximum of 45 characters). TPFK1 

is the left-most key.

Function keys without text are specified by the predefined string constant stEmpty with 

value empty string (“”).

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If no function key is 

pressed within this time then the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital signal that may interrupt the operator dialog. If no function key is pressed when 

the signal is set to 1 (or is already 1) then the program continues to execute in the error handler 

unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be used to 

test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital signal that supports termination request from other tasks. If no button is selected 

when the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable that will hold the error code if  MaxTime, DIBreak, or DOBreak is used. If this 

optional variable is omitted then the error handler will be executed. The constants 

ERR_TP_MAXTIME, ERR_TP_DIBREAK, and ERR_TP_DOBREAK can be used to select the 

reason.

Continued

Continues on next page



1 Instructions

1.202. TPReadFK - Reads function keys
RobotWare - OS

3HAC 16581-1  Revision: J562

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The information text is always written on a new line. If the display is full of text then this 

body of text is moved up one line first. There can be up to 7 lines above the new written text.

Text is written on the appropriate function keys.

Program execution waits until one of the activated function keys are pressed.

Description of concurrent TPReadFK or TPReadNum request on FlexPendant (TP request) 

from the same or other program tasks:

• New TP request from other program tasks will not take focus (new put in queue)

• New TP request from TRAP in the same program task will take focus (old put in 

queue)

• Program stop take focus (old put in queue)

• New TP request in program stop state takes focus (old put in queue)

More examples

More examples of how to use the instruction TPReadFK are illustrated below.

Example 1
VAR errnum errvar;

...

TPReadFK reg1, "Go to service position?", stEmpty, stEmpty, 

stEmpty, "Yes","No"

\MaxTime:= 600

\DIBreak:= di5\BreakFlag:= errvar;

IF reg1 = 4 OR errvar = ERR_TP_DIBREAK THEN

MoveL service, v500, fine, tool1;

Stop;

ENDIF

IF errvar = ERR_TP_MAXTIME EXIT;

The robot is moved to the service position if the forth function key ("Yes") is pressed or if 

the input 5 is activated. If no answer is given within 10 minutes then the execution is 

terminated.

Error handling

If there is a timeout (parameter \MaxTime) before an input from the operator then the system 

variable ERRNO is set to ERR_TP_MAXTIME, and the execution continues in the error handler.

If digital input is set (parameter \DIBreak) before an input from the operator then the system 

variable ERRNO is set to ERR_TP_DIBREAK, and the execution continues in the error handler.

If a digital output occurred (parameter \DOBreak) before an input from the operator then the 

system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the error 

handler.

If there is no client, e.g. a FlexPendant, to take care of the instruction then the system variable 

ERRNO is set to ERR_TP_NO_CLIENT, and the execution continues in the error handler.

These situations can then be dealt with by the error handler.

Continued

Continues on next page



1 Instructions

1.202. TPReadFK - Reads function keys
RobotWare - OS

5633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Avoid using too small of a value for the timeout parameter \MaxTime when TPReadFK is 

frequently executed, for example in a loop. It can result in an unpredictable behavior of the 

system performance, like slowing the FlexPendant response.

Predefined data
CONST string stEmpty := "";

The predefined constant stEmpty should be used for Function Keys without text. Using 

stEmpty instead of "" saves about 80 bytes for every Function Key without text.

Syntax
TPReadFK

[TPAnswer ’:=’] <var or pers (INOUT) of num>’,’

[TPText ’:=’] <expression (IN) of string>’,’

[TPFK1 ’:=’] <expression (IN) of string>’,’

[TPFK2 ’:=’] <expression (IN) of string>’,’

[TPFK3 ’:=’] <expression (IN) of string>’,’

[TPFK4 ’:=’] <expression (IN) of string>’,’

[TPFK5 ’:=’] <expression (IN) of string>

[’\’MaxTime’:=’ <expression (IN) of num>]

[’\’DIBreak’:=’ <variable (VAR) of signaldi>]

[’\’DOBreak’:=’ <variable (VAR) of signaldo>]

[’\’BreakFlag’:=’ <var or pers (INOUT) of errnum>]’;’

Related information

For information about See

Writing to and reading from the 
FlexPendant

Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Replying via the FlexPendant Operating manual - IRC5 with FlexPendant, 
section Running in production

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



1 Instructions

1.203. TPReadNum - Reads a number from the FlexPendant
RobotWare - OS

3HAC 16581-1  Revision: J564

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.203. TPReadNum - Reads a number from the FlexPendant 

Usage

TPReadNum (FlexPendant Read Numerical) is used to read a number from the FlexPendant.

Basic examples

Basic examples of the instruction TPReadNum are illustrated below.

See also More examples on page 565.

Example 1
TPReadNum reg1, "How many units should be produced?";

The text How many units should be produced? is written on the FlexPendant display. 

Program execution waits until a number has been input from the numeric keyboard on the 

FlexPendant. That number is stored in reg1.

Arguments
TPReadNum TPAnswer TPText [\MaxTime] [\DIBreak] [\DOBreak] 

[\BreakFlag]

TPAnswer

Data type: num

The variable for which the number input via the FlexPendant is returned.

TPText

Data type: string

The information text to be written on the FlexPendant (a maximum of 80 characters with 40 

characters per row).

[\MaxTime]

Data type: num

The maximum amount of time that program execution waits. If no number is input within this 

time, the program continues to execute in the error handler unless the BreakFlag is used (see 

below). The constant ERR_TP_MAXTIME can be used to test whether or not the maximum time 

has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital signal that may interrupt the operator dialog. If no number is input when the signal 

is set to 1 (or is already 1), the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be used to test whether 

or not this has occurred.

Continues on next page



1 Instructions

1.203. TPReadNum - Reads a number from the FlexPendant
RobotWare - OS

5653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital signal that supports termination request from other tasks. If no button is selected 

when the signal is set to 1 (or is already 1), the program continues to execute in the error 

handler unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable that will hold the error code if MaxTime, DIBreak or DOBreak is used. If this 

optional variable is omitted, the error handler will be executed. The constants 

ERR_TP_MAXTIME, ERR_TP_DIBREAK and ERR_TP_DOBREAK can be used to select the 

reason.

Program execution

The information text is always written on a new line. If the display is full of text, this body of 

text is moved up one line first. There can be up to 7 lines above the new text written.

Program execution waits until a number is typed on the numeric keyboard (followed by Enter 

or OK) or the instruction is interrupted by a time out or signal action.

Reference to TPReadFK about description of concurrent TPReadFK or TPReadNum request 

on FlexPendant from same or other program tasks.

More examples

More examples of how to use the instruction TPReadNum are illustrated below.

Example 1
TPReadNum reg1, "How many units should be produced?";

FOR i FROM 1 TO reg1 DO

produce_part;

ENDFOR

The text How many units should be produced? is written on the FlexPendant display. 

The routine produce_part is then repeated the number of times that is input via the 

FlexPendant.

Error handling

If timeout occurs (parameter \MaxTime) before input from the operator, the system variable 

ERRNO is set to ERR_TP_MAXTIME and the execution continues in the error handler.

If the digital input (parameter \DIBreak) is set before an input from the operator, the system 

variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the error handler.

If the digital output (parameter \DOBreak) is set before an input from the operator, the system 

variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the error handler.

If there is no client, e.g. a FlexPendant, to take care of the instruction, the system variable 

ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error handler.

These situations can then be dealt with by the error handler.

Continued

Continues on next page



1 Instructions

1.203. TPReadNum - Reads a number from the FlexPendant
RobotWare - OS

3HAC 16581-1  Revision: J566

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
TPReadNum

[TPAnswer’:=’] <var or pers (INOUT) of num>’,’

[TPText’:=’] <expression (IN) of string>

[’\’MaxTime’:=’ <expression (IN) of num>]

[’\’DIBreak’:=’ <variable (VAR) of signaldi>]

[’\’DOBreak’:=’ <variable (VAR) of signaldo>]

[’\’BreakFlag’:=’ <var or pers (INOUT) of errnum>] ’;’

Related information

For information about See

Writing to and reading from the 
FlexPendant

Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Entering a number on the FlexPendant Operating manual - IRC5 with FlexPendant, 
section Running in production

Examples of how to use the arguments 
MaxTime, DIBreak and BreakFlag

TPReadFK - Reads function keys on page 560

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



1 Instructions

1.204. TPShow - Switch window on the FlexPendant
RobotWare - OS

5673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.204. TPShow - Switch window on the FlexPendant

Usage

TPShow (FlexPendant Show) is used to select FlexPendant window from RAPID.

Basic examples

Basic examples of the instruction TPShow are illustrated below.

Example 1
TPShow TP_LATEST;

The latest used FlexPendant Window before the current FlexPendant window will be active 

after execution of this instruction.

Arguments
TPShow Window

Window

Data type: tpnum

The window TP_LATEST will show the latest used FlexPendant window before current 

FlexPendant window.

Predefined data
CONST tpnum TP_LATEST := 2;

Program execution

The selected FlexPendant window will be activated.

Syntax
TPShow

[Window’:=’] <expression (IN) of tpnum> ´;’

Related information

For information about See

Communicating using the FlexPendant Technical reference manual - RAPID overview, 
section RAPID summary - Communication

FlexPendant Window number tpnum - FlexPendant window number on page 
1211

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556



1 Instructions

1.205. TPWrite - Writes on the FlexPendant
RobotWare - OS

3HAC 16581-1  Revision: J568

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.205. TPWrite - Writes on the FlexPendant

Usage

TPWrite (FlexPendant Write) is used to write text on the FlexPendant. The value of certain 

data can be written as well as text.

Basic examples

Basic examples of the instruction TPWrite are illustrated below.

Example 1
TPWrite "Execution started";

The text Execution started is written on the FlexPendant.

Example 2
TPWrite "No of produced parts="\Num:=reg1;

If, for example, reg1 holds the value 5 then the text No of produced parts=5 is written 

on the FlexPendant.

Arguments
TPWrite String [\Num] | [\Bool] | [\Pos] | [\Orient] | [\Dnum]

String

Data type: string

The text string to be written (a maximum of 80 characters, with 40 characters/row).

[\Num]

Numeric

Data type: num

The data whose numeric value is to be written after the text string.

[\Bool]

Boolean

Data type: bool

The data whose logical value is to be written after the text string.

[\Pos]

Position

Data type: pos

The data whose position is to be written after the text string.

[\Orient]

Orientation

Data type: orient

The data whose orientation is to be written after the text string.

[\Dnum]

Numeric

Data type: dnum

The data whose numeric value is to be written after the text string.
Continues on next page



1 Instructions

1.205. TPWrite - Writes on the FlexPendant
RobotWare - OS

5693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Text written on the FlexPendant always begins on a new line. When the display is full of text 

(11 lines) then this text is moved up one line first.

If one of the arguments \Num, \Dnum, \Bool, \Pos, or \Orient is used then its value is 

first converted to a text string before it is added to the first string. The conversion from value 

to text string takes place as follows:

The value is converted to a string with standard RAPID format. This means, in principle, 6 

significant digits. If the decimal part is less than 0.000005 or greater than 0.999995 then the 

number is rounded to an integer.

Limitations

The arguments \Num, \Dnum, \Bool, \Pos, and \Orient are mutually exclusive and thus 

cannot be used simultaneously in the same instruction.

Syntax
TPWrite

[TPText’:=’] <expression (IN) of string>

[’\’Num’:=’ <expression (IN) of num> ]

| [’\’Bool’:=’ <expression (IN) of bool> ]

| [’\’Pos’:=’ <expression (IN) of pos> ]

| [’\’Orient’:=’ <expression (IN) of orient> ]

| [’\’Dnum’:=’ <expression (IN) of dnum> ]’;’

Related information

Argument Value Text string

\Num 23 "23"

\Num 1.141367 "1.14137"

\Bool TRUE "TRUE"

\Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"

\Orient [0.96593,0,0.25882,0] "[0.96593,0,0.25882,0]"

\Dnum 4294967295 "4294967295"

For information about See

Clearing and reading the FlexPendant Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Clean up the Operator window TPErase - Erases text printed on the FlexPendant 
on page 556

Continued



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

3HAC 16581-1  Revision: J570

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.206. TriggC - Circular robot movement with events

Usage

TriggC (Trigg Circular) is used to set output signals and/or run interrupt routines at fixed 

positions at the same time that the robot is moving on a circular path.

One or more (max. 8) events can be defined using the instructions TriggIO, TriggEquip, 

TriggInt, TriggCheckIO, TriggSpeed, or TriggRampAO and afterwards these 

definitions are referred to in the instruction TriggC.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggC are illustrated below.

See also More examples on page 574.

Example 1
VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, 1;

MoveL p1, v500, z50, gun1;

TriggC p2, p3, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint of the corner 

path of the point p1.

The figure shows an example of fixed position I/O event.

xx0500002267

Arguments
TriggC [\Conc] CirPoint ToPoint [\ID] Speed [\T] Trigg_1 [\T2] 

[\T3] [\T4] [\T5] [\T6] [\T7] [\T8] Zone [\Inpos] Tool 

[\WObj] [ \Corr ] 

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument is usually not 

used but can be used to avoid unwanted stops caused by overloaded CPU when using fly-by 

points. This is useful when the programmed points are very close together at high speeds. The 

argument is also useful when, for example, communicating with external equipment and 

Continues on next page



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

5713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

synchronization between the external equipment and robot movement is not required. It can 

also be used to tune the execution of the robot path, to avoid warning 50024 Corner path 

failure, or error 40082 Deceleration limit.

When using the argument \Conc, the number of movement instructions in succession is 

limited to 5. In a program section that includes StorePath-RestoPath, movement 

instructions with the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point then the subsequent instruction 

is executed some time before the robot has reached the programmed zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

system.

CirPoint 

Data type: robtarget

The circle point of the robot. See the instruction MoveC for a more detailed description of 

circular movement. The circle point is defined as a named position or stored directly in the 

instruction (marked with an * in the instruction). 

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System, if coordinated synchronized movement, 

and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the tool reorientation, and the external axes. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Trigg_1

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

Continued

Continues on next page



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

3HAC 16581-1  Revision: J572

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \T2 ]

Trigg 2

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

[ \T3 ]

Trigg 3

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

[ \T4 ]

Trigg 4

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

[ \T5 ]

Trigg 5

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheck, TriggSpeed, or 

TriggRampAO.

[ \T6 ]

Trigg 6

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO ,TriggSpeed, 

or TriggRampAO.

[ \T7 ]

Trigg 7

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

Continued

Continues on next page



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

5733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \T8 ]

Trigg 8

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified for a linear movement relative to the work object to be performed.

[ \Corr ]

Correction

Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be added to 

the path and destination position if this argument is present.

Program execution

See the instruction MoveC for information about circular movement.

As the trigger conditions are fulfilled when the robot is positioned closer and closer to the end 

point, the defined trigger activities are carried out. The trigger conditions are fulfilled either 

at a certain distance before the end point of the instruction, or at a certain distance after the 

start point of the instruction, or at a certain point in time (limited to a short time) before the 

end point of the instruction.

During stepping the execution forward, the I/O activities are carried out but the interrupt 

routines are not run. During stepping the execution backward, no trigger activities at all are 

carried out.

Continued

Continues on next page



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

3HAC 16581-1  Revision: J574

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction TriggC are illustrated below.

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

CONNECT intno1 WITH trap1;

TriggInt trigg1, 0.1 \Time, intno1;

...

TriggC p1, p2, v500, trigg1, fine, gun1;

TriggC p3, p4, v500, trigg1, fine, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position 0.1 s before the point 

p2 or p4 respectively.

Error handling

If the programmed ScaleValue argument for the specified analog output signal AOp in some 

of the connected TriggSpeed instructions result in out of limit for the analog signal together 

with the programmed Speed in this instruction, then the system variable ERRNO is set to 

ERR_AO_LIM.

If the programmed DipLag argument in some of the connected TriggSpeed instructions is 

too big in relation to the used Event Preset Time in System Parameters then the system 

variable ERRNO is set to ERR_DIPLAG_LIM.

The system variable ERRNO can be set to ERR_NORUNUNIT if there is no contact with the 

I/O unit when entering instruction and the used triggdata depends on a running I/O unit, i.e. 

a signal is used in the triggdata.

These errors can be handled in the error handler.

Limitations

General limitations according to instruction MoveC.

If the current start point deviates from the usual point so that the total positioning length of 

the instruction TriggC is shorter than usual then it may happen that several or all of the 

trigger conditions are fulfilled immediately and at the same position. In such cases, the 

sequence in which the trigger activities are carried out will be undefined. The program logic 

in the user program may not be based on a normal sequence of trigger activities for an 

“incomplete movement”.

WARNING!

The instruction TriggC should never be started from the beginning with the robot in position 

after the circle point. Otherwise, the robot will not take the programmed path (positioning 

around the circular path in another direction compared to that which is programmed).

Continued

Continues on next page



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

5753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
TriggC

[ ’\’ Conc ’,’]

[ CirPoint’ :=’ ] < expression (IN) of robtarget > ’,’

[ ToPoint’ :=’ ] < expression (IN) of robtarget > ’,’

[ ’\’ ID ’:=’ < expression (IN) of identno >] ’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ] ’,’

[Trigg_1 ’:=’ ] < variable (VAR) of triggdata >

[ ’\’ T2 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T3 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T4 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T5 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T6 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T7 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T8 ’:=’ < variable (VAR) of triggdata > ] ´,’

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata > ]´,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ]

[ ’\’ Corr ]’;’

Related information

For information about See

Linear movement with triggers TriggL - Linear robot movements with events on page 
603

Joint movement with triggers TriggJ - Axis-wise robot movements with events on 
page 597

Move the robot circularly MoveC - Moves the robot circularly on page 236

Definition of triggers TriggIO - Define a fixed position or time I/O event near 
a stop point on page 592

TriggEquip - Define a fixed position and time I/O event 
on the path on page 582

TriggInt - Defines a position related interrupt on page 
588

TriggCheckIO - Defines IO check at a fixed position on 
page 577

TriggRampAO - Define a fixed position ramp AO event 
on the path on page 616

TriggSpeed - Defines TCP speed proportional analog 
output with fixed position-time scale event on page 
622

Writes to a corrections entry CorrWrite - Writes to a correction generator on page 
77

Circular movement Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning during 
program execution

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Continued

Continues on next page



1 Instructions

1.206. TriggC - Circular robot movement with events
RobotWare - OS

3HAC 16581-1  Revision: J576

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

For information about See

Continued



1 Instructions

1.207. TriggCheckIO - Defines IO check at a fixed position
RobotWare - OS

5773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.207. TriggCheckIO - Defines IO check at a fixed position

Usage

TriggCheckIO is used to define conditions for testing the value of a digital, a group of 

digital, or an analog input or output signal at a fixed position along the robot’s movement 

path. If the condition is fulfilled then there will be no specific action. But if it is not then an 

interrupt routine will be run after the robot has optionally stopped on path as fast as possible.

To obtain a fixed position I/O check, TriggCheckIO compensates for the lag in the control 

system (lag between servo and robot).

The data defined is used for implementation in one or more subsequent TriggL, TriggC, or 

TriggJ instructions.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggCheckIO are illustrated below.

See also More examples on page 580.

Example 1
VAR triggdata checkgrip;

VAR intnum intno1;

CONNECT intno1 WITH trap1;

TriggCheckIO checkgrip, 100, airok, EQ, 1, intno1;

TriggL p1, v500, checkgrip, z50, grip1;

The digital input signal airok is checked to have the value 1 when the TCP is 100 mm 

before the point p1. If it is set then normal execution of the program continues. If it is not set 

then the interrupt routine trap1 is run.

The figure shows an example of fixed position I/O check.

xx0500002254

Arguments
TriggCheckIO TriggData Distance [\Start] | [\Time] Signal Relation 

CheckValue |CheckDvalue [\StopMove] Interrupt

TriggData

Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata are 

then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Continues on next page



1 Instructions

1.207. TriggCheckIO - Defines IO check at a fixed position
RobotWare - OS

3HAC 16581-1  Revision: J578

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Distance

Data type: num

Defines the position on the path where the I/O check shall occur. 

Specified as the distance in mm (positive value) from the end point of the movement path 

(applicable if the argument \Start or \Time is not set). 

See the section Program execution for further details.

[ \Start ]

Data type: switch

Used when the distance for the argument Distance starts at the movement start point instead 

of the end point.

[ \Time ]

Data type: switch

Used when the value specified for the argument Distance is in fact a time in seconds 

(positive value) instead of a distance.

Fixed position I/O in time can only be used for short times (< 0.5 s) before the robot reaches 

the end point of the instruction. See the section Limitations for more details.

Signal

Data type: signalxx

The name of the signal that will be tested. May be any type of IO signal.

Relation

Data type: opnum

Defines how to compare the actual value of the signal with the one defined by the argument 

CheckValue. Refer to the opnum data type for the list of the predefined constants to be used.

CheckValue

Data type: num

Value to which the actual value of the input or output signal is to be compared (within the 

allowed range for the current signal). If the signal is a digital signal, it must be an integer 

value.

If the signal is a digital group signal, the permitted value is dependent on the number of 

signals in the group. Max value that can be used in the CheckValue argument is 8388608, 

and that is the value a 23 bit digital group signal can have as maximum value (see ranges for 

num).

CheckDvalue

Data type: dnum

Value to which the actual value of the input or output signal is to be compared (within the 

allowed range for the current signal). If the signal is a digital signal, it must be an integer 

value.

If the signal is a digital group signal, the permitted value is dependent on the number of 

signals in the group. The maximal amout of signal bits a digital group signal can have is 32. 

With a dnum variable it is possible to cover the value range 0-4294967295, which is the value 

range a 32 bits digital signal can have.

Continued

Continues on next page



1 Instructions

1.207. TriggCheckIO - Defines IO check at a fixed position
RobotWare - OS

5793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \StopMove ]

Data type: switch

Specifies that if the condition is not fulfilled then the robot will stop on path as quickly as 

possible before the interrupt routine is run.

Interrupt

Data type: intnum

Variable used to identify the interrupt routine to run.

Program execution

When running the instruction TriggCheckIO, the trigger condition is stored in a specified 

variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed, the 

following are applicable with regard to the definitions in TriggCheckIO:

The table describes distance specified in the argument Distance:

The figure shows fixed position I/O check on a corner path.

xx0500002256

The fixed position I/O check will be done when the start point (end point) is passed if the 

specified distance from the end point (start point) is not within the length of movement of the 

current instruction (TriggL...).

When the TCP of the robot is at specified place on the path, the following I/O check will be 

done by the system:

• Read the value of the I/O signal. 

• Compare the read value with CheckValue according specified Relation.

• If the comparison is TRUE then nothing more is done.

• If the comparison is FALSE then following is done:

• If optional parameter \StopMove is present then the robot is stopped on the path as 

quickly as possible.

• Generate and execute the specified TRAP routine.

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path (to 
obtain adequate accuracy, the distance should 
not exceed one half of the arc length).

Continued

Continues on next page



1 Instructions

1.207. TriggCheckIO - Defines IO check at a fixed position
RobotWare - OS

3HAC 16581-1  Revision: J580

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction TriggCheckIO are illustrated below.

Example 1
VAR triggdata checkgate;

VAR intnum gateclosed;

CONNECT gateclosed WITH waitgate;

TriggCheckIO checkgate, 150, gatedi, EQ, 1 \StopMove, gateclosed; 

TriggL p1, v600, checkgate, z50, grip1;

...

TRAP waitgate

! log some information

...

WaitDI gatedi,1;

StartMove;

ENDTRAP

The gate for the next workpiece operation is checked to be open (digital input signal gatedi 

is checked to have the value 1) when the TCP is 150 mm before the point p1. If it is open 

then the robot will move on to p1 and continue. If it is not open then the robot is stopped on 

path and the interrupt routine waitgate is run. This interrupt routine logs some information 

and typically waits for the conditions to be OK to execute a StartMove instruction in order 

to restart the interrupted path.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_GO_LIM

if the programmed CheckValue or CheckDvalue argument for the specified digital group 

output signal Signal is outside limits.

ERR_AO_LIM

if the programmed CheckValue or CheckDvalue argument for the specified analog output 

signal Signal is outside limits.

Limitations

I/O checks with distance (without the argument \Time) is intended for flying points (corner 

path). I/O checks with distance, using stop points, results in worse accuracy than specified 

below.

I/O checks with time (with the argument \Time) is intended for stop points. I/O checks with 

time, using flying points, results in worse accuracy than specified below. 

I/O checks with time can only be specified from the end point of the movement. This time 

cannot exceed the current braking time of the robot, which is max. approx. 0.5 s (typical 

values at speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If the specified time 

is greater that the current braking time then the I/O check will be generated anyway but not 

until braking is started (later than specified). However, the whole of the movement time for 

the current movement can be utilized during small and fast movements.

Continued

Continues on next page



1 Instructions

1.207. TriggCheckIO - Defines IO check at a fixed position
RobotWare - OS

5813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Typical absolute accuracy values for testing of digital inputs +/- 5 ms. Typical repeat accuracy 

values for testing of digital inputs +/- 2 ms.

Syntax
TriggCheckIO 

[ TriggData ’:=’ ] < variable (VAR) of triggdata> ´,’

[ Distance’ :=’ ] < expression (IN) of num>

[ ’\’ Start ] | [ ’\’ Time ] ´,’

[ Signal ’:=’ ] < variable (VAR) of anytype> ´,’

[ Relation’ :=’ ] < expression (IN) of opnum> ´,’

[ CheckValue’ :=’ ] < expression (IN) of num>

| [ CheckDvalue’ :=’ ] < expression (IN) of dnum>

[ ’\’ StopMove] ´,’

[ Interrupt’ :=’ ] < variable(VAR) of intnum> ´;’

Related information

For information about See

Use of triggers TriggL - Linear robot movements with events on page 
603

TriggC - Circular robot movement with events on page 
570

TriggJ - Axis-wise robot movements with events on 
page 597

Definition of position-time I/O event TriggIO - Define a fixed position or time I/O event near 
a stop point on page 592

TriggEquip - Define a fixed position and time I/O event 
on the path on page 582

Definition of position related 
interrupts

TriggInt - Defines a position related interrupt on page 
588

Storage of trigg data triggdata - Positioning events, trigg on page 1213

Definition of comparison operators opnum - Comparison operator on page 1149I

Continued



1 Instructions

1.208. TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

3HAC 16581-1  Revision: J582

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.208. TriggEquip - Define a fixed position and time I/O event on the path

Usage

TriggEquip (Trigg Equipment) is used to define conditions and actions for setting a digital, 

a group of digital, or an analog output signal at a fixed position along the robot’s movement 

path with possibility to do time compensation for the lag in the external equipment.

TriggIO (not TriggEquip) should always be used if there is need for good accuracy of the 

I/O settings near a stop point.

The data defined is used for implementation in one or more subsequent TriggL, TriggC, or 

TriggJ instructions.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggEquip are illustrated below.

See also More examples on page 585.

Example 1
VAR triggdata gunon;

...

TriggEquip gunon, 10, 0.1 \DOp:=gun, 1;

TriggL p1, v500, gunon, z50, gun1;

The tool gun1 starts to open when its TCP is 0,1 s before the fictitious point p2 (10 mm 

before point p1). The gun is full open when TCP reach point p2.

The figure shows an example of a fixed position time I/O event.

xx0500002260

Arguments
TriggEquip TriggData Distance [\Start] EquipLag [\DOp] | [\GOp]| 

[\AOp] | [\ProcID] SetValue | SetDvalue [\Inhib]

TriggData

Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata are 

then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Continues on next page



1 Instructions

1.208. TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

5833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Distance

Data type: num

Defines the position on the path where the I/O equipment event shall occur. 

Specified as the distance in mm (positive value) from the end point of the movement path 

(applicable if the argument \Start is not set). 

See the section Program execution for further details.

[ \Start ]

Data type: switch

Used when the distance for the argument Distance starts at the movement start point instead 

of the end point.

EquipLag

Equipment Lag

Data type: num

Specify the lag for the external equipment in s.

For compensation of external equipment lag, use a positive argument value. Positive 

argument value means that the I/O signal is set by the robot system at a specified time before 

the TCP physically reaches the specified distance in relation to the movement start or end 

point.

Negative argument value means that the I/O signal is set by the robot system at a specified 

time after that the TCP has physically passed the specified distance in relation to the 

movement start or end point.

The figure shows use of argument EquipLag.

xx0500002262

[ \DOp ]

Digital Output

Data type: signaldo

The name of the signal when a digital output signal shall be changed.

[ \GOp ]

Group Output

Data type: signalgo

The name of the signal when a group of digital output signals shall be changed.

Continued

Continues on next page



1 Instructions

1.208. TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

3HAC 16581-1  Revision: J584

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \AOp ]

Analog Output

Data type: signalao

The name of the signal when a analog output signal shall be changed.

[ \ProcID ]

Process Identity

Data type: num

Not implemented for customer use.

(The identity of the IPM process to receive the event. The selector is specified in the argument 

SetValue.)

SetValue

Data type: num

The desired value of the signal (within the allowed range for the current signal). If the signal 

is a digital signal, it must be an integer value. If the signal is a digital group signal, the 

permitted value is dependent on the number of signals in the group. Max value that can be 

used in the SetValue argument is 8388608, and that is the value a 23 bit digital group signal 

can have as maximum value (see ranges for num).

SetDvalue

Data type: dnum

The desired value of the signal (within the allowed range for the current signal). If the signal 

is a digital signal, it must be an integer value. If the signal is a digital group signal, the 

permitted value is dependent on the number of signals in the group. The maximal amout of 

signal bits a digital group signal can have is 32. With a dnum variable it is possible to cover 

the value range 0-4294967295, which is the value range a 32 bits digital signal can have.

[ \Inhib ]

Inhibit

Data type: bool

The name of a persistent variable flag for inhibiting the setting of the signal at runtime.

If this optional argument is used and the actual value of the specified flag is TRUE at the 

position-time for setting of the signal then the specified signal (DOp, GOp or AOp) will be set 

to 0 instead of a specified value.

Program execution

When running the instruction TriggEquip, the trigger condition is stored in the specified 

variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed then the 

following are applicable with regard to the definitions in TriggEquip:

The table describes the distance specified in the argument Distance:
Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path (to 
obtain adequate accuracy, the distance should 
not exceed one half of the arc length).

Continued

Continues on next page



1 Instructions

1.208. TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

5853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The figure shows fixed position time I/O on a corner path.

xx0500002263

The position-time related event will be generated when the start point (end point) is passed if 

the specified distance from the end point (start point) is not within the length of movement of 

the current instruction (TriggL...). With use of argument EquipLag with negative time 

(delay), the I/O signal can be set after the end point.

More examples

More examples of how to use the instruction TriggEquip are illustrated below.

Example 1
VAR triggdata glueflow;

...

TriggEquip glueflow, 1 \Start, 0.05 \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;

TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the TCP passes a point located 

1 mm after the start point p1 with compensation for equipment lag 0.05 s.

Example 2
...

TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the TCP passes a 

point located 1 mm after the start point p2.

Error handling

If the programmed SetValue argument for the specified analog output signal AOp is out of 

limit then the system variable ERRNO is set to ERR_AO_LIM. This error can be handled in 

the error handler.

If the programmed SetValue or SetDvalue argument for the specified digital group output 

signal GOp is out of limit then the system variable ERRNO is set to ERR_GO_LIM. This error 

can be handled in the error handler.

Continued

Continues on next page



1 Instructions

1.208. TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

3HAC 16581-1  Revision: J586

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

I/O events with distance is intended for flying points (corner path). I/O events with distance, 

using stop points, results in worse accuracy than specified below.

Regarding the accuracy for I/O events with distance and using flying points, the following is 

applicable when setting a digital output at a specified distance from the start point or end point 

in the instruction TriggL or TriggC:

• Accuracy specified below is valid for positive EquipLag parameter < 40 ms, 

equivalent to the lag in the robot servo (without changing the system parameter Event 

Preset Time ). The lag can vary between different robot types. For example it is 

lower for IRB140.

• Accuracy specified below is valid for positive EquipLag parameter < configured 

Event Preset Time (system parameter).

• Accuracy specified below is not valid for positive EquipLag parameter > 

configured Event Preset Time  (system parameter). In this case, an approximate 

method is used in which the dynamic limitations of the robot are not taken into 

consideration. SingArea \Wrist must be used in order to achieve an acceptable 

accuracy.

• Accuracy specified below is valid for negative EquipLag.

Typical absolute accuracy values for set of digital outputs +/- 5 ms. 

Typical repeat accuracy values for set of digital outputs +/- 2 ms.

Syntax
TriggEquip 

[ TriggData ’:=’ ] < variable (VAR) of triggdata> ´,’

[ Distance’ :=’ ] < expression (IN) of num>

[ ’\’ Start ] ´,’

[ EquipLag’ :=’ ] < expression (IN) of num>

[ ’\’ DOp’ :=’ < variable (VAR) of signaldo> ]

| [ ’\’ GOp’ :=’ < variable (VAR) of signalgo> ]

| [ ’\’ AOp’ :=’ < variable (VAR) of signalao> ]

| [ ’\’ ProcID’ :=’ < expression (IN) of num> ] ´,’

[ SetValue’ :=’ ] < expression (IN) of num>

| [ SetDvalue’ :=’ ] < expression (IN) of dnum>

[ ’\’ Inhib’ :=’ < persistent (PERS) of bool> ] ´,’

Related information

For information about See

Use of triggers TriggL - Linear robot movements with events on 
page 603

TriggC - Circular robot movement with events on 
page 570

TriggJ - Axis-wise robot movements with events on 
page 597

Continued

Continues on next page



1 Instructions

1.208. TriggEquip - Define a fixed position and time I/O event on the path
RobotWare - OS

5873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Definition of other triggs TriggIO - Define a fixed position or time I/O event 
near a stop point on page 592

TriggInt - Defines a position related interrupt on 
page 588

Define I/O check at a fixed position TriggCheckIO - Defines IO check at a fixed position 
on page 577

Storage of trigg data triggdata - Positioning events, trigg on page 1213

Set of I/O SetDO - Changes the value of a digital output 
signal on page 440

SetGO - Changes the value of a group of digital 
output signals on page 442

SetAO - Changes the value of an analog output 
signal on page 431

Configuration of Event preset time Technical reference manual - System parameters, 
section Motion

For information about See

Continued



1 Instructions

1.209. TriggInt - Defines a position related interrupt
RobotWare - OS

3HAC 16581-1  Revision: J588

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.209. TriggInt - Defines a position related interrupt

Usage

TriggInt is used to define conditions and actions for running an interrupt routine at a 

specified position on the robot’s movement path.

The data defined is used for implementation in one or more subsequent TriggL, TriggC, or 

TriggJ instructions.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove System, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggInt are illustrated below.

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

CONNECT intno1 WITH trap1;

TriggInt trigg1, 5, intno1;

...

TriggL p1, v500, trigg1, z50, gun1;

TriggL p2, v500, trigg1, z50, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the TCP is at a position 5 mm before the point p1 

or p2 respectively.

The figure shows an example of position related interrupt.

xx0500002251

Arguments
TriggInt TriggData Distance [\Start] | [\Time] Interrupt

TriggData

Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata are 

then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Continues on next page



1 Instructions

1.209. TriggInt - Defines a position related interrupt
RobotWare - OS

5893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Distance

Data type: num

Defines the position on the path where the interrupt shall be generated.

Specified as the distance in mm (positive value) from the end point of the movement path 

(applicable if the argument \Start or \Time is not set). 

See the section entitled Program execution for further details.

[ \Start ]

Data type: switch

Used when the distance for the argument Distance starts at the movement’s start point 

instead of the end point.

[ \Time ]

Data type: switch

Used when the value specified for the argument Distance is in fact a time in seconds 

(positive value) instead of a distance.

Position related interrupts in time can only be used for short times (< 0.5 s) before the robot 

reaches the end point of the instruction. See the section Limitations for more details.

Interrupt

Data type: intnum

Variable used to identify an interrupt.

Program execution

When running the instruction TriggInt, data is stored in a specified variable for the 

argument TriggData and the interrupt that is specified in the variable for the argument 

Interrupt is activated.

Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed, the 

following are applicable with regard to the definitions in TriggInt:

The table describes the distance specified in the argument Distance:

The figure shows position related interrupt on a corner path.

xx0500002253

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path (to 
obtain adequate accuracy, the distance should 
not exceed one half of the arc length).

Continued

Continues on next page



1 Instructions

1.209. TriggInt - Defines a position related interrupt
RobotWare - OS

3HAC 16581-1  Revision: J590

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The position related interrupt will be generated when the start point (end point) is passed if 

the specified distance from the end point (start point) is not within the length of movement of 

the current instruction (TriggL...).

The interrupt is considered to be a safe interrupt. A safe interrupt can not be put in sleep with 

instruction ISleep. The safe interrupt event will be queued at program stop and stepwise 

execution, and when starting in continious mode again, the interrupt will be executed. The 

only time a safe interrupt will be thrown is when the interrupt queue is full. Then an error will 

be reported. The interrupt will not survive program reset, e.g. PP to main.

More examples

More examples of how to use the instruction TriggInt are illustrated below.

Example 1

This example describes programming of the instructions that interact to generate position 

related interrupts: 

VAR intnum intno2;

VAR triggdata trigg2;

• Declaration of the variables intno2 and trigg2 (shall not be initiated).

CONNECT intno2 WITH trap2;

• Allocation of interrupt numbers that are stored in the variable intno2.

• The interrupt number is coupled to the interrupt routine trap2.

TriggInt trigg2, 0, intno2;

• The interrupt number in the variable intno2 is flagged as used.

• The interrupt is activated.

• Defined trigger conditions and interrupt numbers are stored in the variable trigg2

TriggL p1, v500, trigg2, z50, gun1;

• The robot is moved to the point p1.

• When the TCP reaches the point p1 an interrupt is generated, and the interrupt routine 

trap2 is run. 

TriggL p2, v500, trigg2, z50, gun1;

• The robot is moved to the point p2.

• When the TCP reaches the point p2, an interrupt is generated and the interrupt routine 

trap2 is run once more. 

IDelete intno2;

• The interrupt number in the variable intno2 is de-allocated. 

Limitations

Interrupt events with distance (without the argument \Time) are intended for flying points 

(corner path). Interrupt events with distance, using stop points results in worse accuracy than 

specified below.

Interrupt events with time (with the argument \Time) are intended for stop points. Interrupt 

events with time, using flying points, result in worse accuracy than specified below. I/O 

events with time can only be specified from the end point of the movement. This time cannot 

exceed the current braking time of the robot, which is max. approx. 0.5 s (typical values at 

speed 500 mm/s for IRB2400 150 ms and for IRB6400 250 ms). If the specified time is 

Continued

Continues on next page



1 Instructions

1.209. TriggInt - Defines a position related interrupt
RobotWare - OS

5913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

greater that the current braking time then the event will be generated anyhow but not until 

braking is started (later than specified). However, the whole of the movement time for the 

current movement can be utilized during small and fast movements.

Typical absolute accuracy values for generation of interrupts +/- 5 ms. Typical repeat 

accuracy values for generation of interrupts +/- 2 ms. Normally there is a delay of 2 to 30 ms 

between interrupt generation and response depending on the type of movement being 

performed at the time of the interrupt. (Ref. to RAPID reference manual - RAPID overview, 

section Basic characteristics - Interrupts).

To obtain the best accuracy when setting an output at a fixed position along the robot’s path, 

use the instructions TriggIO or TriggEquip in preference to the instructions TriggInt 

with SetDO/SetGO/SetAO in an interrupt routine.

Syntax
TriggInt

[ TriggData ’:=’ ] < variable (VAR) of triggdata> ´,’

[ Distance’ :=’ ] < expression (IN) of num>

[ ’\’ Start ] | [ ’\’ Time ] ’,’

[ Interrupt’ :=’ ] < variable (VAR) ofintnum> ’;’

Related information

For information about See

Use of triggers TriggL - Linear robot movements with events on page 
603

TriggC - Circular robot movement with events on 
page 570

TriggJ - Axis-wise robot movements with events on 
page 597

Definition of position fix I/O TriggIO - Define a fixed position or time I/O event 
near a stop point on page 592

TriggEquip - Define a fixed position and time I/O 
event on the path on page 582

Define I/O check at a fixed position TriggCheckIO - Defines IO check at a fixed position 
on page 577

Storage of trigg data triggdata - Positioning events, trigg on page 1213

Interrupts Technical reference manual - RAPID overview, 
section Basic characteristics - Interrupts

Continued



1 Instructions

1.210. TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS

3HAC 16581-1  Revision: J592

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.210. TriggIO - Define a fixed position or time I/O event near a stop point

Usage

TriggIO is used to define conditions and actions for setting a digital, a group of digital, or 

an analog output signal at a fixed position along the robot’s movement path.

TriggIO (not TriggEquip) should always be used if needed for good accuracy of the I/O 

settings near a stop point.

To obtain a fixed position I/O event, TriggIO compensates for the lag in the control system 

(lag between robot and servo) but not for any lag in the external equipment. For compensation 

of both lags use TriggEquip.

The data defined is used for implementation in one or more subsequent TriggL, TriggC, or 

TriggJ instructions.

This instruction can only be used in the main T_ROB1 task or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic example of the instruction TriggIO are illustrated below.

See also More examples on page 595.

Example 1
VAR triggdata gunon;

...

TriggIO gunon, 0.2\Time\DOp:=gun, 1;

TriggL p1, v500, gunon, fine, gun1;

The digital output signal gun is set to the value 1 when the TCP is 0,2 seconds before the 

point p1.

The figure shows an example of fixed position I/O event.

xx0500002247

Arguments
TriggIO TriggData Distance [\Start] | [\Time] [\DOp] | [\GOp]| 

[\AOp] | [\ProcID] SetValue | SetDvalue [\DODelay]

TriggData

Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata are 

then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Continues on next page



1 Instructions

1.210. TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS

5933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Distance

Data type: num

Defines the position on the path where the I/O event shall occur. 

Specified as the distance in mm (positive value) from the end point of the movement path 

(applicable if the argument \Start or \Time is not set). 

See the sections Program execution on page 594, and Limitations on page 595 for further 

details.

[ \Start ]

Data type: switch

Used when the distance for the argument Distance starts at the movement start point instead 

of the end point.

[ \Time ]

Data type: switch

Used when the value specified for the argument Distance is in fact a time in seconds 

(positive value) instead of a distance.

Fixed position I/O in time can only be used for short times (< 0.5 s) before the robot reaches 

the end point of the instruction. See the section Limitations for more details.

[ \DOp ]

Digital Output

Data type: signaldo

The name of the signal when a digital output signal shall be changed.

[ \GOp ]

Group Output

Data type: signalgo

The name of the signal when a group of digital output signals shall be changed.

[ \AOp ]

Analog Output

Data type: signalao

The name of the signal when a analog output signal shall be changed.

[ \ProcID ]

Process Identity

Data type: num

Not implemented for customer use.

(The identity of the IPM process to receive the event. The selector is specified in the argument 

SetValue.)

Continued

Continues on next page



1 Instructions

1.210. TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS

3HAC 16581-1  Revision: J594

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

SetValue

Data type: num

The desired value of the signal (within the allowed range for the current signal). If the signal 

is a digital signal, it must be an integer value. If the signal is a digital group signal, the 

permitted value is dependent on the number of signals in the group. Max value that can be 

used in the SetValue argument is 8388608, and that is the value a 23 bit digital group signal 

can have as maximum value (see ranges for num).

SetDvalue

Data type: dnum

The desired value of the signal (within the allowed range for the current signal). If the signal 

is a digital signal, it must be an integer value. If the signal is a digital group signal, the 

permitted value is dependent on the number of signals in the group. The maximal amout of 

signal bits a digital group signal can have is 32. With a dnum variable it is possible to cover 

the value range 0-4294967295, which is the value range a 32 bits digital signal can have.

[ \DODelay ]

Digital Output Delay

Data type: num

Time delay in seconds (positive value) for a digital, group, or analog output signal.

Only used to delay setting of output signals after the robot has reached the specified position. 

There will be no delay if the argument is omitted. 

The delay is not synchronized with the movement.

Program execution

When running the instruction TriggIO, the trigger condition is stored in a specified variable 

in the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed, the 

following are applicable with regard to the definitions in TriggIO:

The following table describes the distance specified in the argument Distance:

The figure shows fixed position I/O on a corner path.

xx0500002248

The fixed position I/O will be generated when the start point (end point) is passed if the 

specified distance from the end point (start point) is not within the length of movement of the 

current instruction (Trigg...).

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path (to 
obtain adequate accuracy, the distance should 
not exceed one half of the arc length).

Continued

Continues on next page



1 Instructions

1.210. TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS

5953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction TriggIO are illustrated below.

Example 1
VAR triggdata glueflow;

TriggIO glueflow, 1 \Start \AOp:=glue, 5.3;

MoveJ p1, v1000, z50, tool1;

TriggL p2, v500, glueflow, z50, tool1;

The analog output signal glue is set to the value 5.3 when the work point (TCP) passes a 

point located 1 mm after the start point p1.

Example 2
...

TriggL p3, v500, glueflow, z50, tool1;

The analog output signal glue is set once more to the value 5.3 when the work point (TCP) 

passes a point located 1 mm after the start point p2.

Error handling

If the programmed SetValue argument for the specified analog output signal AOp is out of 

limit then the system variable ERRNO is set to ERR_AO_LIM. This error can be handled in 

the error handler.

If the programmed SetValue or SetDvalue argument for the specified digital group output 

signal GOp is out of limit then the system variable ERRNO is set to ERR_GO_LIM. This error 

can be handled in the error handler.

Limitations

I/O events with distance (without the argument \Time) is intended for flying points (corner 

path). I/O events with distance=0, using stop points, will delay the trigg until the robot has 

reached the point with accuracy +/-24 ms.

I/O events with time (with the argument \Time) are intended for stop points. I/O events with 

time, using flying points result in worse accuracy than specified below. I/O events with time 

can only be specified from the end point of the movement. This time cannot exceed the 

current braking time of the robot, which is max. approx. 0.5 s (typical values at speed 500 

mm/s for IRB2400 150 ms and for IRB6400 250 ms). If the specified time is greater than the 

current braking time then the event will be generated anyway but not until braking is started 

(later than specified). However, the whole of the movement time for the current movement 

can be utilized during small and fast movements.

Typical absolute accuracy values for set of digital outputs +/- 5 ms. Typical repeat accuracy 

values for set of digital outputs +/- 2 ms.

Continued

Continues on next page



1 Instructions

1.210. TriggIO - Define a fixed position or time I/O event near a stop point
RobotWare - OS

3HAC 16581-1  Revision: J596

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
TriggIO

[ TriggData ’:=’ ] < variable (VAR) of triggdata> ´,’

[ Distance’ :=’ ] < expression (IN) of num>

[ ’\’ Start ] | [ ’\’ Time ]

[ ’\’ DOp’ :=’ < variable (VAR) of signaldo> ]

| [ ’\’ GOp’ :=’ < variable (VAR) of signalgo> ]

| [ ’\’ AOp’ :=’ < variable (VAR) of signalao> ]

| [ ’\’ ProcID’ :=’ < expression (IN) of num> ] ´,’

[ SetValue’ :=’ ] < expression (IN) of num>

| [ SetDvalue’ :=’ ] < expression (IN) of dnum>

[ ’\’ DODelay’ :=’ < expression (IN) of num> ] ´;’

Related information

For information about See

Use of triggers TriggL - Linear robot movements with events on 
page 603

TriggC - Circular robot movement with events on 
page 570

TriggJ - Axis-wise robot movements with events 
on page 597

Definition of position-time I/O event TriggEquip - Define a fixed position and time I/O 
event on the path on page 582

Definition of position related interrupts TriggInt - Defines a position related interrupt on 
page 588

Storage of trigg data triggdata - Positioning events, trigg on page 1213

Define I/O check at a fixed position TriggCheckIO - Defines IO check at a fixed 
position on page 577

Set of I/O SetDO - Changes the value of a digital output 
signal on page 440

SetGO - Changes the value of a group of digital 
output signals on page 442

SetAO - Changes the value of an analog output 
signal on page 431

Continued



1 Instructions

1.211. TriggJ - Axis-wise robot movements with events
RobotWare - OS

5973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.211. TriggJ - Axis-wise robot movements with events

Usage

TriggJ (TriggJoint) is used to set output signals and/or run interrupt routines at roughly fixed 

positions at the same time that the robot is moving quickly from one point to another when 

that movement does not have be in a straight line.

One or more (max. 8) events can be defined using the instructions TriggIO, TriggEquip, 

TriggInt, TriggCheckIO , TriggSpeed, or TriggRampAO and afterwards these 

definitions are referred to in the instruction TriggJ. 

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggJ are illustrated below.

See also More examples on page 600.

Example 1
VAR triggdata gunon;

...

TriggIO gunon, 0 \Start \DOp:=gun, 1;

MoveL p1, v500, z50, gun1;

TriggJ p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint of the corner 

path of the point p1.

The figure shows an example of fixed position I/O event.

xx0500002272

Arguments
TriggJ [\Conc] ToPoint [\ID] Speed [\T] Trigg_1 [ \T2 ] [ \T3 ] 

[\T4] [\T5] [\T6] [\T7] [\T8] Zone [\Inpos] Tool [\WObj]

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument can be used to 

avoid unwanted stops caused by overloaded CPU when using fly-by points. This is useful 

when the programmed points are very close together at high speeds.

The argument is also useful when, for example, communicating with external equipment and 

synchronization between the external equipment and robot movement is not required. It can 

also be used to tune the execution of the robot path to avoid warning 50024 Corner path 

failure or error 40082 Deceleration limit.

Continues on next page



1 Instructions

1.211. TriggJ - Axis-wise robot movements with events
RobotWare - OS

3HAC 16581-1  Revision: J598

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath, movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted then the subsequent instruction is executed after the robot has 

reached the specified stop point or 100 ms before the specified zone.

This argument can not be used in coordinated synchronized movement in a MultiMove 

System.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove System, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the tool reorientation, and the external axes. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Trigg_1

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO , TriggSpeed, 

or TriggRampAO.

[ \T2 ]

Trigg 2

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO , TriggSpeed, 

or TriggRampAO.

Continued

Continues on next page



1 Instructions

1.211. TriggJ - Axis-wise robot movements with events
RobotWare - OS

5993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \T3 ]

Trigg 3

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO , TriggSpeed, 

or TriggRampAO.

[ \T4 ]

Trigg 4

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO , TriggSpeed, 

or TriggRampAO.

[ \T5 ]

Trigg 5

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

[ \T6 ]

Trigg 6

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

[ \T7 ]

Trigg 7

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

[ \T8 ]

Trigg 8

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggCheckIO, TriggSpeed, 

or TriggRampAO.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

Continued

Continues on next page



1 Instructions

1.211. TriggJ - Axis-wise robot movements with events
RobotWare - OS

3HAC 16581-1  Revision: J600

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified for a joint movement relative to the work object to be performed.

Program execution

See the instruction MoveJ for information about joint movement.

As the trigger conditions are fulfilled when the robot is positioned closer and closer to the end 

point, the defined trigger activities are carried out. The trigger conditions are fulfilled either 

at a certain distance before the end point of the instruction, or at a certain distance after the 

start point of the instruction, or at a certain point in time (limited to a short time) before the 

end point of the instruction.

During the stepping execution forward, the I/O activities are carried out but the interrupt 

routines are not run. During stepping the execution backwards, no trigger activities at all are 

carried out.

More examples

More examples of how to use the instruction TriggJ are illustrated below.

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

CONNECT intno1 WITH trap1;

TriggInt trigg1, 0.1 \Time, intno1;

...

TriggJ p1, v500, trigg1, fine, gun1;

TriggJ p2, v500, trigg1, fine, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position 0.1 s before the stop 

point p1 or p2 respectively.

Continued

Continues on next page



1 Instructions

1.211. TriggJ - Axis-wise robot movements with events
RobotWare - OS

6013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the programmed ScaleValue argument for the specified analog output signal AOp in some 

of the connected TriggSpeed instructions results in out of limit for the analog signal 

together with the programmed Speed in this instruction, then the system variable ERRNO is 

set to ERR_AO_LIM.

If the programmed DipLag argument in some of the connected TriggSpeed instructions is 

too big in relation to the Event Preset Time used in System Parameters then the system 

variable ERRNO is set to ERR_DIPLAG_LIM.

The system variable ERRNO can be set to ERR_NORUNUNIT if there is no contact with the 

I/O unit when entering instruction and the used triggdata depends on a running I/O unit, i.e. 

a signal is used in the triggdata.

These errors can be handled in the error handler.

Limitations

If the current start point deviates from the usual so that the total positioning length of the 

instruction TriggJ is shorter than usual (e.g. at the start of TriggJ with the robot position 

at the end point), it may happen that several or all of the trigger conditions are fulfilled 

immediately and at the same position. In such cases, the sequence in which the trigger 

activities are carried will be undefined. The program logic in the user program may not be 

based on a normal sequence of trigger activities for an “incomplete movement”.

Syntax
TriggJ

[ ’\’ Conc ’,’]

[ ToPoint’ :=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >]’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ]’,’

[Trigg_1 ’:=’ ] < variable (VAR) of triggdata >

[ ’\’ T2 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T3 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T4 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T5 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T6 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T7 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T8 ’:=’ < variable (VAR) of triggdata > ] ´,’

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Inpos ’:=’ < expression (IN) of stoppointdata > ]´,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’< persistent (PERS) of wobjdata > ] ’;’

Continued

Continues on next page



1 Instructions

1.211. TriggJ - Axis-wise robot movements with events
RobotWare - OS

3HAC 16581-1  Revision: J602

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Linear movement with triggers TriggL - Linear robot movements with events on page 
603

Circular movement with triggers TriggC - Circular robot movement with events on page 
570

Definition of triggers TriggIO - Define a fixed position or time I/O event near 
a stop point on page 592

TriggEquip - Define a fixed position and time I/O event 
on the path on page 582

TriggRampAO - Define a fixed position ramp AO event 
on the path on page 616

TriggInt - Defines a position related interrupt on page 
588

TriggCheckIO - Defines IO check at a fixed position on 
page 577

Moves the robot by joint movement MoveJ - Moves the robot by joint movement on page 
253

Joint movement Technical reference manual - RAPID overview, section 
Motion and I/O principles - Positioning during program 
execution

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work object wobjdata - Work object data on page 1224

Motion in general Technical reference manual - RAPID overview, section 
Motion and I/O principles

Continued



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

6033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.212. TriggL - Linear robot movements with events

Usage

TriggL (Trigg Linear) is used to set output signals and/or run interrupt routines at fixed 

positions at the same time that the robot is making a linear movement.

One or more (max. 8) events can be defined using the instructions TriggIO, TriggEquip, 

TriggInt, TriggSpeed, TriggCheckIO, or TriggRampAO. Afterwards these definitions 

are referred to in the instruction TriggL. 

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggL are illustrated below.

See also More examples on page 607.

Example 1
VAR triggdata gunon;

TriggIO gunon, 0 \Start \DOp:=gun, 1;

MoveJ p1, v500, z50, gun1;

TriggL p2, v500, gunon, fine, gun1;

The digital output signal gun is set when the robot’s TCP passes the midpoint of the corner 

path of the point p1.

The figure shows an example of fixed position I/O event.

xx0500002291

Arguments
TriggL [\Conc] ToPoint [\ID] Speed [\T] Trigg_1 [\T2] [\T3] [\T4] 

[\T5] [\T6] [\T7] [\T8] Zone [\Inpos] Tool [\WObj] [\Corr]

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument can be used to 

avoid unwanted stops, caused by overloaded CPU, when using fly-by points. This is useful 

when the programmed points are very close together at high speeds.

The argument is also useful when, for example, communicating with external equipment and 

synchronization between the external equipment and robot movement is not required. It can 

also be used to tune the execution of the robot path, to avoid warning 50024 Corner path 

failure or error 40082 Deceleration limit.

Continues on next page



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

3HAC 16581-1  Revision: J604

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath, movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point then the subsequent instruction 

is executed some time before the robot has reached the programmed zone.

This argument cannot be used in a coordinated synchronized movement in a MultiMove 

System.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the external axes, and of the tool reorientation. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

Trigg_1

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO or 

TriggRampAO.

[ \T2 ]

Trigg 2

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

Continued

Continues on next page



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

6053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \T3 ]

Trigg 3

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

[ \T4 ]

Trigg 4

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

[ \T5 ]

Trigg 5

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

[ \T6 ]

Trigg 6

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

[ \T7 ]

Trigg 7

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

[ \T8 ]

Trigg 8

Data type: triggdata

Variable that refers to trigger conditions and trigger activity defined earlier in the program 

using the instructions TriggIO, TriggEquip, TriggInt, TriggSpeed, TriggCheckIO, 

or TriggRampAO.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

Continued

Continues on next page



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

3HAC 16581-1  Revision: J606

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified for a linear movement relative to the work object to be performed.

[ \Corr ]

Correction

Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be added to 

the path and destination position if this argument is present.

Program execution

See the instruction MoveL for information about linear movement.

As the trigger conditions are fulfilled when the robot is positioned closer and closer to the end 

point, the defined trigger activities are carried out. The trigger conditions are fulfilled either 

at a certain distance before the end point of the instruction, or at a certain distance after the 

start point of the instruction, or at a certain point in time (limited to a short time) before the 

end point of the instruction.

During stepping the execution forward, the I/O activities are carried out but the interrupt 

routines are not run. During stepping the execution backwards, no trigger activities at all are 

carried out.

Continued

Continues on next page



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

6073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction TriggL are illustrated below.

Example 1
VAR intnum intno1;

VAR triggdata trigg1;

...

CONNECT intno1 WITH trap1;

TriggInt trigg1, 0.1 \Time, intno1;

...

TriggL p1, v500, trigg1, fine, gun1;

TriggL p2, v500, trigg1, fine, gun1;

...

IDelete intno1;

The interrupt routine trap1 is run when the work point is at a position 0.1 s before the point 

p1 or p2 respectively.

Error handling

If the programmed ScaleValue argument for the specified analog output signal AOp in some 

of the connected TriggSpeed instructions results in out of limit for the analog signal 

together with the programmed Speed in this instruction, then the system variable ERRNO is 

set to ERR_AO_LIM.

If the programmed DipLag argument in some of the connected TriggSpeed instructions is 

too big in relation to the Event Preset Time used in System Parameters, then the system 

variable ERRNO is set to ERR_DIPLAG_LIM.

The system variable ERRNO can be set to ERR_NORUNUNIT if there is no contact with the 

I/O unit when entering instruction and the used triggdata depends on a running I/O unit, i.e. 

a signal is used in the triggdata.

These errors can be handled in the error handler.

Limitations

If the current start point deviates from the usual so that the total positioning length of the 

instruction TriggL is shorter than usual (e.g. at the start of TriggL with the robot position 

at the end point) it may happen that several or all of the trigger conditions are fulfilled 

immediately and at the same position. In such cases, the sequence in which the trigger 

activities are carried out will be undefined. The program logic in the user program may not 

be based on a normal sequence of trigger activities for an “incomplete movement”.

Continued

Continues on next page



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

3HAC 16581-1  Revision: J608

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
TriggL

[’\’ Conc ’,’]

[ ToPoint’ :=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >] ’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ]’,’

[Trigg_1 ’:=’ ] < variable (VAR) of triggdata >

[ ’\’ T2 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T3 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T4 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T5 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T6 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T7 ’:=’ < variable (VAR) of triggdata > ]

[ ’\’ T8 ’:=’ < variable (VAR) of triggdata > ] ´,’

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata > ] ´,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ]

[ ’\’ Corr ] ’;’

Related information

For information about See

Circular movement with triggers TriggC - Circular robot movement with events on page 
570

Joint movement with triggers TriggJ - Axis-wise robot movements with events on 
page 597

Definition of triggers TriggIO - Define a fixed position or time I/O event near 
a stop point on page 592

TriggEquip - Define a fixed position and time I/O event 
on the path on page 582

TriggInt - Defines a position related interrupt on page 
588

TriggCheckIO - Defines IO check at a fixed position on 
page 577

TriggRampAO - Define a fixed position ramp AO event 
on the path on page 616

TriggSpeed - Defines TCP speed proportional analog 
output with fixed position-time scale event on page 622

Writes to a corrections entry CorrWrite - Writes to a correction generator on page 77

Linear movement Technical reference manual - RAPID overview, section 
Motion and I/O principles - Positioning during program 
execution

Definition of velocity speeddata - Speed data on page 1185

Definition of zone data zonedata - Zone data on page 1232

Definition of stop point data stoppointdata - Stop point data on page 1189

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Continued

Continues on next page



1 Instructions

1.212. TriggL - Linear robot movements with events
RobotWare - OS

6093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Motion in general Technical reference manual - RAPID overview, section 
Motion and I/O principles

For information about See

Continued



1 Instructions

1.213. TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

3HAC 16581-1  Revision: J610

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.213. TriggLIOs - Linear robot movements with I/O events

Usage

TriggLIOs (Trigg Linear I/O) is used to set output signals at fixed positions at the same time 

that the robot is making a linear movement.

The TriggLIOs instruction is optimized to give good accuracy when using movements with 

zones (compare with TriggEquip/TriggL).

Basic examples

Basic examples of the instruction TriggLIOs are illustrated below.

See also More examples on page 613.

Example 1
VAR triggios gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=1;

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set when the TCP is 3 mm after point p1.

The figure shows an example of a fixed position I/O event.

en0800000157

Arguments
TriggLIOs [\Conc] ToPoint [\ID] Speed [\T] [\TriggData1] 

[\TriggData2] [\TriggData3] Zone [\Inpos] Tool [\WObj] 

[\Corr]

[ \Conc ]

Concurrent

Data type: switch

Subsequent instructions are executed while the robot is moving. The argument can be used to 

avoid unwanted stops, caused by overloaded CPU, when using fly-by points. This is useful 

when the programmed points are very close together at high speeds.

Continues on next page



1 Instructions

1.213. TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

6113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The argument is also useful when, for example, communicating with external equipment and 

synchronization between the external equipment and robot movement is not required. It can 

also be used to tune the execution of the robot path, to avoid warning 50024 Corner path 

failure or error 40082 Deceleration limit.

Using the argument \Conc, the number of movement instructions in succession is limited to 

5. In a program section that includes StorePath-RestoPath, movement instructions with 

the argument \Conc are not permitted.

If this argument is omitted and the ToPoint is not a stop point then the subsequent instruction 

is executed some time before the robot has reached the programmed zone.

This argument cannot be used in a coordinated synchronized movement in a MultiMove 

System.

ToPoint

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named position or stored 

directly in the instruction (marked with an * in the instruction).

[ \ID ]

Synchronization id

Data type: identno

This argument must be used in a MultiMove system, if it is a coordinated synchronized 

movement, and is not allowed in any other cases.

The specified ID number must be the same in all cooperating program tasks. The ID number 

gives a guarantee that the movements are not mixed up at runtime.

Speed

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity of the tool center 

point, the external axes, and of the tool reorientation. 

[ \T ]

Time

Data type: num

This argument is used to specify the total time in seconds during which the robot moves. It is 

then substituted for the corresponding speed data.

[\TriggData1]

Data type: array of triggios

Variable (array) that refers to trigger conditions and trigger activity. When using this 

argument, it is possible to set analog output signals, digital output signals and digital group 

output signals. If using a digital group output signal there is a limitation on 23 signals in the 

group.

Continued

Continues on next page



1 Instructions

1.213. TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

3HAC 16581-1  Revision: J612

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\TriggData2]

Data type: array of triggstrgo

Variable (array) that refers to trigger conditions and trigger activity. When using this 

argument, it is possible to set digital group output signals that consists of 32 signals in the 

group and can have a maximum set value of 4294967295. Only digital group output signals 

can be used.

[\TriggData3]

Data type: array of triggiosdnum

Variable (array) that refers to trigger conditions and trigger activity. When using this 

argument, it is possible to set analog output signals, digital output signals and digital group 

output signals that consists of 32 signals in the group and can have a maximum set value of 

4294967295.

Zone

Data type: zonedata

Zone data for the movement. Zone data describes the size of the generated corner path.

[ \Inpos ]

In position

Data type: stoppointdata

This argument is used to specify the convergence criteria for the position of the robot’s TCP 

in the stop point. The stop point data substitutes the zone specified in the Zone parameter. 

Tool

Data type: tooldata

The tool in use when the robot moves. The tool center point is the point that is moved to the 

specified destination position.

[ \WObj ]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction is related.

This argument can be omitted and if so then the position is related to the world coordinate 

system. If, on the other hand, a stationary TCP or coordinated external axes are used then this 

argument must be specified for a linear movement relative to the work object to be performed.

[ \Corr ]

Correction

Data type: switch

Correction data written to a corrections entry by the instruction CorrWrite will be added to 

the path and destination position if this argument is present.

Continued

Continues on next page



1 Instructions

1.213. TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

6133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

See the instruction MoveL for information about linear movement.

With the instruction TriggLIOs it is possible to setup 1-50 different trigger activities on I/O 

signals along a path from A to B. The signals that can be used are digital output signals, digital 

group output signals and analog output signals. The trigger conditions are fulfilled either at a 

certain distance before the end point of the instruction, or at a certain distance after the start 

point of the instruction.

The instruction requires use of either TriggData1, TriggData2 or TriggData3 argument 

or all three of them. Use of any of the triggs is optional though. To inhibit use of a trigg the 

component used can be set to FALSE in the array element of the data types triggios/

triggstrgo/triggiosdnum. If no array element is in use, then the TriggLIOs instruction 

will behave as a MoveL, and no I/O activities will be carried out.

If stepping the program forward, the I/O activities are carried out. During stepping the 

execution backwards, no I/O activities at all are carried out.

If setting component EquipLag in TriggData1, TriggData2 or TriggData3 argument to 

a negative time (delay), the I/O signal can be set after the destination point (ToPoint).

If using the argument TriggData2 or TriggData3 it is possible to use values up to 

4294967295, which is the maximum value a group of digital signals can have (32 signals in 

a group signal is max for the system).

More examples

More examples of how to use the instruction TriggLIOs are illustrated below.

Example 1
VAR triggios mytriggios{3}:= [[TRUE, 3, TRUE, 0, "go1", 55, 0], 

[TRUE, 15, TRUE, 0, "ao1", 10, 0],  [TRUE, 3, FALSE, 0, "do1", 

1, 0]];

...

MoveL p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=mytriggios, z50, gun1;

MoveL p3, v500, z50, gun1;

The digital group output signal go1 will be set to value 55 3 mm from p1. Analog output 

signal will be set to value 10 15 mm from p1. Digital output signal do1 will be set 3 mm from 

ToPoint p2. 

Continued

Continues on next page



1 Instructions

1.213. TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

3HAC 16581-1  Revision: J614

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
VAR triggios mytriggios{3}:= [[TRUE, 3, TRUE, 0, "go1", 55, 0], 

[TRUE, 15, TRUE, 0, "ao1", 10, 0],  [TRUE, 3, FALSE, 0, "do1", 

1, 0]];

VAR triggstrgo mytriggstrgo{3}:= [[TRUE, 3, TRUE, 0, "go2", "1", 

0], [TRUE, 15, TRUE, 0, "go2", "800000", 0],  [TRUE, 4, FALSE, 

0, "go2", "4294967295", 0]];

VAR triggiosdnum mytriggiosdnum{3}:= [[TRUE, 10, TRUE, 0, "go3", 

4294967295, 0], [TRUE, 10, TRUE, 0, "ao2", 5, 0],  [TRUE, 10, 

TRUE, 0, "do2", 1, 0]];

...

MoveL p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=mytriggios \TriggData2:= 

mytriggstrgo \TriggData3:=mytriggiosdnum, z50, gun1;

MoveL p3, v500, z50, gun1;

The digital group output signal go1 will be set to value 55 3 mm from p1. Analog output 

signal ao1 will be set to value 10 15 mm from p1. Digital output signal do1 will be set 3 mm 

from ToPoint p2. Those position events is setup by variable mytriggios. The variable 

mytriggstrgo sets up position events to occur 3 and 15 mm from p1. First the signal go2 

is set to 1, then it is set to 800000. The signal will be set to value 4294967295 4 mm from the 

ToPoint p2. This is the maximum value for a 32 bits digital output signal. The variable 

mytriggiosdnum sets up three position events to occur 10 mm from p1. First the signal go3 

is set to 4294967295, then ao2 is set to 5 and last do2 is set to 1.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the I/O unit.

ERR_GO_LIM

if the programmed setvalue argument for the specified digital group output signal 

signalname is outside limits. (Declared in TriggData1, TriggData2 or TriggData3)

ERR_AO_LIM

if the programmed setvalue argument for the specified analog output signal signalname 

is outside limits. (Declared in TriggData1 or TriggData3)

Limitations

If the current start point deviates from the usual so that the total positioning length of the 

instruction TriggLIOs is shorter than usual (e.g. at the start of TriggLIOs with the robot 

position at the end point) it may happen that several or all of the trigger conditions are fulfilled 

immediately and at the same position. In such cases, the sequence in which the trigger 

activities are carried out will be undefined. The program logic in the user program may not 

be based on a normal sequence of trigger activities for an “incomplete movement”.

Continued

Continues on next page



1 Instructions

1.213. TriggLIOs - Linear robot movements with I/O events
RobotWare - OS

6153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The limitation of the number of triggs in the instruction TriggLIOs is 50 for each 

programmed instruction. However, if those triggs is supposed to happen in a close distance, 

the system might not be able to handle that. That depends on how the movement is done, TCP 

speed used and how close the triggs are programmed. Those limitations exists, but it is hard 

to predict when those problems will occur.

Syntax
TriggLIOs

[’\’ Conc ’,’]

[ ToPoint’ :=’ ] < expression (IN) of robtarget >

[ ’\’ ID ’:=’ < expression (IN) of identno >] ’,’

[ Speed ’:=’ ] < expression (IN) of speeddata >

[ ’\’ T ’:=’ < expression (IN) of num > ]’,’

[ ’\’ TriggData1’ :=’ ] < array {*} (VAR) of triggios >

[ ’\’ TriggData2’ :=’ ] < array {*} (VAR) of triggstrgo >

[ ’\’ TriggData3’ :=’ ] < array {*} (VAR) of triggiosdnum >

[Zone ’:=’ ] < expression (IN) of zonedata >

[ ’\’ Inpos’ :=’ < expression (IN) of stoppointdata > ] ´,’

[ Tool ’:=’ ] < persistent (PERS) of tooldata >

[ ’\’ WObj’ :=’ < persistent (PERS) of wobjdata > ]

[ ’\’ Corr ] ’;’

Related information

For information about See

Storage of trigg conditions and trigger activity triggios - Positioning events, trigg on page 
1214

Storage of trigg conditions and trigger activity 
for digital signal group consisting of 32 
signals

triggstrgo - Positioning events, trigg on page 
1219

Storage of trigg conditions and trigger activity triggiosdnum - Positioning events, trigg on 
page 1217

Linear movement Technical reference manual - RAPID 
overview, section Motion and I/O principles - 
Positioning during program execution

Motion in general Technical reference manual - RAPID 
overview, section Motion and I/O principles

Continued



1 Instructions

1.214. TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

3HAC 16581-1  Revision: J616

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.214. TriggRampAO - Define a fixed position ramp AO event on the path

Usage

TriggRampAO (Trigg Ramp Analog Output) is used to define conditions and actions for 

ramping up or down analog output signal value at a fixed position along the robot’s movement 

path with possibility to do time compensation for the lag in the external equipment.

The data defined is used for implementation in one or more subsequent TriggL, TriggC, or 

TriggJ instructions. Beside these instructions, TriggRampAO can also be used in CapL or 

CapC instructions.

The type of trig actions connected to the same TriggL/C/J instruction can be TriggRampAO 

or any of TriggIO, TriggEquip, TriggSpeed, TriggInt, or TriggCheckIO 

instructions. Any type of combination is allowed except that only one TriggSpeed action on 

the same signal  in the same TriggL/C/J instruction is allowed.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggRampAO are illustrated below.

See also More examples on page 620.

Example 1
VAR triggdata ramp_up;

...

TriggRampAO ramp_up, 0 \Start, 0.1, aolaser1, 8, 15;

MoveL p1, v200, z10, gun1;

TriggL p2, v200, ramp_up, z10, gun1;

The analog signal aolaser1 will start ramping up its logical value from current value to the 

new value 8, when the TCP of the tool gun1 is 0,1 s before the centre of the corner path at 

p1. The whole ramp-up will be done while the robot moves 15 mm.

Example 2
VAR triggdata ramp_down;

...

TriggRampAO ramp_down, 15, 0.1, aolaser1, 2, 10;

MoveL p3, v200, z10, gun1;

TriggL p4, v200, ramp_down, z10, gun1;

The analog signal aolaser1 will start ramping down its logical value from current value to 

the new value 2, when the TCP of the tool gun1 is 15 mm plus 0,1 s before the centre of the 

corner path at p4. The whole ramp-down will be done while the robot moves 10 mm.

Continues on next page



1 Instructions

1.214. TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

6173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
TriggRampAO TriggData Distance [\Start] EquipLag AOutput SetValue 

RampLength [\Time]

xx0600003433

TriggData

Data type: triggdata

Variable for storing of the triggdata returned from this instruction. These triggdata can 

then be used in the subsequent TriggL, TriggC , TriggJ, CapL, or CapC instructions.

Distance

Data type: num

Defines the distance from the centre of the corner path where the ramp of the analog output 

shall start. 

Specified as the distance in mm (positive value) from the end point (ToPoint) of the 

movement path (applicable if the argument \Start is not set). 

See the section Program Execution for further details.

[\Start]

Data type: switch

Used when the distance for the argument Distance is related to the movement start point 

(preceding ToPoint) instead of the end point.

D Parameter Distance

RL Parameter RampLength

CV Current analog signal Value

SV  Parameter SetValue for the analog signal value

P1 ToPoint for preceding move instruction

P2 ToPoint for actual TrigL/C/J  instruction

Continued

Continues on next page



1 Instructions

1.214. TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

3HAC 16581-1  Revision: J618

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

EquipLag

Equipment Lag

Data type: num

Specify the lag for the external equipment in s.

For compensation of external equipment lag, use positive argument value. Positive argument 

value means that the start of the ramping of the AO signal is done by the robot system at a 

specified time before the TCP physically reaches the specified distance point in relation to the 

movement start or end point.

Negative argument value means that starting the ramping of the AO signal is done by the robot 

system at a specified time. After that, the TCP has physically passed the specified distance 

point in relation to the movement start or end point.

The figure shows use of argument EquipLag.

xx0500002262

AOutput

Analog Output

Data type: signalao

The name of the analog output signal.

SetValue

Data type: num

The value to which the analog output signal should be ramped up or down to (must be within 

the allowed logical range value for the signal). The ramping is started with the current value 

of the analog output signal.

RampLength

Data type: num

The ramping length in mm along the TCP movement path.

[\Time]

Data type: switch

Used then the RampLength specifies the ramp time in s instead of ramping length.

Must be used, if subsequent TriggL, TriggC, or TriggJ specifies that the total movement 

should be done on time (argument \T) instead of speed.

Continued

Continues on next page



1 Instructions

1.214. TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

6193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When running the instruction TriggRampAO, the trigger condition is stored in the specified 

variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC or TriggJ is executed, the 

following are applicable with regard to the definitions in TriggRampAO:

The table describes the distance specified in the argument Distance:

The figure shows ramping of AO in a corner path.

xx0600003439

Program execution characteristics of TriggRampAO connected to any TriggL/C/J:

• The ramping of the AO is started when the robot reaches the specified Distance point 

on the robot path (with compensation for the specified EquipLag)

• The ramping function will be performed during a time period calculated from 

specified RampLength and the programmed TCP speed. The calculation takes into 

cosideration VelSet, manual speed override, and max. 250 mm/s in MAN mode but not 

any other speed limitations.

• Updating of the AO signal value from start (current read) value to specified SetValue 

will be done each 10 ms resulting in a staircase form. If the calculated ramp time or 

specified ramp time is greater than 0.5 s then the ramping frequency will slow down: 

• <= 0,5s gives max. 50 step each 10 ms 

• <= 1s gives max. 50 steps each 20 ms 

• <= 1,5s gives max. 50 steps each 30 ms and so on

The TriggRampAO action is also done in FWD step but not in BWD step mode.

At any type of stop (ProgStop, Emergency Stop …) if the ramping function is active for the 

occasion: 

- if ramping up, the AO is set to an old value momentarily. 

- if ramping down, the AO is set to the new SetValue momentarily.

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path (to 
obtain adequate accuracy, the distance should 
not exceed one half of the arc length).

Continued

Continues on next page



1 Instructions

1.214. TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

3HAC 16581-1  Revision: J620

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples 

More examples of how to use the instruction TriggRampAO are illustrated below.

Example 1
VAR triggdata ramp_up;

VAR triggdata ramp_down;

...

TriggRampAO ramp_up, 0 \Start, 0.1, aolaser1, 8, 15;

TriggRampAO ramp_down, 15, 0.1, aolaser1, 2, 10;

MoveL p1, v200, z10, gun1;

TriggL p2, v200, ramp_up, \T2:=ramp_down, z10, gun1;

In this example both the ramp-up and ramp-down of the AO is done in the same TriggL 

instruction on the same movement path. It works without any interference of the AO settings 

if the movement path is long enough.

The analog signal aolaser1 will start ramping up its logical value from the current value to 

the new value 8 when the TCP of the tool gun1 is 0,1 s before the centre of the corner path at 

p1. The whole ramp-up will be done while the robot moves 15 mm.

The analog signal aolaser1 will start ramping down its logical value from the current value 

8 to the new value 2 when the TCP of the tool gun1 is 15 mm plus 0,1 s before the centre 

of the corner path at p2. The whole ramp-up will be done while the robot moves 10 mm.

Error handling

If the programmed SetValue argument for the specified analog output signal AOutput is 

out of limit then the system variable ERRNO is set to ERR_AO_LIM. This error can be handled 

in the error handler.

Limitations

The analog output signal value will not be compensated for lower TCP-speed in corner path 

or during other acceleration or deceleration phases (the AO is not TCP speed proportional).

Only the start point of the AO ramping will be done at the specified position on the path. The 

ramping up or down will be done with “dead calculation”, with high accuracy: 

• At constant speed the deviation for the end of the AO ramping compared with the 

specified will be low.

• During acceleration or deceleration phases, such as near stop points, the deviation will 

be higher. 

• Recommendation: use corner paths before ramp up and after ramp down.

If use of two or several TriggRampAO on the same analog output signal and connected to the 

same TriggL/C/J instrucion and both or several RampLength are located on the same part 

of the robot path then the AO settings will interact with each other.

The position (+/- time)  related ramp AO event will start when the previous ToPoint  is passed 

if the specified Distance from the actual ToPoint is not within the length of movement for 

the current TriggL/C/J instruction. The position (+/- time)  related ramp AO event will start 

when the actual ToPoint is passed if the specified Distance from the previous ToPoint is 

not within the length of movement for the current TriggL/C/J instruction (with argument 

\Start).

Continued

Continues on next page



1 Instructions

1.214. TriggRampAO - Define a fixed position ramp AO event on the path
RobotWare - OS

6213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

No support for restart of the ramping AO function after any type of stop (ProgStop, Emergency 

Stop …).

At Power Fail Restart the TriggL/C/J instruction is started from the beginning of the current 

Power Fail position.

Syntax
TriggRampAO

[ TriggData ’:=’ ] < variable (VAR) of triggdata > ‘,‘

[ Distance‘ :=’ ] < expression (IN) of num >

[ ‘\’ Start ]‘ ,’

[ EquipLag’ :=’ ] < expression (IN) of num > ‘,‘

[ AOutput ‘:=’ ] < variable (VAR) of signalao>‘ ,’

[ SetValue ‘:=’ ] < expression (IN) of num>‘ ,‘

[ RampLength ‘:=’ ] < expression (IN) of num>‘ ,‘

[ ‘\’ Time ]‘ ;’

Related information

For information about See

Use of triggers TriggL - Linear robot movements with events 
on page 603

TriggC - Circular robot movement with events 
on page 570

TriggJ - Axis-wise robot movements with 
events on page 597

Definition of other triggs TriggEquip - Define a fixed position and time 
I/O event on the path on page 582

Storage of triggdata triggdata - Positioning events, trigg on page 
1213

Set of analog output signal SetAO - Changes the value of an analog 
output signal on page 431

signalxx - Digital and analog signals on page 
1181

Configuration of event preset time Technical reference manual - System 
parameters, section Motion

Continued



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

3HAC 16581-1  Revision: J622

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed 
position-time scale event

Usage

TriggSpeed is used to define conditions and actions for control of an analog output signal 

with output value proportional to the actual TCP speed. The beginning, scaling, and ending 

of the analog output can be specified at a fixed position-time along the robot’s movement 

path. It is possible to use time compensation for the lag in the external equipment for the 

beginning, scaling, and ending of the analog output and also for speed dips of the robot.

The data defined is used in one or more subsequent TriggL, TriggC, or TriggJ 

instructions.

This instruction can only be used in the main task T_ROB1, if in a MultiMove System, in 

Motion tasks.

Basic examples

Basic examples of the instruction TriggSpeed are illustrated below.

See also More examples on page 626.

Example 1
VAR triggdata glueflow;

TriggSpeed glueflow, 0, 0.05, glue_ao, 0.8\DipLag=:0.04 

\ErrDO:=glue_err;

TriggL p1, v500, glueflow, z50, gun1;

TriggSpeed glueflow, 10, 0.05, glue_ao, 1;

TriggL p2, v500, glueflow, z10, gun1;

TriggSpeed glueflow, 0, 0.05, glue_ao, 0;

TriggL p3, v500, glueflow, z50, gun1;

The figure below illustrates an example of TriggSpeed sequence

xx0500002329

The glue flow (analog output glue_ao) with scale value 0.8 starts when TCP is 0.05 s 

before point p1, new glue flow scale value 1 when TCP is 10 mm plus 0.05 s before point 

p2, and the glue flow ends (scale value 0) when TCP is 0.05 s before point p3.

Any speed dip by the robot is time compensated in such a way that the analog output signal 

glue_ao is affected 0.04 s before the TCP speed dip occurs.

Continues on next page



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

6233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

If overflow of the calculated logical analog output value in glue_ao then the digital output 

signal glue_err is set. If there is no more overflow then glue_err is reset.

Arguments
TriggSpeed TriggData Distance [\Start] ScaleLag AOp ScaleValue 

[\DipLag] [\ErrDO] [\Inhib]

TriggData

Data type: triggdata

Variable for storing the triggdata returned from this instruction. These triggdata are 

then used in the subsequent TriggL, TriggC, or TriggJ instructions.

Distance

Data type: num

Defines the position on the path for change of the analog output value.

Specified as the distance in mm (positive value) from the end point of the movement path 

(applicable if the argument \ Start is not set). 

See Program execution on page 625 for further details.

[ \Start ]

Data type: switch

Used when the distance for the argument Distance starts at the movement’s start point 

instead of the end point.

ScaleLag

Data type: num

Specify the lag as time in s (positive value) in the external equipment for change of the analog 

output value (starting, scaling, and ending).

For compensation of external equipment lag, this argument value means that the analog 

output signal is set by the robot at a specified time before the TCP physically reaches the 

specified distance in relation to the movement’s start or end point.

The argument can also be used to extend the analog output beyond the end point. Set the time 

in seconds that the robot shall keep the analog output. Set the time with a negative sign. The 

limit is -0.10 seconds.

The figure below illustrates the use of argument ScaleLag

xx0500002330

Continued

Continues on next page



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

3HAC 16581-1  Revision: J624

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

AOp

Analog Output

Data type: signalao

The name of the analog output signal.

ScaleValue

Data type: num

The scale value for the analog output signal.

The physical output value for the analog signal is calculated by the robot:

• Logical output value = Scale value * Actual TCP speed in mm/s.

• Physical output value = According definition in configuration for actual analog output 

signal with above Logical output value as input.

[ \DipLag ]

Data type: num

Specify the lag as time in s (positive value) for the external equipment when changing of the 

analog output value due to robot speed dips.

For compensation of external equipment lag, this argument value means that the analog 

output signal is set by the robot at a specified time before the TCP speed dip occurs.

This argument can only be used by the robot for the first TriggSpeed (in combination with 

one of TriggL, TriggC, or TriggJ) in a sequence of several TriggSpeed instructions. The 

first specified argument value is valid for all the following TriggSpeed in the sequence.

[ \ErrDO ]

Error Digital Output

Data type: signaldo

The name of the digital output signal for reporting analog value overflow.

If during movement the calculation of the logical analog output value for signal in argument 

AOp results in overflow due to overspeed then this signal is set and the physical analog output 

value is reduced to the maximum value. If there is no more overflow then the signal is reset.

This argument can only be used by the robot for the 1st TriggSpeed (in combination with 

one of TriggL, TriggC, or TriggJ) in a sequence of several TriggSpeed instructions. The 

1st given argument value is valid for all the following TriggSpeed in the sequence.

[ \Inhib ]

Inhibit

Data type: bool

The name of a persistent variable flag for inhibiting the setting of the analog signal at runtime.

If this optional argument is used and the actual value of the specified flag is TRUE at the time 

for setting the analog signal then the specified signal AOp will be set to 0 instead of a 

calculated value.

This argument can only be used by the robot for the 1st TriggSpeed (in combination with 

one of TriggL, TriggC, or TriggJ) in a sequence of several TriggSpeed instructions. The 

1st given argument value is valid for all the following TriggSpeed in the sequence.

Continued

Continues on next page



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

6253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

When running the instruction TriggSpeed the trigger condition is stored in the specified 

variable for the argument TriggData.

Afterwards, when one of the instructions TriggL, TriggC, or TriggJ is executed then the 

following are applicable with regard to the definitions in TriggSpeed:

For the distance specified in the argument Distance, see the table below.:

The figure below illustrates the fixed position-time scale value event on a corner path.

xx0500002331

The position-time related scale value event will be generated when the start point (end point) 

is passed if the specified distance from the end point (start point) is not within the length of 

the movement of the current instruction (TriggL, TriggC, or TriggJ).

The 1:st TriggSpeed used by one of TriggL, TriggC, or TriggJ instruction will internally 

in the system create a process with the same name as the analog output signal. The same 

process will be used by all succeeding TriggL, TriggC, or TriggJ which refers to same 

signal name and setup by a TriggSpeed instruction.

The process will immediately set the analog output to 0, in the event of a program emergency 

stop. In the event of a program stop, the analog output signal will stay TCP-speed 

proportional until the robot stands still. The process keeps “alive” and ready for a restart. 

When the robot restarts, the signal is TCP-speed proportional directly from the start.

xx0500002332

The process will “die” after handling a scale event with value 0 if no succeeding TriggL, 

TriggC, or TriggJ is in the queue at the time.

Linear movement The straight line distance

Circular movement The circle arc length

Non-linear movement The approximate arc length along the path (to obtain adequate 
accuracy, the distance should not exceed one half of the arc length).

Continued

Continues on next page



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

3HAC 16581-1  Revision: J626

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction TriggSpeed are illustrated below.

Example 1
VAR triggdata flow;

TriggSpeed flow, 10 \Start, 0.05, flowsignal, 0.5 \DipLag:=0.03;

MoveJ p1, v1000, z50, tool1;

TriggL p2, v500, flow, z50, tool1;

The analog output signal flowsignal is set to a logical value = (0.5 * actual TCP speed in 

mm/s) 0.05 s before the TCP passes a point located 10 mm after the start point p. The 

output value is adjusted to be proportional to the actual TCP speed during the movement to 

p2.

...

TriggL p3, v500, flow, z10, tool1;

The robot moves from p2 to p3 with the analog output value proportional to the actual TCP 

speed. The analog output value will be decreased at time 0.03 s before the robot reduces the 

TCP speed during the passage of the corner path z10.

Limitations

The limitations for the instruction TriggSpeed are illustrated below.

Accuracy of position-time related scale value event

Typical absolute accuracy values for scale value events ±5 ms.

Typical repeat accuracy values for scale value events ±2 ms.

Accuracy of TCP speed dips adaptation (deceleration - acceleration phases)

Typical absolute accuracy values for TCP speed dips adaptation ±5 ms.

Typical repeat accuracy values for TCP speed dips adaptation ±2ms (the value depends of the 

configured Path resolution).

Negative ScaleLag

If a negative value on parameter ScaleLag is used to move the zero scaling over to the next 

segment then the analog output signal will not be reset if a program stop occurs. An 

emergency stop will always reset the analog signal.

The analog signal is no longer TCP-speed proportional after the end point on the segment.

xx0500002333

Continued

Continues on next page



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

6273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

Given two consecutive segments with TriggL/TriggSpeed instructions. A negative value 

in parameter ScaleLag makes it possible to move the scale event from the first segment to 

the beginning of the second segment. If the second segment scales at the beginning then there 

is no control if the two scales interfere.

xx0500002334

Related system parameters

The system parameter Event Preset Time is used to delay the robot to make it possible to 

activate/control the external equipment before the robot runs through the position.

The table below illustrates the recommendation for setup of system parameter Event Preset 
Time, where typical Servo Lag is 0.040 s..

ScaleLag DipLag

Required Event Preset 
Time to avoid runtime 
execution error

Recommended 
Event Preset Time to 
obtain best accu-
racy

ScaleLag > 
DipLag

Always DipLag, 
if DipLag > Servo Lag

ScaleLag in s plus 
0.090 s

ScaleLag < 
DipLag

DipLag < 
Servo Lag

- " - 0.090 s

- " - DipLag 
>Servo Lag

- " - DipLag in s plus 0.030 s

Continued

Continues on next page



1 Instructions

1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
RobotWare - OS

3HAC 16581-1  Revision: J628

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
TriggSpeed

[ TriggData ’:=’ ] < variable (VAR) of triggdata>´,’

[ Distance’ :=’ ] < expression (IN) of num>

[ ’\’ Start ] ´,’

[ ScaleLag’:=’ ] < expression (IN) of num> ´,’

[ AOp ’:=’] < variable (VAR) of signalao> ´,’

[ ScaleValue’ :=’ ] < expression (IN) of num>

[ ’\’ DipLag’ :=’ < expression (IN) of num> ]

[ ’\’ ErrDO’ :=’ < variable (VAR ) of signaldo> ]

[ ’\’ Inhib’ :=’ < persistent (PERS ) of bool >] ´;’

Related information

For information about See

Use of triggers TriggL - Linear robot movements with events on page 
603

TriggC - Circular robot movement with events on page 
570

TriggJ - Axis-wise robot movements with events on 
page 597

Definition of other triggs TriggIO - Define a fixed position or time I/O event near 
a stop point on page 592

TriggInt - Defines a position related interrupt on page 
588

TriggEquip - Define a fixed position and time I/O event 
on the path on page 582

Storage of triggs triggdata - Positioning events, trigg on page 1213

Configuration of Event preset time Technical reference manual - System parameters, 
section Motion - Motion Planner - Event Preset Time

Continued



1 Instructions

1.216. TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS

6293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.216. TriggStopProc - Generate restart data for trigg signals at stop

Usage

The instruction TriggStopProc creates an internal supervision process in the system for 

zero setting of specified process signals and the generation of restart data in a specified 

persistent variable at every program stop (STOP) or emergency stop (QSTOP) in the system. 

TriggStopProc and the data type restartdata are intended to be used for restart after 

program stop (STOP) or emergency stop (QSTOP) of own process instructions defined in 

RAPID (NOSTEPIN routines).

It is possible in a user defined RESTART event routine to analyze the current restart data, step 

backwards on the path with instruction StepBwdPath, and activate suitable process signals 

before the movement restarts.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

any motion tasks.

Note for MultiMove system that only one TriggStopProc support process with the 

specified shadow signal name (argument ShadowDO) can be active in the system at the same 

time. It means that TriggStopProc supervises program stop or emergency stop in the 

program task where it was last executed.

Arguments
TriggStopProc RestartRef [\DO] [\GO1] [\GO2] [\GO3] [\GO4] 

ShadowDO

RestartRef

Restart Reference

Data type: restartdata

The persistent variable in which restart data will be available after every stop of program 

execution.

[\DO1]

Digital Output 1

Data type: signaldo

The signal variable for a digital process signal to be set to zero and supervised in restart data 

when program execution is stopped.

[\GO1]

Group Output 1

Data type: signalgo

The signal variable for a digital group process signal to be set to zero and supervised in restart 

data when program execution is stopped.

[\GO2] 

Group Output 2

Data type: signalgo

The signal variable for a digital group process signal to be set to zero and supervised in restart 

data when program execution is stopped.

Continues on next page



1 Instructions

1.216. TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS

3HAC 16581-1  Revision: J630

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\GO3]

Group Output 3

Data type: signalgo

The signal variable for a digital group process signal to be set to zero and supervised in restart 

data when program execution is stopped.

[\GO4]

Group Output 4

Data type: signalgo

The signal variable for a digital group process signal to be set to zero and supervised in restart 

data when program execution is stopped.

At least one of the option parameters D01, GO1 ... GO4 must be used.

ShadowDO

Shadow Digital Output

Data type: signaldo

The signal variable for the digital signal, which must mirror whether or not the process is 

active along the robot path.

This signal will not be set to zero by the process TriggStopProc at STOP or QSTOP, but its 

values will be mirrored in restartdata.

Program execution

Setup and execution of TriggStopProc

TriggStopProc must be called from both:

• the START event routine or in the unit part of the program (set PP to main, kill the 

internal process for TriggStopProc)

• the POWERON event routine (power off, kill the internal process for TriggStopProc)

The internal name of the process for TriggStopProc  is the same as the signal name in the 

argument ShadowDO. If TriggStopProc, with the same signal name in argument 

ShadowDO, is executed twice from the same or another program task then only the last 

executed TriggStopProc will be active.

Execution of TriggStopProc only starts the supervision of I/O signals at STOP and QSTOP.

Program stop STOP

The process TriggStopProc comprises the following steps:

• Wait until the robot stands still on the path.

• Store the current value (prevalue according to restartdata) of all used process 

signals. Zero sets all used process signals except ShadowDO.

• Do the following during the next time slot, about 500 ms: - If some process signals 

change their value during this time: - Store the current value again (postvalue 

according to restatdata) - Set that signal to zero except ShadowDO - Count the 

number of value transitions (flanks) of the signal ShadowDO

• Update the specified persistent variable with restart data.

Continued

Continues on next page



1 Instructions

1.216. TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS

6313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Emergency stop (QSTOP)

The process TriggStopProc comprises the following steps:

• Do the next step as soon as possible.

• Store the current value (prevalue according to restartdata) of all used process 

signals. Set to zero all used process signals except ShadowDO.

• Do the following during the next time slot, about 500 ms: - If some process signal 

changes its value during this time: - Store its current value again (postvalue according 

to restatdata) - Set to zero that signal except ShadowDO - Count the number of 

value transitions (flanks) of the signal ShadowDO

• Update the specified persistent variable with restart data.

Critical area for process restart

Both the robot servo and the external equipment have some lags. All the instructions in the 

Trigg family are designed so that all signals will be set at suitable places on the robot path, 

independently of different lags in external equipment, to obtain process results that are as 

good as possible. Because of this, the settings of I/O signals can be delayed between 0 - 80 ms 

internally in the system after the robot stands still at program stop (STOP) or after registration 

of an emergency stop (QSTOP). Because of this disadvantage for the restart functionality, both 

the prevalue, postvalue, and the shadow flanks are introduced in restart data.

If this critical timeslot of 0 - 80 ms coincides with the following application process cases 

then it is difficult to perform a good process restart:

• At the start of the application process

• At the end of the application process

• During a short application process

• During a short interrupt in the application process

Continued

Continues on next page



1 Instructions

1.216. TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS

3HAC 16581-1  Revision: J632

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The figure below illustrates process phases at STOP or QSTOP within critical time slot 0-80 ms

xx0500002326

Performing a restart

A restart of process instructions (NOSTEPIN routines) along the robot path must be done in a 

RESTART event routine.

The RESTART event routine can consist of the following steps:

Action

1. After QSTOP the regain to path is done at program start.

2. Analyze the restart data from the latest STOP or QSTOP.

Continued

Continues on next page



1 Instructions

1.216. TriggStopProc - Generate restart data for trigg signals at stop
RobotWare - OS

6333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

If waiting in any STOP or QSTOP event routine until the TriggStopProc process is ready 

with e.g. WaitUntil (myproc.restartstop=TRUE), \MaxTime:=2; , the user must 

always reset the flag in the RESTART event routine with e.g. 

myproc.restartstop:=FALSE. After that the restart is ready.

Error handling

If there is no contact with the I/O unit, the system variable ERRNO is set to ERR_NORUNUNIT 

and the execution continues in the error handler.

Limitation

No support for restart of process instructions after a power failure.

Syntax
TriggStopProc

[ RestartRef ’:=’ ] < persistent (PERS) of restartdata>

[ ’\’ DO1’:=’ < variable (VAR) of signaldo>

[ ’\’ GO1’:=’ < variable (VAR) of signalgo> ]

[ ’\’ GO2’:=’ < variable (VAR) of signalgo> ]

[ ’\’ GO3’:=’ < variable (VAR) of signalgo> ]

[ ’\’ GO4’:=’ < variable (VAR) of signalgo> ] ’,’

[ ShadowDO’:=’ ] < variable (VAR) of signaldo> ’;’

Related information

3. Determine the strategy for process restart from the result of the analysis such as:

- Process active, do process restart

- Process inactive, do not process restart

- Do suitable actions depending on type of process application:

• Start of process

• End of process

• Short process

• Short interrupt in process

4. Step backwards on the path.

5. Continue the program results in movement restart.

Action

For information about See

Process instructions TriggL - Linear robot movements with events on 
page 603

TriggC - Circular robot movement with events on 
page 570

Restart data restartdata - Restart data for trigg signals on page 
1167

Step backward on path StepBwdPath - Move backwards one step on path 
on page 499 

Continued



1 Instructions

1.217. TryInt - Test if data object is a valid integer
RobotWare - OS

3HAC 16581-1  Revision: J634

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.217. TryInt - Test if data object is a valid integer

Usage

TryInt is used to test if a given data object is a valid integer.

Basic examples

Basic examples of the instruction TryInt are illustrated below.

Example 1
VAR num myint := 4;

...

TryInt myint;

The value of myint will be evaluated and since 4 is a valid integer, the program execution 

continues.

Example 2
VAR dnum mydnum := 20000000;

...

TryInt mydnum;

The value of mydnum will be evaluated and since 20000000 is a valid dnum integer, the 

program execution continues.

Example 3
VAR num myint := 5.2;

...

TryInt myint;

...

ERROR

IF ERRNO = ERR_INT_NOTVAL THEN

myint := Round(myint);

RETRY;

ENDIF

The value of myint will be evaluated and since 5.2  is not a valid integer, an error will be 

raised. In the error handler, myint will be rounded to 5 and the instruction TryInt is 

executed one more time.

Arguments
TryInt DataObj | DataObj2

DataObj

Data Object

Data type: num

The data object to test if it is a valid integer.

DataObj2

Data Object 2

Data type: dnum

The data object to test if it is a valid integer.

Continues on next page



1 Instructions

1.217. TryInt - Test if data object is a valid integer
RobotWare - OS

6353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The given data object is tested:

• If it is a valid integer, the execution continues with the next instruction.

• If it is not a valid integer, the execution continues in the error handler in an actual 

procedure.

Error handling

If DataObj contains a decimal value then the variable ERRNO will be set to 

ERR_INT_NOTVAL.

If the value of DataObj is larger or smaller then the integer value range of data type num then 

the variable ERRNO will be set to ERR_INT_MAXVAL.

If the value of DataObj2 is larger or smaller then the integer value range of data type dnum 

then the variable ERRNO will be set to ERR_INT_MAXVAL.

These errors can be handled in the error handler.

Note that a value of 3.0 is evaluated as an integer, since.0 can be ignored.

Syntax
TryInt

[ DataObj ‘:=’ ] < expression (IN) of num> 

| [ DataObj2 ‘:=’ ] < expression (IN) of dnum>’ ;’

Related information

For information about See

Data type num num - Numeric values on page 1146

Continued



1 Instructions

1.218. TRYNEXT - Jumps over an instruction which has caused an error
RobotWare-OS

3HAC 16581-1  Revision: J636

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.218. TRYNEXT - Jumps over an instruction which has caused an error

Usage

The TRYNEXT instruction is used to resume execution after an error, starting with the 

instruction following the instruction that caused the error.

Basic examples

Basic examples of the instruction TryNext are illustrated below.

Example 1
reg2 := reg3/reg4;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

reg2:=0;

TRYNEXT;

ENDIF

An attempt is made to divide reg3 by reg4. If reg4 is equal to 0 (division by zero) then a 

jump is made to the error handler where reg2 is assigned to 0. The TRYNEXT instruction is 

then used to continue with the next instruction.

Program execution

Program execution continues with the instruction subsequent to the instruction that caused 

the error. 

Limitations

The instruction can only exist in a routine’s error handler. 

Syntax
TRYNEXT’;’

Related information

For information about See

Error handlers Technical reference manual - RAPID overview, 
section Basic Characteristics- Error Recovery



1 Instructions

1.219. TuneReset - Resetting servo tuning
RobotWare - OS

6373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.219. TuneReset - Resetting servo tuning

Usage

TuneReset is used to reset the dynamic behavior of all robot axes and external mechanical 

units to their normal values.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction TuneReset are illustrated below.

Example 1
TuneReset;

Resetting tuning values for all axes to 100%.

Program execution

The tuning values for all axes are reset to 100%.

The default servo tuning values for all axes are automatically set by executing instruction 

TuneReset

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Syntax
TuneReset ’;’

Related information

For information about See

Tuning servos TuneServo - Tuning servos on page 638



1 Instructions

1.220. TuneServo - Tuning servos
RobotWare - OS

3HAC 16581-1  Revision: J638

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.220. TuneServo - Tuning servos

Usage

TuneServo is used to tune the dynamic behavior of separate axes on the robot. It is not 

necessary to use TuneServo under normal circumstances, but sometimes tuning can be 

optimized depending on the robot configuration and the load characteristics. For external 

axes TuneServo can be used for load adaptation.

Avoid doing TuneServo commands at the same time that the robot is moving. It can result 

in momentary high CPU loads causing error indication and stops.

Note! To obtain optimal tuning it is essential that the correct load data is used. Check this 

before using TuneServo.

Generally, optimal tuning values often differ between different robots. Optimal tuning may 

also change with time.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

WARNING!

Incorrect use of the TuneServo can cause oscillating movements or torques that can damage 

the robot. You must bear this in mind and be careful when using the TuneServo.

Improving path accuracy

For robots running at lower speeds, TuneServo can be used to improve the path accuracy by:

• Tuning TUNE_KV and TUNE_TI (see the tune types description below).

• Tuning friction compensation parameters (see below).

These two methods can be combined.

Other possibilities to improve the path accuracy:

• Decreasing path resolution can improve the path. Note: a value of path resolution 

which is too low will cause CPU load problems.

• The accuracy of straight lines can be improved by decreasing acceleration using 

AccSet. Example: AccSet 20, 10.

Continues on next page



1 Instructions

1.220. TuneServo - Tuning servos
RobotWare - OS

6393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Description

Reduce overshoots - TUNE_DF

TUNE_DF is used for reducing overshoots or oscillations along the path.

There is always an optimum tuning value that can vary depending on position and movement 

length. This optimum value can be found by changing the tuning in small steps (1 - 2%) on 

the axes that are involved in this unwanted behavior. Normally the optimal tuning will be 

found in the range 70% - 130%. Too low or too high tuning values have a negative effect and 

will impair movements considerably.

When the tuning value at the start point of a long movement differs considerably from the 

tuning value at the end point, it can be advantageous in some cases to use an intermediate 

point with a corner zone to define where the tuning value will change.

Some examples of the use of TuneServo to optimize tuning follow below:

• IRB 6400, in a press service application (extended and flexible load), axes 4 - 6: 

Reduce the tuning value for the current wrist axis until the movement is acceptable. A 

change in the movement will not be noticeable until the optimum value is approached. 

A low value will impair the movement considerably. Typical tuning value is 25%.

• IRB 6400, upper parts of working area. Axis 1 can often be optimized with a tuning 

value of 85% - 95%.

• IRB 6400, short movement (< 80 mm). Axis 1 can often be optimized with a tuning 

value of 94% - 98%.

• IRB 2400, with track motion. In some cases axes 2 - 3 can be optimized with a tuning 

value of 110% - 130%. The movement along the track can require a different tuning 

value compared with movement at right angles to the track.

• Overshoots and oscillations can be reduced by decreasing the acceleration or the 

acceleration ramp (AccSet), which will however increase the cycle time. This is an 

alternative method to the use of TuneServo.

Reduce overshoots - TUNE_DG

TUNE_DG can reduce overshoots on rare occasions. Normally it should not be used.

TUNE_DF should always be tried first in cases of overshooting.

Tuning of TUNE_DG can be performed with large steps in tune value (e.g. 50%, 100%, 200%, 

400%).

Never use TUNE_DG when the robot is moving.

Continued

Continues on next page



1 Instructions

1.220. TuneServo - Tuning servos
RobotWare - OS

3HAC 16581-1  Revision: J640

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Reduces vibrations with heavy loads - TUNE_DH

TUNE_DH can be used for reducing vibrations and overshooting (e.g. large flexible load).

Tune value must always be lower than 100. TUNE_DH increases path deviation and normally 

also increases cycle time.

Example: 

• IRB6400 with large flexible loads which vibrates when the robot has stopped. Use 

TUNE_DH with tune value 15.

TUNE_DH should only be executed for one axis. All axes in the same mechanical unit 

automatically get the same TuneValue.

Never use TUNE_DH when the robot is moving.

Reduce path errors - TUNE_DI

TUNE_DI can be used for reducing path deviation at high speeds.

A tune value in the range 50 - 80 is recommended for reducing path deviation. Overshooting 

can increase (lower tune value means larger overshoot).

A higher tune value than 100 can reduce overshooting (but increases path deviation at high 

speed).

TUNE_DI should only be executed for one axis. All axes in the same mechanical unit 

automatically get the same TuneValue.

Only for ABB internal use - TUNE_DK, TUNE_DL

-

WARNING!

Only for ABB internal use. Do not use these tune types. Incorrect use can cause oscillating 

movements or torques that can damage the robot.

Tuning external axes - TUNE_KP, TUNE_KV, TUNE_TI

These tune types affect position control gain (kp), speed control gain (kv), and speed control 

integration time (ti) for external axes. These are used for adapting external axes to different 

load inertias. Basic tuning of external axes can also be simplified by using these tune types.

Tuning robot axes - TUNE_KP, TUNE_KV, TUNE_TI

For robot axes, these tune types have another significance and can be used for reducing path 

errors at low speeds (< 500 mm/s).

Recommended values: TUNE_KV 100 - 180%, TUNE_TI 50 - 100%. TUNE_KP should not be 

used for robot axes. Values of TUNE_KV/TUNE_TI which are too high or too low will cause 

vibrations or oscillations. Be careful if trying to exceed these recommended values. Make 

changes in small steps and avoid oscillating motors.

Always tune one axis at a time. Change the tuning values in small steps. Try to improve the 

path where this specific axis changes its direction of movement or where it accelerates or 

decelerates.

Never use these tune types at high speeds or when the required path accuracy is fulfilled.

Continued

Continues on next page



1 Instructions

1.220. TuneServo - Tuning servos
RobotWare - OS

6413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Friction compensation - TUNE_FRIC_LEV, TUNE_FRIC_RAMP

These tune types can be used to reduce robot path errors caused by friction and backlash at 

low speeds (10 - 200 mm/s). These path errors appear when a robot axis changes direction of 

movement. Activate friction compensation for an axis by setting the system parameter 

Motion/Control Parameters/Friction FFW On to Yes.

The friction model is a constant level with opposite sign of the axis speed direction. Friction 

FFW Level (Nm) is the absolute friction level at (low) speeds and is greater than Friction 

FFW Ramp (rad/s). See the figure below, which shows a friction model.

xx0500002188

TUNE_FRIC_LEV overrides the value of the system parameter Friction FFW Level.

Tuning Friction FFW Level (using TUNE_FRIC_LEV) for each robot axis can improve the 

robot’s path accuracy considerably in the speed range 20 - 100 mm/s. For larger robots 

(especially the IRB6400 family) the effect will, however, be minimal as other sources of 

tracking errors dominate these robots.

TUNE_FRIC_RAMP overrides the value of the system parameter Friction FFW Ramp. In most 

cases there is no need to tune the Friction FFW Ramp. The default setting will be appropriate.

Tune one axis at a time. Change the tuning value in small steps and find the level that 

minimizes the robot path error at positions on the path where this specific axis changes 

direction of movement. Repeat the same procedure for the next axis etc.

The final tuning values can be transferred to the system parameters. Example:

Friction FFW Level = 1. Final tune value (TUNE_FRIC_LEV) = 150%.

Set Friction FFW Level = 1.5 and tune value = 100% (default value) which is equivalent.

Arguments
TuneServo MecUnit Axis TuneValue [\Type]

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1 - 6).

Continued

Continues on next page



1 Instructions

1.220. TuneServo - Tuning servos
RobotWare - OS

3HAC 16581-1  Revision: J642

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TuneValue

Data type: num

Tuning value in percent (1 - 500). 100% is the normal value.

[ \Type ]

Data type: tunetype

Type of servo tuning. Available types are TUNE_DF, TUNE_KP, TUNE_KV, TUNE_TI, 

TUNE_FRIC_LEV, TUNE_FRIC_RAMP, TUNE_DG, TUNE_DH, TUNE_DI. Type TUNE_DK 

and TUNE_DL only for ABB internal use.

This argument can be omitted when using tuning type TUNE_DF.

Basic examples

Basic examples of the instruction TuneServo are illustrated below.

Example 1
TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Activating of tuning type TUNE_KP with the tuning value 110% on axis 1 in the mechanical 

unit MHA160R1.

Program execution

The specified tuning type and tuning value are activated for the specified axis. This value is 

applicable for all movements until a new value is programmed for the current axis, or until 

the tuning types and values for all axes are reset using the instruction TuneReset.

The default servo tuning values for all axes are automatically set by executing instruction 

TuneReset

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

Limitations

Any active servo tuning are always set to default values at power fail.

This limitation can be handled in the user program at restart after power failure.

Syntax
TuneServo

[MecUnit ’:=’ ] < variable (VAR) of mecunit>’ ,’

[Axis ’:=’ ] < expression (IN) of num> ’,’

[TuneValue’ :=’ ] < expression (IN) of num>

[’\’ Type’ :=’ <expression (IN) of tunetype>]’;’

Continued

Continues on next page



1 Instructions

1.220. TuneServo - Tuning servos
RobotWare - OS

6433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Other motion settings Technical reference manual - RAPID overview, section 
RAPID summary - Motion settings

Types of servo tuning tunetype - Servo tune type on page 1222 

Reset of all servo tunings TuneReset - Resetting servo tuning on page 637

Tuning of external axes Application manual - Additional axes and stand alone 
controller

Friction compensation Technical reference manual - System parameters, section 
Motion - Friction Compensation

Continued



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

3HAC 16581-1  Revision: J644

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.221. UIMsgBox - User Message Dialog Box type basic

Usage

UIMsgBox (User Interaction Message Box) is used to communicate with the user of the robot 

system on available user device, such as the FlexPendant. A message is written to the 

operator, who answers by selecting a button. The user selection is then transferred back to the 

program.

Basic examples

Basic examples of the instruction UIMsgBox are illustrated below.

See also More examples on page 648.

Example 1
UIMsgBox Continue the program ?;

The message "Continue the program ?" is displayed. The program proceeds when the 

user presses the default button OK.

Example 2
VAR btnres answer;

...

UIMsgBox

\Header:="UIMsgBox Header",

"Message Line 1"

\MsgLine2:="Message Line 2"

\MsgLine3:="Message Line 3"

\MsgLine4:="Message Line 4"

\MsgLine5:="Message Line 5"

\Buttons:=btnOKCancel

\Icon:=iconInfo

\Result:=answer;

IF answer = resOK my_proc;

Continues on next page



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

6453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xx0500002432

Above message box with icon, header, message line 1 to 5, and push buttons is written on the 

FlexPendant display. Program execution waits until OK or Cancel is pressed. In other words, 

answer will be assigned 1 (OK) or 5 (Cancel) depending on which of the buttons is pressed. 

If answer is OK then my_proc will be called.

Note that Message Line 1 ... Message Line 5 are displayed on separate lines 1 to 5 (the switch 

\Wrap is not used).

Arguments
UIMsgBox [\Header] MsgLine1 [\MsgLine2] [\MsgLine3] [\MsgLine4]  

[\MsgLine5] [\Wrap] [\Buttons] [\Icon] [\Image] [\Result] 

[\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag]

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

MsgLine1

Message Line 1

Data type: string

Text line 1 to be written on the display. Max. 55 characters.

[\MsgLine2]

Message Line 2

Data type: string

Additional text line 2 to be written on the display. Max. 55 characters. 

[\MsgLine3]

Message Line 3

Data type: string

Additional text line 3 to be written on the display. Max. 55 characters.

Continued

Continues on next page



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

3HAC 16581-1  Revision: J646

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\MsgLine4]

Message Line 4

Data type: string

Additional text line 4 to be written on the display. Max. 55 characters.

[\MsgLine5]

Message Line 5

Data type: string

Additional text line 5 to be written on the display. Max. 55 characters.

[\Wrap]

Data type: switch

If selected, all the strings MsgLine1 ... MsgLine5 will be concatenated to one string with 

a single space between each individual string and spread out on as few lines as possible.

Default, each message string MsgLine1 ... MsgLine5 will be on separate lines on the display. 

[\Buttons]

Data type: buttondata

Defines the push buttons to be displayed. Only one of the predefined buttons combination of 

type buttondata can be used. See Predefined data on page 648.

Default, the system displays the OK button. (\Buttons:=btn OK).

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type  icondata can be 

used. See Predefined data on page 648.

Default no icon.

[\Image]

Data type: string

The name of the image that should be used. To launch your own images, the images have to 

be placed in the HOME: directory in the active system or directly in the active system.

The recommendation is to place the files in the HOME: directory so that they are saved if a 

Backup and Restore is done. 

A warmstart is required and then the FlexPendant will load the images.

A demand on the system is that the RobotWare option FlexPendant Interface is used.

The image that will be showed can have the width of 185 pixels and the height of 300 pixels. 

If the image is bigger, only 185 * 300 pixels of the image will be shown starting at the top left 

of the image.

No exact value can be specified on the size that an image can have or the amount of images 

that can be loaded to the FlexPendant. It depends on the size of other files loaded to the 

FlexPendant. The program execution will just continue if an image is used that has not been 

loaded to the FlexPendant.

Continued

Continues on next page



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

6473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Result]

Data type: btnres

The variable for which, depending on which button is pressed, the numeric value 0..7 is 

returned. Only one of the predefined constants of type btnres can be used to test the user 

selection. See Predefined data on page 648.

If any type of system break such as \MaxTime, \DIBreak, or \DOBreak or if  

\Buttons:=btnNone, resUnkwn equal to 0 is returned.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If no button is 

selected within this time then the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If no button is selected when 

the signal is set to 1 (or is already 1), the program continues to execute in the error handler, 

unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be used to 

test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If no button is selected when 

the signal is set to 1 (or is already 1) then the program continues to execute in the error handler 

unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be used to 

test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable (before used it is set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak, or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted then 

the error handler will be executed. 

Program execution

The message box with icon, header, message lines, image, and buttons are displayed 

according to the programmed arguments. Program execution waits until the user selects one 

button or the message box is interrupted by time-out or signal action. The user selection and 

interrupt reason are transferred back to the program.

New message box on TRAP level takes the focus from the message box on the basic level.

Continued

Continues on next page



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

3HAC 16581-1  Revision: J648

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

!Results:

CONST btnres resUnkwn := 0;

CONST btnres resOK := 1;

CONST btnres resAbort := 2;

CONST btnres resRetry := 3;

CONST btnres resIgnore := 4;

CONST btnres resCancel := 5;

CONST btnres resYes := 6;

CONST btnres resNo := 7;

More examples

More examples of how to use the instruction UIMsgBox are illustrated below.

Example 1
VAR errnum err_var;

...

UIMsgBox \Header:= "Example 1", "Waiting for a break condition..." 

\Buttons:=btnNone \Icon:=iconInfo \MaxTime:=60 \DIBreak:=di5 

\BreakFlag:=err_var;

TEST err_var

CASE ERR_TP_MAXTIME:

! Time out break, max time 60 seconds has elapsed

CASE ERR_TP_DIBREAK:

! Input signal break, signal di5 has been set to 1

DEFAULT:

! Not such case defined

ENDTEST

The message box is displayed until a break condition has become true. The operator can not 

answer or remove the message box because btnNone is set for the argument \Buttons. The 

message box is removed when di5 is set to 1 or at time out (after 60 seconds).

Continued

Continues on next page



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

6493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If parameter \BreakFlag is not used then these situations can then be dealt with by the error 

handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator then the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator then the 

system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the 

error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator then 

the system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in 

the error handler.

This situation can only be dealt with by the error handler:

• If there is no client, e.g. a FlexPendant, to take care of the instruction then the system 

variable ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error 

handler.

Limitations

Avoid using too small of a value for the time-out parameter \MaxTime when UIMsgBox is 

frequently executed, like in a loop. It can result in an unpredictable behavior of the system 

performance, like slow response of the FlexPendant.

Syntax
UIMsgBox

[´\´Header´:=´ <expression (IN) of string>´,´]

[MsgLine1´:=´] <expression (IN) of string>

[´\´MsgLine2´:=´<expression (IN) of string>]

[´\´MsgLine3´:=´<expression (IN) of string>]

[´\´MsgLine4´:=´<expression (IN) of string>]

[´\´MsgLine5´:=´<expression (IN) of string>]

[´\´Wrap]

[´\´Buttons´:=´ <expression (IN) of buttondata>]

[´\´Icon´:=´ <expression (IN) of icondata>]

[‘\’Image´:=´<expression (IN) of string>] 

[´\´Result´:=´< var or pers (INOUT) of btnres>]

[´\´MaxTime´:=´ <expression (IN) of num>]

[´\´DIBreak´:=´ <variable (VAR) of signaldi>]

[´\´DOBreak´:=´ <variable (VAR) of signaldo>]

[´\´BreakFlag´:=´ <var or pers (INOUT) of errnum>]´;´

Continued

Continues on next page



1 Instructions

1.221. UIMsgBox - User Message Dialog Box type basic
RobotWare - OS

3HAC 16581-1  Revision: J650

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

Push button data buttondata - Push button data on page 1089

Push button result data btnres - Push button result data on page 1086

User Interaction Message Box type 
advanced

UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 
1064

User Interaction Number Tune UINumTune - User Number Tune on page 
1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 1032

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 1037

FlexPendant interface Product Specification - Controller Software 
IRC5, RobotWare 5.0, section Communication 
- FlexPendant Interface

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



1 Instructions

1.222. UIShow - User Interface show

6513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.222. UIShow - User Interface show

Usage

UIShow (User Interface Show) is used to communicate with the user of the robot system on 

the available User Device such as the FlexPendant. With UIShow both individually written 

applications and standard applications can be launched from a RAPID program.

Basic examples

Basic examples of the instruction UIShow are illustrated below. 

Example 1 and example 2 only works if the files TpsViewMyAppl.dll and 

TpsViewMyAppl.gtpu.dll is present in the HOME: directory, and a warmstart has been 

performed.

Example 1
CONST string Name:="TpsViewMyAppl.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.TpsViewMyAppl";

CONST string Cmd1:="Init data string passed to the view";

CONST string Cmd2:="New init data string passed to the view";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

! Launch one view of my application MyAppl

UIShow Name, Type \InitCmd:=Cmd1 \InstanceID:=myinstance 

\Status:=mystatus;

! Update the view with new init command

UIShow Name, Type \InitCmd:=Cmd2 \InstanceID:=myinstance 

\Status:=mystatus;

The code above will launch the view TpsViewMyAppl with init command Cmd1, and then 

update the view with Cmd2.

Example 2
CONST string Name:="TpsViewMyAppl.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.TpsViewMyAppl";

CONST string Cmd1:="Init data string passed to the view";

CONST string Cmd2:="New init data string passed to the view";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

! Launch one view of my application MyAppl

UIShow Name, Type \InitCmd:=Cmd1 \Status:=mystatus;

! Launch another view of the application MyAppl

UIShow Name, Type \InitCmd:=Cmd2 \InstanceID:=myinstance 

\Status:=mystatus;

 The code above will launch the view TpsViewMyAppl with init command Cmd1. Then it 

launches another view with init command Cmd2.

Continues on next page



1 Instructions

1.222. UIShow - User Interface show

3HAC 16581-1  Revision: J652

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 3
CONST string Name:="tpsviewbackupandrestore.dll";

CONST string 

Type:="ABB.Robotics.Tps.Views.TpsViewBackupAndRestore";

VAR num mystatus:=0;

...

UIShow Name, Type \Status:=mystatus;

Launch standard application Backup and Restore.

Arguments
UIShow AssemblyName TypeName [\InitCmd] [\InstanceId] [\Status] 

[\NoCloseBtn]

AssemblyName

Data type: string

The name of the assembly that contains the view.

TypeName

Data type: string

This is the name of the view (the type to create). This is the fully qualified name of the type, 

i.e. its namespace is included.

[\InitCmd]

Init Command

Data type: string

A init data string passed to the view.

[\InstanceId]

Data type: uishownum

A parameter that represents a token used to identify a view. If a view is shown after the call 

to UIShow then a value that identifies the view is passed back. This token can then be used 

in other calls to UIShow to activate an already running view. If the value identifies an existing 

(running) view then the view will be activated. If it does not exist then a new instance will be 

created. This means that this parameter can be used to determine if a new instance will be 

launched or not. If its value identifies an already started view then this view will be activated 

regardless of the values of all other parameters. A recommendation is to use an unique 

InstanceId variable for each new application that is going to be launched with the UIShow 

instruction.

The parameter must be a persistent variable and the reason for this is that this variable should 

keep its value, even if the program pointer is moved to main. If executing the same UIShow 

as earlier and using the same variable then the same view will be activated if it is still open. 

If the view has been closed then a new view will be launched.

Continued

Continues on next page



1 Instructions

1.222. UIShow - User Interface show

6533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Status]

Data type: num

Status indicates if the operation was successful or not. Note that if this option is used then 

the RAPID execution will be waiting until the instruction is completed, i.e. the view is 

launched.

This optional parameter is primary used for debugging purpose. (See Error handling)

[\NoCloseBtn]

No Close Button

Data type: switch

NoCloseBtn disables the close button of the view.

Program execution

The UIShow instruction is used to launch individual applications on the FlexPendant. To 

launch individual applications, the assemblies have to be placed in the HOME: directory in the 

active system, or directly in the active system, or in an additional option. The 

recommendation is to place the files in the HOME: directory so that they are saved if a Backup 

and Restore is done. A warmstart is required and then the FlexPendant loads the new 

assemblies. A demand on the system is that the RobotWare option FlexPendant Interface is 

used.

It is also possible to launch standard applications such as Backup and Restore. Then there is 

no demand to have the RobotWare option FlexPendant Interface.

If using the parameter \Status then the program execution will wait until the application is 

launched. If errors in the application are not handled then it is only the result of the launch 

that is supervised. Without the \Status parameter, the FlexPendant is ordered to launch the 

application but there is no check to determine if it is possible to launch it or not.

Status Description

0 OK

-1 No space left on the FlexPendant for the new view. Maximum 6 
views can be open at the same time on the FlexPendant.

-2 Assembly could not be found, does not exist

-3 File was found, but could not be loaded

-4 Assembly exist, but no new instance could be created

-5 The typename is invalid for this assembly

-6 InstanceID does not match assembly to load

Continued

Continues on next page



1 Instructions

1.222. UIShow - User Interface show

3HAC 16581-1  Revision: J654

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If there is no client, e.g. a FlexPendant, to take care of the instruction then the system variable 

ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error handler.

If parameter \Status is used then these situations can then be dealt with by the error handler:

• If there is no space left on the FlexPendant for the assembly then the system variable 

ERRNO is set to ERR_UISHOW_FULL and the execution continues in the error handler. 

The FlexPendant can have 6 views open at the same time.

• If something else goes wrong when trying to launch a view then the system variable 

ERRNO is set to ERR_UISHOW_FATAL, and the execution continues in the error handler.

Limitations

When using UIShow instruction to launch individual applications then it is a demand that the 

system is equipped with the option FlexPendant Interface.

Applications that have been launched with the UIShow instruction do not survive power fail 

situations. POWER ON event routine can be used to setup the application again.

Syntax
UIShow

[AssemblyName ´:=´] < expression (IN) of string >’,’

[TypeName ´:=´] < expression (IN) of string >’,’

[’\’InitCmd’ :=’ < expression (IN) of string> ]

[’\’InstanceId ’:=’ < persistent (PERS) of uishownum> ]

[’\’Status ’:=’ < variable (VAR) of num> ]

[’\’NoCloseBtn ]’;’

Related information

For information about See

FlexPendant nterface Product Specification - Controller Software 
IRC5, RobotWare 5.0, section Communication 
- FlexPendant Interface

Building individual applications for the 
FlexPendant

Application manual - Robot Application Builder

uishownum uishownum - Instance ID for UIShow on page 
1223

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



1 Instructions

1.223. UnLoad - UnLoad a program module during execution
RobotWare - OS

6553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.223. UnLoad - UnLoad a program module during execution

Usage

UnLoad is used to unload a program module from the program memory during execution.

The program module must have previously been loaded into the program memory using the 

instructions Load or StartLoad - WaitLoad.

Basic examples

Basic examples of the instruction UnLoad are illustrated below.

See also More examples below.

Example 1
UnLoad diskhome \File:="PART_A.MOD";

UnLoad the program module PART_A.MOD from the program memory that was previously 

loaded into the program memory with Load. (See instruction Load). diskhome is a 

predefined string constant "HOME:".

Arguments
UnLoad [\ErrIfChanged] | [\Save] FilePath [\File]

[\ErrIfChanged]

Data type: switch

If this argument is used, and the module has been changed since it was loaded into the system, 

then the instruction will generate the error recovery code ERR_NOTSAVED.

[\Save]

Data type: switch

If this argument is used then the program module is saved before the unloading starts. The 

program module will be saved at the original place specified in the Load or StartLoad 

instruction.

FilePath

Data type: string

The file path and the file name to the file that will be unloaded from the program memory. 

The file path and the file name must be the same as in the previously executed Load or 

StartLoad instruction. The file name shall be excluded when the argument \File is used.

[\File]

Data type: string

When the file name is excluded in the argument FilePath, then it must be defined with this 

argument. The file name must be the same as in the previously executed Load or StartLoad 

instruction.

Continues on next page



1 Instructions

1.223. UnLoad - UnLoad a program module during execution
RobotWare - OS

3HAC 16581-1  Revision: J656

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

To be able to execute an UnLoad instruction in the program, a Load or StartLoad - 

WaitLoad instruction with the same file path and name must have been executed earlier in 

the program.

The program execution waits for the program module to finish unloading before the 

execution proceeds with the next instruction. 

After that the program module is unloaded, and the rest of the program modules will be 

linked.

For more information see the instructions Load or StartLoad-Waitload.

More examples

More examples of how to use the instruction UnLoad are illustrated below.

Example 1
UnLoad "HOME:/DOORDIR/DOOR1.MOD";

UnLoad the program module DOOR1.MOD from the program memory that was previously 

loaded into the program memory.

Example 2
UnLoad "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as in example 1 above but another syntax.

Example 3
Unload \Save, "HOME:" \File:="DOORDIR/DOOR1.MOD";

Same as in examples 1 and 2 above but saves the program module before unloading.

Limitations

It is not allowed to unload a program module that is executing (program pointer in the 

module).

TRAP routines, system I/O events, and other program tasks cannot execute during the 

unloading.

Avoid ongoing robot movements during the unloading.

Program stop during execution of UnLoad instruction can result in guard stop with motors off 

and error message "20025 Stop order timeout" on the FlexPendant.

Error handling

If the file in the UnLoad instruction cannot be unloaded because of ongoing execution within 

the module or wrong path (module not loaded with Load or StartLoad) then the system 

variable ERRNO is set to ERR_UNLOAD.

If the argument \ErrIfChanged is used and the module has been changed then the execution 

of this routine will set the system variable ERRNO to ERR_NOTSAVED.

Those errors can then be handled in the error handler.

Continued

Continues on next page



1 Instructions

1.223. UnLoad - UnLoad a program module during execution
RobotWare - OS

6573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
UnLoad 

[’\’ErrIfChanged ’,’] | [’\’Save ’,’]

[FilePath’:=’]<expression (IN) of string>

[’\’File’:=’ <expression (IN) of string>]’;’

Related information

For information about See

Check program references CheckProgRef - Check program references on page 37

Load a program module Load - Load a program module during execution on page 208

StartLoad - Load a program module during execution on page 
482

WaitLoad - Connect the loaded module to the task on page 
682

Continued



1 Instructions

1.224. UnpackRawBytes - Unpack data from rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J658

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.224. UnpackRawBytes - Unpack data from rawbytes data

Usage

UnpackRawBytes is used to unpack the contents of a container of type rawbytes to 

variables of type byte, num, dnum or string.

Basic examples

Basic examples of the instruction UnpackRawBytes are illustrated below.

Example 1
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num integer;

VAR dnum bigInt;

VAR num float;

VAR string string1;

VAR byte byte1;

VAR byte data1;

! Data packed in raw_data_out according to the protocol

...

Open "chan1:", io_device\Bin; 

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in\Time := 1;

Close io_device;

According to the protocol that is known to the programmer, the message is sent to device 

"chan1:". Then the answer is read from the device.

The answer contains, for an example, the following:

UnpackRawBytes raw_data_in, 1, integer \IntX := DINT;

The contents of integer will be 5.

UnpackRawBytes raw_data_in, 5, float \Float4;

The contents of float will be 234.6 decimal.

UnpackRawBytes raw_data_in, 9, string1 \ASCII:=17;

The contents of string1 will be "This is real fun!".

UnpackRawBytes raw_data_in, 26, byte1 \Hex1;

byte number: contents:

1-4 integer‘ 5’

5-8 float‘ 234.6’

9-25 string "This is real fun!"

26 hex value‘ 4D’

27 ASCII code 122, i.e. ‘z’

28-36 integer’ 4294967295’

37-40 integer’ 4294967295’

Continues on next page



1 Instructions

1.224. UnpackRawBytes - Unpack data from rawbytes data
RobotWare - OS

6593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The contents of byte1 will be ´4D´ hexadecimal.

UnpackRawBytes raw_data_in, 27, data1 \ASCII:=1;

The contents of data1 will be 122, the ASCII code for "z".

UnpackRawBytes raw_data_in, 28, bigInt \IntX := LINT;

The contents of bigInt will be 4294967295.

UnpackRawBytes raw_data_in, 37, bigInt \IntX := UDINT;

The contents of bigInt will be 4294967295.

Arguments
UnpackRawBytes RawData [ \Network ] StartIndex Value  

[ \Hex1 ] | [ \IntX ] | [ \Float4 ] | [ \ASCII ]

RawData

Data type: rawbytes

Variable container to unpack data from.

[ \Network ]

Data type: switch

Indicates that integer and float shall be unpacked from big-endian (network order) 

represented in RawData. ProfiBus and InterBus use big-endian.

Without this switch, integer and float will be unpacked in little-endian (not network order) 

representation from RawData. DeviceNet uses little-endian.

Only relevant together with option parameter \IntX - UINT, UDINT, ULINT, INT, DINT, 

LINT and \Float4.

StartIndex

Data type: num

StartIndex, between 1 and 1024, indicates where to start unpacking data from RawData.

Value

Data type: anytype

Variable containing the data that was unpacked from RawData.

Allowed data types are: byte, num, dnum or string. Array cannot be used.

[ \Hex1 ]

Data type: switch

The data to be unpacked and placed in Value has hexadecimal format in 1 byte and will be 

converted to decimal format in a byte variable.

[ \IntX ]

Data type: inttypes

The data to be unpacked has the format according to the specified constant of data type 

inttypes. The data will be converted to a num or a dnum variable containing an integer and 

stored in Value.

See Predefined data.

Continued

Continues on next page



1 Instructions

1.224. UnpackRawBytes - Unpack data from rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J660

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Float4 ]

Data type: switch

The data to be unpacked and placed in Value has float, 4 bytes, format, and it will be 

converted to a num variable containing a float.

[ \ASCII ]

Data type: num

The data to be unpacked and placed in Value has byte or string format.

If Value is of type byte then the data will be interpreted as ASCII code and converted to 

byte format (1 character).

If Value is of type string then the data will be stored as string (1...80 characters). String 

data is not NULL terminated in data of type rawbytes.

One of arguments \Hex1, \IntX, \Float4 or \ASCII must be programmed.

The following combinations are allowed:

*) Must be an integer within the value range of selected symbolic constant USINT, UINT, 

UDINT, SINT, INT or DINT.

**) Must be an integer within the value range of selected symbolic constant USINT, UINT, 

UDINT, ULINT, SINT, INT, DINT or LINT.

Program execution

During program execution data is unpacked from the container of type rawbytes into a 

variable of type anytype.

Predefined data

The following symbolic constants of the data type inttypes are predefined and can be used 

to specify the integer in parameter \IntX.

Data type of Value: Allowed option parameters:

num *) \IntX

dnum **) \IntX

num \Float4

string \ASCII:=n with n between 1 and 80

byte \Hex1 \ASCII:=1

Symbolic 
constant

Constant 
value

Integer format Integer value range

USINT 1 Unsigned 1 byte integer 0 ... 255

UINT 2 Unsigned 2 byte integer 0 ... 65 535

UDINT 4 Unsigned 4 byte integer 0 ... 8 388 608 *)

0 ... 4 294 967 295 ****) 

ULINT 8 Unsigned 8 byte integer 0 ... 4 503 599 627 370 496**)

SINT - 1 Signed 1 byte integer - 128... 127

INT - 2 Signed 2 byte integer - 32 768 ... 32 767

Continued

Continues on next page



1 Instructions

1.224. UnpackRawBytes - Unpack data from rawbytes data
RobotWare - OS

6613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

*) RAPID limitation for storage of integer in data type num.

**) RAPID limitation for storage of integer in data type dnum.

***) Range when using a dnum variable and inttype DINT.

****) Range when using a dnum variable and inttype UDINT.

Syntax
UnpackRawBytes

[RawData ´:=´ ] < variable (VAR) of rawbytes>

[ ’\’ Network ] ´,´

[StartIndex ´:=´ ] < expression (IN) of num> ´,´

[Value ’:=’ ] < variable (VAR) of anytype>

[ ’\’ Hex1 ]

| [ ’\’ IntX’ :=’ < expression (IN) of inttypes>]

| [’ \’ Float4 ]

| [ ’\’ ASCII‘ :=’ < expression (IN) of num>] ’;’

Related information

DINT - 4 Signed 4 byte integer - 8 388 607 ... 8 388 608 *)

-2 147 483 648 ... 2 147 483 
647 ***)

LINT - 8 Signed 8 byte integer - 4 503 599 627 370 496...  4 
503 599 627 370 496 **)

Symbolic 
constant

Constant 
value

Integer format Integer value range

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data on 
page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of rawbytes data 
on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of rawbytes data 
on page 67

Pack DeviceNet header into 
rawbytes data

PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data on 
page 290

Write rawbytes data WriteRawBytes - Write rawbytes data on page 725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes data 
on page 658

Bit/Byte Functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics - Bit 
Functions

String functions Technical reference manual - RAPID overview, 
section RAPID Summary - String Functions

Continued



1 Instructions

1.225. VelSet - Changes the programmed velocity
RobotWare - OS

3HAC 16581-1  Revision: J662

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.225. VelSet - Changes the programmed velocity

Usage

VelSet is used to increase or decrease the programmed velocity of all subsequent positioning 

instructions. This instruction is also used to maximize the velocity.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction VelSet are illustrated below.

See also More examples on page 663. 

Example 1
VelSet 50, 800;

All the programmed velocities are decreased to 50% of the value in the instruction. However, 

the TCP velocity is not permitted to exceed 800 mm/s.

Arguments
VelSet Override Max

Override

Data type: num

Desired velocity as a percentage of programmed velocity. 100% corresponds to the 

programmed velocity. 

Max

Data type: num

Maximum TCP velocity in mm/s.

Program execution

The programmed velocity of all subsequent positioning instructions is affected until a new 

VelSet instruction is executed.

The argument Override affects:

• All velocity components (TCP, orientation, rotating, and linear external axes) in 

speeddata.

• The programmed velocity override in the positioning instruction (the argument \V).

• Timed movements.

The argument Override does not affect:

• The welding speed in welddata.

• The heating and filling speed in seamdata.

Continues on next page



1 Instructions

1.225. VelSet - Changes the programmed velocity
RobotWare - OS

6633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The argument Max only affects the velocity of the TCP.

The default values for Override and Max are 100% and vmax.v_tcp mm/s *) respectively. 

These values are automatically set

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

*) Max. TCP speed for the used robot type and normal practical TCP values. The RAPID 

function MaxRobSpeed returns the same value.

More examples

More examples of how to use the instruction VelSet are illustrated below.

Example 1
VelSet 50, 800;

MoveL p1, v1000, z10, tool1;

MoveL p2, v2000, z10, tool1;

MoveL p3, v1000\T:=5, z10, tool1;

The speed is 500 mm/s to point p1 and 800 mm/s to p2. It takes 10 seconds to move from p2 

to p3.

Limitations

The maximum speed is not taken into consideration when the time is specified in the 

positioning instruction.

Syntax
VelSet

[ Override ´:=´ ] < expression (IN) of num > ´,´

[ Max ´:=´ ] < expression (IN) of num > ´;´

Related information

For information about See

Definition of velocity speeddata - Speed data on page 1185

Max. TCP speed for this robot MaxRobSpeed - Maximum robot speed on page 892

Positioning instructions Technical reference manual - RAPID overview, section 
RAPID summary - Motion

Continued



1 Instructions

1.226. WaitAI - Waits until an analog input signal value is set
RobotWare - OS

3HAC 16581-1  Revision: J664

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.226. WaitAI - Waits until an analog input signal value is set

Usage

WaitAI (Wait Analog Input) is used to wait until an analog input signal value is set.

Basic examples

Basic examples of the instruction WaitAI are illustrated below.

Example 1
WaitAI ai1, \GT, 5;

Program execution only continues after the ai1 analog input has value greater than 5.

Example 2
WaitAI ai1, \LT, 5;

Program execution only continues after the ai1 analog input has value less than 5.

Arguments
WaitAI Signal [\LT] | [\GT] Value [\MaxTime] [\ValueAtTimeout]

Signal

Data type: signalai

The name of the analog input signal.

[\LT]

Less Than

Data type: switch

If using this parameter, the WaitAI instruction waits until the analog signal value is less than 

the value in Value.

[\GT]

Greater Than

Data type: switch

If using this parameter the WaitAI instruction waits until the analog signal value is greater 

than the value in Value.

Value

Data type: num

The desired value of the signal. 

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is met, the error handler will be called, if there is one, with the error code 

ERR_WAIT_MAXTIME. If there is no error handler, the execution will be stopped.

Continues on next page



1 Instructions

1.226. WaitAI - Waits until an analog input signal value is set
RobotWare - OS

6653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\ValueAtTimeout]

Data type: num

If the instruction time-out, the current signal value will be stored in this variable. The variable 

will only be set if the system variable ERRNO is set to ERR_WAIT_MAXTIME.

Program execution

If the value of the signal is correct when the instruction is executed, the program simply 

continues with the following instruction.

If the signal value is incorrect, the robot enters a waiting state and the program continues 

when the signal changes to the correct value. The change is detected with an interrupt, which 

gives a fast response (not polled).

When the robot is waiting, the time is supervised. By default, the robot can wait forever, but 

the maximal waiting time can be specified with the optional argument \MaxTime. If this max. 

time is exceeded, an error is raised.

If program execution is stopped, and later restarted, the instruction evaluates the currentvalue 

of the signal. Any change during program stop is rejected.

In manual mode and if the waiting time is greater than 3 s, an alert box will pop up asking if 

you want to simulate the instruction. If you do not want the alert box to appear, you can set 

system parameter SimMenu to NO (Technical reference manual - System parameters, section 

Controller - System Misc).

More examples

More examples of the instruction WaitAI are illustrated below.

Example 1
VAR num myvalattimeout:=0;

WaitAO ai1, \LT, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of ai1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if ai1 is less than 5, or when timing out. If timing out, the 

value of the signal ai1 at timeout can be logged without another read of signal.

Continued

Continues on next page



1 Instructions

1.226. WaitAI - Waits until an analog input signal value is set
RobotWare - OS

3HAC 16581-1  Revision: J666

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If there is a time-out (parameter \MaxTime) before the signal changes to the right value, the 

system variable ERRNO is set to ERR_WAIT_MAXTIME and the execution continues in the error 

handler.

If there is no contact with the I/O unit, the system variable ERRNO is set to ERR_NORUNUNIT 

and the execution continues in the error handler.

If the programmed Value argument for the specified analog input signal Signal is outside 

limits, the system variable ERRNO is set to ERR_AO_LIM and the execution continues in the 

error handler.

These situations can then be dealt with by the error handler.

Syntax
WaitAI 

[ Signal ’:=’ ] < variable (VAR) of signalai> ´,´

[ ’\’ LT] | [ ’\’ GT] ’,’

[ Value ’:=’ ] < expression (IN) of num>

[’\’MaxTime ´:=’<expression (IN) of num>]

[ ’\’ValueAtTimeout’ :=’ < variable (VAR) of num >] ’;’

Related information

For information about See

Waiting until a condition is satisfied WaitUntil - Waits until a condition is met on page 
697

Waiting for a specified period of time WaitTime - Waits a given amount of time on page 
695

Waiting until an analog output is set/reset WaitAO - Waits until an analog output signal value 
is set on page 667

Continued



1 Instructions

1.227. WaitAO - Waits until an analog output signal value is set
RobotWare - OS

6673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.227. WaitAO - Waits until an analog output signal value is set

Usage

WaitAO (Wait Analog Output) is used to wait until an analog output signal value is set.

Basic examples

Basic examples of the instruction WaitAO are illustrated below.

Example 1
WaitAO ao1, \GT, 5;

Program execution only continues after the ao1 analog output has value greater than 5.

Example 2
WaitAO ao1, \LT, 5;

Program execution only continues after the ao1 analog output has value less than 5.

Arguments
WaitAO Signal [\LT] | [\GT] Value [\MaxTime] [\ValueAtTimeout]

Signal

Data type: signalao

The name of the analog output signal.

[\LT]

Less Than

Data type: switch

If using this parameter, the WaitAO instruction waits until the analog signal value is less than 

the value in Value.

[\GT]

Greater Than

Data type: switch

If using this parameter, the WaitAO instruction waits until the analog signal value is greater 

than the value in Value.

Value

Data type: num

The desired value of the signal. 

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is met, the error handler will be called, if there is one, with the error code 

ERR_WAIT_MAXTIME. If there is no error handler, the execution will be stopped.

Continues on next page



1 Instructions

1.227. WaitAO - Waits until an analog output signal value is set
RobotWare - OS

3HAC 16581-1  Revision: J668

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\ValueAtTimeout]

Data type: num

If the instruction time-out, the current signal value will be stored in this variable. The variable 

will only be set if the system variable ERRNO is set to ERR_WAIT_MAXTIME.

Program execution

If the value of the signal is correct when the instruction is executed, the program simply 

continues with the following instruction.

If the signal value is incorrect, the robot enters a waiting state and the program continues 

when the signal changes to the correct value. The change is detected with an interrupt, which 

gives a fast response (not polled).

When the robot is waiting, the time is supervised. By default, the robot can wait forever, but 

the maximal waiting time can be specified with the optional argument \MaxTime. If this 

max. time is exceeded, an error is raised.

If program execution is stopped, and later restarted, the instruction evaluates the currentvalue 

of the signal. Any change during program stop is rejected.

In manual mode and if the waiting time is greater than 3 s, an alert box will pop up asking if 

you want to simulate the instruction. If you do not want the alert box to appear, you can set 

system parameter SimMenu to NO (Technical reference manual - System parameters, section 

Controller - System Misc).

More examples

More examples of the instruction WaitAO are illustrated below.

Example 1
VAR num myvalattimeout:=0;

WaitAO ao1, \LT, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of ao1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if ao1 is less than 5, or when timing out. If timing out, the 

value of the signal ao1 at timeout can be logged without another read of signal.

Continued

Continues on next page



1 Instructions

1.227. WaitAO - Waits until an analog output signal value is set
RobotWare - OS

6693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If there is a time-out (parameter \MaxTime) before the signal changes to the right value, the 

system variable ERRNO is set to ERR_WAIT_MAXTIME and the execution continues in the error 

handler.

If there is no contact with the I/O unit, the system variable ERRNO is set to ERR_NORUNUNIT 

and the execution continues in the error handler.

If the programmed Value argument for the specified analog output signal Signal is outside 

limits, the system variable ERRNO is set to ERR_AO_LIM and the execution continues in the 

error handler.

These situations can then be dealt with by the error handler.

Syntax
WaitAO 

[ Signal ’:=’ ] < variable (VAR) of signalao> ´,’

[ ’\’ LT] | [ ’\’ GT] ’,’

[ Value ’:=’ ] < expression (IN) of num>

[’\’MaxTime ´:=’<expression (IN) of num>]

[ ’\’ValueAtTimeout’ :=’ < variable (VAR) of num >] ’;’

Related information

For information about See

Waiting until a condition is satisfied WaitUntil - Waits until a condition is met on page 
697

Waiting for a specified period of time WaitTime - Waits a given amount of time on page 
695

Waiting until an analog input is set/reset WaitAI - Waits until an analog input signal value is 
set on page 664

Continued



1 Instructions

1.228. WaitDI - Waits until a digital input signal is set
RobotWare - OS

3HAC 16581-1  Revision: J670

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.228. WaitDI - Waits until a digital input signal is set

Usage

WaitDI (Wait Digital Input) is used to wait until a digital input is set.

Basic examples

Basic examples of the instruction WaitDI are illustrated below.

Example 1
WaitDI di4, 1;

Program execution continues only after the di4 input has been set.

Example 2
WaitDI grip_status, 0;

Program execution continues only after the grip_status input has been reset.

Arguments
WaitDI Signal Value [\MaxTime] [\TimeFlag]

Signal

Data type: signaldi

The name of the signal.

Value

Data type: dionum

The desired value of the signal. 

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is met then the error handler will be called, if there is one, with the error 

code ERR_WAIT_MAXTIME. If there is no error handler then the execution will be stopped.

[\TimeFlag]

Timeout Flag

Data type: bool

The output parameter that contains the value TRUE if the maximum permitted waiting time 

runs out before the condition is met. If this parameter is included in the instruction then it is 

not considered to be an error if the max. time runs out. This argument is ignored if the 

MaxTime argument is not included in the instruction.

Continues on next page



1 Instructions

1.228. WaitDI - Waits until a digital input signal is set
RobotWare - OS

6713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the value of the signal is correct, when the instruction is executed, then the program simply 

continues with the following instruction.

If the signal value is not correct then the robot enters a waiting state and when the signal 

changes to the correct value, the program continues. The change is detected with an interrupt, 

which gives a fast response (not polled).

When the robot is waiting, the time is supervised, and if it exceeds the max time value then 

the program will continue if a TimeFlag is specified or raise an error if it’s not. If a 

TimeFlag is specified then this will be set to TRUE if the time is exceeded. Otherwise it will 

be set to FALSE.

If program execution is stopped, and later restarted, the instruction evaluates the currentvalue 

of the signal. Any change during program stop is rejected.

In manual mode, after waiting in 3 s then an alert box will pop up asking if you want to 

simulate the instruction. If you don’t want the alert box to appear you can set the system 

parameter SimMenu to NO (Technical reference manual - System parameters, section 

Controller - System Misc).

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Syntax
WaitDI 

[ Signal ’:=’ ] < variable (VAR) of signaldi>’ ,’

[ Value ’:=’ ] < expression (IN) of dionum>

[’\’MaxTime’ :=’<expression (IN) of num>]

[’\’TimeFlag’:=’<variable (VAR) of bool>] ’;’

Related information

For information about See

Waiting until a condition is satisfied WaitUntil - Waits until a condition is met on page 
697

Waiting for a specified period of time WaitTime - Waits a given amount of time on page 
695

Continued



1 Instructions

1.229. WaitDO - Waits until a digital output signal is set
RobotWare - OS

3HAC 16581-1  Revision: J672

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.229. WaitDO - Waits until a digital output signal is set

Usage

WaitDO (Wait Digital Output) is used to wait until a digital output is set.

Basic examples

Basic examples of the instruction WaitDO are illustrated below.

Example 1
WaitDO do4, 1;

Program execution continues only after the do4 output has been set.

Example 2
WaitDO grip_status, 0;

Program execution continues only after the grip_status output has been reset.

Arguments
WaitDO Signal Value [\MaxTime] [\TimeFlag]

Signal

Data type: signaldo

The name of the signal.

Value

Data type: dionum

The desired value of the signal. 

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is met and the TimeFlag argument is not used then the error handler can 

be called with the error code ERR_WAIT_MAXTIME. If there is no error handler then the 

execution will be stopped.

[\TimeFlag]

Timeout Flag

Data type: bool

The output parameter that contains the value TRUE if the maximum permitted waiting time 

runs out before the condition is met. If this parameter is included in the instruction then it is 

not considered to be an error if the maximum time runs out. This argument is ignored if the 

MaxTime argument is not included in the instruction.

Continues on next page



1 Instructions

1.229. WaitDO - Waits until a digital output signal is set
RobotWare - OS

6733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the value of the output signal is correct, when the instruction is executed, then the program 

simply continues with the following instruction.

If the value of the output signal is not correct then the robot enters a waiting state. When the 

signal changes to the correct value then the program continues. The change is detected with 

an interrupt, which gives a fast response (not polled).

When the robot is waiting, the time is supervised, and if it exceeds the maximum time value 

then the program will continue if a TimeFlag is specified or raise an error if its not. If a 

TimeFlag is specified then this will be set to TRUE if the time is exceeded. Otherwise it will 

be set to FALSE.

If program execution is stopped, and later restarted, the instruction evaluates the currentvalue 

of the signal. Any change during program stop is rejected.

In manual mode, after waiting in 3 s then an alert box will pop up asking if you want to 

simulate the instruction. If you do not want the alert box to appear you can set system 

parameter SimulateMenu to NO (Technical reference manual - System parameters, section 

Controller - System Misc).

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Syntax
WaitDO

[ Signal ´:=´] < variable (VAR) of signaldo >´,´

[ Value ’:=’ ] < expression (IN) of dionum>

[’\’MaxTime’ :=’<expression (IN) of num>]

[’\’TimeFlag’:=’<variable (VAR) of bool>]’;’

Related information

For information about See

Waiting until a condition is satisfied WaitUntil - Waits until a condition is met on page 697

Waiting for a specified period of time WaitTime - Waits a given amount of time on page 
695

Waiting until an input is set/reset WaitDI - Waits until a digital input signal is set on 
page 670

Continued



1 Instructions

1.230. WaitGI - Waits until a group of digital input signals are set
RobotWare - OS

3HAC 16581-1  Revision: J674

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.230. WaitGI - Waits until a group of digital input signals are set

Usage

WaitGI (Wait Group digital Input) is used to wait until a group of digital input signals are set 

to specified values.

Basic examples

Basic examples of the instruction WaitGI are illustrated below.

See also More examples on page 676.

Example 1
WaitGI gi4, 5;

Program execution continues only after the gi4 input has the value 5.

Example 2
WaitGI grip_status, 0;

Program execution continues only after the grip_status input has been reset.

Arguments
WaitGI Signal [\NOTEQ] | [\LT] | [\GT] Value | Dvalue [\MaxTime] 

[\ValueAtTimeout] | [\DvalueAtTimeout]

Signal

Data type: signalgi

The name of the digital group input signal.

[\NOTEQ]

NOT EQual

Data type: switch

If using this parameter, the WaitGI instruction waits until the digital group signal value 

divides from the value in Value.

[\LT]

Less Than

Data type: switch

If using this parameter, the WaitGI instruction waits until the digital group signal value is 

less than the value in Value.

[\GT]

Greater Than

Data type: switch

If using this parameter, the WaitGI instruction waits until the digital group signal value is 

greater than the value in Value.

Continues on next page



1 Instructions

1.230. WaitGI - Waits until a group of digital input signals are set
RobotWare - OS

6753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Value

Data type: num

The desired value of the signal. Must be an integer value within the working range of the used 

digital group input signal. The permitted value is dependent on the number of signals in the 

group. Max value that can be used in the Value argument is 8388608, and that is the value a 

23 bit digital signal can have as maximum value.

Dvalue

Data type: dnum

The desired value of the signal. Must be an integer value within the working range of the used 

digital group input signal. The permitted value is dependent on the number of signals in the 

group. The maximal amout of signal bits a digital group signal can have is 32. With a dnum 

variable it is possible to cover the value range 0-4294967295, which is the value range a 32 

bits digital signal can have.

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is met, the error handler will be called (if there is one) with the error code 

ERR_WAIT_MAXTIME. If there is no error handler, the execution will be stopped.

[\ValueAtTimeout]

Data type: num

If the instruction time-out, the current signal value will be stored in this variable. The variable 

will only be set if the system variable ERRNO is set to ERR_WAIT_MAXTIME. If the Dvalue 

argument is used, use argument DvalueAtTimeout to store current value on signal (reason: 

limitation of maximum integer value for num).

[\DvalueAtTimeout]

Data type: dnum

If the instruction time-out, the current signal value will be stored in this variable. The variable 

will only be set if the system variable ERRNO is set to ERR_WAIT_MAXTIME.

Continued

Continues on next page



1 Instructions

1.230. WaitGI - Waits until a group of digital input signals are set
RobotWare - OS

3HAC 16581-1  Revision: J676

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the value of the signal is correct when the instruction is executed, the program simply 

continues with the following instruction.

If the signal value is not correct, the robot enters a waiting state and the program continues 

when the signal changes to the correct value. The change is detected with an interrupt, which 

gives a fast response (not polled).

When the robot is waiting, the time is supervised. By default, the robot can wait forever, but 

the maximal waiting time can be specified with the optional argument \MaxTime. If this max. 

time is exceeded, an error is raised. 

If program execution is stopped, and later restarted, the instruction evaluates the currentvalue 

of the signal. Any change during program stop is rejected.

In manual mode and if the waiting time is greater than 3 s, an alert box will pop up asking if 

you want to simulate the instruction. If you do not want the alert box to appear, you can set 

system parameter SimMenu to NO (Technical reference manual - System parameters, section 

Controller - System Misc).

More examples

More examples of the instruction WaitGI are illustrated below.

Example 1
WaitGI gi1,\NOTEQ,0;

Program execution only continues after the gi1 differs from the value 0. 

Example 2
WaitGI gi1,\LT,1;

Program execution only continues after the gi1 is less than 1. 

Example 3
WaitGI gi1,\GT,0;

Program execution continues only after the gi1 is greater than 0. 

Example 4
VAR num myvalattimeout:=0;

WaitGI gi1, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of gi1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if gi1 is equal to 5, or when timing out. If timing out, the 

value of the signal gi1 at timeout can be logged without another read of signal.

Continued

Continues on next page



1 Instructions

1.230. WaitGI - Waits until a group of digital input signals are set
RobotWare - OS

6773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If there is a time-out (parameter \MaxTime) before the signal changes to the right value, the 

system variable ERRNO is set to ERR_WAIT_MAXTIME and the execution continues in the error 

handler.

If there is no contact with the I/O unit, the system variable ERRNO is set to ERR_NORUNUNIT 

and the execution continues in the error handler.

If the programmed Value or Dvalue argument for the specified digital group input signal 

Signal is outside limits, the system variable ERRNO is set to ERR_GO_LIM and the execution 

continues in the error handler.

These situations can then be dealt with by the error handler.

Syntax
WaitGI 

[ Signal ’:=’ ] < variable (VAR) of signalgi> ´,´

[’\’ NOTEQ] | [ ’\’ LT] | [ ’\’ GT] ’,’

[ Value ’:=’ ] < expression (IN) of num>

| [ Dvalue’ :=’ ] < expression (IN) of dnum>

[’\’MaxTime ´:=’<expression (IN) of num>]

[ ’\’ValueAtTimeout’ :=’ < variable (VAR) of num > ]

| [ ’\’DvalueAtTimeout’ :=’ < variable (VAR) of dnum > ]’;’

Related information

For information about See

Waiting until a condition is satisfied WaitUntil - Waits until a condition is met on page 
697

Waiting for a specified period of time WaitTime - Waits a given amount of time on page 
695

Waiting until a group of digital output 
signals are set/reset

WaitGO - Waits until a group of digital output 
signals are set on page 678

Continued



1 Instructions

1.231. WaitGO - Waits until a group of digital output signals are set
RobotWare - OS

3HAC 16581-1  Revision: J678

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.231. WaitGO - Waits until a group of digital output signals are set

Usage

WaitGO (Wait Group digital Output) is used to wait until a group of digital output signals are 

set to a specified value.

Basic examples

Basic examples of the instruction WaitGO are illustrated below.

See also More examples on page 680.

Example 1
WaitGO go4, 5;

Program execution only continues after the go4 output has value 5.

Example 2
WaitGO grip_status, 0;

Program execution only continues after the grip_status output has been reset.

Arguments
WaitGO Signal [\NOTEQ] | [\LT] | [\GT] Value | Dvalue [\MaxTime] 

[\ValueAtTimeout] | [\DvalueAtTimeout]

Signal

Data type: signalgo

The name of the digital group output signal.

[\NOTEQ]

NOT EQual

Data type: switch

If using this parameter, the WaitGO instruction waits until the digital group signal value 

divides from the value in Value.

[\LT]

Less Than

Data type: switch

If using this parameter, the WaitGO instruction waits until the digital group signal value is 

less than the value in Value.

[\GT]

Greater Than

Data type: switch

If using this parameter, the WaitGO instruction waits until the digital group signal value is 

greater than the value in Value.

Continues on next page



1 Instructions

1.231. WaitGO - Waits until a group of digital output signals are set
RobotWare - OS

6793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Value

Data type: num

The desired value of the signal. Must be an integer value within the working range of the used 

digital group output signal. The permitted value is dependent on the number of signals in the 

group. Max value that can be used in the Value argument is 8388608, and that is the value a 

23 bit digital signal can have as maximum value.

Dvalue

Data type: dnum

The desired value of the signal. Must be an integer value within the working range of the used 

digital group output signal. The permitted value is dependent on the number of signals in the 

group. The maximal amout of signal bits a digital group signal can have is 32. With a dnum 

variable it is possible to cover the value range 0-4294967295, which is the value range a 32 

bits digital signal can have.

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is met, the error handler will be called, if there is one, with the error code 

ERR_WAIT_MAXTIME. If there is no error handler, the execution will be stopped.

[\ValueAtTimeout]

Data type: num

If the instruction time-out, the current signal value will be stored in this variable. The variable 

will only be set if the system variable ERRNO is set to ERR_WAIT_MAXTIME. If the Dvalue 

argument is used, use argument DvalueAtTimeout to store current value on signal (reason: 

limitation of maximum integer value for num).

[\DvalueAtTimeout]

Data type: dnum

If the instruction time-out, the current signal value will be stored in this variable. The variable 

will only be set if the system variable ERRNO is set to ERR_WAIT_MAXTIME.

Continued

Continues on next page



1 Instructions

1.231. WaitGO - Waits until a group of digital output signals are set
RobotWare - OS

3HAC 16581-1  Revision: J680

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If the value of the signal is correct when the instruction is executed, the program simply 

continues with the following instruction.

If the signal value is incorrect, the robot enters a waiting state and the program continues 

when the signal changes to the correct value. The change is detected with an interrupt, which 

gives a fast response (not polled).

When the robot is waiting, the time is supervised. By default, the robot can wait forever, but 

the maximal waiting time can be specified with the optional argument \MaxTime. If this max. 

time is exceeded, an error is raised.

If program execution is stopped, and later restarted, the instruction evaluates the currentvalue 

of the signal. Any change during program stop is rejected.

In manual mode and if the waiting time is greater than 3 s, an alert box will pop up asking if 

you want to simulate the instruction. If you do not want the alert box to appear, you can set 

the system parameter SimMenu to NO (Technical reference manual - System parameters, 

section Controller - System Misc).

More examples

More examples of the instruction WaitGO are illustrated below.

Example 1
WaitGO go1,\NOTEQ,0;

Program execution only continues after the go1 differs from the value 0. 

Example 2
WaitGO go1,\LT,1;

Program execution only continues after the go1 is less than 1. 

Example 3
WaitGO go1,\GT,0;

Program execution only continues after the go1 is greater than 0. 

Example 4
VAR num myvalattimeout:=0;

WaitGO go1, 5 \MaxTime:=4 \ValueAtTimeout:=myvalattimeout;

ERROR

IF ERRNO=ERR_WAIT_MAXTIME THEN

TPWrite "Value of go1 at timeout:" + ValToStr(myvalattimeout);

TRYNEXT;

ELSE

! No error recovery handling

ENDIF

Program execution continues only if go1 is equal to 5, or when timing out. If timing out, the 

value of the signal go1 at timeout can be logged without another read of signal.

Continued

Continues on next page



1 Instructions

1.231. WaitGO - Waits until a group of digital output signals are set
RobotWare - OS

6813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If there is a time-out (parameter \MaxTime) before the signal changes to the right value, the 

system variable ERRNO is set to ERR_WAIT_MAXTIME and the execution continues in the error 

handler.

If there is no contact with the I/O unit, the system variable ERRNO is set to ERR_NORUNUNIT 

and the execution continues in the error handler.

If the programmed Value or Dvalue argument for the specified digital group output signal 

Signal is outside limits, the system variable ERRNO is set to ERR_GO_LIM and the execution 

continues in the error handler.

These situations can then be dealt with by the error handler.

Syntax
WaitGO 

[ Signal ’:=’ ] < variable (VAR) of signalgo> ´,´

[’\’ NOTEQ] | [ ’\’ LT] | [ ’\’ GT] ’,’

[ Value ’:=’ ] < expression (IN) of num>

| [ Dvalue’ :=’ ] < expression (IN) of dnum>

[’\’MaxTime ´:=’<expression (IN) of num>]

[ ’\’ValueAtTimeout’ :=’ < variable (VAR) of num > ]

| [ ’\’DvalueAtTimeout’ :=’ < variable (VAR) of dnum > ]’;’

Related information

For information about See

Waiting until a condition is satisfied WaitUntil - Waits until a condition is met on page 
697

Waiting for a specified period of time WaitTime - Waits a given amount of time on page 
695

Waiting until a group of digital input 
signals are set/reset

WaitGI - Waits until a group of digital input signals 
are set on page 674

Continued



1 Instructions

1.232. WaitLoad - Connect the loaded module to the task
RobotWare - OS

3HAC 16581-1  Revision: J682

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.232. WaitLoad - Connect the loaded module to the task

Usage

WaitLoad is used to connect the with StartLoad loaded module to the program task.

The loaded program module will be added to the modules already existing in the program 

memory.

The with StartLoad loaded module must be connected to the program task with the 

instruction WaitLoad before any of its symbols/routines can be used.

WaitLoad can also unload a program module if the optional switches are used. This will 

minimize the number of links (1 instead of 2).

WaitLoad can also check for any unsolved references if the optional switch \CheckRef is 

used.

Basic examples

Basic examples of the instruction WaitLoad are illustrated below.

See also More examples on page 683.

Example 1
VAR loadsession load1;

...

StartLoad "HOME:/PART_A.MOD", load1;

MoveL p10, v1000, z50, tool1 \WObj:=wobj1;

MoveL p20, v1000, z50, tool1 \WObj:=wobj1;

MoveL p30, v1000, z50, tool1 \WObj:=wobj1;

MoveL p40, v1000, z50, tool1 \WObj:=wobj1;

WaitLoad load1;

%"routine_x"%;

UnLoad "HOME:/PART_A.MOD";

Load the program module PART_A.MOD from HOME: into the program memory. In parallel, 

move the robot. Then connect the new program module to the program task and call the 

routine routine_x in the module PART_A.

Arguments
WaitLoad [\UnloadPath] [\UnloadFile] LoadNo [\CheckRef]

[\UnloadPath]

Data type: string

The file path and the file name to the file that will be unloaded from the program memory. 

The file name should be excluded when the argument \UnloadFile is used.

[\UnloadFile]

Data type: string

When the file name is excluded in the argument \UnloadPath, then it must be defined with 

this argument.

Continues on next page



1 Instructions

1.232. WaitLoad - Connect the loaded module to the task
RobotWare - OS

6833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

LoadNo

Data type: loadsession

This is a reference to the load session, created by the instruction StartLoad that is needed 

to connect the loaded program module to the program task.

[\CheckRef]

Data type: switch

Check after loading of the module for unsolved references in the program task. If not used no 

check for unsolved references are done.

Program execution

The instruction WaitLoad will first wait for the loading to be completed, if it is not already 

done, and then the module will be linked and initialized. The initiation of the loaded module 

sets all variables at module level to their initial values. 

Unresolved references will always be accepted for the loading operations StartLoad - 

WaitLoad if parameter \CheckRef is not used, but it will be a run time error on execution 

of an unresolved reference.

The system starts with the unloading operation, if specified. If the unloading of the module 

fails, then no new module will be loaded.

If any error from the loading operation, including unresolved references if use of switch 

\CheckRef, the loaded module will not be available any more in the program memory.

To obtain a good program structure, that is easy to understand and maintain, all loading and 

unloading of program modules should be done from the main module, which is always 

present in the program memory during execution.

For loading a program that contains a main procedure to a main program (with another main 

procedure), see instruction Load.

More examples

More examples of the instruction WaitLoad are illustrated below.

Example 1
StartLoad "HOME:/DOORDIR/DOOR2.MOD", load1; 

...

WaitLoad \UnloadPath:="HOME:/DOORDIR/DOOR1.MOD", load1;

Load the program module DOOR2.MOD from HOME: in the directory DOORDIR into the 

program memory and connect the new module to the task. The program module DOOR1.MOD 

will be unloaded from the program memory.

Example 2
StartLoad "HOME:" \File:="DOORDIR/DOOR2.MOD", load1;

! The robot can do some other work

WaitLoad \UnloadPath:="HOME:" \File:= "DOORDIR/DOOR1.MOD", load1;

It is the same as the instructions below but the robot can do some other work during the 

loading time and also do it faster (only one link instead of the two links below).

Load "HOME:" \File:="DOORDIR/DOOR2.MOD";

UnLoad "HOME:" \File:="DOORDIR/DOOR1.MOD";

Continued

Continues on next page



1 Instructions

1.232. WaitLoad - Connect the loaded module to the task
RobotWare - OS

3HAC 16581-1  Revision: J684

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the file specified in the StartLoad instruction cannot be found then the system variable 

ERRNO is set to ERR_FILNOTFND at execution of WaitLoad.

If some other type of problems to read the file to load then the system variable ERRNO will be 

set to ERR_IOERROR.

If argument LoadNo refers to an unknown load session then the system variable ERRNO is set 

to ERR_UNKPROC.

If the module cannot be loaded because the program memory is full then the system variable 

ERRNO is set to ERR_PRGMEMFULL.

If the module is already loaded into the program memory then the system variable ERRNO is 

set to ERR_LOADED.

If the loaded module contains syntax errors, the system variable ERRNO is set to ERR_SYNTAX.

If the loaded module result in fatal link errors, the system variable ERRNO is set to 

ERR_LINKREF.

If WaitLoad is used with the switch \CheckRef to check for any reference error and the 

program memory contains unresolved references, the system variable ERRNO is set to 

ERR_LINKREF.

The following errors can only occur when the argument \UnloadPathis used in the 

instruction WaitLoad:

• If the module specified in the argument \UnloadPath cannot be unloaded because of 

ongoing execution within the module then the system variable ERRNO is set to 

ERR_UNLOAD. 

• If the module specified in the argument \UnloadPath cannot be unloaded because the 

program module is not loaded with Load or StartLoad-WaitLoad from the RAPID 

program then the system variable ERRNO is also set to ERR_UNLOAD. 

These errors can then be handled in the ERROR handler. If some of these error occurs, the 

actual module will be unloaded and will not be available in the ERROR handler.

NOTE!

RETRY cannot be used for error recovery for any errors from WaitLoad.

Limitations

It is not possible to change the current value of some PERS variable by loading the same 

module with a new init value for the actual PERS variable.

Example:

• File my_module.mod with declaration PERS num my_pers:=1; is loaded in the 

system.

• The file my_module.mod is edited on disk with new persistent value eg. PERS num 

my_pers:=3;

• The code below is executed.

• After loading the my_module.mod again, the value of my_pers is still 1 instead of 3.

StartLoad \Dynamic, "HOME:/my_module.mod", load1;

...

WaitLoad \UnLoadPath:="HOME:/my_module.mod", load1;

Continued

Continues on next page



1 Instructions

1.232. WaitLoad - Connect the loaded module to the task
RobotWare - OS

6853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

This limitation is a consequence of PERS variable characteristic. The current value of the 

PERS variable will not be changed by the new loaded PERS init value if the PERS variable is 

in any use at the loading time.

The above problems will not occur if the following code is executed instead: 

UnLoad "HOME:/my_module.mod";

StartLoad \Dynamic, "HOME:/my_module.mod", load1;

...

WaitLoad load1;

Another option is to use a CONST for the init value and do the following assignment in the 

beginning of the execution in the new module: my_pers := my_const;

Syntax
WaitLoad

[ ’\’ UnloadPath ’:=’ <expression (IN) of string>’ ,’]

[ ’\’ UnloadFile’ :=’ <expression (IN) of string> ’,’]

[ LoadNo ’:=’ ] <variable (VAR) of loadsession>

[ ’\’ CheckRef ] ’;’

Related information

For information about See

Load a program module during 
execution

StartLoad - Load a program module during 
execution on page 482

Load session loadsession - Program load session on page 1138

Load a program module Load - Load a program module during execution on 
page 208

Unload a program module UnLoad - UnLoad a program module during 
execution on page 655

Cancel loading of a program module CancelLoad - Cancel loading of a module on page 
35

Check program references CheckProgRef - Check program references on 
page 37

Procedure call with Late binding Technical reference manual - RAPID overview, 
section Basic characteristics - Routines - Procedure 
call

Continued



1 Instructions

1.233. WaitRob - Wait until stop point or zero speed
RobotWare - OS

3HAC 16581-1  Revision: J686

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.233. WaitRob - Wait until stop point or zero speed

Usage

WaitRob waits until the robot and external axes have reached stop point or have zero speed.

Basic examples

Basic examples of the instruction WaitRob are illustrated below.

See also More examples on page 686.

Example 1
WaitRob \InPos;

Program execution waits until the robot and external axes have reached stop point. 

Arguments
WaitRob [\InPos] | [\ZeroSpeed]

[\InPos]

In Position

Data type: switch

If this argument is used then the robot and external axes must have reached the stop point 

(ToPoint of current move instruction) before the execution can continue. 

[\ZeroSpeed]

Zero Speed

Data type: switch

If this argument is used then the robot and external axes must have zero speed before the 

execution can continue.

If none of the arguments \InPos and \ZeroSpeed are entered, an error message will be 

displayed.

More examples

More examples of how to use the instruction WaitRob are illustrated below.

Example 1
PROC stop_event()

WaitRob \ZeroSpeed;

SetDO rob_moving, 0;

ENDPROC

The example shows an event routine that executes at program stop. The digital out signal 

rob_moving is 1 as long as the robot is moving and is set to 0 when the robot and external 

axes has stopped moving after a program stop.

Syntax
WaitRob

[ ‘\’ InPos ] | [ ‘\’ ZeroSpeed ]’;’ 

Continues on next page



1 Instructions

1.233. WaitRob - Wait until stop point or zero speed
RobotWare - OS

6873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Motion in general Technical reference manual - RA]PID 
overview, section Motion and I/O principles

Other positioning instructions Technical reference manual - RA]PID 
overview, section RAPID summary - Motion

Definition of stop point data stoppointdata - Stop point data on page 1189

Continued



1 Instructions

1.234. WaitSyncTask - Wait at synchronization point for other program tasks
Multitasking

3HAC 16581-1  Revision: J688

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.234. WaitSyncTask - Wait at synchronization point for other program tasks

Usage

WaitSyncTask is used to synchronize several program tasks at a special point in each 

program. Each program task waits until all program tasks have reach the named 

synchronization point.

NOTE!

WaitSyncTask only synchronize the program execution. To reach synchronization of both 

the program execution and the robot movements, the move instruction before the 

WaitSyncTask must be a stop-point in all involved program tasks. It is also possible to 

synchronize both the program execution and the robot movements by using WaitsyncTask 

\Inpos ... in all involved program tasks.

WARNING!

To reach safe synchronization functionality, the meeting point (parameter SyncID) must have 

an unique name in each program task. The name must also be the same for the program tasks 

that should meet in the meeting point.

Basic examples

Basic examples of the instruction WaitSyncTask are illustrated below.

See also More examples on page 690.

Example 1

Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

...

WaitSyncTask sync1, task_list;

...

Example 2

Program example in task T_ROB2

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

...

WaitSyncTask sync1, task_list;

...

The program task, that first reaches WaitSyncTask with identity sync1, waits until the other 

program task reaches its WaitSyncTask with the same identity sync1. Then both program 

tasks T_ROB1 and T_ROB2 continue their execution.

Continues on next page



1 Instructions

1.234. WaitSyncTask - Wait at synchronization point for other program tasks
Multitasking

6893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
WaitSyncTask [\InPos] SyncID TaskList [\TimeOut]

[\InPos]

In Position

Data type: switch

If this argument is used then the robot and external axes must have come to a standstill before 

this program task starts waiting for other program tasks to reach its meeting point specified 

in the WaitSyncTask instruction.

SyncID

Synchronization identity

Data type: syncident

Variable that specifies the name of the synchronization (meeting) point. Data type 

syncident is a non-value type only used as an identifier for naming the synchronization 

point.

The variable must be defined and have an equal name in all cooperated program tasks. It is 

recommended to always define the variable global in each program task (VAR syncident 

...).

TaskList

Data type: tasks

Persistent variable, that in a task list (array) specifies the name (string) of the program 

tasks, that should meet in the synchronization point with its name according to the argument 

SyncID.

The persistent variable must be defined and have an equal name and equal contents in all 

cooperated program tasks. It is recommended to always define the variable global in the 

system (PERS tasks ...).

[\TimeOut]

Data type: num

The max. time for waiting for the other program tasks to reach the synchronization point. 

Time-out in seconds (resolution 0.001s). If this argument is not specified then the program 

task will wait for ever.

If this time runs out before all program tasks have reached the synchronization poin then the 

error handler will be called, if there is one, with the error code ERR_WAITSYNCTASK. If there 

is no error handler then the execution will be stopped.

Continued

Continues on next page



1 Instructions

1.234. WaitSyncTask - Wait at synchronization point for other program tasks
Multitasking

3HAC 16581-1  Revision: J690

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The actual program task will wait at WaitSyncTask until the other program tasks in the 

TaskList have reached the same SyncID point. At that time the respective program task will 

continue to execute its next instruction.

WaitSyncTask can be programmed between move instructions with corner zone in between. 

Depending on the timing balance between the program tasks at execution time, the system 

can:

• at best timing, keep all corner zones.

• at worst timing, only keep the corner zone for the program task that reaches the 

WaitSyncTask last. For the other program tasks it will result in stop points.

It is possible to exclude program tasks for testing purposes from FlexPendant - Task Selection 

Panel.

The following principles can be used:

• Principle 1) Exclude the program task cycle-permanent from Task Selection Panel 

before starting from main (after set of PP to main) - This disconnection will be valid 

during the whole program cycle.

• Principle 2) Exclude the program task temporarily from the Task Selection Panel 

between some WaitSyncTask instructions in the program cycle - The system will 

only run the other connected tasks but will, with error message, force the user to 

connect the excluded program tasks before passing co-operated WaitSyncTask.

• Principle 3) If running according principle 2, it is possible to exclude some program 

task’s permanent cycle from Task Selection Panel for further running according to 

principle 1 by executing the service routine SkipTaskExec.

Note that the Task Selection Panel is locked when running the system in synchronized 

movements.

More examples

More examples of the instruction WaitSyncTask are illustrated below.

Example 1

Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

...

WaitSyncTask \InPos, sync1, task_list \TimeOut := 60;

...

ERROR

IF ERRNO = ERR_WAITSYNCTASK THEN

RETRY;

ENDIF

Continued

Continues on next page



1 Instructions

1.234. WaitSyncTask - Wait at synchronization point for other program tasks
Multitasking

6913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The program task T_ROB1 waits in instruction WaitSyncTask until its mechanical units are 

in position and after that it waits for the program task T_ROB2 to reach its synchronization 

point with the same identity. After waiting for 60 s, the error handler is called with ERRNO 

equal to ERR_WAITSYNCTASK. Then the instruction WaitSyncTask is called again for an 

additional 60 s.

Error handling

If a time-out occurs because WaitSyncTask not ready in time then the system variable 

ERRNO is set to ERR_WAITSYNCTASK.

This error can be handled in the ERROR handler.

Limitation

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

WaitSyncTask \InPos cannot be executed in a RAPID routine connected to any of the 

following special system events: PowerOn, Stop, QStop, Restart, or Step.

Syntax
WaitSyncTask

[´\´ InPos ´,´]

[ SyncID ´:=´ ] < variable (VAR) of syncident> ´,´

[ TaskList ´:=´ ] < persistent array {*} (PERS) of tasks> 

[ ´\´ TimeOut ´:=´ < expression (IN) of num > ] ´;´

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Identity for synchronization point syncident - Identity for synchronization point on page 
1200

Continued



1 Instructions

1.235. WaitTestAndSet - Wait until variable unset - then set
RobotWare -  OS

3HAC 16581-1  Revision: J692

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.235. WaitTestAndSet - Wait until variable unset - then set

Usage

WaitTestAndSet instruction waits for a specified bool persistent variable value to become 

FALSE. When the variable value becomes FALSE, the instruction will set value to TRUE and 

continue the execution. The persistent variable can be used as a binary semaphore for 

synchronization and mutual exclusion.

This instruction has the same underlying functionality as the TestAndSet function, but the 

WaitTestAndSet is waiting as long as the bool is FALSE while the TestAndSet 

instruction terminates immediately.

It is not recommended to use WaitTestAndSet instruction in a TRAP routine, UNDO 

handler, or event routines.

Examples of resources that can need protection from access at the same time:

• Use of some RAPID routines with function problems when executed in parallel.

• Use of the FlexPendant - Operator Log.

Basic examples

Basic examples of the instruction WaitTestAndSet are illustrated below.

See also More examples on page 693.

Example 1

MAIN program task:

PERS bool tproutine_inuse := FALSE;

...

WaitTestAndSet tproutine_inuse;

TPWrite "First line from MAIN";

TPWrite "Second line from MAIN";

TPWrite "Third line from MAIN";

tproutine_inuse := FALSE;

BACK1 program task:

PERS bool tproutine_inuse := FALSE;

...

WaitTestAndSet tproutine_inuse;

TPWrite "First line from BACK1";

TPWrite "Second line from BACK1";

TPWrite "Third line from BACK1";

tproutine_inuse := FALSE;

To avoid mixing up the lines in the Operator Log (one from MAIN and one from BACK1) the 

use of the WaitTestAndSet function guarantees that all three lines from each task are not 

separated.

If program task MAIN takes the semaphore WaitTestAndSet(tproutine_inuse) first 

then program task BACK1 must wait until the program task MAIN has left the semaphore. 

Continues on next page



1 Instructions

1.235. WaitTestAndSet - Wait until variable unset - then set
RobotWare -  OS

6933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
WaitTestAndSet Object

Object

Data type: bool

User defined data object to be used as semaphore. The data object must be a persistent 

variable PERS. If WaitTestAndSet are used between different program tasks then the object 

must be a global PERS.

Program execution

This instruction will in one indivisible step check and set the user defined persistent variable 

like code example below:

• if it has the value FALSE, set it to TRUE

• if it has the value TRUE, wait until it become FALSE and then set it to TRUE

IF Object = FALSE THEN

Object := TRUE;

ELSE

! Wait until it become FALSE

WaitUntil Object = FALSE;

Object := TRUE;

ENDIF

After that the instruction is ready. To avoid problems, because persistent variables keep their 

value if program pointer PP is moved to main, always set the semaphore object to FALSE in 

the START event routine.

More examples

More examples of the instruction WaitTestAndSet are illustrated below.

Example 1
PERS bool semPers:= FALSE;

...

PROC doit(...)

WaitTestAndSet semPers;

...

semPers := FALSE;

ENDPROC

NOTE!

If program execution is stopped in the routine doit and the program pointer is moved to 

main then the variable semPers will not be reset. To avoid this, reset the variable semPers 

to FALSE in the START event routine.

Syntax
WaitTestAndSet

[ Object ’:=’ ] < persistent (PERS) of bool> ´;’

Continued

Continues on next page



1 Instructions

1.235. WaitTestAndSet - Wait until variable unset - then set
RobotWare -  OS

3HAC 16581-1  Revision: J694

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Test variable and set if unset (type polled with 
WaitTime)

TestAndSet - Test variable and set if unset 
on page 1017

Continued



1 Instructions

1.236. WaitTime - Waits a given amount of time
RobotWare - OS

6953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.236. WaitTime - Waits a given amount of time

Usage

WaitTime is used to wait a given amount of time. This instruction can also be used to wait 

until the robot and external axes have come to a standstill.

Basic examples

Basic examples of the instruction WaitTime are illustrated below.

See also More examples below.

Example 1
WaitTime 0.5;

Program execution waits 0.5 seconds.

Arguments
WaitTime [\InPos] Time

[\InPos]

In Position

Data type: switch

If this argument is used then the robot and external axes must have come to a standstill before 

the waiting time starts to be counted. This argument can only be used if the task controls 

mechanical units.

Time

Data type: num

The time, expressed in seconds, that program execution is to wait. Min. value 0 s. Max. value 

no limit. Resolution 0.001 s.

Program execution

Program execution temporarily stops for the given amount of time. Interrupt handling and 

other similar functions, nevertheless, are still active.

In manual mode, if waiting time is greater than 3 s then an alert box will pop up asking if you 

want to simulate the instruction. If you do not want the alert box to appear you can set the 

system parameter Controller/System Misc./ Simulate Menu to 0.

More examples

More examples of how to use the instruction WaitTime are illustrated below.

Example 1
WaitTime \InPos,0;

Program execution waits until the robot and the external axes have come to a standstill.

Continues on next page



1 Instructions

1.236. WaitTime - Waits a given amount of time
RobotWare - OS

3HAC 16581-1  Revision: J696

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Argument \Inpos cannot be used together with SoftServo.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

WaitTime \Inpos  cannot be executed in a RAPID routine connected to any of following 

special system events: PowerOn, Stop, QStop, Restart, or Step.

Syntax
WaitTime 

[’\’InPos’,’]

[Time ’:=’] <expression (IN) of num>’;’

Related information

For information about See

Waiting until a condition is met WaitUntil - Waits until a condition is met on page 
697

Waiting until an I/O is set/reset WaitDI - Waits until a digital input signal is set on 
page 670

Continued



1 Instructions

1.237. WaitUntil - Waits until a condition is met
RobotWare - OS

6973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.237. WaitUntil - Waits until a condition is met

Usage

WaitUntil is used to wait until a logical condition is met; for example, it can wait until one 

or several inputs have been set.

Basic examples

Basic examples of the instruction WaitUntil are illustrated below.

See also More examples on page 698.

Example 1
WaitUntil di4 = 1;

Program execution continues only after the di4 input has been set.

Arguments
WaitUntil [\InPos] Cond [\MaxTime] [\TimeFlag] [\PollRate]

 [\InPos]

In Position

Data type: switch

If this argument is used then the robot and external axes must have reached the stop point 

(ToPoint of current move instruction) before the execution can continue. This argument can 

only be used if the task controls mechanical units.

Cond

Data type: bool

The logical expression that is to be waited for.

[\MaxTime]

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the condition is set then the error handler will be called, if there is one, with the error 

code ERR_WAIT_MAXTIME. If there is no error handler then the execution will be stopped.

[\TimeFlag]

Timeout Flag

Data type: bool

The output parameter that contains the value TRUE if the maximum permitted waiting time 

runs out before the condition is met. If this parameter is included in the instruction then it is 

not considered to be an error if the max. time runs out. This argument is ignored if the 

MaxTime argument is not included in the instruction.

Continues on next page



1 Instructions

1.237. WaitUntil - Waits until a condition is met
RobotWare - OS

3HAC 16581-1  Revision: J698

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\PollRate]

Polling Rate

Data type: num

The polling rate in seconds for checking if the condition in argument Cond is TRUE. This 

means that WaitUntil first check the condition at once, and if not TRUE then every specified 

second until TRUE. Min. polling rate value 0.01 s. If this argument is not used then the default 

polling rate is set to 0.1 s.

Program execution

If the programmed condition is not met on execution of a WaitUntil instruction then 

condition is checked again every 100 ms (or according value specified in argument Cond).

When the robot is waiting the time is supervised, and if it exceeds the max time value then 

the program will continue if a TimeFlag is specified or raise an error if it’s not. If a 

TimeFlag is specified then this will be set to TRUE if the time is exceeded. Otherwise it will 

be set to false.

In manual mode, after waiting more than 3 s, an alert box will pop up asking if you want to 

simulate the instruction. If you don’t want the alert box to appear then you can set system 

parameter SimMenu to NO (Technical reference manual - System parameters, section 

Controller - System Misc).

More examples

More examples of how to use the instruction WaitUntil are illustrated below.

Example 1
VAR bool timeout;

WaitUntil start_input = 1 AND grip_status = 1\MaxTime := 60  

\TimeFlag := timeout;

IF timeout THEN

TPWrite "No start order received within expected time";

ELSE

start_next_cycle;

ENDIF

If the two input conditions are not met within 60 seconds then an error message will be 

written on the display of the FlexPendant.

Example 2
WaitUntil \Inpos, di4 = 1;

Program execution waits until the robot has come to a standstill and the di4 input has been 

set.

Continued

Continues on next page



1 Instructions

1.237. WaitUntil - Waits until a condition is met
RobotWare - OS

6993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 3
WaitUntil di4 = 1 \MaxTime:=5;

..

ERROR

IF ERRNO = ERR_NORUNUNIT THEN

TPWrite "The I/O unit is not running";

TRYNEXT;

ELSEIF ERRNO = ERR_WAIT_MAX THEN

RAISE;

ELSE

Stop;

ENDIF

Program execution waits until the di4 input has been set. If the I/O unit has been disabled, 

or the waiting time expires, the execution continues in the error handler.

Error handling

If there is a time-out (parameter \MaxTime) before the condition has changed to the right 

value, the system variable ERRNO is set to ERR_WAIT_MAXTIME and the execution continues 

in the error handler.

If there is a signal used in the condition, and there is no contact with the I/O unit, the system 

variable ERRNO is set to ERR_NORUNUNIT and the execution continues in the error handler.

These situations can then be dealt with by the error handler.

Limitation

Argument \Inpos can not be used together with SoftServo.

If this instruction is preceded by a move instruction then that move instruction must be 

programmed with a stop point (zonedata fine), not a fly-by point. Otherwise restart after 

power failure will not be possible.

WaitUntil \Inpos  cannot be executed in a RAPID routine connected to any of the 

following special system events: PowerOn, Stop, QStop, Restart, or Step.

WaitUntil \Inpos  cannot be used together with StopMove to detect if the movement has 

been stopped. The WaitUntil instruction can be hanging forever in that case. It does not 

detect that the movement has stopped, it detects that the robot and external axes has reached 

the last programmed ToPoint (MoveX, SearchX, TriggX).

Syntax
WaitUntil

[’\’InPos’,’]

[Cond ’:=’] <expression (IN) of bool>

[’\’MaxTime’ :=’<expression (IN) of num>]

[’\’TimeFlag’ :=’<variable (VAR) of bool>]

[’\’PollRate’ :=’<expression (IN) of num>]’;’

Continued

Continues on next page



1 Instructions

1.237. WaitUntil - Waits until a condition is met
RobotWare - OS

3HAC 16581-1  Revision: J700

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Waiting until an input is set/reset WaitDI - Waits until a digital input signal is set on 
page 670

Waiting a given amount of time WaitTime - Waits a given amount of time on page 
695

Expressions Technical reference manual - RAPID overview, 
section Basic characteristics - Expressions

Continued



1 Instructions

1.238. WaitWObj - Wait for work object on conveyor
Conveyor Tracking

7013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.238. WaitWObj - Wait for work object on conveyor

Usage

WaitWObj (Wait Work Object) connects to a work object in the start window on the conveyor 

mechanical unit.

Basic examples

Basic examples of the instruction WaitWObj are illustrated below.

See also More examples on page 702.

Example 1
WaitWObj wobj_on_cnv1;

The program connects to the first object in the object queue that is within the start window on 

the conveyor. If there is no object in the start window then execution waits for an object.

Arguments
WaitWObj WObj [ \RelDist ][\MaxTime][\TimeFlag]

WObj

Work Object

Data type: wobjdata

The moving work object (coordinate system) to which the robot position in the instruction is 

related. The mechanical unit conveyor is to be specified by the ufmec in the work object.

[ \RelDist ] 

Relative Distance

Data type: num

Waits for an object to enter the start window and go beyond the distance specified by the 

argument. If the work object is already connected then execution waits until the object passes 

the given distance. If the object has already gone past the \RelDist then execution 

continues.

[\MaxTime]

Maximum Time

Data type: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out 

before the object connection or \Reldist reached then the error handler will be called, if 

there is one, with the error code ERR_WAIT_MAXTIME. If there is no error handler then the 

execution will be stopped.

[\TimeFlag]

Timeout Flag

Data type: bool

The output parameter that contains the value TRUE if the maximum permitted waiting time 

runs out before the object connection or \Reldist is reached. If this parameter is included 

in the instruction then it is not considered to be an error if the max. time runs out. This 

argument is ignored if the MaxTime argument is not included in the instruction.

Continues on next page



1 Instructions

1.238. WaitWObj - Wait for work object on conveyor
Conveyor Tracking

3HAC 16581-1  Revision: J702

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

If there is no object in the start window then program execution waits. If an object is present 

then the work object is connected to the conveyor and execution continues.

If a second WaitWObj instruction is issued while connected then an error is returned unless 

the \RelDist optional argument is used.

More examples

More examples of the instruction WaitWObj are illustrated below.

Example 1
WaitWObj wobj_on_cnv1\RelDist:=500.0;

If not connected then wait for the object to enter the start window and then wait for the object 

to pass the 500 mm point on the conveyor.

If already connected to the object then wait for the object to pass 500 mm.

If not connected then wait for an object in the start window. 

Example 2
WaitWObj wobj_on_cnv1\RelDist:=0.0;

If already connected then continue execution as the object has already gone past 0.0 mm.

Example 3
WaitWObj wobj_on_cnv1;

WaitWObj wobj_on_cnv1\RelDist:=0.0;

The first WaitWObj connects to the object in the start window. The second WaitWObj will 

return immediately if the object is still connected. But it will wait for the next object if the 

previous object had moved past the maximum distance or was dropped.

Example 4
WaitWObj wobj_on_cnv1\RelDist:=500.0\MaxTime:=0.1 

\Timeflag:=flag1;

The WaitWobj will return immediately if the object has passed 500 mm but otherwise will 

wait 0.1 sec for an object. If no object passes 500 mm during this 0.1 sec the instruction will 

return with flag1 =TRUE.

Limitations

It requires 50 ms to connect to the first object in the start window. Once connected, a second 

WaitWObj with \RelDist optional argument will take only normal RAPID instruction 

execution time.

Error handling

If the following errors occur during execution of the WaitWobj instruction then the system 

variable ERRNO will be set. These errors can then be handled in the error handler.

ERR_CNV_NOT_ACT The conveyor is not activated.

ERR_CNV_CONNECT The WaitWobj instruction is already connected.

ERR_CNV_DROPPED The object that the instruction WaitWobj was waiting for has 
been dropped by another task. (DSQC 354Revision 2: an object 
had passed the start window)

ERR_WAIT_MAXTIME The object did not come in time and there is no Timeflag

Continued

Continues on next page



1 Instructions

1.238. WaitWObj - Wait for work object on conveyor
Conveyor Tracking

7033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
WaitWObj

[ WObj’ :=’]< persistent (PERS) of wobjdata> ‘;’

[ ’\’ RelDist ’:=’ < expression (IN) of num > ]

[’\’MaxTime ’:=’<expression (IN) of num>]

[’\’TimeFlag ’:=’<variable (VAR) of bool>]’ ;’

Related information

For information about See

Drop workobject on conveyor DropWObj - Drop work object on conveyor on 
page 86

Conveyor tracking Application manual - Conveyor tracking

Continued



1 Instructions

1.239. WarmStart - Restart the controller
RobotWare - OS

3HAC 16581-1  Revision: J704

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.239. WarmStart - Restart the controller

Usage

WarmStart is used to restart the controller.

The system parameters can be changed from RAPID with the instruction WriteCfgData. 

You must restart the controller in order for a change to have effect on some of the system 

parameters. The restart can be done with this instruction WarmStart.

Basic examples

Basic examples of the instruction WarmStart are illustrated below.

Example 1
WriteCfgData "/MOC/MOTOR_CALIB/rob1_1","cal_offset",offset1;

WarmStart;

Writes the value of the num variable offset1 as calibration offset for axis 1 on rob1 and 

generates a restart of the controller.

Program execution

Warmstart takes effect at once and the program pointer is set to the next instruction.

Syntax
WarmStart ´;´

Related information

For information about See

Write attribute of a system parameter WriteCfgData - Writes attribute of a system 
parameter on page 721

Configuration Technical reference manual - System parameters



1 Instructions

1.240. WHILE - Repeats as long as ...
RobotWare - OS

7053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.240. WHILE - Repeats as long as ...

Usage

WHILE is used when a number of instructions are to be repeated as long as a given condition 

expression evaluates to a TRUE value.

Basic examples

Basic examples of the instruction WHILE are illustrated below.

Example 1
WHILE reg1 < reg2 DO

...

reg1 := reg1 + 1;

ENDWHILE

Repeats the instructions in the WHILE-block as long as reg1 < reg2.

Arguments
WHILE Condition DO ... ENDWHILE

Condition

Data type: bool

The condition that must be evaluated to a TRUE value for the instructions in the WHILE-block 

to be executed.

Program execution

1. The condition expression is evaluated. If the expression evaluates to a TRUE value then 

the instructions in the WHILE-block are executed.

2. The condition expression is then evaluated again, and if the result of this evaluation is 

TRUE then the instructions in the WHILE-block are executed again.

3. This process continues until the result of the expression evaluation becomes FALSE.

The iteration is then terminated and the program execution continues from the instruction 

after the WHILE-block.

If the result of the expression evaluation is FALSE at the very outset then the instructions in 

the WHILE-block are not executed at all, and the program control transfers immediately to the 

instruction that follows after the WHILE-block.

Remarks

If it is possible to determine the number of repetitions then the FOR instruction can be used.

Syntax
(EBNF)

WHILE <conditional expression> DO

<instruction list>

ENDWHILE

Continues on next page



1 Instructions

1.240. WHILE - Repeats as long as ...
RobotWare - OS

3HAC 16581-1  Revision: J706

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Expressions Technical reference manual - RAPID overview, 
section Basic characteristics - Expressions

Repeats a given number of times FOR - Repeats a given number of times on page 
108

Continued



1 Instructions

1.241. WorldAccLim - Control acceleration in world coordinate system
RobotWare - OS

7073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.241. WorldAccLim - Control acceleration in world coordinate system

Usage

WorldAccLim (World Acceleration Limitation) is used to limit the acceleration/deceleration 

of the tool (and payload) in the world coordinate system.

Only implemented for robot type IRB5400-04, IRB6600, and IRB7600 with track motion.

The limitation will be achieved all together in the gravity center point of the actual tool, actual 

payload (if present), and the mounting flange of the robot.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the instruction WorldAccLim are illustrated below.

Example 1
WorldAccLim \On := 3.5;

Acceleration is limited to 3.5 m/s2.

Example 2
WorldAccLim \Off;

The acceleration is reset to maximum (default). 

Arguments
WorldAccLim [\On]|[\Off]

[ \On ]

Data type: num

The absolute value of the acceleration limitation in m/s2.

[ \Off ]

Data type: switch

Maximum acceleration (default).

Program execution

The acceleration limitations applies for the next executed robot segment and is valid until a 

new WorldAccLim instruction is executed.

The maximum acceleration (WorldAccLim \Off) is automatically set

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

It is recommended to use just one type of limitation of the acceleration. If a combination of 

instructions WorldAccLim, AccSet, and PathAccLim are done then the system reduces the 

acceleration/deceleration in the following order:

• according WorldAccLim

• according AccSet

• according PathAccLim

Continues on next page



1 Instructions

1.241. WorldAccLim - Control acceleration in world coordinate system
RobotWare - OS

3HAC 16581-1  Revision: J708

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The minimum acceleration allowed is 1 m/s2.

Error handling

If the argument On is set to a value that is too low then the system variable ERRNO is set to 

ERR_ACC_TOO_LOW. This error can then be handled in the error handler.

Syntax
WorldAccLim

[´\’On ’:=’ <expression (IN) of num>] | [´\’Off ]’;’

Related information

For information about See

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Motion settings data motsetdata - Motion settings data on page 1141

Reduction of acceleration AccSet - Reduces the acceleration on page 15

Limitation of acceleration along the path PathAccLim - Reduce TCP acceleration along 
the path on page 295

Continued



1 Instructions

1.242. Write - Writes to a character-based file or serial channel
RobotWare - OS

7093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.242. Write - Writes to a character-based file or serial channel

Usage

Write is used to write to a character-based file or serial channel. The value of certain data 

can be written as well as text.

Basic examples

Basic examples of the instruction Write are illustrated below.

See also More examples on page 711.

Example 1
Write logfile, "Execution started";

The text Execution started is written to the file with reference name logfile.

Example 2
VAR num reg1:=5;

...

Write logfile, "No of produced parts="\Num:=reg1;

The text No of produced parts=5, is written to the file with the reference name 

logfile.

Arguments
Write IODevice String [\Num] | [\Bool] | [\Pos] | [\Orient] | 

[\Dnum] [\NoNewLine]

IODevice

Data type: iodev

The name (reference) of the current file or serial channel.

String

Data type: string

The text to be written.

[\Num]

Numeric

Data type: num

The data whose numeric values are to be written after the text string.

[\Bool]

Boolean

Data type: bool

The data whose logical values are to be written after the text string.

[\Pos]

Position

Data type: pos

The data whose position is to be written after the text string.

Continues on next page



1 Instructions

1.242. Write - Writes to a character-based file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J710

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Orient]

Orientation

Data type: orient

The data whose orientation is to be written after the text string.

[\Dnum]

Numeric

Data type: dnum

The data whose numeric values are to be written after the text string.

[\NoNewLine]

Data type: switch

Omits the line-feed character that normally indicates the end of the text, i.e. next write 

instruction will continue on the same line.

Program execution

The text string is written to a specified file or serial channel. A line-feed character (LF) is also 

written, but can be omitted if the argument \NoNewLine is used. 

If one of the arguments \Num, \Bool, \Pos, or \Orient is used then its value is first 

converted to a text string before being added to the first string. The conversion from value to 

text string takes place as follows:

The value is converted to a string with standard RAPID format. This means in principle 6 

significant digits. If the decimal part is less than 0.000005 or greater than 0.999995, the 

number is rounded to an integer.

Argument Value Text string

\Num 23 “23”

\Num 1.141367 “1.14137”

\Bool TRUE “TRUE”

\Pos [1817.3,905.17,879.11] "[1817.3,905.17,879.11]"

\Orient [0.96593,0,0.25882,0] “[0.96593,0,0.25882,0]"

\Dnum 4294967295 "4294967295"

Continued

Continues on next page



1 Instructions

1.242. Write - Writes to a character-based file or serial channel
RobotWare - OS

7113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction Write are illustrated below.

Example 1
VAR iodev printer;

VAR num reg1:=0

VAR num stopprod_value:=0

...

Open "com2:", printer\Write;

stopprod_value:=stopprod;

WHILE stopprod_value = 0 DO

produce_part;

reg1:=reg1+1;

Write printer, "Produced part="\Num:=reg1\NoNewLine;

Write printer, " "\NoNewLine;

Write printer, CTime();

stopprod_value:=stopprod;

ENDWHILE

Close printer;

A line, including the number of the produced part and the time, is outputed to a printer each 

cycle. The printer is connected to serial channel com2:. The printed message could look like 

this: 

Limitations

The arguments \Num, \Dnum, \Bool, \Pos, and \Orient are mutually exclusive and thus 

cannot be used simultaneously in the same instruction.

This instruction can only be used for files or serial channels that have been opened for writing.

Error handling

If an error occurs during writing then the system variable ERRNO is set to ERR_FILEACC. This 

error can then be handled in the error handler.

Syntax
Write

[IODevice’:=’] <variable (VAR) of iodev>’,’

[String’:=’] <expression (IN) of string>

[’\’Num’:=’ <expression (IN) of num> ]

| [’\’Bool’:=’ <expression (IN) of bool> ]

| [’\’Pos’:=’ <expression (IN) of pos> ]

| [’\’Orient’:=’ <expression (IN) of orient> ]

| [’\’Dnum’:=’ <expression (IN) of dnum> ]

[’\’NoNewLine]’;’

Produced part=473 09:47:15

Continued

Continues on next page



1 Instructions

1.242. Write - Writes to a character-based file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J712

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Opening a file or serial channel Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Continued



1 Instructions

1.243. WriteAnyBin - Writes data to a binary serial channel or file
RobotWare - OS

7133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.243. WriteAnyBin - Writes data to a binary serial channel or file

Usage

WriteAnyBin (Write Any Binary) is used to write any type of data to a binary serial channel 

or file.

Basic examples

Basic examples of the instruction WriteAnyBin are illustrated below.

See also More examples on page 714.

Example 1
VAR iodev channel2;

VAR orient quat1 := [1, 0, 0, 0];

...

Open "com2:", channel2 \Bin;

WriteAnyBin channel2, quat1;

The orient data quat1 is written to the channel referred to by channel2.

Arguments
WriteAnyBin IODevice Data

IODevice

Data type: iodev

The name (reference) of the binary serial channel or file for the writing operation.

Data

Data type: ANYTYPE

Data to be written.

Program execution

As many bytes as required for the specified data are written to the specified binary serial 

channel or file.

Limitations

This instruction can only be used for serial channels or files that have been opened for binary 

writing.

The data to be written by this instruction WriteAnyBin must be value data type such as num, 

bool, or string. Record, record component, array, or array element of these value data types 

can also be used. Entire data or partial data with semi-value or non-value data types cannot 

be used.

Error handling

If an error occurs during writing then the system variable ERRNO is set to ERR_FILEACC. This 

error can then be handled in the error handler.

Continues on next page



1 Instructions

1.243. WriteAnyBin - Writes data to a binary serial channel or file
RobotWare - OS

3HAC 16581-1  Revision: J714

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the instruction WriteAnyBin are illustrated below.

Example 1
VAR iodev channel;

VAR num input;

VAR robtarget cur_robt;

Open "com2:", channel\Bin;

! Send the control character enq

WriteStrBin channel, "\05";

! Wait for the control character ack

input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN

! Send current robot position

cur_robt := CRobT(\Tool:= tool1\WObj:= wobj1);

WriteAnyBin channel, cur_robt;

ENDIF

Close channel;

The current position of the robot is written to a binary serial channel.

Limitations

Because WriteAnyBin-ReadAnyBin is designed to only send internal controller data 

between IRC5 control systems, no data protocol is released and the data cannot be interpreted 

on any PC.

Control software development can break the compatibility, and therefore it is not possible to 

use WriteAnyBin-ReadAnyBin between different software versions of RobotWare. If a 

WriteAnyBin to file is done with RobotWare version 5.07, the file cannot be read by 

instruction ReadAnyBin with RobotWare version 5.08. And the opposite case, if a 

WriteAnyBin to file is done with RobotWare version 5.08, the file cannot be read by 

instruction ReadAnyBin with RobotWare version 5.07.

Version 0 for IRC5 controller software equal or less than RW5.07

Version 1 for IRC5 controller software equal or greater than RW5.08

Always compatible within all revisions of any software versions.

Syntax
WriteAnyBin

[IODevice’:=’] <variable (VAR) of iodev>’,’

[Data’:=’] <expression (IN) of ANYTYPE>’;’

Continued

Continues on next page



1 Instructions

1.243. WriteAnyBin - Writes data to a binary serial channel or file
RobotWare - OS

7153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Opening, etc. of serial channels or files Technical reference manual - RAPID 
overview, section RAPID summary - Com-
munication

Read data from a binary serial channel or file ReadAnyBin - Read data from a binary serial 
channel or file on page 340

Continued



1 Instructions

1.244. WriteBin - Writes to a binary serial channel
RobotWare - OS

3HAC 16581-1  Revision: J716

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.244. WriteBin - Writes to a binary serial channel

Usage

WriteBin is used to write a number of bytes to a binary serial channel.

Basic examples

Basic examples of the instruction WriteBin are illustrated below.

See also More examples on page 717.

Example 1
WriteBin channel2, text_buffer, 10;

10 characters from the text_buffer list are written to the channel referred to by channel2.

Arguments
WriteBin IODevice Buffer NChar

IODevice

Data type: iodev

Name (reference) of the current serial channel.

Buffer

Data type: array of num

The list (array) containing the numbers (characters) to be written.

NChar

Number of Characters

Data type: num

The number of characters to be written from the Buffer.

Program execution

The specified number of numbers (characters) in the list is written to the serial channel.

Limitations

This instruction can only be used for serial channels that have been opened for binary writing.

Error handling

If an error occurs during writing then the system variable ERRNO is set to ERR_FILEACC. This 

error can then be handled in the error handler.

Continues on next page



1 Instructions

1.244. WriteBin - Writes to a binary serial channel
RobotWare - OS

7173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction WriteBin are illustrated below.

Example 1
VAR iodev channel;

VAR num out_buffer{20};

VAR num input;

VAR num nchar;

Open "com2:", channel\Bin;

out_buffer{1} := 5;!( enq )

WriteBin channel, out_buffer, 1;

input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN !( ack )

out_buffer{1} := 2;!( stx )

out_buffer{2} := 72;!( ’H’ )

out_buffer{3} := 101;!( ’e’ )

out_buffer{4} := 108;!( ’l’ )

out_buffer{5} := 108;!( ’l’ )

out_buffer{6} := 111;!( ’o’ )

out_buffer{7} := 32;!( ’ ’ )

out_buffer{8} := StrToByte("w"\Char);!( ’w’ )

out_buffer{9} := StrToByte("o"\Char);!( ’o’ )

out_buffer{10} := StrToByte("r"\Char);!( ’r’ )

out_buffer{11} := StrToByte("l"\Char);!( ’l’ )

out_buffer{12} := StrToByte("d"\Char);!( ’d’ )

out_buffer{13} := 3;!( etx )

WriteBin channel, out_buffer, 13;

ENDIF

After a handshake (enq,ack) the text string Hello world (with associated control 

characters) is written to a serial channel. The function StrToByte is used in the same cases 

to convert a string into a byte (num) data. 

Syntax
WriteBin

[IODevice’:=’] <variable (VAR) of iodev>’,’

[Buffer’:=’] <array {*} (IN) of num>’,’

[NChar’:=’] <expression (IN) of num>’;’

Continued

Continues on next page



1 Instructions

1.244. WriteBin - Writes to a binary serial channel
RobotWare - OS

3HAC 16581-1  Revision: J718

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Opening, etc. of serial channels Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Convert a string to a byte data StrToByte - Converts a string to a byte data on 
page 1007

Byte data byte - Integer values 0 - 255 on page 1091

Continued



1 Instructions

1.245. WriteBlock - write block of data to device
Sensor Interface

7193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.245. WriteBlock - write block of data to device

Usage

WriteBlock is used to write a block of data to a device connected to the serial sensor 

interface. The data is fetched from a file.

The sensor interface communicates with sensors over serial channels using the RTP1 

transport protocol.

This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

• Name “COM1:”

• Connector “COM1”

• Baudrate 19200

COM_TRP:

• Name “sen1:”

• Type “RTP1”

• PhyChannel “COM1”

Basic examples

Basic example of the instruction WriteBlock are illustrated below.

Example 1
CONST string SensorPar := "flp1:senpar.cfg";    

CONST num ParBlock:= 1;

! Connect to the sensor device "sen1:" (defined in sio.cfg).

SenDevice "sen1:";

! Write sensor parameters from flp1:senpar.cfg 

! to sensor datablock 1.

WriteBlock "sen1:", ParBlock, SensorPar;

Arguments
WriteBlock device BlockNo FileName [ \TaskName ]

device

Data type: string

The I/O device name configured in sio.cfg for the sensor used.

BlockNo

Data type: num

The argument BlockNo is used to select the data block in the sensor block to be written.

Continues on next page



1 Instructions

1.245. WriteBlock - write block of data to device
Sensor Interface

3HAC 16581-1  Revision: J720

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

FileName

Data type: string

The argument FileName is used to select a file from which data is written to the data block 

in the sensor selected by the BlockNo argument.

[ \TaskName ]

Data type: string

The argument TaskName makes it possible to access devices in other RAPID tasks.

Fault management

Syntax
WriteBlock

[ device ‘:=’ ] < expression(IN) of string>’,’

[ BlockNo’ :=’ ] < expression (IN) of num > ‘,’

[ FileName’ :=’ ] < expression (IN) of string > ‘,’

[ ’\’ TaskName’ :=’ < expression (IN) of string > ] ‘;’

Related information

Error constant (ERRNO value) Description

SEN_NO_MEAS Measurement failure

SEN_NOREADY Sensor unable to handle command

SEN_GENERRO General sensor error

SEN_BUSY Sensor bus

SEN_UNKNOWN Unknown sensor

SEN_EXALARM External sensor error

SEN_CAALARM Internal sensor error

SEN_TEMP Sensor temperature error

SEN_VALUE Illegal communication value

SEN_CAMCHECK Sensor check failure

SEN_TIMEOUT Communication error

For information about See

Connect to a sensor device SenDevice - connect to a sensor device on page 425

Write a sensor variable WriteVar - write variable on page 729

Read a sensor data block ReadBlock - read a block of data from device on page 343

Configuration of sensor commu-
nication

Technical reference manual - System parameters, section 
Communication

Continued



1 Instructions

1.246. WriteCfgData - Writes attribute of a system parameter
RobotWare - OS

7213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.246. WriteCfgData - Writes attribute of a system parameter

Usage

WriteCfgData is used to write one attribute of a system parameter (configuration data).

Besides writing named parameters, it is also possible to search and update unnamed 

parameters

Basic examples

Basic examples of the instruction WriteCfgData are illustrated below. Both of these 

examples show how to write named parameter data.

Example 1
VAR num offset1 := 1.2;

...

WriteCfgData "/MOC/MOTOR_CALIB/rob1_1","cal_offset",offset1;

Written in the num variable offset1, the calibration offset for axis 1 on rob_1.

Example 2
VAR string io_unit := "my_unit";

...

WriteCfgData "/EIO/EIO_SIGNAL/process_error","Unit",io_unit;

Written in the string variable io_unit, the name of the I/O unit where the signal 

process_error is defined.

Arguments
WriteCfgData InstancePath Attribute CfgData [\ListNo]

InstancePath

Data type: string

Specifies the path to the parameter to be accessed. 

For named parameters, the format of this string is /DOMAIN/TYPE/ParameterName.

For unnamed parameters, the format of this string is /DOMAIN/TYPE/Attribute/

AttributeValue.

Attribute

Data type: string

The name of the attribute of the parameter to be written.

CfgData

Data type: anytype

The data object from which the new data to store is read. Depending on the attribute type, 

valid types are bool, num, or string.

Continues on next page



1 Instructions

1.246. WriteCfgData - Writes attribute of a system parameter
RobotWare - OS

3HAC 16581-1  Revision: J722

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\ListNo]

Data type: num

Variable holding the instance number of the Attribute + AttributeValue to be found 

and updated. 

First occurrence of the Attribute + AttributeValue has instance number 0. If there are 

more instances to search for then the returned value in \ListNo will be incremented with 1. 

Otherwise if there are no more instance then the returned value will be -1. The predefined 

constant END_OF_LIST can be used for check if there are more instances to search for.

Program execution

The value of the attribute specified by the Attribute argument is set according to the value 

of the data object specified by the CfgData argument.

If using format /DOMAIN/TYPE/ParameterName in InstancePath then only named 

parameters can be accessed, i.e. parameters where the first attribute is name, Name, or NAME.

For unnamed parameters, use the optional parameter \ListNo to specify which instance to 

write the attribute value to. It is updated after each successful write to the next available 

instance to write to.

More examples

More examples of the instruction WriteCfgdata are illustrated below. Both of these 

examples show how to write to unnamed parameters.

Example 1
VAR num read_index;

VAR num write_index;

VAR string read_str;

...

read_index:=0;

write_index:=0;

ReadCfgData "/EIO/EIO_CROSS/Act1/do_13", "Res", read_str, 

\ListNo:=read_index;

WriteCfgData "/EIO/EIO_CROSS/Act1/do_13", "Res", "my"+read_str, 

\ListNo:=write_index;

Reads the resultant signal for the unnamed digital actor signal do_13 and places the name in 

the string variable read_str. Then update the name to di_13 with prefix "my".

In this example, domain EIO has the following cfg code:

EIO_CROSS:

-Res "di_1" -Act1 "do_2"

-Res "di_2" -Act1 "do_2"

-Res "di_13" -Act1 "do_13"

Continued

Continues on next page



1 Instructions

1.246. WriteCfgData - Writes attribute of a system parameter
RobotWare - OS

7233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
VAR num read_index;

VAR num write_index;

VAR string read_str;

...

read_index:=0;

write_index:=0;

WHILE read_index <> END_OF_LIST DO

ReadCfgData "/EIO/EIO_SIGNAL/Unit/USERIO", "Name", read_str, 

\ListNo:=read_index;

IF read_index <> END_OF_LIST THEN

WriteCfgData "/EIO/EIO_SIGNAL/Unit/USERIO", "Name", 

"my"+read_str, \ListNo:=write_index;

ENDIF

ENDWHILE

Read the names of all signals defined for the I/O unit USERIO. Change the names on the 

signals to the read name with the prefix "my".

In this example, domain EIO has the following cfg code:

EIO_SIGNAL:

-Name "USERDO1" -SignalType "DO" -Unit "USERIO" -UnitMap "0"

-Name "USERDO2" -SignalType "DO" -Unit "USERIO" -UnitMap "1"

-Name "USERDO3" -SignalType "DO" -Unit "USERIO" -UnitMap "2"

Error handling

If it is not possible to find the data specified with “InstancePath + Attribute” in the 

configuration database then the system variable ERRNO is set to ERR_CFG_NOTFND. 

If the data type for parameter CfgData is not equal to the real data type for the found data 

specified with“InstancePath + Attribute” in the configuration database then the system 

variable ERRNO is set to ERR_CFG_ILLTYPE.

If the data for parameter CfgData is outside limits (max./min. value) then the system variable 

ERRNO is set to ERR_CFG_LIMIT.

If trying to write internally written protected data then the system variable ERRNO is set to 

ERR_CFG_INTERNAL.

If variable in argument \ListNo has a value outside range of available instances (0 ... n) 

when executing the instruction then ERRNO is set to ERR_CFG_OUTOFBOUNDS.

These errors can then be handled in the error handler.

Continued

Continues on next page



1 Instructions

1.246. WriteCfgData - Writes attribute of a system parameter
RobotWare - OS

3HAC 16581-1  Revision: J724

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The conversion from RAPID program units (mm, degree, second etc.) to system parameter 

units (m, radian, second etc.) for CfgData of data type num must be done by the user in the 

RAPID program.

You must manually restart the controller or execute the instruction WarmStart in order for 

the change to have effect.

If using format /DOMAIN/TYPE/ParameterName in InstancePath then only named 

parameters can be accessed, i.e. parameters where the first attribute is name, Name, or NAME.

RAPID strings are limited to 80 characters. In some cases, this can be in theory too small for 

the definition of InstancePath, Attribute, or CfgData.

Predefined data

The predefined constant END_OF_LIST with value -1 can be used to stop writing when no 

more instances can be found.

Syntax
WriteCfgData 

[ InstancePath’ :=’ ] < expression (IN) of string >’,’

[ Attribute’ :=’ ] < expression (IN) of string >’,’

[ CfgData’ :=’ ] < expression (IN) of anytype >

[’\’ListNo’:=’ < variable (VAR) of num >]’;’

Related information

For information about See

Definition of string string - Strings on page 1195

Read attribute of a system parameter ReadCfgData - Reads attribute of a system 
parameter on page 345

Get robot name in current task RobName - Get the TCP robot name on page 966

Configuration Technical reference manual - System parameters

Warm start of the system WarmStart - Restart the controller on page 704

Continued



1 Instructions

1.247. WriteRawBytes - Write rawbytes data
RobotWare - OS

7253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.247. WriteRawBytes - Write rawbytes data

Usage

WriteRawBytes is used to write data of type rawbytes to a device opened with Open\Bin.

Basic examples

Basic examples of the instruction WriteRawBytes are illustrated below.

Example 1
VAR iodev io_device;

VAR rawbytes raw_data_out;

VAR rawbytes raw_data_in;

VAR num float := 0.2;

VAR string answer;

ClearRawBytes raw_data_out;

PackDNHeader "10", "20 1D 24 01 30 64", raw_data_out;

PackRawBytes float, raw_data_out, (RawBytesLen(raw_data_out)+1) 

\Float4;

Open "/FCI1:/dsqc328_1", io_device \Bin;

WriteRawBytes io_device, raw_data_out;

ReadRawBytes io_device, raw_data_in \Time:=1;

Close io_device;

UnpackRawBytes raw_data_in, 1, answer \ASCII:=10;

In this example raw_data_out is cleared and then packed with DeviceNet header and a float 

with value 0.2.

A device,  "/FCI1/:dsqc328_1", is opened and the current valid data in raw_data_out 

is written to the device. Then the program waits for at most 1 second to read from the device, 

which is stored in the raw_data_in.

After having closed the device “/FCI1/:dsqc328_1”, then the read data is unpacked as a 

string of 10 characters and stored in answer.

Arguments
WriteRawBytes IODevice RawData [\NoOfBytes]

IODevice

Data type: iodev

IODevice is the identifier of the device to which RawData shall be written.

RawData

Data type: rawbytes

RawData is the data container to be written to IODevice.

Continues on next page



1 Instructions

1.247. WriteRawBytes - Write rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J726

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\NoOfBytes]

Data type: num

\NoOfBytes tells how many bytes of RawData should be written to IODevice, starting at 

index 1.

If \NoOfBytes is not present then the current length of valid bytes in the variable RawData 

is written to device IODevice.

Program execution

During program execution, data is written to the device indicated by IODevice.

If using WriteRawBytes for field bus commands, such as DeviceNet, then the field bus 

always sends an answer. The answer must be handle in RAPID with the ReadRawBytes 

instruction.

The current length of valid bytes in the RawData variable is not changed.

Error handling

If an error occurs during writing then the system variable ERRNO is set to ERR_FILEACC.

This error can then be dealt with by the error handler.

Syntax
WriteRawBytes

[IODevice ’:=’ ] < variable (VAR) of iodev> ´,’

[RawData ’:=’ ] < variable (VAR) of rawbytes>

[´\’NoOfBytes’ :=’ < expression (IN) of num>]’;’

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data 
on page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of rawbytes 
data on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of rawbytes 
data on page 67

Pack DeviceNet header into rawbytes 
data

PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data 
on page 290

Read rawbytes data ReadRawBytes - Read rawbytes data on page 
352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes 
data on page 658

Continued



1 Instructions

1.248. WriteStrBin - Writes a string to a binary serial channel
RobotWare - OS

7273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.248. WriteStrBin - Writes a string to a binary serial channel

Usage

WriteStrBin (Write String Binary) is used to write a string to a binary serial channel or 

binary file.

Basic examples

Basic examples of the instruction WriteStrBin are illustrated below.

See also More examples on page 728.

Example 1
WriteStrBin channel2, "Hello World\0A";

The string "Hello World\0A" is written to the channel referred to by channel2. The string 

is in this case ended with new line \0A. All characters and hexadecimal values written with 

WriteStrBin will be unchanged by the system.

Arguments
WriteStrBin IODevice Str

IODevice

Data type: iodev

Name (reference) of the current serial channel.

Str

String

Data type: string

The text to be written.

Program execution

The text string is written to the specified serial channel or file.

Limitations

This instruction can only be used for serial channels or files that have been opened for binary 

reading and writing.

Error handling

If an error occurs during writing then the system variable ERRNO is set to ERR_FILEACC. This 

error can then be handled in the error handler.

Continues on next page



1 Instructions

1.248. WriteStrBin - Writes a string to a binary serial channel
RobotWare - OS

3HAC 16581-1  Revision: J728

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction WriteStrBin are illustrated below.

Example 1
VAR iodev channel;

VAR num input;

Open "com2:", channel\Bin;

! Send the control character enq

WriteStrBin channel, "\05";

! Wait for the control character ack

input := ReadBin (channel \Time:= 0.1);

IF input = 6 THEN

! Send a text starting with control character stx and ending with 

etx

WriteStrBin channel, "\02Hello world\03";

ENDIF

Close channel;

After a handshake the text string Hello world (with associated control characters in 

hexadecimal) is written to a binary serial channel.

Syntax
WriteStrBin

[IODevice’:=’] <variable (VAR) of iodev>’,’

[Str’:=’] <expression (IN) of string>’;’

Related information

For information about See

Opening, etc. of serial channels Technical reference manual - RAPID 
overview, section RAPID summary - Commu-
nication

Read binary sting ReadStrBin - Reads a string from a binary 
serial channel or file on page 956

Continued



1 Instructions

1.249. WriteVar - write variable
Sensor Interface

7293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.249. WriteVar - write variable

Usage

WriteVar is used to write a variable to a device connected to the serial sensor interface.

The sensor interface communicates with sensors over serial channels using the RTP1 

transport protocol.

This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

• Name “COM1:” 

• Connector “COM1”

• Baudrate 19200

COM_TRP:

• Name “sen1:”

• Type “RTP1”

• PhyChannel “COM1”

Basic examples

Basic examples of the instruction WriteVar are illustrated below.

Example 1
! Define variable numbers

CONST num SensorOn := 6;

CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Connect to the sensor device“ sen1:” (defined in sio.cfg).

SenDevice "sen1:";

! Request start of sensor meassurements

WriteVar "sen1:", SensorOn, 1;

! Read a cartesian position from the sensor.

SensorPos.x := ReadVar "sen1:", XCoord;

SensorPos.y := ReadVar "sen1:", YCoord;

SensorPos.z := ReadVar "sen1:", ZCoord;

! Stop sensor

WriteVar "sen1:", SensorOn, 0;

Continues on next page



1 Instructions

1.249. WriteVar - write variable
Sensor Interface

3HAC 16581-1  Revision: J730

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
WriteVar device VarNo VarData [ \TaskName ]

device

Data type: string

The I/O device name configured in sio.cfg for the sensor used.

VarNo

Data type: num

The argument VarNo is used to select the sensor variable.

VarData

Data type: num

The argument VarData defines the data which is to be written to the variable selected by the 

VarNo argument.

[ \TaskName ]

Data type: string

The argument TaskName makes it possible to access devices in other RAPID tasks.

Fault management

Syntax
WriteVar

[ device ‘:=’ ] < expression (IN) of string> ’,’

[ VarNo ’:=’ ] < expression (IN) of num > ‘,’

[ VarData’ :=’ ] < expression (IN) of num > ’,’

[ ’\’ TaskName’ :=’ < expression (IN) of string > ] ‘;’

Error constant (ERRNO) value Description

SEN_NO_MEAS Measurement failure

SEN_NOREADY Sensor unable to handle command

SEN_GENERRO General sensor error

SEN_BUSY Sensor busy

SEN_UNKNOWN Unknown sensor

SEN_EXALARM External sensor error

SEN_CAALARM Internal sensor error

SEN_TEMP Sensor temperature error

SEN_VALUE Illegal communication value

SEN_CAMCHECK Sensor check failure

SEN_TIMEOUT Communication error

Continued

Continues on next page



1 Instructions

1.249. WriteVar - write variable
Sensor Interface

7313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Connect to a sensor device SenDevice - connect to a sensor device on page 425

Read a sensor variable ReadVar - Read variable from a device on page 958

Write a sensor data block WriteBlock - write block of data to device on page 719

Read a sensor data block ReadBlock - read a block of data from device on page 
343

Configuration of sensor communi-
cation

Technical reference manual - System parameters, 
section Communication

Continued



1 Instructions

1.250. WZBoxDef - Define a box-shaped world zone
World Zones

3HAC 16581-1  Revision: J732

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.250. WZBoxDef - Define a box-shaped world zone

Usage

WZBoxDef (World Zone Box Definition) is used to define a world zone that has the shape of 

a straight box with all its sides parallel to the axes of the World Coordinate System.

Basic examples

Basic examples of the instruction WZBoxDef are illustrated below.

Example 1

xx0500002205

VAR shapedata volume;

CONST pos corner1:=[200,100,100];

CONST pos corner2:=[600,400,400];

...

WZBoxDef \Inside, volume, corner1, corner2;

Define a straight box with coordinates parallel to the axes of the world coordinate system and 

defined by the opposite corners corner1 and corner2.

Arguments
WZBoxDef [\Inside] | [\Outside] Shape LowPoint HighPoint 

[\Inside]

Data type: switch

Define the volume inside the box.

[\Outside]

Data type: switch

Define the volume outside the box (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape

Data type: shapedata

Variable for storage of the defined volume (private data for the system).

Continues on next page



1 Instructions

1.250. WZBoxDef - Define a box-shaped world zone
World Zones

7333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

LowPoint

Data type: pos

Position (x,y,z) in mm defining one lower corner of the box.

HighPoint

Data type: pos

Position (x,y,z) in mm defining the corner diagonally opposite to the previous one.

Program execution

The definition of the box is stored in the variable of type shapedata (argument Shape), for 

future use in WZLimSup or WZDOSet instructions.

Limitations

The LowPoint and HighPoint positions must be valid for opposite corners (with different 

x, y, and z coordinate values).

If the robot is used to point out the LowPoint or HighPoint then work object wobj0 must 

be active (use of component trans in robtarget e.g. p1.trans as argument).

Syntax
WZBoxDef

[[’\’Inside] | [’\’Outside]’,’]

[LowPoint’:=’]<expression (IN) of pos>’,’

[Shape’:=’]<variable (VAR) of shapedata>’,’

[HighPoint’:=’]<expression (IN) of pos>’;’

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world zone on 
page 756

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world zone on 
page 734

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Define a world zone for limit joints WZLimJointDef - Define a world zone for limitation 
in joints on page 749

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital output 
on page 738

Continued



1 Instructions

1.251. WZCylDef - Define a cylinder-shaped world zone
World Zones

3HAC 16581-1  Revision: J734

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.251. WZCylDef - Define a cylinder-shaped world zone

Usage

WZCylDef (World Zone Cylinder Definition) is used to define a world zone that has the shape 

of a cylinder with the cylinder axis parallel to the z-axis of the World Coordinate System.

Basic examples

Basic examples of the instruction WZCylDef are illustrated below.

Example 1

xx0500002206

VAR shapedata volume;

CONST pos C2:=[300,200,200];

CONST num R2:=100;

CONST num H2:=200;

...

WZCylDef \Inside, volume, C2, R2, H2;

Define a cylinder with the center of the bottom circle in C2, radius R2, and height H2.

Arguments
WZCylDef [\Inside] | [\Outside] Shape CentrePoint Radius Height

[\Inside]

Data type: switch

Define the volume inside the cylinder.

[\Outside]

Data type: switch

Define the volume outside the cylinder (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape

Data type: shapedata

Variable for storage of the defined volume (private data for the system).

Continues on next page



1 Instructions

1.251. WZCylDef - Define a cylinder-shaped world zone
World Zones

7353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

CentrePoint

Data type: pos

Position (x,y,z) in mm defining the center of one circular end of the cylinder.

Radius

Data type: num

The radius of the cylinder in mm.

Height

Data type: num

The height of the cylinder in mm. If it is positive (+z direction), the CentrePoint argument 

is the center of the lower end of the cylinder (as in the above example). If it is negative (-z 

direction) then the CentrePoint argument is the center of the upper end of the cylinder.

Program execution

The definition of the cylinder is stored in the variable of type shapedata (argument Shape) 

for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot is used to point out the CentrePoint then the work object wobj0 must be active 

(use of component trans in robtarget e.g. p1.trans as argument).

Syntax
WZCylDef

[’\’Inside] | [’\’Outside]’,’

[Shape’:=’]<variable (VAR) of shapedata>’,’

[centerPoint’:=’]<expression (IN) of pos>’,’

[Radius’:=’]<expression (IN) of num>’,’

[Height’:=’]<expression (IN) of num>’;’

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Define box-shaped world zone WZBoxDef - Define a box-shaped world zone on 
page 732

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world zone 
on page 756

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Define a world zone for limit joints WZLimJointDef - Define a world zone for limitation 
in joints on page 749

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital output 
on page 738

Continued



1 Instructions

1.252. WZDisable - Deactivate temporary world zone supervision
World Zones

3HAC 16581-1  Revision: J736

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.252. WZDisable - Deactivate temporary world zone supervision

Usage

WZDisable (World Zone Disable) is used to deactivate the supervision of a temporary world 

zone previously defined either to stop the movement or to set an output.

Basic examples

Basic examples of the instruction WZDisable are illustrated below.

Example 1
VAR wztemporary wzone;

...

PROC...

WZLimSup \Temp, wzone, volume;

MoveL p_pick, v500, z40, tool1;

WZDisable wzone;

MoveL p_place, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it will not go 

inside the specified volume wzone. This supervision is not performed when going to 

p_place.

Arguments
WZDisable WorldZone

WorldZone

Data type: wztemporary

Variable or persistent variable of type wztemporary, which contains the identity of the world 

zone to be deactivated.

Program execution

The temporary world zone is deactivated. This means that the supervision of the robot’s TCP, 

relative to the corresponding volume, is temporarily stopped. It can be re-activated via the 

WZEnable instruction.

Limitations

Only a temporary world zone can be deactivated. A stationary world zone is always active.

Syntax
WZDisable

[WorldZone’:=’]<variable or persistent (INOUT) of 

wztemporary>’;’

Continues on next page



1 Instructions

1.252. WZDisable - Deactivate temporary world zone supervision
World Zones

7373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Temporary world zone data wztemporary - Temporary world zone data on page 
1230

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision on 
page 753

Activate world zone set digital output WZDOSet - Activate world zone to set digital output 
on page 738

Activate world zone WZEnable - Activate temporary world zone 
supervision on page 742

Erase world zone WZFree - Erase temporary world zone supervision 
on page 744

Continued



1 Instructions

1.253. WZDOSet - Activate world zone to set digital output
World Zones

3HAC 16581-1  Revision: J738

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.253. WZDOSet - Activate world zone to set digital output

Usage

WZDOSet (World Zone Digital Output Set) is used to define the action and to activate a world 

zone for supervision of the robot movements.

After this instruction is executed, when the robot’s TCP or the robot/external axes (zone in 

joints) is inside the defined world zone or is approaching close to it, a digital output signal is 

set to the specified value.

Basic examples

Basic examples of the instruction WZDOSet are illustrated below.

See also More examples on page 740.

Example 1
VAR wztemporary service;

PROC zone_output()

VAR shapedata volume;

CONST pos p_service:=[500,500,700];

...

WZSphDef \Inside, volume, p_service, 50;

WZDOSet \Temp, service \Inside, volume, do_service, 1;

ENDPROC

Definition of temporary world zone service in the application program that sets the signal 

do_service when the robot’s TCP is inside the defined sphere during program execution or 

when jogging.

Arguments
WZDOSet [\Temp] | [\Stat] WorldZone [\Inside] | [\Before] Shape 

Signal SetValue

[\Temp]

Temporary

Data type: switch

The world zone to define is a temporary world zone.

[\Stat]

Stationary

Data type: switch

The world zone to define is a stationary world zone.

One of the arguments \Temp or \Stat must be specified.

Continues on next page



1 Instructions

1.253. WZDOSet - Activate world zone to set digital output
World Zones

7393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

WorldZone

Data type: wztemporary or wzstationary

Variable or persistent variable, that will be updated with the identity (numeric value) of the 

world zone.

If using the switch \Temp, the data type must be wztemporary. If using the switch \Stat, 

the data type must be wzstationary.

[\Inside]

Data type: switch

The digital output signal will be set when the robot’s TCP or specified axes are inside the 

defined volume.

[\Before]

Data type: switch

The digital output signal will be set before the robot’s TCP or specified axes reaches the 

defined volume (as soon as possible before the volume).

One of the arguments \Inside or \Before must be specified.

Shape

Data type: shapedata

The variable that defines the volume of the world zone.

Signal

Data type: signaldo

The name of the digital output signal that will be changed.

If a stationary worldzone is used then the signal must be written as protected for access from 

the user (RAPID, FP). Set Access Level for the signal in System Parameters or specified axes.

SetValue

Data type: dionum

Desired value of the signal (0 or 1) when the robot’s TCP is inside the volume or just before 

it enters the volume. 

When outside or just outside the volume then the signal is set to the opposite value.

Program execution

The defined world zone is activated. From this moment the robot’s TCP position (or robot/

external joint position) is supervised, and the output will be set when the robot’s TCP position 

(or robot/external joint position) is inside the volume (\Inside) or comes close to the border 

of the volume (\Before).

If using WZHomeJointDef or WZLimJointDef together with WZDOSet then the digital 

output signal is set only if all active axes with joint space supervision are before or inside the 

joint space.

Continued

Continues on next page



1 Instructions

1.253. WZDOSet - Activate world zone to set digital output
World Zones

3HAC 16581-1  Revision: J740

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the instruction WZDOSet are illustrated below.

Example 1
VAR wztemporary home;

VAR wztemporary service;

PERS wztemporary equip1:=[0];

PROC main()

...

! Definition of all temporary world zones

zone_output;

...

! equip1 in robot work area

WZEnable equip1;

...

! equip1 out of robot work area

WZDisable equip1;

...

! No use for equip1 any more

WZFree equip1;

...

ENDPROC

PROC zone_output()

VAR shapedata volume;

CONST pos p_home:=[800,0,800];

CONST pos p_service:=[800,800,800];

CONST pos p_equip1:=[-800,-800,0];

...

WZSphDef \Inside, volume, p_home, 50;

WZDOSet \Temp, home \Inside, volume, do_home, 1;

WZSphDef \Inside, volume, p_service, 50;

WZDOSet \Temp, service \Inside, volume, do_service, 1;

WZCylDef \Inside, volume, p_equip1, 300, 1000;

WZLimSup \Temp, equip1, volume;

! equip1 not in robot work area

WZDisable equip1;

ENDPROC

Definition of temporary world zones home and service in the application program, that sets 

the signals do_home and do_service, when the robot is inside the sphere home or service 

respectively during program execution or when jogging.

Also, definition of a temporary world zone equip1, which is active only in the part of the 

robot program when equip1 is inside the working area for the robot. At that time the robot 

stops before entering the equip1 volume, both during program execution and manual 

jogging. equip1 can be disabled or enabled from other program tasks by using the persistent 

variable equip1 value.

Continued

Continues on next page



1 Instructions

1.253. WZDOSet - Activate world zone to set digital output
World Zones

7413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

A world zone cannot be redefined by using the same variable in the argument WorldZone.

A stationary world zone cannot be deactivated, activated again, or erased in the RAPID 

program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable), or 

erased (WZFree) in the RAPID program.

Syntax
WZDOSet 

[[’\’Temp] | [’\’Stat]’,’]

[WorldZone’:=’]<variable or persistent (INOUT) of wztemporary>

[’\’Inside] | [’\’Before] ’,’

[Shape’:=’]<variable (VAR) of shapedata>’,’

[Signal’:=’]<variable (VAR) of signaldo>’,’

[SetValue’:=’]<expression (IN) of dionum>’;’

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Temporary world zone wztemporary - Temporary world zone data on 
page 1230

Stationary world zone wzstationary - Stationary world zone data on page 
1228

Define straight box-shaped world zone WZBoxDef - Define a box-shaped world zone on 
page 732

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world zone 
on page 756

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world zone 
on page 734

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Signal access level Technical reference manual - System parameters, 
section I/O - Signal - Access Level

Continued



1 Instructions

1.254. WZEnable - Activate temporary world zone supervision
World Zones

3HAC 16581-1  Revision: J742

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.254. WZEnable - Activate temporary world zone supervision

Usage

WZEnable (World Zone Enable) is used to re-activate the supervision of a temporary world 

zone, previously defined either to stop the movement or to set an output.

Basic examples

Basic examples of the instruction WZEnable are illustrated.

Example 1
VAR wztemporary wzone;

...

PROC ...

WZLimSup \Temp, wzone, volume;

MoveL p_pick, v500, z40, tool1;

WZDisable wzone;

MoveL p_place, v200, z30, tool1;

WZEnable wzone;

MoveL p_home, v200, z30, tool1;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it will not go 

inside the specified volume wzone. This supervision is not performed when going to 

p_place but is reactivated before going to p_home.

Arguments
WZEnable WorldZone

WorldZone

Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the identity of the 

world zone to be activated.

Program execution

The temporary world zone is re-activated. Please note that a world zone is automatically 

activated when it is created. It need only be re-activated when it has previously been 

deactivated by WZDisable.

Limitations

Only a temporary world zone can be deactivated and reactivated. A stationary world zone is 

always active.

Syntax
WZEnable

[WorldZone’:=’]<variable or persistent (INOUT) of 

wztemporary>’;’

Continues on next page



1 Instructions

1.254. WZEnable - Activate temporary world zone supervision
World Zones

7433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Temporary world zone data wztemporary - Temporary world zone data on page 
1230

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone set digital output WZDOSet - Activate world zone to set digital output 
on page 738

Deactivate world zone WZDisable - Deactivate temporary world zone 
supervision on page 736

Erase world zone WZFree - Erase temporary world zone supervision 
on page 744

Continued



1 Instructions

1.255. WZFree - Erase temporary world zone supervision
World Zones

3HAC 16581-1  Revision: J744

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.255. WZFree - Erase temporary world zone supervision

Usage

WZFree (World Zone Free) is used to erase the definition of a temporary world zone, 

previously defined either to stop the movement or to set an output.

Basic examples

Basic examples of the instruction WZFree are illustrated below.

Example 1
VAR wztemporary wzone;

...

PROC ...

WZLimSup \Temp, wzone, volume;

MoveL p_pick, v500, z40, tool1;

WZDisable wzone;

MoveL p_place, v200, z30, tool1;

WZEnable wzone;

MoveL p_home, v200, z30, tool1;

WZFree wzone;

ENDPROC

When moving to p_pick, the position of the robot’s TCP is checked so that it will not go 

inside a specified volume wzone. This supervision is not performed when going to p_place 

but is reactivated before going to p_home. When this position is reached then the world zone 

definition is erased.

Arguments
WZFree WorldZone

WorldZone

Data type: wztemporary

Variable or persistent variable of the type wztemporary, which contains the identity of the 

world zone to be erased.

Program execution

The temporary world zone is first deactivated and then its definition is erased.

Once erased, a temporary world zone cannot be re-activated or deactivated.

Limitations

Only a temporary world zone can be deactivated, reactivated, or erased. A stationary world 

zone is always active.

Syntax
WZFree

[WorldZone’:=’]<variable or persistent (INOUT) of 

wztemporary>’;’

Continues on next page



1 Instructions

1.255. WZFree - Erase temporary world zone supervision
World Zones

7453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Temporary world zone data wztemporary - Temporary world zone data on page 
1230

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone set digital output WZDOSet - Activate world zone to set digital output 
on page 738

Deactivate world zone WZDisable - Deactivate temporary world zone 
supervision on page 736

Activate world zone WZEnable - Activate temporary world zone 
supervision on page 742

Continued



1 Instructions

1.256. WZHomeJointDef - Define a world zone for home joints
World Zones

3HAC 16581-1  Revision: J746

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.256. WZHomeJointDef - Define a world zone for home joints

Usage

WZHomeJointDef (World Zone Home Joint Definition) is used to define a world zone in 

joints coordinates for both the robot and external axes to be used as a HOME or SERVICE 

position.

Basic examples

Basic examples of the instruction WZHomeJointDef are illustrated below.

Example 1
VAR wzstationary home;

...

PROC power_on()

VAR shapedata joint_space;

CONST jointtarget home_pos := [ [ 0, 0, 0, 0, 0, -45], [ 0, 9E9, 

9E9, 9E9, 9E9, 9E9] ];

CONST jointtarget delta_pos := [ [ 2, 2, 2, 2, 2, 2], [ 5, 9E9, 

9E9, 9E9, 9E9, 9E9] ];

...

WZHomeJointDef \Inside, joint_space, home_pos, delta_pos;

WZDOSet \Stat, home \Inside, joint_space, do_home, 1;

ENDPROC

Definition and activation of stationary world zone home, that sets the signal do_home to 1, 

when all robot axes and the external axis extax.eax_a are at the joint position home_pos 

(within +/- delta_pos for each axis) during program execution and jogging. The variable 

joint_space of data type shapedata are used to transfer data from the instruction 

WZHomeJointDef to the instruction WZDOSet.

Arguments
WZHomeJointDef [\Inside] | [\Outside] Shape  MiddleJointVal 

DeltaJointVal

[\Inside]

Data type: switch

Define the joint space inside the MiddleJointVal +/- DeltaJointVal.

[\Outside]

Data type: switch

Define the joint space outside the MiddleJointVal +/- DeltaJointVal (inverse joint 

space).

Shape

Data type: shapedata

Variable for storage of the defined joint space (private data for the system).

Continues on next page



1 Instructions

1.256. WZHomeJointDef - Define a world zone for home joints
World Zones

7473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

MiddleJointVal

Data type: jointtarget

The position in joint coordinates for the center of the joint space to define. Specifies for each 

robot axis and external axis (degrees for rotational axes and mm for linear axes). Specifies in 

absolute joints (not in offset coordinate system EOffsSet-EOffsOn for external axes). 

Value 9E9 for some axis means that the axis should not be supervised. Non-active 

external axis also gives 9E9 at programming time.

DeltaJointVal

Data type: jointtarget

The +/- delta position in joint coordinates from the center of the joint space. The value must 

be greater than 0 for all axes to supervise.

The following figure shows the definition of joint space for rotational axis.

xx0500002208

The following figure shows the definition of joint space for linear axis.

xx0500002209

Program execution

The definition of the joint space is stored in the variable of type shapedata (argument 

Shape) for future use in WZLimSup or WZDOSet instructions.

If use of WZHomeJointDef together with WZDOSet then the digital output signal is set but 

only if all active axes with joint space supervision are before or inside the joint space.

If use of WZHomeJointDef with outside joint space (argument \Outside) together with 

WZLimSup then the robot is stopped as soon as one active axes with joint space supervision 

reach the joint space.

If use of WZHomeJointDef with inside joint space (argument \Inside) together with 

WZLimSup then the robot is stopped as soon as the last active axes with joint space 

supervision reach the joint space. That means that one or several axes, but not all active and 

supervised axes, can be inside the joint space at the same time.

At execution of the instruction ActUnit or DeactUnit for activation or deactivation of 

mechanical units, the supervision status for HOME position or work area limitation will be 

updated.

Continued

Continues on next page



1 Instructions

1.256. WZHomeJointDef - Define a world zone for home joints
World Zones

3HAC 16581-1  Revision: J748

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

-

Only active mechanical units and their active axes at activation time of the world zone (with 

instruction WZDOSet respectively WZLimSup), are included in the supervision of the HOME 

position respectively to the limitation of the working area. Besides that, the mechanical unit 

and its axes must still be active at the program movement or jogging to be supervised.

For example, if one axis with supervision is outside its HOME joint position but is 

deactivated then it does not prevent the digital output signal for the HOME joint position to 

be set if all other active axes with joint space supervision are inside the HOME joint position. 

At activation of that axis again it will be included in the supervision and the robot system will 

then be outside the HOME joint position and the digital output will be reset.

Syntax
WZHomeJointDef

[[’\’Inside] | [’\’Outside]’,’]

[Shape’:=’]<variable (VAR) of shapedata>’,’

[MiddleJointVal’ :=’]<expression (IN) of jointtarget>’,’

[DeltaJointVal’ :=’]<expression (IN) of jointtarget>’;’

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 
1179

Define box-shaped world zone WZBoxDef - Define a box-shaped world zone 
on page 732

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world 
zone on page 734

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world 
zone on page 756

Define a world zone for limit joints WZLimJointDef - Define a world zone for 
limitation in joints on page 749

Activate world zone limit supervision WZLimSup - Activate world zone limit 
supervision on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital 
output on page 738

Continued



1 Instructions

1.257. WZLimJointDef - Define a world zone for limitation in joints
World Zones

7493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.257. WZLimJointDef - Define a world zone for limitation in joints

Usage

WZLimJointDef (World Zone Limit Joint Definition) is used to define a world zone in joints 

coordinates for both the robot and external axes, to be used for limitation of the working area.

With WZLimJointDef it is possible to limit the working area for each robot and external axes 

in the RAPID program, besides the limitation that can be done with system parameters 

Motion - Arm - robx_y - Upper Joint Bound ... Lower Joint Bound.

Basic examples

Basic examples of the instruction WZLimJointDef are illustrated below.

Example 1
VAR wzstationary work_limit;

...

PROC power_on()

VAR shapedata joint_space;

CONST jointtarget low_pos:= [ [ -90, 9E9, 9E9, 9E9, 9E9, 9E9], 

[ -1000, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST jointtarget high_pos := [ [ 90, 9E9, 9E9, 9E9,9E9, 9E9], 

[ 9E9, 9E9, 9E9, 9E9, 9E9, 9E9] ];

...

WZLimJointDef \Outside, joint_space, low_pos, high_pos;

WZLimSup \Stat, work_limit, joint_space;

ENDPROC

Definition and activation of stationary world zone work_limit, that limit the working area 

for robot axis 1 to -90 and +90 degrees and the external axis extax.eax_a to -1000 mm 

during program execution and jogging. The variable joint_space of data type shapedata 

are used to transfer data from the instruction WZLimJointDef to the instruction WZLimSup.

Arguments
WZLimJointDef [\Inside] | [\Outside] Shape LowJointVal 

HighJointVal

[\Inside]

Data type: switch

Define the joint space inside the LowJointVal ... HighJointVal.

[\Outside]

Data type: switch

Define the joint space outside the LowJointVal ... HighJointVal (inverse joint space).

Shape

Data type: shapedata

Variable for storage of the defined joint space (private data for the system).

Continues on next page



1 Instructions

1.257. WZLimJointDef - Define a world zone for limitation in joints
World Zones

3HAC 16581-1  Revision: J750

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

LowJointVal

Data type: jointtarget

The position in joint coordinates for the low limit of the joint space to define. Specifies for 

each robot axes and external axes (degrees for rotational axes and mm for linear axes). 

Specifies in absolute joints (not in offset coordinate system EOffsSet or EOffsOn for 

external axes). Value 9E9 for some axis means that the axis should not be supervised for low 

limit. Non-active external axis also gives 9E9 at programming time.

HighJointVal

Data type: jointtarget

The position in joint coordinates for the high limit of the joint space to define. Specifies for 

each robot axes and external axes (degrees for rotational axes and mm for linear axes). 

Specifies in absolute joints (not in offset coordinate system EOffsSet or EOffsOn for 

external axes). Value 9E9 for an axis means that the axis should not be supervised for high 

limit. Non-active external axis also gives 9E9 at programming time.

HighJointVal minus LowJointVal for each axis must be greater than 0 for all axes to 

supervise.

The figure below shows definition of joint space for rotating axis.

xx0500002281

The figure below shows definition of joint space for linear axis.

xx0500002282

Continued

Continues on next page



1 Instructions

1.257. WZLimJointDef - Define a world zone for limitation in joints
World Zones

7513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The definition of the joint space is stored in the variable of type shapedata (argument 

Shape) for future use in WZLimSup or WZDOSet instructions.

If using WZLimJointDef together with WZDOSet then the digital output signal is set, only if 

all active axes with joint space supervision are before or inside the joint space.

If using WZLimJointDef with outside joint space (argument \Outside) together with 

WZLimSup then the robot is stopped as soon as one active axes with joint space supervision 

reaches the joint space.

If using WZLimJointDef with inside joint space (argument \Inside) together with 

WZLimSup then the robot is stopped as soon as the last active axes with joint space 

supervision reaches the joint space. That means that one or several axes but not all active and 

supervised axes can be inside the joint space at the same time.

At execution of the instruction ActUnit or DeactUnit the supervision status will be 

updated.

Limitations

-

WARNING!

Only active mechanical units and its active axes at activation time of the world zone (with 

instruction WZDOSet respective to WZLimSup), are included in the supervision of the HOME 

position respectively the limitation of the working area. Besides that, the mechanical unit and 

its axes must still be active at the program movement or jogging to be supervised.

For example, if one axis with supervision is outside its HOME joint position but is 

deactivated then it does not prevent the digital output signal for the HOME joint position to 

be set if all other active axes with joint space supervision are inside the HOME joint position. 

At activation of that axis again, it will be included in the supervision and the robot system 

will the be outside the HOME joint position and the digital output will be reset.

Syntax
WZLimJointDef

[[’\’Inside] | [’\’Outside]’,’]

[Shape’:=’]<variable (VAR) of shapedata>’,’

[LowJointVal’:=’]<expression (IN) of jointtarget>’,’

[HighJointVal’:=’]<expression (IN) of jointtarget>’;’

Continued

Continues on next page



1 Instructions

1.257. WZLimJointDef - Define a world zone for limitation in joints
World Zones

3HAC 16581-1  Revision: J752

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Define box-shaped world zone WZBoxDef - Define a box-shaped world zone on 
page 732

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world zone 
on page 734

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world zone 
on page 756

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital 
output on page 738

Continued



1 Instructions

1.258. WZLimSup - Activate world zone limit supervision
World Zones

7533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.258. WZLimSup - Activate world zone limit supervision

Usage

WZLimSup (World Zone Limit Supervision) is used to define the action and to activate a world 

zone for supervision of the working area of the robot or external axes. 

After this instruction is executed, when the robot’s TCP reaches the defined world zone or 

when the robot/external axes reaches the defined world zone in joints, then the movement is 

stopped both during program execution and when jogging.

Basic examples

Basic examples of the instruction WZLimSup are illustrated below.

See also More examples on page 754.

Example 1
VAR wzstationary max_workarea;

...

PROC POWER_ON()

VAR shapedata volume;

...

WZBoxDef \Outside, volume, corner1, corner2;

WZLimSup \Stat, max_workarea, volume;

ENDPROC

Definition and activation of stationary world zone max_workarea, with the shape of the area 

outside a box (temporarily stored in volume) and the action work-area supervision. The robot 

stops with an error message before entering the area outside the box.

Arguments
WZLimSup [\Temp] | [\Stat] WorldZone Shape

[\Temp]

Temporary

Data type: switch

The world zone to define is a temporary world zone.

[\Stat]

Stationary

Data type: switch

The world zone to define is a stationary world zone.

One of the arguments \Temp or \Stat must be specified.

WorldZone

Data type: wztemporary or wzstationary

Variable or persistent variable that will be updated with the identity (numeric value) of the 

world zone.

If using switch \Temp, the data type must be wztemporary. If using switch \Stat, the data 

type must be wzstationary.

Continues on next page



1 Instructions

1.258. WZLimSup - Activate world zone limit supervision
World Zones

3HAC 16581-1  Revision: J754

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Shape

Data type: shapedata

The variable that defines the volume of the world zone.

Program execution

The defined world zone is activated. From this moment the robot’s TCP position or the robot/

external axes joint position are supervised. If it reaches the defined area then the movement 

is stopped.

If using WZLimJointDef or WZHomeJointDef with outside joint space (argument 

\Outside) together with WZLimSup then the robot is stopped as soon as one active axes with 

joint space supervision reaches the joint space.

If using WZLimJointDef or WZHomeJointDef with inside joint space (argument \Inside) 

together with WZLimSup then the robot is stopped as soon as the last active axes with joint 

space supervision reaches the joint space. That means that one or several axes but not all 

active and supervised axes can be inside the joint space at the same time.

At execution of the instruction ActUnit or DeactUnit the supervision status will be 

updated.

More examples

More examples of how to use the instruction WZLimSup are illustrated below.

Example 1
VAR wzstationary box1_invers;

VAR wzstationary box2;

PROC wzone_power_on()

VAR shapedata volume;

CONST pos box1_c1:=[500,-500,0];

CONST pos box1_c2:=[-500,500,500];

CONST pos box2_c1:=[500,-500,0];

CONST pos box2_c2:=[200,-200,300];

...

WZBoxDef \Outside, volume, box1_c1, box1_c2;

WZLimSup \Stat, box1_invers, volume;

WZBoxDef \Inside, volume, box2_c1, box2_c2;

WZLimSup \Stat, box2, volume;

ENDPROC

Limitation of work area for the robot with the following stationary world zones:

• Outside working area when outside box1_invers

• Outside working area when inside box2

If this routine is connected to the system event POWER ON then these world zones will 

always be active in the system, both for program movements and manual jogging.

Continued

Continues on next page



1 Instructions

1.258. WZLimSup - Activate world zone limit supervision
World Zones

7553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

A world zone cannot be redefined using the same variable in argument WorldZone.

A stationary world zone cannot be deactivated, activated again, or erased in the RAPID 

program.

A temporary world zone can be deactivated (WZDisable), activated again (WZEnable), or 

erased (WZFree) in the RAPID program.

Syntax
WZLimSup

[[’\’Temp] | [’\Stat]’,’]

[WorldZone´:=´]<variable or persistent (INOUT) of 

wztemporary>´,´

[Shape´:=´]<variable (VAR) of shapedata>´;´

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Temporary world zone wztemporary - Temporary world zone data on 
page 1230

Stationary world zone wzstationary - Stationary world zone data on page 
1228

Define straight box-shaped world zone WZBoxDef - Define a box-shaped world zone on 
page 732

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world zone 
on page 756

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world zone 
on page 734

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Define a world zone for limit joints WZLimJointDef - Define a world zone for limitation 
in joints on page 749

Activate world zone digital output set WZDOSet - Activate world zone to set digital 
output on page 738

Continued



1 Instructions

1.259. WZSphDef - Define a sphere-shaped world zone
World Zones

3HAC 16581-1  Revision: J756

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1.259. WZSphDef - Define a sphere-shaped world zone

Usage

WZSphDef (World Zone Sphere Definition) is used to define a world zone that has the shape 

of a sphere.

Basic examples

Basic examples of the instruction WZSphDef are illustrated below.

Example 1

xx0500002207

VAR shapedata volume;

CONST pos C1:=[300,300,200];

CONST num R1:=200;

...

WZSphDef \Inside, volume, C1, R1;

Define a sphere named volume by its center C1 and its radius R1.

Arguments
WZSphDef [\Inside] | [\Outside] Shape CentrePoint Radius

[\Inside]

Data type: switch

Define the volume inside the sphere.

[\Outside]

Data type: switch

Define the volume outside the sphere (inverse volume).

One of the arguments \Inside or \Outside must be specified.

Shape

Data type: shapedata

Variable for storage of the defined volume (private data for the system).

CentrePoint

Data type: pos

Position (x,y,z) in mm defining the center of the sphere.

Continues on next page



1 Instructions

1.259. WZSphDef - Define a sphere-shaped world zone
World Zones

7573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Radius

Data type: num

The radius of the sphere in mm.

Program execution

The definition of the sphere is stored in the variable of type shapedata (argument Shape), 

for future use in WZLimSup or WZDOSet instructions.

Limitations

If the robot is used to point out the CentrePoint then the work object wobj0 must be active 

(use of component trans in robtarget e.g. p1.trans as argument).

Syntax
WZSphDef

[[’\’Inside] | [’\’Outside]’,’]

[Shape’:=’]<variable (VAR) of shapedata>’,’

[CentrePoint’:=’]<expression (IN) of pos>’,’

[Radius’:=’]<expression (IN) of num>’;’

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Define box-shaped world zone WZBoxDef - Define a box-shaped world zone on 
page 732

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world zone on 
page 734

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Define a world zone for limit joints WZLimJointDef - Define a world zone for limitation in 
joints on page 749

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital output 
on page 738

Continued



1 Instructions

1.259. WZSphDef - Define a sphere-shaped world zone
World Zones

3HAC 16581-1  Revision: J758

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



2 Functions

2.1. Abs - Gets the absolute value
RobotWare - OS

7593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2 Functions

2.1. Abs - Gets the absolute value

Usage

Abs is used to get the absolute value, i.e. a positive value of numeric data.

Basic examples

Basic examples of the function Abs are illustrated below.

See also More examples on page 759.

Example 1
reg1 := Abs(reg2);

Reg1 is assigned the absolute value of reg2. 

Return value

Data type: num

The absolute value, i.e. a positive numeric value, e.g.:

Arguments
Abs (Value)

Value

Data type: num

The input value.

More examples

More examples of the function Abs are illustrated below.

Example 1
TPReadNum no_of_parts, "How many parts should be produced? ";

no_of_parts := Abs(no_of_parts);

The operator is asked to input the number of parts to be produced. To ensure that the value is 

greater than zero, the value given by the operator is made positive.

Syntax
Abs ’(’

[ Value ’:=’ ] < expression (IN) of num >’)’

A function with a return value of the data type num.

Input value Returned value

3 3

-3 3

-2.53 2.53

Continues on next page



2 Functions

2.1. Abs - Gets the absolute value
RobotWare - OS

3HAC 16581-1  Revision: J760

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics

Continued



2 Functions

2.2. ACos - Calculates the arc cosine value
RobotWare - OS

7613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.2. ACos - Calculates the arc cosine value

Usage

ACos (Arc Cosine) is used to calculate the arc cosine value.

Basic examples

Basic examples of the function ACos are illustrated below.

Example 1
VAR num angle;

VAR num value;

...

...

angle := ACos(value);

angle will get the arc cosine value of value.

Return value

Data type: num

The arc cosine value, expressed in degrees, range [0, 180].

Arguments
ACos (Value)

Value

Data type: num

The argument value must be in range [-1, 1].

Limitations

The execution of the function Acos(x) will give an error if x is outside the range [-1, 1].

Syntax
Acos’(’ 

[Value ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics



2 Functions

2.3. AOutput - Reads the value of an analog output signal
RobotWare -  OS

3HAC 16581-1  Revision: J762

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.3. AOutput - Reads the value of an analog output signal

Usage

AOutput is used to read the current value of an analog output signal.

Basic examples

Basic examples of the function AOutput are illustrated below.

Example 1
IF AOutput(ao4) > 5 THEN ... 

If the current value of the signal ao4 is greater than 5, then ...

Return value

Data type: num

The current value of the signal.

The current value is scaled (in accordance with the system parameters) before it is read by the 

RAPID program. A diagram of how analog signal values are scaled is shown in the figure 

below.

xx0500002408

Arguments
AOutput (Signal)

Signal

Data type: signalao

The name of the analog output to be read.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if there is no contact with the unit.

Continues on next page



2 Functions

2.3. AOutput - Reads the value of an analog output signal
RobotWare -  OS

7633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
AOutput ’(’

[ Signal ’:=’ ] < variable (VAR) of signalao > ’)’

A function with a return value of data type num.

Related information

For information about See

Set an analog output signal SetAO - Changes the value of an analog output signal 
on page 431

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output Signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O principles

Configuration of I/O Technical reference manual - System parameters

Continued



2 Functions

2.4. ArgName - Gets argument name
RobotWare - OS

3HAC 16581-1  Revision: J764

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.4. ArgName - Gets argument name 

Usage

ArgName (Argument Name) is used to get the name of the original data object for the current 

argument or the current data.

Basic examples

Basic examples of the function ArgName are illustrated below.

See also More examples on page 765.

Example 1
VAR num chales :=5;

...

proc1 chales;

PROC proc1 (num par1)

VAR string name;

...

name:=ArgName(par1);

TPWrite "Argument name "+name+" with value "\Num:=par1;

ENDPROC

The variable name is assigned the string value "chales" and on FlexPendant the following 

string is written: "Argument name chales with value 5".

Return value

Data type: string

The original data object name.

Arguments
ArgName (Parameter)

Parameter

Data type: anytype

The formal parameter identifier (for the routine in which ArgName is located) or the data 

identity.

All types of data with structure atomic, record, record component, array, or array element can 

be used.

Program execution

The function returns the original data object name for an entire object of the type constant, 

variable, or persistent. The original data object can be global, local in the program module, or 

local in a routine (normal RAPID scope rules).

If it is a part of a data object then the name of the whole data object is returned.

Continues on next page



2 Functions

2.4. ArgName - Gets argument name
RobotWare - OS

7653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function ArgName are illustrated below.

Convert from identifier to string

This function can also be used to convert from identifier to string, by specifying the 

identifier in the argument Parameter for any data object with global, local in module, or 

local in routine scope:

VAR num chales :=5;

...

proc1;

PROC proc1 ()

VAR string name;

...

name:=ArgName(chales);

TPWrite "Global data object "+name+" has value "\Num:=chales;

ENDPROC

The variable name is assigned the string value "chales" and on FlexPendant the following 

string is written: "Global data object chales has value 5".

Routine call in several steps

Note that the function returns the original data object name:

VAR num chales :=5;

...

proc1 chales;

...

PROC proc1 (num parameter1)

...

proc2 parameter1;

...

ENDPROC

PROC proc2 (num par1)

VAR string name;

...

name:=ArgName(par1);

TPWrite "Original data object name "+name+" with value" 

\Num:=par1;

ENDPROC

The variable name is assigned the string value "chales" and on FlexPendant the following 

string is written: "Original data object name chales with value 5".

Continued

Continues on next page



2 Functions

2.4. ArgName - Gets argument name
RobotWare - OS

3HAC 16581-1  Revision: J766

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If one of the following errors occurs then the system variable ERRNO is set to ERR_ARGNAME:

• Argument is expression value

• Argument is not present

• Argument is of type switch

This error can then be handled in the error handler.

Syntax
ArgName ’(’

[ Parameter’:=’ ] < reference (REF) of any type> ’)’

A function with a return value of the data type string.

Related information

For information about See

String functions Technical reference manual - RAPID overview, 
section RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, 
section Basic characteristics -Basic elements

Continued



2 Functions

2.5. ASin - Calculates the arc sine value
RobotWare - OS

7673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.5. ASin - Calculates the arc sine value

Usage

ASin (Arc Sine) is used to calculate the arc sine value.

Basic examples

Basic examples of the function ASin are illustrated below.

Example 1
VAR num angle;

VAR num value;

...

...

angle := ASin(value);

angle will get the arc sine value of value

Return value

Data type: num

The arc sine value, expressed in degrees, range [-90, 90].

Arguments
ASin (Value)

Value

Data type: num

The argument value must be in range [-1, 1].

Limitations

The execution of the function ASin(x) will give an error if x is outside the range [1, -1].

Syntax
ASin’(’

[Value ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID Summary - 
Mathematics



2 Functions

2.6. ATan - Calculates the arc tangent value
RobotWare - OS

3HAC 16581-1  Revision: J768

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.6. ATan - Calculates the arc tangent value

Usage

ATan (Arc Tangent) is used to calculate the arc tangent value.

Basic examples

Basic examples of the function ATan are illustrated below.

Example 1
VAR num angle;

VAR num value;

...

...

angle := ATan(value);

angle will get the arc tangent value of value.

Return value

Data type: num

The arc tangent value, expressed in degrees, range [-90, 90].

Arguments
ATan (Value)

Value

Data type: num

The argument value.

Syntax
ATan’(’

[Value ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics

Arc tangent with a return value in the range 
[-180, 180]

ATan2 - Calculates the arc tangent2 value on 
page 769



2 Functions

2.7. ATan2 - Calculates the arc tangent2 value
RobotWare - OS

7693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.7. ATan2 - Calculates the arc tangent2 value

Usage

ATan2 (Arc Tangent2) is used to calculate the arc tangent2 value.

Basic examples

Basic examples of the function ATan2 are illustrated below.

Example 1
VAR num angle;

VAR num x_value;

VAR num y_value;

...

...

angle := ATan2(y_value, x_value);

angle will get the arc tangent value of y_value/x_value.

Return value

Data type: num

The arc tangent value, expressed in degrees, range [-180, 180]. The value will be equal to 

ATan(y/x) but in the range of [-180, 180] since the function uses the sign of both arguments 

to determine the quadrant of the return value.

Arguments
ATan2 (Y X)

Y

Data type: num

The numerator argument value.

X

Data type: num

The denominator argument value.

Syntax
ATan2’(’

[Y ’:=’] <expression (IN) of num> ’,’

[X ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics

Arc tangent with only one argument ATan - Calculates the arc tangent value on page 
768



2 Functions

2.8. BitAnd - Logical bitwise AND - operation on byte data
RobotWare - OS

3HAC 16581-1  Revision: J770

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.8. BitAnd - Logical bitwise AND - operation on byte data

Usage

BitAnd is used to execute a logical bitwise AND - operation on data types byte.

Basic examples

Basic examples of the function BitAnd are illustrated below.

Example 1
VAR byte data1 := 38;

VAR byte data2 := 34;

VAR byte data3;

data3 := BitAnd(data1, data2);

The logical bitwise AND - operation (see figure below) will be executed on the data1 and 

data2. The result will be returned to data3 (integer representation).

xx0500002454

Return value

Data type: byte

The result of the logical bitwise AND - operation in integer representation.

Arguments
BitAnd (BitData1 BitData2)

BitData1

Data type: byte

The bit data 1, in integer representation.

BitData2

Data type: byte

The bit data 2, in integer representation.

Limitations

The range for a data type byte is 0 - 255. 

Continues on next page



2 Functions

2.8. BitAnd - Logical bitwise AND - operation on byte data
RobotWare - OS

7713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
BitAnd’(’

[BitData1 ’:=’] <expression (IN) of byte>’ ,’

[BitData2 ’:=’] <expression (IN) of byte>

’)’

A function with a return value of the data type byte.

Related information

For information about See

Logical bitwise OR - operation on byte data BitOr - Logical bitwise OR - operation on 
byte data on page 778

Logical bitwise XOR - operation on byte data BitXOr - Logical bitwise XOR - operation on 
byte data on page 782

Logical bitwise NEGATION - operation on byte 
data

BitNeg - Logical bitwise NEGATION - 
operation on byte data on page 776

Other bit functions Technical reference manual - RAPID 
overview, section RAPID summary - Bit 
Functions

Continued



2 Functions

2.9. BitCheck - Check if a specified bit in a byte data is set
RobotWare - OS

3HAC 16581-1  Revision: J772

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.9. BitCheck - Check if a specified bit in a byte data is set

Usage

BitCheck is used to check if a specified bit in a defined byte data is set to 1.

Basic examples

Basic examples of the function BitCheck are illustrated below.

Example 1
CONST num parity_bit := 8;

VAR byte data1 := 130;

IF BitCheck(data1, parity_bit) = TRUE THEN

 ... 

ELSE

...

ENDIF

Bit number 8 (parity_bit) in the variable data1 will be checked, e.g. if the specified bit 

is set to 1 in the variable data1 then this function will return to TRUE. Bit check of data type 

byte is illustrated in the figure below.

xx0500002442

Return value

Data type: bool

TRUE if the specified bit is set to 1, FALSE if the specified bit is set to 0.

Continues on next page



2 Functions

2.9. BitCheck - Check if a specified bit in a byte data is set
RobotWare - OS

7733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
BitCheck (BitData BitPos)

BitData

Data type: byte

The bit data, in integer representation, to be checked.

BitPos

Bit Position

Data type: num

The bit position (1-8) in the BitData to be checked. 

Limitations

The range for a data type byte is 0 - 255 decimal. 

The bit position is valid from 1 - 8.

Syntax
BitCheck’(’

[BitData ’:=’] <expression (IN) of byte> ´,’

[BitPos ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type bool.

Related information

For information about See

Set a specified bit in a byte data BitSet - Set a specified bit in a byte data on page 28

Clear a specified bit in a byte data BitClear - Clear a specified bit in a byte data on page 
26

Other bit functions Technical reference manual - RAPID overview, 
section RAPID summary - Bit Functions

Continued



2 Functions

2.10. BitLSh - Logical bitwise LEFT SHIFT - operation on byte
RobotWare - OS

3HAC 16581-1  Revision: J774

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.10. BitLSh - Logical bitwise LEFT SHIFT - operation on byte

Usage

BitLSh (Bit Left Shift) is used to execute a logical bitwise LEFT SHIFT-operation on data 

types byte.

Basic examples

Basic examples of the function BitLSh are illustrated below.

Example 1
VAR num left_shift := 3;

VAR byte data1 := 38;

VAR byte data2;

data2 := BitLSh(data1, left_shift);

The logical bitwise LEFT SHIFT- operation will be executed on the data1 with 3 

(left_shift) steps of left shift, and the result will be returned to data2 (integer 

representation).

The following figure shows logical bitwise LEFT SHIFT-operation.

xx0500002457

Return value

Data type: byte

The result of the logical bitwise LEFT SHIFT-operation in integer representation.

The right bit cells will be filled up with 0-bits.

Arguments
BitLSh (BitData ShiftSteps)

BitData

Data type: byte

The bit data, in integer representation, to be shifted.

ShiftSteps

Data type: num

Number of the logical shifts (1 - 8) to be executed.

Limitations

The range for a data type byte is 0 - 255.

The ShiftSteps argument is valid from 1 - 8 according to one byte.

Continues on next page



2 Functions

2.10. BitLSh - Logical bitwise LEFT SHIFT - operation on byte
RobotWare - OS

7753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
BitLSh’(’

[BitData ’:=’] <expression (IN) of byte>’ ,’

[ShiftSteps’ :=’] <expression (IN) of num>

’)’

A function with a return value of the data type byte.

Related information

For information about See

Logical bitwise RIGHT SHIFT-operation 
on byte data

BitRSh - Logical bitwise RIGHT SHIFT - 
operation on byte on page 780

Other bit functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics - 
Bit functions

Continued



2 Functions

2.11. BitNeg - Logical bitwise NEGATION - operation on byte data
RobotWare - OS

3HAC 16581-1  Revision: J776

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.11. BitNeg - Logical bitwise NEGATION - operation on byte data

Usage

BitNeg (Bit Negation) is used to execute a logical bitwise NEGATION - operation 

(one’s complement) on data types byte.

Basic examples

Basic examples of the function BitNeg are illustrated below.

Example 1
VAR byte data1 := 38;

VAR byte data2;

data2 := BitNeg(data1);

The logical bitwise NEGATION - operation (see figure below) will be executed on the data1, 

and the result will be returned to data2 (integer representation).

xx0500002456

Return value

Data type: byte

The result of the logical bitwise NEGATION - operation in integer representation.

Arguments
BitNeg (BitData)

BitData

Data type: byte

The byte data, in integer representation.

Limitations

The range for a data type byte is 0 - 255. 

Syntax
BitNeg’(’

[BitData ’:=’] <expression (IN) of byte>

’)’

A function with a return value of the data type byte.

Continues on next page



2 Functions

2.11. BitNeg - Logical bitwise NEGATION - operation on byte data
RobotWare - OS

7773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Logical bitwise AND - operation on byte data BitAnd - Logical bitwise AND - operation on 
byte data on page 770

Logical bitwise OR - operation on byte data BitOr - Logical bitwise OR - operation on byte 
data on page 778

Logical bitwise XOR - operation on byte data BitXOr - Logical bitwise XOR - operation on 
byte data on page 782

Other bit functions Technical reference manual - RAPID 
overview, section RAPID summary - Bit 
functions

Continued



2 Functions

2.12. BitOr - Logical bitwise OR - operation on byte data
RobotWare - OS

3HAC 16581-1  Revision: J778

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.12. BitOr - Logical bitwise OR - operation on byte data

Usage

BitOr (Bit inclusive Or) is used to execute a logical bitwise OR-operation on data types byte.

Basic examples

Basic examples of the function BitOr are illustrated below.

Example 1
VAR byte data1 := 39;

VAR byte data2 := 162;

VAR byte data3;

data3 := BitOr(data1, data2);

The logical bitwise OR-operation will be executed on the data1 and data2, and the result 

will be returned to data3 (integer representation).

The following figure shows logical bitwise OR-operation.

xx0500002458

Return value

Data type: byte

The result of the logical bitwise OR-operation in integer representation.

Arguments
BitOr (BitData1 BitData2)

BitData1

Data type: byte

The bit data 1, in integer representation.

BitData2

Data type: byte

The bit data 2, in integer representation.

Continues on next page



2 Functions

2.12. BitOr - Logical bitwise OR - operation on byte data
RobotWare - OS

7793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The range for a data type byte is 0 - 255. 

Syntax
BitOr’(’

[BitData1 ’:=’] <expression (IN) of byte>’ ,’

[BitData2 ’:=’] <expression (IN) of byte>

’)’

A function with a return value of the data type byte.

Related information

For information about See

Logical bitwise AND - operation on byte 
data

BitAnd - Logical bitwise AND - operation on byte 
data on page 770

Logical bitwise XOR - operation on byte 
data

BitXOr - Logical bitwise XOR - operation on byte 
data on page 782

Logical bitwise NEGATION - operation on 
byte data

BitNeg - Logical bitwise NEGATION - operation 
on byte data on page 776

Other bit functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics - 
Bit functions

Continued



2 Functions

2.13. BitRSh - Logical bitwise RIGHT SHIFT - operation on byte
RobotWare - OS

3HAC 16581-1  Revision: J780

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.13. BitRSh - Logical bitwise RIGHT SHIFT - operation on byte

Usage

BitRSh (Bit Right Shift) is used to execute a logical bitwise RIGHT SHIFT-operation on data 

types byte.

Basic examples

Basic example of the function BitRSh are illustrated below.

Example 1
VAR num right_shift := 3;

VAR byte data1 := 38;

VAR byte data2;

data2 := BitRSh(data1, right_shift);

The logical bitwise RIGHT SHIFT-operation will be executed on the data1 with 3 

(right_shift) steps of right shift, and the result will be returned to data2 

(integer representation)

The following figure shows logical bitwise RIGHT SHIFT-operation.

xx0500002455

Return value

Data type: byte

The result of the logical bitwise RIGHT SHIFT-operation in integer representation.

The left bit cells will be filled up with 0-bits.

Arguments
BitRSh (BitData ShiftSteps)

BitData

Data type: byte

The bit data, in integer representation, to be shifted.

ShiftSteps

Data type: num

Number of the logical shifts (1 - 8) to be executed.

Limitations

The range for a data type byte is 0 - 255.

The ShiftSteps argument is valid from 1 - 8 according to one byte.

Continues on next page



2 Functions

2.13. BitRSh - Logical bitwise RIGHT SHIFT - operation on byte
RobotWare - OS

7813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
BitRSh’(’

[BitData ’:=’] <expression (IN) of byte>’,’

[ShiftSteps’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type byte.

Related information

For information about See

Logical bitwise LEFT SHIFT-operation on 
byte data

BitLSh - Logical bitwise LEFT SHIFT - operation 
on byte on page 774

Other bit functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics - 
Bit functions

Continued



2 Functions

2.14. BitXOr - Logical bitwise XOR - operation on byte data
RobotWare - OS

3HAC 16581-1  Revision: J782

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.14. BitXOr - Logical bitwise XOR - operation on byte data

Usage

BitXOr (Bit eXclusive Or) is used to execute a logical bitwise XOR-operation on data types 

byte.

Basic examples

Basic examples of the function BitXOr are illustrated below.

Example 1
VAR byte data1 := 39;

VAR byte data2 := 162;

VAR byte data3;

data3 := BitXOr(data1, data2);

The logical bitwise XOR -operation will be executed on the data1 and data2, and the result 

will be returned to data3 (integer representation).

The following figure shows logical bitwise XOR-operation.

xx0500002459

Return value

Data type: byte

The result of the logical bitwise XOR-operation in integer representation.

Arguments
BitXOr (BitData1 BitData2)

BitData1

Data type: byte

The bit data 1, in integer representation.

BitData2

Data type: byte

The bit data 2, in integer representation.

Continues on next page



2 Functions

2.14. BitXOr - Logical bitwise XOR - operation on byte data
RobotWare - OS

7833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The range for a data type byte is 0 - 255. 

Syntax
BitXOr’(’

[BitData1 ’:=’] <expression (IN) of byte>’ ,’

[BitData2 ’:=’] <expression (IN) of byte>

’)’

A function with a return value of the data type byte.

Related information

For information about See

Logical bitwise AND - operation on byte 
data

BitAnd - Logical bitwise AND - operation on byte 
data on page 770

Logical bitwise OR - operation on byte 
data

BitOr - Logical bitwise OR - operation on byte 
data on page 778

Logical bitwise NEGATION - operation on 
byte data

BitNeg - Logical bitwise NEGATION - operation 
on byte data on page 776

Other bit functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics - 
Bit functions

Continued



2 Functions

2.15. ByteToStr - Converts a byte to a string data
RobotWare - OS

3HAC 16581-1  Revision: J784

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.15. ByteToStr - Converts a byte to a string data

Usage

ByteToStr (Byte To String) is used to convert a byte into a string data with a defined byte 

data format.

Basic examples

Basic examples of the function ByteToStr are illustrated below.

Example 1
VAR string con_data_buffer{5}; 

VAR byte data1 := 122;

con_data_buffer{1} := ByteToStr(data1);

The content of the array component con_data_buffer{1} will be "122" after the 

ByteToStr ... function.

con_data_buffer{2} := ByteToStr(data1\Hex);

The content of the array component con_data_buffer{2} will be "7A" after the 

ByteToStr ... function.

con_data_buffer{3} := ByteToStr(data1\Okt);

The content of the array component con_data_buffer{3} will be "172" after the 

ByteToStr ... function.

con_data_buffer{4} := ByteToStr(data1\Bin);

The content of the array component con_data_buffer{4} will be "01111010"after the 

ByteToStr ... function.

con_data_buffer{5} := ByteToStr(data1\Char);

The content of the array component con_data_buffer{5} will be "z" after the ByteToStr 

... function.

Return value

Data type: string

The result of the conversion operation with the following format:

(*) If it is a non-writable ASCII character then the return format will be RAPID character 

code format (e.g.“ \07” for BEL control character).

Format Characters String length Range

Dec .....: ’0’ -’ 9’ 1-3 "0" - "255"

Hex .....: ’0’ -’ 9’, ’A’ -’F’ 2 "00" - "FF"

Okt ......: ’0’ - ’7’ 3 "000" - "377"

Bin ......: ’0’ - ’1’ 8 "00000000" - "11111111"

Char ....: Any ASCII char (*) 1 One ASCII char

Continues on next page



2 Functions

2.15. ByteToStr - Converts a byte to a string data
RobotWare - OS

7853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ByteToStr (BitData [\Hex] | [\Okt] | [\Bin] | [\Char])

BitData

Data type: byte

The bit data to be converted.

If the optional switch argument is omitted then the data will be converted in decimal (Dec) 

format.

[\Hex]

Hexadecimal

Data type: switch

The data will be converted in hexadecimal format.

[\Okt]

Octal

Data type: switch

The data will be converted in octal format.

[\Bin]

Binary

Data type: switch

The data will be converted in binary format.

[\Char]

Character

Data type: switch

The data will be converted in ASCII character format.

Limitations

The range for a data type byte is 0 to 255 decimal.

Syntax
ByteToStr’(’

[BitData ’:=’] <expression (IN) of byte>

[’\’ Hex ] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]

’)’

A function with a return value of the data type string.

Related information

For information about See

Convert a string to a byte data StrToByte - Converts a string to a byte data on page 1007

Other bit (byte) functions Technical reference manual - RAPID overview, section 
RAPID summary - Mathematics - Bit functions

Other string functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Continued



2 Functions

2.16. CalcJointT - Calculates joint angles from robtarget
RobotWare - OS

3HAC 16581-1  Revision: J786

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.16. CalcJointT - Calculates joint angles from robtarget

Usage

CalcJointT (Calculate Joint Target) is used to calculate joint angles of the robot axes and 

external axes from a specified robtarget data. 

The input robtarget data should be specified in the same coordinate system as specified in 

argument for Tool, WObj, and at execution time active program displacement (ProgDisp) 

and external axes offset (EOffs). The returned jointtarget data is expressed in the 

calibration coordinate system.

If MultiMove application type semicoordinated or synchronized coordinated mode with the 

coordinated workobject is moved by some mechanical unit located in another program task 

then the function CalcJointT can be used if:

• It is appropriate that the current position of the coordinated work object moved by the 

mechanical unit is used in the calculation (current user frame). All other data will be 

fetched from the RAPID program.

• The mechanical unit located in another program task is standing still.

• The argument \UseCurWObjPos is used.

Basic examples

Basic examples of the function CalcJointT are illustrated below.

Example 1
VAR jointtarget jointpos1;

CONST robtarget p1 := [...];

jointpos1 := CalcJointT(p1, tool1 \WObj:=wobj1);

The jointtarget value corresponding to the robtarget value p1 is stored in 

jointpos1. The tool tool1 and work object wobj1 are used for calculating the joint angles 

jointpos1.

Example 2
VAR jointtarget jointpos2;

CONST robtarget p2 := [...];

jointpos2 := CalcJointT(\UseCurWObjPos, p2, tool2 \WObj:=orb1);

The jointtarget value corresponding to the robtarget value p2 is stored in 

jointpos2. The tool tool2 and work object  orb1 are used for calculating the joint angles 

jointpos2. The current position of the standing still manipulator orb1 is not located in the 

same program task as the TCP robot but is used for the calculation.

Return value

Data type: jointtarget

The angles in degrees for the axes of the robot on the arm side.

The values for the external axes, in mm for linear axes, in degrees for rotational axes.

The returned values are always related to the calibration position.

Continues on next page



2 Functions

2.16. CalcJointT - Calculates joint angles from robtarget
RobotWare - OS

7873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
CalcJointT ( [\UseCurWObjPos] Rob_target Tool [\WObj] )

[\UseCurWObjPos]

Data type: switch

Use current position of the coordinated work object moved by the mechanical unit in another 

task for the calculation (current user frame). All other data is fetched from the RAPID 

program.

Rob_target

Data type: robtarget

The position of the robot and external axes in the outermost coordinate system, related to the 

specified tool and work object and at execution time active program displacement 

(ProgDisp) and/or external axes offset (EOffs).

Tool

Data type: tooldata

The tool used for calculation of the robot joint angles.

[\WObj]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position is related.

If this argument is omitted then the work object wobj0 is used. This argument must be 

specified when using stationary tool, coordinated external axes, or conveyor.

Program execution

The returned jointtarget is calculated from the input robtarget. If use of the argument 

\UseCurWObjPos also the current position of the mechanical unit that controls the user 

frame is used. To calculate the robot joint angles, the specified Tool, WObj (including 

coordinated user frame), and the ProgDisp active at execution time are taken into 

consideration. To calculate the external axes position at the execution time, active EOffs is 

taken into consideration.

The calculation always selects the robot configuration according to the specified 

configuration data in the input robtarget data. Instructions ConfL and ConfJ do not affect 

this calculation principle. When wrist singularity is used, robot axis 4 will be set to 0 degrees.

If there is any active program displacement (ProgDisp) and/or external axis offset (EOffs) 

at the time the robtarget is stored then the same program displacement and/or external axis 

offset must be active when CalcJointT is executed.

Continued

Continues on next page



2 Functions

2.16. CalcJointT - Calculates joint angles from robtarget
RobotWare - OS

3HAC 16581-1  Revision: J788

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitation

If a coordinate frame is used then the coordinated unit has to be activated before using 

CalcJointT. 

The mechanical unit that controls the user frame in the work object must normally be 

available in the same program task as the TCP robot which executes CalcJointT.

Normally CalcJointT uses robtarget, tooldata, and wobjdata from the RAPID 

program to calculate jointtarget. For coordinated workobjects, the position of the 

mechanical unit is given as external axes position in the robtarget. That is not the case if 

the mechanical unit is controlled by another program task (MultiMove system) or the 

mechanical unit is not controlled by the control system (Conveyor). For the MultiMove 

System but not for the conveyor it is possible to use the argument \UseCurWObjPos if the 

mechanical unit is standing still at the execution time of CalCJointT.

Error handling

If at least one axis is outside the working area or the limits are exceeded for at least one 

coupled joint then the system variable ERRNO is set to ERR_ROBLIMIT and the execution 

continues in the error handler.

If the mechanical unit that controls the work object (user frame) isn’t standing still at 

execution time of CalJointT \UseCurWobjPos then the system variable ERRNO is set to 

ERR_WOBJ_MOVING and the execution continues in the error handler.

The error handler can then deal with the situations.

Syntax
CalcJointT’(’

[’\’UseCurWObjPos ’,’]

[Rob_target’ :=’] <expression (IN) of robtarget>‘,’

[Tool ’:=’ ] <persistent (PERS) of tooldata>

[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type jointtarget.

Related information

For information about See

Calculate robtarget from jointtarget CalcRobT - Calculates robtarget from 
jointtarget on page 789

Definition of position robtarget - Position data on page 1176

Definition of joint position jointtarget - Joint position data on page 1129

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Coordinate systems Technical reference manual - RAPID 
overview, section Motion and I/O principles - 
Coordinate systems

Program displacement coordinate system PDispOn - Activates program displacement 
on page 317

External axis offset coordinate system EOffsOn - Activates an offset for external 
axes on page 88

Continued



2 Functions

2.17. CalcRobT - Calculates robtarget from jointtarget
RobotWare - OS

7893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.17. CalcRobT - Calculates robtarget from jointtarget

Usage

CalcRobT (Calculate Robot Target) is used to calculate a robtarget data from a given 

jointtarget data.

This function returns a robtarget value with position (x, y, z), orientation (q1 ... q4), robot 

axes configuration, and external axes position.

The input jointtarget data should be specified in the calibration coordinate system.

The returned robtarget data is expressed in the outermost coordinate system. It takes the 

specified tool, work object, and at execution time active program displacement (ProgDisp) 

and external axis offset (EOffs) into consideration.

Basic examples

Basic examples of the function CalcRobT are illustrated below.

Example 1
VAR robtarget p1;

CONST jointtarget jointpos1 := [...];

p1 := CalcRobT(jointpos1, tool1 \WObj:=wobj1);

The robtarget value corresponding to the jointtarget value jointpos1 is stored in 

p1. The tool tool1 and work object wobj1 are used for calculating the position of p1.

Return value

Data type: robtarget

The robot and external axes position is returned in data type robtarget and expressed in the 

outermost coordinate system. It takes the specified tool, work object, and at execution time 

active program displacement (ProgDisp) and external axes offset (EOffs) into 

consideration.

If there is no active ProgDisp then the robot position is expressed in the object coordinate 

system. If there are no active EOffs then the external axis position is expressed in the 

calibration coordinate system.

Arguments
CalcRobT ( Joint_target Tool [\WObj] )

Joint_target

Data type: jointtarget

The joint position for the robot axes and external axes related to the calibration coordinate 

system.

Tool

Data type: tooldata

The tool used for calculation of the robot position.

Continues on next page



2 Functions

2.17. CalcRobT - Calculates robtarget from jointtarget
RobotWare - OS

3HAC 16581-1  Revision: J790

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\WObj]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the robot position returned by the function is 

related.

If this argument is omitted the work object wobj0 is used. This argument must be specified 

when using stationary tool, coordinated external axes, or conveyor.

Program execution

The returned robtarget is calculated from the input jointtarget. To calculate the 

cartesian robot position the specified Tool, WObj (including coordinated user frame), and at 

the execution time active ProgDisp, are taken into consideration.

To calculate the external axes position, the EOffs active at execution time is also taken into 

consideration.

Limitation

If a coordinate frame is used then the coordinated unit has to be activated before using 

CalcRobT. The coordinated unit also has to be situated in the same task as the robot.

Syntax
CalcRobT’(’

[Joint_target ’:=’ ] <expression (IN) of jointtarget>‘,’

[Tool ’:=’ ] <persistent (PERS) of tooldata>

[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type robtarget.

Related information

For information about See

Calculate jointtarget from robtarget CalcJointT - Calculates joint angles from 
robtarget on page 786

Definition of position robtarget - Position data on page 1176

Definition of joint position jointtarget - Joint position data on page 1129

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O Principles - Coordinate 
Systems

Program displacement coordinate system PDispOn - Activates program displacement on 
page 317

External axes offset coordinate system EOffsOn - Activates an offset for external axes 
on page 88

Continued



2 Functions

2.18. CalcRotAxFrameZ - Calculate a rotational axis frame
RobotWare - OS

7913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.18. CalcRotAxFrameZ - Calculate a rotational axis frame

Usage

CalcRotAxFrameZ (Calculate Rotational Axis Frame with positive Z-point) is used to 

calculate the user coordinate system of a rotational axis type mechanical unit. This function 

is to be used when the master robot and the external axis are located in different RAPID tasks. 

If they are in the same task then the function CalcRotAxisFrame should be used.

Description

The definition of a user frame for a rotational external axis requires that the turntable (or 

similar mechanical structure) on the external axis has a marked reference point. Moreover, 

the TCP robot’s base frame and TCP must be calibrated. The calibration procedure consists 

of a number of positions for the robot’s TCP on the reference point when the turntable is 

rotated to different angles. A positioning of the robots TCP in the positive z direction is also 

needed. For definition of points for a rotational axis, see the figure below.

xx0500002468

The user coordinate system for the rotational axis has its origin in the center of the turntable. 

The z direction coincides with the axis of rotation and the x axis goes through the reference 

point. 

The figure below shows the user coordinate system for two different positions of the turntable 

(turntable seen from above).

xx0500002469

Continues on next page



2 Functions

2.18. CalcRotAxFrameZ - Calculate a rotational axis frame
RobotWare - OS

3HAC 16581-1  Revision: J792

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the function CalcRotAxFrameZ are illustrated below.

Example 1
CONST robtarget pos1 := [...];

CONST robtarget pos2 := [...];

CONST robtarget pos3 := [...];

CONST robtarget pos4 := [...];

CONST robtarget zpos;

VAR robtarget targetlist{10};

VAR num max_err := 0;

VAR num mean_err := 0;

VAR pose resFr:=[...];

PERS tooldata tMyTool:= [...];

! Instructions for creating/ModPos pos1 - pos4 with TCP pointing 

at the turntable.

MoveJ pos1, v10, fine, tMyTool;

MoveJ pos2, v10, fine, tMyTool;

MoveJ pos3, v10, fine, tMyTool;

MoveJ pos4, v10, fine, tMyTool;

!Instruction for creating/ModPos zpos with TCP pointing at a point 

in positive z direction

MoveJ zpos, v10, fine, tMyTool;

! Add the targets to the array

targetlist{1}:= pos1;

targetlist{2}:= pos2;

targetlist{3}:= pos3;

targetlist{4}:= pos4;

resFr:=CalcRotAxFrameZ(targetlist, 4, zpos, max_err, mean_err);

! Update the system parameters.

IF (max_err < 1.0) AND (mean_err < 0.5) THEN

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_pos_x",resFr.trans.x/1000;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_pos_y",resFr.trans.y/1000;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_pos_z",resFr.trans.z/1000;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u0",resFr.rot.q1;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u1",resFr.rot.q2;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u2",resFr.rot.q3;

Continued

Continues on next page



2 Functions

2.18. CalcRotAxFrameZ - Calculate a rotational axis frame
RobotWare - OS

7933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u3",resFr.rot.q4;

TPReadFK reg1,"Warmstart required for calibration to take 

effect."

,stEmpty,stEmpty,stEmpty, stEmpty,"OK";

WarmStart;

ENDIF

Four positions, pos1 - pos4, are created/modposed so that the robot’s tool tMyTool points 

to the same reference point on the external axis STN_1 but with different external axis 

rotations. Position, zpos, is created/modposed so that the robot’s tool tMyTool points in the 

positive z direction according to the definition of the positive z-direction of an external 

rotational mechanical unit. Using the definition of the positive z-direction of an external 

rotational mechanical unit, see Description on page 791. The points are then used for 

calculating the external axis base frame, resFr, in relation to the world coordinate system. 

Finally, the frame is written to the configuration file and a warmstart is made to let the change 

take effect.

xx0500002472

NOTE!

Definition of the positive z-direction of an external rotational mechanical unit:

Let the right hand’s fingers coincide with the positive rotation axis of the rotational axis. The 

direction of the thumb then defines the positive z-direction. See the figure above.

Return value

Data type: pose

The calculated frame.

Arguments
CalcRotAxFrameZ (TargetList TargetsInList PositiveZPoint 

MaxErr MeanErr)

TargetList

Data type: robtarget

Array of robtargets holding the positions defined by pointing out the turntable. Minimum 

number of robtargets is 4, maximum 10.

TargetsInList

Data type: num

Number of robtargets in an array.

Continued

Continues on next page



2 Functions

2.18. CalcRotAxFrameZ - Calculate a rotational axis frame
RobotWare - OS

3HAC 16581-1  Revision: J794

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

PositiveZPoint

Data type: robtarget

robtarget holding the position defined by pointing out a point in the positive z direction. 

Using the definition of the positive z-direction of an external rotational mechanical unit, see 

Description on page 791.

MaxErr

Maximum Error

Data type: num

The estimated maximum error in mm.

MeanErr

Mean Error

Data type: num

The estimated mean error in mm.

Error handling

If the positions don’t have the required relation or are not specified with enough accuracy then 

the system variable ERRNO is set to ERR_FRAME. This error can then be handled in an error 

handler.

Syntax
CalcRotAxFrameZ’(’

[TargetList ’:=’] <array {*} (IN) of robtarget>’ ,’

[TargetsInList’ :=’] <expression (IN) of num> ’,’

[PositiveZPoint’ :=’] <expression (IN) of robtarget> ’,’

[MaxErr ’:=’] <variable (VAR) of num> ’,’

[MeanErr ’:=’] <variable (VAR) of num>’)’

A function with a return value of the data type pose.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.19. CalcRotAxisFrame - Calculate a rotational axis frame
RobotWare - OS

7953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.19. CalcRotAxisFrame - Calculate a rotational axis frame

Usage

CalcRotAxisFrame (Calculate Rotational Axis Frame) is used to calculate the user 

coordinate system of a rotational axis type mechanical unit. This function is to be used when 

the master robot and the external axis are located in the same RAPID task. If they are in 

different tasks the function CalcRotAxFrameZ should be used.

Description

The definition of a user frame for a rotational external axis requires that the turntable (or 

similar mechanical structure) on the external axis has a marked reference point. Moreover, 

the master robot’s base frame and TCP must be calibrated. The calibration procedure consists 

of a number of positions for the robot’s TCP on the reference point when the turntable is 

rotated to different angles. Definition of points for a rotational axis is illustrated in the figure 

below.

xx0500002468

The user coordinate system for the rotational axis has its origin in the center of the turntable. 

The z direction coincides with the axis of rotation and the x axis goes through the reference 

point. 

The figure below shows the user coordinate system for two different positions of the turntable 

(turntable seen from above).

xx0500002469

Continues on next page



2 Functions

2.19. CalcRotAxisFrame - Calculate a rotational axis frame
RobotWare - OS

3HAC 16581-1  Revision: J796

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the function CalcRotAxisFrame are illustrated below.

Example 1
CONST robtarget pos1 := [...];

CONST robtarget pos2 := [...];

CONST robtarget pos3 := [...];

CONST robtarget pos4 := [...];

VAR robtarget targetlist{10};

VAR num max_err := 0;

VAR num mean_err := 0;

VAR pose resFr:=[...];

PERS tooldata tMyTool:= [...];

! Instructions needed for creating/ModPos pos1 - pos4 with TCP 

pointing at the turntable.

MoveJ pos1, v10, fine, tMyTool;

MoveJ pos2, v10, fine, tMyTool;

MoveJ pos3, v10, fine, tMyTool;

MoveJ pos4, v10, fine, tMyTool;

! Add the targets to the array

targetlist{1}:= pos1;

targetlist{2}:= pos2;

targetlist{3}:= pos3;

targetlist{4}:= pos4;

resFr:=CalcRotAxisFrame(STN_1 , targetlist, 4, max_err, mean_err);

! Update the system parameters.

IF (max_err < 1.0) AND (mean_err < 0.5) THEN

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_pos_x",resFr.trans.x/1000;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_pos_y",resFr.trans.y/1000;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_pos_z",resFr.trans.z/1000;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u0",resFr.rot.q1;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u1",resFr.rot.q2;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u2",resFr.rot.q3;

WriteCfgData "/MOC/SINGLE/STN_1", 

"base_frame_orient_u3",resFr.rot.q4;

TPReadFK reg1,"Warmstart required for calibration to take 

effect.",stEmpty,stEmpty,stEmpty,stEmpty,"OK";

WarmStart;

ENDIF

Continued

Continues on next page



2 Functions

2.19. CalcRotAxisFrame - Calculate a rotational axis frame
RobotWare - OS

7973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Four positions, pos1 - pos4, are created/modposed so that the robot’s tool tMyTool points 

to the same reference point on the external axis STN_1 but with different external axis 

rotations. The points are then used for calculating the external axis base frame, resFr, in 

relation to the world coordinate system. Finally, the frame is written to the configuration file 

and a warmstart is made to let the change take effect.

Return value

Data type: pose

The calculated frame.

Arguments
CalcRotAxisFrame (MechUnit [\AxisNo] TargetList TargetsInList 

MaxErr MeanErr)

MechUnit

Mechanical Unit

Data type: mecunit

Name of the mechanical unit to be calibrated.

[\AxisNo]

Data type: num

Optional argument defining the axis number for which a frame should be determined. Default 

value is 1 applying to single rotational axis. For mechanical units with several axes, the axis 

number should be supplied with this argument.

TargetList

Data type: robtarget

Array of robtargets holding the positions defined by pointing out the turntable. Minimum 

number of robtargets is 4, maximum is 10.

TargetsInList

Data type: num

Number of robtargets in an array.

MaxErr

Maximum Error

Data type: num

The estimated maximum error in mm.

MeanErr

Mean Error

Data type: num

The estimated mean error in mm.

Error handling

If the positions don’t have the required relation or are not specified with enough accuracy then 

the system variable ERRNO is set to ERR_FRAME. This error can then be handled in an error 

handler.

Continued

Continues on next page



2 Functions

2.19. CalcRotAxisFrame - Calculate a rotational axis frame
RobotWare - OS

3HAC 16581-1  Revision: J798

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
CalcRotAxisFrame’(’

[MechUnit ’:=’] <variable (VAR) of mecunit>

[\AxisNo ’:=’ <expression (IN) of num> ]’,’

[TargetList’:=’] <array {*} (IN) of robtarget> ’,’

[TargetsInList’:=’] <expression (IN) of num> ’,’

[MaxErr ’:=’] <variable (VAR) of num> ’,’

[MeanErr ’:=’] <variable (VAR) of num>’)’

A function with a return value of the data type pose.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.20. CDate - Reads the current date as a string
RobotWare-OS

7993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.20. CDate - Reads the current date as a string

Usage

CDate (Current Date) is used to read the current system date.

This function can be used to present the current date to the operator on the FlexPendant 

display or to paste the current date into a text file that the program writes to.

Basic examples

Basic examples of the function CDate are illustrated below.

See also  on page 799.

Example 1
VAR string date;

date := CDate();

The current date is stored in the variable date.

Return value

Data type: string

The current date in a string.

The standard date format is “year-month-day”, e.g. ”1998-01-29”. 

More examples

More examples of the function CDate are illustrated below.

Example 1
VAR string date;

date := CDate();

TPWrite "The current date is: "+date;

Write logfile, date;

The current date is written to the FlexPendant display and into a text file.

Syntax
CDate ’(’ ’)’ 

A function with a return value of the type string.

Related information

For information about See

Time instructions Technical reference manual - RAPID overview, 
section RAPID summary - System & time

Setting the system clock Operating manual - IRC5 with FlexPendant, section 
Changing FlexPendant settings



2 Functions

2.21. CJointT - Reads the current joint angles
RobotWare - OS

3HAC 16581-1  Revision: J800

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.21. CJointT - Reads the current joint angles

Usage

CJointT (Current Joint Target) is used to read the current angles of the robot axes and 

external axes. 

Basic examples

Basic examples of the function CJointT are illustrated below.

See also More examples on page 801.

Example 1
VAR jointtarget joints;

joints := CJointT();

The current angles of the axes for a robot and external axes are stored in joints. 

Return value

Data type: jointtarget

The current angles in degrees for the axes of the robot on the arm side.

The current values for the external axes, in mm for linear axes, in degrees for rotational axes.

The returned values are related to the calibration position.

Arguments
CJointT ([\TaskRef]|[\TaskName])

[\TaskRef]

Task Reference

Data type: taskid

The program task identity from which the jointtarget should be read.

For all program tasks in the system, predefined variables of the data type taskid will be 

available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1 task, and the 

variable identity will be T_ROB1Id.

[\TaskName]

Data type: string

The program task name from which the jointtarget should be read.

If none of the arguments \TaskRef or \TaskName are specified then the current task is used.

Continues on next page



2 Functions

2.21. CJointT - Reads the current joint angles
RobotWare - OS

8013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function CJointT are illustrated below.

Example 1
! In task T_ROB1

VAR jointtarget joints;

joints := CJointT(\TaskRef:=T_ROB2Id);

The current position of the robot and external axes in task T_ROB2 are stored in joints in 

task T_ROB1. 

Note that the robot in task T_ROB2 may be moving when the position is read. To make sure 

the robot stands still, a stop point fine in the preceding movement instruction in task T_ROB2 

could be programmed and instruction WaitSyncTask could be used to synchronize the 

instructions in task T_ROB1.

Example 2
! In task T_ROB1

VAR jointtarget joints;

joints := CJointT(\TaskName:="T_ROB2");

The same effect as Example 1 above.

Error handling

If argument \TaskRef or \TaskName specify some non-motion task then the system ERRNO 

is set to ERR_NOT_MOVETASK. This error can be handled in the error handler.

But no error will be generated if argument \TaskRef or \TaskName specifies the non-

motion task that executes this function CJointT (reference to my own non-motion task). The 

position will then be fetched from the connected motion task.

Syntax
CJointT’(’

[’\’ TaskRef’ :=’ <variable (VAR) of taskid>]

|[’\’ TaskName’ :=’ <expression (IN) of string>]’)’

A function with a return value of the data type jointtarget.

Related information

For information about See

Definition of joint jointtarget - Joint position data on page 1129

Reading the current motor angle ReadMotor - Reads the current motor angles on 
page 947

Continued



2 Functions

2.22. ClkRead - Reads a clock used for timing
RobotWare-OS

3HAC 16581-1  Revision: J802

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.22. ClkRead - Reads a clock used for timing

Usage

ClkRead is used to read a clock that functions as a stop-watch used for timing.

Basic examples

Basic examples of the instruction ClkRead are illustrated below.

Example 1
reg1:=ClkRead(clock1);

The clock clock1 is read and the time in seconds is stored in the variable reg1.

Return value

Data type: num

The time in seconds stored in the clock. Resolution 0.01 seconds.

Argument
ClkRead (Clock)

Clock

Data type: clock

The name of the clock to read.

Program execution

A clock can be read when it is stopped or running.

Once a clock is read it can be read again, started again, stopped, or reset.

Error handling

If the clock runs for 4,294,967 seconds (49 days 17 hours 2 minutes 47 seconds) then it 

becomes overflowed and the system variable ERRNO is set to ERR_OVERFLOW.

The error can be handled in the error handler.

Syntax
ClkRead ’(’  

[ Clock ’:=’ ] < variable (VAR) of clock > ’)’

A function with a return value of the type num.

Related information

For information about See

Clock instructions Technical reference manual - RAPID overview, 
section RAPID Summary - System & Time

More examples ClkStart - Starts a clock used for timing on page 52



2 Functions

2.23. CorrRead - Reads the current total offsets
Path Offset

8033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.23. CorrRead - Reads the current total offsets

Usage

CorrRead is used to read the total corrections delivered by all connected correction 

generators.

CorrRead can be used to:

• find out how much the current path differs from the original path.

• take actions to reduce the difference.

Basic examples

Basic examples of the function CorrRead are illustrated below.

See also More examples on page 803.

Example 1
VAR pos offset;

...

offset := CorrRead();

The current offsets delivered by all connected correction generators are available in the 

variable offset.

Return value

Data type: pos

The total absolute offsets delivered from all connected correction generators so far.

More examples

For more examples of the function CorrRead, see instruction CorrCon.

Syntax
CorrRead’ (’ ’)’

A function with a return value of the data type pos.

Related information

For information about See

Connects to a correction generator CorrCon - Connects to a correction generator 
on page 71

Disconnects from a correction generator CorrDiscon - Disconnects from a correction 
generator on page 76

Writes to a correction generator CorrWrite - Writes to a correction generator on 
page 77

Removes all correction generators CorrClear - Removes all correction generators 
on page 70

Correction descriptor corrdescr - Correction generator descriptor on 
page 1099



2 Functions

2.24. Cos - Calculates the cosine value
RobotWare - OS

3HAC 16581-1  Revision: J804

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.24. Cos - Calculates the cosine value

Usage

Cos (Cosine) is used to calculate the cosine value from an angle value.

Basic examples

Basic examples of the function Cos are illustrated below.

Example 1
VAR num angle;

VAR num value;

...

...

value := Cos(angle);

value will get the cosine value of angle.

Return value

Data type: num

The cosine value, range = [-1, 1] .

Arguments
Cos (Angle)

Angle

Data type: num

The angle value, expressed in degrees.

Syntax
Cos’(’

[Angle ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics



2 Functions

2.25. CPos - Reads the current position (pos) data
RobotWare - OS

8053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.25. CPos - Reads the current position (pos) data

Usage

CPos (Current Position) is used to read the current position of the robot. 

This function returns the x, y, and z values of the robot TCP as data of type pos. If the 

complete robot position (robtarget) is to be read then use the function CRobT instead. 

Basic examples

Basic examples of the function CPos are illustrated below.

See also More examples on page 806.

VAR pos pos1;

MoveL *, v500, fine \Inpos := inpos50, tool1; 

pos1 := CPos(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot TCP is stored in variable pos1. The tool tool1 and work 

object wobj0 are used for calculating the position.

Note that the robot is standing still before the position is read and calculated. This is achieved 

by using the stop point fine within position accuracy inpos50 in the preceding movement 

instruction.

Return value

Data type: pos

The current position (pos) of the robot with x, y, and z in the outermost coordinate system, 

taking the specified tool, work object, and active ProgDisp coordinate system into 

consideration.

Arguments
CPos ([\Tool] [\WObj])

[\Tool]

Data type: tooldata

The tool used for calculation of the current robot position.

If this argument is omitted then the current active tool is used.

[\WObj]

Work Object

Data type: wobjdata

The work object (coordinate system) to which the current robot position returned by the 

function is related.

If this argument is omitted then the current active work object is used.

WARNING!

It is advised to always specify the arguments \Tool and \WObj during programming. The 

function will then always return the wanted position even if another tool or work object are 

activated.

Continues on next page



2 Functions

2.25. CPos - Reads the current position (pos) data
RobotWare - OS

3HAC 16581-1  Revision: J806

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate system.

More examples

More examples of the function CPos are illustrated below.

VAR pos pos2;

VAR pos pos3;

VAR pos pos4;

pos2 := CPos(\Tool:=grip3 \WObj:=fixture);

...

pos3 := CPos(\Tool:=grip3 \WObj:=fixture);

pos4 := pos3-pos2;

The x, y, and z position of the robot is captured at two places within the program using the 

CPos function. The tool grip3 and work object fixture are used for calculating the 

position. The x, y, and z distances travelled between these positions are then calculated and 

stored in variable pos4.

Syntax
CPos ’(’

[’\’Tool ’:=’ <persistent (PERS) of tooldata>]

[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type pos.

Related information

For information about See

Definition of position pos - Positions (only X, Y and Z) on page 1160

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

ProgDisp coordinate system PDispOn - Activates program displacement on page 317

Coordinate systems Technical reference manual - RAPID overview, section 
Motion and I/O Principles - Coordinate systems

Reading the current robtarget CRobT - Reads the current position (robtarget) data on 
page 807

Continued



2 Functions

2.26. CRobT - Reads the current position (robtarget) data
RobotWare - OS

8073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.26. CRobT - Reads the current position (robtarget) data

Usage

CRobT(Current Robot Target) is used to read the current position of a robot and external axes.

This function returns a robtarget value with position (x, y, z), orientation (q1 ... q4), robot 

axes configuration, and external axes position. If only the x, y, and z values of the robot TCP 

(pos) are to be read then use the function CPos instead.

Basic examples

Basic examples of the function CRobT are illustrated below.

See also More examples on page 808.

Example 1
VAR robtarget p1;

MoveL *, v500, fine \Inpos := inpos50, tool1;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes is stored in p1. The tool tool1 and work 

object wobj0 are used for calculating the position.

Note that the robot is standing still before the position is read and calculated. This is achieved 

by using the stop point fine within position accuracy inpos50 in the preceding movement 

instruction.

Return value

Data type: robtarget

The current position of a robot and external axes in the outermost coordinate system, taking 

the specified tool, work object, and active ProgDisp/ExtOffs coordinate system into 

consideration.

Arguments
CRobT ([\TaskRef]|[\TaskName] [\Tool] [\WObj])

[\TaskRef]

Task Reference

Data type: taskid

The program task identity from which the robtarget should be read.

For all program tasks in the system, predefined variables of the data type taskid will be 

available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1 task the variable 

identity will be T_ROB1Id.

[\TaskName]

Data type: string

The program task name from which the robtarget should be read.

If none of the arguments \TaskRef or \TaskName are specified then the current task is used.

Continues on next page



2 Functions

2.26. CRobT - Reads the current position (robtarget) data
RobotWare - OS

3HAC 16581-1  Revision: J808

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Tool]

Data type: tooldata

The persistent variable for the tool used to calculate the current robot position.

If this argument is omitted then the current active tool is used.

[\WObj]

Work Object

Data type: wobjdata

The persistent variable for the work object (coordinate system) to which the current robot 

position returned by the function is related.

If this argument is omitted then the current active work object is used.

WARNING!

It is advised to always specify the arguments \Tool and \WObj during programming. The 

function will then always return the wanted position even if another tool or work object are 

activated.

Program execution

The coordinates returned represent the TCP position in the ProgDisp coordinate system. 

External axes are represented in the ExtOffs coordinate system.

If one of the arguments \TaskRef or \TaskName are used but arguments Tool and WObj are 

not used then the current tool and work object in the specified task will be used.

More examples

More examples of the function CRobT are illustrated below.

Example 1
VAR robtarget p2;

p2 := ORobT( CRobT(\Tool:=grip3 \WObj:=fixture) );

The current position in the object coordinate system (without any ProgDisp or ExtOffs) of 

the robot and external axes is stored in p2. The tool grip3 and work object fixture are used 

for calculating the position.

Example 2
! In task T_ROB1

VAR robtarget p3;

p3 := CRobT(\TaskRef:=T_ROB2Id \Tool:=tool1 \WObj:=wobj0);

The current position of the robot and external axes in task T_ROB2 are stored in p3 in task 

T_ROB1. The tool tool1 and work object wobj0 are used for calculating the position.

Note that the robot in task T_ROB2 may be moving when the position is read and calculated. 

To make sure the robot stands still, a stop point fine in the preceding movement instruction 

in task T_ROB2 could be programmed and instruction WaitSyncTask could be used to 

synchronize the instructions in task T_ROB1.

Continued

Continues on next page



2 Functions

2.26. CRobT - Reads the current position (robtarget) data
RobotWare - OS

8093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 3
! In task T_ROB1

VAR robtarget p4;

p4 := CRobT(\TaskName:="T_ROB2");

The current position of the robot and external axes in task T_ROB2 are stored in p4 in task 

T_ROB1. The current tool and work object in task T_ROB2 are used for calculating the 

position.

Error handling

If argument \TaskRef or \TaskName specify some non-motion task then the system ERRNO 

is set to ERR_NOT_MOVETASK. This error can be handled in the error handler.

But no error will be generated if the arguments \TaskRef or \TaskName specify the non-

motion task that executes this function CRobT (reference to my own non-motion task). The 

position will then be fetched from the connected motion task.

Syntax
CRobT’(’

[’\’ TaskRef ’:=’ <variable (VAR) of taskid>]

|[’\’ TaskName’ :=’ <expression (IN) of string>]

[’\’Tool ’:=’ <persistent (PERS) of tooldata>]

[’\’WObj ’:=’ <persistent (PERS) of wobjdata>] ’)’

A function with a return value of the data type robtarget.

Related information

For information about See

Definition of position robtarget - Position data on page 1176

Definition of tools tooldata - Tool data on page 1207

Definition of work objects wobjdata - Work object data on page 1224

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

ProgDisp coordinate system PDispOn - Activates program displacement on 
page 317

ExtOffs coordinate system EOffsOn - Activates an offset for external axes on 
page 88

Reading the current pos (x, y, z only) CPos - Reads the current position (pos) data on 
page 805

Continued



2 Functions

2.27. CSpeedOverride - Reads the current override speed
RobotWare - OS

3HAC 16581-1  Revision: J810

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.27. CSpeedOverride - Reads the current override speed 

Usage

CSpeedOverride is used to read the speed override set by the operator from the 

FlexPendant. The return value is displayed as a percentage where 100% corresponds to the 

programmed speed.

In applications with instruction SpeedRefresh, this function can also be used to read current 

speed override value for this or connected motion program tasks.

Note! Must not be mixed up with the argument Override in the RAPID instruction VelSet.

Basic examples

Basic examples of the function CSpeedOverride are illustrated below.

Example 1
VAR num myspeed;

myspeed := CSpeedOverride();

The current override speed will be stored in the variable myspeed. E.g. if the value is 100 

then this is equivalent to 100%.

Return value

Data type: num

The override speed value in percent of the programmed speed. This will be a numeric value 

in the range of 0 - 100.

Arguments
CSpeedOverride ( [\CTask] )

[\CTask]

Data type: switch

Get current speed override value for this or connected motion program task. Used together 

with the instruction SpeedRefresh.

If this argument is not used then the function returns current speed override for the whole 

system (all motion program tasks). Meaning the manual speed override, set from Teach 

Pendant.

Syntax
CSpeedOverride’(’

[’\’ CTask ] ’)’

A function with a return value of the data type num.

Continues on next page



2 Functions

2.27. CSpeedOverride - Reads the current override speed
RobotWare - OS

8113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Changing the Override Speed Operating manual - IRC5 with FlexPendant, section 
Programming and Testing Production Running - 
Quickset menu, Speed

Update speed override from RAPID SpeedRefresh - Update speed override for ongoing 
movement on page 476

Continued



2 Functions

2.28. CTime - Reads the current time as a string
RobotWare-OS

3HAC 16581-1  Revision: J812

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.28. CTime - Reads the current time as a string

Usage

CTime is used to read the current system time.

This function can be used to present the current time to the operator on the FlexPendant 

display or to paste the current time into a text file that the program writes to.

Basic examples

Basic examples of the function CTime are illustrated below.

Example 1

VAR string time;

time := CTime();

The current time is stored in the variable time.

Return value

Data type: string

The current time in a string.

The standard time format is "hours:minutes:seconds", e.g. "18:20:46".

More example

More examples of the function CTime are illustrated below.

Example 1
VAR string time;

time := CTime(); 

TPWrite "The current time is: "+time; 

Write logfile, time;

The current time is written to the FlexPendant display and written into a text file.

Syntax
CTime ’(’ ’)’ 

A function with a return value of the type string.

Related information

For information about See

Time and date instructions Technical reference manual - RAPID overview, 
section RAPID summary - System & Time

Setting the system clock Operating manual - IRC5 with FlexPendant, section 
Changing FlexPendant settings



2 Functions

2.29. CTool - Reads the current tool data
RobotWare - OS

8133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.29. CTool - Reads the current tool data

Usage

CTool (Current Tool) is used to read the data of the current tool.

Basic examples

Basic examples of the function CTool are illustrated below:

Example 1
PERS tooldata temp_tool:= [ TRUE, [ [0, 0, 0], [1, 0, 0 ,0] ], 

[0.001, [0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0] ];

temp_tool := CTool();

The value of the current tool is stored in the variable temp_tool. 

Return value

Data type: tooldata

This function returns a tooldata value holding the value of the current tool, i.e. the tool last 

used in a movement instruction.

The value returned represents the TCP position and orientation in the wrist centre coordinate 

system. See tooldata. 

Syntax
CTool’(’’)’

A function with a return value of the data type tooldata.

Related information

For information about See

Definition of tools tooldata - Tool data on page 1207

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
Systems



2 Functions

2.30. CWObj - Reads the current work object data
RobotWare - OS

3HAC 16581-1  Revision: J814

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.30. CWObj - Reads the current work object data

Usage

CWObj (Current Work Object) is used to read the data of the current work object.

Basic examples

Basic examples of the function CWObj are illustrated below.

Example 1
PERS wobjdata temp_wobj:= [FALSE, TRUE, "", [[0,0,0], [1,0,0,0]], 

[[0,0,0], [1,0,0,0]]];

temp_wobj := CWObj();

The value of the current work object is stored in the variable temp_wobj. 

Return value

Data type: wobjdata

This function returns a wobjdata value holding the value of the current work object, i.e. the 

work object last used in a movement instruction.

The value returned represents the work object position and orientation in the world coordinate 

system. See wobjdata. 

Syntax
CWObj’(’’)’

A function with a return value of the data type wobjdata.

Related information

For information about See

Definition of work objects wobjdata - Work object data on page 1224

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O Principles - Coordinate 
Systems 



2 Functions

2.31. DecToHex - Convert from decimal to hexadecimal
RobotWare - OS

8153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.31. DecToHex - Convert from decimal to hexadecimal

Usage

DecToHex is used to convert a number specified in a readable string in the base 10 to the 

base 16.

The resulting string is constructed from the character set [0-9,A-F,a-f].

This routine handle numbers from 0 up to 9223372036854775807dec or 

7FFFFFFFFFFFFFFF hex.

Basic examples

Basic examples of the function DecToHex are illustrated below.

Example 1
VAR string str;

str := DecToHex("99999999");

The variable str is given the value "5F5E0FF".

Return value

Data type: string

The string converted to a hexadecimal representation of the given number in the inparameter 

string.

Arguments
DecToHex ( Str )

Str

String

Data type: string

The string to convert.

Syntax
DecToHex’(’

[ Str ’:=’ ] <expression (IN) of string>

’)’

A function with a return value of the data type string.

Related information

For information about See

String functions Technical reference manual - RAPID overview, 
section RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, 
section Basic characteristics - Basic elements



2 Functions

2.32. DefAccFrame - Define an accurate frame
RobotWare - OS

3HAC 16581-1  Revision: J816

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.32. DefAccFrame - Define an accurate frame

Usage

DefAccFrame (Define Accurate Frame) is used to define a framed from three to ten original 

positions and the same number of displaced positions.

Description

A frame can be defined when a set of targets are known at two different locations. Thus, the 

same physical positions are used but expressed differently. 

Consider it in two different approaches:

1. The same physical positions are expressed in relation to different coordinate systems. 

For example, a number of positions are retrieved from a CAD drawing, thus the 

positions are expressed in a CAD local coordinate system. The same positions are then 

expressed in robot world coordinate system. From these two sets of positions the 

frame between CAD coordinate system and robot world coordinate system is 

calculated. 

2. A number of positions are related to an object in an original position. After a 

displacement of the object, the positions are determined again (often searched for). 

From these two sets of positions (old positions, new positions) the displacement frame 

is calculated.

Three targets are enough to define a frame, but to improve accuracy several points should be 

used.

Basic examples

Basic examples of the function DefAccFrame are illustrated below.

Example 1

xx0500002179

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

CONST robtarget p4 := [...];

CONST robtarget p5 := [...];

Continues on next page



2 Functions

2.32. DefAccFrame - Define an accurate frame
RobotWare - OS

8173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

VAR robtarget p6 := [...];

VAR robtarget p7 := [...];

VAR robtarget p8 := [...];

VAR robtarget p9 := [...];

VAR robtarget p10 := [...];

VAR robtarget pWCS{5};

VAR robtarget pCAD{5};

VAR pose frame1;

VAR num max_err;

VAR num mean_err;

! Add positions to robtarget arrays

pCAD{1}:=p1;

...

pCAD{5}:=p5;

pWCS{1}:=p6;

...

pWCS{5}:=p10;

frame1 := DefAccFrame (pCAD, pWCS, 5, max_err, mean_err);

Five positions p1- p5 related to an object have been stored. The five positions are also stored 

in relation to world coordinate system as p6-p10. From these 10 positions the frame, 

frame1, between the object and the world coordinate system is calculated. The frame will be 

the CAD frame expressed in the world coordinate system. If the input order of the targetlists 

is exchanged, i.e.  DefAccFrame (pWCS, pCAD....) then the world frame will be expressed 

in the CAD coordinate system.

Return value

Data type: pose

The calculated TargetListOne frame expressed in the TargetListTwo coordinate system.

Arguments
DefAccFrame (TargetListOne TargetListTwo TargetsInList 

MaxErr MeanErr)

TargetListOne

Data type: robtarget

Array of robtargets holding the positions defined in coordinate system one. Minimum number 

of robtargets is 3, maximum is 10.

TargetListTwo

Data type: robtarget

Array of robtargets holding the positions defined in coordinate system two. Minimum number 

of robtargets is 3, maximum is 10.

Continued

Continues on next page



2 Functions

2.32. DefAccFrame - Define an accurate frame
RobotWare - OS

3HAC 16581-1  Revision: J818

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

TargetsInList

Data type: num

Number of robtargets in an array.

MaxErr

Data type: num

The estimated maximum error in mm.

MeanErr

Data type: num

The estimated mean error in mm.

Error handling

If the positions don’t have the required relation or are not specified with enough accuracy then 

the system variable ERRNO is set to ERR_FRAME. This error can then be handled in an error 

handler.

Syntax
DefAccFrame’(’

[TargetListOne’:=’] <array {*} (IN) of robtarget>’ ,’

[TargetListTwo’ :=’] <array {*} (IN) of robtarget> ’,’

[TargetsInList’:=’] <expression (IN) of num> ’,’

[MaxErr’:=’] <variable (VAR) of num> ’,’

[MeanErr’:=’] <variable (VAR) of num>’)’

A function with a return value of the data type pose.

Related information

For information about See

Calculating a frame from three positions DefFrame - Define a frame on page 822

Calculate a frame from 6 positions DefDFrame - Define a displacement frame on 
page 819

Continued



2 Functions

2.33. DefDFrame - Define a displacement frame
RobotWare - OS

8193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.33. DefDFrame - Define a displacement frame

Usage

DefDFrame (Define Displacement Frame) is used to calculate a displacement frame from 

three original positions and three displaced positions.

Basic examples

Basic examples of the function DefDFrame are illustrated below.

Example 1

xx0500002177

CONST robtarget p1 := [...]; 

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

VAR robtarget p4;

VAR robtarget p5;

VAR robtarget p6;

VAR pose frame1;

...

!Search for the new positions

SearchL sen1, p4, *, v50, tool1;

...

SearchL sen1, p5, *, v50, tool1;

...

SearchL sen1, p6, *, v50, tool1;

frame1 := DefDframe (p1, p2, p3, p4, p5, p6);

...

!Activation of the displacement defined by frame1

PDispSet frame1;

Three positions p1-p3 related to an object in an original position have been stored. After a 

displacement of the object, three new positions are searched for and stored as p4-p6. The 

displacement frame is calculated from these six positions. Then the calculated frame is used 

to displace all the stored positions in the program.

Return value

Data type: pose

The displacement frame.

Continues on next page



2 Functions

2.33. DefDFrame - Define a displacement frame
RobotWare - OS

3HAC 16581-1  Revision: J820

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
DefDFrame (OldP1 OldP2 OldP3 NewP1 NewP2 NewP3)

OldP1

Data type: robtarget

The first original position. 

OldP2

Data type: robtarget

The second original position. 

OldP3

Data type: robtarget

The third original position. 

NewP1

Data type: robtarget

The first displaced position. The difference between OldP1 and NewP1 will define the 

translation part of the frame and must be measured and determined with great accuracy.

NewP2

Data type: robtarget

The second displaced position. The line NewP1 ... NewP2 will define the rotation of the 

old line OldP1 ... OldP2.

NewP3

Data type: robtarget

The third displaced position. This position will define the rotation of the plane, e.g. it should 

be placed on the new plane of NewP1, NewP2, and NewP3.

Error handling

If it is not possible to calculate the frame because of bad accuracy in the positions then the 

system variable ERRNO is set to ERR_FRAME. This error can then be handled in the error 

handler.

Syntax
DefDFrame’(’

[OldP1 ’:=’] <expression (IN) of robtarget>’ ,’

[OldP2 ’:=’] <expression (IN) of robtarget> ’,’

[OldP3 ’:=’] <expression (IN) of robtarget> ’,’

[NewP1 ’:=’] <expression (IN) of robtarget> ’,’

[NewP2 ’:=’] <expression (IN) of robtarget> ’,’

[NewP3 ’:=’] <expression (IN) of robtarget> ’)’

A function with a return value of the data type pose.

Continued

Continues on next page



2 Functions

2.33. DefDFrame - Define a displacement frame
RobotWare - OS

8213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Activation of displacement frame PDispSet - Activates program displacement 
using known frame on page 321

Manual definition of displacement frame Operating manual - IRC5 with FlexPendant, 
section Calibrating

Continued



2 Functions

2.34. DefFrame - Define a frame
RobotWare - OS

3HAC 16581-1  Revision: J822

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.34. DefFrame - Define a frame

Usage

DefFrame (Define Frame) is used to calculate a frame, from three positions defining the 

frame.

Basic examples

Basic examples of the function DefFrame are illustrated below.

Example 1

xx0500002181

Three positions, p1- p3 related to the object coordinate system are used to define the new 

coordinate system, frame1. The first position, p1, is defining the origin of the new 

coordinate system. The second position, p2, is defining the direction of the x-axis. The third 

position, p3, is defining the location of the xy-plane. The defined frame1 may be used as a 

displacement frame, as shown in the example below:

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

VAR pose frame1;

...

...

frame1 := DefFrame (p1, p2, p3);

...

...

!Activation of the displacement defined by frame1

PDispSet frame1;

Return value

Data type: pose

The calculated frame.

The calculation is related to the active object coordinate system.

Continues on next page



2 Functions

2.34. DefFrame - Define a frame
RobotWare - OS

8233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
DefFrame (NewP1 NewP2 NewP3 [\Origin])

NewP1

Data type: robtarget

The first position, which will define the origin of the new coordinate system.

NewP2

Data type: robtarget

The second position, which will define the direction of the x-axis of the new coordinate 

frame.

NewP3

Data type: robtarget

The third position, which will define the xy-plane of the new coordinate system. The position 

of point 3 will be on the positive y side, see the figure above.

[\Origin]

Data type: num

Optional argument, which will define how the origin of the new coordinate system will be 

placed. Origin = 1 means that the origin is placed in NewP1, i.e. the same as if this argument 

is omitted. Origin = 2 means that the origin is placed in NewP2. See the figure below.

xx0500002178

Origin = 3 means that the origin is placed on the line going through NewP1 and NewP2 and 

so that NewP3 will be placed on the y axis. See the figure below.

xx0500002180

Other values, or if Origin is omitted, will place the origin in NewP1.

Continued

Continues on next page



2 Functions

2.34. DefFrame - Define a frame
RobotWare - OS

3HAC 16581-1  Revision: J824

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If the frame cannot be calculated because of the below limitations then the system variable 

ERRNO is set to ERR_FRAME. This error can then be handled in the error handler.

Limitations

The three positions p1 - p3, defining the frame, must define a well shaped triangle. The 

most well shaped triangle is the one with all sides of equal length.

xx0500002182

The triangle is not considered to be well shaped if the angle α is too small. The angle α is too 

small if:

|cos α| < 1 - 10-4

The triangle p1, p2, p3 must not be too small, i.e. the positions cannot be too close. The 

distances between the positions p1 - p2 and p1 - p3 must not be less than 0.1 mm.

Syntax
DefFrame’(’

[NewP1 ’:=’] <expression (IN) of robtarget>’ ,’

[NewP2 ’:=’] <expression (IN) of robtarget> ’,’

[NewP3 ’:=’] <expression (IN) of robtarget>

[’\’Origin’:=’ <expression (IN) of num >]’)’

A function with a return value of the data type pose.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics

Activation of displacement frame PDispSet - Activates program displacement 
using known frame on page 321

Continued



2 Functions

2.35. Dim - Obtains the size of an array
RobotWare - OS

8253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.35. Dim - Obtains the size of an array

Usage

Dim (Dimension) is used to obtain the number of elements in an array.

Basic examples

Basic examples of the function Dim are illustrated below.

See also More examples on page 826.

Example 1
PROC arrmul(VAR num array{*}, num factor)

FOR index FROM 1 TO Dim(array, 1) DO

array{index} := array{index} * factor;

ENDFOR

ENDPROC

All elements of a num array are multiplied by a factor. This procedure can take any one-

dimensional array of data type num as an input. 

Return value

Data type: num

The number of array elements of the specified dimension. 

Arguments
Dim (ArrPar DimNo)

ArrPar 

Array Parameter

Data type: Any type

The name of the array.

DimNo

Dimension Number

Data type: num

The desired array dimension:

1 = first dimension

2 = second dimension

3 = third dimension

Continues on next page



2 Functions

2.35. Dim - Obtains the size of an array
RobotWare - OS

3HAC 16581-1  Revision: J826

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the function Dim are illustrated below.

Example 1
PROC add_matrix(VAR num array1{*,*,*}, num array2{*,*,*})

IF Dim(array1,1) <> Dim(array2,1) OR Dim(array1,2) <> 

Dim(array2,2) OR Dim(array1,3) <> Dim(array2,3) THEN

TPWrite "The size of the matrices are not the same";

Stop;

ELSE

FOR i1 FROM 1 TO Dim(array1, 1) DO

FOR i2 FROM 1 TO Dim(array1, 2) DO

FOR i3 FROM 1 TO Dim(array1, 3) DO

array1{i1,i2,i3} := array1{i1,i2,i3} + 

array2{i1,i2,i3};

ENDFOR

ENDFOR

ENDFOR

ENDIF

RETURN;

ENDPROC

Two matrices are added. If the size of the matrices differs then the program stops and an error 

message appears.

This procedure can take any three-dimensional array of data type num as an input.

Syntax
Dim ’(’

[ArrPar’:=’] <reference (REF) of any type> ’,’

[DimNo’:=’] <expression (IN) of num> ’)’

A REF parameter requires that the corresponding argument be either a constant, a variable, 

or an entire persistent. The argument could also be an IN parameter, a VAR parameter, or an 

entire PERS parameter.

A function with a return value of the data type num.

Related information

For information about See

Array parameters Technical reference manual - RAPID overview, 
section Basic characteristics - Routines

Array declaration Technical reference manual - RAPID overview, 
section Basic characteristics - Data

Continued



2 Functions

2.36. Distance - Distance between two points
RobotWare - OS

8273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.36. Distance - Distance between two points

Usage

Distance is used to calculate the distance between two points in the space.

Basic examples

Basic examples of the function Distance are illustrated below.

Example 1

xx0500002321

VAR num dist;

CONST pos p1 := [4,0,4];

CONST pos p2 := [-4,4,4];

...

dist := Distance(p1, p2);

The distance in space between the points p1 and p2 is calculated and stored in the variable 

dist.

Return value

Data type: num

The distance (always positive) in mm between the points.

Arguments
Distance (Point1 Point2)

Point1

Data type: pos

The first point described by the pos data type.

Point2

Data type: pos

The second point described by the pos data type.

Continues on next page



2 Functions

2.36. Distance - Distance between two points
RobotWare - OS

3HAC 16581-1  Revision: J828

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Calculation of the distance between the two points:

xx0500002322

xx0500002323

Syntax
Distance’(’

[Point1 ’:=’] <expression (IN) of pos> ’,’

[Point2 ’:=’] <expression (IN) of pos> ’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID Summary - 
Mathematics

Definition of pos pos - Positions (only X, Y and Z) on page 1160

Continued



2 Functions

2.37. DnumToNum - Converts dnum to num
RobotWare - OS

8293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.37. DnumToNum - Converts dnum to num

Usage

DnumToNum converts a dnum to a num if possible, otherwise it generates a recoverable error.

Basic examples

A basic example of the function DnumToNum is illustrated below.

Example 1
VAR num mynum:=0;

VAR dnum mydnum:=8388607;

VAR dnum testFloat:=8388609;

VAR dnum anotherdnum:=4294967295;

! Works OK

mynum:=DnumToNum(mydnum);

! Accept floating point value

mynum:=DnumToNum(testFloat);

! Cause error recovery error

mynum:=DnumToNum(anotherdnum \Integer);

The dnum value 8388607 is returned by the function as the num value 8388607. 

The dnum value 8388609 is returned by the function as the num value 8.38861E+06.

The dnum value 4294967295 generates the recoverable error ERR_ARGVALERR.

Return value

Data type: num

The input dnum value can be in the range -8388607 to 8388608 and return the same value as 

a num. If the \Integer switch is not used, the input dnum value can be in the range -

3.40282347E+38 to 3.40282347E+38 and the return value might become a floating point 

value.

Arguments
DnumToNum (Value [\Integer])

Value

Data type: dnum

The numeric value to be converted.

[\Integer]

Data type: switch

Only integer values

If switch \Integer is not used, an down cast is made even if the value becomes a floating 

point value. If it is not used, a check is made whether the value is an integer between -8388607 

to 8388608. If it is not, a recoverable error is generated.

Continues on next page



2 Functions

2.37. DnumToNum - Converts dnum to num
RobotWare - OS

3HAC 16581-1  Revision: J830

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

The following recoverable errors can be generated. The errors can be handled in an error 

handler. The system variable ERRNO will be set to:

Syntax
DnumToNum

[ Value ’:=’ ] < expression (IN) of dnum >

[\ Integer]’ ;’

A function with a return value of the data type num.

Related information

Error code Description

ERR_ARGVALERR Value is above 8388608 or below -8388607 or not an integer (if 
optional argument Integer is used)

ERR_NUM_LIMIT Value is above 3.40282347E+38 or below -3.40282347E+38

ERR_INT_NOTVAL Value is not an integer

For information about See

Dnum data type dnum - Double numeric values on page 1104.

Num data type num - Numeric values on page 1146.

Continued



2 Functions

2.38. DotProd - Dot product of two pos vectors
RobotWare - OS

8313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.38. DotProd - Dot product of two pos vectors

Usage

DotProd (Dot Product) is used to calculate the dot (or scalar) product of two pos vectors. The 

typical use is to calculate the projection of one vector upon the other or to calculate the angle 

between the two vectors.

Basic examples

Basic examples of the function DotProd are illustrated below.

Example 1

xx0500002449

The dot or scalar product of two vectors A and B is a scalar, which equals the products of the 

magnitudes of A and B and the cosine of the angle between them.

.

The dot product:

• is less than or equal to the product of their magnitudes.

• can be either a positive or a negative quantity, depending on whether the angle 

between them is smaller or larger then 90 degrees.

• is equal to the product of the magnitude of one vector and the projection of the other 

vector upon the first one.

• is zero when the vectors are perpendicular to each other.

The vectors are described by the data type pos and the dot product by the data type num:

VAR num dotprod;

VAR pos vector1;

VAR pos vector2;

...

...

vector1 := [1,1,1];

vector2 := [1,2,3];

dotprod := DotProd(vector1, vector2);

Return value

Data type: num

The value of the dot product of the two vectors.

Continues on next page



2 Functions

2.38. DotProd - Dot product of two pos vectors
RobotWare - OS

3HAC 16581-1  Revision: J832

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
DotProd (Vector1 Vector2)

Vector1

Data type: pos

The first vector described by the pos data type.

Vector2

Data type: pos

The second vector described by the pos data type.

Syntax
DotProd’(’

[Vector1 ’:=’] <expression (IN) of pos>’,’

[Vector2 ’:=’] <expression (IN) of pos>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.39. DOutput - Reads the value of a digital output signal
RobotWare - OS

8333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.39. DOutput - Reads the value of a digital output signal

Usage

DOutput is used to read the current value of a digital output signal.

Basic examples

Basic examples of the function DOutput are illustrated below.

See also More examples on page 833.

Example 1
IF DOutput(do2) = 1 THEN...

If the current value of the signal do2 is equal to 1, then...

Return value

Data type: dionum

The current value of the signal (0 or 1). 

Arguments
DOutput (Signal)

Signal

Data type: signaldo

The name of the signal to be read.

Program execution

The value read depends on the configuration of the signal. If the signal is inverted in the 

system parameters then the value returned by this function is the opposite of the true value of 

the physical channel.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if there is no contact with the unit.

More examples

More examples of the function DOutput are illustrated below.

Example 1
IF DOutput(auto_on) <> active THEN . . . 

If the current value of the system signal auto_on is not active then ..., i.e. if the robot 

is in the manual operating mode, then ...

NOTE!

The signal must first be defined as a system output in the system parameters.

Continues on next page



2 Functions

2.39. DOutput - Reads the value of a digital output signal
RobotWare - OS

3HAC 16581-1  Revision: J834

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
DOutput ’(’

[ Signal ’:=’ ] < variable (VAR) of signaldo > ’)’

A function with a return value of the data type dionum.

Related information

For information about See

Set a digital output signal SetDO - Changes the value of a digital output signal 
on page 440

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output Signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters

Continued



2 Functions

2.40. EulerZYX - Gets euler angles from orient
RobotWare - OS

8353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.40. EulerZYX - Gets euler angles from orient

Usage

EulerZYX (Euler ZYX rotations) is used to get an Euler angle component from an orient 

type variable.

Basic examples

Basic examples of the function EulerZYX are illustrated below.

Example 1
VAR num anglex;

VAR num angley;

VAR num anglez;

VAR pose object;

...

...

anglex := EulerZYX(\X, object.rot);

angley := EulerZYX(\Y, object.rot);

anglez := EulerZYX(\Z, object.rot);

Return value

Data type: num

The corresponding Euler angle, expressed in degrees, range from [-180, 180].

Arguments
EulerZYX ([\X] | [\Y] | [\Z] Rotation)

[\X]

Data type: switch

Gets the rotation around the X axis. 

[\Y]

Data type: switch

Gets the rotation around the Y axis. 

[\Z]

Data type: switch

Gets the rotation around the Z axis. 

Note!

The arguments \X, \Y, and \Z are mutually exclusive. If none of these are specified then a 

run-time error is generated.

Rotation

Data type: orient

The rotation in its quaternion representation. 

Continues on next page



2 Functions

2.40. EulerZYX - Gets euler angles from orient
RobotWare - OS

3HAC 16581-1  Revision: J836

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
EulerZYX’(’

['\'X ’,’] | ['\'Y’ ,’] | ['\'Z’,’]

[Rotation’:=’] <expression (IN) of orient>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.41. EventType - Get current event type inside any event routine
RobotWare - OS

8373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.41. EventType - Get current event type inside any event routine

Usage

EventType can be used in any event routine and then returns the current executed event type. 

If EventType is called from any program task routine then EventType always returns 0 

meaning EVENT_NONE.

Basic examples

Basic examples of the function EventType are illustrated below.

Example 1
TEST EventType()

CASE EVENT_NONE:

! Not executing any event

CASE EVENT_POWERON:

! Executing POWER ON event

CASE EVENT_START:

! Executing START event

CASE EVENT_STOP: 

! Executing STOP event

CASE EVENT_QSTOP:

! Executing QSTOP event

CASE EVENT_RESTART: 

! Executing RESTART event

CASE EVENT_RESET:

! Executing RESET event

CASE EVENT_STEP:

! Executing STEP event

ENDTEST

Use of function EventType inside any event routine to find out which system event, if any, 

is executing now.

Return value

Data type: event_type

The current executed event type 1 ... 7, or 0 if no event routine is executed.

Predefined data

The following predefined symbolic constants of type event_type can be used to check the 

return value:

CONST event_type EVENT_NONE := 0;

CONST event_type EVENT_POWERON := 1;

CONST event_type EVENT_START := 2;

CONST event_type EVENT_STOP := 3;

CONST event_type EVENT_QSTOP:= 4;

CONST event_type EVENT_RESTART := 5;

CONST event_type EVENT_RESET := 6;

CONST event_type EVENT_STEP := 7;

Continues on next page



2 Functions

2.41. EventType - Get current event type inside any event routine
RobotWare - OS

3HAC 16581-1  Revision: J838

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
EventType’(’ ’)’

A function with a return value of the data type event_type.

Related information

For information about See

Event routines in general Technical reference manual - System 
parameters, section Controller - Event Routine

Data type event_type, predefined constants event_type - Event routine type on page 1116

Continued



2 Functions

2.42. ExecHandler - Get type of execution handler
RobotWare - OS

8393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.42. ExecHandler - Get type of execution handler

Usage

ExecHandler can be used to find out if the actual RAPID code is executed in any RAPID 

program routine handler.

Basic examples

Basic example of the function ExecHandler is illustrated below.

Example 1
TEST ExecHandler()

CASE HANDLER_NONE:

! Not executing in any routine handler

CASE HANDLER_BWD:

! Executing in routine BACKWARD handler

CASE HANDLER_ERR:

! Executing in routine ERROR handler

CASE HANDLER_UNDO: 

! Executing in routine UNDO handler

ENDTEST

Use of function ExecHandler to find out if the code is executing in some type of routine 

handler or not. 

HANDLER_ERR will be returned even if the call is executed in a submethod to the error 

handler. 

Return value

Data type: handler_type

The current executed handler type 1 ... 3, or 0 if not executing in any routine handler.

Predefined data

The following predefined symbolic constants of type handler_type can be used to check 

the return value:

CONST handler_type HANDLER_NONE := 0;

CONST handler_type HANDLER_BWD := 1;

CONST handler_type HANDLER_ERR := 2;

CONST handler_type HANDLER_UNDO := 3;

Syntax
ExecHandler’(’ ’)’

A function with a return value of the data type handler_type.

Related information

For information about See

Type of execution handler handler_type - Type of execution handler on 
page 1120



2 Functions

2.43. ExecLevel - Get execution level
RobotWare - OS

3HAC 16581-1  Revision: J840

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.43. ExecLevel - Get execution level

Usage

ExecLevel can be used to find out current execution level for the RAPID code that currently 

is executed.

Basic examples

Basic example of the function ExecLevel is illustrated below.

Example 1
TEST ExecLevel()

CASE LEVEL_NORMAL:

! Execute on base level

CASE LEVEL_TRAP:

! Execute in TRAP routine

CASE LEVEL_SERVICE:

! Execute in service, event or system input interrupt routine

ENDTEST

Use of function ExecLevel to find out the current execution level.

Return value

Data type: exec_level

The current execution level 0... 2.

Predefined data

The following predefined symbolic constants of type event_level can be used to check the 

return value:

CONST exec_level LEVEL_NORMAL  := 0;

CONST exec_level LEVEL_TRAP := 1;

CONST exec_level LEVEL_SERVICE := 2;

Syntax
ExecLevel’(’ ’)’

A function with a return value of the data type exec_level.

Related information

For information about See

Data type for execution level exec_level - Execution level on page 1117



2 Functions

2.44. Exp - Calculates the exponential value
RobotWare - OS

8413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.44. Exp - Calculates the exponential value

Usage

Exp (Exponential) is used to calculate the exponential value, ex.

Basic examples

Basic examples of the function Exp are illustrated below.

Example 1
VAR num x;

VAR num value;

...

value:= Exp( x);

value will get the exponential value of x.

Return value

Data type: num

The exponential value ex.

Arguments
Exp (Exponent)

Exponent

Data type: num

The exponent argument value.

Syntax
Exp’(’

[Exponent ’:=’] <expression (IN) of num>’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics



2 Functions

2.45. FileSize - Retrieve the size of a file
RobotWare - OS

3HAC 16581-1  Revision: J842

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.45. FileSize - Retrieve the size of a file

Usage

FileSize is used to retrieve the size of the specified file.

Basic examples

Basic examples of the function FileSize are illustrated below.

See also More examples on page 842.

Example 1
PROC listfile(string filename)

  VAR num size;

  size := FileSize(filename);

  TPWrite filename+"  size: "+NumToStr(size,0)+" Bytes";

ENDPROC

This procedure prints out the name of specified file together with a size specification.

Return value

Data type: num

The size in bytes.

Arguments
FileSize (Path)

Path

Data type: string

The file name specified with full or relative path. 

Program execution

This function returns a numeric that specifies the size in bytes of the specified file.

It is also possible to get the same information about a directory.

More examples

Basic examples of the function are illustrated below.

Example 1

This example lists all files bigger than 1 KByte under the "HOME:" directory structure, 

including all subdirectories.

PROC searchdir(string dirname, string actionproc)

VAR dir directory;

VAR string filename;

IF IsFile(dirname \Directory) THEN

OpenDir directory, dirname;

 WHILE ReadDir(directory, filename) DO

! .. and . is the parent and resp. this directory

IF filename <> ".." AND  filename <> "." THEN

searchdir dirname+"/"+filename, actionproc;

Continues on next page



2 Functions

2.45. FileSize - Retrieve the size of a file
RobotWare - OS

8433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ENDIF

ENDWHILE

CloseDir directory;

ELSE

%actionproc% dirname;

ENDIF

ERROR

RAISE;

ENDPROC

PROC listfile(string filename)

IF FileSize(filename) > 1024 THEN

TPWrite filename;

ENDIF

ENDPROC

PROC main()

! Execute the listfile routine for all files found under the

! tree of HOME:

searchdir "HOME:","listfile";

ENDPROC

This program traverses the directory structure under "HOME:" and for each file found it calls 

the listfile procedure. The searchdir is a generic part that knows nothing about the start 

of the search or which routine should be called for each file. It uses IsFile to check whether 

it has found a subdirectory or a file and it uses the late binding mechanism to call the 

procedure specified in actionproc for all files found. The actionproc routine listfile 

checks whether the file is bigger than 1KBytes.

Error handling

If the file does not exist, the system variable ERRNO is set to ERR_FILEACC. This error can 

then be handled in the error handler.

Syntax
FileSize ’(’

[ Path ’:=’ ] < expression (IN) of string> ’)’

A function with a return value of the data type num.

Continued

Continues on next page



2 Functions

2.45. FileSize - Retrieve the size of a file
RobotWare - OS

3HAC 16581-1  Revision: J844

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Make a directory MakeDir - Create a new directory on page 218

Remove a directory RemoveDir - Delete a directory on page 355

Rename a file RenameFile - Rename a file on page 357

Remove a file RemoveFile - Delete a file on page 356

Copy a file CopyFile - Copy a file on page 65

Check file type IsFile - Check the type of a file on page 878

Check file system size FSSize - Retrieve the size of a file system on page 848

Continued



2 Functions

2.46. FileTime - Retrieve time information about a file
RobotWare-OS

8453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.46. FileTime - Retrieve time information about a file

Usage

FileTime is used to retrieve the last time for modification, access or file status change of a 

file. The time is measured in seconds since 00:00:00 GMT, Jan. 1 1970. The time is returned 

as a num and optionally also in a stringdig.

Basic example

Basic examples of the function FileTime are illustrated below.

See also More examples on page 846.

Example 1
IF FileTime ("HOME:/mymod.mod" \ModifyTime)

> ModTime ("mymod") THEN

UnLoad "HOME:mymod.mod";

Load \Dynamic, "HOME:mymod.mod";

ENDIF

This program reloads a module if the source file is newer. It uses the ModTime to retrieve the 

latest modification time for the specified module, and to compare it to the 

FileTime\ModifyTime at the source. Then, if the source is newer, the program unloads and 

loads the module again. 

Limitation in this example: The data type num cannot handle positive integers above 8388608 

seconds with exact representation. To get better dissolution, see example in function 

StrDigCmp.

Return value 

Data type: num

The time measured in seconds since 00:00:00 GMT, Jan. 1 1970.

Arguments
FileTime ( Path [\ModifyTime] | [\AccessTime] | [\StatCTime] 

[\StrDig])

 Path

Data type: string

The file specified with a full or relative path.

[\ModifyTime]

Data type: switch

Last modification time. 

[\AccessTime]

Data type: switch

Time of last access (read, execute of modify).

[\StatCTime]

Data type: switch

Last file status (access qualification) change time. 

Continues on next page



2 Functions

2.46. FileTime - Retrieve time information about a file
RobotWare-OS

3HAC 16581-1  Revision: J846

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\StrDig]

String Digit

Data type: stringdig

To get the file time in a stringdig representation.

Further use in StrDigCmp can handle positive integers above 8388608 with exact 

representation.

Program execution

This function returns a numeric that specifies the time since the last:

• Modification

• Access

• File status change

of the specified file.

It is also possible to get the same information about a directory.

More examples

More examples of the function FileTime are illustrated below.

This is a complete example that implements an alert service for maximum 10 files.

LOCAL RECORD falert

string filename;

num ftime;

ENDRECORD

LOCAL VAR falert myfiles[10];

LOCAL VAR num currentpos:=0;

LOCAL VAR intnum timeint;

PROC alertInit(num freq)

currentpos:=0;

CONNECT timeint WITH mytrap;

ITimer freq,timeint;

ENDPROC

LOCAL TRAP mytrap

VAR num pos:=1;

WHILE pos <= currentpos DO

IF FileTime(myfiles{pos}.filename \ModifyTime) > 

myfiles{pos}.ftime THEN

TPWrite "The file "+myfiles{pos}.filename+" is changed";

ENDIF

pos := pos+1;

ENDWHILE

ENDTRAP

Continued

Continues on next page



2 Functions

2.46. FileTime - Retrieve time information about a file
RobotWare-OS

8473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

PROC alertNew(string filename)

currentpos := currentpos+1;

IF currentpos <= 10 THEN

myfiles{currentpos}.filename := filename;

myfiles{currentpos}.ftime := FileTime (filename \ModifyTime);

ENDIF

ENDPROC

PROC alertFree()

IDelete timeint;

ENDPROC

Error handling

If the file does not exist, the system variable ERRNO is set to ERR_FILEACC. This error can 

then be handled in the error handler.

Syntax
FileTime ’(’

[ Path ’:=’ ] < expression (IN) of string>

[ '\'ModifyTime] |

[ '\'AccessTime] |

[ '\'StatCTime] 

[ '\' StrDig’ :=’ < variable (VAR) of stringdig> ] ’)’

A function with a return value of the data type num.

Related information

For information about See

Last modify time of a loaded module ModTime - Get file modify time for the loaded 
module on page 896

String with only digits ModTime - Get file modify time for the loaded 
module on page 896

stringdig - String with only digits on page 1197

Compare two strings with only digits ModTime - Get file modify time for the loaded 
module on page 896

StrDigCmp - Compare two strings with only 
digits on page 991

Continued



2 Functions

2.47. FSSize - Retrieve the size of a file system
RobotWare - OS

3HAC 16581-1  Revision: J848

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.47. FSSize - Retrieve the size of a file system

Usage

FSSize (File System Size) is used to retrieve the size of the file system in which a specified 

file resides. The size in bytes, kilo bytes or mega bytes are returned as a num.

Basic example

Basic examples of the function FSSize are illustrated below.

See also More examples on page 849.

Example 1
PROC main()

VAR num totalfsyssize;

VAR num freefsyssize;

freefsyssize := FSSize("HOME:/spy.log" \Free);

totalfsyssize := FSSize("HOME:/spy.log" \Total);

TPWrite NumToStr(((totalfsyssize - freefsyssize)/

totalfsyssize)*100,0)

+" percent used";

ENDPROC

This procedure prints out the amount of disk space used on the HOME: file system (flash disk 

/hd0a/) as a percentage.

Return value

Data type: num

The size in bytes.

Arguments
FSSize (Name [\Total] | [\Free] [\Kbyte] [\Mbyte])

Name

Data type: string

The name of a file in the file system, specified with full or relative path.

[ \Total ]

Data type: switch

Retrieves the total amount of space in the file system.

[ \Free ]

Data type: switch

Retrieves the amount of free space in the file system.

[ \Kbyte ]

Data type: switch

Convert the number of bytes read to kilobytes, e.g divide the size with 1024.

Continues on next page



2 Functions

2.47. FSSize - Retrieve the size of a file system
RobotWare - OS

8493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \Mbyte ]

Data type: switch

Convert the number of bytes read to megabytes, e.g divide the size with 1048576 

(1024*1024).

Program execution

This function returns a numeric that specifies the size of the file system in which the specified 

file resides.

More examples

More examples of the function FSSize are illustrated below.

Example 1
LOCAL VAR intnum timeint;

LOCAL TRAP mytrap

IF FSSize("HOME:/spy.log" \Free)/FSSize("HOME:/spy.log" \Total) 

<= 0.1 THEN

TPWrite "The disk is almost full";

alertFree;

ENDIF

ENDTRAP

PROC alertInit(num freq)

CONNECT timeint WITH mytrap;

ITimer freq,timeint;

ENDPROC

PROC alertFree()

IDelete timeint;

ENDPROC

This is a complete example for implementing an alert service that prints a warning on the 

FlexPendant when the remaining free space in the "HOME:" file system is less than 10%.

Error handling

The following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

Syntax
FSSize’(’

[ Name ’:=’ ] < expression (IN) of string>

[ ´\´Total ] | [ ´\´Free ]

[ ´\´Kbyte ]

[ ´\´Mbyte ]’)’

A function with a return value of the data type num.

ERR_FILEACC The file system does not exist

ERR_FILESIZE The size exceeds the max integer value for a num, 8388608

Continued

Continues on next page



2 Functions

2.47. FSSize - Retrieve the size of a file system
RobotWare - OS

3HAC 16581-1  Revision: J850

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Make a directory MakeDir - Create a new directory on page 218

Remove a directory RemoveDir - Delete a directory on page 355

Rename a file RenameFile - Rename a file on page 357

Remove a file RemoveFile - Delete a file on page 356

Copy a file CopyFile - Copy a file on page 65

Check file type IsFile - Check the type of a file on page 878

Check file size FileSize - Retrieve the size of a file on page 842

Continued



2 Functions

2.48. GetMecUnitName - Get the name of the mechanical unit
RobotWare - OS

8513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.48. GetMecUnitName - Get the name of the mechanical unit

Usage

GetMecUnitName is used to get the name of a mechanical unit with one of the installed 

mechanical units as the argument. This function returns the mechanical units name as a 

string.

Basic examples

Basic examples of the function GetMecUnitName are illustrated below.

Example 1
VAR string mecname;

mecname:= GetMecUnitName(T_ROB1);

mecname will get the value "T_ROB1"as a string. All mechanical units (data type 

mecunit) such as T_ROB1 are predefined in the system.

Return value

Data type: string

The return value will be the mechanical unit name as a string.

Arguments
GetMecUnitName ( MechUnit )

MechUnit

Mechanical Unit 

Data type: mecunit

MechUnit takes one of the predefined mechanical units found in the configuration.

Syntax
GetMecUnitName’(’

[ MechUnit ’:=’ ] < variable (VAR) of mecunit > ’)’

A function with a return value of the data type string.

Related information

For information about See

Mechanical unit mecunit - Mechanical unit on page 1139



2 Functions

2.49. GetNextMechUnit - Get name and data for mechanical units
RobotWare - OS

3HAC 16581-1  Revision: J852

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.49. GetNextMechUnit - Get name and data for mechanical units

Usage

GetNextMechUnit (Get Next Mechanical Unit) is used for retrieving the name of 

mechanical units in the robot system. Besides the mechanical unit name, several optional 

properties of the mechanical unit can be retrieved.

Basic examples 

Basic examples of the function GetNextMechUnit are illustrated below.

See also More examples on page 853.

Example 1
VAR num listno := 0; 

VAR string name := "";

TPWrite "List of mechanical units:";

WHILE GetNextMechUnit(listno, name) DO

TPWrite name;

! listno := listno + 1 is done by GetNextMechUnit

ENDWHILE

The name of all mechanical units available in the system, will be displayed on the 

FlexPendant.

Return Value

Data type: bool

TRUE if a mechanical unit was found, otherwise FALSE.

Arguments
GetNextMechUnit ( ListNumber UnitName [\MecRef] [\TCPRob] 

[\NoOfAxes] [\MecTaskNo] [\MotPlanNo] [\Active] 

[\DriveModule] [\OKToDeact])

ListNumber

Data type: num

This specifies which items in the system internal list of mechanical units are to be retrieved. 

At return, this variable is always incremented by one by the system to make it easy to access 

the next unit in the list. The first mechanical unit in the list has index 0.

UnitName

Data type: string

The name of the mechanical unit.

[\MecRef]

Data type: mecunit

The system reference to the mechanical unit.

Continues on next page



2 Functions

2.49. GetNextMechUnit - Get name and data for mechanical units
RobotWare - OS

8533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\TCPRob]

Data type: bool

TRUE if the mechanical unit is a TCP robot, otherwise FALSE.

[\NoOfAxes]

Data type: num

Number of axes for the mechanical unit. Integer value.

[\MecTaskNo]

Data type: num

The program task number that controls the mechanical unit. Integer value in range 1-20.  If 

not controlling by any program task, -1 is returned.

This actual connection is defined in the system parameters domain controller (can in some 

application be redefined at runtime).

[\MotPlanNo]

Data type: num

The motion planner number that controls the mechanical unit. Integer value in range 1-6. If 

not controlling by any motion planner, -1 is returned.

This connection is defined in the system parameters domain controller.

[\Active]

Data type: bool

TRUE if the mechanical unit is active, otherwise FALSE.

[\DriveModule]

Data type: num

The Drive Module number 1 - 4 used by this mechanical unit.

[\OKToDeact]

Data type: bool

Return TRUE, if allowed to deactivate the mechanical unit from RAPID program.

More examples

More examples of the instruction GetNextMechUnit are illustrated below.

Example 1
VAR num listno := 4;

VAR string name := "";

VAR bool found := FALSE;

found := GetNextMechUnit (listno, name);

If found is set to TRUE, the name of mechanical unit number 4 will be in the variable name, 

else name contains only an empty string.

Continued

Continues on next page



2 Functions

2.49. GetNextMechUnit - Get name and data for mechanical units
RobotWare - OS

3HAC 16581-1  Revision: J854

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
GetNextMechUnit ’(’ 

[ ListNumber ’:=’ ] < variable (VAR) of num>’ ,’

[ UnitName’ :=’ ] < variable (VAR) of string> ’,’

[ ’\’ MecRef’ :=’ < variable (VAR) of mecunit> ]

[ ’\’ TCPRob’ :=’ < variable (VAR) of bool> ]

[ ’\’ NoOfAxes’ :=’ < variable (VAR) of num> ]

[ ’\’ MecTaskNo’ :=’ < variable (VAR) of num> ]

[ ’\’ MotPlanNo’ :=’ < variable (VAR) of num> ]

[ ’\’ Active’ :=’ < variable (VAR) of bool>]

[ ’\’ DriveModule’ :=’ < variable (VAR) of num>]

[ ’\’ OKToDeact’ :=’ < variable (VAR) of bool>] ’;’

A function with a return value of the data type bool.

Related information

For information about See

Mechanical unit mecunit - Mechanical unit on page 1139

Activating/Deactivating mechanical units ActUnit - Activates a mechanical unit on page 
17

DeactUnit - Deactivates a mechanical unit on 
page 79

Characteristics of non-value data types Technical reference manual - RAPID 
overview, section Basic Characteristics - Data 
types 

Continued



2 Functions

2.50. GetNextSym - Get next matching symbol
RobotWare - OS

8553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.50. GetNextSym - Get next matching symbol

Usage

GetNextSym (Get Next Symbol) is used together with SetDataSearch to retrieve data 

objects from the system.

Basic examples

Basic examples of the function GetNextSym are illustrated below.

Example 1
VAR datapos block;

VAR string name;

VAR bool truevar:=TRUE;

...

SetDataSearch "bool" \Object:="my.*" \InMod:="mymod"\LocalSym;

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;

ENDWHILE

This session will set all local bool data objects that begin with my in the module mymod to 

TRUE.

Return value

Data type: bool

TRUE if a new object has been retrieved, the object name and its enclosed block is then 

returned in its arguments.

FALSE if no more objects match.

Arguments
GetNextSym (Object Block [\Recursive])

Object

Data type: string

Variable (VAR or PERS) to store the name of the data object that will be retrieved.

Block

Data type: datapos

The enclosed block to the object. 

[ \Recursive ]

Data type: switch

This will force the search to enter the block below, e.g. if the search session has begun at the 

task level, it will also search modules and routines below the task.

Continues on next page



2 Functions

2.50. GetNextSym - Get next matching symbol
RobotWare - OS

3HAC 16581-1  Revision: J856

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
GetNextSym ‘(‘

[ Object ’:=’ ] < variable or persistent (INOUT) of string > ’,’

[ Block ’:=’] <variable (VAR) of datapos>

[’\’Recursive ] ’)’

A function with a return value of the data type bool.

Related information

For information about See

Define a symbol set in a search 
session

SetDataSearch - Define the symbol set in a search 
sequence on page 433

Get the value of a data object GetDataVal - Get the value of a data object on page 
110

Set the value of a data object SetDataVal - Set the value of a data object on page 
437

Set the value of many data objects SetAllDataVal - Set a value to all data objects in a 
defined set on page 429

The related data type datapos datapos - Enclosing block for a data object on page 
1101

Continued



2 Functions

2.51. GetSysInfo - Get information about the system
RobotWare - OS

8573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.51. GetSysInfo - Get information about the system

Usage

GetSysInfo is used to read information about the system. Available information includes 

Serial Number, SoftWare Version, Robot Type, Controller ID or Lan ip address.

Basic examples

Basic examples of the function GetSysInfo are illustrated below.

Example 1
VAR string serial;

VAR string version;

VAR string rtype;

VAR string cid;

VAR string lanip;

VAR string clang;

serial := GetSysInfo(\SerialNo);

version := GetSysInfo(\SWVersion);

rtype := GetSysInfo(\RobotType);

cid := GetSysInfo(\CtrlId);

lanip := GetSysInfo(\LanIp);

clang := GetSysInfo(\CtrlLang);

The serial number will be stored in the variable serial, the version number will be stored in 

the variable version, the robot number will be stored in the variable rtype, the controller 

ID number will be stored in the variable cid, the LAN ip address will be stored in the variable 

lanip and the controller language will be stored in the variable clang.

Examples of returned strings:

Serial Number: 14-21858 

Software Version: ROBOTWARE_5.08.134

Robot Type: 2400/16 Type A

Controller ID: 44-1267

LAN ip address: 192.168.8.103

Language: en

Return value

Data type: string

One of Serial Number, SoftWare Version, Robot Type, Controller ID, LAN ip address or 

Controller Language. Read more about the return values in Arguments below.

Continues on next page



2 Functions

2.51. GetSysInfo - Get information about the system
RobotWare - OS

3HAC 16581-1  Revision: J858

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
GetSysInfo ([\SerialNo] | [\SWVersion] | [\RobotType] | [\CtrlId] 

| [\LanIp] | [\CtrlLang])

One of the arguments SerialNo, SWVersion, RobotType , CtrlId, LanIp or CtrlLang 

must be present.

[ \SerialNo ]

Serial Number

Data type: switch

Returns the serial number.

[ \SWVersion ]

Software Version

Data type: switch

Returns the software version.

[ \RobotType ]

Data type: switch

Returns the robot type in the current or connected task. If the mechanical unit is not a TCP-

robot, a "-" is returned.

[ \CtrlId ]

Controller ID

Data type: switch

Returns the controller ID. Returns an empty string if no Controller ID is specified. A string 

with "VC" is returned if this option is used in the Virtual Controller. 

[ \LanIp ]

Lan Ip address

Data type: switch

Returns the LAN ip address for the controller. A string with "VC" is returned if this option is 

used in the Virtual Controller. An empty string is returned if no LAN ip address is configured 

in the system.

[ \CtrlLang ]

Controller Language

Data type: switch

Returns the language used on the controller.

Return value Language

cs Czech

zh Chinese (simplified Chinese, mainland Chinese)

da Danish

nl Dutch

en English

fi Finnish

fr French

Continued

Continues on next page



2 Functions

2.51. GetSysInfo - Get information about the system
RobotWare - OS

8593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
GetSysInfo’(’

[’\’SerialNo]

| [’\’SWVersion]

| [’\’RobotType]

| [’\’CtrlId]

| [’\’LanIp]

| [’\’CtrlLang]’)’

A function with a return value of the data type string.

Related information

de German

hu Hungarian

it Italian

ja Japanese

ko Korean

pt Portuguese (Brazilian Portuguese)

ru Russian

es Spanish

sv Swedish

tr Turkish

Return value Language

For information about See

Test the identity of the system IsSysId - Test system identity on page 890

Continued



2 Functions

2.52. GetTaskName - Gets the name and number of current task
RobotWare - OS

3HAC 16581-1  Revision: J860

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.52. GetTaskName - Gets the name and number of current task

Usage

GetTaskName is used to get the identity of the current program task, with its name and 

number.

It is also possible from some Non Motion Task to get the name and number of its connected 

Motion Task. For MultiMove System the system parameter Controller/Tasks/Use Mechanical 

Unit Group define the connected Motion Task and in a base system the main task is always 

the connected Motion Task from any other task.

Basic examples

Basic examples of the function GetTaskName are illustrated below.

Example 1
VAR string taskname;

...

taskname := GetTaskName();

The current task name is returned in the variable taskname.

Example 2
VAR string taskname;

VAR num taskno;

...

taskname := GetTaskName(\TaskNo:=taskno);

The current task name is returned in the variable taskname. The integer identity of the task 

is stored in the variable taskno.

Example 3
VAR string taskname;

VAR num taskno;

...

taskname := GetTaskName(\MecTaskNo:=taskno);

If current task is a Non Motion Task task, the name of the connected motion task is returned 

in the variable taskname. The numerical identity of the connected motion task is stored in 

the variable taskno.

If current task controls some mechanical units, current task name is returned in the variable 

taskname. The numerical identity of the task is stored in the variable taskno.

Return value

Data type: string

The name of the task in which the function is executed or the name of the connected motion 

task. 

Continues on next page



2 Functions

2.52. GetTaskName - Gets the name and number of current task
RobotWare - OS

8613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
GetTaskName ( [\TaskNo] | [\MecTaskNo] )

[\TaskNo]

Data type: num

Return current task name (same functionality if none of the switch \TaskNo or \MecTaskNo 

is used). Also get the identity of the current task represented as a integer value. The numbers 

returned will be in the range 1-20.

[\MecTaskNo]

Data type: num

Return connected motion task name or current motion task name. Also get the identity of 

connected or current motion task represented as a integer value. The numbers returned will 

be in the range 1-20.

Syntax
GetTaskName’(’

[ \TaskNo ’:=’ ] < variable (VAR) of num >

[ \MecTaskNo’:=’ ] < variable (VAR) of num > ’)’

A function with a return value of the data type string.

Related information

For information about See

Multitasking Technical reference manual - RAPID 
overview, section RAPID Overview - RAPID 
summary Multitasking

Technical reference manual - RAPID 
overview, section Basic characteristics - Mul-
titasking

Continued



2 Functions

2.53. GetTime - Reads the current time as a numeric value
RobotWare - OS

3HAC 16581-1  Revision: J862

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.53. GetTime - Reads the current time as a numeric value

Usage

GetTime is used to read a specified component of the current system time as a numeric value.

GetTime can be used to:

• have the program perform an action at a certain time

• perform certain activities on a weekday

• abstain from performing certain activities on the weekend

• respond to errors differently depending on the time of day.

Basic examples

Basic examples of the function GetTime are illustrated below.

Example 1
hour := GetTime(\Hour);

The current hour is stored in the variable hour.

Return value

Data type: num

One of the four time components specified below.

Argument
GetTime ( [\WDay] | [\Hour] | [\Min] | [\Sec] )

[\WDay]

Data type: switch

Return the current weekday. Range: 1 to 7 (Monday to Sunday).

[\Hour]

Data type: switch

Return the current hour. Range: 0 to 23.

[\Min]

Data type: switch

Return the current minute. Range: 0 to 59.

[\Sec]

Data type: switch

Return the current second. Range: 0 to 59.

One of the arguments must be specified, otherwise program execution stops with an error 

message.

Continues on next page



2 Functions

2.53. GetTime - Reads the current time as a numeric value
RobotWare - OS

8633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function GetTime are illustrated below.

Example 1
weekday := GetTime(\WDay);

hour := GetTime(\Hour);

IF weekday < 6 AND hour >6 AND hour < 16 THEN

production;

ELSE

maintenance;

ENDIF

If it is a weekday and the time is between 7:00 and 15:59 the robot performs production. At 

all other times, the robot is in the maintenance mode.

Syntax
GetTime ’(’

[’\’ WDay ]

| [ ’\’ Hour ]

| [ ’\’ Min ]

| [ ’\’ Sec ] ’)’

A function with a return value of the type num.

Related information

For information about See

Time and date instructions Technical reference manual - RAPID overview, 
section RAPID summary - System & time

Setting the system clock Operating manual - IRC5 with FlexPendant, 
section Changing FlexPendant settings

Continued



2 Functions

2.54. GInputDnum - Read value of group input signal
RobotWare - OS

3HAC 16581-1  Revision: J864

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.54. GInputDnum - Read value of group input signal

Usage

GInputDnum is used to read the current value of a group of digital input signals.

Basic examples

Basic examples of the function GInputDnum are illustrated below.

Example 1
IF GInputDnum(gi2) = 55 THEN ... 

If the current value of the signal gi2 is equal to 55, then ...

Example 2
IF GInputDnum(gi2) = 4294967295 THEN ... 

If the current value of the signal gi2 is equal to 4294967295, then ...

Return value

Data type: dnum

The current value of the signal (a positive integer).

The values of each signal in the group are read and interpreted as an unsigned binary number. 

This binary number is then converted to an integer.

The value returned lies within a range that is dependent on the number of signals in the group.

Number of signals Allowed value

1 0-1

2 0-3

3 0-7

4 0-15

5 0-31

6 0-63

7 0-127

8 0-255

9 0-511

10 0-1023

11 0-2047

12 0-4095

13 0-8191

14 0-16383

15 0-32767

16 0-65535

17 0-131071

18 0-262143

19 0-524287

20 0-1048575

21 0-2097151

Continues on next page



2 Functions

2.54. GInputDnum - Read value of group input signal
RobotWare - OS

8653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
GInputDnum (Signal)

Signal

Data type: signalgi

The name of the signal group to be read.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

Syntax
GInputDnum ’(’

[ Signal ’:=’ ] < variable (VAR) of signalgi > ’)’

A function with a return value of data type dnum.

Related information

22 0-4194303

23 0-8388607

24 0-16777215

25 0-33554431

26 0-67108863

27 0-134217727

28 0-268435455

29 0-536870911

30 0-1073741823

31 0-2147483647

32 0-4294967295

Number of signals Allowed value

Error code Description

ERR_NORUNUNIT No contact with the unit.

For information about See

Input/Output instructions Technical reference manual - RAPID 
overview, section RAPID Summary - Input 
and Output Signals 

Input/Output functionality in general Technical reference manual - RAPID 
overview, section Motion and I/O Principles

Configuration of I/O Technical reference manual - System 
parameters

Continued



2 Functions

2.55. GOutput - Reads the value of a group of digital output signals
RobotWare - OS

3HAC 16581-1  Revision: J866

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.55. GOutput - Reads the value of a group of digital output signals

Usage

GOutput is used to read the current value of a group of digital output signals.

Basic examples

Basic example of the function GOutput is illustrated below.

Example 1
IF GOutput(go2) = 5 THEN ... 

If the current value of the signal go2 is equal to 5, then ...

Return value

Data type: num

The current value of the signal (a positive integer).

The values of each signal in the group are read and interpreted as an unsigned binary number. 

This binary number is then converted to an integer.

The value returned lies within a range that is dependent on the number of signals in the group.

No. of signals Permitted value

1 0-1

2 0-3

3 0-7

4 0-15

5 0-31

6 0-63

7 0-127

8 0-255

9 0-511

10 0-1023

11 0-2047

12 0-4095

13 0-8191

14 0-16383

15 0-32767

16 0-65535

17 0-131071

18 0-262143

19 0-524287

20 0-1048575

21 0-2097151

22 0-4194303

23 0-8388607

Continues on next page



2 Functions

2.55. GOutput - Reads the value of a group of digital output signals
RobotWare - OS

8673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
GOutput (Signal)

Signal

Data type: signalgo

The name of the signal group to be read.

Error handling

Following recoverable error can be generated. The error can be handled in an error handler. 

The system variable ERRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Syntax
GOutput ’(’

[ Signal ’:=’ ] < variable (VAR) of signalgo > ’)’

A function with a return value of data type num.

Related information

For information about See

Set an output signal group SetGO - Changes the value of a group of digital output 
signals on page 442

Read a group of output signals GOutputDnum - Read value of group output signal on 
page 868

Read a group of input signals GInputDnum - Read value of group input signal on 
page 864

Input/Output instructions Technical reference manual - RAPID overview, section 
RAPID Summary - Input and Output Signals

Input/Output functionality in general Technical reference manual - RAPID overview, section 
Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters

Continued



2 Functions

2.56. GOutputDnum - Read value of group output signal
RobotWare - OS

3HAC 16581-1  Revision: J868

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.56. GOutputDnum - Read value of group output signal

Usage

GOutputDnum is used to read the current value of a group of digital output signals.

Basic examples

Basic examples of the function GOutputDnum are illustrated below.

Example 1
IF GOutputDnum(go2) = 55 THEN ... 

If the current value of the signal go2 is equal to 55, then ...

Example 2
IF GOutputDnum(go2) = 4294967295 THEN ... 

If the current value of the signal go2 is equal to 4294967295, then ...

Return value

Data type: dnum

The current value of the signal (a positive integer).

The values of each signal in the group are read and interpreted as an unsigned binary number. 

This binary number is then converted to an integer.

The value returned lies within a range that is dependent on the number of signals in the group.

Number of signals Allowed value

1 0-1

2 0-3

3 0-7

4 0-15

5 0-31

6 0-63

7 0-127

8 0-255

9 0-511

10 0-1023

11 0-2047

12 0-4095

13 0-8191

14 0-16383

15 0-32767

16 0-65535

17 0-131071

18 0-262143

19 0-524287

20 0-1048575

21 0-2097151

Continues on next page



2 Functions

2.56. GOutputDnum - Read value of group output signal
RobotWare - OS

8693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
GOutputDnum (Signal)

Signal

Data type: signalgo

The name of the signal group to be read.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

Syntax
GOutputDnum ’(’

[ Signal ’:=’ ] < variable (VAR) of signalgo > ’)’

A function with a return value of data type dnum.

Related information

22 0-4194303

23 0-8388607

24 0-16777215

25 0-33554431

26 0-67108863

27 0-134217727

28 0-268435455

29 0-536870911

30 0-1073741823

31 0-2147483647

32 0-4294967295

Number of signals Allowed value

Error code Description

ERR_NORUNUNIT No contact with the unit

For information about See

Set an output signal group SetGO - Changes the value of a group of 
digital output signals on page 442I

Input/Output instructions Technical reference manual - RAPID 
overview, section RAPID Summary - Input 
and Output Signals 

Input/Output functionality in general Technical reference manual - RAPID 
overview, section Motion and I/O Principles

Configuration of I/O Technical reference manual - System 
parameters

Continued



2 Functions

2.57. HexToDec - Convert from hexadecimal to decimal
RobotWare - OS

3HAC 16581-1  Revision: J870

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.57. HexToDec - Convert from hexadecimal to decimal

Usage

HexToDec is used to convert a number specified in a readable string in the base 16 to the 

base 10.

The input string should be constructed from the character set [0-9,A-F,a-f].

This routine handle numbers from 0 up to 9223372036854775807dec or 

7FFFFFFFFFFFFFFF hex.

Basic examples

Basic examples of the function HexToDec are illustrated below.

Example 1
VAR string str;

str := HexToDec("5F5E0FF");

The variable str is given the value "99999999".

Return value

Data type: string

The string converted to a decimal representation of the given number in the inparameter 

string.

Arguments
HexToDec ( Str )

Str

String

Data type: string

The string to convert.

Syntax
HexToDec’(’

[ Str ’:=’ ] <expression (IN) of string>

’)’

A function with a return value of the data type string.

Related information

For information about See

String functions Technical reference manual - RAPID 
overview, section RAPID summary - String 
functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID 
overview, section Basic characteristics - Basic 
elements



2 Functions

2.58. IndInpos - Independent axis in position status
Independent Axis

8713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.58. IndInpos - Independent axis in position status

Usage

IndInpos is used to test whether an independent axis has reached the selected position.

Basic examples

Basic examples of the function IndInpos are illustrated below

Example 1
IndAMove Station_A,1\ToAbsNum:=90,20;

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

Wait until axis 1 of Station_A is in the 90 degrees position. 

Return value

Data type: bool

The table describes the return values from IndInpos:

Arguments
IndInpos ( MecUnit Axis )

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6).

Limitations

An independent axis executed with the instruction IndCMove always returns the value 

FALSE, even when the speed is set to zero.

A wait period of 0.2 seconds should be added after the instruction, to ensure that the correct 

status has been achieved. This time period should be longer for external axes with poor 

performance.

Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_ACT.

If the axis is not in independent mode, the system variable ERRNO will be set to 

ERR_AXIS_IND.

These errors can then be handled in the error handler.

Return value Axis status

TRUE In position and has zero speed.

FALSE Not in position and/or has not zero speed.

Continues on next page



2 Functions

2.58. IndInpos - Independent axis in position status
Independent Axis

3HAC 16581-1  Revision: J872

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
IndInpos ’(’

[ MecUnit’:=’ ] < variable (VAR) of mecunit>’,’

[ Axis’:=’ ] < expression (IN) of num>’)’ 

A function with a return value of the data type bool.

Related information

For information about See

Independent axes in general Technical reference manual - RAPID overview, section 
Motion and I/O Principles - Positioning during program 
execution

Other independent instruction 
and functions

Technical reference manual - RAPID overview, section 
RAPID summary - Motion

Check the speed status for 
independent axes

IndSpeed - Independent speed status on page 873

Defining independent joints Technical reference manual - System parameters, 
section Motion - Arm

Continued



2 Functions

2.59. IndSpeed - Independent speed status
Independent Axis

8733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.59. IndSpeed - Independent speed status

Usage

IndSpeed is used to test whether an independent axis has reached the selected speed.

Basic examples

Basic examples of the function IndSpeed are illustrated below.

Example 1
IndCMove Station_A, 2, 3.4;

WaitUntil IndSpeed(Station_A,2 \InSpeed) = TRUE;

WaitTime 0.2;

Wait until axis 2 of Station_A has reached the speed 3.4 degrees/s. 

Return value 

Data type: bool

The table describes the return values from IndSpeed \IndSpeed: 

The table describes the return values from IndSpeed \ZeroSpeed:

Arguments
IndSpeed ( MecUnit Axis [ \InSpeed ] | [ \ZeroSpeed ] )

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Axis

Data type: num

The number of the current axis for the mechanical unit (1-6).

[ \InSpeed ]

Data type: switch

IndSpeed returns value TRUE if the axis has reached the selected speed otherwise FALSE.

[ \ZeroSpeed ]

Data type: switch

IndSpeed returns value TRUE if the axis has zero speed otherwise FALSE.

If both the arguments \InSpeed and \ZeroSpeed are omitted, an error message will be 

displayed.

Return value Axis status

TRUE Has reached the selected speed.

FALSE Has not reached the selected speed.

Return value Axis status

TRUE Zero speed.

FALSE Not zero speed

Continues on next page



2 Functions

2.59. IndSpeed - Independent speed status
Independent Axis

3HAC 16581-1  Revision: J874

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitation

The function IndSpeed\InSpeed will always return the value FALSE in the following 

situations:

• The robot is in manual mode with reduced speed.

• The speed is reduced using the VelSet instruction.

• The speed is reduced from the production window.

A wait period of 0.2 seconds should be added after the instruction to ensure that the correct 

status is obtained. This time period should be longer for external axes with poor performance.

Error handling

If the axis is not activated, the system variable ERRNO is set to ERR_AXIS_ACT.

If the axis is not in independent mode, the system variable ERRNO will be set to 

ERR_AXIS_IND.

These errors can then be handled in the error handler.

Syntax
IndSpeed ’(’

[ MecUnit’:=’ ] < variable (VAR) of mecunit>’,’

[ Axis’:=’ ] < expression (IN) of num> 

[ ’\’ InSpeed ] | [ ’\’ ZeroSpeed ] ’)’

A function with a return value of the data type bool.

Related information

For information about See

Independent axes in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning during 
program execution

Other independent instruction and 
functions

Technical reference manual - RAPID overview, 
section RAPID summary - Motion

More examples IndCMove - Independent continuous movement on 
page 137

Check the position status for 
independent axes

IndInpos - Independent axis in position status on page 
871

Defining independent joints Technical reference manual - System parameters, 
section Motion - Arm

Continued



2 Functions

2.60. IOUnitState - Get current state of I/O unit
RobotWare - OS

8753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.60. IOUnitState - Get current state of I/O unit

Usage

IOUnitState is used to find out the current state of an I/O unit. It is physical state and 

logical state define the status for an I/O unit.

Basic examples

Basic examples of the instruction IOUnitState are illustrated below.

Example 1
IF (IOUnitState("UNIT1" \Phys)=IOUNIT_PHYS_STATE_RUNNING) THEN

! Possible to access some signal on the I/O unit

ELSE

! Read/Write some signal on the I/O unit result in error

ENDIF

Test is done to see if the I/O unit UNIT1 is up and running.

Example 2
IF (IOUnitState("UNIT1" \Logic)=IOUNIT_LOG_STATE_DISABLED) THEN

! Unit is disabled by user from RAPID or FlexPendant

ELSE

! Unit is enabled.

ENDIF

Test is done to see if the I/O unit UNIT1 is disabled.

Return value

Data type: iounit_state

The return value has different values depending on if the optional arguments \Logic or 

\Phys or no optional argument at all is used.

The I/O unit logical states describes the state a user can order the unit into.The state of the I/

O unit as defined in the table below when using optional argument \Logic.

Return value Symbolic constant Comment

10 IOUNIT_LOG_STATE_DISABLED Unit is disabled by user from 
RAPID, FlexPendant or 
System Parameters.

11 IOUNIT_LOG_STATE_ENABLED Unit is enabled by user from 
RAPID, FlexPendant or 
System Parameters. Default 
after startup.

Continues on next page



2 Functions

2.60. IOUnitState - Get current state of I/O unit
RobotWare - OS

3HAC 16581-1  Revision: J876

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

When the unit is logically enabled by the user and the fieldbus driver intends to take a unit 

into physical state IOUNIT_PHYS_STATE_RUNNING, the unit could get into other states for 

various reasons (see table below). 

The state of the I/O unit as defined in the table below when using optional argument \Phys.

-

NOTE!

For RobotWare 5.08 and earlier versions it is not possible to use the instruction 

IOUnitState with optional arguments \Phys or \Logic. From RobotWare 5.09 it is 

recommended to use the optional arguments \Phys or \Logic.

The state of the I/O unit is defined in the table below when not using any of the optional 

arguments \Phys or \Logic.

1) Not possible to get this state in the RAPID program with current version of RobotWare - 

OS.

Return value Symbolic constant Comment

20 IOUNIT_PHYS_STATE_DEACTIVATED Unit is not running, disabled 
by user

21 IOUNIT_PHYS_STATE_RUNNING Unit is running

22 IOUNIT_PHYS_STATE_ERROR Unit is not working because of 
some runtime error

23 IOUNIT_PHYS_STATE_UNCONNECTED Unit is configured but not 
connected to the bus or the 
bus is stopped

24 IOUNIT_PHYS_STATE_UNCONFIGURED Unit is not configured but 
connected to the bus. 1) 

25 IOUNIT_PHYS_STATE_STARTUP Unit is in start up mode. 1)

26 IOUNIT_PHYS_STATE_INIT Unit is created. 1) 

Return value Symbolic constant Comment

1 IOUNIT_RUNNING Unit is up and running

2 IOUNIT_RUNERROR Unit is not working because of 
some runtime error

3 IOUNIT_DISABLE Unit is disabled by user from 
RAPID or FlexPendant

4 IOUNIT_OTHERERR Other configuration or startup 
errors

Continued

Continues on next page



2 Functions

2.60. IOUnitState - Get current state of I/O unit
RobotWare - OS

8773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
IOUnitState (UnitName [\Phys] | [\Logic])

UnitName

Data type: string

The name of the I/O unit to be checked (with same name as configured).

[\Phys]

Physical

Data type: switch

If using this parameter the physical state of the I/O unit is read.

[\Logic]

Logical

Data type: switch

If using this parameter the logical state of the I/O unit is read.

Syntax
IOUnitState ´(´

[ UnitName ’:=’ ] < expression (IN) of string >

[ ’\’ Phys] | [ ’\’ Logic] ´)´

A function with a return value of the data type iounit_state.

Related information

For information about See

State of I/O unit IOEnable - Enable I/O unit on page 162

iounit_state - State of I/O unit on page 1128

Enable an I/O unit IOEnable - Enable I/O unit on page 162

Disabling an I/O unit IODisable - Disable I/O unit on page 159

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output Signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters

Continued



2 Functions

2.61. IsFile - Check the type of a file
RobotWare - OS

3HAC 16581-1  Revision: J878

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.61. IsFile - Check the type of a file

Usage

The IsFile function obtains information about the named file or directory and checks 

whether it is the same as the specified type. If no type is specified, only an existence check is 

performed.

The path argument specifies the file. Read, write or execute permission for the named file is 

not required, but all directories listed in the path name leading to the file must be searchable.

Basic examples

Basic examples of the function IsFile are illustrated below.

See also More examples on page 879.

Example 1
PROC printFT(string filename)

IF IsFile(filename \Directory) THEN

TPWrite filename+" is a directory";

RETURN;

ENDIF

IF IsFile(filename \Fifo) THEN

TPWrite filename+" is a fifo file";

RETURN;

ENDIF

IF IsFile(filename \RegFile) THEN

TPWrite filename+" is a regular file";

RETURN;

ENDIF

IF IsFile(filename \BlockSpec) THEN

TPWrite filename+" is a block special file";

RETURN;

ENDIF

IF IsFile(filename \CharSpec) THEN

TPWrite filename+" is a character special file";

RETURN;

ENDIF

ENDPROC

This example prints out the filename and the type of the specified file on the FlexPendant.

Return value

Data type: bool

The function will return TRUE if the specified type and actual type match, otherwise FALSE. 

When no type is specified, it returns TRUE if the file exists and otherwise FALSE.

Continues on next page



2 Functions

2.61. IsFile - Check the type of a file
RobotWare - OS

8793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
IsFile (Path [\Directory] [\Fifo] [\RegFile] [\BlockSpec] 

[\CharSpec])

Path

Data type: string

The file specified with a full or relative path.

[ \Directory ]

Data type: switch

Is the file a directory.

[ \Fifo ]

Data type: switch

Is the file a fifo file.

[ \RegFile ]

Data type: switch

Is the file a regular file, i.e. a normal binary or ASCII file.

[ \BlockSpec ]

Data type: switch

Is the file a block special file.

[ \CharSpec ]

Data type: switch

Is the file a character special file.

Program execution

This function returns a bool that specifies match or not.

More examples

More examples of the function IsFile are illustrated below.

Example 1

This example implements a generic traverse of a directory structure function.

PROC searchdir(string dirname, string actionproc)

VAR dir directory;

VAR string filename;

IF IsFile(dirname \Directory) THEN

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

! .. and . is the parent and resp. this directory

IF filename <> ".." AND  filename <> "." THEN

searchdir dirname+"/"+filename, actionproc;

ENDIF

ENDWHILE

CloseDir directory;

Continued

Continues on next page



2 Functions

2.61. IsFile - Check the type of a file
RobotWare - OS

3HAC 16581-1  Revision: J880

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ELSE

%actionproc% dirname;

ENDIF

ERROR

RAISE;

ENDPROC

PROC listfile(string filename)

 TPWrite filename;

ENDPROC

PROC main()

! Execute the listfile routine for all files found under the

! tree of HOME:

searchdir "HOME:","listfile";

ENDPROC

This program traverses the directory structure under the "HOME:" and for each file found, it 

calls the listfile procedure. The searchdir is the generic part that knows nothing about 

the start of the search or which routine should be called for each file. It uses IsFile to check 

whether it has found a subdirectory or a file and it uses the late binding mechanism to call the 

procedure specified in actionproc for all files found. The actionproc routine should be 

a procedure with one parameter of the type string.

Error handling

If the file does not exist and there is a type specified, the system variable ERRNO is set to 

ERR_FILEACC. This error can then be handled in the error handler.

Limitations

This function is not possible to use against serial channels or field buses.

If using against FTP or NFS mounted discs, the file existance or type information is not always 

updated. To get correct information an explicit order may be needed against the search path 

(with instruction Open) before using IsFile.

Syntax
Isfile ’(’

[ Path’:=’ ] < expression (IN) of string>

 [ ´\´Directory ]     

| [ ´\´Fifo ]

| [ ´\´RegFile ]

| [ ´\´BlockSpec ]

| [ ´\´CharSpec ]

’)’

A function with a return value of the data type bool.

Continued

Continues on next page



2 Functions

2.61. IsFile - Check the type of a file
RobotWare - OS

8813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Directory dir - File directory structure on page 1103

Open a directory OpenDir - Open a directory on page 285

Close a directory CloseDir - Close a directory on page 56

Read a directory ReadDir - Read next entry in a directory on page 944

Make a directory MakeDir - Create a new directory on page 218

Remove a directory RemoveDir - Delete a directory on page 355

Rename a file RenameFile - Rename a file on page 357

Remove a file RemoveFile - Delete a file on page 356

Copy a file CopyFile - Copy a file on page 65

Check file size FileSize - Retrieve the size of a file on page 842

Check file system size FSSize - Retrieve the size of a file system on page 848

Continued



2 Functions

2.62. IsMechUnitActive - Is mechanical unit active
RobotWare - OS

3HAC 16581-1  Revision: J882

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.62. IsMechUnitActive - Is mechanical unit active

Usage

IsMechUnitActive (Is Mechanical Unit Active) is used to check whether a mechanical 

unit is activated or not. 

Basic examples

Basic examples of the function IsMechUnitActive are illustrated below.

Example 1

IF IsMechUnitActive(SpotWeldGun) CloseGun SpotWeldGun;

If the mechanical unit SpotWeldGun is active, the routine CloseGun will be invoked in 

which the gun is closed.

Return value 

Data type: bool

The function returns:

• TRUE, if the mechanical unit is active

• FALSE, if the mechanical unit is deactive

Arguments
IsMechUnitActive ( MechUnit )

MechUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit.

Syntax
IsMechUnitActive ’(’ 

[MechUnit’:=’] < variable (VAR) of mecunit> ´,´

A function with a return value of the data type bool.

Related information

For information about See

Activating mechanical units ActUnit - Activates a mechanical unit on page 17

Deactivating mechanical units DeactUnit - Deactivates a mechanical unit on page 79

Mechanical units mecunit - Mechanical unit on page 1139



2 Functions

2.63. IsPers - Is persistent
RobotWare - OS

8833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.63. IsPers - Is persistent

Usage

IsPers is used to test if a data object is a persistent variable or not.

Basic examples

Basic examples of the function IsPers are illustrated below.

Example 1
PROC procedure1 (INOUT num parameter1)

IF IsVar(parameter1) THEN

! For this call reference to a variable

...

ELSEIF IsPers(parameter1) THEN

! For this call reference to a persistent variable

...

ELSE

! Should not happen

EXIT;

ENDIF

ENDPROC

The procedure procedure1 will take different actions depending on whether the actual 

parameter parameter1 is a variable or a persistent variable.

Return value

Data type: bool

TRUE if the tested actual INOUT parameter is a persistent variable. FALSE if the tested actual 

INOUT parameter is not a persistent variable.

Arguments
IsPers (DatObj)

DatObj()

Data Object

Data type: any type

The name of the formal INOUT parameter.

Syntax
IsPers’(’

[ DatObj’ :=’ ] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.

Related information

For information about See

Test if variable IsVar - Is variable on page 891

Types of parameters (access modes) Technical reference manual - RAPID overview, 
section Basic characteristics - Routines



2 Functions

2.64. IsStopMoveAct - Is stop move flags active
RobotWare - OS

3HAC 16581-1  Revision: J884

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.64. IsStopMoveAct - Is stop move flags active

Usage

IsStopMoveAct is used to get the status of the stop move flags for a current or connected 

motion task.

Basic examples

Basic examples of the function IsStopMoveAct are illustrated below.

Example 1
stopflag2:= IsStopMoveAct(\FromNonMoveTask);

stopflag2 will be TRUE if the stop move flag from non-motion tasks is set in current or 

connected motion task, else it will be FALSE.

Example 2
IF IsStopMoveAct(\FromMoveTask) THEN

 StartMove;

ENDIF

If the stop move flag from motion task is set in the current motion task, it will be reset by the 

StartMove instruction.

Return value

Data type: bool

The return value will be TRUE if the selected stop move flag is set, else the return value will 

be FALSE.

Arguments
IsStopMoveAct ( [\FromMoveTask] | [\FromNonMoveTask] )

[\FromMoveTask]

Data type: switch

FromMoveTask is used to get the status of the stop move flag of type private motion task.

This type of stop move flag can only be set by:

• The motion task itself with instruction StopMove

• After leaving the RestoPath level in the program

• At execution in an asynchronous error handler for process- or motion errors before any 

StorePath and after any RestoPath

[\FromNonMoveTask]

Data type: switch

FromNonMoveTask is used to get the status of the stop move flag of type any non-motion 

tasks. This type of stop move flag can only be set by any non-motion task in connected or all 

motion tasks with the instruction StopMove.

Continues on next page



2 Functions

2.64. IsStopMoveAct - Is stop move flags active
RobotWare - OS

8853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
IsStopMoveAct’(’

[’\’ FromMoveTask]

| [’\’ FromNonMoveTask]’ )’

A function with a return value of the data type bool.

Related information

For information about See

Stop robot movement StopMove - Stops robot movement on page 515

Restart robot movement StartMove - Restarts robot movement on page 486

Continued



2 Functions

2.65. IsStopStateEvent - Test whether moved program pointer
RobotWare - OS

3HAC 16581-1  Revision: J886

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.65. IsStopStateEvent - Test whether moved program pointer

Usage

IsStopStateEvent returns information about the movement of the Program Pointer (PP) 

in current program task.

Basic examples

Basic examples of the function IsStopStateEvent are illustrated below.

Example 1
IF IsStopStateEvent (\PPMoved) = TRUE THEN

! PP has been moved during the last program stop

ELSE

! PP has not been moved during the last program stop

ENDIF

IF IsStopStateEvent (\PPToMain) THEN

! PP has been moved to main routine during the last program stop

ENDIF

Return value

Data type: bool

Status if and how PP has been moved during the last stop state.

TRUE if PP has been moved during the last stop.

FALSE if PP has not been moved during the last stop.

If PP has been moved to the main routine, both \PPMoved and \PPToMain will return TRUE.

If PP has been moved to a routine, both \PPMoved and \PPToMain will return TRUE.

If PP has been moved within a list of a routine, \PPMoved will return TRUE and \PPToMain 

will return FALSE.

After calling a service routine (keep execution context in main program sequence) \PPMove 

will return FALSE and \PPToMain will return FALSE.

Arguments
IsStopStateEvent ([\PPMoved] | [\PPToMain])

[ \PPMoved ]

Data type: switch

Test whether PP has been moved.

[ \PPToMain ]

Data type: switch

Test whether PP has been moved to main or to a routine.

Limitations

This function in most cases cannot be used during forward or backward execution because 

the system is in stop state between every single step.

Continues on next page



2 Functions

2.65. IsStopStateEvent - Test whether moved program pointer
RobotWare - OS

8873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
IsStopStateEvent’(’

[’\’ PPMoved] | [’\’ PPToMain] ´)´

A function with a return value of the data type bool.

Related information

For information about See

Making own instructions Technical reference manual - RAPID 
overview, section - Programming off-line - 
Making your own instructions

Continued



2 Functions

2.66. IsSyncMoveOn - Test if in synchronized movement mode
RobotWare - OS

3HAC 16581-1  Revision: J888

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.66. IsSyncMoveOn - Test if in synchronized movement mode

Usage

IsSyncMoveOn is used to test if the current program task of type Motion Task is in 

synchronized movement mode or not.

It is also possible from some Non Motion Task to test if the connected Motion Task is in 

synchronized movement mode or not. The system parameter Controller/Tasks/Use 

Mechanical Unit Group define the connected Motion Task.

When the Motion Task is executing at StorePath level IsSyncMoveOn will test if the task 

is in synchronized mode on that level, independently of the synchronized mode on the 

original level.

The instruction IsSyncMoveOn is usually used in a MultiMove system with option 

Coordinated Robots but can be used in any system and in any program task.

Basic examples

Basic examples of the function IsSyncMoveOn are illustrated below.

Example 1

Program example in task T_ROB1

PERS tasks task_list{2} := [ ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PROC main()

...

MoveL p_zone, vmax, z50, tcp1;

WaitSyncTask sync1, task_list;

MoveL p_fine, v1000, fine, tcp1;

syncmove;

...

ENDPROC

PROC syncmove()

SyncMoveOn sync2, task_list;

MoveL * \ID:=10, v100, z10, tcp1 \WOBJ:= rob2_obj;

MoveL * \ID:=20, v100, fine, tcp1 \WOBJ:= rob2_obj;

SyncMoveOff sync3;

UNDO

SyncMoveUndo;

ENDPROC

Continues on next page



2 Functions

2.66. IsSyncMoveOn - Test if in synchronized movement mode
RobotWare - OS

8893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program example in task BCK1

PROC main()

...

IF IsSyncMoveOn() THEN

! Connected Motion Task is in synchronized movement mode

ELSE

! Connected Motion Task is in independent mode

ENDIF

...

ENDPROC

At the execution time of IsSyncMoveOn, in the background task BCK1, we test if the 

connected motion task at that moment is in synchronized movement mode or not.

Return value

Data type: bool

TRUE if current or connected program task is in synchronized movement mode at the moment, 

otherwise FALSE.

Program execution

Test if current or connected program task is in synchronized movement mode at the moment 

or not. If the MotionTask is executing at StorePath level, the SyncMoveOn will test if 

the task is in synchronized movement on the StorePath level, not on the original level.

Syntax
IsSyncMoveOn ’(’ ’)’

A function with a return value of the data type bool.

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Identity for synchronization point syncident - Identity for synchronization point 
on page 1200

Start coordinated synchronized movements SyncMoveOn - Start coordinated synchro-
nized movements on page 534

End coordinated synchronized movements SyncMoveOff - End coordinated synchronized 
movements on page 528

Set independent movements SyncMoveUndo - Set independent 
movements on page 545

Store path and execute on new level StorePath - Stores the path when an interrupt 
occurs on page 521

Continued



2 Functions

2.67. IsSysId - Test system identity
RobotWare - OS

3HAC 16581-1  Revision: J890

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.67. IsSysId - Test system identity

Usage

IsSysId (System Identity) can be used to test the system identity using the system serial 

number.

Basic examples

Basic examples of the function IsSysId are illustrated below.

Example 1
IF NOT IsSysId("6400-1234") THEN

ErrWrite "System identity fault","Faulty system identity for 

this program";

EXIT;

ENDIF

The program is made for a special robot system with serial number 6400-1234 and cannot 

be used by another robot system.

Return value

Data type: bool

TRUE = The robot system serial number is the same as specified in the test.

FALSE = The robot system serial number is not the same as specified in the test.

Arguments
IsSysId ( SystemId)

SystemId

Data type: string

The robot system serial number, marking the system identity.

Syntax
IsSysId ’(’

[ SystemId’:=’ ] < expression (IN) of string> ´)´

A function with a return value of the data type bool.

Related information

For information about See

Read system information GetSysInfo - Get information about the system on page 
857



2 Functions

2.68. IsVar - Is variable
RobotWare - OS

8913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.68. IsVar - Is variable

Usage

IsVar is used to test whether a data object is a variable or not.

Basic examples

Basic examples of the function IsVar are illustrated below.

Example 1
PROC procedure1 (INOUT num parameter1)

IF IsVAR(parameter1) THEN

! For this call reference to a variable

...

ELSEIF IsPers(parameter1) THEN

! For this call reference to a persistent variable

...

ELSE

! Should not happen

EXIT;

ENDIF

ENDPROC

The procedure procedure1 will take different actions, depending on whether the actual 

parameter parameter1 is a variable or a persistent variable.

Return value

Data type: bool

TRUE if the tested actual INOUT parameter is a variable. FALSE if the tested actual INOUT 

parameter is not a variable.

Arguments
IsVar (DatObj)

DatObj

Data Object

Data type: any type

The name of the formal INOUT parameter.

Syntax
IsVar’(’

[ DatObj’ :=’ ] < var or pers (INOUT) of any type > ’)’

A function with a return value of the data type bool.

Related information

For information about See

Test if persistent IsPers - Is persistent on page 883

Types of parameters (access modes) Technical reference manual - RAPID overview, 
section Basic characteristics - Routines



2 Functions

2.69. MaxRobSpeed - Maximum robot speed
RobotWare - OS

3HAC 16581-1  Revision: J892

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.69. MaxRobSpeed - Maximum robot speed

Usage

MaxRobSpeed (Maximum Robot Speed) returns the maximum TCP speed for the used robot 

type.

Basic examples

Basic examples of the function MaxRobSpeed are illustrated below.

Example 1
TPWrite "Max. TCP speed in mm/s for my robot="\Num:=MaxRobSpeed();

The message Max. TCP speed in mm/s for my robot = 5000 is written on the 

FlexPendant.

Return value

Data type: num

Return the max. TCP speed in mm/s for the used robot type and normal practical TCP values.

If extremely large TCP values are used in the tool frame, one should create his own speeddata 

with bigger TCP speed than returned by MaxRobSpeed.

Syntax
MaxRobSpeed ’(’ ’)’

A function with a return value of the data type num.

Related information

For information about See

Definition of velocity speeddata - Speed data on page 1185

Definition of maximum velocity VelSet - Changes the programmed velocity on page 662



2 Functions

2.70. MirPos - Mirroring of a position
RobotWare - OS

8933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.70. MirPos - Mirroring of a position

Usage

MirPos (Mirror Position) is used to mirror the translation and rotation parts of a position.

Basic examples

Basic examples of the function MirPos are illustrated below.

CONST robtarget p1:= [...];

VAR robtarget p2;

PERS wobjdata mirror:= [...];

...

p2 := MirPos(p1, mirror);

p1 is a robtarget storing a position of the robot and an orientation of the tool. This position is 

mirrored in the xy-plane of the frame defined by mirror, relative to the world coordinate 

system. The result is new robtarget data, which is stored in p2.

Return value

Data type: robtarget

The new position which is the mirrored position of the input position.

Arguments
MirPos  (Point  MirPlane  [\WObj]  [\MirY])

Point

Data type: robtarget

The input robot position. The orientation part of this position defines the current orientation 

of the tool coordinate system.

MirPlane

Mirror Plane

Data type: wobjdata

The work object data defining the mirror plane. The mirror plane is the xy-plane of the object 

frame defined in MirPlane. The location of the object frame is defined relative to the user 

frame (also defined in MirPlane) which in turn is defined relative to the world frame.

[\WObj]

Work Object

Data type: wobjdata

The work object data defining the object frame and user frame relative to which the input 

position Point is defined. If this argument is left out the position is defined relative to the 

World coordinate system. 

NOTE! 

If the position is created with an active work object, this work object must be referred to in 

the argument.

Continues on next page



2 Functions

2.70. MirPos - Mirroring of a position
RobotWare - OS

3HAC 16581-1  Revision: J894

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\MirY]

Mirror Y

Data type: switch

If this switch is left out, which is the default behavior, the tool frame will be mirrored with 

regards to the x-axis and the z-axis. If the switch is specified the tool frame will be mirrored 

with regards to the y-axis and the z-axis.

Limitations

No recalculation is done of the robot configuration part of the input robtarget data.

If a coordinate frame is used, the coordinated unit has to be situated in the same task as the 

robot.

Syntax
MirPos’(’

[ Point ’:=’ ] < expression (IN) of robtarget>’,’

[MirPlane’ :=’] <expression (IN) of wobjdata>’,’

[’\’WObj ’:=’ <expression (IN) of wobjdata> ]

[’\’MirY ]’)’

A function with a return value of the data type robtarget.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID Summary - 
Mathematics

Position data robtarget - Position data on page 1176

Work object data wobjdata - Work object data on page 1224

Continued



2 Functions

2.71. ModExist - Check if program module exist
RobotWare - OS

8953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.71. ModExist - Check if program module exist

Usage

ModExist (Module Exist) is used to check whether a given module exists or not in the 

program task. 

Searching is first done for loaded modules and afterward, if none is found, for installed 

modules.

Basic examples

Basic examples of the function ModExist are illustrated below.

Example 1
VAR bool mod_exist;

mod_exist:=ModExist ("MyModule");

If module MyModule exists within the task, the function will return TRUE. If not, the function 

will return FALSE.

Return value

Data type: bool

TRUE if the module was found, FALSE if not.

Arguments
ModExist (ModuleName)

ModuleName

Data type: string

Name of the module to search for.

Syntax
ModExist ‘(‘

[ ModuleName ‘:=’ ] < expression (IN) of string > ’)’

A function with a return value of the data type bool.

Related information

For information about See

Find modify time for loaded module ModTime - Get file modify time for the loaded 
module on page 896



2 Functions

2.72. ModTime - Get file modify time for the loaded module
RobotWare - OS

3HAC 16581-1  Revision: J896

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.72. ModTime - Get file modify time for the loaded module

Usage

ModTime (Modify Time) is used to retrieve the last file modification time for the loaded 

module. The module is specified by its name and must be in the task memory. The time is 

measured in seconds since 00:00:00 GMT,  Jan. 1 1970. The time is returned as a num and 

optionally also as a stringdig.

Basic examples

Basic examples of the function ModTime are illustrated below.

See also More examples on page 897.

Example 1
MODULE mymod

VAR num mytime;

PROC printMyTime()

mytime := ModTime("mymod");

TPWrite "My time is "+NumToStr(mytime,0);

ENDPROC

ENDMODULE

Return value

Data type: num

The time measured in seconds since 00:00:00 GMT, Jan. 1 1970.

Arguments
ModTime ( Object [\StrDig] )

Object

Data type: string

The name of the module. 

[\StrDig]

String Digit

Data type: stringdig

To get the mod loading time in a stringdig representation.

Further use in StrDigCmp can handle positive integers above 8388608 with exact 

representation.

Program execution

This function returns a numeric value that specifies the last time a file was modified before it 

was loaded as a program module in the system.

Continues on next page



2 Functions

2.72. ModTime - Get file modify time for the loaded module
RobotWare - OS

8973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function ModTime are illustrated below.

Example 1
IF FileTime ("HOME:/mymod.mod" \ModifyTime)

> ModTime ("mymod") THEN

UnLoad "HOME:/mymod.mod";

Load \Dynamic, "HOME:/mymod.mod";

ENDIF

This program reloads a module if the source file is newer. It uses the ModTime to retrieve the 

latest modify time for the specified module, and compares it to the FileTime\ModifyTime 

at the source. Then, if the source is newer, the program unloads and loads the module again.

Limitation in this example: The data type num can’t handle positive integers above 8388608 

seconds with exact representation. To get better dissolution, see example in function 

StrDigCmp.

Error handling

If no module with specified name is in the program task, the system variable ERRNO is set 

to ERR_MOD_NOT_LOADED. This error can then be handled in the error handler.

Limitations

This function will always return 0 if used on a module that is encoded or installed shared.

Syntax
ModTime ’(’ 

[ Object ’:=’ ] < expression (IN) of string> 

[ '\' StrDig’ :=’ < variable (VAR) of stringdig> ] ’)’

A function with a return value of the data type num.

Related information

For information about See

Retrieve time information about a file FileTime - Retrieve time information about a file 
on page 845 

String with only digits stringdig - String with only digits on page 1197

Compare two strings with only digits StrDigCmp - Compare two strings with only 
digits on page 991 

Continued



2 Functions

2.73. MotionPlannerNo - Get connected motion planner number
RobotWare - OS

3HAC 16581-1  Revision: J898

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.73. MotionPlannerNo - Get connected motion planner number

Usage

MotionPlannerNo returns the connected motion planner number. If executing 

MotionPlannerNo in a motion task, it returns its planner number. Else if executing 

MotionPlannerNo in a non-motion task it returns the connected motion planner number 

according to the setup in the system parameters.

Basic examples

Basic examples of the function MotionPlannerNo are illustrated below.

Example 1
!Motion task T_ROB1

PERS string buffer{6} := [stEmpty, stEmpty, stEmpty, stEmpty, 

stEmpty, stEmpty];

VAR num motion_planner;

PROC main()

 ... 

MoveL point, v1000, fine, tcp1;

motion_planner := MotionPlannerNo();

buffer[motion_planner] := "READY";

...

ENDPROC

!Background task BCK1

PERS string buffer{6};

VAR num motion_planner;

VAR string status;

PROC main()

...

motion_planner := MotionPlannerNo();

status := buffer[motion_planner];

...

ENDPROC

!Motion T_ROB2

PERS string buffer{6}; 

VAR num motion_planner;

PROC main()

...

MoveL point, v1000, fine, tcp1;

motion_planner := MotionPlannerNo();

buffer[motion_planner] := "READY";

...

ENDPROC

Continues on next page



2 Functions

2.73. MotionPlannerNo - Get connected motion planner number
RobotWare - OS

8993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

!Background task BCK2

PERS string buffer{6}; 

VAR num motion_planner;

VAR string status;

PROC main()

...

motion_planner := MotionPlannerNo();

status := buffer[motion_planner];

...

ENDPROC

Use the function MotionPlannerNo to find out which motion planner number is connected 

to the task. The exact same code can by implemented in all motion tasks and background 

tasks. Then each background task can check the status for their connected motion task.

Return value

Data type: num

The number of the connected motion planner. For non-motion tasks, the motion planner 

number of the associated mechanical unit will be returned.

The return value range is 1 ... 6.

Syntax
MotionPlannerNo’(’ ’)’

A function with a return value of the data type num.

Related information

For information about See

Specify cooperated program tasks Technical reference manual - System parameters, 
section Controller - Task

Continued



2 Functions

2.74. NonMotionMode - Read the Non-Motion execution mode
RobotWare - OS

3HAC 16581-1  Revision: J900

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.74. NonMotionMode - Read the Non-Motion execution mode

Usage

NonMotionMode (Non-Motion Execution Mode) is used to read the current Non-Motion 

execution mode of the program task. Non-motion execution mode is selected or removed 

from the FlexPendant under the menu ABB\Control Panel\Supervision.

Basic examples

Basic examples of the function NonMotionMode are illustrated below.

Example 1
IF NonMotionMode() =TRUE THEN

...

ENDIF

The program section is executed only if the robot is in Non-Motion execution mode.

Return value

Data type: bool

The current Non-motion mode as defined in the table below.

Arguments
NonMotionMode ( [ \Main] )

[ \Main ]

Data type: switch

Return current running mode for connected motion task. Used in a multi-tasking system to 

get the current running mode for the actual task, if it is a motion task or connected motion 

task, if function NonMotionMode is executed in a nonmotion task.

If this argument is omitted, the return value always mirrors the current running mode for the 

program task that executes the function NonMotionMode.

Note that the execution mode is connected to the system and not any task. This means that all 

tasks in a system will give the same return value from NonMotionMode.

Syntax
NonMotionMode ’(’ [’\’Main]’)’

A function with a return value of the data type bool.

Related information

Return value Symbolic constant Comment

0 FALSE Non-Motion execution is not used

1 TRUE Non-Motion execution is used

For information about See

Reading operating mode OpMode - Read the operating mode on page 908



2 Functions

2.75. NOrient - Normalize orientation
RobotWare - OS

9013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.75. NOrient - Normalize orientation

Usage

NOrient (Normalize Orientation) is used to normalize un-normalized orientation 

(quaternion).

Description

An orientation must be normalized, i.e. the sum of the squares must equal 1:

.

If the orientation is slightly un-normalized, it is possible to normalize it. The normalization 

error is the absolute value of the sum of the squares of the orientation components. The 

orientation is considered to be slightly un-normalized if the normalization error is greater then 

0.00001 and less then 0.1. If the normalization error is greater then 0.1 the orient is unusable.

.

normerr > 0.1 Unusable

normerr > 0.00001 AND normerr <= 0.1 Slightly un-normalized

normerr <= 0.00001 Normalized

Basic examples

Basic examples of the function NOrient are illustrated below.

Example 1

We have a slightly un-normalized position (0.707170, 0, 0, 0.707170)

.

VAR orient unnormorient := [0.707170, 0, 0, 0.707170];

VAR orient normorient;

...

...

normorient := NOrient(unnormorient);

The normalization of the orientation ( 0.707170, 0, 0, 0.707170 ) becomes (0.707107, 0, 0, 

0.707107).

Return value

Data type: orient

The normalized orientation.

Continues on next page



2 Functions

2.75. NOrient - Normalize orientation
RobotWare - OS

3HAC 16581-1  Revision: J902

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
NOrient (Rotation)

Rotation

Data type: orient

The orientation to be normalized.

Syntax
NOrient’(’ 

[Rotation ’:=’] <expression (IN) of orient>

’)’

A function with a return value of the data type orient.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics 

Continued



2 Functions

2.76. NumToDnum - Converts num to dnum
RobotWare - OS

9033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.76. NumToDnum - Converts num to dnum

Usage

NumToDnum converts a num to a dnum.

Basic examples

A basic example of the function NumToDnum is illustrated below.

Example 1
VAR num mynum:=55;

VAR dnum mydnum:=0;

mydnum:=NumToDnum(mynum);

The num value 55 is returned by the function as the dnum value 55.

Return value

Data type: dnum

The return value of type dnum will have the same value as the input value of type num.

Arguments
NumToDnum (Value)

Value

Data type: num

The numeric value to be converted.

Syntax
NumToDnum

[ Value ’:=’ ] < expression (IN) of num > ’;’

A function with a return value of the data type dnum.

Related information

For information about See

Num data type num - Numeric values on page 1146

Dnum data type dnum - Double numeric values on page 1104



2 Functions

2.77. NumToStr - Converts numeric value to string
RobotWare - OS

3HAC 16581-1  Revision: J904

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.77. NumToStr - Converts numeric value to string

Usage

NumToStr (Numeric To String) is used to convert a numeric value to a string.

Basic examples

Basic examples of the function NumToStr are illustrated below.

Example 1
VAR string str;

str := NumToStr(0.38521,3);

The variable str is given the value "0.385".

Example 2
reg1 := 0.38521;

str := NumToStr(reg1, 2\Exp);

The variable str is given the value "3.85E-01".

Example 3
VAR dnum ex3 := 1234567890.123456;

str := NumToStr(ex3, 15\Exp);

The variable str is given the value "1.234567890123456E+09".

Return value

Data type: string

The numeric value converted to a string with the specified number of decimals, with exponent 

if so requested. The numeric value is rounded if necessary. The decimal point is suppressed 

if no decimals are included.

Arguments
NumToStr (Val | Dval Dec [\Exp])

Val

Value

Data type: num

The numeric value to be converted.

Dval

Value

Data type: dnum

The numeric value to be converted.

Dec

Decimals

Data type: num

Number of decimals. The number of decimals must not be negative or greater than the 

available precision for numeric values.

Continues on next page



2 Functions

2.77. NumToStr - Converts numeric value to string
RobotWare - OS

9053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Exp]

Exponent

Data type: switch

To use exponent in return value.

Syntax
NumToStr’(’

[ Val ’:=’ ] <expression (IN) of num>

| [ Dval ’:=’ ] <expression (IN) of dnum> ’,’

[ Dec ’:=’ ] <expression (IN) of num>

[ \Exp ]

’)’

A function with a return value of the data type string.

Related information

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.78. Offs - Displaces a robot position
RobotWare - OS

3HAC 16581-1  Revision: J906

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.78. Offs - Displaces a robot position

Usage

Offs is used to add an offset in the object coordinate system to a robot position.

Basic examples

Basic examples of the function Offs are illustrated below.

See also More examples on page 907.

MoveL Offs(p2, 0, 0, 10), v1000, z50, tool1;

The robot is moved to a point 10 mm from the position p2 (in the z-direction).

p1 := Offs (p1, 5, 10, 15);

The robot position p1 is displaced 5 mm in the x-direction, 10 mm in the y-direction and 15 

mm in the z-direction.

 Return value

Data type: robtarget

The displaced position data.

Arguments
Offs (Point XOffset YOffset ZOffset)

Point

Data type: robtarget

The position data to be displaced.

XOffset

Data type: num

The displacement in the x-direction, in the object coordinate system.

YOffset

Data type: num

The displacement in the y-direction, in the object coordinate system.

ZOffset

Data type: num

The displacement in the z-direction, in the object coordinate system.

Continues on next page



2 Functions

2.78. Offs - Displaces a robot position
RobotWare - OS

9073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function Offs are illustrated below.

Example 1
PROC pallet (num row, num column, num distance, PERS tooldata tool,  

PERS wobjdata wobj)

VAR robtarget palletpos:=[[0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0],  

[9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

palettpos := Offs (palettpos, (row-1)*distance, (column-

1)*distance, 0);

MoveL palettpos, v100, fine, tool\WObj:=wobj;

ENDPROC

A routine for picking parts from a pallet is made. Each pallet is defined as a work object (see 

figure below). The part to be picked (row and column) and the distance between the parts are 

given as input parameters. Incrementing the row and column index is performed outside the 

routine.

The figure shows the position and orientation of the pallet is specified by defining a work 

object.

xx0500002300

Syntax
Offs ’(’

[Point ’:=’] <expression (IN) of robtarget>’ ,’

[XOffset ’:=’] <expression (IN) of num> ’,’

[YOffset ’:=’] <expression (IN) of num> ’,’

[ZOffset ’:=’] <expression (IN) of num> ’)’

A function with a return value of the data type robtarget.

Related information

For information about See

Position data robtarget - Position data on page 1176

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Continued



2 Functions

2.79. OpMode - Read the operating mode
RobotWare - OS

3HAC 16581-1  Revision: J908

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.79. OpMode - Read the operating mode

Usage

OpMode(Operating Mode) is used to read the current operating mode of the system.

Basic examples

Basic examples of the function OpMode are illustrated below.

Example 1
TEST OpMode()

CASE OP_AUTO:

...

CASE OP_MAN_PROG:

...

CASE OP_MAN_TEST:

...

DEFAULT:

...

ENDTEST

Different program sections are executed depending on the current operating mode.

Return value

Data type: symnum

The current operating mode as defined in the table below.

Syntax
OpMode’(’ ’)’

A function with a return value of the data type symnum.

Related information

Return value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode max. 250 mm/s

3 OP_MAN_TEST Manual operating mode full speed, 100 %

For information about See

Different operating modes Operating manual - IRC5 with FlexPendant

Reading running mode RunMode - Read the running mode on page 971



2 Functions

2.80. OrientZYX - Builds an orient from euler angles
RobotWare - OS

9093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.80. OrientZYX - Builds an orient from euler angles

Usage

OrientZYX (Orient from Euler ZYX angles) is used to build an orient type variable out of 

Euler angles.

Basic examples

Basic examples of the function OrientZYX are illustrated below.

Example 1
VAR num anglex;

VAR num angley;

VAR num anglez;

VAR pose object;

...

object.rot := OrientZYX(anglez, angley, anglex)

Return value

Data type: orient

The orientation made from the Euler angles.

The rotations will be performed in the following order:

•  rotation around the z axis,

• rotation around the new y axis,

• rotation around the new x axis.

Arguments
OrientZYX (ZAngle YAngle XAngle)

ZAngle

Data type: num

The rotation, in degrees, around the Z axis. 

YAngle

Data type: num

The rotation, in degrees, around the Y axis. 

XAngle

Data type: num

The rotation, in degrees, around the X axis. 

The rotations will be performed in the following order:

• rotation around the z axis,

• rotation around the new y axis,

• rotation around the new x axis.

Continues on next page



2 Functions

2.80. OrientZYX - Builds an orient from euler angles
RobotWare - OS

3HAC 16581-1  Revision: J910

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
OrientZYX’(’

[ZAngle’:=’] <expression (IN) of num>’ ,’

[YAngle ’:=’] <expression (IN) of num> ’,’

[XAngle’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type orient.

Related information

For information about See

Mathematical instructions and functions Operating manual - IRC5 with FlexPendant, 
section RAPID summary - Mathematics

Continued



2 Functions

2.81. ORobT - Removes the program displacement from a position
RobotWare - OS

9113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.81. ORobT - Removes the program displacement from a position

Usage

ORobT (Object Robot Target) is used to transform a robot position from the program 

displacement coordinate system to the object coordinate system and/or to remove an offset 

for the external axes.

Basic examples

Basic examples of the function ORobT are illustrated below.

See also More examples on page 912. 

Example 1
VAR robtarget p10;

VAR robtarget p11;

VAR num wobj_diameter;

p10 := CRobT(\Tool:=tool1 \WObj:=wobj_diameter);

p11 := ORobT(p10);

The current positions of the robot and the external axes are stored in p10 and p11. The values 

stored in p10 are related to the ProgDisp/ExtOffs coordinate system. The values stored in 

p11 are related to the object coordinate system without any program displacement and any 

offset on the external axes.

Return value

Data type: robtarget

The transformed position data.

Arguments
ORobT (OrgPoint [\InPDisp] | [\InEOffs])

OrgPoint

Original Point

Data type: robtarget

The original point to be transformed.

[\InPDisp]

In Program Displacement

Data type: switch

Returns the TCP position in the ProgDisp coordinate system, i.e. removes external axes 

offset only.

[\InEOffs]

In External Offset

Data type: switch

Returns the external axes in the offset coordinate system, i.e. removes program displacement 

for the robot only.

Continues on next page



2 Functions

2.81. ORobT - Removes the program displacement from a position
RobotWare - OS

3HAC 16581-1  Revision: J912

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the function ORobT are illustrated below.

Example 1
p10 := ORobT(p10 \InEOffs );

The ORobT function will remove any program displacement that is active, leaving the TCP 

position relative to the object coordinate system. The external axes will remain in the offset 

coordinate system.

Example 2
p10 := ORobT(p10 \InPDisp );

The ORobT function will remove any offset of the external axes. The TCP position will 

remain in the ProgDisp coordinate system.

Syntax
ORobT ’(’

[ OrgPoint ’:=’ ] < expression (IN) of robtarget>

[’\’InPDisp] | [’\’InEOffs]’)’

A function with a return value of the data type robtarget.

Related information

For information about See

Definition of program displacement 
for the robot

PDispOn - Activates program displacement on page 
317

PDispSet - Activates program displacement using 
known frame on page 321

Definition of offset for external axes EOffsOn - Activates an offset for external axes on page 
88

EOffsSet - Activates an offset for external axes using 
known values on page 90

Coordinate systems Operating manual - IRC5 with FlexPendant, section 
Motion and I/O principles - Coordinate systems

Continued



2 Functions

2.82. ParIdPosValid - Valid robot position for parameter identification
RobotWare - OS

9133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.82. ParIdPosValid - Valid robot position for parameter identification

Usage

ParIdPosValid (Parameter Identification Position Valid) checks whether the robot 

position is valid for the current parameter identification, such as load identification of tool or 

payload.

This instruction can only be used in the main task or, if in a MultiMove system, in motion 

tasks.

Basic examples

Basic examples of the function ParIdPosValid are illustrated below.

Example 1
VAR jointtarget joints;

VAR bool valid_joints{12};

! Read the current joint angles

joints := CJointT();

! Check if valid robot position

IF ParIdPosValid (TOOL_LOAD_ID, joints, valid_joints) = TRUE THEN

! Valid position for load identification

! Continue with LoadId

...

ELSE

! Not valid position for one or several axes for load 

! identification

! Move the robot to the output data given in variable joints

! and do ParIdPosValid once again

...

ENDIF

Check whether robot position is valid before doing load identification of tool.

Return value

Data type: bool

TRUE if robot position is valid for current parameter identification.

FALSE if robot position is not valid for current parameter identification.

Continues on next page



2 Functions

2.82. ParIdPosValid - Valid robot position for parameter identification
RobotWare - OS

3HAC 16581-1  Revision: J914

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ParIdPosValid (ParIdType Pos AxValid [\ConfAngle])

ParIdType

Data type: paridnum

Type of parameter identification as defined in table below

Pos

Data type: jointtarget

Variable specifies the actual joint angles for all robot and external axes. The variable is 

updated by ParIdPosValid according to the table below.

AxValid

Data type: bool

Array variable with 12 elements corresponding to 6 robot and 6 external axes. The variable 

is updated by ParIdPosValid according to the table below.

Value Symbolic constant Comment

1 TOOL_LOAD_ID Identify tool load

2 PAY_LOAD_ID Identify payload (Ref. instruction GripLoad)

3 IRBP_K Identify External Manipulator IRBP K load

4 IRBP_L Identify External Manipulator IRBP L load

4 IRBP_C Identify External Manipulator IRBP C load

4 IRBP_C_INDEX Identify External Manipulator IRBP C_INDEX load

4 IRBP_T Identify External Manipulator IRBP T load

5 IRBP_R Identify External Manipulator IRBP R load

6 IRBP_A Identify External Manipulator IRBP A load

6 IRBP_B Identify External Manipulator IRBP B load

6 IRBP_D Identify External Manipulator IRBP D load

Input axis joint value Output axis joint value

Valid Not changed

Not valid Changed to suitable value

Input axis joint value in Pos Output status in AxValid

Valid TRUE

Not valid FALSE

Continued

Continues on next page



2 Functions

2.82. ParIdPosValid - Valid robot position for parameter identification
RobotWare - OS

9153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[ \ConfAngle ]

Data type: num

Option argument for specification of specific configuration angle +/- degrees to be used for 

parameter identification.

xx0500002493

Default + 90 degrees if this argument is not specified.

Min. + or - 30 degrees. Optimum + or - 90 degrees.

Error handling

If an error occurs, the system variable ERRNO is set to ERR_PID_RAISE_PP. This error can 

then be handled in the error handler.

Syntax
ParIdPosValid’(’

[ ParIdType ´:=´ ] <expression (IN) of paridnum> ´,´

[ Pos ´:=´ ] <variable (VAR) of jointtarget> ´,´

[ AxValid ´:=´ ] <array variable {*} (VAR) of bool>

[ ´\´ ConfAngle ´:=´ <expression (IN) of num> ] ´)´

A function with a return value of the data type bool.

Related information

For information about See

Type of parameter identification paridnum - Type of parameter identification on 
page 1154

Valid robot type ParIdRobValid - Valid robot type for 
parameter identification on page 916

Load identification of tool or payload LoadId - Load identification of tool or payload 
on page 212

Load identification of positioners (IRBP) ManLoadIdProc - Load identification of IRBP 
manipulators on page 219

Continued



2 Functions

2.83. ParIdRobValid - Valid robot type for parameter identification
RobotWare - OS

3HAC 16581-1  Revision: J916

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.83. ParIdRobValid - Valid robot type for parameter identification

Usage

ParIdRobValid (Parameter Identification Robot Valid) checks whether the robot or 

manipulator type is valid for the current parameter identification, such as load identification 

of tool or payload.

This instruction can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Basic examples

Basic examples of the function ParIdRobValue are illustrated below.

Example 1
TEST ParIdRobValid (TOOL_LOAD_ID)

CASE ROB_LOAD_VAL:

! Possible to do load identification of tool in actual robot 

type

...

CASE ROB_LM1_LOAD_VAL:

! Only possible to do load identification of tool with

! IRB 6400FHD if actual load < 200 kg

...

CASE ROB_NOT_LOAD_VAL: 

! Not possible to do load identification of tool in actual 

robot type

... 

ENDTEST

Return value

Data type: paridvalidnum

Whether the specified parameter identification can be performed with the current robot or 

manipulator type, as defined in the table below.

Value Symbolic constant Comment

10 ROB_LOAD_VAL Valid robot or manipulator type for the actual parameter 
identification

11 ROB_NOT_LOAD_VAL Not valid type for the actual parameter identification

12 ROB_LM1_LOAD_VAL Valid robot type IRB 6400FHD for the actual parameter 
identification if actual load < 200kg

Continues on next page



2 Functions

2.83. ParIdRobValid - Valid robot type for parameter identification
RobotWare - OS

9173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ParIdRobValid(ParIdType [\MechUnit] [\AxisNo])

ParIdType

Data type: paridnum

Type of parameter identification as defined in table below.

[ \MechUnit ]

Mechanical Unit

Data type: mecunit

Mechanical Unit used for the load identification. Only to be specified for external 

manipulator. If this argument is omitted the TCP-robot in the task is used.

[ \AxisNo ]

Axis number

Data type: num

Axis number within the mechanical unit which holds the load to be identified. Only to be 

specified for external manipulator.

When the argument \MechUnit is used, then \AxisNo must be used. The argument 

\AxisNo can not be used without \MechUnit.

Error handling

If an error occurs, the system variable ERRNO is set to ERR_PID_RAISE_PP. This error can 

then be handled in the error handler.

Syntax
ParIdRobValid’(’

[ParIdType ’:=’] <expression (IN) of paridnum>

[´\’ MechUnit‘ :=’ <variable (VAR) of mecunit>]

[´\’ AxisNo ´:=’ <expression (IN) of num>] ´)’

A function with a return value of the data type paridvalidnum.

Value Symbolic constant Comment

1 TOOL_LOAD_ID Identify robot tool load

2 PAY_LOAD_ID Identify robot payload (Ref. instruction GripLoad)

3 IRBP_K Identify External Manipulator IRBP K load

4 IRBP_L Identify External Manipulator IRBP L load 

4 IRBP_C Identify External Manipulator IRBP C load

4 IRBP_C_INDEX Identify External Manipulator IRBP C_INDEX load

4 IRBP_T Identify External Manipulator IRBP T load

5 IRBP_R Identify External Manipulator IRBP R load

6 IRBP_A Identify External Manipulator IRBP A load

6 IRBP_B Identify External Manipulator IRBP B load

6 IRBP_D Identify External Manipulator IRBP D load

Continued

Continues on next page



2 Functions

2.83. ParIdRobValid - Valid robot type for parameter identification
RobotWare - OS

3HAC 16581-1  Revision: J918

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Type of parameter identification paridnum - Type of parameter identification on 
page 1154

Mechanical unit to be identified mecunit - Mechanical unit on page 1139

Result of this function paridvalidnum - Result of ParIdRobValid on 
page 1156

Valid robot position ParIdPosValid - Valid robot position for 
parameter identification on page 913

Load identification of robot tool load or 
payload

LoadId - Load identification of tool or payload 
on page 212

Load identification of positioner loads ManLoadIdProc - Load identification of IRBP 
manipulators on page 219

Continued



2 Functions

2.84. PathLevel - Get current path level
RobotWare - OS

9193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.84. PathLevel - Get current path level

Usage

PathLevel is used to get the current path level. This function will show whether the task is 

executing on the original level or if the original movement path has been stored and a new 

temporary movement is executing. Read more about Path Recovery in Application manual - 

Motion functions and event.

Basic examples

Basic example of the function PathLevel is illustrated below.

See also More examples on page 919.

Example 1
VAR num level;

level:= PathLevel();

Variable level will be 1 if executed in an original movement path or 2 if executed in a 

temporary new movement path.

Return value

Data type: num

There are two possible return values.

More examples 

One more example of how to use the function PathLevel is illustrated below.

Example 1
...

MoveL p100, v100, z10, tool1;

StopMove;

StorePath;

p:= CRobT(\Tool:=tool1);

!New temporary movement

MoveL p1, v100, fine, tool1;

...

level:= PathLevel();

...

MoveL p, v100, fine, tool1;

RestoPath;

StartMove;

...

Variable level will be 2.

Return value Description

1 Executing in original movement path.

2 Executing in StorePath level, a temporary new movement path.

Continues on next page



2 Functions

2.84. PathLevel - Get current path level
RobotWare - OS

3HAC 16581-1  Revision: J920

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

RobotWare option Path Recovery must be installed to be able to use function PathLevel at 

path level 2 

Syntax
PathLevel’(’’)’

A function with a return value of the data type num.

Related information

For information about See

Path recovery. Application manual - Motion functions and events

Store and restore path. StorePath - Stores the path when an interrupt occurs on page 
521

RestoPath - Restores the path after an interrupt on page 362

Stop and start move. StartMove - Restarts robot movement on page 486

StopMove - Stops robot movement on page 515

Continued



2 Functions

2.85. PathRecValidBwd - Is there a valid backward path recorded
Path Recovery

9213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.85. PathRecValidBwd - Is there a valid backward path recorded

Usage

PathRecValidBwd is used to check if the path recorder is active and if a recorded backward 

path is available.

Basic examples

Basic examples of the function PathRecValidBwd are illustrated below.

See also More examples on page 922.

Example 1
VAR bool bwd_path;

VAR pathrecid fixture_id;

bwd_path := PathRecValidBwd (\ID:=fixture_id);

The variable bwd_path is set to TRUE if it is possible to back-up to the position with 

identifier fixture_id. If not, bwd_path is set to FALSE

Return value

Data type: bool

The return value of the function can be determined from following flow chart:

xx0500002132

Continues on next page



2 Functions

2.85. PathRecValidBwd - Is there a valid backward path recorded
Path Recovery

3HAC 16581-1  Revision: J922

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
PathRecValidBwd ([\ID])

[\ID]

Identifier

Data type: pathrecid

Variable that specifies the name of the recording start position. Data type pathrecid is a 

non-value type, only used as an identifier for naming the recording position.

Program execution

Before the path recorder is ordered to move backwards with PathRecMoveBwd it is possible 

to check whether a valid recorded path is present with PathRecValidBwd.

More examples

More examples of how to use the function PathRecValidBwd are illustrated below.

Example 1
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

bwd_path := PathRecValidBwd (\ID := id1);

The path recorder is started and two move instructions are executed. PathRecValidBwd will 

return TRUE and the available backup path will be: 

p2 -> p1 -> Start postion.

Example 2
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStop \Clear;

bwd_path:= PathRecValidBwd (\ID := id1);

The path recorder is started and two move instructions are executed. Then the path recorder 

is stopped and cleared. PathRecValidBwd will return FALSE.

Example 3
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

PathRecStart id2;

MoveL p2, vmax, z50, tool1;

bwd_path := PathRecValidBwd ();

The path recorder is started and one move instruction is executed. Then, an additional path 

identifier is started followed by a move instruction. PathRecValidBwd will return TRUE 

and the backup path will be: 

p2 -> p1.

Continued

Continues on next page



2 Functions

2.85. PathRecValidBwd - Is there a valid backward path recorded
Path Recovery

9233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 4
PathRecStart id1;

MoveL p1, vmax, z50, tool1;

WaitSyncTask sync101, tasklist_r1o1;

MoveL p2, vmax, z50, tool1;

bwd_path1 := PathRecValidBwd ();

bwd_path2 := PathRecValidBwd (\ID := id1);

Executing above program will result in that the boolean variable bwd_path1 will be assigned 

TRUE since a valid backwards path to the WaitSyncTask statement exists. The boolean 

variable bwd_path2 will be assigned FALSE since it isn’t possible to back up above a 

WaitSyncTask statement.

Syntax
PathRecValidBwd ´(´

[´\´ ID‘ :=’ < variable (VAR) of pathrecid >] ’)’

A function with a return value of the data type bool.

Related information

For information about See

Path Recorder Identifiers pathrecid - Path recorder identifier on page 
1158

Start - stop the path recorder PathRecStart - Start the path recorder on page 
308

PathRecStop - Stop the path recorder on page 
311

Play the path recorder backward PathRecMoveBwd - Move path recorder 
backwards on page 298

Check if a valid forward path exists PathRecValidFwd - Is there a valid forward 
path recorded on page 924

Play the path recorder forward PathRecMoveFwd - Move path recorder 
forward on page 305

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Continued



2 Functions

2.86. PathRecValidFwd - Is there a valid forward path recorded
Path Recovery

3HAC 16581-1  Revision: J924

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.86. PathRecValidFwd - Is there a valid forward path recorded

Usage

PathRecValidFwd is used to check if the path recorder can be used to move forward. The 

ability to move forward with the path recorder implies that the path recorder must have been 

ordered to move backwards earlier.

Basic examples

Basic examples of the function PathRecValidFwd are illustrated below.

See also More examples on page 925.

Example 1
VAR bool fwd_path;

VAR pathrecid fixture_id;

fwd_path:= PathRecValidFwd (\ID:=fixture_id);

The variable fwd_path is set to TRUE if it is possible to move forward to the position with 

the with identifier fixture_id. If not, fwd_path is set to FALSE.

Return Value

Data type: bool

The return value of PathRecValidFwd without specified \ID is:

TRUE if:

• The path recorder has moved the robot backwards, using PathRecMoveBwd.

• The robot has not moved away from the path executed by PathRecMoveBwd.

FALSE if:

• The above stated conditions are not met.

The return value of PathRecValidFwd with specified \ID is:

TRUE if:

• The path recorder has moved the robot backwards, using PathRecMoveBwd.

• The robot has not moved away from the path executed by PathRecMoveBwd.

• The specified \ID was passed during the backward motion.

FALSE if:

• The above stated conditions are not met.

Arguments
PathRecValidFwd ([\ID])

[\ID]

Identifier

Data type: pathrecid

Variable that specifies the name of the recording start position. Data type pathrecid is a 

non-value type, only used as an identifier for naming the recording position.

Continues on next page



2 Functions

2.86. PathRecValidFwd - Is there a valid forward path recorded
Path Recovery

9253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

After the path recorder has been ordered to move backwards using PathRecMoveBwd it is 

possible to check if a valid recorded path to move the robot forward exists. If the identifier 

\ID is omitted PathRevValidFwd returns if it is possible to move forward to the position 

where the backwards movement was initiated.

More examples

More examples of how to use the function PathRecValidFwd are illustrated below.

Example 1
VAR pathrecid id1;

VAR pathrecid id2;

VAR pathrecid id3;

PathRecStart id1;

MoveL p1, vmax, z50, tool1;

PathRecStart id2;

MoveL p2, vmax, z50, tool1;

PathRecStart id3;

!See figures 1 and 8 in tbe following table.

MoveL p3, vmax, z50, tool1;

ERROR

StorePath;

IF PathRecValidBwd(\ID:=id3) THEN

!See figure 2 in the following table.

PathRecMoveBwd \ID:=id3; 

! Do some other operation

ENDIF

IF PathRecValidBwd(\ID:=id2) THEN

!See figure 3 in the following table.

PathRecMoveBwd \ID:=id2; 

! Do some other operation

ENDIF

!See figure 4 in the following table.

PathRecMoveBwd;

! Do final service action

IF PathRecValidFwd(\ID:=id2) THEN

!See figure 5 in the following table.

PathRecMoveFwd \ID:=id2; 

! Do some other operation

ENDIF

IF PathRecValidFwd(\ID:=id3) THEN

!See figure 6 in the following table.

PathRecMoveFwd \ID:=id3; 

! Do some other operation

ENDIF

Continued

Continues on next page



2 Functions

2.86. PathRecValidFwd - Is there a valid forward path recorded
Path Recovery

3HAC 16581-1  Revision: J926

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

!See figure 7 in the following table.

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

1

xx0500002121

2

xx0500002124

3

xx0500002126

4

xx0500002127

5

xx0500002128

6

xx0500002129

7

xx0500002138

Continued

Continues on next page



2 Functions

2.86. PathRecValidFwd - Is there a valid forward path recorded
Path Recovery

9273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The example above will start the path recorder and add identifiers at three different locations 

along the executed path. The picture above references the example code and describes how 

the robot will move in the case of an error while executing towards point p3. The 

PathRecValidBwd and PathRecValidFwd are used respectively as it is not possible in 

advance to determine where in the program a possible error occurs.

Syntax
PathRecValidFwd ´(´

[´\’ ID‘:=’ < variable (VAR) of pathrecid >] ’)’

A function with a return value of the data type bool.

Related information

8

xx0500002131

For information about See

Path Recorder Identifiers pathrecid - Path recorder identifier on page 1158

Start - stop the path recorder PathRecStart - Start the path recorder on page 
308

PathRecStop - Stop the path recorder on page 311

Check if valid backward path exists PathRecValidBwd - Is there a valid backward path 
recorded on page 921

Play the path recorder backward PathRecMoveBwd - Move path recorder 
backwards on page 298

Play the path recorder forward PathRecMoveFwd - Move path recorder forward 
on page 305

Motion in general Technical reference manual - RAPID overview, 
section Motion and I/O principles

Continued



2 Functions

2.87. PFRestart - Check interrupted path after power failure
RobotWare - OS

3HAC 16581-1  Revision: J928

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.87. PFRestart - Check interrupted path after power failure

Usage

PFRestart (Power Failure Restart) is used to check if the path has been interrupted at power 

failure. If so it might be necessary to make some specific actions. The function checks the 

path on current level, base level or on interrupt level.

Basic examples

Basic examples of the function PFRestart are illustrated below.

Example 1
IF PFRestart() = TRUE THEN 

It is checked, if an interrupted path exists on the current level. If so the function will return 

TRUE.

Return value

Data type: bool

TRUE if an interrupted path exists on the specified path level, otherwise FALSE.

Arguments
PFRestart([\Base] | [\Irpt])

[ \Base ]

Base Level

Data type: switch

Returns TRUE if an interrupted path exists on base level.

[ \Irpt ]

Interrupt Level

Data type: switch

Returns TRUE if an interrupted path exists on StorePath level.

If no argument is given, the function will return TRUE if an interrupted path exists on current 

level.

Syntax
PFRestart’(’

[’\’Base] | [’\’Irpt]’)’

A function with a return value of the data type bool.



2 Functions

2.88. PoseInv - Inverts pose data
RobotWare - OS

9293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.88. PoseInv - Inverts pose data

Usage

PoseInv (Pose Invert) calculates the reverse transformation of a pose.

Basic examples

Basic examples of the function PoseInv are illustrated below.

Example 1

xx0500002443

Pose1 represents the coordinates system 1 related to the coordinate system 0. The 

transformation giving the coordinate system 0 related to the coordinate system 1 is obtained 

by the reverse transformation, stored in pose2.

VAR pose pose1;

VAR pose pose2;

...

pose2 := PoseInv(pose1);

Return value

Data type: pose

The value of the reverse pose.

Arguments
PoseInv (Pose)

Pose

Data type: pose

The pose to invert. 

Syntax
PoseInv’(’ 

[Pose ’:=’] <expression (IN) of pose>

’)’

A function with a return value of the data type pose.

Continues on next page



2 Functions

2.88. PoseInv - Inverts pose data
RobotWare - OS

3HAC 16581-1  Revision: J930

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.89. PoseMult - Multiplies pose data
RobotWare - OS

9313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.89. PoseMult - Multiplies pose data

Usage

PoseMult (Pose Multiply) is used to calculate the product of two pose transformations. A 

typical use is to calculate a new pose as the result of a displacement acting on an original pose.

Basic examples

Basic examples of the function PoseMult are illustrated below.

Example 1

xx0500002444

pose1 represents the coordinate system 1 related to the coordinate system 0. pose2 

represents the coordinate system 2 related to the coordinate system 1. The transformation 

giving pose3, the coordinate system 2 related to the coordinate system 0, is obtained by the 

product of the two transformations:

VAR pose pose1;

VAR pose pose2;

VAR pose pose3;

...

pose3 := PoseMult(pose1, pose2);

Return value

Data type: pose

The value of the product of the two poses.

Arguments
PoseMult (Pose1 Pose2)

Pose1

Data type: pose

The first pose. 

Pose2

Data type: pose

The second pose. 

Continues on next page



2 Functions

2.89. PoseMult - Multiplies pose data
RobotWare - OS

3HAC 16581-1  Revision: J932

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
PoseMult’(’

[Pose1 ’:=’] <expression (IN) of pose>’,’

[Pose2 ’:=’] <expression (IN) of pose>

’)’

A function with a return value of the data type pose.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.90. PoseVect - Applies a transformation to a vector
RobotWare - OS

9333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.90. PoseVect - Applies a transformation to a vector

Usage

PoseVect (Pose Vector) is used to calculate the product of a pose and a vector. It is typically 

used to calculate a vector as the result of the effect of a displacement on an original vector.

Basic examples

Basic examples of the function PoseVect are illustrated below.

Example 1

xx0500002445

pose1 represents the coordinates system 1 related to the coordinate system 0. 

pos1 is a vector related to coordinate system 1. The corresponding vector related to 

coordinate system 0 is obtained by the product;

VAR pose pose1;

VAR pos pos1;

VAR pos pos2;

...

...

pos2:= PoseVect(pose1, pos1);

Return value

Data type: pos

The value of the product of the pose and the original pos.

Arguments
PoseVect (Pose Pos)

Pose

Data type: pose

The transformation to be applied.

Pos

Data type: pos

The pos to be transformed. 

Continues on next page



2 Functions

2.90. PoseVect - Applies a transformation to a vector
RobotWare - OS

3HAC 16581-1  Revision: J934

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
PoseVect’(’

[Pose ’:=’] <expression (IN) of pose>’,’

[Pos ’:=’] <expression (IN) of pos>

’)’

A function with a return value of the data type pos.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.91. Pow - Calculates the power of a value
RobotWare - OS

9353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.91. Pow - Calculates the power of a value

Usage

Pow (Power) is used to calculate the exponential value in any base.

Basic examples

Basic examples of the function Pow are illustrated below.

Example 1
VAR num x;

VAR num y

VAR num reg1;

...

reg1:= Pow(x, y);

reg1 is assigned the value xy.

Return value

Data type: num

The value of the Base raised to the power of the Exponent, i.e. BaseExponent.

Arguments
Pow (Base Exponent)

Base

Data type: num

The base argument value.

Exponent

Data type: num

The exponent argument value.

Limitations

The execution of the function xy will give an error if:

• x < 0 and y is not an integer;

• x = 0 and y ≤ 0.

Syntax
Pow’(’ 

[Base ’:=’] <expression (IN) of num>’,’

[Exponent ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics



2 Functions

2.92. PPMovedInManMode - Test whether the program pointer is moved in manual mode
RobotWare - OS

3HAC 16581-1  Revision: J936

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.92. PPMovedInManMode - Test whether the program pointer is moved in manual 
mode

Usage

PPMovedInManMode returns TRUE if the user has moved the program pointer while the 

controller is in manual mode - that is, operator key is at Man Reduced Speed or Man Full 

Speed. The program pointer moved state is reset when the key is switched from Auto to Man, 

or when using the instruction ResetPPMoved.

Basic examples

Basic example of the function PPMovedInManMode is illustrated below.

Example 1
IF PPMovedInManMode() THEN

WarnUserOfPPMovement;

DoJob;

ELSE

DoJob;

ENDIF

Return value

Data type: bool

TRUE if the program pointer has been moved by the user while in manual mode.

Program execution

Test if the program pointer for the current program task has been moved in manual mode.

Syntax
PPMovedInManMode’(’’)’

A function with a return value of the data type bool.

Related information

For information about See

Test whether program pointer has moved IsStopStateEvent - Test whether moved 
program pointer on page 886

Reset state of moved program pointer in 
manual mode

ResetPPMoved - Reset state for the program 
pointer moved in manual mode on page 360



2 Functions

2.93. Present - Tests if an optional parameter is used
RobotWare - OS

9373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.93. Present - Tests if an optional parameter is used

Usage

Present is used to test if an optional argument has been used when calling a routine.

An optional parameter may not be used if it was not specified when calling the routine. This 

function can be used to test if a parameter has been specified, in order to prevent errors from 

occurring.

Basic examples

Basic examples of the function Present are illustrated below.

See also More examples on page 938.

Example 1
PROC feeder (\switch on | \switch off)

IF Present (on) Set do1;

IF Present (off) Reset do1;

ENDPROC

The output do1, which controls a feeder, is set or reset depending on the argument used when 

calling the routine.

Return value

Data type: bool

TRUE = The parameter value or a switch has been defined when calling the routine.

FALSE = The parameter value or a switch has not been defined.

Arguments
Present (OptPar)

OptPar

Optional Parameter

Data type: Any type

The name of the optional parameter to be tested.

Continues on next page



2 Functions

2.93. Present - Tests if an optional parameter is used
RobotWare - OS

3HAC 16581-1  Revision: J938

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of how to use the function Present are illustrated below.

Example 1
PROC glue (\switch on, num glueflow, robtarget topoint, speeddata 

speed, zonedata zone, PERS tooldata tool, \PERS wobjdata 

wobj)

IF Present (on) PulseDO glue_on;

SetAO gluesignal, glueflow;

IF Present (wobj) THEN

MoveL topoint, speed, zone, tool \WObj=wobj;

ELSE

MoveL topoint, speed, zone, tool;

ENDIF

ENDPROC

A glue routine is made. If the argument \on is specified when calling the routine, a pulse is 

generated on the signal glue_on. The robot then sets an analog output gluesignal, which 

controls the glue gun, and moves to the end position. As the wobj parameter is optional, 

different MoveL instructions are used depending on whether this argument is used or not.

Syntax
Present ’(’

[OptPar’:=’] <reference (REF) of any type> ’)’

A REF parameter requires, in this case, the optional parameter name.

A function with a return value of the data type bool.

Related information

For information about See

Routine parameters Technical reference manual - RAPID overview, 
section Basic characteristics - Routines

Continued



2 Functions

2.94. ProgMemFree - Get the size of free program memory
RobotWare -  OS

9393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.94. ProgMemFree - Get the size of free program memory

Usage

ProgMemFree (Program Memory Free) is used to get the size of free program memory.

Basic examples

Basic examples of the function ProgMemFree are illustrated below.

Example 1
FUNC num module_size(string file_path)

VAR num pgmfree_before;

VAR num pgmfree_after;

pgmfree_before:=ProgMemFree();

Load \Dynamic, file_path;

pgmfree_after:=ProgMemFree();

Unload file_path;

RETURN (pgmfree_before-pgmfree_after);

ENDFUNC

ProgMemFree is used in a function that returns the value for how much memory a module 

allocates in the program memory.

Return value

Data type: num

The size of free program memory in bytes.

Syntax
ProgMemFree’(’ ’)’

A function with a return value of the data type num.

Related information

For information about See

Load a program module Load - Load a program module during execution on 
page 208

Unload a program module UnLoad - UnLoad a program module during execution 
on page 655



2 Functions

2.95. RawBytesLen - Get the length of rawbytes data
RobotWare - OS

3HAC 16581-1  Revision: J940

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.95. RawBytesLen - Get the length of rawbytes data

Usage

RawBytesLen is used to get the current length of valid bytes in a rawbytes variable.

Basic examples

Basic examples of the instruction RawBytesLen are illustrated below.

Example 1
VAR rawbytes from_raw_data;

VAR rawbytes to_raw_data;

VAR num integer := 8

VAR num float := 13.4;

ClearRawBytes from_raw_data;

PackRawBytes integer, from_raw_data, 1 \IntX := INT;

PackRawBytes float, from_raw_data, (RawBytesLen(from_raw_data)+1) 

\Float4;

CopyRawBytes from_raw_data, 1, to_raw_data, 3;

In this example the variable from_raw_data of type rawbytes is first cleared, i.e. all bytes 

set to 0 (same as default at declaration). Then the value of integer is placed in the first 2 bytes 

and with help of the function RawBytesLen the value of float is placed in the next 4 bytes 

(starting at index 3).

After having filled from_raw_data with data, the contents (6 bytes) is copied to 

to_raw_data, starting at position 3.

Return value

Data type: num

The current length of valid bytes in a variable of type rawbytes; range 0 ... 1024.

In general, the current length of valid bytes in a rawbytes variable is updated by the system 

to be the last written byte in the rawbytes structure.

For details, see data type rawbytes, instruction ClearRawBytes, CopyRawBytes, 

PackDNHeader, PackRawBytes and ReadRawBytes.

Arguments
RawBytesLen (RawData)

RawData

Data type: rawbytes

RawData is the data container whose current length of valid bytes shall be returned.

Program execution

During program execution the current length of valid bytes is returned.

Continues on next page



2 Functions

2.95. RawBytesLen - Get the length of rawbytes data
RobotWare - OS

9413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
RawBytesLen ´(´ 

[RawData ´:=´ ] < variable (VAR) of rawbytes> ´)´

A function with a return value of the data type num.

Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of 
rawbytes data on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of 
rawbytes data on page 67

Pack DeviceNet header into rawbytes data PackDNHeader - Pack DeviceNet Header 
into rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes 
data on page 290

Read rawbytes data ReadRawBytes - Read rawbytes data on 
page 352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from 
rawbytes data on page 658

Write rawbytes data WriteRawBytes - Write rawbytes data on 
page 725

Continued



2 Functions

2.96. ReadBin - Reads a byte from a file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J942

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.96. ReadBin - Reads a byte from a file or serial channel

Usage

ReadBin (Read Binary) is used to read a byte (8 bits) from a file or serial channel.

This function works on both binary and character-based files or serial channels.

Basic examples

Basic examples of the function ReadBin are illustrated below.

See also More examples on page 943.

Example 1
VAR num character;

VAR iodev inchannel;

...

Open "com2:", inchannel\Bin;

character := ReadBin(inchannel);

A byte is read from the binary serial channel inchannel.

Return value

Data type: num

A byte (8 bits) is read from a specified file or serial channel. This byte is converted to the 

corresponding positive numeric value and returned as a num data type. If a file is empty (end 

of file), EOF_BIN (the number -1) is returned.

Arguments
ReadBin (IODevice [\Time])

IODevice

Data type: iodev

The name (reference) of the file or serial channel to be read.

[\Time]

Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is not 

specified, the max. time is set to 60 seconds. To wait forever, use the predefined constant 

WAIT_MAX.

If this time runs out before the reading operation is finished, the error handler will be called 

with the error code ERR_DEV_MAXTIME. If there is no error handler, the execution will be 

stopped.

The timeout function is in use also during program stop and will be noticed by the RAPID 

program at program start.

Program execution

Program execution waits until a byte (8 bits) can be read from the file or serial channel. 

Continues on next page



2 Functions

2.96. ReadBin - Reads a byte from a file or serial channel
RobotWare - OS

9433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function ReadBin are illustrated below.

Example 1
VAR num bindata;

VAR iodev file;

Open "HOME:/myfile.bin", file \Read \Bin;

bindata := ReadBin(file);

WHILE bindata <> EOF_BIN DO

TPWrite ByteToStr(bindata\Char);

bindata := ReadBin(file);

ENDWHILE

Read the contents of a binary file myfile.bin from the beginning to the end and displays the 

received binary data converted to chars on the FlexPendant (one char on each line).

Limitations

The function can only be used for files and serial channels that have been opened with read 

access (\Read for character based files, \Bin or \Append \Bin for binary files).

Error handling

If an error occurs during reading, the system variable ERRNO is set to ERR_FILEACC.

If time out before the read operation is finished, the system variable ERRNO is set to 

ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF_BIN can be used to stop reading at the end of the file.

CONST num EOF_BIN := -1;

Syntax
ReadBin’(’

[IODevice ’:=’] <variable (VAR) of iodev>

[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type num.

Related information

For information about See

Opening, etc. files or serial channels Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Convert a byte to a string data ByteToStr - Converts a byte to a string data on page 
784

Continued



2 Functions

2.97. ReadDir - Read next entry in a directory
RobotWare - OS

3HAC 16581-1  Revision: J944

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.97. ReadDir - Read next entry in a directory

Usage

ReadDir is used to retrieve the name of the next file or subdirectory under a directory that 

has been opened with the instruction OpenDir.

As long as the function returns TRUE, there can be more files or subdirectories to retrieve.

Basic examples

Basic examples of the function ReadDir are illustrated below.

See also More examples on page 945.

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified directory.

Return value

Data type: bool

The function will return TRUE if it has retrieved a name, otherwise FALSE.

Arguments
ReadDir (Dev FileName)

Dev

Data type: dir

A variable with reference to the directory, fetched by instruction OpenDir.

FileName

Data type: string

The retrieved file or subdirectory name.

Program execution

This function returns a bool that specifies if the retrieving of a name was successful or not.

Continues on next page



2 Functions

2.97. ReadDir - Read next entry in a directory
RobotWare - OS

9453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function ReadDir are illustrated below

Example 1

This example implements a generic traverse of a directory structure function.

PROC searchdir(string dirname, string actionproc)

VAR dir directory;

VAR string filename;

IF IsFile(dirname \Directory) THEN

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

! .. and . is the parent and resp. this directory

IF filename <> ".." AND  filename <> "." THEN

searchdir dirname+"/"+filename, actionproc;

ENDIF

ENDWHILE

CloseDir directory;

ELSE

%actionproc% dirname;

ENDIF

ERROR

RAISE;

ENDPROC

PROC listfile(string filename)

TPWrite filename;

ENDPROC

PROC main()

! Execute the listfile routine for all files found under the

! tree in HOME:

searchdir "HOME:","listfile";

ENDPROC

This program traverses the directory structure under "HOME:", and for each file found it calls 

the listfile procedure. The searchdir is the generic part that knows nothing about the 

start of the search or which routine should be called for each file. It uses IsFile to check 

whether it has found a subdirectory or a file and it uses the late binding mechanism to call the 

procedure specified in actionproc for all files found. The actionproc routine should be 

a procedure with one parameter of the type string.

Error handling

If the directory is not opened (see OpenDir), the system variable ERRNO is set to 

ERR_FILEACC. This error can then be handled in the error handler.

Continued

Continues on next page



2 Functions

2.97. ReadDir - Read next entry in a directory
RobotWare - OS

3HAC 16581-1  Revision: J946

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ReadDir ’(’

[ Dev’:=’ ] < variable (VAR) of dir>’,’

[ FileName’:=’ ] < var or pers (INOUT) of string>´)´

A function with a return value of the data type bool.

Related information

For information about See

Directory dir - File directory structure on page 1103

Make a directory MakeDir - Create a new directory on page 218

Open a directory OpenDir - Open a directory on page 285

Close a directory CloseDir - Close a directory on page 56

Remove a directory RemoveDir - Delete a directory on page 355

Remove a file RemoveFile - Delete a file on page 356

Rename a file RenameFile - Rename a file on page 357

Continued



2 Functions

2.98. ReadMotor - Reads the current motor angles
RobotWare - OS

9473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.98. ReadMotor - Reads the current motor angles

Usage

ReadMotor is used to read the current angles of the different motors of the robot and external 

axes. The primary use of this function is in the calibration procedure of the robot.

Basic examples

Basic example of the function ReadMotor is illustrated below.

See also More examples on page 947.

VAR num motor_angle2;

motor_angle2 := ReadMotor(2);

The current motor angle of the second axis of the robot is stored in motor_angle2. 

Return value

Data type: num

The current motor angle in radians of the stated axis of the robot or external axes.

Arguments
ReadMotor [\MecUnit ] Axis

MecUnit

Mechanical Unit

Data type: mecunit

The name of the mechanical unit for which an axis is to be read. If this argument is omitted, 

the axis for the connected robot is read.

Axis

Data type: num

The number of the axis to be read (1 - 6).

Program execution

The motor angle returned represents the current position in radians for the motor without any 

calibration offset. The value is not related to a fix position of the robot, only to the resolver 

internal zero position, i.e. normally the resolver zero position closest to the calibration 

position (the difference between the resolver zero position and the calibration position is the 

calibration offset value). The value represents the full movement of each axis, although this 

may be several turns.

More examples

More examples of the function ReadMotor are illustrated below.

Example 1
VAR num motor_angle3;

motor_angle3 := ReadMotor(\MecUnit:=ROB_1, 3);

The current motor angle of the third axis of the robot ROB_1 is stored in motor_angle3.

Continues on next page



2 Functions

2.98. ReadMotor - Reads the current motor angles
RobotWare - OS

3HAC 16581-1  Revision: J948

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ReadMotor’(’

[’\’MecUnit ’:=’ < variable (VAR) of mecunit>’,’]

[Axis’ :=’ ] < expression (IN) of num> ’)’

A function with a return value of the data type num.

Related information

For information about See

Reading the current joint angle CJointT - Reads the current joint angles on 
page 800

Continued



2 Functions

2.99. ReadNum - Reads a number from a file or serial channel
RobotWare - OS

9493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.99. ReadNum - Reads a number from a file or serial channel

Usage

ReadNum (Read Numeric) is used to read a number from a character-based file or serial 

channel.

Basic examples

Basic examples of the function ReadNum are illustrated below.

See also More examples on page 950.

Example 1
VAR iodev infile;

...

Open "HOME:/file.doc", infile\Read;

reg1 := ReadNum(infile);

reg1 is assigned a number read from the file file.doc.

Return value

Data type: num

The numeric value read from a specified file or serial channel. If the file is empty (end of file), 

the number EOF_NUM (9.998E36) is returned.

Arguments
ReadNum (IODevice [\Delim] [\Time])

IODevice

Data type: iodev

The name (reference) of the file or serial channel to be read.

[\Delim]

Delimiters

Data type: string

A string containing the delimiters to use when parsing a line in the file or serial channel. By 

default (without \Delim), the file is read line by line and the line-feed character (\0A) is the 

only delimiter considered by the parsing. When the \Delim argument is used, any character 

in the specified string argument will be considered to determine the significant part of the 

line.

When using the argument \Delim, the control system always adds the characters carriage 

return (\0D) and line-feed (\0A) to the delimiters specified by the user.

To specify non-alphanumeric characters, use \xx, where xx is the hexadecimal 

representation of the ASCII code of the character (example: TAB is specified by \09).

Continues on next page



2 Functions

2.99. ReadNum - Reads a number from a file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J950

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Time]

Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is not 

specified, the max. time is set to 60 seconds. To wait forever, use the predefined constant 

WAIT_MAX.

If this time runs out before the read operation is finished, the error handler will be called with 

the error code ERR_DEV_MAXTIME. If there is no error handler, the execution will be stopped.

The timeout function is also in use during program stop and will be noticed by the RAPID 

program at program start.

Program execution

Starting at the current file position, the function reads and discards any heading delimiters. A 

heading delimiter without the argument \Delim is a line-feed character. Heading delimiters 

with the argument \Delim are any characters specified in the \Delim argument plus carriage 

return and line-feed characters. It then reads everything up to and including the next delimiter 

character (will be discarded), but not more than 80 characters. If the significant part exceeds 

80 characters, the remainder of the characters will be read on the next reading. 

The string that is read is then converted to a numeric value; e.g. "234.4" is converted to the 

numeric value 234.4.

More examples

More examples of the function ReadNum are illustrated below.

reg1 := ReadNum(infile\Delim:="\09");

IF reg1 > EOF_NUM THEN

TPWrite "The file is empty";

...

Reads a number in a line where numbers are separated by TAB ("\09") or SPACE (" ") 

characters. Before using the number read from the file, a check is performed to make sure that 

the file is not empty.

Limitations

The function can only be used for character based files that have been opened for reading.

Error handling

If an access error occurs during reading, the system variable ERRNO is set to ERR_FILEACC. 

If there is an attempt to read non-numeric data, the system variable ERRNO is set to 

ERR_RCVDATA. 

If time out before the read operation is finished, the system variable ERRNO is set to 

ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF_NUM can be used to stop reading, at the end of the file.

CONST num EOF_NUM := 9.998E36;

Continued

Continues on next page



2 Functions

2.99. ReadNum - Reads a number from a file or serial channel
RobotWare - OS

9513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
ReadNum ’(’

[IODevice ’:=’]<variable (VAR) of iodev>

[’\’Delim’:=’<expression (IN) of string>]

[’\’Time’:=’<expression (IN) of num>]’)’

A function with a return value of the type num.

Related information

For information about See

Opening, etc. files or serial channels Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Continued



2 Functions

2.100. ReadStr - Reads a string from a file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J952

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.100. ReadStr - Reads a string from a file or serial channel

Usage

ReadStr (Read String) is used to read a string from a character-based file or serial channel.

Basic examples

Basic examples of the function ReadStr are illustrated below.

See also More examples on page 953.

Example 1
VAR string text;

VAR iodev infile;

...

Open "HOME:/file.doc", infile\Read;

text := ReadStr(infile);

text is assigned a string read from the file file.doc.

Return value

Data type: string

The string read from the specified file or serial channel. If the file is empty (end of file), the 

string "EOF" is returned.

Arguments
ReadStr (IODevice [\Delim] [\RemoveCR] [\DiscardHeaders] 

[\Time])

IODevice

Data type: iodev

The name (reference) of the file or serial channel to be read.

[\Delim]

Delimiters

Data type: string

A string containing the delimiters to use when parsing a line in the file or serial channel. By 

default the file is read line by line and the line-feed character (\0A) is the only delimiter 

considered by the parsing. When the \Delim argument is used, any character in the specified 

string argument plus by default line-feed character will be considered to determine the 

significant part of the line.

To specify non-alphanumeric characters, use \xx, where xx is the hexadecimal representation 

of the ASCII code of the character (example: TAB is specified by \09).

[\RemoveCR]

Data type: switch

A switch used to remove the trailing carriage return character when reading PC files. In PC 

files, a new line is specified by carriage return and line feed (CRLF). When reading a line in 

such files, the carriage return character is by default read into the return string. When using 

this argument, the carriage return character will be read from the file but not included in the 

return string.
Continues on next page



2 Functions

2.100. ReadStr - Reads a string from a file or serial channel
RobotWare - OS

9533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\DiscardHeaders]

Data type: switch

This argument specifies whether the heading delimiters (specified in \Delim plus default 

line-feed) are skipped or not before transferring data to the return string. By default, if the first 

character at the current file position is a delimiter, it is read but not transferred to the return 

string, the line parsing is stopped and the return will be an empty string. If this argument is 

used, all delimiters included in the line will be read from the file but discarded, and no return 

will be done until the return string will contain the data starting at the first non-delimiter 

character in the line.

[\Time]

Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is not 

specified, the max. time is set to 60 seconds. To wait forever, use the predefined constant 

WAIT_MAX.

If this time runs out before the read operation is finished, the error handler will be called with 

the error code ERR_DEV_MAXTIME. If there is no error handler, the execution will be stopped.

The timeout function is in use also during program stop and will be noticed in the RAPID 

program at program start.

Program execution

Starting at the current file position, if the \DiscardHeaders argument is used, the function 

reads and discards any heading delimiters (line-feed characters and any character specified in 

the \Delim argument). In all cases, it then reads everything up to the next delimiter character, 

but not more than 80 characters. If the significant part exceeds 80 characters, the remainder 

of the characters will be read on the next reading. The delimiter that caused the parsing to stop 

is read from the file but not transferred to the return string. If the last character in the string is 

a carriage return character and the \RemoveCR argument is used, this character will be 

removed from the string.

More examples

More examples of the function ReadStr are illustrated below.

Example 1
text := ReadStr(infile);

IF text = EOF THEN

TPWrite "The file is empty";

...

Before using the string read from the file, a check is performed to make sure that the file is 

not empty.

Continued

Continues on next page



2 Functions

2.100. ReadStr - Reads a string from a file or serial channel
RobotWare - OS

3HAC 16581-1  Revision: J954

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2

Consider a file containing:

 <LF><SPACE><TAB>Hello<SPACE><SPACE>World<CR><LF>

text := ReadStr(infile);

text will be an empty string: the first character in the file is the default <LF> delimiter.

text := ReadStr(infile\DiscardHeaders);

text will contain <SPACE><TAB>Hello<SPACE><SPACE>World<CR>: the first character in 

the file, the default <LF> delimiter, is discarded.

text := ReadStr(infile\RemoveCR\DiscardHeaders);

text will contain <SPACE><TAB>Hello<SPACE><SPACE>World: the first character in the 

file, the default <LF> delimiter, is discarded; the final carriage return character is removed

text := ReadStr(infile\Delim:="  \09"\RemoveCR\DiscardHeaders);

text will contain "Hello": the first characters in the file that match either the default <LF> 

delimiter or the character set defined by \Delim (space and tab) are discarded. Data is then 

transferred up to the first delimiter that is read from the file but not transferred into the string. 

A new invocation of the same statement will return "World".

Example 3

Consider a file containing:

<CR><LF>Hello<CR><LF>

text := ReadStr(infile);

text will contain the <CR> (\0d) character: <CR> and <LF> characters are read from the 

file, but only <CR> is transferred to the string. A new invocation of the same statement will 

return "Hello\0d".

text := ReadStr(infile\RemoveCR);

text will contain an empty string: <CR> and <LF> characters are read from the file; <CR> is 

transferred but removed from the string. A new invocation of the same statement will return 

"Hello".

text := ReadStr(infile\Delim:="\0d");

text will contain an empty string: <CR> is read from the file but not transferred to the return 

string. A new invocation of the same instruction will return an empty string again: <LF> is 

read from the file but not transferred to the return string. 

text := ReadStr(infile\Delim:="\0d"\DiscardHeaders);

text will contain "Hello". A new invocation of the same instruction will return "EOF" (end 

of file).

Continued

Continues on next page



2 Functions

2.100. ReadStr - Reads a string from a file or serial channel
RobotWare - OS

9553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The function can only be used for files or serial channels that have been opened for reading 

in a character-based mode.

Error handling

If an error occurs during reading, the system variable ERRNO is set to ERR_FILEACC. 

If timeout before the read operation is finished, the system variable ERRNO is set to 

ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF can be used to check if the file was empty when trying to read from the file 

or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax
ReadStr ’(’

[IODevice’ :=’] <variable (VAR) of iodev>

[’\’Delim’ :=’<expression (IN) of string>]

[’\’RemoveCR]

[’\’DiscardHeaders]

[’\’Time’:=’ <expression (IN) of num>]’)’

A function with a return value of the type string.

Related information

For information about See

Opening, etc. files or serial channels Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Continued



2 Functions

2.101. ReadStrBin - Reads a string from a binary serial channel or file
RobotWare - OS

3HAC 16581-1  Revision: J956

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.101. ReadStrBin - Reads a string from a binary serial channel or file

Usage

ReadStrBin (Read String Binary) is used to read a string from a binary serial channel or file.

Basic examples

Basic examples of the function ReadStrBin are illustrated below.

Example 1
VAR iodev channel2;

VAR string text;

...

Open "com2:", channel2 \Bin;

text := ReadStrBin (channel2, 10);

text := ReadStrBin(infile,20);

IF text = EOF THEN

text is assigned a 10 characters text string read from the serial channel referred to by 

channel2

Before using the string read from the file, a check is performed to make sure that the file is 

not empty.

Return value

Data type: string

The text string read from the specified serial channel or file. If the file is empty (end of file), 

the string "EOF" is returned.

Arguments
ReadStrBin (IODevice NoOfChars [\Time])

IODevice

Data type: iodev

The name (reference) of the binary serial channel or file to be read.

NoOfChars

Number of Characters

Data type: num

The number of characters to be read from the binary serial channel or file.

[\Time]

Data type: num

The max. time for the reading operation (timeout) in seconds. If this argument is not 

specified, the max. time is set to 60 seconds. To wait forever, use the predefined constant 

WAIT_MAX.

If this time runs out before the read operation is finished, the error handler will be called with 

the error code ERR_DEV_MAXTIME. If there is no error handler, the execution will be stopped.

The timeout function is in use also during program stop and will be noticed by the RAPID 

program at program start.

Continues on next page



2 Functions

2.101. ReadStrBin - Reads a string from a binary serial channel or file
RobotWare - OS

9573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The function reads the specified number of characters from the binary serial channel or file.

Limitations

The function can only be used for serial channels or files that have been opened for reading 

in a binary mode.

Error handling

If an error occurs during reading, the system variable ERRNO is set to ERR_FILEACC. 

If timeout before the read operation is finished, the system variable ERRNO is set to 

ERR_DEV_MAXTIME.

These errors can then be dealt with by the error handler.

Predefined data

The constant EOF can be used to check if the file was empty, when trying to read from the file 

or to stop reading at the end of the file.

CONST string EOF := "EOF";

Syntax
ReadStrBin ’(’

[IODevice ’:=’] <variable (VAR) of iodev>’,’

[NoOfChars’ :=’] <expression (IN) of num>

[’\’Time ’:=’ <expression (IN) of num>]’)’

A function with a return value of the type string.

Related information

For information about See

Opening, etc. serial channels or files Technical reference manual - RAPID overview, 
section RAPID summary - Communication

Write binary string WriteStrBin - Writes a string to a binary serial 
channel on page 727

Continued



2 Functions

2.102. ReadVar - Read variable from a device
Sensor Interface

3HAC 16581-1  Revision: J958

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.102. ReadVar - Read variable from a device

Usage

ReadVar is used to read a variable from a device connected to the serial sensor interface.

The sensor interface communicates with sensors over serial channels using the RTP1 

transport protocol.

This is an example of a sensor channel configuration.

COM_PHY_CHANNEL:

• Name “COM1:”

• Connector “COM1”

• Baudrate 19200 

COM_TRP:

• Name “sen1:”

• Type “RTP1”

• PhyChannel “COM1”

Basic examples

Basic examples of the function ReadVar are illustrated below.

Example 1
CONST num XCoord := 8;

CONST num YCoord := 9;

CONST num ZCoord := 10;

VAR pos SensorPos;

! Connect to the sensor device "sen1:" (defined in sio.cfg).  

SenDevice "sen1:";

! Read a cartesian position from the sensor.

SensorPos.x := ReadVar ("sen1:", XCoord);

SensorPos.y := ReadVar ("sen1:", YCoord);

SensorPos.z := ReadVar ("sen1:", ZCoord);

Continues on next page



2 Functions

2.102. ReadVar - Read variable from a device
Sensor Interface

9593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ReadVar (device, VarNo, [ \TaskName ])

device

Data type: string

The I/O device name configured in sio.cfg for the sensor used.

VarNo

Data type: num

The argument VarNo is used to select variable to be read.

[ \TaskName ]

Data type: string

The argument TaskName makes it possible to access devices in other RAPID tasks.

Fault management

Syntax
ReadVar

[ device ‘:=’ ] < expression(IN) of string>’,’

[ VarNo ’:=’ ] < expression (IN) of num > ‘,’

[ ’\’ TaskName’ :=’ < expression (IN) of string > ] ‘;’

A function with a return value of the data type num.

Error constant (ERRNO value) Description

SEN_NO_MEAS Measurement failure

SEN_NOREADY Sensor unable to handle command

SEN_GENERRO General sensor error

SEN_BUSY Sensor busy

SEN_UNKNOWN Unknown sensor

SEN_EXALARM External sensor error

SEN_CAALARM Internal sensor error

SEN_TEMP Sensor temperature error

SEN_VALUE Illegal communication value

SEN_CAMCHECK Sensor check failure

SEN_TIMEOUT Communication error

Continued

Continues on next page



2 Functions

2.102. ReadVar - Read variable from a device
Sensor Interface

3HAC 16581-1  Revision: J960

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Connect to a sensor device SenDevice - connect to a sensor device on page 
425

Write a sensor variable WriteVar - write variable on page 729

Write a sensor data block WriteBlock - write block of data to device on 
page 719

Read a sensor data block ReadBlock - read a block of data from device on 
page 343

Configuration of sensor communication Technical reference manual - RAPID overview, 
section Communication

Continued



2 Functions

2.103. RelTool - Make a displacement relative to the tool
RobotWare - OS

9613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.103. RelTool - Make a displacement relative to the tool

Usage

RelTool (Relative Tool) is used to add a displacement and/or a rotation, expressed in the 

active tool coordinate system, to a robot position.

Basic examples

Basic examples of the function RelTool are illustrated below.

Example 1

MoveL RelTool (p1, 0, 0, 100), v100, fine, tool1;

The robot is moved to a position that is 100 mm from p1 in the z direction of the tool.

Example 2

MoveL RelTool (p1, 0, 0, 0 \Rz:= 25), v100, fine, tool1;

The tool is rotated 25° around its z-axis.

Return value

Data type: robtarget

The new position with the addition of a displacement and/or a rotation, if any, relative to the 

active tool.

Arguments
RelTool (Point Dx Dy Dz [\Rx] [\Ry] [\Rz])

Point

Data type: robtarget

The input robot position. The orientation part of this position defines the current orientation 

of the tool coordinate system.

Dx

Data type: num

The displacement in mm in the x direction of the tool coordinate system.

Dy

Data type: num

The displacement in mm in the y direction of the tool coordinate system.

Dz

Data type: num

The displacement in mm in the z direction of the tool coordinate system.

[\Rx]

Data type: num

The rotation in degrees around the x axis of the tool coordinate system.

[\Ry]

Data type: num

The rotation in degrees around the y axis of the tool coordinate system.

Continues on next page



2 Functions

2.103. RelTool - Make a displacement relative to the tool
RobotWare - OS

3HAC 16581-1  Revision: J962

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Rz]

Data type: num

The rotation in degrees around the z axis of the tool coordinate system.

If two or three rotations are specified at the same time, these will be performed first around 

the x-axis, then around the new y-axis, and then around the new z-axis.

Syntax
RelTool’(’

[ Point ’:=’ ] < expression (IN) of robtarget>’,’

[Dx ’:=’] <expression (IN) of num>’,’

[Dy ’:=’] <expression (IN) of num>’,’

[Dz ’:=’] <expression (IN) of num>

[’\’Rx ’:=’ <expression (IN) of num> ]

[’\’Ry ’:=’ <expression (IN) of num> ]

[’\’Rz ’:=’ <expression (IN) of num> ]’)’

A function with a return value of the data type robtarget.

Related information

For information about See

Position data robtarget - Position data on page 1176

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID Summary - 
Mathematics

Positioning instructions Technical reference manual - RAPID 
overview, section RAPID Summary - Motion

Continued



2 Functions

2.104. RemainingRetries - Remaining retries left to do
RobotWare - OS

9633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.104. RemainingRetries - Remaining retries left to do

Usage

RemainingRetries is used to find out how many RETRY that is left to do from the error 

handler in the program. The maximum number of retries is defined in the configuration.

Basic examples

Basic examples of the function RemainingRetries are illustrated below.

Example 1
...

ERROR

IF RemainingRetries() > 0 THEN

RETRY;

ELSE

TRYNEXT;

ENDIF

...

This program will retry the instruction, in spite of the error, until the maximum number of 

retries is done and then try the next instruction.

Return value

Data type: num

The return value shows how many of the maximum number of retries that is left to do.

Syntax
RemainingRetries‘(‘‘)‘

A function with a return value of the data type num.

Related information

For information about See

Error handlers Technical reference manual - RAPID overview, section 
Basic Characteristics - Error Recovery

Resume execution after an error RETRY - Resume execution after an error on page 364

Configure maximum number of 
retries

Technical reference manual - System parameters, 
section System misc

Reset the number of retries 
counted

ResetRetryCount - Reset the number of retries on page 
361



2 Functions

2.105. RMQGetSlotName - Get the name of an RMQ client
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J964

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.105. RMQGetSlotName - Get the name of an RMQ client

Usage

RMQGetSlotName (RAPID Mesasage Queue Get Slot Name) is used to get the slot name of 

an RMQ or a Robot Application Builder client from a given slot identity - that is, from a given 

rmqslot.

Basic examples

Basic example of the function RMQGetSlotName is illustrated below.

Example 1
VAR rmqslot slot;

VAR string client_name;

RMQFindSlot slot, "RMQ_T_ROB1";

...

client_name := RMQGetSlotName(slot);

TPWrite "Name of the client: " + client_name;

The example illustrates how to get the name of a client using the identity of the client.

Return value

Data type: string

The name of the client is returned. This can be an RMQ name, or the name of a Robot 

Application Builder client using the RMQ functionality.

Arguments
RMQGetSlotName (Slot)

Slot

Data type: rmqslot

The identity slot number of the client to find the name.

Program execution

The instruction RMQGetSlotName is used to find the name of the client with the specified 

identity number specified in argument Slot. The client can be another RMQ, or a Robot 

Application Builder client.

Error handling

Following recoverable errors can be generated. The errors can be handled in an ERROR 

handler. The system variable ERRNO will be set to:

ERR_RMQ_INVALID The destination slot has not been connected or the destination 
slot is no longer available. If not connected, a call to 
RMQFindSlot must be done. If not available, the reason is that 
a remote client has been disconnected from the controller.

Continues on next page



2 Functions

2.105. RMQGetSlotName - Get the name of an RMQ client
FlexPendant Interface, PC Interface, or Multitasking

9653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
RMQGetSlotName‘(‘

[ Slot ‘:=’ ] < variable (VAR) of rmqslot >‘)‘

A function with a return value of the data type string.

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Send data to the queue of a RAPID task or 
Robot Application Builder client

RMQSendMessage - Send an RMQ data 
message on page 386

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

RMQ Slot rmqslot - Identity number of an RMQ client on 
page 1174

Continued



2 Functions

2.106. RobName - Get the TCP robot name
RobotWare - OS

3HAC 16581-1  Revision: J966

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.106. RobName - Get the TCP robot name

Usage

RobName (Robot Name) is used to get the name of the TCP robot in some program task. If the 

task doesn’t control any TCP robot, this function returns an empty string.

Basic examples

Basic examples of the function RobName are illustrated below.

See also More examples on page 966.

Example 1
VAR string my_robot;

...

my_robot := RobName();

IF my_robot="" THEN

TPWrite "This task does not control any TCP robot";

ELSE

TPWrite "This task controls TCP robot with name "+ my_robot;

ENDIF

Write to FlexPendant the name of the TCP robot which is controlled from this program task. 

If no TCP robot is controlled, write that the task controls no robot.

Return value

Data type: string

The mechanical unit name for the TCP robot that is controlled from this program task. Return 

empty string if no TCP robot is controlled.

More examples

More examples of how to use the instruction RobName are illustrated below.

Example 1

VAR string my_robot;

...

IF TaskRunRob() THEN

my_robot := RobName();

TPWrite "This task controls robot with name "+ my_robot;

ENDIF

If this program task controls any TCP robot, write to FlexPendant the name of that TCP robot.

Syntax
RobName ’(’’)’

A function with a return value of the data type string.

Continues on next page



2 Functions

2.106. RobName - Get the TCP robot name
RobotWare - OS

9673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Check if task run some TCP robot TaskRunRob - Check if task controls some robot 
on page 1014

Check if task run some mechanical unit TaskRunMec - Check if task controls any 
mechanical unit on page 1013

Get the name of mechanical units in the 
system

GetNextMechUnit - Get name and data for 
mechanical units on page 852

String functions Technical reference manual - RAPID Instructions, 
Functions and Data types, section RAPID 
summary - String functions

Definition of string string - Strings on page 1195

Continued



2 Functions

2.107. RobOS - Check if execution is on RC or VC
RobotWare - OS

3HAC 16581-1  Revision: J968

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.107. RobOS - Check if execution is on RC or VC

Usage

RobOS (Robot Operating System) can be used to check if the execution is performed on Robot 

Controller RC or Virtual Controller VC.

Basic examples

Basic examples of the function RobOS are illustrated below.

Example 1
IF RobOS() THEN

! Execution statements in RC

ELSE

! Execution statements in VC

ENDIF

Return value

Data type: bool

TRUE if execution runs on Robot Controller RC, FALSE otherwise.

Syntax
RobOS ’(’’)’

A function with a return value of the data type bool. 



2 Functions

2.108. Round - Round is a numeric value
RobotWare - OS

9693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.108. Round - Round is a numeric value

Usage

Round is used to round a numeric value to a specified number of decimals or to an integer 

value.

Basic examples

Basic examples of the function Round are illustrated below.

Example 1
VAR num val;

val := Round(0.38521\Dec:=3);

The variable val is given the value 0.385.

Example 2
val := Round(0.38521\Dec:=1);

The variable val is given the value 0.4.

Example 3
val := Round(0.38521);

The variable val is given the value 0.

Return value

Data type: num

The numeric value rounded to the specified number of decimals. 

Arguments
Round ( Val [\Dec])

Val

Value

Data type: num

The numeric value to be rounded.

[\Dec]

Decimals

Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the value is rounded to 

an integer.

The number of decimals must not be negative or greater than the available precision for 

numeric values.

Continues on next page



2 Functions

2.108. Round - Round is a numeric value
RobotWare - OS

3HAC 16581-1  Revision: J970

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
Round’(’

[ Val ’:=’ ] <expression (IN) of num>

[ \Dec ’:=’ <expression (IN) of num> ]

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics

Truncating a value Trunc - Truncates a numeric value on page 1028

Continued



2 Functions

2.109. RunMode - Read the running mode
RobotWare - OS

9713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.109. RunMode - Read the running mode

Usage

RunMode (Running Mode) is used to read the current running mode of the program task.

Basic examples

Basic examples of the function RunMode are illustrated below.

Example 1
IF RunMode() = RUN_CONT_CYCLE THEN

...

ENDIF

The program section is executed only for continuous or cycle running.

Return value

Data type: symnum

The current running mode is defined as described in the table below.

Arguments
RunMode ( [ \Main] )

[ \Main ] 

Data type: switch

Return current mode for the task if it is a motion task. If used in a non-motion task, it will 

return the current mode of the motion task that the non-motion task is connected to.

If this argument is omitted, the return value always mirrors the current running mode for the 

program task which executes the function RunMode.

Syntax
RunMode ’(’ [’\’Main] ’)’

A function with a return value of the data type symnum.

Related information

Return value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode. Not yet released.

5 RUN_STEP_MOVE Move instructions in forward running mode and 
logical instructions in continuous running mode

For information about See

Reading operating mode OpMode - Read the operating mode on page 908



2 Functions

2.110. Sin - Calculates the sine value
RobotWare - OS

3HAC 16581-1  Revision: J972

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.110. Sin - Calculates the sine value

Usage

Sin (Sine) is used to calculate the sine value from an angle value.

Basic examples

Basic examples of the function Sin are illustrated below.

Example 1
VAR num angle;

VAR num value;

...

...

value := Sin(angle);

value will get the sine value of angle.

Return value

Data type: num

The sine value, range [-1, 1] .

Arguments
Sin (Angle)

Angle

Data type: num

The angle value, expressed in degrees.

Syntax
Sin’(’ 

[Angle’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID Summary - 
Mathematics



2 Functions

2.111. SocketGetStatus - Get current socket state
Socket Messaging

9733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.111. SocketGetStatus - Get current socket state

Usage

SocketGetStatus returns the current state of a socket.

Basic examples

Basic examples of the function SocketGetStatus are illustrated below.

See also More examples on page 974.

Example 1
VAR socketdev socket1;

VAR socketstatus state;

...

SocketCreate socket1;

state := SocketGetStatus( socket1 );

The socket status SOCKET_CREATED will be stored in the variable state.

Return value

Data type: socketstatus

The current state of the socket.

Only the predefined symbolic constants of type socketstatus can be used to check the 

state.

Arguments
SocketGetStatus( Socket )

Socket

Data type: socketdev

The socket variable which state is of interest.

Program execution

The function returns one of the following predefined states of socketstatus: 

SOCKET_CREATED, SOCKET_CONNECTED, SOCKET_BOUND, SOCKET_LISTENING or 

SOCKET_CLOSED.

Continues on next page



2 Functions

2.111. SocketGetStatus - Get current socket state
Socket Messaging

3HAC 16581-1  Revision: J974

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function SocketGetStatus are illustrated below.

VAR socketstatus status;

VAR socketdev my_socket;

...

SocketCreate my_socket;

SocketConnect my_socket, "192.168.0.1", 1025;

! A lot of RAPID code

status := SocketGetStatus( my_socket );

!Check which instruction that was executed last, not the state of

!the socket

IF status = SOCKET_CREATED THEN

TPWrite "Instruction SocketCreate has been executed";

ELSEIF status = SOCKET_CLOSED THEN

TPWrite "Instruction SocketClose has been executed";

ELSEIF status = SOCKET_BOUND THEN

TPWrite "Instruction SocketBind has been executed";

ELSEIF status = SOCKET_LISTENING THEN

TPWrite "Instruction SocketListen or SocketAccept has been 

executed";

ELSEIF status = SOCKET_CONNECTED THEN

TPWrite "Instruction SocketConnect, SocketReceive or SocketSend 

has been executed";

ELSE

TPWrite "Unknown socket status";

ENDIF

A client socket is created and connected to a remote computer. Before the socket is used in a 

SocketSend instruction the state of the socket is checked so that it is still connected.

Limitations

The state of a socket can only be changed by executing RAPID socket instruction. E.g. if the 

socket is connected and later the connection is broken, this will not be reported by the 

SocketGetStatus function. Instead there will be an error returned when the socket is used 

in a SocketSend or SocketReceive instruction.

Syntax
SocketGetStatus  ’(’

[ Socket ´:=´ ] < variable (VAR) of socketdev > ’)’

A function with a return value of the data type socketstatus.

Continued

Continues on next page



2 Functions

2.111. SocketGetStatus - Get current socket state
Socket Messaging

9753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Socket communication in general Application manual - Robot communication and 
I/O control

Create a new socket SocketCreate - Create a new socket on page 
460

Connect to remote computer (only client) SocketConnect - Connect to a remote computer 
on page 457

Send data to remote computer SocketSend - Send data to remote computer on 
page 469

Receive data from remote computer SocketReceive - Receive data from remote 
computer on page 464

Close the socket SocketClose - Close a socket on page 455

Bind a socket (only server) SocketBind - Bind a socket to my IP-address 
and port on page 453

Listening connections (only server) SocketListen - Listen for incoming connections 
on page 462

Accept connections (only server) SocketAccept - Accept an incoming connection 
on page 450

Continued



2 Functions

2.112. Sqrt - Calculates the square root value
RobotWare - OS

3HAC 16581-1  Revision: J976

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.112. Sqrt - Calculates the square root value

Usage

Sqrt (Square root) is used to calculate the square root value.

Basic examples

Basic examples of the function Sqrt are illustrated below.

Example 1
VAR num x_value;

VAR num y_value;

...

...

y_value := Sqrt( x_value);

y-value will get the square root value of x_value, i.e. √(x_value).

Return value

Data type: num

The square root value (√).

Arguments
Sqrt (Value)

Value

Data type: num

The argument value for square root, i.e. √value.

Value needs to be ≥ 0.

Limitations

The execution of the function Sqrt(x) will give an error if  x < 0.

Syntax
Sqrt’(’

[Value’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics



2 Functions

2.113. STCalcForce - Calculate the tip force for a Servo Tool
Servo tool control

9773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.113. STCalcForce - Calculate the tip force for a Servo Tool

Usage

STCalcForce is used to calculate the tip force for a Servo Tool. This function is used, for 

example, to find the max allowed tip force for a servo tool.

Basic examples

Basic examples of the function STCalcForce are illustrated below.

Example 1
VAR num tip_force;

tip_force := STCalcForce(gun1, 7);

Calculate the tip force when the desired motor torque is 7 Nm.

Return Value

Data type: num

The calculated tip force [N].

Arguments
STCalcForce (ToolName MotorTorque)

ToolName

Data type: string

The name of the mechanical unit.

MotorTorque

Data type: num

The desired motor torque [Nm].

Error handling

If the specified servo tool name is not a configured servo tool, the system variable ERRNO is 

set to ERR_NO_SGUN.

The error can be handled in a Rapid error handler.

Syntax
STCalcForce

[ ’ToolName ’:=’ ] < expression (IN) of string > ´,´

[ ’MotorTorque’ :=’ ] < expression (IN) of num > ´;´

A function with a return value of the data type num.

Continues on next page



2 Functions

2.113. STCalcForce - Calculate the tip force for a Servo Tool
Servo tool control

3HAC 16581-1  Revision: J978

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Open a servo tool STOpen - Open a Servo Tool on page 513

Close a servo tool STClose - Close a Servo Tool on page 496

Calculate the motor torque STCalcTorque - Calc. the motor torque for a servo tool on 
page 979

Continued



2 Functions

2.114. STCalcTorque - Calc. the motor torque for a servo tool
Servo tool control

9793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.114. STCalcTorque - Calc. the motor torque for a servo tool

Usage

STCalcTorque is used to calculate the motor torque for a Servo Tool. This function is used, 

for example, when a force calibration is performed.

Basic examples

Basic examples of the function STCalcTorque are illustrated below.

Example 1
VAR num curr_motortorque;

curr_motortorque := STCalcTorque( gun1, 1000);

Calculate the motor torque when the desired tip force is 1000 N.

Return value

Data type: num

The calculated motor torque [Nm].

Arguments
STCalcTorque (ToolName TipForce)

ToolName

Data type: string

The name of the mechanical unit.

TipForce

Data type: num

The desired tip force [N].

Error handling

If the specified servo tool name is not a configured servo tool, the system variable ERRNO is 

set to ERR_NO_SGUN.

The error can be handled in a Rapid error handler.

Syntax
STCalcTorque

[ ’ToolName ’:=’ ] < expression (IN) of string > ´,´

[’ TipForce’ :=’ ] < expression (IN) of num > ‘;’

A function with a return value of the data type num.

Continues on next page



2 Functions

2.114. STCalcTorque - Calc. the motor torque for a servo tool
Servo tool control

3HAC 16581-1  Revision: J980

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Open a servo tool STOpen - Open a Servo Tool on page 513

Close a servo tool STClose - Close a Servo Tool on page 496

Calculate the tip force STCalcForce - Calculate the tip force for a Servo Tool on 
page 977

Continued



2 Functions

2.115. STIsCalib - Tests if a servo tool is calibrated
Servo Tool Control

9813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.115. STIsCalib - Tests if a servo tool is calibrated

Usage

STIsCalib is used to test if a servo tool is calibrated - that is, check if the gun tips are 

calibrated or synchronized.

Basic examples

Basic examples of the function STIsCalib are illustrated below.

Example 1
IF STIsCalib(gun1\sguninit) THEN

...

ELSE

!Start the gun calibration

STCalib gun1\TipChg;

ENDIF

Example 2
IF STIsCalib(gun1\sgunsynch) THEN

...

ELSE

!Start the gun calibration to synchronize the gun position with 

the revolution counter

STCalib gun1\ToolChg;

ENDIF

Return value

Data type: bool

TRUE if the tested tool is calibrated - that is, the distance between the tool tips is calibrated, 

or if the tested tool is synchronized - that is, the position of the tool tips is synchronized with 

the revolution counter of the tool.

FALSE if the tested tool is not calibrated or synchronized.

Arguments
STIsCalib(ToolName [ \sguninit ] | [ \sgunsynch ])

ToolName

Data type: string

The name of the mechanical unit.

[ \sguninit ]

Data type: switch

This argument is used to check if the gun position is initialized and calibrated.

[ \sgunsynch ]

Data type: switch

This argument is used to check if the gun position is synchronized with the revolution counter.

Continues on next page



2 Functions

2.115. STIsCalib - Tests if a servo tool is calibrated
Servo Tool Control

3HAC 16581-1  Revision: J982

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
STIsCalib´(´

[ ´ToolName ´:=´ ] < expression (IN) of string >

[ ´\´sguninit ] | [ ´\´sgunsynch ] ´)´

A function with a return value of the data type bool.

Related information

For information about See

Calibrating a servo tool STCalib - Calibrate a Servo Tool on page 492

Continued



2 Functions

2.116. STIsClosed - Tests if a servo tool is closed
Servo Tool Control

9833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.116. STIsClosed - Tests if a servo tool is closed

Usage

STIsClosed is used to test if a servo tool is closed.

Basic examples

Basic examples of the instruction STIsClosed are illustrated below.

Example 1
IF STIsClosed(gun1) THEN

!Start the weld process

Set weld_start;

ELSE

...

ENDIF

Check if the gun is closed or not. 

Example 2
STClose "sgun", 1000, 3 \Conc;

WHILE NOT(STIsClosed("sgun"\RetThickness:=thickness)) DO

WaitTime 0.1;

ENDWHILE

IF thickness > max_thickness THEN...

Start to close the gun named sgun. Continue immediately with the next instruction in which 

the program waits for the gun to be closed. Read the achieved thickness value when the 

instruction STIsClosed has returned TRUE.

Example 3

Examples of non valid combinations:

STClose "sgun", 1000, 3 \RetThickness:=thickness \Conc;

WHILE NOT(STIsClosed("sgun"\RetThickness:=thickness_2)) DO;

...

Close the gun. The parameter thickness will not hold any valid value since the \Conc switch 

is used. Wait until the gun is closed. When the gun is closed and STIsClosed returns TRUE, 

the parameter thickness_2 will hold a valid value since the \Conc switch was used for the 

STClose.

STClose "sgun", 1000, 3 \RetThickness:=thickness;

WHILE NOT(STIsClosed("sgun"\RetThickness:=thickness_2)) DO;

...

Close the gun. The parameter thickness will hold a valid value when the gun has been closed 

since the \Conc switch is not used. The parameter thickness_2 will not hold any valid value 

since the \Conc switch was not used in the STClose instruction.

Continues on next page



2 Functions

2.116. STIsClosed - Tests if a servo tool is closed
Servo Tool Control

3HAC 16581-1  Revision: J984

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Return value

Data type: bool

TRUE if the tested tool is closed, i.e. the desired tip force is achieved.

FALSE if the tested tool is not closed. 

Arguments
STIsClosed (ToolName)

ToolName

Data type: string

The name of the mechanical unit.

[\RetThickness]

Data type: num

The achieved thickness [mm]. 

NOTE! Only valid if \Conc has been used in a preceding STClose instruction.

Syntax
STIsClosed’(‘

[ ’ToolName ’:=’ ] < expression (IN) of string > ‘)’

[‘\’’ RetThickness’ :=’ < variable or persistent (INOUT) of num 

> ]

A function with a return value of the data type bool.

Related information

For information about See

Open a servo tool STOpen - Open a Servo Tool on page 513

Close a servo tool STClose - Close a Servo Tool on page 496

Test if a servo tool is open STIsOpen - Tests if a servo tool is open on page 986

Continued



2 Functions

2.117. STIsIndGun - Tests if a servo tool is in independent mode
Servo Tool Control

9853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.117. STIsIndGun - Tests if a servo tool is in independent mode

Usage

STIsIndGun is used to test if a servo tool is in independent mode.

Basic examples

Basic example of the function STIsIndGun is illustrated below.

Example 1
IF STIsIndGun(gun1) THEN

Start the gun calibration

STCalib gun1\???????;

ELSE

...

ENDIF

Return value

Data type: bool

TRUE if the tested tool is in independent mode - that is, the gun can be moved independently 

of the robot movements.

FALSE if the tested tool is not in independent mode.

Arguments
STIsIndGun(ToolName)

ToolName

Data type: string

The name of the mechanical unit.

Syntax
STIsIndGun´(´

[ ´ToolName ´:=´ ] < expression (IN) of string > ´)´

A function with a return value of the data type bool.

Related information

For information about See

Calibrating a servo tool STCalib - Calibrate a Servo Tool on page 492

Setting the gun in independent mode STIndGun - Sets the gun in independent 
mode on page 501

Resetting the gun from independent mode STIndGunReset - Resets the gun from 
independent mode on page 503



2 Functions

2.118. STIsOpen - Tests if a servo tool is open
Servo Tool Control

3HAC 16581-1  Revision: J986

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.118. STIsOpen - Tests if a servo tool is open

Usage

STIsOpen is used to test if a servo tool is open.

Basic examples

Basic examples of the instruction STIsOpen are illustrated below.

Example 1
IF STIsOpen(gun1) THEN

!Start the motion

MoveL ...

ELSE

...

ENDIF

Check if the gun is open or not.

Example 2
STCalib "sgun" \TipWear \Conc;§

WHILE NOT(STIsOpen("sgun") \RetTipWear:=tipwear 

\RetPosAdj:=posadj) DO;

WaitTime 0.1;

ENDWHILE

IF tipwear > 20...

IF posadj > 25...

Perform a tip wear calibration. Wait until the gun sgun is open. Read the tip wear and 

positional adjustment values.

Example 3

Examples of non valid combinations:

STCalib "sgun" \TipWear \RetTipWear:=tipwear_1 \Conc;

WHILE NOT(STIsOpen("sgun") \RetTipWear:=tipwear_2) DO;

WaitTime 0.1;

ENDWHILE

Start a tip wear calibration. The parameter tipwear_1 will not hold any valid value since 

the \Conc switch is used. When the calibration is ready and the STIsOpen returns TRUE, the 

parameter tipwear_2 will hold a valid value.

STCalib "sgun" \TipWear \RetTipWear:=tipwear_1;

WHILE NOT(STIsOpen("sgun") \RetTipWear:=tipwear_2) DO;

WaitTime 0.1;

ENDWHILE

Continues on next page



2 Functions

2.118. STIsOpen - Tests if a servo tool is open
Servo Tool Control

9873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Perform a tip wear calibration. The parameter tipwear_1 will hold a valid value since the 

\Conc switch is not used. When STIsOpen returns TRUE, the parameter tipwear_2 will not 

hold any valid value since the \Conc switch was not used in STCalib.

Return value

Data type: bool

TRUE if the tested tool is open, i.e. the tool arm is in the programmed open position.

FALSE if the tested tool is not open.

Arguments
STIsOpen (ToolName)

ToolName

Data type: string

The name of the mechanical unit.

[\RetTipWear]

Data type: num

The achieved tip wear [mm]. 

NOTE! Only valid if \Conc has been used in a preceding STCalib instruction and if 

STIsOpen returns TRUE.

[\RetPosAdj]

Data type: num

The positional adjustment since the last calibration [mm]. 

NOTE! Only valid if \Conc has been used in a preceding STCalib instruction and if 

STIsOpen returns TRUE.

Syntax
STIsOpen’(‘

[ ’ToolName ’:=’ ] < expression (IN) of string > ‘)’

[’ \’RetTipWear’ :=’ < variable or persistent(INOUT) of num > 

]’;’

[ ’\’RetPosAdj’ :=’ < variable or persistent(INOUT) of num > ]

A function with a return value of the data type bool.

Related information

For information about See

Open a servo tool STOpen - Open a Servo Tool on page 513

Close a servo tool STClose - Close a Servo Tool on page 496

Test if a servo tool is closed STIsClosed - Tests if a servo tool is closed on page 983

Continued



2 Functions

2.119. StrDigCalc - Arithmetic operations with datatype stringdig
RobotWare - OS

3HAC 16581-1  Revision: J988

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.119. StrDigCalc - Arithmetic operations with datatype stringdig

Usage

StrDigCalc is used to perform arithmetic operations (+, -, *, /, %) on two positive digit 

strings in the same way as numeric arithmetic operations on positive integer values.

This function can handle positive integers above 8 388 608 with exact representation.

Basic examples

Basic examples of the function StrDigCalc are illustrated below.

See also More examples on page 989.

Example 1
res := StrDigCalc(str1, OpAdd, str2);

res is assigned the result of the addition operation on the values represented by the digital 

strings str1 and str2.

Return value

Data type: stringdig

stringdig is used to represent big positive integers in a string with only digits.

This data type is introduced because the data type num cannot handle positive integers above 

8 388 608 with exact representation.

Arguments
StrDigCalc (StrDig1 Operation StrDig2)

StrDig1

String Digit 1

Data type: stringdig

String representing a positive integer value.

Operation

Arithmetic operator

Data type: opcalc

Defines the arithmetic operation to perform on the two digit strings. Following arithmetic 

operatons of data type opcalc can be used; OpAdd, OpSub, OpMult, OpDiv and OpMod. 

StrDig2

String Digit 2

Data type: stringdig

String representing a positive integer value.

Continues on next page



2 Functions

2.119. StrDigCalc - Arithmetic operations with datatype stringdig
RobotWare - OS

9893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

This function will:

• Check only digits 0...9 in StrDig1 and StrDig2

• Convert the two digital strings to long integers

• Perform an arithmetic operation on the two long integers

• Convert the result from long integer to stringdig

More examples

More examples of how to use the function StrDigCalc are illustrated below.

Example 1
res := StrDigCalc(str1, OpSub, str2);

res is assigned the result of the substration operation on the values represented by the digital 

strings str1 and str2.

Example 2
res := StrDigCalc(str1, OpMult, str2);

res is assigned the result of the multiplication operartion on the values represented by the 

digital strings str1 and str2.

Example 3
res := StrDigCalc(str1, OpDiv, str2);

res is assigned the result of the division operation on the values represented by the digital 

strings str1 and str2.

Example 4
res := StrDigCalc(str1, OpMod, str2);

res is assigned the result of the modulus operation on the values represented by the digital 

strings str1 and str2.

Error handling

The following errors can be handled in a Rapid error handler.

Limitations

StrDigCalc only accepts strings that contain digits (characters 0...9). All other characters in 

stringdig will result in error.

This function can only handle positive integers up to 4 294 967 295.

Error code Description

ERR_INT_NOTVAL Input values not only digits or modulus by zero

ERR_INT_MAXVAL Input value above 4294967295

ERR_CALC_OVERFLOW Result out of range 0...4294967295

ERR_CALC_NEG Negative substraction i.e. StrDig2 > StrDig1

ERR_CALC_DIVZERO Division by zero

Continued

Continues on next page



2 Functions

2.119. StrDigCalc - Arithmetic operations with datatype stringdig
RobotWare - OS

3HAC 16581-1  Revision: J990

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
StrDigCalc‘(‘

[ StrDig1 ‘:=’ ] < expression (IN) of stringdig > ’,’

[ Operation‘ :=’ ] < expression (IN) of opcalc > ‘,’

[ StrDig2‘ :=’ ] < expression (IN) of stringdig > ‘)‘

A function with a return value of the data type stringdig.

Related information

For information about See

Strings with only digits. stringdig - String with only digits on page 1197

Arithmetic operators. opcalc - Arithmetic Operator on page 1148

Continued



2 Functions

2.120. StrDigCmp - Compare two strings with only digits
RobotWare - OS

9913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.120. StrDigCmp - Compare two strings with only digits

Usage

StrDigCmp is used to compare two positive digit strings in the same way as numeric compare 

of positive integers.

This function can handle positive integers above 8 388 608 with exact representation.

Basic examples

Basic examples of the function StrDigCmp are illustrated below.

Example 1
VAR stringdig digits1 := "1234";

VAR stringdig digits2 := "1256";

VAR bool is_equal;

is_equal := StrDigCmp(digits1, EQ, digits2);

The variable is_equal will be set to FALSE, because the numeric value 1234 is not equal to 

1256.

Example 2
CONST string file_path := "...";

CONST string mod_name := "...";

VAR num num_file_time:

VAR stringdig dig_file_time;

VAR num num_mod_time;

VAR stringdig dig_mod_time;

...

num_file_time := FileTime(file_path, \ModifyTime, 

\StrDig:=dig_file_time);

num_mod_time := ModTime(mod_name,\StrDig:=dig_mod_time);

IF StrDigCmp(dig_file_time, GT, dig_mod_time) THEN

! Load the new program module

ENDIF

Both FileTime and ModTime returns number of seconds since 00:00:00 GMT jan 1 

1970 which cannot be represented with exact representation in a num variable. Because of 

this limitation, function StrDigCmp and data type stringdig are used.

In variable dig_file_time, the last modified time of the module file on disk is stored. In 

variable dig_mod_time, the last modify time of the file for the same module before it was 

loaded into the program memory in the controller is stored. Compare of the two digit strings, 

show that the module on the disk is newer, so it should be loaded into the program memory.

Return value

Data type: bool

TRUE if the given condition is met, FALSE if not.

Continues on next page



2 Functions

2.120. StrDigCmp - Compare two strings with only digits
RobotWare - OS

3HAC 16581-1  Revision: J992

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
StrDigCmp (StrDig1 Relation StrDig2)

StrDig1

String Digit 1

Data type: stringdig

The first string with only digits to be numerical compared.

Relation

Data type: opnum

Defines how to compare the two digit strings. Following predefined constants of data type 

opnum can be used LT, LTEQ, EQ, NOTEQ, GTEQ or GT. 

StrDig2

String Digit 2

Data type: stringdig

The second string with only digits to be numerical compared.

Program execution

This function will:

• Check that only digits 0...9 are used in StrDig1 and StrDig2

• Convert the two digital strings to long integers

• Numerically compare the two long integers

Error handling

The following errors can be handled in a Rapid error handler.

Limitations

StrDigCmp only accepts strings that contain digits (characters 0...9). All other characters in 

stringdig will result in error.

This function can only handle positive integers up to 4 294 967 295.

Syntax
StrDigCmp‘(‘

[ StrDig1 ‘:=’ ] < expression (IN) of stringdig > ’,’

[ Relation‘ :=’ ] < expression (IN) of opnum > ‘,’

[ StrDig2‘ :=’ ] < expression (IN) of stringdig > ‘)‘

A function with a return value of the data type bool.

Error code Description

ERR_INT_NOTVAL Input values not only digits

ERR_INT_MAXVAL Value above 4294967295

Continued

Continues on next page



2 Functions

2.120. StrDigCmp - Compare two strings with only digits
RobotWare - OS

9933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

String with only digits stringdig - String with only digits on page 1197

Comparison operators opnum - Comparison operator on page 1149

File time information FileTime - Retrieve time information about a 
file on page 845

File modify time of the loaded module ModTime - Get file modify time for the loaded 
module on page 896

Continued



2 Functions

2.121. StrFind - Searches for a character in a string
RobotWare - OS

3HAC 16581-1  Revision: J994

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.121. StrFind - Searches for a character in a string

Usage

StrFind (String Find) is used to search in a string, starting at a specified position, for a 

character that belongs to a specified set of characters.

Basic examples

Basic examples of the function StrFind are illustrated below.

Example 1
VAR num found;

found := StrFind("Robotics",1,"aeiou");

The variable found is given the value 2.

found := StrFind("Robotics",1,"aeiou"\NotInSet);

The variable found is given the value 1

found := StrFind("IRB 6400",1,STR_DIGIT);

The variable found is given the value 5.

found := StrFind("IRB 6400",1,STR_WHITE);

The variable found is given the value 4.

Return value

Data type: num

The character position of the first character at or past the specified position that belongs to the 

specified set. If no such character is found, string length +1 is returned.

Arguments
StrFind (Str ChPos Set [\NotInSet])

Str

String

Data type: string

The string to search in.

ChPos

Character Position

Data type: num

Start character position. A runtime error is generated if the position is outside the string.

Set

Data type: string

Set of characters to test against. See also Predefined data on page 995.

[\NotInSet]

Data type: switch

Search for a character not in the set of characters presented in Set.

Continues on next page



2 Functions

2.121. StrFind - Searches for a character in a string
RobotWare - OS

9953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
StrFind’(’

[ Str ’:=’ ] <expression (IN) of string> ’,’

[ ChPos ’:=’ ] <expression (IN) of num> ’,’

[ Set ’:=’ ] <expression (IN) of string>

[’\’NotInSet ]

’)’

A function with a return value of the data type num.

Predefined data

A number of predefined string constants are available in the system and can be used together 

with string functions.

Related information

Name Character set

STR_DIGIT <digit> ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | 2) | 3)

STR_LOWER <lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | 2) | 3) | ß | ÿ-

STR_WHITE <blank character> ::=

For information about See

String functions Technical reference manual - RAPID overview, 
section RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, 
section Basic characteristics - Basic elements

Continued



2 Functions

2.122. StrLen - Gets the string length
RobotWare - OS

3HAC 16581-1  Revision: J996

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.122. StrLen - Gets the string length

Usage

StrLen (String Length) is used to find the current length of a string.

Basic examples

Basic examples of the function StrLen are illustrated below.

Example 1
VAR num len;

len := StrLen("Robotics");

The variable len is given the value 8.

Return value 

Data type: num

The number of characters in the string (>=0).

Arguments
StrLen (Str)

Str

String

Data type: string

The string in which the number of characters is to be counted.

Syntax
StrLen’(’

[ Str ’:=’ ] <expression (IN) of string>’ )’

A function with a return value of the data type num.

Related information

For information about See

String functions Technical reference manual - RAPID Instruc-
tions, Functions and Data types, section 
RAPID summary - String Functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID Instruc-
tions, Functions and Data types, section Basic 
characteristics - Basic elements



2 Functions

2.123. StrMap - Maps a string
RobotWare - OS

9973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.123. StrMap - Maps a string

Usage

StrMap (String Mapping) is used to create a copy of a string in which all characters are 

translated according to a specified mapping.

Basic examples

Basic examples of the function StrMap are illustrated below.

Example 1
VAR string str;

str := StrMap("Robotics","aeiou","AEIOU");

The variable str is given the value "RObOtIcs".

Example 2
str := StrMap("Robotics",STR_LOWER, STR_UPPER);

The variable str is given the value "ROBOTICS".

Return value

Data type: string

The string created by translating the characters in the specified string, as specified by the 

"from" and "to" strings. Each character from the specified string that is found in the "from" 

string is replaced by the character at the corresponding position in the "to" string. Characters 

for which no mapping is defined are copied unchanged to the resulting string.

Arguments
StrMap ( Str FromMap ToMap)

Str

String

Data type: string

The string to translate.

FromMap

Data type: string

Index part of mapping. See also Predefined data on page 998.

ToMap

Data type: string

Value part of mapping. See also Predefined data on page 998.

Syntax
StrMap’(’

[ Str ’:=’ ] <expression (IN) of string> ´,´

[ FromMap’:=’ ] <expression (IN) of string> ´,´

[ ToMap’:=’ ] <expression (IN) of string>

’)’

A function with a return value of the data type string. 

Continues on next page



2 Functions

2.123. StrMap - Maps a string
RobotWare - OS

3HAC 16581-1  Revision: J998

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data

A number of predefined string constants are available in the system and can be used together 

with string functions.

Related information

Name Character set

STR_DIGIT <digit> ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | 2) | 3)

STR_LOWER <lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | 2) | 3) | ß | ÿ-

STR_WHITE <blank character> ::=

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.124. StrMatch - Search for pattern in string
RobotWare - OS

9993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.124. StrMatch - Search for pattern in string

Usage

StrMatch (String Match) is used to search in a string, starting at a specified position, for a 

specified pattern.

Basic examples

Basic examples of the function StrMatch are illustrated below.

Example 1
VAR num found;

found := StrMatch("Robotics",1,"bo");

The variable found is given the value 3.

Return value

Data type: num

The character position of the first substring, at or past the specified position, that is equal to 

the specified pattern string. If no such substring is found, string length +1 is returned.

Arguments
StrMatch (Str ChPos Pattern)

Str

String

Data type: string

The string to search in.

ChPos

Character Position

Data type: num

Start character position. A runtime error is generated if the position is outside the string.

Pattern

Data type: string

Pattern string to search for.

Syntax
StrMatch’(’

[ Str ’:=’ ] <expression (IN) of string>´,´

[ ChPos ’:=’ ] <expression (IN) of num> ´,´

[ Pattern’:=’ ] <expression (IN) of string>

´)´

A function with a return value of the data type num.

Continues on next page



2 Functions

2.124. StrMatch - Search for pattern in string
RobotWare - OS

3HAC 16581-1  Revision: J1000

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.125. StrMemb - Checks if a character belongs to a set
RobotWare - OS

10013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.125. StrMemb - Checks if a character belongs to a set

Usage

StrMemb (String Member) is used to check whether a specified character in a string belongs 

to a specified set of characters.

Basic examples

Basic examples of the function StrMemb are illustrated below.

Example 1
VAR bool memb;

memb := StrMemb("Robotics",2,"aeiou");

The variable memb is given the value TRUE, as o is a member of the set "aeiou".

memb := StrMemb("Robotics",3,"aeiou");

The variable memb is given the value FALSE, as b is not a member of the set "aeiou".

memb := StrMemb("S-721 68 VÄSTERÅS",3,STR_DIGIT);

The variable memb is given the value TRUE, as 7 is a member of the set STR_DIGIT.

Return value

Data type: bool

TRUE if the character at the specified position in the specified string belongs to the specified 

set of characters.

Arguments
StrMemb (Str ChPos Set)

Str

String

Data type: string

The string to check in.

ChPos

Character Position

Data type: num

The character position to check. A runtime error is generated if the position is outside the 

string.

Set

Data type: string

Set of characters to test against.

Continues on next page



2 Functions

2.125. StrMemb - Checks if a character belongs to a set
RobotWare - OS

3HAC 16581-1  Revision: J1002

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
StrMemb’(’

[ Str ’:=’ ] <expression (IN) of string> ’,’

[ ChPos ’:=’ ] <expression (IN) of num> ’,’

[ Set ’:=’ ] <expression (IN) of string>

’)’

A function with a return value of the data type bool.

Predefined data

A number of predefined string constants are available in the system and can be used together 

with string functions.

Related information

Name Character set

STR_DIGIT <digit> ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | 2) | 3)

STR_LOWER <lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | 2) | 3) | ß | ÿ-

STR_WHITE <blank character> ::=

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID Summary - String Functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.126. StrOrder - Checks if strings are ordered
RobotWare - OS

10033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.126. StrOrder - Checks if strings are ordered

Usage

StrOrder (String Order) compares two strings (character by character ) and returns a 

boolean indicating whether the two strings are in order according to a specified character 

ordering sequence.

Basic examples

Basic examples of the function StrOrder are illustrated below.

Example 1
VAR bool le;

le := StrOrder("FIRST","SECOND",STR_UPPER);

The variable le is given the value TRUE, because "F" comes before "S" in the character 

ordering sequence STR_UPPER.

Example 2
VAR bool le;

le := StrOrder("FIRST","FIRSTB",STR_UPPER);

The variable le is given the value TRUE, because Str2  "FIRSTB" has an additional 

character in the character ordering sequence (no character compared to "B").

Example 3
VAR bool le;

le := StrOrder("FIRSTB","FIRST",STR_UPPER);

The variable le is given the value FALSE, because Str1  "FIRSTB" has an additional 

character in the character ordering sequence ("B" compared to no character).

Return value

Data type: bool

TRUE if the first string comes before the second string (Str1 <= Str2) when characters are 

ordered as specified.

Characters that are not included in the defined ordering are all assumed to follow the present 

ones.

Arguments
StrOrder ( Str1 Str2 Order)

Str1

String 1

Data type: string

First string value.

Continues on next page



2 Functions

2.126. StrOrder - Checks if strings are ordered
RobotWare - OS

3HAC 16581-1  Revision: J1004

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Str2

String 2

Data type: string

Second string value.

Order

Data type: string

Sequence of characters that define the ordering. See also Predefined data on page 1004.

Syntax
StrOrder’(’

[ Str1 ’:=’ ] <expression (IN) of string> ´,´

[ Str2 ’:=’ ] <expression (IN) of string> ´,´

[ Order ’:=’ ] <expression (IN) of string>

’)’

A function with a return value of the data type bool.

Predefined data

A number of predefined string constants are available in the system and can be used together 

with string functions.

Related information

Name Character set

STR_DIGIT <digit> ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | 2) | 3)

STR_LOWER <lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | 2) | 3) | ß | ÿ-

STR_WHITE <blank character> ::=

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.127. StrPart - Finds a part of a string
RobotWare - OS

10053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.127. StrPart - Finds a part of a string

Usage

StrPart (String Part) is used to find a part of a string, as a new string.

Basic examples

Basic examples of the function StrPart are illustrated below.

Example 1
VAR string part;

part := StrPart("Robotics",1,5);

The variable part is given the value "Robot".

Return value

Data type: string

The substring of the specified string which has the specified length and starts at the specified 

character position.

Arguments
StrPart (Str ChPos Len)

Str

String

Data type: string

The string in which a part is to be found.

ChPos

Character Position

Start character position. A runtime error is generated if the position is outside the string.

Len

Length

Data type: num

Length of string part. A runtime error is generated if the length is negative or greater than the 

length of the string, or if the substring is (partially) outside the string.

Syntax
StrPart’(’

[ Str ’:=’ ] <expression (IN) of string> ’,’

[ ChPos ’:=’ ] <expression (IN) of num> ’,’

[ Len ’:=’ ] <expression (IN) of num>

’)’

A function with a return value of the data type string.

Continues on next page



2 Functions

2.127. StrPart - Finds a part of a string
RobotWare - OS

3HAC 16581-1  Revision: J1006

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String Functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.128. StrToByte - Converts a string to a byte data
RobotWare - OS

10073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.128. StrToByte - Converts a string to a byte data

Usage

StrToByte (String To Byte) is used to convert a string with a defined byte data format into 

a byte data.

Basic examples

Basic examples of the function StrToByte are illustrated below.

Example 1
VAR string con_data_buffer{5} := ["10", "AE", "176", "00001010", 

"A"]; 

VAR byte data_buffer{5};

data_buffer{1} := StrToByte(con_data_buffer{1});

The content of the array component data_buffer{1} will be 10 decimal after the 

StrToByte ... function.

data_buffer{2} := StrToByte(con_data_buffer{2}\Hex);

The content of the array component data_buffer{2} will be 174 decimal after the 

StrToByte ... function.

data_buffer{3} := StrToByte(con_data_buffer{3}\Okt);

The content of the array component data_buffer{3} will be 126 decimal after the 

StrToByte ... function.

data_buffer{4} := StrToByte(con_data_buffer{4}\Bin);

The content of the array component data_buffer{4} will be 10 decimal after the 

StrToByte ... function.

data_buffer{5} := StrToByte(con_data_buffer{5}\Char);

The content of the array component data_buffer{5} will be 65 decimal after the 

StrToByte ... function.

Return value

Data type: byte

The result of the conversion operation in decimal representation.

Arguments
StrToByte (ConStr [\Hex] | [\Okt] | [\Bin] | [\Char])

ConStr

Convert String

Data type: string

The string data to be converted.

If the optional switch argument is omitted, the string to be converted has decimal (Dec) 

format.

Continues on next page



2 Functions

2.128. StrToByte - Converts a string to a byte data
RobotWare - OS

3HAC 16581-1  Revision: J1008

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Hex]

Hexadecimal

Data type: switch

The string to be converted has hexadecimal format.

[\Okt]

Octal

Data type: switch

The string to be converted has octal format.

[\Bin]

Binary

Data type: switch

The string to be converted has binary format.

[\Char]

Character

Data type: switch

The string to be converted has ASCII character format.

Limitations
Depending on the format of the string to be converted, the following string data is valid: 

RAPID character codes (e.g. “\07” for BEL control character) can be used as arguments in 

ConStr.

Syntax
StrToByte’(’

[ConStr’ :=’] <expression (IN) of string>

[’\’ Hex ] | [’\’ Okt] | [’\’ Bin] | [’\’ Char]

’)’

A function with a return value of the data type byte.

Format String length Range

Dec .....: ’0’ - ’9’ 3 "0" - "255"

Hex .....: ’0’ - ’9’, ’a’ -’f’, ’A’ - ’F’ 2 "0" - "FF"

Okt ......: ’0’ - ’7’ 3 "0" - "377"

Bin ......: ’0’ - ’1’ 8 "0" - "11111111"

Char ....: Any ASCII character 1 One ASCII char

Continued

Continues on next page



2 Functions

2.128. StrToByte - Converts a string to a byte data
RobotWare - OS

10093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Convert a byte to a string data ByteToStr - Converts a byte to a string data on 
page 784

Other bit (byte) functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics - Bit 
functions

Other string functions Technical reference manual - RAPID overview, 
section RAPID summary - String functions

Continued



2 Functions

2.129. StrToVal - Converts a string to a value
RobotWare - OS

3HAC 16581-1  Revision: J1010

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.129. StrToVal - Converts a string to a value

Usage

StrToVal (String To Value) is used to convert a string to a value of any data type.

Basic examples

Basic examples of the function StrToVal are illustrated below.

See also More examples on page 1011.

Example 1
VAR bool ok;

VAR num nval;

ok := StrToVal("3.85",nval);

The variable ok is given the value TRUE and nval is given the value 3.85.

Return value

Data type: bool

TRUE if the requested conversion succeeded, FALSE otherwise.

Arguments
StrToVal ( Str Val )

Str

String

Data type: string

A string value containing literal data with format corresponding to the data type used in 

argument Val. Valid format as for RAPID literal aggregates.

Val

Value

Data type: ANYTYPE

Name of the variable or persistent of any data type for storage of the result from the 

conversion. 

All type of value data with structure atomic, record, record component, array or array element 

can be used. The data is unchanged if the requested conversion failed because the format 

don’t correspond to the data used in argument Str.

Continues on next page



2 Functions

2.129. StrToVal - Converts a string to a value
RobotWare - OS

10113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function StrToVal are illustrated below.

Example 1
VAR string str15 := "[600, 500, 225.3]";

VAR bool ok;

VAR pos pos15;

ok := StrToVal(str15,pos15);

The variable ok is given the value TRUE and the variable pos15 is given the value that are 

specified in the string str15.

Syntax
StrToVal’(’

[ Str ’:=’ ] <expression (IN) of string> ´,´

[ Val ’:=’ ] <var or pers (INOUT) of ANYTYPE>

’)’

A function with a return value of the data type bool.

Related information

For information about See

String functions Technical reference manual - RAPID overview, 
section RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, 
section Basic characteristics - Basic elements

Continued



2 Functions

2.130. Tan - Calculates the tangent value
RobotWare - OS

3HAC 16581-1  Revision: J1012

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.130. Tan - Calculates the tangent value

Usage

Tan (Tangent) is used to calculate the tangent value from an angle value.

Basic examples

Basic examples of the function are illustrated below.

Example 1
VAR num angle;

VAR num value;

...

...

value := Tan(angle);

value will get the tangent value of angle.

Return value

Data type: num

The tangent value.

Arguments
Tan (Angle)

Angle

Data type: num

The angle value, expressed in degrees.

Syntax
Tan’(’

[Angle ’:=’] <expression (IN) of num>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID Summary - Mathematics

Arc tangent with return value in the range 
[-180, 180]

ATan2 - Calculates the arc tangent2 value on 
page 769



2 Functions

2.131. TaskRunMec - Check if task controls any mechanical unit
RobotWare - OS

10133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.131. TaskRunMec - Check if task controls any mechanical unit

Usage

TaskRunMec is used to check if the program task controls any mechanical units (robot with 

TCP or manipulator without TCP).

Basic examples

Basic examples of the function TaskRunMec are illustrated below.

Example 1
VAR bool flag;

...

flag := TaskRunMec( );

If current task controls any mechanical unit flag will be TRUE, otherwise FALSE.

Return value

Data type: bool

If current task controls any mechanical unit the return value will be TRUE, otherwise FALSE.

Program execution

Check if current program task controls any mechanical unit.

Syntax
TaskRunMec’(’ ’)’

A function with a return value of the data type bool.

Related information

For information about See

Check if task control some robot TaskRunRob - Check if task controls some robot on 
page 1014

Activating/Deactivating mech. units ActUnit - Activates a mechanical unit on page 17

DeactUnit - Deactivates a mechanical unit on page 79

Configuration of mechanical units Technical reference manual - System parameters



2 Functions

2.132. TaskRunRob - Check if task controls some robot
RobotWare - OS

3HAC 16581-1  Revision: J1014

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.132. TaskRunRob - Check if task controls some robot

Usage

TaskRunRob is used to check if the program task controls some robot (mechanical unit with 

TCP).

Basic examples

Basic examples of the function TaskRunRob are illustrated below.

Example 1
VAR bool flag;

...

flag := TaskRunRob( );

If current task controls some robot, flag will be set to TRUE, otherwise FALSE.

Return value

Data type: bool

If current task controls some robot, the return value will be TRUE, otherwise FALSE.

Program execution

Check if current program task controls some robot.

Syntax
TaskRunRob ’(’ ’)’

A function with a return value of the data type bool.

Related information

For information about See

Check if task controls any mechanical 
unit

TaskRunMec - Check if task controls any 
mechanical unit on page 1013

Activating/Deactivating mechanical 
units

ActUnit - Activates a mechanical unit on page 17

DeactUnit - Deactivates a mechanical unit on page 
79

Configuration of mechanical units Technical reference manual - System parameters



2 Functions

2.133. TasksInSync - Returns the number of synchronized tasks
RobotWare - OS

10153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.133. TasksInSync - Returns the number of synchronized tasks

Usage

TasksInSync is used to retrieve the number of synchronized tasks.

Basic examples

A basic example of the function TasksInSync is illustrated below.

Example 1
VAR tasks tasksInSyncList{6};

...

PROC main ()

VAR num noOfSynchTasks;

...

noOfSynchTasks:= TasksInSync (tasksInSyncList);

TPWrite "No of synchronized tasks = "\Num:=noOfSynchTasks;

ENDPROC

The variable noOfSynchTasks is assigned the number of synchronized tasks and the 

tasksInSyncList will contain the names of the synchronized tasks. In this example the 

task list is a variable but it can also be a persistent.

Return value

Data type: num

The number of synchronized tasks.

Arguments
TaskInSync (TaskList)

TaskList

Data type: tasks

Inout argument that in a task list (array) will present the name (string) of the program tasks 

that are synchronized. The task list can be either of type VAR or PERS.

Program execution

The function returns the number of synchronized tasks in the system. The names of the 

synchronized tasks are presented in the inout argument TaskList. In cases where there are no 

synchronized tasks, the list will only contain empty strings.

Limitations

Currently only one synch group is supported, so TasksInSync returns the number of tasks 

that are synchronized in that group.

Syntax
TasksInSync

[ TaskList‘ :=’ ] < var or pers array {*} (INOUT) of tasks> ´,’

A function with a return value of the data type num.

Continues on next page



2 Functions

2.133. TasksInSync - Returns the number of synchronized tasks
RobotWare - OS

3HAC 16581-1  Revision: J1016

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

SyncMoveOn - Start coordinated synchro-
nized movements on page 534

Start coordinated synchronized movements SyncMoveOn - Start coordinated synchro-
nized movements on page 534

Continued



2 Functions

2.134. TestAndSet - Test variable and set if unset
RobotWare - OS

10173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.134. TestAndSet - Test variable and set if unset 

Usage

TestAndSet can be used together with a normal data object of the type bool, as a binary 

semaphore, to retrieve exclusive right to specific RAPID code areas or system resources. The 

function could be used both between different program tasks and different execution levels 

(TRAP or Event Routines) within the same program task.

Example of resources that can need protection from access at the same time:

• Use of some RAPID routines with function problems when executed in parallel.

• Use of the FlexPendant - Operator Log

Basic examples

Basic examples of the function TestAndSet are illustrated below.

See also More examples on page 1018.

Example 1

MAIN program task:

PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from MAIN";

TPWrite "Second line from MAIN";

TPWrite "Third line from MAIN";

tproutine_inuse := FALSE;

BACK1 program task:

PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from BACK1";

TPWrite" Second line from BACK1";

TPWrite "Third line from BACK1";

tproutine_inuse := FALSE;

To avoid mixing up the lines, in the Operator Log, one from MAIN and one from BACK1, the 

use of the TestAndSet function guarantees that all three lines from each task are not 

separated.

If program task MAIN takes the semaphore TestAndSet(tproutine_inuse) first, then 

program task BACK1 must wait until the program task MAIN has left the semaphore.

Return value

Data type: bool

TRUE if the semaphore has been taken by me (executor of TestAndSet function), otherwise 

FALSE.

Continues on next page



2 Functions

2.134. TestAndSet - Test variable and set if unset
RobotWare - OS

3HAC 16581-1  Revision: J1018

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
TestAndSet Object

Object

Data type: bool

User defined data object to be used as semaphore. The data object could be a variable VAR or 

a persistent variable PERS. If TestAndSet are used between different program tasks, the 

object must be a persistent variable PERS or an installed variable VAR (intertask objects).

Program execution

This function will in one indivisible step check the user defined variable and, if it is unset, 

will set it and return TRUE, otherwise it will return FALSE.

IF Object = FALSE THEN

Object := TRUE;

RETURN TRUE;

ELSE

RETURN FALSE;

ENDIF

More examples

More examples of the function TestAndSet are illustrated below.

Example 1
LOCAL VAR bool doit_inuse := FALSE;

...

PROC doit(...)

WaitUntil TestAndSet (doit_inuse);

...

doit_inuse := FALSE;

ENDPROC

If a module is installed built-in and shared, it is possible to use a local module variable for 

protection of access from different program tasks at the same time.

NOTE!

In this case with installed built-in modules and when using persistent variable as semaphore 

object: If program execution is stopped in the routine doit and the program pointer is moved 

to main, the variable doit_inuse will not be reset. To avoid this, reset the variable 

doit_inuse to FALSE in the START event routine.

Syntax
TestAndSet ´(´

[ Object ’:=’ ] < variable or persistent (INOUT) of bool> ´)´

A function with a return value of the data type bool.

Related information

For information about See

Wait until variable unset - then set (type wait 
with interrupt control)

WaitTestAndSet - Wait until variable unset - 
then set on page 692

Continued



2 Functions

2.135. TestDI - Tests if a digital input is set
RobotWare - OS

10193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.135. TestDI - Tests if a digital input is set

Usage

TestDI is used to test whether a digital input is set.

Basic examples

Basic examples of the function TestDI are illustrated below.

Example 1
IF TestDI (di2) THEN . . . 

If the current value of the signal di2 is equal to 1, then . . .

IF NOT TestDI (di2) THEN . . . 

If the current value of the signal di2 is equal to 0, then . . .

WaitUntil TestDI(di1) AND TestDI(di2);

Program execution continues only after both the di1 input and the di2 input have been set.

Return value

Data type: bool

TRUE  = The current value of the signal is equal to 1.

FALSE  = The current value of the signal is equal to 0.

Arguments
TestDI (Signal)

Signal

Data type: signaldi

The name of the signal to be tested.

Syntax
TestDI ’(’

[ Signal’ :=’ ] < variable (VAR) of signaldi > ’)’

A function with a return value of the data type bool.

Related information

For information about See

Reading the value of a digital input signal signalxx - Digital and analog signals on page 
1181

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output 
Signals 



2 Functions

2.136. TestSignRead - Read test signal value
RobotWare - OS

3HAC 16581-1  Revision: J1020

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.136. TestSignRead - Read test signal value

Usage

TestSignRead is used to read the actual test signal value.

This function returns the momentary value or the mean value of the latest samples, depending 

on channel specification in instruction TestSignDefine.

Basic examples

Basic examples of the function TestSignRead are illustrated below.

See also More examples on page 1021.

Example 1
CONST num speed_channel:=1;

VAR num speed_value;

...

TestSignDefine speed_channel, speed, orbit, 1, 0;

...

! During some movements with orbit’s axis 1

speed_value := TestSignRead(speed_channel);

...

TestSignReset;

speed_value is assigned the mean value of the latest 8 samples generated each 0.5 ms of 

the test signal speed on channel speed_channel defined as channel 1. The channel 

speed_channel measures the speed of axis 1 on the mechanical unit orbit.

Return value

Data type: num

The numeric value in SI units on the motor side for the specified channel according to the 

definition in instruction TestSignDefine.

Arguments
TestSignRead (Channel)

Channel

Data type: num

The channel number 1-12 for the test signal to be read. The same number must be used in the 

definition instruction TestSignDefine.

Program execution

Returns the momentary value or the mean value of the latest samples, depending on the 

channel specification in the instruction TestSignDefine.

For predefined test signals with valid SI units for external manipulator axes, see data type 

testsignal.

Continues on next page



2 Functions

2.136. TestSignRead - Read test signal value
RobotWare - OS

10213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function TestSignRead are illustrated below.

Example 1
CONST num torque_channel:=2;

VAR num torque_value;

VAR intnum timer_int;

CONST jointtarget psync := [...];

...

CONNECT timer_int WITH TorqueTrap;

ITimer \Single, 0.05, timer_int;

TestSignDefine torque_channel, torque_ref, IRBP_K, 2, 0.001;

...

MoveAbsJ psync \NoEOffs, v5, fine, tool0;

...

IDelete timer_int;

TestSignReset;

TRAP TorqueTrap

IF (TestSignRead(torque_channel) > 6) THEN

TPWrite "Torque pos = " + ValToStr(CJointT());

Stop;

ELSE

IDelete timer_int;

CONNECT timer_int WITH TorqueTrap;

ITimer \Single, 0.05, timer_int;

ENDIF

ENDTRAP

When the torque reference for manipulator IRBP_K axis 2 is for the first time greater than 6 

Nm on the motor side during the slow movement to position psync, the joint position is 

displayed on the FlexPendant.

Syntax
TestSignRead’(’

[ Channel ’:=’] <expression (IN) of num>’)’

A function with a return value of the type num.

Related information

For information about See

Define test signal TestSignDefine - Define test signal on page 551

Reset test signals TestSignReset - Reset all test signal definitions on page 553

Continued



2 Functions

2.137. TextGet - Get text from system text tables
RobotWare - OS

3HAC 16581-1  Revision: J1022

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.137. TextGet - Get text from system text tables

Usage

TextGet is used to get a text string from the system text tables.

Basic examples

Basic examples of the function TextGet are illustrated below.

Example 1
VAR string text1;

...

text1 := TextGet(14, 5);

The variable text1 is assigned the text stored in text resource 14 and index 5.

Return value

Data type: string

Specified text from the system text tables.

Arguments
TextGet ( Table Index )

Table

Data type: num

The text table number (positive integer).

Index

Data type: num

The index number (positive integer) within the text table.

Error handling

If table or index is not valid, and no text string can be fetched from the system text tables, the 

system variable ERRNO is set to ERR_TXTNOEXIST. The execution continues in the error 

handler.

Syntax
TextGet ’(’ 

[ Table ’:=’ ] < expression (IN) of num > ’,’

[ Index ’:=’ ] < expression (IN) of num> ’)’

A function with a return value of the data type string.

Continues on next page



2 Functions

2.137. TextGet - Get text from system text tables
RobotWare - OS

10233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Get text table number TextTabGet - Get text table number on page 1026

Install text table TextTabInstall - Installing a text table on page 554

Format text files Technical reference manual - RAPID kernel, section 
RAPID Kernel reference manual - Text files

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions 

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.138. TextTabFreeToUse - Test whether text table is free
RobotWare - OS

3HAC 16581-1  Revision: J1024

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.138. TextTabFreeToUse - Test whether text table is free

Usage

TextTabFreeToUse should be used to test whether the text table name (text resource string) 

is free to use (not already installed in the system), i.e. whether it is possible to install the text 

table in the system or not.

Basic examples

Basic examples of the function TextTabFreeToUse are illustrated below.

Example 1
! System Module with Event Routine to be executed at event

! POWER ON, RESET or START

PROC install_text()

IF TextTabFreeToUse("text_table_name") THEN

TextTabInstall "HOME:/text_file.eng";

ENDIF

ENDPROC

The first time the event routine install_text is executed, the function 

TextTabFreeToUse returns TRUE and the text file text_file.eng is installed in the 

system. After that the installed text strings can be fetched from the system to RAPID by the 

functions TextTabGet and TextGet.

Next time the event routine install_text is executed, the function TextTabFreeToUse 

returns FALSE and the installation is not repeated.

Return value

Data type: bool

This function returns:

• TRUE, if the text table is not already installed in the system

• FALSE, if the text table is already installed in the system

Arguments
TextTabFreeToUse ( TableName )

TableName

Data type: string

The text table name (a string with max. 80 characters). Refer to <text_resource>:: in 

RAPID Reference Manual - RAPID Kernel, section Text files. The string text_resource is 

the text table name.

Continues on next page



2 Functions

2.138. TextTabFreeToUse - Test whether text table is free
RobotWare - OS

10253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Limitations for installation of text tables (text resources) in the system:

• It is not possible to install the same text table more than once in the system

• It is not possible to uninstall (free) a single text table from the system. The only way 

to uninstall text tables from the system is to cold start the system. All text tables (both 

system and user defined) will then be uninstalled.

Syntax
TextTabFreeToUse’(’

[ TableName’:=’ ] < expression (IN) of string > ’)’

A function with a return value of the data type bool

Related information

For information about See

Install text table TextTabInstall - Installing a text table on page 554

Format of text files Technical reference manual - RAPID kernel, section 
RAPID Kernel reference manual - Text files

Get text table number TextTabGet - Get text table number on page 1026

Get text from system text tables TextGet - Get text from system text tables on page 
1022

String functions Technical reference manual - RAPID overview, 
section RAPID summary - String functions

Definition of string string - Strings on page 1195

Continued



2 Functions

2.139. TextTabGet - Get text table number
RobotWare - OS

3HAC 16581-1  Revision: J1026

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.139. TextTabGet - Get text table number

Usage

TextTabGet is used to get the text table number of a user defined text table during run time.

Basic examples

Basic examples of the function TextTabGet are illustrated below.

A new text table named deburr_part1 for user defined texts. The new text table has the file 

name deburr.eng.

# deburr.eng - USERS deburr_part1 english text description file 

#

# DESCRIPTION: 

# Users text file for RAPID development

#

deburr_part1::

0:

RAPID S4: Users text table deburring part1

1:

Part 1 is not in pos

2:

Identity of worked part: XYZ

3:

Part error in line 1 

#

# End of file

Example 1
VAR num text_res_no;

...

text_res_no := TextTabGet("deburr_part1");

The variable text_res_no is assigned the text table number for the defined text table 

deburr_part1.

Example 2
ErrWrite TextGet(text_res_no, 1), TextGet(text_res_no, 2);

A message is stored in the robot log. The message is also shown on the FlexPendant display. 

The messages will be taken from the text table deburr_part1 :

Part 1 is not in pos

Identity of worked part: XYZ

Return value

Data type: num

The text table number of the defined text table.

Continues on next page



2 Functions

2.139. TextTabGet - Get text table number
RobotWare - OS

10273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
TextTabGet ( TableName )

TableName

Data type: string

The text table name.

Syntax
TextTabGet ’(’

[ TableName’ =’ ] < expression (IN) of string > ’;)’

A function with a return value of the data type num.

Related information

For information about See

Get text from system text tables TextGet - Get text from system text tables on page 
1022

Install text table TextTabInstall - Installing a text table on page 554

Format text files Technical reference manual - RAPID kernel, section 
RAPID Kernel reference manual -Text files

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.140. Trunc - Truncates a numeric value
RobotWare - OS

3HAC 16581-1  Revision: J1028

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.140. Trunc - Truncates a numeric value

Usage

Trunc (Truncate) is used to truncate a numeric value to a specified number of decimals or to 

an integer value.

Basic examples

Basic examples of the function Trunc are illustrated below.

Example 1
VAR num val;

val := Trunc(0.38521\Dec:=3);

The variable val is given the value 0.385.

Example 2
reg1 := 0.38521

val := Trunc(reg1\Dec:=1);

The variable val is given the value 0.3.

Example 3
val := Trunc(0.38521);

The variable val is given the value 0.

Return value

Data type: num

The numeric value truncated to the specified number of decimals.

Arguments
Trunc ( Val [\Dec] )

Val

Value

Data type: num

The numeric value to be truncated.

[\Dec]

Decimals

Data type: num

Number of decimals.

If the specified number of decimals is 0 or if the argument is omitted, the value is truncated 

to an integer.

The number of decimals must not be negative or greater than the available precision for 

numeric values.

Continues on next page



2 Functions

2.140. Trunc - Truncates a numeric value
RobotWare - OS

10293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
Trunc’(’

[ Val ’:=’ ] <expression (IN) of num>

[ \Dec ’:=’ <expression (IN) of num> ]

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID overview, 
section RAPID summary - Mathematics

Rounding a value Round - Round is a numeric value on page 969

Continued



2 Functions

2.141. Type - Get the data type name for a variable
RobotWare - OS

3HAC 16581-1  Revision: J1030

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.141. Type - Get the data type name for a variable

Usage

Type is used to get the data type name for the specified variable in argument Data.

Basic examples

Basic examples of the function Type are illustrated below.

Example 1
VAR string rettype;

VAR intnum intnumtype;

rettype := Type(intnumtype);

TPWrite "Data type name: " + rettype;

The print out will be: "Data type name: intnum"

Example 2
VAR string rettype;

VAR intnum intnumtype;

rettype := Type(intnumtype \BaseName);

TPWrite "Data type name: " + rettype;

The print out will be: "Data type name: num"

Example 3
VAR string rettype;

VAR num numtype;

rettype := Type(numtype);

TPWrite "Data type name: " + rettype;

The print out will be: "Data type name: num"

Return value

Data type: string

A string with the data type name for the specified variable in argument Data.

Arguments
Type (Data [\BaseName])

Data

Data object name

Data type: anytype

The name of the variable to get the data type name for.

[\BaseName]

Base data type Name

Data type: switch

If used, then the function returns the underlying data type name, when the specified Data is 

an ALIAS declared data type.

Continues on next page



2 Functions

2.141. Type - Get the data type name for a variable
RobotWare - OS

10313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
Type’(’

[ Data‘ :=’ ] < reference (REF) of anytype >

[ ‘\’ BaseName ]

’)’

A function with a return value of the data type string.

Related information

For information about See

Definition of Alias types. Technical reference manual - RAPID kernel, 
section Lexical elements - Alias types

Continued



2 Functions

2.142. UIAlphaEntry - User Alpha Entry
RobotWare-OS

3HAC 16581-1  Revision: J1032

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.142. UIAlphaEntry - User Alpha Entry

Usage

UIAlphaEntry (User Interaction Alpha Entry) is used to let the operator enter a string from 

the available user device, such as the FlexPendant. A message is written to the operator, who 

answers with a text string. The string is then transferred back to the program.

Basic examples

Basic examples of the instruction UIAlpaEntry are illustrated below.

See More examples on page 1035.

Example 1
VAR string answer;

 ...

answer := UIAlphaEntry( 

\Header:= "UIAlphaEntry Header",

\Message:= "Which procedure do You want to run?"

\Icon:=iconInfo

\InitString:= "default_proc"); 

%answer%;

xx0500002437

Above alpha message box with icon, header, message, and init string are written on the 

FlexPendant display. The user edit init string or write a new string with the supported Alpha 

Pad. Program execution waits until OK is pressed and then the written string is returned in 

the variable answer. The program then calls the specified procedure with late binding.

Continues on next page



2 Functions

2.142. UIAlphaEntry - User Alpha Entry
RobotWare-OS

10333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Return value

Data type: string

This functions returns the input string.

If function breaks via \BreakFlag:

- If parameter \InitString is specified, this string is returned

- If parameter \InitString is not specified, empty string "" is returned.

If function breaks via ERROR handler, no return value will be returned at all.

Arguments
UIAlphaEntry ([\Header][\Message]|[\MsgArray] 

[\Wrap][\Icon][\InitString] 

[\MaxTime][\DIBreak][\DOBreak][\BreakFlag])

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string

One text line to be written on the display. Max 55 characters.

[\MsgArray]

Message Array

Data type: string

Several text lines from an array to be written on the display.

Only one of parameter \Message or \MsgArray can be used at the same time.

Max. layout space is 9 lines with 55 characters.

[\Wrap]

Data type: switch

If selected, all the specified strings in the argument \MsgArray will be concatenated to one 

string with single space between each individual strings and spread out on as few lines as 

possible.

Default, each string in the argument \MsgArray will be on separate line on the display. 

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type icondata can be 

used. See Predefined data on page 1034.

Default no icon.

[\InitString]

Data type: string

An initial string to be display in the text entry box as default.

Continued

Continues on next page



2 Functions

2.142. UIAlphaEntry - User Alpha Entry
RobotWare-OS

3HAC 16581-1  Revision: J1034

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If the OK button is 

not pressed within this time, the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1), the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be 

used to test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1), the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

 Data type: errnum

A variable (before used set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted, the 

error handler will be executed. 

Program execution

The alpha message box with alpha pad, icon, header, message lines, and init string are 

displayed according to the programmed arguments. Program execution waits until the user 

edits or creates a new string and presses OK, or the message box is interrupted by time-out or 

signal action. The input string and interrupt reason are transferred back to the program.

New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons: 

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

Continued

Continues on next page



2 Functions

2.142. UIAlphaEntry - User Alpha Entry
RobotWare-OS

10353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

More examples

More examples of the function UIAlphaEntry are illustrated below.

Example 1
VAR errnum err_var;

VAR string answer;

VAR string logfile;

... 

answer := UIAlphaEntry (\Header:= "Log file name:"

\Message:= "Enter the name of the log file to create?" 

\Icon:=iconInfo

\InitString:= "signal.log" \MaxTime:=60 

\DIBreak:=di5\BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

logfile:="signal.log";

CASE 0:

! Operator answer

logfile := answer;

DEFAULT: 

! Not such case defined

ENDTEST

The message box is displayed and the operator can enter a string and press OK. The message 

box can also be interrupted with time out or break by digital input signal. In the program it’s 

possible to find out the reason and take the appropriate action.

Error handling

If parameter \BreakFlag is not used, these situations can then be dealt with by the error 

handler:

If there is a time-out (parameter \MaxTime) before an input from the operator, the system 

variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the error handler.

If digital input is set (parameter \DIBreak) before an input from the operator, the system 

variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the error handler.

If a digital output is set (parameter \DOBreak) before an input from the operator, the system 

variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the error handler.

This situation can only be dealt with by the error handler:

If there is no client, e.g. a FlexPendant, to take care of the instruction, the system variable 

ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error handler.

Limitations

Avoid using too small a value for the time-out parameter \MaxTime when  UIAlphaEntry is 

frequently executed, for example in a loop. It can result in an unpredictable behavior of the 

system performance, like slow response of the FlexPendant.

Continued

Continues on next page



2 Functions

2.142. UIAlphaEntry - User Alpha Entry
RobotWare-OS

3HAC 16581-1  Revision: J1036

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
UIAlphaEntry´(´

[´\´Header’:=’ <expression (IN) of string>]

[´\´ Message’:=’ <expression (IN) of string>]

| [´\´MsgArray’:=’<array {*} (IN) of string>]

[´\´Wrap]

[´\´Icon’:=’ <expression (IN) of icondata>]

[´\´InitString’:=’<expression (IN) of string>]

[´\´MaxTime’:=’ <expression (IN) of num>]

[´\´DIBreak’:=’ <variable (VAR) of signaldi>]

[´\´DOBreak´:=´<variable (VAR) of signaldo>]

[’\’BreakFlag ´:=´ <var or pers (INOUT) of errnum>]‘)’

A function with return value of the data type string.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box type 
advanced

UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 
1064

User Interaction Number Tune UINumTune - User Number Tune on page 
1070

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 1037

Procedure call with Late binding Technical reference manual - RAPID 
overview, section Basic characteristics - 
Routines - Procedure call

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



2 Functions

2.143. UIClientExist - Exist User Client
RobotWare - OS

10373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.143. UIClientExist - Exist User Client

Usage

UIClientExist (User Interaction Client Exist) is used to check if some User Device such 

as the FlexPendant is connected to the controller.

Basic examples

Basic examples of the function UIClientExist are illustrated below.

Example 1
IF UIClientExist() THEN

! Possible to get answer from the operator

! The TPReadFK and UIMsgBox ... can be used

ELSE

! Not possible to communicate with any operator

ENDIF

The test is done if it is possible to get some answer from the operator of the system.

Return value

Data type: bool

Returns TRUE if a FlexPendant is connected to the system, otherwise FALSE.

Limitations

UIClientExist returns TRUE up to 16 seconds. After that, the FlexPendant is removed. 

After that time, UIClientExist returns FALSE (i.e when network connection lost from 

FlexPendent is detected). Same limitation when the FlexPendant is connected again.

Syntax
UIClientExist’(’ ’)

A function with return value of the type bool.

Related information

For information about See

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box type advanced UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 
1064

User Interaction Number Tune UINumTune - User Number Tune on page 
1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 
1032

User Interaction List View UIListView - User List View on page 1050

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556



2 Functions

2.144. UIDnumEntry - User Number Entry
RobotWare - OS

3HAC 16581-1  Revision: J1038

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.144. UIDnumEntry - User Number Entry

Usage

UIDnumEntry (User Interaction Number Entry) is used to let the operator enter a numeric 

value from the available user device, such as the FlexPendant. A message is written to the 

operator, who answers with a numeric value. The numeric value is then checked, approved 

and transferred back to the program.

Basic examples

Basic examples of the function UIDnumEntry are illustrated below.

See also More examples on page 1041.

Example 1
VAR dnum answer;

...

answer := UIDnumEntry(

\Header:="UIDnumEntry Header"

\Message:="How many units should be produced?"

\Icon:=iconInfo

\InitValue:=50000000

\MinValue:=10000000

\MaxValue:=100000000

\AsInteger);

xx0900001064

Continues on next page



2 Functions

2.144. UIDnumEntry - User Number Entry
RobotWare - OS

10393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Above, the numeric message box with icon, header, message, init-, max-, and minvalue 

written on the FlexPendant display. The message box checks that the operator selects an 

integer within the value range. Program execution waits until OK is pressed and then the 

selected numerical value is returned.

Return value

Data type: dnum

This function returns the input numeric value.

If function breaks via \BreakFlag:

• If parameter \InitValue is specified, this value is returned

• If parameter \InitValue is not specified, value 0 is returned.

If function breaks via ERROR handler there is no return value at all.

Arguments
UIDnumEntry ( [\Header] [\Message] | [\MsgArray] 

[\Wrap] [\Icon] [\InitValue] [\MinValue] [\MaxValue] 

[\AsInteger] [\MaxTime] [\DIBreak] [\DOBreak] 

\BreakFlag] )

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string

One text line to be written on the display. Max. 40 characters.

[\MsgArray]

Message Array

Data type: string

Several text lines from an array to be written on the display.

Only one of parameter \Message or \MsgArray can be used at the same time.

Max. layout space is 9 lines with 40 characters each.

[\Wrap]

Data type: switch

If selected, all the specified strings in the argument \MsgArray will be concatenated to one 

string with a single space between each individual string, and spread out on as few lines as 

possible.

Default, each string in the argument \MsgArray will be on a separate line on the display. 

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type icondata can be 

used. See Predefined data on page 1041.

Default no icon.

Continued

Continues on next page



2 Functions

2.144. UIDnumEntry - User Number Entry
RobotWare - OS

3HAC 16581-1  Revision: J1040

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\InitValue]

Data type: dnum

Initial value that is displayed in the entry box.

[\MinValue]

Data type: dnum

The minimum value for the return value.

[\MaxValue]

Data type: dnum

The maximum value for the return value.

[\AsInteger]

Data type: switch

Eliminates the decimal point from the number pad to ensure that the return value is an integer.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If the OK button is 

not pressed within this time, the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be 

used to test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable (before used, set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak, or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted, the 

error handler will be executed.

Continued

Continues on next page



2 Functions

2.144. UIDnumEntry - User Number Entry
RobotWare - OS

10413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The numeric message box with numeric pad, icon, header, message lines, init-, max-, and 

minvalue is displayed according to the programmed arguments. Program execution waits 

until the user has entered an approved numeric value and pressed OK or the message box is 

interrupted by timeout or signal action. The input numeric value and interrupt reason are 

transferred back to the program.

New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples

More examples of the function UIDnumEntry are illustrated below.

Example 1
VAR errnum err_var;

VAR dnum answer;

VAR dnum distance;

...

answer := UIDnumEntry (\Header:= "BWD move on path"

\Message:="Enter the path overlap?" \Icon:=iconInfo

\InitValue:=5 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer distance := 5;

CASE 0

! Operator answer

distance := answer;

DEFAULT:

! No such case defined

ENDTEST

The message box is displayed and the operator can enter a numeric value and press OK. The 

message box can also be interrupted with a time out or break by digital input signal. In the 

program, it is possible to find out the reason and take the appropriate action.

Continued

Continues on next page



2 Functions

2.144. UIDnumEntry - User Number Entry
RobotWare - OS

3HAC 16581-1  Revision: J1042

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If parameter \BreakFlag is not used, these situations can then be dealt with by the error 

handler:

• If there is a timeout (parameter \MaxTime) before an input from the operator then the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If a digital input is set (parameter \DIBreak) before an input from the operator then 

the system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in 

the error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator then 

the system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in 

the error handler.

Limitations

Avoid using too small a value for the timeout parameter \MaxTime when UIDnumEntry is 

frequently executed, for example, in a loop. It can result in unpredictable behavior from the 

system performance, like the slow response of the FlexPendant.

Syntax
UIDnumEntry´(´

[´\´Header´:=´ <expression (IN) of string>]

[Message’:=’ <expression (IN) of string> ]

| [´\´MsgArray’:=’<array {*} (IN) of string>]

[´\´Wrap]

[´\´Icon’:=’ <expression (IN) of icondata>]

[´\´InitValue’:=’<expression (IN) of dnum>]

[´\´MinValue’:=’<expression (IN) of dnum>]

[´\´MaxValue’:=’<expression (IN) of dnum>]

[´\´AsInteger]

[´\´MaxTime’:=’ <expression (IN) of num>]

[\´DIBreak’:=’ <variable (VAR) of signaldi>]

[´\´DOBreak’:=’ <variable (VAR) of signaldo>]

[´\´BreakFlag’:=’ <var or pers (INOUT) of errnum>] ´)´

A function with return value of the data type dnum.

Continued

Continues on next page



2 Functions

2.144. UIDnumEntry - User Number Entry
RobotWare - OS

10433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box type advanced UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 
1064

User Interaction Number Tune UIDnumTune - User Number Tune on page 
1044

User Interaction Number Tune UINumTune - User Number Tune on page 
1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 
1032

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 
1037

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



2 Functions

2.145. UIDnumTune - User Number Tune
RobotWare - OS

3HAC 16581-1  Revision: J1044

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.145. UIDnumTune - User Number Tune

Usage

UIDnumTune (User Interaction Number Tune) is used to let the operator tune a numeric value 

from the available user device, such as the FlexPendant. A message is written to the operator, 

who tunes a numeric value. The tuned numeric value is then checked, approved and 

transferred back to the program.

Basic examples

Basic examples of the function UIDnumTune are illustrated below.

See also More examples on page 1047.

Example 1
VAR dnum flow;

...

flow := UIDnumTune(

\Header:="UIDnumTune Header"

\Message:="Tune the flow?"

\Icon:=iconInfo,

10000000,

1000000

\MinValue:=1000000

\MaxValue:=20000000);

xx0900001063

Continues on next page



2 Functions

2.145. UIDnumTune - User Number Tune
RobotWare - OS

10453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Above, the numeric tune message box with icon, header, message, init-, increment, max-, and 

minvalue written on the FlexPendant display. The message box checks that the operator tunes 

the flow value with step 1000000 from init value 10000000 and is within the value range 

1000000-20000000. Program execution waits until OK is pressed and then the selected 

numerical value is returned and stored in the variable flow.

Return value

Data type: dnum

This function returns the tuned numeric value.

If function breaks via \BreakFlag, the specified InitValue is returned.

If function breaks via ERROR handler, no return value is returned at all.

Arguments
UIDnumTune ( [\Header] [\Message] | [\MsgArray] [\Wrap] 

[\Icon] InitValue Increment [\MinValue] [\MaxValue] 

[\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag] )

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string

One text line to be written on the display. Max. 40 characters.

[\MsgArray]

Message Array

Data type: string

Several text lines from an array to be written on the display.

Only one of parameter \Message or \MsgArray can be used at the same time.

Max. layout space is 11 lines with 40 characters each.

[\Wrap]

Data type: switch

If selected, all the specified strings in the argument \MsgArray will be concatenated to one 

string with a single space between each individual string and spread out on as few lines as 

possible.

Default, each string in the argument \MsgArray will be on a separate line on the display. 

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type icondata can be 

used. See Predefined data on page 1047.

Default no icon.

Continued

Continues on next page



2 Functions

2.145. UIDnumTune - User Number Tune
RobotWare - OS

3HAC 16581-1  Revision: J1046

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

InitValue

Initial Value

Data type: dnum 

Initial value that is displayed in the entry box.

Increment

Data type: dnum

This parameter specifies how much the value should change when the plus or minus button 

is pressed.

[\MinValue]

Data type: dnum

The minimum value for the return value.

[\MaxValue]

Data type: dnum

The maximum value for the return value.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If the OK button is 

not pressed within this time, the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can 

be used to test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable (before used, set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak, or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted, the 

error handler will be executed. 

Continued

Continues on next page



2 Functions

2.145. UIDnumTune - User Number Tune
RobotWare - OS

10473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The numeric tune message box with tune +/- buttons, icon, header, message lines, init-, 

increment, max, and minvalue is displayed according to the programmed arguments. Program 

execution waits until the user has tuned the numeric value and pressed OK or the message 

box is interrupted by timeout or signal action. The input numeric value and interrupt reason 

are transferred back to the program.

New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples

More examples of the function UIDnumTune are illustrated below.

Example 1
VAR errnum err_var;

VAR dnum tune_answer;

VAR dnum distance;

...

tune_answer := UIDnumTune (\Header:=" BWD move on path"

\Message:="Enter the path overlap?" \Icon:=iconInfo,

5, 1 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

distance := 5;

CASE 0:

! Operator answer

distance := tune_answer;

DEFAULT:

! No such case defined

ENDTEST

The tune message box is displayed and the operator can tune the numeric value and press OK. 

The message box can also be interrupted with timeout or break by digital input signal. In the 

program, it is possible to find out the reason and take the appropriate action.

Continued

Continues on next page



2 Functions

2.145. UIDnumTune - User Number Tune
RobotWare - OS

3HAC 16581-1  Revision: J1048

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If parameter \BreakFlag is not used then these situations can be dealt with by the error 

handler:

• If there is a timeout (parameter \MaxTime) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If a digital input is set (parameter \DIBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the 

error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the 

error handler.

This situation can only be dealt with by the error handler:

• If there is no client, e.g. a FlexPendant, to take care of the instruction then the system 

variable ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error 

handler.

• If the initial value (parameter \InitValue) is not specified within the range of the 

minimum and maximum value (parameters \MinValue and \MaxValue) then the 

system variable ERRNO is set to ERR_UI_INITVALUE and the execution continues in 

the error handler.

• If the minimum value (parameter \MinValue) is greater than the maximum value 

(parameter \MaxValue) then the system variable ERRNO is set to ERR_UI_MAXMIN 

and the execution continues in the error handler.

Limitations

Avoid using too small a value for the timeout parameter \MaxTime when UIDnumTune is 

frequently executed, for example, in a loop. It can result in unpredictable behavior from the 

system performance, like a slow response of the FlexPendant.

Syntax
UIDnumTune’(’

[’\’Header’:=’ <expression (IN) of string>]

[’\’Message’:=’ <expression (IN) of string> ]

| [‘\’MsgArray’:=’<array {*} (IN) of string>]

[’\’Wrap]

[’\’Icon’:=’ <expression (IN) of icondata>] ’,’]

[InitValue’:=’ ] <expression (IN) of dnum> ’,’

[Increment’:=’ ] <expression (IN) of dnum>

[’\’MinValue’:=’ <expression (IN) of dnum>]

[’\’MaxValue’:=’ <expression(IN) of dnum>]

[’\’MaxTime’:=’ <expression (IN) of num>]

[’\’DIBreak’:=’ <variable (VAR) of signaldi>]

[’\’DOBreak’:=’ <variable (VAR) of signaldo>]

[’\’BreakFlag’:=’ <var or pers (INOUT) of errnum>] ’)’

A function with return value of the data type dnum.

Continued

Continues on next page



2 Functions

2.145. UIDnumTune - User Number Tune
RobotWare - OS

10493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box type advanced UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UIDnumEntry - User Number Entry on page 
1038

User Interaction Number Entry UINumEntry - User Number Entry on page 
1064

User Interaction Number Tune UINumTune - User Number Tune on page 
1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 
1032

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 
1037

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



2 Functions

2.146. UIListView - User List View
RobotWare - OS

3HAC 16581-1  Revision: J1050

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.146. UIListView - User List View

Usage

UIListView (User Interaction List View) is used to define menu lists with text and optional 

icons on the available User Device such as the FlexPendant. The menu has two different 

styles, one with validations buttons and one that reacts instantly to the user selection.

Basic examples 

Basic examples of the function UIListView are illustrated below.

See also More examples on page 1054.

Example 1
CONST listitem list{3} := [ ["","Item 1"], ["","Item 2"], 

["","Item 3"] ];

VAR num list_item;

VAR btnres button_answer;

...

list_item := UIListView (

\Result:=button_answer

\Header:="UIListView Header",

list

\Buttons:=btnOKCancel

\Icon:=iconInfo

\DefaultIndex:=1);

IF button_answer = resOK THEN

IF list_item = 1 THEN

! Do item1

ELSEIF list_item = 2 THEN

! Do item 2

ELSE

! Do item3

ENDIF

ELSE

! User has select Cancel

ENDIF

Continues on next page



2 Functions

2.146. UIListView - User List View
RobotWare - OS

10513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xx0500002416

Above menu list with icon, header, menu Item 1 ... Item 3, and buttons are written on 

the FlexPendant display. Program execution waits until OK or Cancel is pressed. Both the 

selection in the list and the pressed button are transfered to the program.

Return value

Data type: num

This function returns the user selection in the list menu corresponding to the index in the array 

specified in the parameter ListItems.

If the function breaks via \BreakFlag:

• If parameter \DefaultIndex is specified, this index is returned

• If parameter \DefaultIndex is not specified, 0 is returned

If function breaks via ERROR handler, no return value is returned at all.

Arguments
UIListView ( [\Result] [\Header] ListItems [\Buttons] | 

[\BtnArray] [\Icon] [\DefaultIndex ] [\MaxTime] 

[\DIBreak] [\DOBreak] [\BreakFlag])

[\Result]

Data type: btnres

The numeric value of the button that is selected from the list menu box.

If argument \Buttons is used, the predefined symbolic constants of type btnres is returned. 

If argument \BtnArray is used, the corresponding array index is returned.

Argument \Result set to resUnkwn equal to 0 if one of following condition:

•  none of parameters \Buttons or \BtnArray are used 

• argument \Buttons:=btnNone is used 

• if the function breaks via \BreakFlag or ERROR handler

See Predefined data on page 1054.

Continued

Continues on next page



2 Functions

2.146. UIListView - User List View
RobotWare - OS

3HAC 16581-1  Revision: J1052

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Header]

Data type: string

Header text to be written at the top of the list menu box. Max. 40 characters.

ListItem

Data type: listitem

An array with one or several list menu items to be displayed consisting of:

Component image of type string: 

The name of the icon image that should be used. To launch own images, the images has to be 

placed in the HOME: directory in the active system or directly in the active system.

The recommendation is to place the files in the HOME: directory so that they are saved if a 

Backup and Restore is done.

A warmstart is required and then the FlexPendant loads the images.

A demand on the system is that the RobotWare option FlexPendant Interface is used.

The image that will be shown can have the width and height of 28 pixels. If the image is 

bigger, then it will be resized to show only 28 * 28 pixels.

No exact value can be specified on the size that an image can have or the amount of images 

that can be loaded to the FlexPendant. It depends on the size of other files loaded to the 

FlexPendant. The program execution will just continue if an image is used that has not been 

loaded to the FlexPendant.

Use empty string ”” or stEmpty if no icon to display.

Component text of type string: 

• The text for the menu line to display. 

• Max. 75 characters for each list menu item.

[\Buttons]

Data type: buttondata

Defines the push buttons to be displayed. Only one of the predefined buttons combination of 

type buttondata can be used. See Predefined data on page 1054.

[\BtnArray]

Button Array

Data type: string

Own definition of push buttons stored in an array of strings. This function returns the array 

index when corresponding string is selected.

Only one of parameter \Buttons or \BtnArray can be used at the same time. If none of 

the parameters \Buttons or \BtnArray or argument \Buttons:=btnNone are used then 

the menu list reacts instantly to the user selection.

Max. 5 buttons with 42 characters each.

Continued

Continues on next page



2 Functions

2.146. UIListView - User List View
RobotWare - OS

10533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type  icondata can be 

used.

Default no icon. See Predefined data on page 1054.

[\DefaultIndex]

Data type: num

The default user selection in the list menu corresponding to the index in the array specified in 

the parameter ListItems.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If no button is 

pressed or no selection is done within this time then the program continues to execute in the 

error handler unless the BreakFlag is used (see below). The constant ERR_TP_MAXTIME can 

be used to test whether or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If no button is pressed or no 

selection is done before the signal is set to 1 (or is already 1) then the program continues to 

execute in the error handler, unless the BreakFlag is used (see below). The constant 

ERR_TP_DIBREAK can be used to test whether or not this has occurred.

[\DOBreak]()

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If no button is pressed or no 

selection is done before the signal is set to 1 (or is already 1) then the program continues to 

execute in the error handler, unless the BreakFlag is used (see below). The constant 

ERR_TP_DOBREAK can be used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable that will hold the error code if \MaxTime, \DIBreak, or \DOBreak is used. The 

constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and ERR_TP_DOBREAK can be used to 

select the reason. If this optional variable is omitted, the error handler will be executed. 

Program execution

The menu list with icon, header, list items, and default item are displayed according to the 

programmed arguments. Program execution waits until the operator has done the selection or 

the menu list is interrupted by time-out or signal action. The selected list item and interrupt 

reason are transferred back to the program.

New menu list on TRAP level takes focus from menu list on basic level.

Continued

Continues on next page



2 Functions

2.146. UIListView - User List View
RobotWare - OS

3HAC 16581-1  Revision: J1054

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

!Results:

CONST btnres resUnkwn := 0;

CONST btnres resOK := 1;

CONST btnres resAbort := 2;

CONST btnres resRetry := 3;

CONST btnres resIgnore := 4;

CONST btnres resCancel := 5;

CONST btnres resYes := 6;

CONST btnres resNo := 7;

More examples

More examples of the function UIListView are illustrated below.

Example 1
CONST listitem list{2} := [ ["","Calibrate tool1"], ["","Calibrate 

tool2"] ]; 

VAR num list_item;

VAR errnum err_var;

...

list_item := UIListView

( \Header:="Select tool ?",

list \Icon:=iconInfo

\MaxTime:=60

\DIBreak:=di5

\BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

CASE 0:

Continued

Continues on next page



2 Functions

2.146. UIListView - User List View
RobotWare - OS

10553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

! Operator answer

IF list_item =1 THEN

! Calibrate tool1

ELSEIF list_item=2 THEN

! Calibrate tool2

ENDIF

DEFAULT:

! Not such case defined

ENDTEST

The message box is displayed and the operator can select an item in the list. The message box 

can also be interrupted with time out or break by digital input signal. In the program it’s 

possible to find out the reason and take the appropriate action.

Error handling

If parameter \BreakFlag is not used, these situations can then be dealt with by the error 

handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the 

error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the 

error handler.

This situation can only be dealt with by the error handler:

• If there is no client, e.g. a FlexPendant, to take care of the instruction then the system 

variable ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error 

handler.

Limitations

Avoid using too small a value for the time-out parameter \MaxTime when UIListView is 

frequently executed, for example in a loop. It can result in unpredictable behavior from the 

system performance, like slow response of the FlexPendant.

Continued

Continues on next page



2 Functions

2.146. UIListView - User List View
RobotWare - OS

3HAC 16581-1  Revision: J1056

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
UIListView ’(’

[[’\’Result ´:=´ <var or pers (INOUT) of btnres>]

[’\’Header ´:=´ <expression (IN) of string>] ’,’]

[ListItems ´=´] <array {*} (IN) of listitem> 

[’\’Buttons ´:=´ <expression (IN) of buttondata>]

| [’\’BtnArray ´:=´<array {*} (IN) of string>]

[’\’Icon ’:=’ <expression (IN) of icondata>]

[’\’DefaultIndex ´:=´<expression (IN) of num>]

[’\’MaxTime ´:=´ <expression (IN) of num>]

[’\’DIBreak ´:=´ <variable (VAR) of signaldi>]

[’\’DOBreak ´:=´ <variable (VAR) of signaldo>]

[’\’BreakFlag ´:=´ <var or pers (INOUT) of errnum>]‘)’

A function with return value of the data type num.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

Push button data buttondata - Push button data on page 1089

Push button result data btnres - Push button result data on page 1086

List item data structure listitem - List item data structure on page 1131

User Interaction Message Box 
type basic

UIMsgBox - User Message Dialog Box type basic on 
page 644

User Interaction Message Box 
type advanced

UIMessageBox - User Message Box type advanced on 
page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 1064

User Interaction Number Tune UINumTune - User Number Tune on page 1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 1032

System connected to 
FlexPendant etc.

UIClientExist - Exist User Client on page 1037

Clean up the Operator window TPErase - Erases text printed on the FlexPendant on 
page 556

Continued



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

10573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.147. UIMessageBox - User Message Box type advanced

Usage

UIMessageBox (User Interaction Message Box) is used to communicate with the user of the 

robot system on available user device, such as the FlexPendant. A message is written to the 

operator, who answers by selecting a button. The user selection is then transferred back to the 

program.

Basic examples

Basic examples of the function UIMessageBox are illustrated below.

See also More examples on page 1061.

Example 1
VAR btnres answer;

CONST string my_message{5}:= ["Message Line 1","Message Line 2",

"Message Line 3","Message Line 4","Message Line 5"];

CONST string my_buttons{2}:=["OK","Skip"];

...

answer:= UIMessageBox (

\Header:="UIMessageBox Header"

\MsgArray:=my_message

\BtnArray:=my_buttons

\Icon:=iconInfo);

IF answer = 1 THEN

! Operator selection OK

ELSEIF answer = 2 THEN

! Operator selection Skip

ELSE

! No such case defined

ENDIF

xx0500002409

Continues on next page



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

3HAC 16581-1  Revision: J1058

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Above message box is with icon, header, message, and user defined push buttons that are 

written on the FlexPendant display. Program execution waits until OK or Skip is pressed. In 

other words, answer will be assigned 1 (OK) or 2 (Skip) depending on which of the buttons 

is pressed (corresponding array index).

NOTE!

Message Line 1 ... Message Line 5 are displayed on separate lines 1 to 5 (the switch 

\Wrap is not used).

Return value

Data type: btnres

The numeric value of the button that is selected from the message box.

If argument \Buttons is used, the predefined symbolic constants of type btnres is returned.

If argument \BtnArray is used, the corresponding array index is returned.

If function breaks via \BreakFlag or if \Buttons:=btnNone:

• If parameter \DefaultBtn is specified, this index is returned.

• If parameter \DefaultBtn is not specified, resUnkwn equal to 0 is returned.

If function breaks via ERROR handler, there is no return value at all.

Arguments
UIMessageBox ( [\Header] [\Message] | [\MsgArray] 

[\Wrap] [\Buttons] | [\BtnArray] [\DefaultBtn] 

[\Icon] [\Image] [\MaxTime] [\DIBreak] [\DOBreak] 

[\BreakFlag] )

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

[\Message] 

Data type: string

One text line to be written on the display. Max 55 characters.

[\MsgArray]

Message Array

Data type: string

Several text lines from an array to be written on the display.

Only one of parameter \Message or \MsgArray can be used at the same time.

Max. layout space is 11 lines with 55 characters each.

[\Wrap]

Data type: switch

If selected, all the specified strings in the argument \MsgArray will be concatenated to one 

string with single spaces between each individual string and spread out on as few lines as 

possible.

Default, each string in the argument \MsgArray will be on separate line on the display. 

Continued

Continues on next page



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

10593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\Buttons]

Data type: buttondata

Defines the push buttons to be displayed. Only one of the predefined buttons combination of 

type buttondata can be used. See Predefined data on page 1060.

Default, the system displays the OK button.

[\BtnArray]

Button Array

Data type: string

Own definition of push buttons stored in an array of strings. This function returns the array 

index when corresponding string is selected.

Only one of parameter \Buttons or \BtnArray can be used at the same time.

Max. 5 buttons with 42 characters each.

[\DefaultBtn]

Default Button

Data type: btnres

Allows to specify a value that should be returned if the message box is interrupted by 

\MaxTime, \DIBreak, or \DOBreak. It’s possible to specify the predefined symbolic 

constant of type btnres or any user defined value. See Predefined data on page 1060.

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type icondata can be 

used. See Predefined data on page 1060.

Default, no icon.

[\Image]

Data type: string

The name of the image that should be used. To launch own images, the images has to be 

placed in the HOME: directory in the active system or directly in the active system.

The recommendation is to place the files in the HOME: directory so that they are saved if a 

Backup and Restore is done.

A warmstart is required and then the FlexPendant loads the images.

A demand on the system is that the RobotWare option FlexPendant Interface is used.

The image that will be shown can have the width of 185 pixels and the height of 300 pixels. 

If the image is bigger, only 185 * 300 pixels of the image will be shown starting at the top left 

of the image.

No exact value can be specified on the size that an image can have or the amount of images 

that can be loaded to the FlexPendant. It depends on the size of other files loaded to the 

FlexPendant. The program execution will just continue if an image is used that has not been 

loaded to the FlexPendant.

Continued

Continues on next page



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

3HAC 16581-1  Revision: J1060

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If no button is 

selected within this time, the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If no button is selected when 

the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be 

used to test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If no button is selected when 

the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable (before used set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak, or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted, the 

error handler will be executed. 

Program execution

The message box with icon, header, message lines, image, and buttons are displayed 

according to the programmed arguments. Program execution waits until the user selects one 

button or the message box is interrupted by time-out or signal action. The user selection and 

interrupt reason are transferred back to the program.

A new message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

Continued

Continues on next page



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

10613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

!Buttons:

CONST buttondata btnNone := -1;

CONST buttondata btnOK := 0;

CONST buttondata btnAbrtRtryIgn := 1;

CONST buttondata btnOKCancel := 2;

CONST buttondata btnRetryCancel := 3;

CONST buttondata btnYesNo := 4;

CONST buttondata btnYesNoCancel := 5;

!Results:

CONST btnres resUnkwn := 0;

CONST btnres resOK := 1;

CONST btnres resAbort := 2;

CONST btnres resRetry := 3;

CONST btnres resIgnore := 4;

CONST btnres resCancel := 5;

CONST btnres resYes := 6;

CONST btnres resNo := 7;

More examples

More examples of the function UIMessageBox are illustrated below.

Example 1
VAR errnum err_var;

VAR btnres answer;

...

answer := UIMessageBox (\Header:= "Cycle step 3"

\Message:="Continue with the calibration ?" 

\Buttons:=btnOKCancel

\DefaultBtn:=resCancel \Icon:=iconInfo \MaxTime:=60 

\DIBreak:=di5

\BreakFlag:=err_var);

IF answer = resOK THEN

! OK from the operator

ELSE

! Cancel from the operator or operation break

TEST err_var

CASE ERR_TP_MAXTIME:

! Time out

CASE ERR_TP_DIBREAK:

! Input signal break

DEFAULT:

! Not such case defined

ENDTEST

ENDIF

The message box is displayed, and the operator can answer OK or Cancel. The message box 

can also be interrupted with time out or break by digital input signal. In the program it’s 

possible to find out the reason.

Continued

Continues on next page



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

3HAC 16581-1  Revision: J1062

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If parameter \BreakFlag is not used, these situations can then be dealt with by the error 

handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the 

error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the 

error handler.

This situation can only be dealt with by the error handler:

• If there is no client, e.g. a FlexPendant, to take care of the instruction, the system 

variable ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error 

handler.

Limitations

Avoid using too small a value for the time-out parameter \MaxTime when UIMessageBox is 

frequently executed, for example in a loop. It can result in an unpredictable behavior of the 

system performance, like slow response of the FlexPendant.

Syntax
UIMessageBox´(´

[´\´Header´:=´ <expression (IN) of string>]

[´\´Message´:=´ <expression (IN) of string>] 

| [´\´MsgArray´:=´<array {*} (IN) of string>]

[´\´Wrap]

[´\´Buttons´=´ <expression (IN) of buttondata>]

| [´\´BtnArray´:=´<array {*}(IN) of string>]

[‘\’DefaultBtn´:=´<expression (IN) of btnres>] 

[‘\’Icon´:=´<expression (IN) of icondata>] 

[‘\’Image´:=´<expression (IN) of string>] 

[´\´MaxTime´:=´ <expression (IN) of num>]

[´\´DIBreak´:=´ <variable (VAR) of signaldi>]

[´\´DOBreak´:=´ <variable (VAR) of signaldo>]

[´\´BreakFlag´:=´ <var or pers (INOUT) of errnum>] ´)´

A function with return value of the data type btnres.

Continued

Continues on next page



2 Functions

2.147. UIMessageBox - User Message Box type advanced
RobotWare - OS

10633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

Push button data buttondata - Push button data on page 1089

Push button result data btnres - Push button result data on page 1086

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type basic 
on page 644

User Interaction Number Entry UINumEntry - User Number Entry on page 1064

User Interaction Number Tune UINumTune - User Number Tune on page 1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 1032

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 1037

FlexPendant interface Product Specification - Controller Software IRC5, 
RobotWare 5.0, section Communication - 
FlexPendant Interface

Clean up the Operator window TPErase - Erases text printed on the FlexPendant 
on page 556

Continued



2 Functions

2.148. UINumEntry - User Number Entry
RobotWare - OS

3HAC 16581-1  Revision: J1064

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.148. UINumEntry - User Number Entry

Usage

UINumEntry (User Interaction Number Entry) is used to let the operator enter a numeric 

value from the available user device, such as the FlexPendant. A message is written to the 

operator, who answers with a numeric value. The numeric value is then checked, approved 

and transferred back to the program.

Basic examples

Basic examples of the function UINumEntry are illustrated below.

See also More examples on page 1067.

Example 1
VAR num answer;

...

answer := UINumEntry(

\Header:="UINumEntry Header"

\Message:="How many units should be produced?"

\Icon:=iconInfo

\InitValue:=5

\MinValue:=1

\MaxValue:=10

\AsInteger);

FOR i FROM 1 TO answer DO

produce_part;

ENDFOR

xx0500002412

Above numeric message box with icon, header, message, init-, max-, and minvalue are 

written on the FlexPendant display. The message box checks that the operator selects an 

integer within the value range. Program execution waits until OK is pressed and then the 

selected numerical value is returned. The routine produce_part is then repeated the number 

of input times via the FlexPendant.

Continues on next page



2 Functions

2.148. UINumEntry - User Number Entry
RobotWare - OS

10653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Return value

Data type: num

This function returns the input numeric value.

If function breaks via \BreakFlag:

• If parameter \InitValue is specified, this value is returned

• If parameter \InitValue is not specified, value 0 is returned.

If function breaks via ERROR handler, no return value at all.

Arguments
UINumEntry ( [\Header] [\Message] | [\MsgArray] 

[\Wrap] [\Icon] [\InitValue] [\MinValue] [\MaxValue] 

[\AsInteger] [\MaxTime] [\DIBreak] [\DOBreak] 

\BreakFlag] )

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string

One text line to be written on the display. Max 40 characters.

[\MsgArray]

Message Array

Data type: string

Several text lines from an array to be written on the display.

Only one of parameter \Message or \MsgArray can be used at the same time.

Max. layout space is 9 lines with 40 characters each.

[\Wrap]

Data type: switch

If selected, all the specified strings in the argument \MsgArray will be concatenated to one 

string with a single space between each individual string, and spread out on as few lines as 

possible.

Default, each string in the argument \MsgArray will be on a separate line on the display. 

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type  icondata can be 

used. See Predefined data on page 1067.

Default no icon.

[\InitValue]

Data type: num

Initial value that is displayed in the entry box.

Continued

Continues on next page



2 Functions

2.148. UINumEntry - User Number Entry
RobotWare - OS

3HAC 16581-1  Revision: J1066

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

[\MinValue]

Data type: num

The minimum value for the return value.

[\MaxValue]

Data type: num

The maximum value for the return value.

[\AsInteger]

Data type: switch

Eliminates the decimal point from the number pad to ensure that the return value is an integer.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If the OK button is 

not pressed within this time, the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can be 

used to test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable (before used set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak, or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted, the 

error handler will be executed.

Continued

Continues on next page



2 Functions

2.148. UINumEntry - User Number Entry
RobotWare - OS

10673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The numeric message box with numeric pad, icon, header, message lines, init-, max-, and 

minvalue are displayed according to the programmed arguments. Program execution waits 

until the user has entered an approved numeric value and presses OK or the message box is 

interrupted by time-out or signal action. The input numeric value and interrupt reason are 

transferred back to the program.

New message box on TRAP level take focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples

More examples of the function UINumEntry are illustrated below.

Example 1
VAR errnum err_var;

VAR num answer;

VAR num distance;

...

answer := UINumEntry (\Header:= "BWD move on path"

\Message:="Enter the path overlap ?" \Icon:=iconInfo

\InitValue:=5 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer distance := 5;

CASE 0

! Operator answer

distance := answer;

DEFAULT:

! Not such case defined

ENDTEST

The message box is displayed and the operator can enter a numeric value and press OK. The 

message box can also be interrupted with a time out or break by digital input signal. In the 

program it’s possible to find out the reason and take the appropriate action.

Continued

Continues on next page



2 Functions

2.148. UINumEntry - User Number Entry
RobotWare - OS

3HAC 16581-1  Revision: J1068

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If parameter \BreakFlag is not used, these situations can then be dealt with by the error 

handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator then the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator then the 

system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the 

error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator then 

the system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in 

the error handler.

This situation can only be dealt with by the error handler:

• If there is no client, e.g. a FlexPendant, to take care of the instruction then the system 

variable ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error 

handler.

• If the initial value (parameter \InitValue) is not specified within the range of the 

minimum and maximum value (parameters \MinValue and \MaxValue) then the 

system variable ERRNO is set to ERR_UI_INITVALUE and the execution continues in 

the error handler.

• If the minimum value (parameter \MinValue) is greater then the maximum value 

(parameter \MaxValue) then the system variable ERRNO is set to ERR_UI_MAXMIN 

and the execution continues in the error handler.

• If the initial value (parameter \InitValue) is not an integer as specified in the 

parameter \AsInteger then the system variable ERRNO is set to ERR_UI_NOTINT 

and the execution continues in the error handler.

Limitations

Avoid using too small a value for the time-out parameter \MaxTime when UINumEntry is 

frequently executed, for example in a loop. It can result in unpredictable behavior from the 

system performance, like slow response of the FlexPendant.

Continued

Continues on next page



2 Functions

2.148. UINumEntry - User Number Entry
RobotWare - OS

10693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
UINumEntry´(´

[´\´Header´:=´ <expression (IN) of string>]

[Message’:=’ <expression (IN) of string> ]

| [´\´MsgArray’:=’<array {*} (IN) of string>]

[´\´Wrap]

[´\´Icon’:=’ <expression (IN) of icondata>]

[´\´InitValue’:=’<expression (IN) of num>]

[´\´MinValue’:=’<expression (IN) of num>]

[´\´MaxValue’:=’<expression (IN) of num>]

[´\´AsInteger]

[´\´MaxTime’:=’ <expression (IN) of num>]

[\´DIBreak’:=’ <variable (VAR) of signaldi>]

[´\´DOBreak’:=’ <variable (VAR) of signaldo>]

[´\´BreakFlag’:=’ <var or pers (INOUT) of errnum>] ´)´

A function with return value of the data type num.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box type advanced UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Tune UINumTune - User Number Tune on page 
1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 
1032

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 
1037

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



2 Functions

2.149. UINumTune - User Number Tune
RobotWare - OS

3HAC 16581-1  Revision: J1070

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.149. UINumTune - User Number Tune

Usage

UINumTune (User Interaction Number Tune) is used to let the operator tune a numeric value 

from the available user device, such as the FlexPendant. A message is written to the operator, 

who tunes a numeric value. The tuned numeric value is then checked, approved and 

transferred back to the program.

Basic examples

Basic examples of the function UINumTune are illustrated below.

See also More examples on page 1073.

Example 1
VAR num flow;

...

flow := UINumTune(

\Header:="UINumTune Header"

\Message:="Tune the flow?"

\Icon:=iconInfo,

2.5,

0.1

\MinValue:=1.5

\MaxValue:=3.5);

xx0500002414

Continues on next page



2 Functions

2.149. UINumTune - User Number Tune
RobotWare - OS

10713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Above numeric tune message box with icon, header, message, init-, increment, max-, and 

minvalue are written on the FlexPendant display. The message box checks that the operator 

tune the flow value with step 0.1 from init value 2.5 is within the value range 1.5 .. 3.5. 

Program execution waits until OK is pressed and then the selected numerical value is returned 

and stored in the variable flow.

Return value

Data type: num

This function returns the tuned numeric value.

If function breaks via \BreakFlag, the specified InitValue is returned.

If function breaks via ERROR handler, no return value is returned at all.

Arguments
UINumTune ( [\Header] [\Message] | [\MsgArray] [\Wrap] 

[\Icon] InitValue Increment [\MinValue] [\MaxValue] 

[\MaxTime] [\DIBreak] [\DOBreak] [\BreakFlag] )

[\Header]

Data type: string

Header text to be written at the top of the message box. Max. 40 characters.

[\Message]

Data type: string

One text line to be written on the display. Max 40 characters.

[\MsgArray]

Message Array

Data type: string

Several text lines from an array to be written on the display.

Only one of parameter \Message or \MsgArray can be used at the same time.

Max. layout space is 11 lines with 40 characters each.

[\Wrap]

Data type: switch

If selected, all the specified strings in the argument \MsgArray will be concatenated to one 

string with a single space between each individual string and spread out on as few lines as 

possible.

Default, each string in the argument \MsgArray will be on separate line on the display. 

[\Icon]

Data type: icondata

Defines the icon to be displayed. Only one of the predefined icons of type icondata can be 

used. See Predefined data on page 1073.

Default no icon.

Continued

Continues on next page



2 Functions

2.149. UINumTune - User Number Tune
RobotWare - OS

3HAC 16581-1  Revision: J1072

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

InitValue

Initial Value

Data type: num 

Initial value that is displayed in the entry box.

Increment

Data type: num

This parameter specifies how much the value should change when the plus or minus button 

is pressed.

[\MinValue]

Data type: num

The minimum value for the return value.

[\MaxValue]

Data type: num

The maximum value for the return value.

[\MaxTime]

Data type: num

The maximum amount of time in seconds that program execution waits. If the OK button is 

not pressed within this time, the program continues to execute in the error handler unless the 

BreakFlag is used (see below). The constant ERR_TP_MAXTIME can be used to test whether 

or not the maximum time has elapsed.

[\DIBreak]

Digital Input Break

Data type: signaldi

The digital input signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DIBREAK can 

be used to test whether or not this has occurred.

[\DOBreak]

Digital Output Break

Data type: signaldo

The digital output signal that may interrupt the operator dialog. If the OK button is not pressed 

before the signal is set to 1 (or is already 1) then the program continues to execute in the error 

handler, unless the BreakFlag is used (see below). The constant ERR_TP_DOBREAK can be 

used to test whether or not this has occurred.

[\BreakFlag]

Data type: errnum

A variable (before used set to 0 by the system) that will hold the error code if \MaxTime, 

\DIBreak, or \DOBreak is used. The constants ERR_TP_MAXTIME, ERR_TP_DIBREAK, and 

ERR_TP_DOBREAK can be used to select the reason. If this optional variable is omitted, the 

error handler will be executed. 

Continued

Continues on next page



2 Functions

2.149. UINumTune - User Number Tune
RobotWare - OS

10733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

The numeric tune message box with tune +/- buttons, icon, header, message lines, init-, 

increment, max, and minvalue are displayed according to the programmed arguments. 

Program execution waits until the user has tuned the numeric value and pressed OK or the 

message box is interrupted by time-out or signal action. The input numeric value and interrupt 

reason are transferred back to the program.

New message box on TRAP level takes focus from message box on basic level.

Predefined data
!Icons:

CONST icondata iconNone := 0;

CONST icondata iconInfo := 1;

CONST icondata iconWarning := 2;

CONST icondata iconError := 3;

More examples

More examples of the function UINumTune are illustrated below.

Example 1
VAR errnum err_var;

VAR num tune_answer;

VAR num distance;

...

tune_answer := UINumTune (\Header:=" BWD move on path"

\Message:="Enter the path overlap ?" \Icon:=iconInfo,

5, 1 \MinValue:=0 \MaxValue:=10

\MaxTime:=60 \DIBreak:=di5 \BreakFlag:=err_var);

TEST err_var

CASE ERR_TP_MAXTIME:

CASE ERR_TP_DIBREAK:

! No operator answer

distance := 5;

CASE 0:

! Operator answer

distance := tune_answer;

DEFAULT:

! Not such case defined

ENDTEST

The tune message box is displayed and the operator can tune the numeric value and press OK. 

The message box can also be interrupted with time-out or break by digital input signal. In the 

program it’s possible to find out the reason and take the appropriate action.

Continued

Continues on next page



2 Functions

2.149. UINumTune - User Number Tune
RobotWare - OS

3HAC 16581-1  Revision: J1074

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Error handling

If parameter \BreakFlag is not used then these situations can be dealt with by the error 

handler:

• If there is a time-out (parameter \MaxTime) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_MAXTIME and the execution continues in the 

error handler.

• If digital input is set (parameter \DIBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DIBREAK and the execution continues in the 

error handler.

• If a digital output is set (parameter \DOBreak) before an input from the operator, the 

system variable ERRNO is set to ERR_TP_DOBREAK and the execution continues in the 

error handler.

This situation can only be dealt with by the error handler:

• If there is no client, e.g. a FlexPendant, to take care of the instruction then the system 

variable ERRNO is set to ERR_TP_NO_CLIENT and the execution continues in the error 

handler.

• If the initial value (parameter \InitValue) is not specified within the range of the 

minimum and maximum value (parameters \MinValue and \MaxValue) then the 

system variable ERRNO is set to ERR_UI_INITVALUE and the execution continues in 

the error handler.

• If the minimum value (parameter \MinValue) is greater than the maximum value 

(parameter \MaxValue) then the system variable ERRNO is set to ERR_UI_MAXMIN 

and the execution continues in the error handler.

Limitations

Avoid using too small a value for the time-out parameter \MaxTime when UINumTune is 

frequently executed, for example in a loop. It can result in unpredictable behavior from the 

system performance, like slow response of the FlexPendant.

Syntax
UINumTune’(’

[’\’Header’:=’ <expression (IN) of string>]

[’\’Message’:=’ <expression (IN) of string> ]

| [‘\’MsgArray’:=’<array {*} (IN) of string>]

[’\’Wrap]

[’\’Icon’:=’ <expression (IN) of icondata>] ’,’]

[InitValue’:=’ ] <expression (IN) of num> ’,’

[Increment’:=’ ] <expression (IN) of num>

[’\’MinValue’:=’<expression (IN) of num>]

[’\’MaxValue’:=’<expression(IN) of num>]

[’\’MaxTime’:=’ <expression (IN) of num>]

[’\’DIBreak’:=’ <variable (VAR) of signaldi>]

[’\’DOBreak’:=’ <variable (VAR) of signaldo>]

[’\’BreakFlag’:=’ <var or pers (INOUT) of errnum>] ’)’

A function with return value of the data type num.

Continued

Continues on next page



2 Functions

2.149. UINumTune - User Number Tune
RobotWare - OS

10753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Icon display data icondata - Icon display data on page 1121

User Interaction Message Box type basic UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box type advanced UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 
1064

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 
1032

User Interaction List View UIListView - User List View on page 1050

System connected to FlexPendant etc. UIClientExist - Exist User Client on page 
1037

Clean up the Operator window TPErase - Erases text printed on the 
FlexPendant on page 556

Continued



2 Functions

2.150. ValidIO - Valid I/O signal to access
RobotWare - OS

3HAC 16581-1  Revision: J1076

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.150. ValidIO - Valid I/O signal to access

Usage

ValidIO is used to check if the specified I/O signal can be accessed without any error at 

present.

Basic examples

Basic examples of the function ValidIO are illustrated below.

Example 1
IF ValidIO(mydosignal) SetDO mydosignal, 1;

Set the digital output signal mydosignal to 1 if it’s I/O unit is up and running.

Return value

Data type: bool

Returns TRUE is valid signal and the I/O unit for the signal is up and running, else FALSE.

Arguments
ValidIO (Signal)

Signal

Data type: signalxx

The signal name. Must be of data type signaldo, signaldi, signalgo, signalgi, 

signalao or signalai. 

Program execution

Execution behaviour:

• Check if valid I/O signal

• Check if the I/O unit for the signal is up and running.

No error messages are generated.

Syntax
ValidIO ’(’ 

[Signal ’:=’] <variable (VAR) of anytype>

’)’

A function with a return value of the data type bool.

Continues on next page



2 Functions

2.150. ValidIO - Valid I/O signal to access
RobotWare - OS

10773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Input/Output instructions Technical reference manual - RAPID 
overview, section RAPID Summary - Input 
and Output Signals

Input/Output functionality in general Technical reference manual - RAPID 
overview, section Motion and I/O Principles - 
I/O Principles

Configuration of I/O Technical reference manual - System 
parameters

Define I/O signal with alias name AliasIO - Define I/O signal with alias name on 
page 21

Continued



2 Functions

2.151. ValToStr - Converts a value to a string
RobotWare - OS

3HAC 16581-1  Revision: J1078

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.151. ValToStr - Converts a value to a string

Usage

ValToStr (Value To String) is used to convert a value of any data type to a string.

Basic examples

Basic examples of the function ValToStr are illustrated below.

Example 1
VAR string str;

VAR pos p := [100,200,300];

str := ValToStr(p);

The variable str is given the value "[100,200,300]".

Example 2
str := ValToStr(TRUE);

The variable str is given the value "TRUE".

Example 3
str := ValToStr(1.234567890123456789);

The variable str is given the value "1.23456789012346".

Example 4
VAR num numtype:=1.234567890123456789;

str := ValToStr(numtype);

The variable str is given the value "1.23457".

Example 5
VAR dnum dnumtype:=1.234567890123456789;

str := ValToStr(dnumtype);

The variable str is given the value "1.23456789012346".

Return value

Data type: string

The value is converted to a string with standard RAPID format. This means, in principle, 6 

significant digits. Literal value interpreted as a dnum (see example 3) and dnum variabels (see 

example 5) though have 15 significant digits.

A runtime error is generated if the resulting string is too long.

Continues on next page



2 Functions

2.151. ValToStr - Converts a value to a string
RobotWare - OS

10793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Arguments
ValToStr ( Val )

Val

Value

Data type: anytype

A value of any data type. All types of value data with structure atomic, record, record 

component, array, or array element can be used.

Syntax
ValToStr’(’

[ Val ’:=’ ] <expression (IN) of anytype>

’)’

A function with a return value of the data type string.

Related information

For information about See

String functions Technical reference manual - RAPID overview, section 
RAPID summary - String functions

Definition of string string - Strings on page 1195

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Continued



2 Functions

2.152. VectMagn - Magnitude of a pos vector
RobotWare - OS

3HAC 16581-1  Revision: J1080

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

2.152. VectMagn - Magnitude of a pos vector

Usage

VectMagn (Vector Magnitude) is used to calculate the magnitude of a pos vector.

Basic examples

Basic examples of the function VectMagn are illustrated below.

Example 1

xx0500002446

A vector A can be written as the sum of its components in the three orthogonal directions:

.

The magnitude of A is:

.

The vector is described by the data type pos and the magnitude by the data type num:

VAR num magnitude;

VAR pos vector;

...

vector := [1,1,1];

magnitude := VectMagn(vector);

Return value

Data type: num

The magnitude of the vector (data type pos).

Arguments
VectMagn (Vector)

Vector

Data type: pos

The vector described by the data type pos.

Continues on next page



2 Functions

2.152. VectMagn - Magnitude of a pos vector
RobotWare - OS

10813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Syntax
VectMagn’(’

[Vector ’:=’] <expression (IN) of pos>

’)’

A function with a return value of the data type num.

Related information

For information about See

Mathematical instructions and functions Technical reference manual - RAPID 
overview, section RAPID summary - 
Mathematics

Continued



2 Functions

2.152. VectMagn - Magnitude of a pos vector
RobotWare - OS

3HAC 16581-1  Revision: J1082

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



3 Data types

3.1. aiotrigg - Analog I/O trigger condition
RobotWare - OS

10833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3 Data types

3.1. aiotrigg - Analog I/O trigger condition

Usage

aiotrigg (Analog I/O Trigger) is used to define the condition to generate an interrupt for an 

analog input or output signal.

Description

Data of the type aiotrigg defines the way a low and a high threshold will be used to 

determine whether the logical value of an analog signal satisfies a condition to generate an 

interrupt.

Basic examples

Basic examples of the data type aiotrigg are illustrated below.

Example 1
VAR intnum sig1int;

CONNECT sig1int WITH iroutine1;

ISignalAI \Single, ai1, AIO_BETWEEN, 1.5, 0.5, 0, sig1int;

Orders an interrupt which is to occur the first time the logical value of the analog input signal 

ai1 is between 0.5 and 1.5. A call is then made to the iroutine1 trap routine.

Predefined data

The following symbolic constants of the data type aiotrigg are predefined and can be used 

when specifying a condition for the instructionsISignalAI and ISignalAO.

Characteristics

aiotrigg is an alias data type for num and consequently inherits its characteristics.

Value Symbolic constant Comment

1 AIO_ABOVE_HIGH Signal will generate interrupts if above specified high value

2 AIO_BELOW_HIGH Signal will generate interrupts if below specified high value

3 AIO_ABOVE_LOW Signal will generate interrupts if above specified low value

4 AIO_BELOW_LOW Signal will generate interrupts if below specified low value

5 AIO_BETWEEN Signal will generate interrupts if between specified low and 
high values

6 AIO_OUTSIDE Signal will generate interrupts if below specified low value 
or above specified high value

7 AIO_ALWAYS Signal will always generate interrupts

Continues on next page



3 Data types

3.1. aiotrigg - Analog I/O trigger condition
RobotWare - OS

3HAC 16581-1  Revision: J1084

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Interrupt from analog input signal ISignalAI - Interrupts from analog input signal on 
page 171

Interrupt from analog output signal ISignalAO - Interrupts from analog output signal 
on page 182

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types

Continued



3 Data types

3.2. bool - Logical values
RobotWare - OS

10853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.2. bool - Logical values

Usage

bool is used for logical values (true/false).

Description

The value of data of the type bool can be either TRUE or FALSE.

Basic examples

Basic examples of the data type bool are illustrated below.

Example 1
flag1 := TRUE;

flag is assigned the value TRUE.

Example 2
VAR bool highvalue;

VAR num reg1;

...

highvalue := reg1 > 100;

highvalue is assigned the value TRUE if reg1 is greater than 100; otherwise, FALSE is 

assigned.

Example 3
IF highvalue Set do1;

The do1 signal is set if highvalue is TRUE.

Example 4
highvalue := reg1 > 100; 

mediumvalue := reg1 > 20 AND NOT highvalue;

mediumvalue is assigned the value TRUE if reg1 is between 20 and 100.

Related information

For information about See

Logical expressions Technical reference manual - RAPID overview, 
section Basic characteristics - Expressions

Operations using logical values Technical reference manual - RAPID overview, 
section Basic characteristics - Expressions



3 Data types

3.3. btnres - Push button result data
RobotWare - OS

3HAC 16581-1  Revision: J1086

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.3. btnres - Push button result data

Usage

btnres (button result) is used for representing the user selection of the push button display 

on the User Device such as the FlexPendant.

Description

A btnres constant is intended to be used when checking the result value from the instruction 

UIMsgBox and the return value from the functions UIMessageBox and UIListView.

Basic examples

Basic examples of the data type btnres are illustrated below.

Example 1
VAR btnres answer;

UIMsgBox "More ?" \Buttons:=btnYesNo \Result:= answer;

IF answer= resYes THEN

...

ELSEIF answer =ResNo THEN

...

ENDIF

The standard button enumeration btnYesNo will give one Yes and one No push button on the 

user interface. The user selection will be stored in the variable answer.

Predefined data

The following constants of the data type btnres are predefined in the system

It is possible to work with user defined push buttons that answer with the functions  

UIMessageBox and UIListView.

Characteristics

btnres is an alias data type for num and consequently inherits its characteristics.

 Value Constants Button answer

0 resUnkwn Unknown result

1 resOK OK

2 resAbort Abort

3 resRetry Retry

4 resIgnore Ignore

5 resCancel Cancel

6 resYes Yes

7 resNo No

Continues on next page



3 Data types

3.3. btnres - Push button result data
RobotWare - OS

10873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

User Interaction Message Box UIMsgBox - User Message Dialog Box type basic on 
page 644

User Interaction Message Box UIMessageBox - User Message Box type advanced 
on page 1057

User Interaction List View UIListView - User List View on page 1050

Alias data type button data buttondata - Push button data on page 1089

Continued



3 Data types

3.4. busstate - State of I/O bus
RobotWare - OS

3HAC 16581-1  Revision: J1088

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.4. busstate - State of I/O bus

Usage

busstate is used to mirror which state an I/O bus is currently in.

Description

A busstate constant is intended to be used when checking the return value from the 

instruction IOBusState.

Basic examples

Basic example of the data type busstate is illustrated below.

Example 1
VAR busstate bstate;

IOBusState "IBS", bstate \Phys;

TEST bstate

CASE IOBUS_PHYS_STATE_RUNNING:

! Possible to access some signal on the IBS bus

DEFAULT:

! Actions for not up and running IBS bus

ENDTEST

Predefined data

The predefined symbolic constants of the data type busstate can be viewed in instruction 

IOBusState.

Characteristics

busstate is an alias data type for num and consequently inherits its characteristics.

Related information

For information about See

Get current state of I/O bus IOBusState - Get current state of I/O bus on page 156

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output Signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters



3 Data types

3.5. buttondata - Push button data
RobotWare - OS

10893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.5. buttondata - Push button data

Usage

buttondata is used for representing a standard push button combination for display on the 

User Device such as the FlexPendant.

Description

A buttondata constant is used for representing response push buttons in instruction 

UIMsgBox and functions UIMessageBox and UIListView.

Basic examples

Basic examples of the data type buttondata are illustrated below.

Example 1
VAR btnres answer;

UIMsgBox "More ?" \Buttons:=btnYesNo \Result:= answer;

IF answer= resYes THEN

...

ELSE

...

ENDIF

The standard button enumeration btnYesNo will give one Yes and one No push button.

Predefined data

The following constants of the data type buttondata are predefined in the system.

It is possible to display user defined push buttons with the functions UIMessageBox and 

UIListView.

Characteristics

buttondata is an alias data type for num and consequently inherits its characteristics.

 Value Constants Button displayed

- 1 btnNone No button

0 btnOK OK

1 btnAbrtRtryIgn Abort, Retry and Ignore

2 btnOKCancel OK and Cancel

3 btnRetryCancel Retry and Cancel

4 btnYesNo Yes and No

5 btnYesNoCancel Yes, No and Cancel

Continues on next page



3 Data types

3.5. buttondata - Push button data
RobotWare - OS

3HAC 16581-1  Revision: J1090

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

User Interaction Message Box UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction List View UIListView - User List View on page 1050

Alias data type button result btnres - Push button result data on page 1086

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types

Continued



3 Data types

3.6. byte - Integer values 0 - 255
RobotWare - OS

10913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.6. byte - Integer values 0 - 255

Usage

byte is used for integer values (0 - 255) according to the range of a byte.

This data type is used in conjunction with instructions and functions that handle the bit 

manipulations and convert features.

Description

Data of the type byte represents an integer byte value.

Basic examples

Basic examples of the data type byte are illustrated below.

Example 1
VAR byte data1 := 130;

Definition of a variable data1 with a decimal value 130. 

Example 2
CONST num parity_bit := 8;

VAR byte data1 := 130;

BitClear data1, parity_bit;

Bit number 8 (parity_bit) in the variable data1 will be set to 0, e.g. the content of the 

variable data1 will be changed from 130 to 2 (integer representation). 

Error handling

If an argument of the type byte has a value that is not in the range between 0 and 255, an 

error is returned on program execution.

Characteristics

byte is an alias data type for num and consequently inherits its characteristics.

Related information

For information about See

Alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types

Bit functions Technical reference manual - RAPID overview, 
section RAPID summary - Bit functions



3 Data types

3.7. clock - Time measurement
RobotWare - OS

3HAC 16581-1  Revision: J1092

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.7. clock - Time measurement

Usage

Clock is used for time measurement. A clock functions like a stopwatch used for timing.

Description

Data of the type clock stores a time measurement in seconds and has a resolution of 

0.01 seconds.

Basic examples

Basic examples of the data type clock are illustrated below.

Example 1
VAR clock myclock;

ClkReset myclock;

The clock, myclock, is declared and reset. Before using ClkReset, ClkStart, ClkStop, 

and ClkRead, you must declare a variable of data type clock in your program.

Limitations

The maximum time that can be stored in a clock variable is approximately 49 days (4,294,967 

seconds). The instructions ClkStart, ClkStop, and ClkRead report clock overflows in the 

very unlikely event that one occurs.

A clock must be declared as a VAR variable type, not as a persistent variable type.

Characteristics

clock is a non-value data type and cannot be used in value-oriented operations.

Related information

For information about See

Summary of Time and Date Instructions Technical reference manual - RAPID overview, 
section RAPID summary - System & time

Non-value data type characteristics Technical reference manual - RAPID overview, 
section Basic characteristics - Data types



3 Data types

3.8. confdata - Robot configuration data
RobotWare - OS

10933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.8. confdata - Robot configuration data

Usage

confdata is used to define the axis configurations of the robot.

Description

All positions of the robot are defined and stored using rectangular coordinates. When 

calculating the corresponding axis positions, there will often be two or more possible 

solutions. This means that the robot is able to achieve the same position, i.e. the tool is in the 

same position and with the same orientation with several different positions or configurations 

of the robots axes.

Some robot types use iterative numerical methods to determine the robot axes positions. In 

these cases the configuration parameters may be used to define good starting values for the 

joints to be used by the iterative procedure.

To unambiguously denote one of these possible configurations, the robot configuration is 

specified using four axis values. For a rotating axis, the value defines the current quadrant of 

the robot axis. The quadrants are numbered 0, 1, 2, etc. (they can also be negative). The 

quadrant number is connected to the current joint angle of the axis. For each axis, quadrant 0 

is the first quarter revolution, 0 to 90°, in a positive direction from the zero position; quadrant 

1 is the next revolution, 90 to 180°, etc. Quadrant -1 is the revolution 0° to (-90°), etc. (see 

figure below).

The figure shows the configuration quadrants for axis 6.

xx0500002398

For a linear axis, the value defines a meter interval for the robot axis. For each axis, value 0 

means a position between 0 and 1 meters and 1 means a position between 1 and 2 meters. For 

negative values, -1 means a position between -1 and 0 meters, etc. (see figure below).

The figure shows configuration values for a linear axis.

xx0500002399

Continues on next page



3 Data types

3.8. confdata - Robot configuration data
RobotWare - OS

3HAC 16581-1  Revision: J1094

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Robot configuration data for IRB 140, 6600, 6650, 7600

There are three singularities within the robot’s working range (See RAPID reference manual 

- RAPID summary, section Motion and I/O principles - Singularities).

• cf1 is the quadrant number for axis 1.

• cf4 is the quadrant number for axis 4.

• cf6 is the quadrant number for axis 6.

cfx is used to select one of eight possible robot configurations numbered from 0 through 7. 

The table below describes each one of them in terms of how the robot is positioned relative 

to the three singularities.

The pictures below give an example of how the same tool position and orientation is attained 

by using the eight different configurations.

The following figure shows an example of robot configuration 0 and 1. Note the different 

signs of the axis 5 angle.

xx0500002400

cfx
Wrist center relative to 
axis 1

Wrist center relative to 
lower arm

Axis 5 angle

0 In front of In front of Positive

1 In front of In front of Negative

2 In front of Behind Positive

3 In front of Behind Negative

4 Behind In front of Positive

5 Behind In front of Negative

6 Behind Behind Positive

7 Behind Behind Negative

Continued

Continues on next page



3 Data types

3.8. confdata - Robot configuration data
RobotWare - OS

10953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The following figure shows an example of robot configuration 2 and 3. Note the different 

signs of the axis 5 angle.

xx0500002401

The following figure shows an example of robot configuration 4 and 5. Note the different 

signs of the axis 5 angle.

xx0500002402

The following figure shows an example of robot configuration 6 and 7. Note the different 

signs of the axis 5 angle.

xx0500002403

Robot configuration data for IRB 340

Only the configuration parameter cf4 is used. 

Robot configuration data for IRB 260, 660

Only the configuration parameter cf6 is used. 

Continued

Continues on next page



3 Data types

3.8. confdata - Robot configuration data
RobotWare - OS

3HAC 16581-1  Revision: J1096

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Robot configuration data for IRB 1400, 2400, 3400, 4400, 6400

Only the three configuration parameters cf1, cf4, and cf6 are used. 

Robot configuration data for IRB 5400

All four configuration parameters are used. cf1, cf4, cf6 for joints 1, 4, and 6 respectively 

and cfx for joint 5. 

Robot configuration data for IRB 5404, 5406

The robots have two rotation axes (arms 1 and 2) and one linear axis (arm 3).

• cf1 is used for the rotating axis 1

• cfx is used for the rotating axis 2

• cf4 and cf6 are not used

Robot configuration data for IRB 5413, 5414, 5423

The robots have two linear axes (arms 1 and 2) and one or two rotating axes (arms 4 and 5). 

(Arm 3 locked).

• cf1 is used for the linear axis 1

• cfx is used for the linear axis 2

• cf4 is used for the rotating axis 4

• cf6 is not used

Robot configuration data for IRB 840

The robot has three linear axes (arms 1, 2 and 3) and one rotating axis (arm 4).

• cf1 is used for the linear axis 1

• cfx is used for the linear axis 2

• cf4 is used for the rotating axis 4

• cf6 is not used

Because of the robot’s mainly linear structure, the correct setting of the configuration 

parameters c1, cx is of less importance.

Components

cf1

Data type: num

Rotating axis:

The current quadrant of axis 1, expressed as a positive or negative integer. 

Linear axis:

The current meter interval of axis 1, expressed as a positive or negative integer.

Continued

Continues on next page



3 Data types

3.8. confdata - Robot configuration data
RobotWare - OS

10973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

cf4

Data type: num

Rotating axis:

The current quadrant of axis 4, expressed as a positive or negative integer. 

Linear axis:

The current meter interval of axis 4, expressed as a positive or negative integer.

cf6

Data type: num

Rotating axis:

The current quadrant of axis 6, expressed as a positive or negative integer. 

Linear axis:

The current meter interval of axis 6, expressed as a positive or negative integer.

cfx

Data type: num

Rotating axis:

For the IRB 140, the current robot configuration, expressed as an integer in the range from 0 

to 7.

For the IRB 5400, the current quadrant of axis 5, expressed as a positive or negative integer.

For other robots, using the current quadrant of axis 2, expressed as a positive or negative 

integer.

Linear axis:

The current meter interval of axis 2, expressed as a positive or negative integer.

Basic examples

Basic examples of the data type confdata are illustrated below.

Example 1
VAR confdata conf15 := [1, -1, 0, 0]

A robot configuration conf15 for robot type IRB 5400 is defined as follows:

• The axis configuration of the robot axis 1 is quadrant 1, i.e. 90-180º. 

• The axis configuration of the robot axis 4 is quadrant -1, i.e. 0-(-90º). 

• The axis configuration of the robot axis 6 is quadrant 0, i.e. 0 - 90º. 

• The axis configuration of the robot axis 5 is quadrant 0, i.e. 0 - 90º. 

Structure
< dataobject of confdata >

< cf1 of num >

< cf4 of num >

< cf6 of num >

< cfx of num >

Continued

Continues on next page



3 Data types

3.8. confdata - Robot configuration data
RobotWare - OS

3HAC 16581-1  Revision: J1098

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Handling configuration data Technical reference manual - RAPID overview, 
section Motion and I/O principles - Robot configura-
tion

Position data robtarget - Position data on page 1176

Continued



3 Data types

3.9. corrdescr - Correction generator descriptor
Path Offset

10993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.9. corrdescr - Correction generator descriptor

Usage

corrdescr (Correction generator descriptor) is used by correction generators. A correction 

generator adds geometric offsets in the path coordinate system.

Description

Data of the type corrdescr contains a reference to a correction generator.

Connection to a correction generator is done by the instruction CorrCon and the descriptor 

(the reference to the correction generator) can be used to deliver geometric offsets in the path 

coordinate system with the instruction CorrWrite.

Offsets provided earlier can be removed by disconnecting a correction generator with the 

instruction CorrDiscon. All connected correction generators can be removed with the 

instruction CorrClear.

The function CorrRead returns the sum of all the delivered offsets so far (includes all 

connected correction generators). 

Basic examples

Basic examples of the data type corrdescr are illustrated below.

Example 1
VAR corrdescr id;

VAR pos offset;

...

CorrCon id;

offset := [1, 2 ,3];

CorrWrite id, offset;

A correction generator is connected with the instruction CorrCon and referenced by the 

descriptor id. Offsets are then delivered to the correction generator (with reference id) using 

the instruction CorrWrite.

Characteristics

corrdescr is a non-value data type.

Continues on next page



3 Data types

3.9. corrdescr - Correction generator descriptor
Path Offset

3HAC 16581-1  Revision: J1100

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Connects to a correction generator CorrCon - Connects to a correction generator on 
page 71

Disconnects from a correction generator CorrDiscon - Disconnects from a correction 
generator on page 76

Writes to a correction generator CorrWrite - Writes to a correction generator on 
page 77

Reads the current total offsets CorrRead - Reads the current total offsets on 
page 803

Removes all correction generators CorrClear - Removes all correction generators 
on page 70

Characteristics of non-value data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types

Continued



3 Data types

3.10. datapos - Enclosing block for a data object
RobotWare - OS

11013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.10. datapos - Enclosing block for a data object

Usage

datapos is the enclosing block to a data object (internal system data) retrieved with the 

function GetNextSym.

Description

Data of the type datapos contains information of where a certain object is defined in the 

system. It is used for instructions GetDataVal and SetDataVal.

Basic examples

Basic examples of the data type datapos are illustrated below.

Example 1
VAR datapos block;

VAR string name;

VAR bool truevar:=TRUE;

...

SetDataSearch "bool" \Object:="my.*" \InMod:="mymod"\LocalSym;

WHILE GetNextSym(name,block) DO

SetDataVal name\Block:=block,truevar;

ENDWHILE

This session will set all local bool data objects that begin with my in the module mymod to 

TRUE.

Characteristics

datapos is a non-value data type.

Related information

For information about See

Define a symbol set in a search session SetDataSearch - Define the symbol set in a 
search sequence on page 433

Get next matching symbol GetNextSym - Get next matching symbol on 
page 855

Get the value of a data object GetDataVal - Get the value of a data object on 
page 110

Set the value of a data object SetDataVal - Set the value of a data object on 
page 437

Set the value of many object SetAllDataVal - Set a value to all data objects in 
a defined set on page 429



3 Data types

3.11. dionum - Digital values (0 - 1)
RobotWare - OS

3HAC 16581-1  Revision: J1102

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.11. dionum - Digital values (0 - 1)

Usage

dionum (digital input output numeric) is used for digital values (0 or 1).

This data type is used in conjunction with instructions and functions that handle digital input 

or output signals.

Description

Data of the type dionum represents a digital value 0 or 1.

Basic examples

Basic examples of the data type dionum are illustrated below.

Example 1
CONST dionum close := 1;

SetDO grip1, close;

Definition of a constant close with a value equal to 1. The signal grip1 is then set to 

close, i.e. 1.

Predefined data

The constants high, low, and edge are predefined in the system module base.sys:

CONST dionum low:=0;

CONST dionum high:=1;

CONST dionum edge:=2;

The constants low and high are designed for IO instructions. 

Edge can be used together with the interrupt instructions ISignalDI and ISignalDO.

Characteristics

dionum is an alias data type for num and consequently inherits its characteristics.

Related information

For information about See

Summary input/output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and output signals

Configuration of I/O Technical reference manual - System parameters

Alias data types Technical reference manual - RAPID overview, 
section Basic Characteristics- Data types



3 Data types

3.12. dir - File directory structure
RobotWare - OS

11033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.12. dir - File directory structure

Usage

dir (directory) is used to traverse directory structures.

Description

Data of the type dir contains a reference to a directory on disk or network. It can be linked 

to the physical directory by means of the instruction OpenDir and then used for reading.

Basic examples

Basic examples of the data type dir are illustrated below.

Example 1
PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

OpenDir directory, dirname;

WHILE ReadDir(directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified directory.

Characteristics

dir is a non-value data type and cannot be used in value-oriented operations.

Related information

For information about See

Open a directory OpenDir - Open a directory on page 285

Make a directory MakeDir - Create a new directory on page 218

Read a directory ReadDir - Read next entry in a directory on page 944

Close a directory CloseDir - Close a directory on page 56

Remove a directory RemoveDir - Delete a directory on page 355

Remove a file RemoveFile - Delete a file on page 356

Rename a file RenameFile - Rename a file on page 357

Check file type IsFile - Check the type of a file on page 878



3 Data types

3.13. dnum - Double numeric values
RobotWare - OS

3HAC 16581-1  Revision: J1104

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.13. dnum - Double numeric values

Usage

dnum is used for numeric values, for example counters. It can handle larger integer values 

than data type num but its characteristics and function is the same as for num.

Description

The value of the dnum data type can be:

• An integer, for example -5

• A decimal number, for example 3.45

It can also be written exponentially, for example 2E3 (= 2*10^3 = 2000), 2.5E-2 (= 0.025).

Integers between -4503599627370496 and +4503599627370496 are always stored as exact 

integers.

Basic examples

Basic examples of the data type dnum are illustrated below.

Example 1
VAR dnum reg1;

...

reg1:=1000000;

reg1 is assigned the value 1000000.

Example 2
VAR dnum hex;

Var dnum bin;

VAR dnum oct;

! Hexadecimal representation of decimal value 4294967295

hex := 0xFFFFFFFF;

! Binary representation of decimal value 255

bin := 0b11111111;

! Octal representation of decimal value 255

oct := 0o377;

Example 3
VAR dnum a:=0;

VAR dnum b:=0;

a := 10 DIV 3;

b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the remainder (=1).

Limitations

Literal values between -4503599627370496 to 4503599627370496 assigned to a dnum 

variable are stored as exact integers. 

If a literal value that has been interpreted as a num is assigned/used as a dnum, it is 

automatically converted to a dnum.

Continues on next page



3 Data types

3.13. dnum - Double numeric values
RobotWare - OS

11053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Numeric values using data type num num - Numeric values on page 1146

Numeric expressions Technical reference manual - RAPID 
overview, section Basic RAPID programming

Operations using numeric values Technical reference manual - RAPID 
overview, section Basic RAPID programming

Continued



3 Data types

3.14. errdomain - Error domain
RobotWare - OS

3HAC 16581-1  Revision: J1106

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.14. errdomain - Error domain

Usage

errdomain (error domain) is used to specify an error domain.

Description

Data of the type errdomain represents the domain where the error, warning, or state changed 

is logged.

Basic examples

Basic examples of the data type errdomain are illustrated below.

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error number, 

and the error type are saved into appropriate variables.

Predefined data

The following predefined constants can be used to specify an error domain.

Characteristics

errdomain is an alias data type for num and consequently inherits its characteristics.

Name Error Domain Value

COMMON_ERR All error and state changed domains 0

OP_STATE Operational state change 1

SYSTEM_ERR System errors 2

HARDWARE_ERR Hardware errors 3

PROGRAM_ERR Program errors 4

MOTION_ERR Motion errors 5

OPERATOR_ERR Operator errors - Obsolete, not used anymore 6

IO_COM_ERR I/O and Communication errors 7

USER_DEF_ERR User defined errors (raised by RAPID) 8

OPTION_PROD_ERR Optional product errors - Obsolete, not used any 
more

9

PROCESS_ERR Process errors 11

CFG_ERR Configuration error 12

Continues on next page



3 Data types

3.14. errdomain - Error domain
RobotWare - OS

11073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Ordering an interrupt on errors IError - Orders an interrupt on errors on page 126

Error numbers Operating manual - Trouble shooting

Alias data types Technical reference manual - RAPID overview, section 
Basic characteristics - Data types

Continued



3 Data types

3.15. errnum - Error number
RobotWare - OS

3HAC 16581-1  Revision: J1108

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.15. errnum - Error number

Usage

errnum is used to describe all recoverable (non fatal) errors that occur during program 

execution, such as division by zero.

Description

If the robot detects an error during program execution, this can be dealt with in the error 

handler of the routine. Examples of such errors are values that are too high and division by 

zero. The system variable ERRNO, of type errnum, is thus assigned different values 

depending on the nature of an error. The error handler may be able to correct an error by 

reading this variable and then program execution can continue in the correct way.

An error can also be created from within the program using the RAISE instruction. This 

particular type of error can be detected in the error handler by specifying an error number 

(within the range 1-90 or booked with instruction BookErrNo) as an argument to RAISE.

Basic examples

Basic examples of the data type errnum are illustrated below.

Example 1
reg1 := reg2 / reg3;

...

ERROR

IF ERRNO = ERR_DIVZERO THEN

reg3 := 1;

RETRY;

ENDIF

If reg3 = 0, the robot detects an error when division is taking place. This error, however, 

can be detected and corrected by assigning reg3 the value 1. Following this, the division can 

be performed again and program execution can continue.

Example 2
CONST errnum machine_error := 1;

...

IF di1=0 RAISE machine_error;

...

ERROR

IF ERRNO=machine_error RAISE;

An error occurs in a machine (detected by means of the input signal di1). A jump is made to 

the error handler in the routine which, in turn, calls the error handler of the calling routine 

where the error may possibly be corrected. The constant, machine_error, is used to let the 

error handler know exactly what type of error has occurred.

Continues on next page



3 Data types

3.15. errnum - Error number
RobotWare - OS

11093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data

The system variable ERRNO can be used to read the latest error that occurred. A number of 

predefined constants can be used to determine the type of error that has occurred.

Name Cause of error

ERR_ACC_TOO_LOW Too low acceleration/deceleration specified in 
instruction PathAccLim or WorldAccLim

ERR_ALIASIO_DEF The FromSignal is not defined in the IO configuration 
or the ToSignal is not declared in the RAPID program 
or is defined in the IO configuration. Instruction 
AliasIO

ERR_ALIASIO_TYPE The signal types for the arguments FromSignal and 
ToSignal is not the same (signalx). Instruction 
AliasIO.

ERR_ALRDYCNT The interrupt variable is already connected to a TRAP 
routine

ERR_ALRDY_MOVING The robot is already moving when executing a 
StartMove  or StartMoveRetry instruction

ERR_AO_LIM Analog signal value outside limit 

ERR_ARGDUPCND More than one present conditional argument for the 
same parameter

ERR_ARGNAME Argument is an expression, not present, or of type 
switch when executing ArgName

ERR_ARGNOTPER Argument is not a persistent reference

ERR_ARGNOTVAR Argument is not a variable reference

ERR_ARGVALERR Argument value error

ERR_AXIS_ACT Axis is not active

ERR_AXIS_IND Axis is not independent

ERR_AXIS_MOVING Axis is moving

ERR_AXIS_PAR Parameter axis in instruction is wrong

ERR_BUSSTATE An IOEnable is done, and the bus is in error state or 
enter error state before the unit is activated

ERR_BWDLIMIT Limit StepBwdPath

ERR_CALC_NEG StrDig necative calculation error

ERR_CALC_OVERFLOW StrDig calculation overflow

ERR_CALC_DIVZERO StrDig division by zero

ERR_CALLPROC Procedure call error (not procedure) at runtime (late 
binding)

ERR_CFG_INTERNAL Not allowed to read internal parameter - ReadCfgData

ERR_CFG_ILLTYPE Type mismatch - ReadCfgData, WriteCfgData

ERR_CFG_LIMIT Data limit - WriteCfgData

ERR_CFG_NOTFND Not found - ReadCfgData, WriteCfgData

ERR_CFG_OUTOFBOUNDS If ListNo is -1 at input or bigger then number of available 
instances - ReadCfgData, WriteCfgData

ERR_CNTNOTVAR CONNECT target is not a variable reference

ERR_CNV_NOT_ACT The conveyor is not activated

ERR_CNV_CONNECT The WaitWobj instruction is already active

Continued

Continues on next page



3 Data types

3.15. errnum - Error number
RobotWare - OS

3HAC 16581-1  Revision: J1110

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ERR_CNV_DROPPED The object that the instruction WaitWobj was waiting 
for has been dropped.

ERR_COMM_EXT Communication error with the external system.

ERR_COMM_INIT_FAILED Communication interface could not be initialized.

ERR_DATA_RECV The data received from remote system is incorrect.

ERR_DEV_MAXTIME Timeout when executing a ReadBin, ReadNum, or a 
ReadStr instruction

ERR_DIPLAG_LIM Too big DipLag in the instruction TriggSpeed 
connected to current TriggL/TriggC/TriggJ

ERR_DIVZERO Division by zero

ERR_EXECPHR An attempt was made to execute an instruction using a 
place holder

ERR_FILEACC A file is accessed incorrectly

ERR_FILEEXIST A file already exists

ERR_FILEOPEN A file cannot be opened

ERR_FILNOTFND File not found

ERR_FNCNORET No return value

ERR_FRAME Unable to calculate new frame

ERR_GO_LIM Digital group signal value outside limit

ERR_ILLDIM Incorrect array dimension

ERR_ILLQUAT Attempt to use illegal orientation (quaternion) valve

ERR_ILLRAISE Error number in RAISE out of range

ERR_INDCNV_ORDER An instruction requires execution of IndCnvInit 
before it is executed.

ERR_INOISSAFE If trying to deactivate a safe interrupt temporarily with 
ISleep.

ERR_INOMAX No more interrupt numbers available

ERR_INT_NOTVAL Not valid integer, decimal value

ERR_INT_MAXVAL Not valid integer, too large or small value

ERR_INVDIM Dimensions are not equal

ERR_IODISABLE Timeout when executing IODisable

ERR_IOENABLE Timeout when executing IOEnable

ERR_IOERROR I/O Error from instruction Save

ERR_LINKREF Reference error in the program task

ERR_LOADED The program module is already loaded

ERR_LOADID_FATAL Only internal use in LoadId

ERR_LOADID_RETRY Only internal use in LoadId

ERR_LOADNO_INUSE The load session is in use in StartLoad

ERR_LOADNO_NOUSE The load session is not in use in CancelLoad

ERR_MAXINTVAL The integer value is too large

ERR_MODULE Incorrect module name in instruction Save and 
EraseModule

ERR_MOD_NOTLOADED Module not loaded or installed from ModTime

ERR_NAME_INVALID If the unit name does not exist or if the unit is not 
allowed to be disabled

Name Cause of error

Continued

Continues on next page



3 Data types

3.15. errnum - Error number
RobotWare - OS

11113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ERR_NORUNUNIT If there is no contact with the unit

ERR_NOTARR Data is not an array

ERR_NOTEQDIM The array dimension used when calling the routine 
does not coincide with its parameters

ERR_NOTINTVAL Not an integer value

ERR_NOTPRES A parameter is used, despite the fact that the corre-
sponding argument was not used at the routine call

ERR_NOTSAVED Module has been changed since it was loaded into the 
system

ERR_NOT_MOVETASK Specify task is a non-motion task

ERR_NUM_LIMIT Value is not an integer and/or not in the range of -
8388607 to +8388608

ERR_OUTOFBND The array index is outside the permitted limits

ERR_OVERFLOW Clock overflow

ERR_PATH Missing destination path in instruction Save

ERR_PATHDIST Too long regain distance for StartMove or 
StartMoveRetry instruction

ERR_PATH_STOP Stop of the movement because of some process error

ERR_PID_MOVESTOP Only internal use in LoadId

ERR_PID_RAISE_PP Error from ParIdRobValid or ParIdPosValid

ERR_PRGMEMFULL Program memory full

ERR_PROCSIGNAL_OFF Process signal is off

ERR_PROGSTOP The robot is in program stop state when executing a 
StartMove or StartMoveRetry instruction

ERR_RANYBIN_CHK Check sum error detected at data transfer with 
instruction ReadAnyBin

ERR_RANYBIN_EOF End of file is detected before all bytes are read in 
instruction ReadAnyBin

ERR_RCVDATA An attempt was made to read non-numeric data with 
ReadNum

ERR_REFUNKDAT Reference to entire unknown data object 

ERR_REFUNKFUN Reference to unknown function

ERR_REFUNKPRC Reference to unknown procedure at linking time or at 
run time (late binding)

ERR_REFUNKTRP Reference to unknown trap

ERR_RMQ_DIM Wrong dimensions, the dimensions of the given data 
are not equal to the dimensions of the data in the 
message.

ERR_RMQ_FULL Destination message queue is full.

ERR_RMQ_INVALID Destination slot lost or invalid

ERR_RMQ_INVMSG Invalid message, likely sent from other client then a 
RAPID task.

ERR_RMQ_MSGSIZE Size of message is too big. Decrease message size.

ERR_RMQ_NAME The given slot name is not valid or not found.

ERR_RMQ_NOMSG No message in queue, likely the results of power fail.

Name Cause of error

Continued

Continues on next page



3 Data types

3.15. errnum - Error number
RobotWare - OS

3HAC 16581-1  Revision: J1112

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ERR_RMQ_TIMEOUT Timeout occurred while waiting for answer in 
RMQSendWait.

ERR_RMQ_VALUE The value syntax does not match the data type.

ERR_ROBLIMIT Axis outside working area or limits exceeded for at least 
one coupled joint

ERR_SC_WRITE Error when sending to external computer

ERR_SIGSUPSEARCH The signal has already a positive value at the beginning 
of the search process

ERR_STARTMOVE The robot is in hold state when executing a StartMove 
or StartMoveRetry instruction

ERR_ADDR_INUSE The address and port is already in use and can not be 
used again. Use a different port number or address in 
SocketBind.

ERR_SOCK_CLOSED The socket is closed, or is not created

ERR_SOCK_TIMEOUT The connection was not established within the time-out 
time

ERR_SPEED_REFRESH_LIM Override out of limit in SpeedRefresh

ERR_STRTOOLNG The string is too long

ERR_SYM_ACCESS Symbol read/write access error

ERR_SYNCMOVEOFF Timeout from SyncMoveOff

ERR_SYNCMOVEON Timeout from SyncMoveOn

ERR_SYNTAX Syntax error in the loaded module

ERR_TASKNAME Task name not found in the system

ERR_TP_DIBREAK A read instruction from FlexPendant was interrupted by 
a digital input

ERR_TP_DOBREAK A read instruction from FlexPendant was interrupted by 
a digital output

ERR_TP_MAXTIME Timeout when executing a read instruction from 
FlexPendant

ERR_TP_NO_CLIENT No client to interact with when using a read instruction 
from FlexPendant

ERR_TRUSTLEVEL Not allowed to disable I/O unit

ERR_TXTNOEXIST Wrong table or index in function TextGet

ERR_UI_INITVALUE Initial value error in function UINumEntry

ERR_UI_MAXMIN Min value is greater then max value in function 
UINumEntry

ERR_UI_NOTINT Value is not an integer when specified that an integer 
should be used when using UINumEntry

ERR_UISHOW_FATAL Other error then ERR_UISHOW_FATAL in instruction 
UIShow

ERR_UISHOW_FULL No space left on FlexPendant for another application 
when using instruction UIShow

ERR_UNIT_PAR Parameter Mech_unit in TestSignDefine is wrong

ERR_UNKINO Unknown interrupt number

ERR_UNKPROC Incorrect reference to the load session in instruction 
WaitLoad

ERR_UNLOAD Unload error in instruction UnLoad or WaitLoad

Name Cause of error

Continued

Continues on next page



3 Data types

3.15. errnum - Error number
RobotWare - OS

11133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Characteristics

errnum is an alias data type for num and consequently inherits its characteristics.

Related information

ERR_WAITSYNCTASK Time-out from WaitSyncTask

ERR_WAIT_MAXTIME Time-out when executing a WaitDI or WaitUntil 
instruction

ERR_WHLSEARCH No search stop

ERR_WOBJ_MOVING The mechanical unit with work object is moving 
CalcJointT

Name Cause of error

For information about See

Error recovery Technical reference manual - RAPID overview

Data types in general, alias data types Technical reference manual - RAPID overview

Continued



3 Data types

3.16. errstr - Error string
RobotWare - OS

3HAC 16581-1  Revision: J1114

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.16. errstr - Error string

Usage

errstr is used to write text in error messages.

Basic examples

Basic examples of the data type errstr are illustrated below.

Example 1
VAR errstr arg:= "This is an example";

ErrLog 5100, \W, ERRSTR_TASK, ERRSTR_CONTEXT, arg, ERRSTR_EMPTY, 

ERRSTR_UNUSED;

Predefined data

Characteristics

errstr is an alias data type for string and consequently inherits its characteristics.

Related information

Name Description

ERRSTR_EMPTY Argument is empty

ERRSTR_UNUSED Argument is not used

ERRSTR_TASK Name of current task

ERRSTR_CONTEXT Context

For information about See

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data Types



3 Data types

3.17. errtype - Error type
RobotWare - OS

11153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.17. errtype - Error type

Usage

errtype (error type) is used to specify an error type.

Description

Data of the type errtype represents the type (state change, warning, error) of an error 

message.

Basic examples

Basic examples of the data type errtype are illustrated below.

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error number, 

and the error type are saved into appropriate variables.

Predefined data

The following predefined constants can be used to specify an error type.

Characteristics

errtype is an alias data type for num and consequently inherits its characteristics.

Related information

Name Error Type Value

TYPE_ALL Any type of error (state change, warning, error) 0

TYPE_STATE State change (operational message) 1

TYPE_WARN Warning (such as RAPID recoverable error) 2

TYPE_ERR Error 3

For information about See

Ordering an interrupt on errors IError - Orders an interrupt on errors on page 126

Error numbers Operating manual - Trouble shooting

Alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types



3 Data types

3.18. event_type - Event routine type
RobotWare - OS

3HAC 16581-1  Revision: J1116

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.18. event_type - Event routine type

Usage

event_type is used to represent the actual event routine type with a symbolic constant.

Description

With the function EventType, it is possible to check if the actual RAPID code is executed 

because of some specific system event or not.

Basic examples

Basic example of the data type event_type is illustrated below.

Example 1
VAR event_type my_type;

...

my_type := EventType( );

The event routine type that is executed will be stored in the variable my_type.

Predefined data

Following constants of type event_type are predefined:

Characteristics

event_type is an alias data type for num and consequently inherits its characteristics.

Related information

RAPID constant Value Type of event executed

EVENT_NONE 0 No event is executed

EVENT_POWERON 1 POWER_ON event

EVENT_START 2 START event

EVENT_STOP 3 STOP event

EVENT_QSTOP 4 QSTOP event

EVENT_RESTART 5 RESTART event

EVENT_RESET 6 RESET event

EVENT_STEP 7 STEP event

For information about See

Event routines in general Technical reference manual - System 
parameters, section Controller - Event Routine

Get event type EventType - Get current event type inside any 
event routine on page 837

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types



3 Data types

3.19. exec_level - Execution level
RobotWare - OS

11173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.19. exec_level - Execution level

Usage

exec_level is used to specify program execution level.

Description

With the function ExecLevel, it is possible to get the actual execution level for the RAPID 

code that currently is executed.

Predefined data 

The following constants of type exec_level are predefined:

1) With LEVEL_SERVICE means event routine, service routine (including Call Routine) and 

interrupt routine from system input signal.

Characteristics

exec_level is an alias data type for num and consequently inherits its characteristics.

Related information

RAPID constant Value Execution level

LEVEL_NORMAL 0 Execute on base level

LEVEL_TRAP 1 Execute in TRAP routine

LEVEL_SERVICE 2 Execute in service routine 1)

For information about See

Get current execution level ExecLevel - Get execution level on page 840



3 Data types

3.20. extjoint - Position of external joints
RobotWare - OS

3HAC 16581-1  Revision: J1118

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.20. extjoint - Position of external joints

Usage

extjoint is used to define the axis positions of external axes, positioners or workpiece 

manipulators.

Description

The robot can control up to six external axes in addition to its six internal axes, i.e. a total of 

twelve axes. The six external axes are logically denoted: a, b, c, d, e, f. Each such logical axes 

can be connected to a physical axis and, in this case, the connection is defined in the system 

parameters.

Data of the type extjoint is used to hold position values for each of the logical axes a - f.

For each logical axis connected to a physical axis, the position is defined as follows:

• For rotating axes– the position is defined as the rotation in degrees from the calibration 

position.

• For linear axes – the position is defined as the distance in mm from the calibration 

position.

If a logical axis is not connected to a physical one then the value 9E9 is used as a position 

value, indicating that the axis is not connected. At the time of execution, the position data of 

each axis is checked and it is checked whether or not the corresponding axis is connected. If 

the stored position value does not comply with the actual axis connection, the following 

applies:

• If the position is not defined in the position data (value is 9E9) then the value will be 

ignored if the axis is connected and not activated. But if the axis is activated, it will 

result in an error.

• If the position is defined in the position data, although the axis is not connected, then 

the value will be ignored.

No movement is performed but no error is generated for an axis with valid position data if the 

axis is not activated.

If an external axis offset is used (instruction EOffsOn or EOffsSet) then the positions are 

specified in the ExtOffs coordinate system.

If some external axis is running in independent mode and some new movement shall be 

performed by the robot and it’s external axes then the position data for the external axis in 

independent mode must not be 9E9 but some arbitrary value (not used but the system).

Continues on next page



3 Data types

3.20. extjoint - Position of external joints
RobotWare - OS

11193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Components

eax_a

external axis a

Data type: num

The position of the external logical axis“ a” expressed in degrees or mm (depending on the 

type of axis).

...

eax_f

external axis f

Data type: num

The position of the external logical axis“ f” expressed in degrees or mm (depending on the 

type of axis).

Basic examples

Basic examples of the data type extjoint are illustrated below.

Example 1
VAR extjoint axpos10 := [ 11, 12.3, 9E9, 9E9, 9E9, 9E9] ;

The position of an external positioner, axpos10, is defined as follows:

• The position of the external logical axis “a” is set to 11, expressed in degrees or mm 

(depending on the type of axis). 

• The position of the external logical axis“ b” is set to 12.3, expressed in degrees or mm 

(depending on the type of axis). 

• Axes c to f are undefined. 

Structure
< dataobject of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

For information about See

Position data robtarget - Position data on page 1176

jointtarget - Joint position data on page 1129

ExtOffs coordinate system EOffsOn - Activates an offset for external axes on 
page 88

Continued



3 Data types

3.21. handler_type - Type of execution handler
RobotWare - OS

3HAC 16581-1  Revision: J1120

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.21. handler_type - Type of execution handler

Usage

handler_type is used to specify type of execution handler in RAPID program routine.

Description

With the function ExecHandler, it is possible to check if the actual RAPID code is executed 

in some execution handler in RAPID program routine.

Basic examples

Basic example of the data type handler_type is illustrated below.

Example 1
VAR handler_type my_type;

...

my_type := ExecHandler( );

The type of execution handler that the code is executed in, will be stored in the variable 

my_type.

Predefined data

Following constants of type handler_type are predefined:

Characteristics

handler_type is an alias data type for num and consequently inherits its characteristics.

Related information

RAPID constant Value Type of execution handler

HANDLER_NONE 0 Not executed in any handler

HANDLER_BWD 1 Executed in BACKWARD handler

HANDLER_ERR 2 Executed in ERROR handler

HANDLER_UNDO 3 Executed in UNDO handler

For information about See

Get type of execution handler ExecHandler - Get type of execution handler 
on page 839 



3 Data types

3.22. icondata - Icon display data
RobotWare - OS

11213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.22. icondata - Icon display data

Usage

icondata is used for representing standard icons on the User Device such as the 

FlexPendant.

Description

An icondata enumeration constant may be passed to the Icon argument in the instruction 

UIMsgBox and functions UIMessageBox, UINumEntry, UINumTune, UIAlphaEntry, and 

UIListView.

Basic examples

Basic examples of the data type icondata are illustrated below.

Example 1
VAR btnres answer;

UIMsgBox "More ?" \Buttons:=btnYesNo \Icon:=iconInfo \Result:= 

answer;

IF answer= resYes THEN

...

ELSEIF answer =ResNo THEN

...

ENDIF

The standard button enumeration constant iconInfo will give an information icon at the 

head of the message box on the user interface.

Predefined data

The following constants of the data type icondata are predefined in the system:

Characteristics

icondata is an alias data type for num and consequently inherits its characteristics.

 Value Constant Icon

0 iconNone No icon

1 iconInfo Information icon

2 iconWarning Warning icon

3 iconError Error icon

Continues on next page



3 Data types

3.22. icondata - Icon display data
RobotWare - OS

3HAC 16581-1  Revision: J1122

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

User Interaction Message Box UIMsgBox - User Message Dialog Box type 
basic on page 644

User Interaction Message Box UIMessageBox - User Message Box type 
advanced on page 1057

User Interaction Number Entry UINumEntry - User Number Entry on page 1064

User Interaction Number Tune UINumTune - User Number Tune on page 1070

User Interaction Alpha Entry UIAlphaEntry - User Alpha Entry on page 1032

User Interaction List View UIListView - User List View on page 1050

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types

Continued



3 Data types

3.23. identno - Identity for move instructions
MultiMove - Coordinated Robots

11233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.23. identno - Identity for move instructions

Usage

identno (Identity Number) is used to control synchronizing of two or more coordinated 

synchronized movements with each other.

The data type identno can only be used in a MultiMove system with option Coordinated 

Robots and only in program tasks defined as Motion Task.

Description

Move instructions in a MultiMove system must be programmed with parameter \ID of data 

type identno, if coordinated synchronized movement, and \ID is not allowed in any other 

cases.

The specified \ID number must be the same in all cooperating program tasks. The id number 

gives a guarantee that the movements are not mixed up at runtime.

In coordinated synchronized mode, there must be the same amount of executed move 

instructions in all program tasks. The optional parameter \ID of data type identno will be 

used to check that associated move instructions are run in parallel before the start of the 

movements. The \ID number must be the same in the move instructions that are run in 

parallel.

The user does not have to declare any variable of type identno, but can use a number 

directly in the instructions (see Basic examples).

Basic examples

Basic examples of the data type identno are illustrated below.

Example 1
PERS tasks task_list{2} := [["T_ROB1"],["T_ROB2"]]; 

VAR syncident sync1;

VAR syncident sync2;

PROC proc1()

...

SyncMoveOn sync1, task_list;

MoveL *\ID:=10,v100,z50,mytool;

MoveL *\ID:=20,v100,fine,mytool;

SyncMoveOff sync2;

...

ENDPROC

Characteristics

identno is an alias data type for num and thus inherits its properties.

Continues on next page



3 Data types

3.23. identno - Identity for move instructions
MultiMove - Coordinated Robots

3HAC 16581-1  Revision: J1124

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Alias data types Technical reference manual - RAPID 
overview, section Basic Characteristics - Data 
types

Start coordinated synchronized movements SyncMoveOn - Start coordinated synchro-
nized movements on page 534

End coordinated synchronized movements SyncMoveOff - End coordinated synchronized 
movements on page 528

Continued



3 Data types

3.24. intnum - Interrupt identity
RobotWare - OS

11253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.24. intnum - Interrupt identity

Usage

intnum (interrupt numeric) is used to identify an interrupt.

Description

When a variable of type intnum is connected to a trap routine, it is given a specific value 

identifying the interrupt. This variable is then used in all dealings with the interrupt, such as 

when ordering or disabling an interrupt.

More than one interrupt identity can be connected to the same trap routine. The system 

variable INTNO can thus be used in a trap routine to determine the type of interrupt that 

occurs.

Basic examples

Basic examples of the data type intnum are illustrated below.

Example 1
VAR intnum feeder_error;

...

CONNECT feeder_error WITH correct_feeder;

ISignalDI di1, 1, feeder_error;

An interrupt is generated when the input di1 is set to 1. When this happens, a call is made to 

the correct_feeder trap routine. 

Example 2
VAR intnum feeder1_error;

VAR intnum feeder2_error;

...

PROC init_interrupt();

...

CONNECT feeder1_error WITH correct_feeder;

ISignalDI di1, 1, feeder1_error;

CONNECT feeder2_error WITH correct_feeder;

ISignalDI di2, 1, feeder2_error;

...

ENDPROC

...

TRAP correct_feeder

IF INTNO=feeder1_error THEN

...

ELSE

...

ENDIF

...

ENDTRAP

An interrupt is generated when either of the inputs di1 or di2 is set to 1. A call is then made 

to the correct_feeder trap routine. The system variable INTNO is used in the trap routine 

to find out which type of interrupt has occurred.
Continues on next page



3 Data types

3.24. intnum - Interrupt identity
RobotWare - OS

3HAC 16581-1  Revision: J1126

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The maximum number of active variables of type intnum at any one time (between CONNECT 

and IDelete) is limited to 70.The maximum number of interrupts, in the queue for execution 

of TRAP routine at any one time, is limited to 30.

Characteristics

Intnum is an alias data type for num and thus inherits its properties.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID overview, 
section RAPID Summary - Interrupts

Alias data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types 

Connecting interrupts CONNECT - Connects an interrupt to a trap 
routine on page 63

Continued



3 Data types

3.25. iodev - Serial channels and files
RobotWare - OS

11273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.25. iodev - Serial channels and files

Usage

iodev (I/O device) is used for serial channels, such as printers and files.

Description

Data of the type iodev contains a reference to a file or serial channel. It can be linked to the 

physical unit by means of the instruction Open and then used for reading and writing.

Basic examples

Basic examples of the data type iodev are illustrated below.

Example 1
VAR iodev file;

...

Open "HOME:/LOGDIR/INFILE.DOC", file\Read;

input := ReadNum(file);

The file INFILE.DOC is opened for reading. When reading from the file, file is used as a 

reference instead of the file name.

Characteristics

iodev is a non-value data type.

Related information

For information about See

Communication via serial channels Technical reference manual - RAPID overview, 
section RAPID Summary - Communication

Configuration of serial channels Technical reference manual - System parameters

Characteristics of non-value data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types



3 Data types

3.26. iounit_state - State of I/O unit
RobotWare - OS

3HAC 16581-1  Revision: J1128

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.26. iounit_state - State of I/O unit

Usage

iounit_state is used to mirror which state an I/O unit is currently in.

Description

An iounit_state constant is intended to be used when checking the return value from the 

function IOUnitState.

Basic examples

Basic examples of the data type iounit_state are illustrated below.

Example 1
IF (IOUnitState ("UNIT1" \Phys) = IOUNIT_PHYS_STATE_RUNNING) THEN

! Possible to access some signal on the I/O unit

ELSE

! Read/Write some signal on the I/O unit result in error

ENDIF

Test is done if the I/O unit UNIT1 is up and running.

Predefined data

The predefined symbolic constants of the data type iounit_state can be found in function 

IOUnitState.

Characteristics

iounit_state is an alias data type for num and consequently inherits its characteristics.

Related information

For information about See

Get current state of I/O unit IOUnitState - Get current state of I/O unit on page 875

Input/Output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and Output Signals 

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O Principles

Configuration of I/O Technical reference manual - System parameters 



3 Data types

3.27. jointtarget - Joint position data
RobotWare - OS

11293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.27. jointtarget - Joint position data

Usage

jointtarget is used to define the position that the robot and the external axes will move to 

with the instruction MoveAbsJ.

Description

jointtarget defines each individual axis position, for both the robot and the external axes.

Components

robax

robot axes

Data type: robjoint

Axis positions of the robot axes in degrees.

Axis position is defined as the rotation in degrees for the respective axis (arm) in a positive 

or negative direction from the axis calibration position.

extax

external axes

Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ... eax_f):

• For rotating axes, the position is defined as the rotation in degrees from the calibration 

position.

• For linear axes, the position is defined as the distance in mm from the calibration 

position.

External axes eax_a ... are logical axes. How the logical axis number and the physical 

axis number are related to each other is defined in the system parameters.

The value 9E9 is defined for axes which are not connected. If the axes defined in the position 

data differ from the axes that are actually connected on program execution, the following 

applies:

• If the position is not defined in the position data (value 9E9) the value will be ignored, 

if the axis is connected and not activated. But if the axis is activated it will result in 

error.

• If the position is defined in the position data, although the axis is not connected, the 

value is ignored.

No movement is performed but no error is generated for an axis with valid position data, if 

the axis isn’t activated.

If some external axis is running in independent mode and some new movement shall be 

performed by the robot and its external axes then the position data for the external axis in 

independent mode must not be 9E9 but some arbitrary value (not used but the system).

Continues on next page



3 Data types

3.27. jointtarget - Joint position data
RobotWare - OS

3HAC 16581-1  Revision: J1130

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the data type jointtarget are illustrated below.

Example 1
CONST jointtarget calib_pos := [ [ 0, 0, 0, 0, 0, 0], [ 0, 9E9, 

9E9, 9E9, 9E9, 9E9] ];

The normal calibration position for IRB2400 is defined in calib_pos by the data type 

jointtarget. The normal calibration position 0 (degrees or mm) is also defined for the 

external logical axis a. The external axes b to f are undefined.

Structure
< dataobject of jointtarget >

< robax of robjoint >

< rax_1 of num >

< rax_2 of num >

< rax_3 of num >

< rax_4 of num >

< rax_5 of num >

< rax_6 of num >

< extax of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

For information about See

Move to joint position MoveAbsJ - Moves the robot to an absolute joint 
position on page 230

MoveExtJ - Move one or several mechanical units 
without TCP on page 250

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Configuration of external axes Application manual - Additional axes and stand 
alone controller

Continued



3 Data types

3.28. listitem - List item data structure
RobotWare - OS

11313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.28. listitem - List item data structure

Usage

listitem is used to define menu lines that include text with optional small icons on the User 

Device such as the FlexPendant.

Description

Data of the type listitem allows the user to define menu lines for the function 

UIListView.

Basic example

Basic examples of the data type listitem are illustrated below.

Example 1
CONST listitem list {3}:=[[stEmpty, "Item1"], [stEmpty, "Item2"], 

[stEmpty, "Item3"]];

A menu list with Item1....Item3 to use in function UIListView.

Components

The data type has the following components:

image

Data type: string

The path including file name for the icon image to display (not implemented in this software 

release).

Use empty string "" or stEmpty if no icon to display.

text

Data type: string

The text for the menu line to display. 

Structure
<dataobject of listitem>

<image of string>

<text of string>

Related information

For information about See

User Interaction ListView UIListView - User List View on page 1050



3 Data types

3.29. loaddata - Load data
RobotWare - OS

3HAC 16581-1  Revision: J1132

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.29. loaddata - Load data

Usage

loaddata is used to describe loads attached to the mechanical interface of the robot (the 

robot’s mounting flange). 

Load data usually defines the payload (grip load is defined by the instruction GripLoad) of 

the robot, i.e. the load held in the robot gripper. The tool load is specified in the tool data 

(tooldata) which includes load data.

Description

Specified loads are used to set up a model of the dynamics of the robot so that the robot 

movements can be controlled in the best possible way.

WARNING!

It is important to always define the actual tool load and when used, the payload of the robot 

too. Incorrect definitions of load data can result in overloading of the robot mechanical 

structure.

When incorrect load data is specified, it can often lead to the following consequences:

If the value in the specified load data is greater than the true load:

• The robot will not be used to its maximum capacity

• Impaired path accuracy including a risk of overshooting

•  Risk of overloading the mechanical structure

If the value in the specified load data is less than the true load:

• Risk of overloading the mechanical structure

• Impaired path accuracy including a risk of overshooting

The payload is connected/disconnected using the instruction GripLoad.

Components

mass

Data type: num

The weight of the load in kg.

cog

center of gravity

Data type: pos

The center of gravity of the tool load for definition of the tool load coordinate system. If a 

stationary tool is used then it means the center of gravity for the tool holding the work object.

The center of gravity of the payload for definition of the payload coordinate system. The 

object coordinate system when a stationary tool is used.

aom

axes of moment

Data type: orient

Continues on next page



3 Data types

3.29. loaddata - Load data
RobotWare - OS

11333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Tool load

The orientation of the tool load coordinate system defined by the principal inertial axes of the 

tool load. Expressed in the wrist coordinate system as a quaternion (q1, q2, q3, q4). If a 

stationary tool is used then it means the principal inertial axes for the tool holding the work 

object.

Payload

The figure shows restriction on the reorientation of tool load and payload coordinate system.

xx0500002370

The orientation of the payload coordinate system defined by the principal inertial axes of the 

payload. Expressed in the tool coordinate system as a quaternion (q1, q2, q3, q4). The object 

coordinate system if a stationary tool is used.

The figure shows the center of gravity and inertial axes of the payload.

xx0500002371

Continued

Continues on next page



3 Data types

3.29. loaddata - Load data
RobotWare - OS

3HAC 16581-1  Revision: J1134

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ix

inertia x

Data type: num

The moment of inertia of the load around the x-axis of the tool load or payload coordinate 

system in kgm2. 

Correct definition of the inertial moments will allow optimal utilization of the path planner 

and axes control. This may be of special importance when handling large sheets of metal, etc. 

All inertial moments of inertia ix, iy, and iz equal to 0 kgm2 imply a point mass. 

Normally, the inertial moments must only be defined when the distance from the mounting 

flange to the center of gravity is less than the dimension of the load (see figure below).

The figure shows that the moment of inertia must normally be defined when the distance is 

less than the load dimension.

xx0500002372

iy

inertia y

Data type: num

The inertial moment of the load around the y-axis, expressed in kgm2. 

For more information, see ix.

iz

inertia z

Data type: num

The inertial moment of the load around the z-axis, expressed in kgm2. 

For more information, see ix.

Basic examples

Basic examples of the data type loaddata are illustrated below.

Example 1
PERS loaddata piece1 := [ 5, [50, 0, 50], [1, 0, 0, 0], 0, 0, 0];

The payload in the first figure in section Payload on page 1133 is described using the 

following values:

• Weight 5 kg.

• The center of gravity is x = 50, y = 0 and z = 50 mm in the tool coordinate system.

• The payload is a point mass.

Continued

Continues on next page



3 Data types

3.29. loaddata - Load data
RobotWare - OS

11353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
Set gripper;

WaitTime 0.3;

GripLoad piece1;

Connection of the payload, piece1, specified at the same time as the robot grips the load 

piece1.

Example 3
Reset gripper;

WaitTime 0.3;

GripLoad load0;

Disconnection of a payload, specified at the same time as the robot releases a payload.

Limitations

The payload should only be defined as a persistent variable (PERS) and not within a routine. 

Current values are then saved when saving the program and are retrieved on loading.

Arguments of the type loaddata in the GripLoad instruction should only be an entire 

persistent (not array element or record component).

Predefined data

The load load0 defines a payload, with the mass equal to 0 kg, i.e. no load at all. This load 

is used as the argument in the instruction GripLoad to disconnect a payload.

The load load0 can always be accessed from the program, but cannot be changed (it is stored 

in the system module BASE).

PERS loaddata load0 := [ 0.001, [0, 0, 0.001], [1, 0, 0, 0],0, 0 

,0 ];

Structure
< dataobject of loaddata >

< mass of num >

< cog of pos >

< x of num >

< y of num >

< z of num >

< aom of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< ix of num >

< iy of num >

< iz of num >

Continued

Continues on next page



3 Data types

3.29. loaddata - Load data
RobotWare - OS

3HAC 16581-1  Revision: J1136

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O principles - Coordinate 
systems

Definition of tool loads tooldata - Tool data on page 1207

Activation of payload GripLoad - Defines the payload for the robot on page 
119 

Continued



3 Data types

3.30. loadidnum - Type of load identification
RobotWare - OS

11373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.30. loadidnum - Type of load identification

Usage

loadidnum is used to represent an integer with a symbolic constant.

Description

A loadidnum constant is intended to be used for load identification of tool or payload as 

arguments in instruction LoadId. See example below.

Basic examples

Basic examples of the data type loadidnum are illustrated below.

Example 1
LoadId TOOL_LOAD_ID, MASS_WITH_AX3, gun1;

Load identification of tool gun1 with identification of mass with movements of robot axis 3 

with use of predefined constant MASS_WITH_AX3 of data type loadidnum.

Predefined data

The following symbolic constants of the data type loadidnum are predefined and can be used 

as arguments in instruction LoadId.

Characteristics

loadidnum is an alias data type for num and consequently inherits its characteristics.

Related information

Value Symbolic constant Comment

1 MASS_KNOWN Known mass in tool or payload respectively.

2 MASS_WITH_AX3 Unknown mass in tool or payload. Identification of mass 
will be done with movements of axis 3 

For information about See

Predefined program Load Identify Operating manual - IRC5 with FlexPendant, 
section Programming and testing - Service 
routines - LoadIdentify, load identification and 
service routines

Valid robot type ParIdRobValid - Valid robot type for parameter 
identification on page 916

Valid robot position ParIdPosValid - Valid robot position for 
parameter identification on page 913

Load identification with complete example LoadId - Load identification of tool or payload on 
page 212



3 Data types

3.31. loadsession - Program load session
RobotWare - OS

3HAC 16581-1  Revision: J1138

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.31. loadsession - Program load session

Usage

loadsession is used to define different load sessions of RAPID program modules.

Description

Data of the type loadsession is used in the instructions StartLoad and WaitLoad to 

identify the load session. loadsession only contains a reference to the load session. 

Characteristics

loadsession is a non-value data type and cannot be used in value-oriented operations.

Related information

For information about See

Loading program modules during execution StartLoad - Load a program module during 
execution on page 482

WaitLoad - Connect the loaded module to the 
task on page 682

Characteristics of non-value data types Technical reference manual - RAPID 
overview, section Basic characteristics - Data 
types



3 Data types

3.32. mecunit - Mechanical unit
RobotWare - OS

11393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.32. mecunit - Mechanical unit

Usage

mecunit is used to define the different mechanical units which can be controlled and 

accessed from the program.

The names of the mechanical units are defined in the system parameters and, consequently, 

must not be defined in the program.

Description

Data of the type mecunit only contains a reference to the mechanical unit. 

Limitations

Data of the type mecunit must not be defined in the program. However, if it is then an error 

message will be displayed as soon as an instruction or function that refers to this mecunit is 

executed. The data type can, on the other hand, be used as a parameter when declaring a 

routine.

Predefined data

All the mechanical units defined in the system parameters are predefined in every program 

task. But only the mechanical units that are controlled by the actual program task (defined in 

system parameters Controller/Task/Use Mechanical Unit Group) can be used to do any 

control operations.

Besides that, the predefined variable ROB_ID of data type mecunit is available in every 

program task. If an actual program task controls a robot then the alias variable ROB_ID 

contains a reference to one of robot ROB_1 to ROB_6, which can be used to do control 

operation on the robot. The variable ROB_ID is invalid if the actual program task does not 

control any robot.

Basic examples

Basic examples of the data type mecunit are illustrated below.

Example 1
IF TaskRunRob() THEN

IndReset ROB_ID, 6;

ENDIF

If actual program task controls a robot, reset axis 6 for the robot.

Characteristics

mecunit is a non-value data type. This means that data of this type does not permit value-

oriented operations.

Continues on next page



3 Data types

3.32. mecunit - Mechanical unit
RobotWare - OS

3HAC 16581-1  Revision: J1140

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Check if task run some robot TaskRunRob - Check if task controls some robot on 
page 1014

Check if task run some mechanical 
unit

TaskRunMec - Check if task controls any mechanical 
unit on page 1013

Get the name of mechanical units in 
the system

GetNextMechUnit - Get name and data for 
mechanical units on page 852

Activating/Deactivating mechanical 
units

ActUnit - Activates a mechanical unit on page 17

DeactUnit - Deactivates a mechanical unit on page 79

Configuration of mechanical units Technical reference manual - System parameters

Characteristics of non-value data 
types

Technical reference manual - RAPID overview, 
section Basic characteristics - Data types

Continued



3 Data types

3.33. motsetdata - Motion settings data
RobotWare - OS

11413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.33. motsetdata - Motion settings data

Usage

motsetdata is used to define a number of motion settings that affect all positioning 

instructions in the program:

• Max. velocity and velocity override

• Acceleration data

• Behavior around singular points

• Management of different robot configurations

• Override of path resolution

• Motion supervision

• Limitation of acceleration/deceleration

• Tool reorientation during circle path

This data type does not normally have to be used since these settings can only be set using 

the instructions VelSet, AccSet, SingArea, ConfJ, ConfL, PathResol, MotionSup, 

PathAccLim, CirPathMode, and WorldAccLim.

The current values of these motion settings can be accessed using the system variable 

C_MOTSET.

Description

The current motion settings (stored in the system variable C_MOTSET) affect all movements. 

Components

vel.oride

Data type: veldata/num

Velocity as a percentage of programmed velocity. 

vel.max 

Data type: veldata/num

Maximum velocity in mm/s.

acc.acc

Data type: accdata/num

Acceleration and deceleration as a percentage of the normal values. 

acc.ramp

Data type: accdata/num

The rate by which acceleration and deceleration increases as a percentage of the normal 

values. 

sing.wrist

Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent wrist 

singularity. 

Continues on next page



3 Data types

3.33. motsetdata - Motion settings data
RobotWare - OS

3HAC 16581-1  Revision: J1142

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

sing.arm

Data type: singdata/bool

The orientation of the tool is allowed to deviate somewhat in order to prevent arm singularity 

(not implemented).

sing.base

Data type: singdata/bool

The orientation of the tool is not allowed to deviate. 

conf.jsup

Data type: confsupdata/bool

Supervision of joint configuration is active during joint movement. 

conf.lsup

Data type: confsupdata/bool

Supervision of joint configuration is active during linear and circular movement. 

conf.ax1

Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 1 (not used in this version). 

conf.ax4

Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 4 (not used in this version). 

conf.ax6

Data type: confsupdata/num

Maximum permitted deviation in degrees for axis 6 (not used in this version). 

pathresol

Data type: num

Current override in percentage of the configured path resolution.

motionsup

Data type: bool

Mirror RAPID status (TRUE = On and FALSE = Off) of motion supervision function.

tunevalue

Data type: num

Current RAPID override as a percentage of the configured tunevalue for the motion 

supervision function.

acclim

Data type: bool

Limitation of tool acceleration along the path. (TRUE = limitation and FALSE = no limitation).

accmax

Data type: num

TCP acceleration limitation in m/s2. If acclim is FALSE, the value is always set to -1.

Continued

Continues on next page



3 Data types

3.33. motsetdata - Motion settings data
RobotWare - OS

11433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

decellim

Data type: bool

Limitation of tool deceleration along the path. (TRUE = limitation and FALSE = no limitation).

decelmax

Data type: num

TCP deceleration limitation in m/s2. If decellim is FALSE, the value is always set to -1.

cirpathreori

Data type: num

Tool reorientation during circle path: 

0 = Standard method with interpolation in path frame

1 = Modified method with interpolation in object frame 

2 = Modified method with programmed tool orientation in CirPoint

worldacclim

Data type: bool

Limitation of acceleration in world coordinate system. (TRUE = limitation and FALSE = no 

limitation).

worldaccmax

Data type: num

Limitation of acceleration in world coordinate system in m/s2. If worldacclim is FALSE, 

the value is always set to -1.

Limitations

One and only one of the components sing.wrist, sing.arm or sing.base may have a 

value equal to TRUE.

Basic examples

Basic examples of the data type motsetdata are illustrated below.

Example 1
IF C_MOTSET.vel.oride > 50 THEN

...

ELSE

...

ENDIF

Different parts of the program are executed depending on the current velocity override.

Continued

Continues on next page



3 Data types

3.33. motsetdata - Motion settings data
RobotWare - OS

3HAC 16581-1  Revision: J1144

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data

C_MOTSET describes the current motion settings of the robot and can always be accessed from 

the program. On the other hand, C_MOTSET can only be changed using a number of 

instructions, not by assignment.

The following default values for motion parameters are set

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

VAR motsetdata C_MOTSET := [

[ 100, 500 ], -> veldata

[ 100, 100 ], -> accdata

[ FALSE, FALSE, TRUE ], -> singdata

[ TRUE, TRUE, 30, 45, 90 ] -> confsupdata

100, -> path resolution

TRUE, -> motionsup

100, -> tunevalue

FALSE, -> acclim

-1, -> accmax

FALSE, -> decellim

-1, -> decelmax

0, -> cirpathreori

FALSE, -> worldacclim

-1], -> worldaccmax

Structure
<dataobject of motsetdata>

<vel of veldata> ->Affected by instruction VelSet

<oride of num>

<max of num>

<acc of accdata> ->Affected by instruction AccSet

<acc of num>

<ramp of num>

<sing of singdata> ->Affected by instruction SingArea

<wrist of bool>

<arm of bool>

<base of bool>

<conf of confsupdata> ->Affected by instructions ConfJ and ConfL

<jsup of bool>

<lsup of bool>

<ax1 of num>

<ax4 of num>

<ax6 of num>

<pathresol of num> ->Affected by instruction PathResol

<motionsup of bool> ->Affected by instruction MotionSup

<tunevalue of num> ->Affected by instruction MotionSup

<acclim of bool> ->Affected by instruction PathAccLim

Continued

Continues on next page



3 Data types

3.33. motsetdata - Motion settings data
RobotWare - OS

11453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

<accmax of num> ->Affected by instruction PathAccLim

<decellim of bool> ->Affected by instruction PathAccLim

<decelmax of num> ->Affected by instruction PathAccLim

<cirpathreori of num> ->Affected by instruction CirPathMode

<worldacclim of bool> ->Affected by instruction WorldAccLim

<worldaccmax of num> ->Affected by instruction WorldAccLim

Related information

For information about See

Instructions for setting motion parameters Technical reference manual - RAPID 
overview, section RAPID summary - Motion 
settings

Continued



3 Data types

3.34. num - Numeric values
RobotWare - OS

3HAC 16581-1  Revision: J1146

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.34. num - Numeric values

Usage

Num is used for numeric values; e.g. counters.

Description

The value of the num data type may be

• an integer; e.g. -5,

• a decimal number; e.g. 3.45.

It may also be written exponentially; e.g.2E3 (= 2*10^3 = 2000), 2.5E-2 (= 0.025).

Integers between -8388607 and +8388608 are always stored as exact integers.

Decimal numbers are only approximate numbers and therefore should not be used in is equal 

to or is not equal to comparisons. In the case of divisions and operations using decimal 

numbers, the result will also be a decimal number; i.e. not an exact integer. For example:

a := 10;

b := 5;

IF a/b=2 THEN

...

As the result of a/b is not an integer, this condition is not necessarily satisfied.

Basic examples

Basic examples of the data type num are illustrated below.

Example 1
VAR num reg1;

...

reg1 := 3;

reg1 is assigned the value 3.

Example 2
a := 10 DIV 3;

b := 10 MOD 3;

Integer division where a is assigned an integer (=3) and b is assigned the remainder (=1).

Predefined data

There is some predefined data in the system. For example the constant pi (π) is defined in the 

system module BASE_SHARED.

CONST num pi := 3.1415926;

Limitations

Literal values between -8388607 to 8388608 assigned to a num variable are stored as exact 

integers.

If a literal that has been interpreted as a dnum is assigned/used as a num, it is automatically 

converted to a num.

Continues on next page



3 Data types

3.34. num - Numeric values
RobotWare - OS

11473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Numeric values using datatype dnum dnum - Double numeric values on page 1104

Numeric expressions Technical reference manual - RAPID 
overview, section Basic RAPID programming 
- Expressions

Operations using numeric values Technical reference manual - RAPID 
overview, section Basic RAPID programming 
- Expressions

Continued



3 Data types

3.35. opcalc - Arithmetic Operator
RobotWare - OS

3HAC 16581-1  Revision: J1148

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.35. opcalc - Arithmetic Operator

Usage

opcalc is used to represent an arithmetic operator in arguments to RAPID functions or 

instructions.

Description

An opcalc constant is intended to be used to define the type of arithmetic operation.

Examples

Basic example of the usage of datatype opcalc is illustrated below.

Example 1
res := StrDigCalc(str1, OpAdd, str2);

res is assigned the result of the addition operation on the values represented by the strings 

str1 and str2. OpAdd is of datatype opcalc.

Predefined data

The following symbolic constants of the data type opcalc are predefined and can be used to 

define the type of arithmetic operation used, for instance, in function StrDigCalc.

Characteristics

opcalc is an alias data type for num and consequently inherits its characteristics.

Related information

Constant Value Comment

OpAdd 1 Addition (+)

OpSub 2 Substraction (-)

OpMult 3 Multiplication (*)

OpDiv 4 Division (/)

OpMod 5 Modulus(%l)

For information about See

Data types in general, alias data types Technical reference manual - RA]PID 
overview, section Basic characteristics - 
Datatypes

Arithmetic operations on digital strings. StrDigCalc - Arithmetic operations with 
datatype stringdig on page 988



3 Data types

3.36. opnum - Comparison operator
RobotWare - OS

11493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.36. opnum - Comparison operator

Usage

opnum is used to represent an operator for comparisons in arguments to RAPID functions or 

instructions.

Description

An opnum constant is intended to be used to define the type of comparison when checking 

values in generic instructions.

Basic examples

Basic examples of the data type opnum are illustrated below.

Example 1
TriggCheckIO checkgrip, 100, airok, EQ, 1, intno1;

Predefined data

The following symbolic constants of the data type opnum are predefined and can be used to 

define the type of comparison used, for instance, in instruction TriggCheckIO.

Characteristics

opnum is an alias data type for num and consequently inherits its characteristics.

Related information

Value Symbolic constant Comment

1 LT Less than

2 LTEQ Less than or equal to

3 EQ Equal to

4 NOTEQ Not equal to

5 GTEQ Greater than or equal to

6 GT Greater than

For information about See

Data types in general, alias data types Technical reference manual - RAPID 
overview, section Basic characteristics - Data 
types 

Define I/O check at a fixed position TriggCheckIO - Defines IO check at a fixed 
position on page 577



3 Data types

3.37. orient - Orientation
RobotWare - OS

3HAC 16581-1  Revision: J1150

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.37. orient - Orientation

Usage

orient is used for orientations (such as the orientation of a tool) and rotations (such as the 

rotation of a coordinate system).

Description

The orientation is described in the form of a quaternion which consists of four elements: q1, 

q2, q3, and q4. For more information on how to calculate these, see below.

Components

The data type orient has the following components:

q1

Data type: num

Quaternion 1.

q2

Data type: num

Quaternion 2.

q3

Data type: num

Quaternion 3.

q4

Data type: num

Quaternion 4.

Basic examples

Basic examples of the data type orient are illustrated below.

Example 1
VAR orient orient1;

.

orient1 := [1, 0, 0, 0];

The orient1 orientation is assigned the value q1=1, q2-q4=0; this corresponds to no 

rotation.

Limitations

The orientation must be normalized; i.e. the sum of the squares must equal 1:

.

Continues on next page



3 Data types

3.37. orient - Orientation
RobotWare - OS

11513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

What is a Quaternion?

The orientation of a coordinate system (such as that of a tool) can be described by a rotational 

matrix that describes the direction of the axes of the coordinate system in relation to a 

reference system (see figure below).

xx0500002376

The rotated coordinate systems axes (x, y, z) are vectors which can be expressed in the 

reference coordinate system as follows:

x = (x1, x2, x3)

y = (y1, y2, y3)

z = (z1, z2, z3)

This means that the x-component of the x-vector in the reference coordinate system will be 

x1, the y-component will be x2, etc.

These three vectors can be put together in a matrix (a rotational matrix) where each of the 

vectors form one of the columns:

.

A quaternion is just a more concise way to describe this rotational matrix; the quaternions are 

calculated based on the elements of the rotational matrix:

.

.
sign q2 = sign (y3-z2)

.
sign q3 = sign (z1-x3)

.
sign q4 = sign (x2-y1)

Continued

Continues on next page



3 Data types

3.37. orient - Orientation
RobotWare - OS

3HAC 16581-1  Revision: J1152

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 1

A tool is orientated so that its Z’-axis points straight ahead (in the same direction as the X-

axis of the base coordinate system). The Y’-axis of the tool corresponds to the Y-axis of the 

base coordinate system (see figure below). How is the orientation of the tool defined in the 

position data (robtarget)?

The orientation of the tool in a programmed position is normally related to the coordinate 

system of the work object used. In this example, no work object is used and the base 

coordinate system is equal to the world coordinate system. Thus, the orientation is related to 

the base coordinate system.

xx0500002377

The axes will then be related as follows:

x’ = -z = (0, 0, -1)

y’ = y = (0, 1, 0)

z’ = x = (1, 0, 0)

Which corresponds to the following rotational matrix:

.

The rotational matrix provides a corresponding quaternion:

.

.

.
sign q3 = sign (1+1) = +

.

Continued

Continues on next page



3 Data types

3.37. orient - Orientation
RobotWare - OS

11533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2

The direction of the tool is rotated 30° about the X’- and Z’-axes in relation to the wrist 

coordinate system (see figure below). How is the orientation of the tool defined in the tool 

data?

xx0500002378

The axes will then be related as follows:

x’ = (cos30°, 0, -sin30°)

x’ = (0, 1, 0)

x’ = (sin30°, 0, cos30°)

Which corresponds to the following rotational matrix: 

.

The rotational matrix provides a corresponding quaternion:

Structure
< dataobject of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

Related information

.

.

.
sign q3 = sign (sin30°+sin30°) = +

.

For information about See

Operations on orientations Technical reference manual - RAPID 
overview, section Basic Characteristics - 
Expressions

Continued



3 Data types

3.38. paridnum - Type of parameter identification
RobotWare - OS

3HAC 16581-1  Revision: J1154

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.38. paridnum - Type of parameter identification

Usage

paridnum is used to represent an integer with a symbolic constant.

Description

A paridnum constant is intended to be used for parameter identification such as load 

identification of tool or payload or external manipulator load. See example below.

Basic examples

Basic examples of the data type paridnum are illustrated below.

Example 1
TEST ParIdRobValid (TOOL_LOAD_ID)

CASE ROB_LOAD_VAL:

! Possible to do load identification of tool in actual robot type

...

CASE ROB_LM1_LOAD_VAL:

! Only possible to do load identification of tool with

! IRB 6400FHD if actual load < 200 kg

...

CASE ROB_NOT_LOAD_VAL:

! Not possible to do load identification of tool in actual robot 

type

... 

ENDTEST

Use of predefined constant TOOL_LOAD_ID of data type paridnum.

Predefined data

The following symbolic constants of the data type paridnum are predefined and can be used 

as arguments in the following instructions, ParIdRobValid, ParIdPosValid, LoadId, 

and ManLoadIdProc.

 Value Symbolic constant Comment

1 TOOL_LOAD_ID Identify tool load

2 PAY_LOAD_ID Identify payload (Ref. instruction GripLoad)

3 IRBP_K Identify External Manipulator IRBP K load

4 IRBP_L Identify External Manipulator IRBP L load 

4 IRBP_C Identify External Manipulator IRBP C load 

4 IRBP_C_INDEX Identify External Manipulator IRBP C_INDEX load 

4 IRBP_T Identify External Manipulator IRBP T load 

5 IRBP_R Identify External Manipulator IRBP R load

6 IRBP_A Identify External Manipulator IRBP A load

6 IRBP_B Identify External Manipulator IRBP B load

6 IRBP_D Identify External Manipulator IRBP D load 

Continues on next page



3 Data types

3.38. paridnum - Type of parameter identification
RobotWare - OS

11553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

NOTE!

Only TOOL_LOAD_ID and PAY_LOAD_ID can be used in user defined RAPID Programs for 

load identification of the tool respectively the pay load for the robot.

Characteristics

paridnum is an alias data type for num and consequently inherits its characteristics.

Related information

For information about See

Predefined program Load Identify Operating manual - IRC5 with FlexPendant, 
section Programming and testing - Service 
routines - LoadIdentify, load identification and 
service routines

Valid robot type ParIdRobValid - Valid robot type for parameter 
identification on page 916

Valid robot position ParIdPosValid - Valid robot position for 
parameter identification on page 913

Load identification with complete example LoadId - Load identification of tool or payload 
on page 212

Load identification of external manipulators ManLoadIdProc - Load identification of IRBP 
manipulators on page 219

Continued



3 Data types

3.39. paridvalidnum - Result of ParIdRobValid
RobotWare - OS

3HAC 16581-1  Revision: J1156

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.39. paridvalidnum - Result of ParIdRobValid

Usage

paridvalidnum is used to represent an integer with a symbolic constant.

Description

A paridvalidnum constant is intended to be used for parameter identification, such as load 

identification of tool or payload, when checking the return value from function 

ParIdRobValid. See example below.

Basic examples

Basic examples of the data type paridvalidnum are illustrated below.

TEST ParIdRobValid (PAY_LOAD_ID)

CASE ROB_LOAD_VAL:

! Possible to do load identification of payload in actual robot

! type

...

CASE ROB_LM1_LOAD_VAL:

! Only possible to do load identification of payload

! with IRB 6400FHD if actual load < 200 kg

...

CASE ROB_NOT_LOAD_VAL:

! Not possible to do load identification of payload

! in actual robot type

...

ENDTEST

Use of predefined constants ROB_LOAD_VAL, ROB_LM1_LOAD_VAL and 

ROB_NOT_LOAD_VAL of data type paridvalidnum.

Predefined data

The following symbolic constants of the data type paridvalidnum are predefined and can 

be used for checking the return value from function ParIdRobValid.

Characteristics

paridvalidnum is an alias data type for num and inherits its characteristics.

Value Symbolic constant Comment

10 ROB_LOAD_VAL Valid robot type for the current parameter identifi-
cation

11 ROB_NOT_LOAD_VAL Not valid robot type for the current parameter 
identification

12 ROB_LM1_LOAD_VAL Valid robot type IRB 6400FHD for the current 
parameter identification if actual load < 200kg

Continues on next page



3 Data types

3.39. paridvalidnum - Result of ParIdRobValid
RobotWare - OS

11573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Predefined program Load Identify Operating manual - IRC5 with FlexPendant, section 
Programming and testing - Service routines - LoadIden-
tify, load identification and service routines

Valid robot type ParIdRobValid - Valid robot type for parameter identifi-
cation on page 916

Valid robot position ParIdPosValid - Valid robot position for parameter iden-
tification on page 913

Load identification with complete 
example

LoadId - Load identification of tool or payload on page 
212

Continued



3 Data types

3.40. pathrecid - Path recorder identifier
Path Recovery

3HAC 16581-1  Revision: J1158

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.40. pathrecid - Path recorder identifier

Usage

pathrecid is used to identify a breakpoint for the path recorder.

Description

The path recorder is a system function for recording the robots executed path. Data of the type 

pathrecid can be linked to a specific path location by means of the instruction 

PathRecStart. The user can then order the recorder to perform a movement back to the path 

identifier by using the instruction PathRecMoveBwd.

Basic examples

Basic examples of the data type pathrecid are illustrated below.

Example 1
VAR pathrecid start_id; 

CONST robtarget p1 := [...];

CONST robtarget p2 := [...];

CONST robtarget p3 := [...];

PathRecStart start_id;

MoveL p1, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1

MoveL p3, vmax, z50, tool1;

IF(PathRecValidBwd (\ID := start_id)) THEN 

StorePath;

PathRecMoveBwd \ID:=start_id; 

...

ENDIF

xx0500002090

The example above will start the path recorder and the starting point will be tagged with the 

path identifier start_id. Thereafter, the robot will move forward with traditional move 

instructions and then move back to the start position again using the recorded path. To be able 

to run PathRecorder move instructions, the path level has to be changed with StorePath.

Characteristics

pathrecid is an non-value data type.

Continues on next page



3 Data types

3.40. pathrecid - Path recorder identifier
Path Recovery

11593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Start - stop the path recorder PathRecStart - Start the path recorder on page 
308

PathRecStop - Stop the path recorder on page 
311

Check for valid recorded path PathRecValidBwd - Is there a valid backward 
path recorded on page 921

PathRecValidFwd - Is there a valid forward 
path recorded on page 924

Play the path recorder backward PathRecMoveBwd - Move path recorder 
backwards on page 298

Play the path recorder forward PathRecMoveFwd - Move path recorder 
forward on page 305

Characteristics of non-value data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types 

Continued



3 Data types

3.41. pos - Positions (only X, Y and Z)
RobotWare - OS

3HAC 16581-1  Revision: J1160

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.41. pos - Positions (only X, Y and Z)

Usage

pos is used for positions (only X, Y, and Z). 

The robtarget data type is used for the robot’s position including the orientation of the tool 

and the configuration of the axes.

Description

Data of the type pos describes the coordinates of a position: X, Y, and Z.

Components

The data type pos has the following components:

x

Data type: num

The X-value of the position.

y

Data type: num

The Y-value of the position.

z

Data type: num

The Z-value of the position.

Basic examples

Basic examples of the data type pos are illustrated below.

Example 1
VAR pos pos1;

...

pos1 := [500, 0, 940];

The pos1 position is assigned the value: X=500 mm, Y=0 mm, Z=940 mm.

Example 2
pos1.x := pos1.x + 50;

The pos1 position is shifted 50 mm in the X-direction.

Structure
< dataobject of pos >

< x of num >

< y of num >

< z of num >

Continues on next page



3 Data types

3.41. pos - Positions (only X, Y and Z)
RobotWare - OS

11613HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Operations on positions Technical reference manual - RAPID 
overview, section Basic Characteristics - 
Expressions

Robot position including orientation robtarget - Position data on page 1176

Continued



3 Data types

3.42. pose - Coordinate transformations
RobotWare - OS

3HAC 16581-1  Revision: J1162

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.42. pose - Coordinate transformations

Usage

pose is used to change from one coordinate system to another.

Description

Data of the type pose describes how a coordinate system is displaced and rotated around 

another coordinate system. The data can, for example, describe how the tool coordinate 

system is located and oriented in relation to the wrist coordinate system.

Components

The data type has the following components:

trans

translation

Data type: pos

The displacement in position (x, y, and z) of the coordinate system.

rot

rotation

Data type: orient

The rotation of the coordinate system.

Basic examples

Basic examples of the data type pose are illustrated below.

VAR pose frame1;

...

frame1.trans := [50, 0, 40];

frame1.rot := [1, 0, 0, 0];

The frame1 coordinate transformation is assigned a value that corresponds to a displacement 

in position, where X=50 mm, Y=0 mm, Z=40 mm; there is, however, no rotation.

Structure
< dataobject of pose >

< trans of pos >

< rot of orient >

Related information

For information about See

What is a Quaternion? orient - Orientation on page 1150



3 Data types

3.43. progdisp - Program displacement
RobotWare - OS

11633HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.43. progdisp - Program displacement

Usage

progdisp is used to store the current program displacement of the robot and the external 

axes.

This data type does not normally have to be used since the data is set using the instructions 

PDispSet, PDispOn, PDispOff, EOffsSet, EOffsOn, and EOffsOff. It is only used to 

temporarily store the current value for later use.

Description

The current values for program displacement can be accessed using the system variable 

C_PROGDISP.

For more information, see the instructions PDispSet, PDispOn, EOffsSet, and EOffsOn.

Components

pdisp

program displacement

Data type: pose

The program displacement for the robot, expressed using a translation and an orientation. The 

translation is expressed in mm.

eoffs

external offset

Data type: extjoint

The offset for each of the external axes. If the axis is linear, the value is expressed in mm; if 

it is rotating, the value is expressed in degrees.

Basic examples

Basic examples of the data type progdisp are illustrated below.

Example 1
VAR progdisp progdisp1;

...

SearchL sen1, psearch, p10, v100, tool1;

PDispOn \ExeP:=psearch, *, tool1;

EOffsOn \ExeP:=psearch, *;

...

progdisp1:=C_PROGDISP;

PDispOff;

EOffsOff;

...

PDispSet progdisp1.pdisp;

EOffsSet progdisp1.eoffs;

Continues on next page



3 Data types

3.43. progdisp - Program displacement
RobotWare - OS

3HAC 16581-1  Revision: J1164

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

First, a program displacement is activated from a searched position. Then, the current 

program displacement values are temporary stored in the variable progdisp1 and the 

program displacement is deactivated. Later on, re-activation is done using the instructions 

PDispSet and EOffsSet.

Predefined data

The system variable C_PROGDISP describes the current program displacement of the robot 

and external axes, and can always be accessed from the program. On the other hand, it can 

only be changed using a number of instructions, not by assignment. 

The following default values for program displacement are set

• at a cold start-up.

• when a new program is loaded.

• when starting program execution from the beginning.

VAR progdisp C_PROGDISP :=

[ [[ 0, 0, 0], [1, 0, 0, 0]], -> posedata

[ 0, 0, 0, 0, 0, 0]]; -> extjointdata

Structure
< dataobject of progdisp >

< pdisp of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< eoffs of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

For information about See

Instructions for defining program displacement Technical reference manual - RAPID 
overview, section RAPID summary - Motion 
settings

Coordinate systems Technical reference manual - RAPID 
overview, section Motion and I/O principles - 
Coordinate systems

Continued



3 Data types

3.44. rawbytes - Raw data
RobotWare - OS

11653HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.44. rawbytes - Raw data

Usage

rawbytes is used as a general data container. It can be used for communication with I/O 

devices.

Description

rawbytes data can be filled with any type of data - num, byte, string - by means of support 

instructions/functions. In any variable of rawbytes, the system also stores the current length 

of valid bytes.

Basic examples

Basic examples of the data type rawbytes are illustrated below.

Example 1
VAR rawbytes raw_data;

VAR num integer := 8;

VAR num float := 13.4;

ClearRawBytes raw_data;

PackRawBytes integer, raw_data, 1 \IntX := INT;

PackRawBytes float, raw_data, (RawBytesLen(raw_data)+1) \Float4;

In this example the variable raw_data of type rawbytes is first cleared, i.e. all bytes set to 

0 (same as default at declaration). Then in the first 2 bytes the value of integer is placed 

and in the next 4 bytes the value of float.

Limitations

A rawbytes variable may contain 0 to 1024 bytes.

Structure

rawbytes is a non-value data type.

At declaration of rawbytes variable, all bytes in rawbytes are set to 0 and the current 

length of valid bytes in the variable is set to 0.

Related information

For information about See

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes 
data on page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of 
rawbytes data on page 49

Copy the contents of rawbytes data CopyRawBytes - Copy the contents of 
rawbytes data on page 67

Pack DeviceNet header into rawbytes data PackDNHeader - Pack DeviceNet Header into 
rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data 
on page 290

Continues on next page



3 Data types

3.44. rawbytes - Raw data
RobotWare - OS

3HAC 16581-1  Revision: J1166

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Write rawbytes data WriteRawBytes - Write rawbytes data on page 
725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 
352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from 
rawbytes data on page 658

For information about See

Continued



3 Data types

3.45. restartdata - Restart data for trigg signals
RobotWare - OS

11673HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.45. restartdata - Restart data for trigg signals

Usage

restartdata mirrors the pre- and postvalues of specified I/O signals (process signals) at the 

stop sequence of the robot movements. The I/O signals to supervise are specified in the 

instruction TriggStopProc.

TriggStopProc and restartdata are intended to be used for restart after program stop 

(STOP) or emergency stop (QSTOP) of own process instructions defined in RAPID 

(NOSTEPIN routines).

Definition
The table shows the definition of the time point for reading the pre- and postvalues for the I/
O signals.

Description

restartdata mirrors the following data after program execution is stopped:

• valid restart data

• robot stopped on path or not

• prevalue of the I/O signals

• postvalue of the I/O signals

• number of flanks between pretime and posttime of the shadow signal for the ongoing 

process

Components

restartstop

valid restartdata after stop

Data type: bool

TRUE = Mirror last STOP or QSTOP 

FALSE = Invalid restart data. All I/O signals values are set to -1.

stoponpath

stop on path

Data type: bool

TRUE = The robot is stopped on the path (STOP) 

FALSE = The robot is stopped but not on the path (QSTOP)

Type of stop
Read time for I/O signal 
prevalue

Read time for I/O signal 
postvalue

STOP on path When all robot axes are standing 
still

About 400 ms after the pretime

QSTOP off path As soon as possible About 400 ms after the pretime

Continues on next page



3 Data types

3.45. restartdata - Restart data for trigg signals
RobotWare - OS

3HAC 16581-1  Revision: J1168

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

predo1val

pre do1 value

Data type: dionum

The prevalue of the digital signal “do1” specified in the argument DO1 in instruction 

TriggStopProc.

postdo1val

post do1 value

Data type: dionum

The postvalue of the digital signal “do1” specified in the argument DO1 in instruction 

TriggStopProc.

prego1val

pre go1 value

Data type: num

The prevalue of the digital group signal“ go1” specified in the argument GO1 in instruction 

TriggStopProc.

postgo1val

post go1 value

Data type: num

The postvalue of the digital group signal“ go1” specified in the argument GO1 in instruction 

TriggStopProc.

prego2val

pre go2 value

Data type: num

The prevalue of the digital group signal“ go2” specified in the argument GO2 in instruction 

TriggStopProc.

postgo2val

post go2 value

Data type: num

The postvalue of the digital group signal“ go2” specified in the argument GO2 in instruction 

TriggStopProc.

prego3val 

pre go3 value

Data type: num

The prevalue of the digital group signal“ go3” specified in the argument GO3 in instruction 

TriggStopProc.

postgo3val

post go3 value

Data type: num

The postvalue of the digital group signal“ go3” specified in the argument GO3 in instruction 

TriggStopProc.

Continued

Continues on next page



3 Data types

3.45. restartdata - Restart data for trigg signals
RobotWare - OS

11693HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

prego4val

pre go4 value

Data type: num

The prevalue of the digital group signal“ go4” specified in the argument GO4 in instruction 

TriggStopProc.

postgo4val

post go4 value

Data type: num

The postvalue of the digital group signal“ go4” specified in the argument GO4 in instruction 

TriggStopProc.

preshadowval

pre shadow value

Data type: dionum

The prevalue of the digital signal “shadow” specified in the argument ShadowDO in 

instruction TriggStopProc.

shadowflanks

number of shadow flanks

Data type: num

The number of value transitions (flanks) of the digital signal “shadow” between the pretime 

and the posttime. The signal “shadow” is specified in the argument ShadowDO in instruction 

TriggStopProc.

postshadowval

post shadow value

Data type: dionum

The postvalue of the digital signal “shadow” specified in the argument ShadowDO in 

instruction TriggStopProc.

Continued

Continues on next page



3 Data types

3.45. restartdata - Restart data for trigg signals
RobotWare - OS

3HAC 16581-1  Revision: J1170

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Structure
< dataobject of restartdata >

< restartstop of bool >

< stoponpath of bool >

< predo1val of dionum >

< postdo1val of dionum >

< prego1val of num >

< postgo1val of num >

< prego2val of num >

< postgo2val of num >

< prego3val of num >

< postgo3val of num >

< prego4val of num >

< postgo4val of num >

< preshadowval of dionum >

< shadowflanks of dionum >

< postshadowval of dionum >

Related information

For information about See

Predefined process instructions TriggL - Linear robot movements with events on 
page 603

TriggC - Circular robot movement with events on 
page 570

Setup mirror of restart data TriggStopProc - Generate restart data for trigg 
signals at stop on page 629

Move backwards on path StepBwdPath - Move backwards one step on path 
on page 499

Continued



3 Data types

3.46. rmqheader - RAPID Message Queue Message header
FlexPendant Interface, PC Interface, or Multitasking

11713HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.46. rmqheader - RAPID Message Queue Message header

Usage

rmqheader (RAPID Message Queue Header) is used for reading the data structure of the 

data in a message of type rmqmessage.

Description

The header part of a non-value data type rmqmessage converted to the value data type 

rmqheader.

Components

datatype

Data type: string

The name of the data type used, e.g num, string or some other value data type.

ndim

Number of Dimensions

Data type: num

Number of array dimensions.

dim1

Size of first dimension

Data type: num

The size of the first dimension. 0 if not used.

dim2

Size of second dimension

Data type: num

The size of the second dimension. 0 if not used.

dim3

Size of third dimension

Data type: num

The size of the third dimension. 0 if not used.

Examples

Basic examples of the data type rmqheader are illustrated below.

Example 1
VAR rmqmessage message;

VAR rmqheader header;

...

RMQGetMessage message;

RMQGetMsgHeader message \Header:=header;

Copy and convert the rmqheader information from an rmqmessage message.

Continues on next page



3 Data types

3.46. rmqheader - RAPID Message Queue Message header
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J1172

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Structure
<dataobject of rmqheader>

<datatype of string>

<ndim of num>

<dim1 of num>

<dim2 of num>

<dim3 of num>

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication and 
I/O control, section RAPID Message Queue.

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header information 
from an RMQ message on page 380

RMQ Message rmqmessage - RAPID Message Queue 
message on page 1173

Continued



3 Data types

3.47. rmqmessage - RAPID Message Queue message
FlexPendant Interface, PC Interface, or Multitasking

11733HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.47. rmqmessage - RAPID Message Queue message

Usage

rmqmessage (RAPID Message Queue Message) is used for temporary storage of 

communication data.

Description

The data type rmqmessage is the message used to store data in when communicating 

between different RAPID tasks or Robot Application Builder clients with RMQ functionality. 

It contains information about the type of data that was sent the dimensions of the data, the 

identity of the sender and the actual data.

An rmqmessage is a big data type (about 3000 bytes big), and it is recommended that the 

variable is reused to save RAPID memory.

Basic examples

Basic examples of the data type rmqmessage are illustrated below.

Example 1
VAR rmqmessage rmqmessage1;

VAR string myrecdata;

...

RMQGetMsgData rmqmessage1, myrecdata;

The variable rmqmessage1 is defined and can be used in an RMQ (RAPID Message Queue) 

command. In this example, the data part within the rmqmessage1 is copied to the variable 

myrecdata.

Characteristics

rmqmessage is a non-value data type and cannot be used in value-oriented operations. 

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

RMQ Header rmqheader - RAPID Message Queue 
Message header on page 1171

Extract the header data from an 
rmqmessage

RMQGetMsgHeader - Get header 
information from an RMQ message on page 
380

Order and enable interrupts for a specific data 
type

IRMQMessage - Orders RMQ interrupts for a 
data type on page 167

Get the first message from a RAPID Message 
Queue.

RMQGetMessage - Get an RMQ message on 
page 373

Send data to the queue of a RAPID task or 
Robot Application Builder client, and wait for 
an answer from the client.

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Extract the data from an rmqmessage RMQGetMsgData - Get the data part from an 
RMQ message on page 377



3 Data types

3.48. rmqslot - Identity number of an RMQ client
FlexPendant Interface, PC Interface, or Multitasking

3HAC 16581-1  Revision: J1174

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.48. rmqslot - Identity number of an RMQ client

Usage

rmqslot (RAPID Message Queue Slot) is used when communicating with an RMQ or a 

Robot Application Builder client.

Description

The rmqslot is an identity number of a RAPID Message Queue configured for a RAPID task 

or the identity number of a Robot Application Builder client.

Basic examples

Basic examples of the data type rmqslot are illustrated below.

Example 1
VAR rmqslot rmqslot1;

RMQFindSlot rmqslot1, "RMQ_T_ROB1";

...

The variable rmqslot1 is defined and can be used in the instruction RMQFindSlot to get the 

identity number of the RAPID Message Queue "RMQ_T_ROB1" configured for the RAPID 

task "T_ROB1".

Characteristics

rmqslot is a non-value data type and cannot be used in value-oriented operations. 

Related information

For information about See

Description of the RAPID Message Queue 
functionality

Application manual - Robot communication 
and I/O control, section RAPID Message 
Queue.

Find the identity number of a RAPID 
Message Queue task or Robot Application 
Builder client.

RMQFindSlot - Find a slot identity from the 
slot name on page 371

Send data to the queue of a RAPID task or 
Robot Application Builder client.

RMQSendMessage - Send an RMQ data 
message on page 386

Send data to a client, and wait for an answer 
from the client.

RMQSendWait - Send an RMQ data 
message and wait for a response on page 
390

Get the slot name from a specified slot 
identity

RMQGetSlotName - Get the name of an 
RMQ client on page 964



3 Data types

3.49. robjoint - Joint position of robot axes
RobotWare - OS

11753HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.49. robjoint - Joint position of robot axes

Usage

robjoint is used to define the position in degrees of the robot axes.

Description

Data of the type robjoint is used to store axis positions in degrees of the robot axis 1 to 6. 

Axis position is defined as the rotation in degrees for the respective axis (arm) in a positive 

or negative direction from the axis calibration position.

Components

rax_1

robot axis 1

Data type: num

The position of robot axis 1 in degrees from the calibration position.

...

rax_6

robot axis 6

Data type: num

The position of robot axis 6 in degrees from the calibration position.

Structure
< dataobject of robjoint >

< rax_1 of num >

< rax_2 of num >

< rax_3 of num >

< rax_4 of num >

< rax_5 of num >

< rax_6 of num >

Related information

For information about See

Joint position data jointtarget - Joint position data on page 1129

Move to joint position MoveAbsJ - Moves the robot to an absolute joint 
position on page 230



3 Data types

3.50. robtarget - Position data
RobotWare - OS

3HAC 16581-1  Revision: J1176

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.50. robtarget - Position data

Usage

robtarget (robot target) is used to define the position of the robot and external axes.

Description

Position data is used to define the position in the move instructions to which the robot and 

external axes are to move. 

As the robot is able to achieve the same position in several different ways, the axis 

configuration is also specified. This defines the axis values if these are in any way ambiguous, 

for example:

• if the robot is in a forward or backward position,

• if axis 4 points downwards or upwards,

• if axis 6 has a negative or positive revolution.

WARNING!

The position is defined based on the coordinate system of the work object, including any 

program displacement. If the position is programmed with some other work object than the 

one used in the instruction, the robot will not move in the expected way. Make sure that you 

use the same work object as the one used when programming move instructions. Incorrect use 

can injure someone or damage the robot or other equipment.

Components

trans

translation

Data type: pos

The position (x, y, and z) of the tool center point expressed in mm. 

The position is specified in relation to the current object coordinate system, including 

program displacement. If no work object is specified then this is the world coordinate system.

rot

rotation

Data type: orient

The orientation of the tool, expressed in the form of a quaternion (q1, q2, q3, and q4).

The orientation is specified in relation to the current object coordinate system including 

program displacement. If no work object is specified then this is the world coordinate system.

robconf 

robot configuration

Data type: confdata

The axis configuration of the robot (cf1, cf4, cf6, and cfx). This is defined in the form of 

the current quarter revolution of axis 1, axis 4, and axis 6. The first positive quarter revolution 

0 to 90° is defined as 0. The meaning of the component cfx is dependent on robot type.

For more information, see data type confdata.

Continues on next page



3 Data types

3.50. robtarget - Position data
RobotWare - OS

11773HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

extax

external axes

Data type: extjoint

The position of the external axes.

The position is defined as follows for each individual axis (eax_a, eax_b ... eax_f):

• For rotating axes, the position is defined as the rotation in degrees from the calibration 

position.

• For linear axes, the position is defined as the distance in mm from the calibration 

position.

External axes eax_a ... are logical axes. How the logical axis number and the physical 

axis number are related to each other is defined in the system parameters.

The value 9E9 is defined for axes which are not connected. If the axes defined in the position 

data differ from the axes that are actually connected at program execution then the following 

applies:

• If the position is not defined in the position data (value 9E9) then the value will be 

ignored if the axis is connected and not activated. But if the axis is activated then it 

will result in an error.

• If the position is defined in the position data although the axis is not connected then 

the value is ignored.

No movement is performed but no error is generated for an axis with valid position data if the 

axis is not activated.

If some external axis is running in independent mode and some new movement shall be 

performed by the robot and it’s external axes then the position data for the external axis is 

independent mode must not be 9E9 but some arbitrary value (not used but the system).

Basic examples

Basic examples of the data type robtarget are illustrated below.

Example 1
CONST robtarget p15 := [ [600, 500, 225.3], [1, 0, 0, 0], [1, 1, 

0, 0], [ 11, 12.3, 9E9, 9E9, 9E9, 9E9] ];

A position p15 is defined as follows:

• The position of the robot: x = 600, y = 500 and z = 225.3 mm in the object coordinate 

system.

• The orientation of the tool in the same direction as the object coordinate system.

• The axis configuration of the robot: axes 1 and 4 in position 90-180°, axis 6 in position 

0-90°.

• The position of the external logical axes, a and b, expressed in degrees or mm 

(depending on the type of axis). Axes c to f are undefined.

Continued

Continues on next page



3 Data types

3.50. robtarget - Position data
RobotWare - OS

3HAC 16581-1  Revision: J1178

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Example 2
VAR robtarget p20;

...

p20 := CRobT(\Tool:=tool\wobj:=wobjØ);

p20 := Offs(p20,10,0,0);

The position p20 is set to the same position as the current position of the robot by calling the 

function CRobT. The position is then moved 10 mm in the x-direction.

Structure
< dataobject of robtarget >

< trans of pos > 

< x of num >

< y of num > 

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< robconf of confdata >

< cf1 of num >

< cf4 of num >

< cf6 of num >

< cfx of num >

< extax of extjoint >

< eax_a of num >

< eax_b of num >

< eax_c of num >

< eax_d of num >

< eax_e of num >

< eax_f of num >

Related information

For information about See

Move instructions Technical reference manual - RAPID overview, section 
RAPID Summary - Motion

Coordinate systems Technical reference manual - RAPID overview, section 
Motion and I/O Principles - Coordinate Systems 

Handling configuration data Technical reference manual - RAPID overview, section 
Motion and I/O Principles - Robot configuration 

Configuration of external axes Application manual - Additional axes and stand alone 
controller

What is a quaternion? orient - Orientation on page 1150

Continued



3 Data types

3.51. shapedata - World zone shape data
World Zones

11793HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.51. shapedata - World zone shape data

Usage

shapedata is used to describe the geometry of a world zone.

Description

World zones can be defined in 4 different geometrical shapes:

• a straight box, with all sides parallel to the world coordinate system and defined by a 

WZBoxDef instruction

• a sphere, defined by a WZSphDef instruction

• a cylinder, parallel to the z axis of the world coordinate system and defined by a 

WZCylDef instruction

• a joint space area for robot and/or external axes, defined by the instruction 

WZHomeJointDef or WZLimJointDef

The geometry of a world zone is defined by one of the previous instructions and the action of 

a world zone is defined by the instruction WZLimSup or WZDOSet.

Basic examples

Basic examples of the data type shapedata are illustrated below.

Example 1
VAR wzstationary pole;

VAR wzstationary conveyor;

...

PROC ...

VAR shapedata volume;

...

WZBoxDef \Inside, volume, p_corner1, p_corner2;

WZLimSup \Stat, conveyor, volume;

WZCylDef \Inside, volume, p_center, 200, 2500;

WZLimSup \Stat, pole, volume;

ENDPROC

A conveyor is defined as a box and the supervision for this area is activated. A pole is 

defined as a cylinder and the supervision of this zone is also activated. If the robot reaches 

one of these areas, the motion is stopped.

Characteristics

shapedata is a non-value data type.

Continues on next page



3 Data types

3.51. shapedata - World zone shape data
World Zones

3HAC 16581-1  Revision: J1180

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section RAPID summary - Motion settings

Define box-shaped world zone WZBoxDef - Define a box-shaped world zone on 
page 732

Define sphere-shaped world zone WZSphDef - Define a sphere-shaped world zone on 
page 756

Define cylinder-shaped world zone WZCylDef - Define a cylinder-shaped world zone on 
page 734

Define a world zone for home joints WZHomeJointDef - Define a world zone for home 
joints on page 746

Define a world zone for limit joints WZLimJointDef - Define a world zone for limitation in 
joints on page 749

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision on 
page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital output 
on page 738

Continued



3 Data types

3.52. signalxx - Digital and analog signals
RobotWare - OS

11813HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.52. signalxx - Digital and analog signals

Usage

Data types within signalxx are used for digital and analog input and output signals.

The names of the signals are defined in the system parameters and are consequently not to be 

defined in the program.

Description

Variables of the type signalxo only contain a reference to the signal. The value is set using 

an instruction, e.g. DOutput. 

Variables of the type signalxi contain a reference to a signal as well as the possibility to 

retrieve the value directly in the program, if used in value context.

The value of an input signal can be read directly in the program, e.g.:

! Digital input

IF di1 = 1 THEN ...

! Digital group input

IF gi1 = 5 THEN ...

! Analog input

IF ai1 > 5.2 THEN ...

It can also be used in assignments, e.g.:

VAR num current_value;

! Digital input

current_value := di1;

! Digital group input

current_value := gi1;

! Analog input

current_value := ai1;

Data type Used for

signalai analog input signals

signalao analog output signals

signaldi digital input signals

signaldo digital output signals

signalgi groups of digital input signals

signalgo groups of digital output signals

Continues on next page



3 Data types

3.52. signalxx - Digital and analog signals
RobotWare - OS

3HAC 16581-1  Revision: J1182

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

Data of the data type signalxx must not be defined in the program. However, if this is in 

fact done then an error message will be displayed as soon as an instruction or function that 

refers to this signal is executed. The data type can, on the other hand, be used as a parameter 

when declaring a routine.

Predefined data

The signals defined in the system parameters can always be accessed from the program by 

using the predefined signal variables (installed data). However, it should be noted that if other 

data with the same name is defined then these signals cannot be used.

Characteristics

Signalxo is a non-value data type. Thus, data of this type does not permit value - oriented 

operations.

Signalxi is a semi-value data type.

Error handling

The following recoverable error can be generated. The error can be handled in an error 

handler. The system variable ERRNO will be set to:

ERR_NORUNUNIT if there is no contact with the unit.

Related information

For information about See

Summary input/output instructions Technical reference manual - RAPID overview, 
section RAPID Summary - Input and output signals

Input/Output functionality in general Technical reference manual - RAPID overview, 
section Motion and I/O Principles - I/O principles

Configuration of I/O Technical reference manual - System parameters

Characteristics of non-value data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data types

Continued



3 Data types

3.53. socketdev - Socket device
Socket Messaging

11833HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.53. socketdev - Socket device

Usage

socketdev (socket device) is used to communicate with other computers on a network or 

between RAPID task.

Description

The socket device is a handle to a communication link to another computer on a network.

Basic examples

Basic examples of the data type socketdev are illustrated below.

Example 1
VAR socketdev socket1;

The variable socket1 is defined and can be used in a socket command, e.g. SocketCreate.

Limitations

Any number of sockets can be declared but it is only possible to use 8 sockets at the same 

time.

Characteristics

socketdev is a non-value data type. 

Related information

For information about See

Socket communication in general Application manual - Robot communication and I/O 
control

Create a new socket SocketCreate - Create a new socket on page 460

Characteristics of non-value data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types



3 Data types

3.54. socketstatus - Socket communication status
Socket Messaging

3HAC 16581-1  Revision: J1184

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.54. socketstatus - Socket communication status

Usage

socketstatus is used for representing status of the socket communication.

Description

Socket status is fetched with the function SocketGetStatus and can be used for program 

flow control or debugging purposes.

Basic examples

Basic examples of the data type socketstatus are illustrated below.

Example 1
VAR socketdev socket1;

VAR socketstatus state;

...

SocketCreate socket1;

state := SocketGetStatus( socket1 );

The socket status SOCKET_CREATED will be stored in the variable state.

Predefined data

Following constants of type socketstatus are predefined:

Characteristics

socketstatus is an alias data type for num and consequently inherits its characteristics.

Related information

RAPID constant Value The socket is ...

SOCKET_CREATED 1 Created

SOCKET_CONNECTED 2 Client connected to a remote host

SOCKET_BOUND 3 Server bounded to a local address and port

SOCKET_LISTENING 4 Server listening for incoming connections

SOCKET_CLOSED 5 Closed

For information about See

Socket communication in general Application manual - Robot communication 
and I/O control

Get socket status SocketGetStatus - Get current socket state on 
page 973

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types



3 Data types

3.55. speeddata - Speed data
RobotWare - OS

11853HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.55. speeddata - Speed data

Usage

speeddata is used to specify the velocity at which both the robot and the external axes 

move.

Description 

Speed data defines the velocity: 

• at which the tool center point moves,

• the reorientation speed of the tool,

• at which linear or rotating external axes move.

When several different types of movement are combined, one of the velocities often limits all 

movements. The velocity of the other movements will be reduced in such a way that all 

movements will finish executing at the same time. 

The velocity is also restricted by the performance of the robot. This differs, depending on the 

type of robot and the path of movement. 

Components

v_tcp

velocity tcp

Data type: num

The velocity of the tool center point (TCP) in mm/s.

If a stationary tool or coordinated external axes are used, the velocity is specified relative to 

the work object.

v_ori

velocity orientation

Data type: num

The reorientation velocity of the TCP expressed in degrees/s. 

If a stationary tool or coordinated external axes are used, the velocity is specified relative to 

the work object.

v_leax 

velocity linear external axes

Data type: num

The velocity of linear external axes in mm/s.

v_reax

velocity rotational external axes

Data type: num

The velocity of rotating external axes in degrees/s.

Continues on next page



3 Data types

3.55. speeddata - Speed data
RobotWare - OS

3HAC 16581-1  Revision: J1186

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the data type speeddata are illustrated below.

Example 1
VAR speeddata vmedium := [ 1000, 30, 200, 15 ];

The speed data vmedium is defined with the following velocities:

• 1000 mm/s for the TCP.

• 30 degrees/s for reorientation of the tool.

• 200 mm/s for linear external axes.

• 15 degrees/s for rotating external axes.

vmedium.v_tcp := 900;

The velocity of the TCP is changed to 900 mm/s.

Limitations

At very slow motion each movement should be short enough to give an interpolation time less 

than 240 seconds.

Predefined data

A number of speed data are already defined in the system module BASE_SHARED.

Predefined speed data to be used for moving the robot and the external axes:

Name TCP speed Orientation
Linear 
ext. axis

Rotating 
ext. axis

v5 5 mm/s 500°/s 5000 mm/s 1000°/s

v10 10 mm/s 500°/s 5000 mm/s 1000°/s

v20 20 mm/s 500°/s 5000 mm/s 1000°/s

v30 30 mm/s 500°/s 5000 mm/s 1000°/s

v40 40 mm/s 500°/s 5000 mm/s 1000°/s

v50 50 mm/s 500°/s 5000 mm/s 1000°/s

v60 60 mm/s 500°/s 5000 mm/s 1000°/s

v80 80 mm/s 500°/s 5000 mm/s 1000°/s

v100 100 mm/s 500°/s 5000 mm/s 1000°/s

v150 150 mm/s 500°/s 5000 mm/s 1000°/s

v200 200 mm/s 500°/s 5000 mm/s 1000°/s

v300 300 mm/s 500°/s 5000 mm/s 1000°/s

v400 400 mm/s 500°/s 5000 mm/s 1000°/s

v500 500 mm/s 500°/s 5000 mm/s 1000°/s

v600 600 mm/s 500°/s 5000 mm/s 1000°/s

v800 800 mm/s 500°/s 5000 mm/s 1000°/s

v1000 1000 mm/s 500°/s 5000 mm/s 1000°/s

v1500 1500 mm/s 500°/s 5000 mm/s 1000°/s

v2000 2000 mm/s 500°/s 5000 mm/s 1000°/s

v2500 2500 mm/s 500°/s 5000 mm/s 1000°/s

v3000 3000 mm/s 500°/s 5000 mm/s 1000°/s

v4000 4000 mm/s 500°/s 5000 mm/s 1000°/s

Continued

Continues on next page



3 Data types

3.55. speeddata - Speed data
RobotWare - OS

11873HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

*) Max. TCP speed for the used robot type and normal practical TCP values. The RAPID 

function MaxRobSpeed returns the same value. If using extreme big TCP values in tool frame 

then create own speeddata with bigger TCP speed than returned by MaxRobSpeed.

Predefined speeddata to be used for moving rotating external axes with instruction 
MoveExtJ.

Predefined speed data to be used for moving linear external axes with instruction MoveExtJ.

Structure
< dataobject of speeddata >

< v_tcp of num >

< v_ori of num >

< v_leax of num >

< v_reax of num >

v5000 5000 mm/s 500°/s 5000 mm/s 1000°/s

v6000 6000 mm/s 500°/s 5000 mm/s 1000°/s

v7000 7000 mm/s 500°/s 5000 mm/s 1000°/s

vmax *) 500°/s 5000 mm/s 1000°/s

Name TCP speed Orientation
Linear 
ext. axis

Rotating 
ext. axis

vrot1 0 mm/s 0°/s 0 mm/s 1°/s

vrot2 0 mm/s 0°/s 0 mm/s 2°/s

vrot5 0 mm/s 0°/s 0 mm/s 5°/s

vrot10 0 mm/s 0°/s 0 mm/s 10°/s

vrot20 0 mm/s 0°/s 0 mm/s 20°/s

vrot50 0 mm/s 0°/s 0 mm/s 50°/s

vrot100 0 mm/s 0°/s 0 mm/s 100°/s

Name TCP speed Orientation
Linear 
ext. axis

Rotating 
ext. axis

vlin10 0 mm/s 0°/s 10 mm/s 0°/s

vlin20 0 mm/s 0°/s 20 mm/s 0°/s

vlin50 0 mm/s 0°/s 50 mm/s 0°/s

vlin100 0 mm/s 0°/s 100 mm/s 0°/s

vlin200 0 mm/s 0°/s 200 mm/s 0°/s

vlin500 0 mm/s 0°/s 500 mm/s 0°/s

lin1000 0 mm/s 0°/s 1000 mm/s 0°/s

Name TCP speed Orientation
Linear 
ext. axis

Rotating 
ext. axis

Continued

Continues on next page



3 Data types

3.55. speeddata - Speed data
RobotWare - OS

3HAC 16581-1  Revision: J1188

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Positioning instructions Technical reference manual - RAPID overview, section 
RAPID Summary - Motion

Motion/Speed in general Technical reference manual - RAPID overview, section 
Motion and I/O principles - Positioning during program 
execution

Defining maximum velocity VelSet - Changes the programmed velocity on page 662

Max. TCP speed for this robot MaxRobSpeed - Maximum robot speed on page 892

Continued



3 Data types

3.56. stoppointdata - Stop point data
RobotWare - OS

11893HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.56. stoppointdata - Stop point data

Usage

stoppointdata is used to specify how a position is to be terminated, i.e. how close to the 

programmed position the axes must be before moving towards the next position.

Description

A position can be terminated either in the form of a fly-by point or a stop point.

A fly-by point means that the programmed position is never reached. A zone is specified in 

the instruction for the movement, defining a corner path. Instead of heading for the 

programmed position, the direction of the motion is formed into the corner path before the 

position is reached. See data type zonedata.

A stop point means that the robot and external axes must reach the specified position before 

the robot/external axes continues with the next movement. The robot is considered to have 

reached a stop point when the convergence criteria of the point are satisfied. The convergence 

criteria are speed and position. It is also possible to specify timing criteria. For stop point 

fine, see also data type zonedata.

Three types of stop points can be defined by the stoppointdata.

• The in position type of stop point is defined as a percentage of the convergence 

criteria (position and speed) for the predefined stop point fine. The in-position type 

also uses a minimum and a maximum time. The robot waits for at least the minimum 

time, and at most the maximum time, for the position and speed criteria to be satisfied.

• The stop time type of stop point always waits in the stop point for the given time.

• The follow time type of stop point is a special type of stop point used to coordinate 

the robot movement with a conveyor.

The stoppointdata also determines how the movement shall be synchronized with the 

RAPID execution. If the movement is synchronized, the RAPID execution waits for a “in 

pos” event when the robot is in position. If the movement is not synchronized, the RAPID 

execution gets a “prefetch” event almost a half second before the physical robot reaches the 

programmed position. When the program execution gets an “in pos” or a “prefetch” event, it 

continues with the next instruction. When the “prefetch” event arrives, the robot still has a 

long way to move. When the“ in pos” event arrives the robot is close to the programmed 

position.

For the type stop time and follow time, the next instruction starts its execution at the same 

time as the stop time and follow time, respectively, start to count down. But for the type in 
position, the next instruction is started when the convergence criteria is fulfilled.

If use of move instructions with argument \Conc, no synchronization at all is done, so the 

actual move instruction execution will be ready at once.

Continues on next page



3 Data types

3.56. stoppointdata - Stop point data
RobotWare - OS

3HAC 16581-1  Revision: J1190

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xx0500002374

In the figure above, the termination of the stop points is described. The robot’s speed does not 

decrease linearly. The robot servo is always ahead of the physical robot. It is shown as the 

constant lag in the figure above. The constant lag is about 0.1 seconds. The timing elements 

of stoppointdata use the reference speed as trigger. When the reference speed is zero the 

time measurement starts. Therefore the time in the timing elements always include the 

constant lag. Consequently there is no sense in using values less than the constant lag.

Components

type

type of stop point

Data type: stoppoint

The following table defines the type of stoppoint.
1 (inpos) The movement terminates as an in-position type of stop 

point. Enables the inpos element in stoppointdata. The 
zone data in the instruction is not used, use fine or z0.

2 (stoptime) The movement terminates as a stop-time type of stop point. 
Enables the stoptime element in stoppointdata. The 
zone data in the instruction is not used, use fine or z0.

3 (followtime)  The movement terminates as a conveyor follow-time type of 
fine point. The zone data in the instruction is used when the 
robot leaves the conveyor. Enables the followtime 
element in stoppointdata.

Continued

Continues on next page



3 Data types

3.56. stoppointdata - Stop point data
RobotWare - OS

11913HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Data type stoppoint is an alias data type for num. It is used to choose the type of stop point 

and which data elements to use in the stoppointdata. Predefined constants are:

progsynch

program synchronization

Data type: bool

Synchronization with RAPID program execution.

• TRUE: The movement is synchronized with RAPID execution. The program does not 

start to execute the next instruction until the stop point has been reached.

• FALSE: The movement is not synchronized with RAPID execution. The program 

starts the execution of the next instruction before the stop point has been reached.

If use of move instructions with argument \Conc, no synchronization at all is done 

independent of the data in progsynch, so the actual move instruction will always be ready 

at once.

inpos.position

position condition for TCP

Data type: num

The position condition (the radius) for the TCP in percent of a normal fine stop point.

inpos.speed

speed condition for TCP

Data type: num

The speed condition for the TCP in percent of a normal fine stop point.

inpos.mintime

minimum wait time

Data type: num

The minimum wait time in seconds before in position. Used to make the robot wait at least 

the specified time in the point. Maximum value is 20.0 seconds.

inpos.maxtime

maximum wait time

Data type: num

The maximum wait time in seconds for convergence criteria to be satisfied. Used to assure 

that the robot does not get stuck in the point if the speed and position conditions are set too 

tight. Maximum value is 20.0 seconds.

 Value Symbolic constant Comment

1 inpos In position type number

2 stoptime Stop time type number

3 fllwtime Follow time type number

Continued

Continues on next page



3 Data types

3.56. stoppointdata - Stop point data
RobotWare - OS

3HAC 16581-1  Revision: J1192

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

stoptime

stop time

Data type: num

The time in seconds, the TCP stands still in position before starting the next movement. Valid 

range 0 - 20 s, resolution 0.001 s.

followtime

follow time

Data type: num

The time in seconds the TCP follows the conveyor. Valid range 0 - 20 s, resolution 0.001 s.

signal

Data type: string

Reserved for future use.

relation

Data type: opnum

Reserved for future use.

checkvalue

Data type: num

Reserved for future use.

Basic examples

Basic examples of the data type stoppointdata are illustrated below.

Inpos
VAR stoppointdata my_inpos := [ inpos, TRUE, [ 25, 40, 0.1, 5], 0, 

0, "", 0, 0]; 

MoveL *, v1000, fine \Inpos:=my_inpos, grip4;

The stop point data my_inpos is defined by means of the following characteristics:

• The type of stop point is in-position type, inpos.

• The stop point will be synchronized with the RAPID program execution, TRUE.

• The stop point distance criteria is 25% of the distance defined for the stop point 

fine, 25. 

• The stop point speed criteria is 40% of the speed defined for the stop point fine, 40.

• The minimum time to wait before convergence is 0,1 s, 0.1.

• The maximum time to wait on convergence is 5 s, 5.

The robot moves towards the programmed position until one of the criteria position or speeds 

are satisfied.

my_inpos.inpos.position := 40; 

MoveL *, v1000, fine \Inpos:=my_inpos, grip4;

The stop point distance criteria is adjusted to 40%.

Continued

Continues on next page



3 Data types

3.56. stoppointdata - Stop point data
RobotWare - OS

11933HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stoptime
VAR stoppointdata my_stoptime := [ stoptime, FALSE, [ 0, 0, 0, 0], 

1.45, 0, "", 0, 0]; 

MoveL *, v1000, fine \Inpos:=my_stoptime, grip4;

The stop point data my_stoptime is defined by means of the following characteristics:

• The type of stop point is stop-time type, stoptime.

• The stop point will not be synchronized with the RAPID program execution, FALSE.

• The wait time in position is 1.45 s.

The robot moves towards the programmed position until the prefetch event arrives. The next 

RAPID instruction executes. If it is a move-instruction then the robot stops for 1.45 seconds 

before the next movement starts.

my_stoptime.stoptime := 6.66; 

MoveL *, v1000, fine \Inpos:=my_stoptime, grip4;

The stop point stop time is adjusted to 6.66 seconds. If the next RAPID instruction is a move-

instruction, the robot stops for 6.66 s.

Followtime
VAR stoppointdata my_followtime := [ fllwtime, TRUE, [ 0, 0, 0, 

0], 0, 0.5, "", 0, 0]; 

MoveL *, v1000, z10 \Inpos:=my_followtime, grip6\wobj:=conveyor1;

The stop point data my_followtime is defined by means of the following characteristics:

• The type of stop point is follow-time type, fllwtime.

• The stop point will be synchronized with the RAPID program execution, TRUE.

• The stop point follow time is 0.5 s, 0.5.

The robot will follow the conveyor for 0.5 s before leaving it with the zone 10 mm, z10.

my_followtime.followtime := 0.4;

The stop point follow time is adjusted to 0.4 s.

Predefined data

A number of stop point data are already defined in the system module BASE_SHARED.

In position stop points

(inpos100 has same convergence criteria as stop point fine)

Name Progsynch Position Speed Mintime Maxtime
Stop-
time

Follow-
time

inpos20 TRUE 20% 20% 0 s 2 s - -

inpos50 TRUE 50% 50% 0 s 2 s - -

inpos100 TRUE 100% 100% 0 s 2 s - -

Continued

Continues on next page



3 Data types

3.56. stoppointdata - Stop point data
RobotWare - OS

3HAC 16581-1  Revision: J1194

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop time stop points

Follow time stop points

Structure
< data object of stoppointdata >

< type of stoppoint >

< progsynch of bool >

< inpos of inposdata >

< position of num >

< speed of num >

< mintime of num >

< maxtime of num >

< stoptime of num >

< followtime of num >

< signal of string >

< relation of opnum >

< checkvalue of num >

Related information

Name Progsynch Position Speed Mintime Maxtime
Stop-
time

Follow-
time

stoptime0_5 FALSE - - - - 0.5 s -

stoptime1_0 FALSE - - - - 1.0 s -

stoptime1_5 FALSE - - - - 1.5 s -

Name Progsynch Position Speed Mintime Maxtime
Stop-
time

Follow-
time

fllwtime0_5 TRUE - - - - - 0.5 s

fllwtime1_0 TRUE - - - - - 1.0 s

fllwtime1_5 TRUE - - - - - 1.5 s

For information about See

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Movements/Paths in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning 
during program execution

Stop or fly-by points zonedata - Zone data on page 1232

Continued



3 Data types

3.57. string - Strings
RobotWare - OS

11953HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.57. string - Strings

Usage

string is used for character strings.

Description

A character string consists of a number of characters (a maximum of 80) enclosed by 

quotation marks (""), e.g. "This is a character string".

If the quotation marks are to be included in the string, they must be written twice, e.g. "This 

string contains a ""character".

If the back slashes are to be included in the string, it must be written twice, e.g. "This string 

contains a \\ character".

Basic examples

Basic examples of the data type string are illustrated below.

Example 1
VAR string text;

...

text := "start welding pipe 1";

TPWrite text;

The text start welding pipe 1 is written on the FlexPendant.

Limitations

A string may have 0 to 80 characters; inclusive of extra quotation marks or back slashes.

A string may contain any of the characters specified by ISO 8859-1 (Latin-1) as well as 

control characters (non-ISO 8859-1 (Latin-1) characters with a numeric code between 0-255).

Predefined data

A number of predefined string constants are available in the system and can be used together 

with string functions. See for example StrMemb.

Name Character set

STR_DIGIT <digit> ::=

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

STR_UPPER <upper case letter> ::=

A | B | C | D | E | F | G | H | I | J

| K | L | M | N | O | P | Q | R | S | T

| U | V | W | X | Y | Z | À | Á | Â | Ã

| Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì | Í

| Î | Ï | 1)| Ñ | Ò | Ó | Ô | Õ | Ö | Ø

| Ù | Ú | Û | Ü | 2) | 3)

Continues on next page



3 Data types

3.57. string - Strings
RobotWare - OS

3HAC 16581-1  Revision: J1196

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

1) Icelandic letter eth.

2) Letter Y with acute accent.

3) Icelandic letter thorn.

The following constants are already defined in the system module BASE_SHARED:

CONST string diskhome := "HOME:";

! For old programs from S4C system

CONST string ram1disk := "HOME:";

CONST string disktemp := "TEMP:";

CONST string flp1 := "flp1:";

CONST string stSpace := " ";

CONST string stEmpty := "";

stEmpty can be useful for memory saving if a lot of empty strings are used, for example:

TPReadFK reg1, "warm start required", stEmpty, stEmpty, stEmpty, 

stEmpty, "OK";

Related information

STR_LOWER <lower case letter> ::=

a | b | c | d | e | f | g | h | i | j

| k | l | m | n | o | p | q | r | s | t

| u | v | w | x | y | z | à | á | â | ã

| ä | å | æ | ç | è | é | ê | ë | ì | í

| î | ï | 1) | ñ | ò | ó | ô | õ | ö | ø

| ù | ú | û | ü | 2) | 3) | ß | ÿ-

STR_WHITE <blank character> ::=

Name Character set

For information about See

Operations using strings Technical reference manual - RAPID overview, section 
Basic characteristics - Expressions

String values Technical reference manual - RAPID overview, section 
Basic characteristics - Basic elements

Instruction using character set StrMemb - Checks if a character belongs to a set on 
page 1001

Continued



3 Data types

3.58. stringdig - String with only digits
RobotWare - OS

11973HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.58. stringdig - String with only digits

Usage

stringdig is used to represent big positive integers in a string with only digits.

This data type is introduced because the data type num cannot handle positive integers above 

8 388 608 with exact representation.

Description

A stringdig can only consist of a number of digits 0 ... 9 enclosed by quotation marks (""), 

e.g. "0123456789".

The data type stringdig can handle positive integers up to 4 294 967 295.

Basic examples

Basic examples of the data type stringdig are illustrated below.

Example 1
VAR stringdig digits1;

VAR stringdig digits2;

VAR bool flag1;

...

digits1 ="09000000";

digits2 = "9000001";

flag1 := StrDigCmp (digits1, LT, digits2);

The data flag1 will be set to TRUE because 09000000 is less than 9000001.

Characteristics

stringdig is an alias data type of string and consequently inherits most of its 

characteristics.

Related information

For information about See

String values Technical reference manual - RAPID 
overview, section Basic characteristics - Basic 
elements

Strings string - Strings on page 1195

Numeric values num - Numeric values on page 1146

Comparison operator opnum - Comparison operator on page 1149

StrDigCmp - Compare two strings with only 
digits on page 991

Compare strings with only digits StrDigCmp - Compare two strings with only 
digits on page 991



3 Data types

3.59. switch - Optional parameters
RobotWare - OS

3HAC 16581-1  Revision: J1198

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.59. switch - Optional parameters 

Usage

switch is used for optional parameters.

Description

The special type, switch may (only) be assigned to optional parameters and provides a 

means to use switch arguments, i.e. arguments that are only specified by names (not values). 

A value can not be transmitted to a switch parameter. The only way to use a switch parameter 

is to check for its presence using the predefined function Present.

Basic examples

Basic examples of the data type switch are illustrated below.

Example 1
PROC my_routine(\switch on | \switch off)

  ....

  IF Present (off) THEN

    ....

  ENDIF

ENDPROC

Depending on what arguments the caller of my_routine uses, the program flow can be 

controlled.

Characteristics

switch is a non-value data type and can not be used in value-orientated operations.

Related information

For information about See

Parameters Technical reference manual - RAPID 
overview, section Basic characteristics - 
Routines. 

How to check if an optional parameter is 
present

Present - Tests if an optional parameter is 
used on page 937



3 Data types

3.60. symnum - Symbolic number
RobotWare - OS

11993HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.60. symnum - Symbolic number

Usage

symnum (Symbolic Number) is used to represent an integer with a symbolic constant.

Description

A symnum constant is intended to be used when checking the return value from the functions 

OpMode and RunMode. See example below.

Basic examples

Basic examples of the data type symnum are illustrated below.

Example 1
IF RunMode() = RUN_CONT_CYCLE THEN

..

ELSE

..

ENDIF

Predefined data

The following symbolic constants of the data type symnum are predefined and can be used 

when checking return values from the functions OpMode and RunMode.

Characteristics

Symnum is an alias data type for num and consequently inherits its characteristics.

Related information

 Value Symbolic constant Comment

0 RUN_UNDEF Undefined running mode

1 RUN_CONT_CYCLE Continuous or cycle running mode

2 RUN_INSTR_FWD Instruction forward running mode

3 RUN_INSTR_BWD Instruction backward running mode

4 RUN_SIM Simulated running mode

5 RUN_STEP_MOVE Move instructions in forward running mode and 
logical instructions in continuous running mode

Value Symbolic constant Comment

0 OP_UNDEF Undefined operating mode

1 OP_AUTO Automatic operating mode

2 OP_MAN_PROG Manual operating mode max. 250 mm/s

3 OP_MAN_TEST Manual operating mode full speed, 100%

For information about See

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types



3 Data types

3.61. syncident - Identity for synchronization point
Multitasking

3HAC 16581-1  Revision: J1200

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.61. syncident - Identity for synchronization point

Usage

syncident (synchronization identity) is used to specify the name of a synchronization point. 

The name of the synchronization point will be the name (identity) of the declared data of type 

syncident.

Description

syncident is used to identify a point in the program where the actual program task will wait 

for cooperate program tasks to reach the same synchronization point.

The data name (identity) of the type syncident must be the same in all cooperative program 

tasks.

Data type syncident is used in the instructions WaitSyncTask, SyncMoveOn, and  

SyncMoveOff.

Basic examples

Basic examples of the data type syncident are illustrated below.

Example 1

Program example in program task ROB1

PERS tasks task_list{3} := [ ["STN1"], ["ROB1"], ["ROB2"] ];

VAR syncident sync1;

WaitSyncTask sync1, task_list;

At execution of instruction WaitSyncTask in the program task ROB1, the execution in that 

program task will wait until the other program tasks STN1 and ROB2 have reached their 

corresponding WaitSyncTask with the same synchronization (meeting) point sync1.

Structure

syncident is a non-value data type.

Related information

For information about See

Specify cooperated program tasks tasks - RAPID program tasks on page 1204

Wait for synchronization point with other 
tasks

WaitSyncTask - Wait at synchronization point 
for other program tasks on page 688

Start coordinated synchronized movements SyncMoveOn - Start coordinated synchro-
nized movements on page 534

End coordinated synchronized movements SyncMoveOff - End coordinated synchro-
nized movements on page 528



3 Data types

3.62. System data - Current RAPID system data settings
RobotWare - OS

12013HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.62. System data - Current RAPID system data settings

Usage

System data mirrors the current settings of RAPID system data such as current model 

motion settings, current error recovery number ERRNO, current interrupt number INTNO, etc.

These data can be accessed and read by the program. It can be used to read the current status, 

e.g. the current program displacement.

C_MOTSET

The variable C_MOTSET of data type motsetdata mirrors the current motion settings:

C_PROGDISP

The variable C_PROGDISP of data type progdisp mirrors the current program displacement 
and external axes offset:

Description Data type Changed by See also

Current motion 
settings, i.e.:

motsetdata Instructions motsetdata - Motion settings data 
on page 1141

Velocity override and 
max velocity

VelSet VelSet - Changes the programmed 
velocity on page 662

Acceleration override AccSet AccSet - Reduces the acceleration 
on page 15

Movements around 
singular points

SingArea SingArea - Defines interpolation 
around singular points on page 447

Linear configuration 
control

Joint configuration 
control

ConfL

ConfJ

ConfL - Monitors the configuration 
during linear movement on page 61

ConfJ - Controls the configuration 
during joint movement on page 59

Path resolution PathResol PathResol - Override path 
resolution on page 314

Tuning motion 
supervision

MotionSup MotionSup - Deactivates/Activates 
motion supervision on page 227

Reduction of TCP 
acceleration/decelera-
tion along the 
movement path

PathAccLim PathAccLim - Reduce TCP acceler-
ation along the path on page 295

Modification of the tool 
orientation during 
circle interpolation

CirPathMode CirPathMode - Tool reorientation 
during circle path on page 38

Reduction of payload 
acceleration in world 
coordinate system

WorldAccLim WorldAccLim - Control acceleration 
in world coordinate system on page 
707

Description Data type Changed by See also

Current program dis-
placement for robot 
axes

progdisp Instructions: progdisp - Program displacement 
on page 1163

PDispSet PDispSet - Activates program dis-
placement using known frame on 
page 321

PDispOn PDispOn - Activates program dis-
placement on page 317

Continues on next page



3 Data types

3.62. System data - Current RAPID system data settings
RobotWare - OS

3HAC 16581-1  Revision: J1202

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ERRNO

The variable ERRNO of data type errnum mirrors the current error recovery number:

INTNO

The variable INTNO of data type intnum mirrors the current interrupt number:

ROB_ID

The variable ROB_ID of data type mecunit contains a reference to the TCP-robot (if any) in 
the actual program task.

PDispOff PDispOff - Deactivates program 
displacement on page 316

Current external axes 
offset

EOffsSet EOffsSet - Activates an offset for 
external axes using known values 
on page 90

EOffsOn EOffsOn - Activates an offset for 
external axes on page 88

EOffsOff EOffsOff - Deactivates an offset for 
external axes on page 87

Description Data type Changed by See also

Description Data type Changed by See also

The latest error that 
occurred

errnum The system Technical reference manual - 
RAPID overview, section RAPID 
summary - Error recovery

intnum - Interrupt identity on page 
1125

Description Data type Changed by See also

The latest interrupt 
that occurred

intnum The system Technical reference manual - 
RAPID overview, section RAPID 
summary - Interrupts

intnum - Interrupt identity on page 
1125

Description Data type Changed by See also

Reference to the robot 
(if any) in the actual 
program task. Always 
check before use with 
TaskRunRob ()

mecunit The system mecunit - Mechanical unit on page 
1139

Continued



3 Data types

3.63. taskid - Task identification
Multitasking

12033HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.63. taskid - Task identification

Usage

taskid is used to identify available program tasks in the system.

The names of the program tasks are defined in the system parameters and, consequently, must 

not be defined in the program.

Description

Data of the type taskid only contains a reference to the program task. 

Limitations

Data of the type taskid must not be defined in the program. The data type can, on the other 

hand, be used as a parameter when declaring a routine.

Predefined data

The program tasks defined in the system parameters can always be accessed from the 

program (installed data). 

For all program tasks in the system, predefined variables of the data type taskid will be 

available. The variable identity will be "taskname"+"Id", e.g. for the T_ROB1 task the variable 

identity will be T_ROB1Id, T_ROB2 - T_ROB2Id etc.

Characteristics

taskid is a non-value data type. This means that data of this type does not permit value-

oriented operations.

Related information

For information about See

Saving program modules Save - Save a program module on page 396

Configuration of program tasks Technical reference manual - System 
parameters

Characteristics of non-value data types Technical reference manual - RAPID 
overview, section Basic characteristics - Data 
types



3 Data types

3.64. tasks - RAPID program tasks
Multitasking

3HAC 16581-1  Revision: J1204

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.64. tasks - RAPID program tasks

Usage

tasks is used to specify several RAPID program tasks.

Description

To specify several RAPID program tasks, the name of each task can be given as a string. An 

array of data type tasks can then hold all the task names.

This task list can then be used in the instructions WaitSyncTask and SyncMoveOn. 

NOTE!

The instructions above demand that the data is defined as system global PERS variables 

available in all the cooperated tasks.

Components

The data type has the following components.

taskname

Data type: string

The name of a RAPID program task specified in a string.

Basic examples

Basic examples of the data type tasks are illustrated below.

Example 1

Program example in program task T_ROB1

PERS tasks task_list{3} := [ ["T_STN1"], ["T_ROB1"], ["T_ROB2"] ];

VAR syncident sync1;

WaitSyncTask sync1, task_list;

At execution of instruction WaitSyncTask in the program task T_ROB1, the execution in that 

program task will wait until all the other program tasks T_STN1 and T_ROB2 have reached 

their corresponding WaitSyncTask with the same synchronization (meeting) point sync1.

Structure
<dataobject of tasks>

<taskname of string>

Continues on next page



3 Data types

3.64. tasks - RAPID program tasks
Multitasking

12053HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

Identity for synchronization point syncident - Identity for synchronization point on page 
1200

Wait for synchronization point with 
other tasks

WaitSyncTask - Wait at synchronization point for other 
program tasks on page 688

Start coordinated synchronized 
movements

SyncMoveOn - Start coordinated synchronized 
movements on page 534

End coordinated synchronized 
movements

SyncMoveOff - End coordinated synchronized 
movements on page 528

Continued



3 Data types

3.65. testsignal - Test signal
RobotWare - OS

3HAC 16581-1  Revision: J1206

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.65. testsignal - Test signal

Usage

The data type testsignal is used when a test of the robot motion system is performed.

Description

A number of predefined test signals are available in the robot system. The testsignal data 

type is available in order to simplify programming of instruction TestSignDefine.

Basic examples

Basic examples of the data type testsignal are illustrated below.

Example 1
TestSignDefine 2, speed, Orbit, 2, 0;

The predefined constant speed is used to read the actual speed of axis 2 on the manipulator 

orbit.

Predefined data

The following test signals for external manipulator axes are predefined in the system. All data 

is in SI units and measured on the motor side of the axis.

Characteristics

testsignal is an alias data type for num and consequently inherits its characteristics.

Related information

Symbolic constant Value Unit

speed 6 rad/s

torque_ref 9 Nm

resolver_angle 1 rad

speed_ref 4 rad/s

dig_input1 102 0 or 1

dig_input2 103 0 or 1

For information about See

Define test signal TestSignDefine - Define test signal on page 551

Read test signal TestSignRead - Read test signal value on page 1020

Reset test signals TestSignReset - Reset all test signal definitions on 
page 553



3 Data types

3.66. tooldata - Tool data
RobotWare - OS

12073HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.66. tooldata - Tool data

Usage

tooldata is used to describe the characteristics of a tool, e.g. a welding gun or a gripper. 

If the tool is fixed in space (a stationary tool), the tool data defines this tool and the gripper 

holding the work object.

Description 

Tool data affects robot movements in the following ways:

• The tool center point (TCP) refers to a point that will satisfy the specified path and 

velocity performance. If the tool is reorientated or if coordinated external axes are 

used, only this point will follow the desired path at the programmed velocity.

• If a stationary tool is used, the programmed speed and path will relate to the work 

object held by the robot.

• Programmed positions refer to the position of the current TCP and the orientation in 

relation to the tool coordinate system. This means that if, for example, a tool is 

replaced because it is damaged, the old program can still be used if the tool coordinate 

system is redefined.

Tool data is also used when jogging the robot to:

• Define the TCP that is not to move when the tool is reorientated.

• Define the tool coordinate system in order to facilitate moving in or rotating in the tool 

directions.

WARNING!

It is important to always define the actual tool load and, when used, the payload of the robot 

too. Incorrect definitions of load data can result in overloading of the robot mechanical 

structure.

When incorrect tool load data is specified, it can often lead to the following consequences:

1. If the value in the specified load is greater than the true load:

• The robot will not be used to its maximum capacity

• Impaired path accuracy including a risk of overshooting

2. If the value in the specified load is less than the true load:

• Risk of overloading the mechanical structure

• Impaired path accuracy including a risk of overshooting

Components

robhold

robot hold

Data type: bool

Defines whether or not the robot is holding the tool:

• TRUE: The robot is holding the tool.

• FALSE: The robot is not holding the tool, i.e. a stationary tool. 

Continues on next page



3 Data types

3.66. tooldata - Tool data
RobotWare - OS

3HAC 16581-1  Revision: J1208

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

tframe

tool frame

Data type: pose

The tool coordinate system, i.e.:

• The position of the TCP (x, y and z) in mm, expressed in the wrist coordinate system 

(see figure below).

• The orientation of the tool coordinate system, expressed in the wrist coordinate system 

as a quaternion (q1, q2, q3 and q4) (see figure below).

If a stationary tool is used, the definition is defined in relation to the world coordinate system.

If the direction of the tool is not specified, the tool coordinate system and the wrist coordinate 

system will coincide. 

xx0500002366

tload

tool load

Data type: loaddata

The load of the tool, i.e.:

• The weight of the tool in kg.

• The center of gravity of the tool load (x, y and z) in mm, expressed in the wrist 

coordinate system

• The moments of inertia of the tool relative to its center of mass around the tool load 

coordinate axes in kgm2. If all inertial components are defined as being 0 kgm2, the 

tool is handled as a point mass.

Continued

Continues on next page



3 Data types

3.66. tooldata - Tool data
RobotWare - OS

12093HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xx0500002367

For more information (such as coordinate system for stationary tool or restrictions), see the 

data type loaddata.

If a stationary tool is used, the load of the gripper holding the work object is defined in tload.

NOTE!

Only the load of the tool is to be specified. The payload handled by a gripper is connected and 

disconnected by means of the instruction GripLoad.

Basic examples

Basic examples of the data type tooldata are illustrated below.

Example 1
PERS tooldata gripper := [ TRUE, [[97.4, 0, 223.1], [0.924, 0, 

0.383 ,0]],  [5, [23, 0, 75], [1, 0, 0, 0], 0, 0, 0]];

The tool is described using the following values:

• The robot is holding the tool.

• The TCP is located at a point 223.1 mm straight out from axis 6 and 97.4 mm along 

the X-axis of the wrist coordinate system.

• The X and Z directions of the tool are rotated 45° in relation to the wrist coordinate 

system.

• The tool mass is 5 kg.

• The center of gravity is located at a point 75 mm straight out from axis 6 and 23 mm 

along the X-axis of the wrist coordinate system.

• The load can be considered a point mass, i.e. without any moment of inertia.

gripper.tframe.trans.z := 225.2;

The TCP of the tool, gripper, is adjusted to 225.2 in the z-direction.

Limitations

The tool data should be defined as a persistent variable (PERS) and should not be defined 

within a routine. The current values are then saved when the program is saved and are 

retrieved on loading.

Arguments of the type tool data in any motion instruction should only be an entire persistent 

(not array element or record component).

Continued

Continues on next page



3 Data types

3.66. tooldata - Tool data
RobotWare - OS

3HAC 16581-1  Revision: J1210

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Predefined data

The tool tool0 defines the wrist coordinate system, with the origin being the center of the 

mounting flange. Tool0 can always be accessed from the program, but can never be changed 

(it is stored in system module BASE).

PERS tooldata tool0 := [ TRUE, [ [0, 0, 0], [1, 0, 0 ,0] ],  [0.001, 

[0, 0, 0.001], [1, 0, 0, 0], 0, 0, 0] ];

Structure
< dataobject of tooldata >

< robhold of bool >

< tframe of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< tload of loaddata >

< mass of num >

< cog of pos >

< x of num >

< y of num >

< z of num >

< aom of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

< ix of num >

< iy of num >

< iz of num >

Related information

For information about See

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O Principles - Coordinate 
systems 

Definition of payload GripLoad - Defines the payload for the robot on page 
119

Definition of load loaddata - Load data on page 1132 

Continued



3 Data types

3.67. tpnum - FlexPendant window number
RobotWare - OS

12113HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.67. tpnum - FlexPendant window number

Usage

tpnum is used to represent the FlexPendant window number with a symbolic constant.

Description

A tpnum constant is intended to be used in instruction TPShow. See example below.

Basic examples

Basic examples of the datatype tpnum are illustrated below.

Example 1
TPShow TP_LATEST;

The last used FlexPendant Window before the current FlexPendant window will be active 

after execution of this instruction.

Predefined data

The following symbolic constant of the data type tpnum is predefined and can be used in 

instruction TPShow:

Characteristics

tpnum is an alias data type for num and consequently inherits its characteristics.

Related information

Value Symbolic constant Comment

2 TP_LATEST Latest used FlexPendant window

Information about See

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic Characteristics - Data Types

Communicating using the FlexPendant Technical reference manual - RAPID overview, 
section RAPID Summary - Communication

Switch window on the FlexPendant TPShow - Switch window on the FlexPendant 
on page 567



3 Data types

3.68. trapdata - Interrupt data for current TRAP
RobotWare - OS

3HAC 16581-1  Revision: J1212

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.68. trapdata - Interrupt data for current TRAP

Usage

trapdata (trap data) is used to contain the interrupt data that caused the current TRAP 

routine to be executed.

To be used in TRAP routines generated by instruction IError, before use of the instruction 

ReadErrData.

Description

Data of the type trapdata represents internal information related to the interrupt that caused 

the current trap routine to be executed. Its content depends on the type of interrupt.

Basic examples

Basic examples of the data type trapdata are illustrated below.

Example 1
VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

VAR trapdata err_data;

...

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

ENDTRAP

When an error is trapped to the trap routine trap_err, the error domain, the error number, 

and the error type are saved into appropriate non-value variables of type trapdata.

Characteristics

trapdata is a non-value data type.

Related information

For information about See

Summary of interrupts Technical reference manual - RAPID 
overview, section RAPID summary - Interrupts

More information on interrupt management Technical reference manual - RAPID 
overview, section Basic characteristics - 
Interrupts

Non value data types Technical reference manual - RAPID 
overview, section Basic characteristics - Data 
types

Orders an interrupt on errors IError - Orders an interrupt on errors on page 
126

Get interrupt data for current TRAP GetTrapData - Get interrupt data for current 
TRAP on page 115

Gets information about an error ReadErrData - Gets information about an 
error on page 349



3 Data types

3.69. triggdata - Positioning events, trigg
RobotWare - OS

12133HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.69. triggdata - Positioning events, trigg

Usage

triggdata is used to store data about a positioning event during a robot movement.

A positioning event can take the form of setting an output signal or running an interrupt 

routine at a specific position along the movement path of the robot.

Description

To define the conditions for the respective measures at a positioning event, variables of the 

type triggdata are used. The data contents of the variable are formed in the program using 

one of the instructions TriggIO, TriggEquip, TriggCheckIO or TriggInt, and are used 

by one of the instructions TriggL, TriggC or TriggJ.

Basic examples

Basic examples of the data type triggdata are illustrated below.

Example 1
VAR triggdata gunoff;

TriggIO gunoff, 0,5 \DOp:=gun, 0;

TriggL p1, v500, gunoff, fine, gun1;

The digital output signal gun is set to the value 0 when the TCP is at a position 0,5 mm 

before the point p1.

Characteristics

triggdata is a non-value data type.

Related information

For information about See

Definition of triggs TriggIO - Define a fixed position or time I/O event 
near a stop point on page 592

TriggEquip - Define a fixed position and time I/O 
event on the path on page 582

TriggCheckIO - Defines IO check at a fixed 
position on page 577

TriggInt - Defines a position related interrupt on 
page 588

Use of triggs TriggL - Linear robot movements with events on 
page 603

TriggC - Circular robot movement with events on 
page 570

TriggJ - Axis-wise robot movements with events 
on page 597

Characteristics of non-value data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types



3 Data types

3.70. triggios - Positioning events, trigg
RobotWare - OS

3HAC 16581-1  Revision: J1214

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.70. triggios - Positioning events, trigg

Usage

triggiosis used to store data about a positioning event during a robot movement. When the 

positioning event is distributed at a specific position on the path, an output signal is set to a 

specified value.

Description

triggios is used to define conditions and actions for setting a digital output signal, a group 

of digital output signals or an analog output signal at a fixed position along the robot’s 

movement path.

Components

used

Data type: bool

Defines whether or not the array element should be used or not.

distance

Data type: num

Defines the position on the path where the I/O event shall occur. Specified as the distance in 

mm (positive value) from the end point of the movement path if component start is set to 

FALSE. 

start

Data type: bool

Set to TRUE when the distance starts at the movement start point instead of the end point.

equiplag

Equipment Lag

Data type: num

Specify the lag for the external equipment in s.

For compensation of external equipment lag, use a positive argument value. Positive value 

means that the I/O signal is set by the robot system at a specified time before the TCP 

physically reaches the specified distance in relation to the movement start or end point.

Negative value means that the I/O signal is set by the robot system at a specified time after 

that the TCP has physically passed the specified distance in relation to the movement start or 

end point.

Continues on next page



3 Data types

3.70. triggios - Positioning events, trigg
RobotWare - OS

12153HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The figure shows use of component equiplag.

xx0800000173

signalname

Data type: string

The name of the signal that shall be changed. It have to be a digital output signal, group of 

digital output signals or an analog output signal.

setvalue

Data type: num

Desired value of output signal (within the allowed range for the current signal).

xxx

Data type: num

Component is not used right now. Added to be able to add functionality in future releases, and 

still be able to be compatible.

Examples

Example of the data type triggios is illustrated below.

Example 1
VAR triggios gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=1;

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData1:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set when the TCP is 3 mm after point p1.

Continued

Continues on next page



3 Data types

3.70. triggios - Positioning events, trigg
RobotWare - OS

3HAC 16581-1  Revision: J1216

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Structure
<dataobject of triggios>

<used of bool>

<distance of num>

<start of bool>

<equiplag of num>

<signalname of string>

<setvalue of num>

<xxx of num>

Related information

For information about See

Positioning events, trigg triggiosdnum - Positioning events, trigg on 
page 1217

Linear robot movements with I/O events TriggLIOs - Linear robot movements with I/O 
events on page 610

Continued



3 Data types

3.71. triggiosdnum - Positioning events, trigg
RobotWare - OS

12173HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.71. triggiosdnum - Positioning events, trigg

Usage

triggiosdnum is used to store data about a positioning event during a robot movement. 

When the positioning event is distributed at a specific position on the path, an output signal 

is set to a specified value.

Description

triggiosdnum is used to define conditions and actions for setting a digital output signal, a 

group of digital output signals or an analog output signal at a fixed position along the robot’s 

movement path.

Components

used

Data type: bool

Defines whether or not the array element should be used or not.

distance

Data type: num

Defines the position on the path where the I/O event shall occur. Specified as the distance in 

mm (positive value) from the end point of the movement path if component start is set to 

FALSE. 

start

Data type: bool

Set to TRUE when the distance starts at the movement start point instead of the end point.

equiplag

Equipment Lag

Data type: num

Specifies the lag for the external equipment in s.

For compensation of external equipment lag, use a positive argument value. Positive value 

means that the I/O signal is set by the robot system at a specified time before the TCP 

physically reaches the specified distance in relation to the movement start or end point.

Negative value means that the I/O signal is set by the robot system at a specified time after 

the TCP has physically passed the specified distance in relation to the movement start or end 

point.

signalname

Data type: string

The name of the signal that shall be changed. It has to be a digital output signal, group of 

digital output signals or an analog output signal.

setvalue

Data type: dnum

Desired value of output signal (within the allowed range for the current signal).

Continues on next page



3 Data types

3.71. triggiosdnum - Positioning events, trigg
RobotWare - OS

3HAC 16581-1  Revision: J1218

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

xxx

Data type: num

Component is not used right now. Added to be able to add functionality in future releases, and 

still be able to be compatible.

Examples

Example of the data type triggiosdnum is illustrated below.

Example 1
VAR triggiosdnum gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="go_gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:=123456789;

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData3:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal go_gun is set when the TCP is 3 mm after point p1.

Structure
<dataobject of triggiosdnum>

<used of bool>

<distance of num>

<start of bool>

<equiplag of num>

<signalname of string>

<setvalue of dnum>

<xxx of num>

Related information

For information about See

Positioning events, trigg triggios - Positioning events, trigg on page 
1214

Linear robot movements with I/O events TriggLIOs - Linear robot movements with I/O 
events on page 610

Continued



3 Data types

3.72. triggstrgo - Positioning events, trigg
RobotWare - OS

12193HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.72. triggstrgo - Positioning events, trigg

Usage

triggstrgo (trigg stringdig group output) is used to store data about a positioning event 

during a robot movement. When the positioning event is distributed at a specific position on 

the path, a group of digital output signals is set to a specified value.

Description

triggstrgo is used to define conditions and actions for setting a group of digital output 

signals at a fixed position along the robot’s movement path.

Components

used

Data type: bool

Defines whether or not the array element should be used or not.

distance

Data type: num

Defines the position on the path where the I/O event shall occur. Specified as the distance in 

mm (positive value) from the end point of the movement path if component start is set to 

FALSE. 

start

Data type: bool

Set to TRUE when the distance starts at the movement start point instead of the end point.

equiplag

Equipment Lag

Data type: num

Specify the lag for the external equipment in s.

For compensation of external equipment lag, use a positive argument value. Positive value 

means that the I/O signal is set by the robot system at a specified time before the TCP 

physically reaches the specified distance in relation to the movement start or end point.

Negative value means that the I/O signal is set by the robot system at a specified time after 

that the TCP has physically passed the specified distance in relation to the movement start or 

end point.

Continues on next page



3 Data types

3.72. triggstrgo - Positioning events, trigg
RobotWare - OS

3HAC 16581-1  Revision: J1220

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The figure shows use of component equiplag.

xx0800000173

signalname

Data type: string

The name of the signal that shall be changed. It has to be a name of a group output signal.

setvalue

Data type: stringdig

Desired value of output signal (within the allowed range for the current digital group output 

signal). Using stringdig data type makes it possible to use values up to 4294967295, which 

is the maximum value a group of digital signals can have (32 signals in a group signal is max 

for the system).

xxx

Data type: num

Component is not used right now. Added to be able to add functionality in future releases, and 

still be able to be compatible.

Examples

Example of the data type triggstrgo is illustrated below.

Example 1
VAR triggstrgo gunon{1};

gunon{1}.used:=TRUE;

gunon{1}.distance:=3;

gunon{1}.start:=TRUE;

gunon{1}.signalname:="gun";

gunon{1}.equiplag:=0;

gunon{1}.setvalue:="4294967295";

MoveJ p1, v500, z50, gun1;

TriggLIOs p2, v500, \TriggData2:=gunon, z50, gun1;

MoveL p3, v500, z50, gun1;

The signal gun is set to value 4294967295 when the TCP is 3 mm after point p1.

Continued

Continues on next page



3 Data types

3.72. triggstrgo - Positioning events, trigg
RobotWare - OS

12213HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Structure
<dataobject of triggstrgo>

<used of bool>

<distance of num>

<start of bool>

<equiplag of num>

<signalname of string>

<setvalue of stringdig>

<xxx of num>

Related information

For information about See

Linear robot movements with I/O events TriggLIOs - Linear robot movements with I/O 
events on page 610

Compare two strings with only digits StrDigCmp - Compare two strings with only 
digits on page 991

Arithmetic operations on stringdig data types StrDigCalc - Arithmetic operations with 
datatype stringdig on page 988

Continued



3 Data types

3.73. tunetype - Servo tune type
RobotWare - OS

3HAC 16581-1  Revision: J1222

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.73. tunetype - Servo tune type

Usage

tunetype is used to represent an integer with a symbolic constant for different types of servo 

tuning.

Description

A tunetype constant is intended to be used as an argument to the instruction TuneServo. See 

example below.

Basic examples

Basic examples of the data type tunetype are illustrated below.

Example 1
TuneServo MHA160R1, 1, 110 \Type:= TUNE_KP;

Predefined data

The following symbolic constants of the data type tunetype are predefined and can be used 

as arguments for the instruction TuneServo.

Characteristics

tunetype is an alias data type for num and consequently inherits its characteristics.

Related information

Value Symbolic constant Comment

0 TUNE_DF Reduces overshoots

1 TUNE_KP Affects position control gain

2 TUNE_KV Affects speed control gain

3 TUNE_TI Affects speed control integration time

4 TUNE_FRIC_LEV Affects friction compensation level

5 TUNE_FRIC_RAMP Affects friction compensation ramp

6 TUNE_DG Reduces overshoots

7 TUNE_DH Reduces vibrations with heavy loads

8 TUNE_DI Reduces path errors

9 TUNE_DK Only for ABB internal use

10 TUNE_DL Only for ABB internal use

For information about See

Data types in general, alias data types Technical reference manual - RAPID overview, 
section Basic characteristics - Data types

Use of data type tunetype TuneServo - Tuning servos on page 638



3 Data types

3.74. uishownum - Instance ID for UIShow

12233HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.74. uishownum - Instance ID for UIShow

Usage

uishownum is the data type used for parameter InstanceId in instruction UIShow. It is used 

to identify a view on the FlexPendant. 

Description

When a persistent variable of type uishownum is used with the instruction UIShow, it is given 

a specific value identifying the view launched on the FlexPendant. This persistent is then used 

in all dealings with that view, such as launching the view again, modifying the view, etc.

Examples

Basic examples of the data type uishownum are illustrated below.

Example 1
CONST string Name:="TpsViewMyAppl.gtpu.dll";

CONST string Type:="ABB.Robotics.SDK.Views.TpsViewMyAppl";

CONST string Cmd1:="Init data string passed to the view";

PERS uishownum myinstance:=0;

VAR num mystatus:=0;

...

! Launch one view of the application MyAppl

UIShow Name, Type \InitCmd:=Cmd1 \InstanceID:=myinstance 

\Status:=mystatus;

The code above will launch one view of the application MyAppl with init command Cmd1. 

The token used to identify the view is saved in the parameter myinstance.

Characteristics

uishownum is an alias data type for num and thus inherits its properties.

Related information

For information about See

UIShow UIShow - User Interface show on page 651



3 Data types

3.75. wobjdata - Work object data
RobotWare - OS

3HAC 16581-1  Revision: J1224

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.75. wobjdata - Work object data

Usage

wobjdata is used to describe the work object that the robot welds, processes, moves within, 

etc.

Description

If work objects are defined in a positioning instruction, the position will be based on the 

coordinates of the work object. The advantages of this are as follows:

• If position data is entered manually, such as in off-line programming, the values can 

often be taken from a drawing.

• Programs can be reused quickly following changes in the robot installation. If, for 

example, the fixture is moved, only the user coordinate system has to be redefined.

• Variations in how the work object is attached can be compensated for. For this, 

however, some sort of sensor will be required to position the work object.

If a stationary tool or coordinated external axes are used, the work object must be defined, 

since the path and velocity would then be related to the work object instead of the TCP.

Work object data can also be used for jogging:

• The robot can be jogged in the directions of the work object.

• The current position displayed is based on the coordinate system of the work object.

Components

robhold

robot hold

Data type: bool

Defines whether or not the robot in the actual program task is holding the work object:

• TRUE: The robot is holding the work object, i.e. using a stationary tool.

• FALSE: The robot is not holding the work object, i.e. the robot is holding the tool.

ufprog

user frame programmed

Data type: bool

Defines whether or not a fixed user coordinate system is used:

• TRUE: Fixed user coordinate system.

• FALSE: Movable user coordinate system, i.e. coordinated external axes are used. Also 

to be used in a MultiMove system in semicoordinated or synchronized coordinated 

mode.

Continues on next page



3 Data types

3.75. wobjdata - Work object data
RobotWare - OS

12253HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

ufmec

user frame mechanical unit

Data type: string

The mechanical unit with which the robot movements are coordinated. Only specified in the 

case of movable user coordinate systems (ufprog is FALSE).

Specify the mechanical unit name defined in system parameters, e.g. orbit_a.

uframe

user frame

Data type: pose

The user coordinate system, i.e. the position of the current work surface or fixture (see figure 

below):

• The position of the origin of the coordinate system (x, y and z) in mm.

• The rotation of the coordinate system, expressed as a quaternion (q1, q2, q3, q4).

If the robot is holding the tool, the user coordinate system is defined in the world coordinate 

system (in the wrist coordinate system if a stationary tool is used).

For movable user frame (ufprog is FALSE), the user frame is continuously defined by the 

system.

oframe

object frame

Data type: pose

The object coordinate system, i.e. the position of the current work object (see figure below):

• The position of the origin of the coordinate system (x, y and z) in mm.

• The rotation of the coordinate system, expressed as a quaternion (q1, q2, q3, q4).

The object coordinate system is defined in the user coordinate system.

xx0500002369

Continued

Continues on next page



3 Data types

3.75. wobjdata - Work object data
RobotWare - OS

3HAC 16581-1  Revision: J1226

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Basic examples

Basic examples of the data type wobjdata are illustrated below.

Example 1
PERS wobjdata wobj2 :=[ FALSE, TRUE, "", [ [300, 600, 200], [1, 0, 

0 ,0] ], [ [0, 200, 30], [1, 0, 0 ,0] ] ];

The work object in the figure above is described using the following values:

• The robot is not holding the work object. 

• The fixed user coordinate system is used.

• The user coordinate system is not rotated and the coordinates of its origin are x= 300, 

y = 600 and z = 200 mm in the world coordinate system.

• The object coordinate system is not rotated and the coordinates of its origin are x= 0, 

y= 200 and z= 30 mm in the user coordinate system.

wobj2.oframe.trans.z := 38.3;

• The position of the work object wobj2 is adjusted to 38.3 mm in the z-direction.

Limitations

The work object data should be defined as a persistent variable (PERS) and should not be 

defined within a routine. The current values are then saved when the program is saved and 

are retrieved on loading.

Arguments of the type work object data in any motion instruction should only be an entire 

persistent (not array element or record component).

Predefined data

The work object data wobj0 is defined in such a way that the object coordinate system 

coincides with the world coordinate system. The robot does not hold the work object.

Wobj0 can always be accessed from the program, but can never be changed (it is stored in 

system module BASE). 

PERS wobjdata wobj0 := [ FALSE, TRUE, "", [ [0, 0, 0], [1, 0, 0 

,0] ],  [ [0, 0, 0], [1, 0, 0 ,0] ] ];

Structure
< dataobject of wobjdata >

< robhold of bool >

< ufprog of bool >

< ufmec of string >

< uframe of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

Continued

Continues on next page



3 Data types

3.75. wobjdata - Work object data
RobotWare - OS

12273HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

< oframe of pose >

< trans of pos >

< x of num >

< y of num >

< z of num >

< rot of orient >

< q1 of num >

< q2 of num >

< q3 of num >

< q4 of num >

Related information

For information about See

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Coordinate systems Technical reference manual - RAPID overview, 
section Motion and I/O Principles - Coordinate 
systems 

Coordinated external axes Technical reference manual - RAPID overview, 
section Motion and I/O Principles - Coordinate 
systems

Calibration of coordinated axes Application manual - Additional axes and stand 
alone controller

Application manual - MultiMove

Continued



3 Data types

3.76. wzstationary - Stationary world zone data
World Zones

3HAC 16581-1  Revision: J1228

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.76. wzstationary - Stationary world zone data

Usage

wzstationary (world zone stationary) is used to identify a stationary world zone and can 

only be used in an event routine connected to the event POWER ON.

A world zone is supervised during robot movements both during program execution and 

jogging. If the robot’s TCP reaches the world zone or if the robot/external axes reaches the 

world zone in joints, the movement is stopped or a digital output signal is set or reset.

Description

A wzstationary world zone is defined and activated by a WZLimSup or a WZDOSet 

instruction.

WZLimSup or WZDOSet gives the variable or the persistent of data type wzstationary a 

numeric value. The value identifies the world zone.

A stationary world zone is always active in motor on state and is only erased by a warm start 

(switch power off then on). It is not possible to deactivate, activate or erase a stationary world 

zone via RAPID instructions.

Stationary world zones should be active from power on and should be defined in a POWER 

ON event routine or a semistatic task

Basic examples

Basic examples of the data type wzstationary are illustrated below.

Example 1
VAR wzstationary conveyor;

...

PROC ...

VAR shapedata volume;

...

WZBoxDef \Inside, volume, p_corner1, p_corner2;

WZLimSup \Stat, conveyor, volume;

ENDPROC

A conveyor is defined as a straight box (the volume below the belt). If the robot reaches this 

volume, the movement is stopped.

Limitations

A wzstationary data can be defined as a variable (VAR) or as a persistent (PERS). It can 

be global in task or local within module, but not local within a routine.

Arguments of the type wzstationary should only be entire data (not array element or record 

component).

An init value for data of the type wzstationary is not used by the control system. When 

there is a need to use a persistent variable in a multi-tasking system, set the init value to 0 in 

both tasks, e.g. PERS wzstationary share_workarea := [0];

More examples

For a complete example see instruction WZLimSup.

Continues on next page



3 Data types

3.76. wzstationary - Stationary world zone data
World Zones

12293HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Characteristics

wzstationary is an alias data type of wztemporary and inherits its characteristics.

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Temporary world zone wztemporary - Temporary world zone data on 
page 1230

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital 
output on page 738

Continued



3 Data types

3.77. wztemporary - Temporary world zone data
RobotWare - OS

3HAC 16581-1  Revision: J1230

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.77. wztemporary - Temporary world zone data

Usage

wztemporary (world zone temporary) is used to identify a temporary world zone and can be 

used anywhere in the RAPID program for any motion task.

A world zone is supervised during robot movements both during program execution and 

jogging. If the robot’s TCP reaches the world zone or if the robot/external axes reaches the 

world zone in joints, the movement is stopped or a digital output signal is set or reset.

Description

A wztemporary world zone is defined and activated by a WZLimSup or a WZDOSet 

instruction.

WZLimSup or WZDOSet gives the variable or the persistent of data type wztemporary a 

numeric value. The value identifies the world zone.

Once defined and activated, a temporary world zone can be deactivated by WZDisable, 

activated again by WZEnable, and erased by WZFree.

All temporary world zones in the motion task are automatically erased and all data objects of 

type wztemporary in the motion task are set to 0:

• when a new program is loaded in the motion task

• when starting program execution from the beginning in the motion task

Basic examples

Basic examples of the data type wztemporary are illustrated below.

Example 1
VAR wztemporary roll;

...

PROC

VAR shapedata volume;

CONST pos t_center := [1000, 1000, 1000];

...

WZCylDef \Inside, volume, t_center, 400, 1000;

WZLimSup \Temp, roll, volume;

ENDPROC

A wztemporary variable, roll, is defined as a cylinder. If the robot reaches this volume, 

the movement is stopped.

Continues on next page



3 Data types

3.77. wztemporary - Temporary world zone data
RobotWare - OS

12313HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

A wztemporary data can be defined as a variable (VAR) or as a persistent (PERS). It can be 

global in a task or local within a module, but not local within a routine.

Arguments of the type wztemporary must only be entire data, not an array element or record 

component.

A temporary world zone must only be defined (WZLimSup or WZDOSet) and free (WZFree) 

in the motion task. Definitions of temporary world zones in any background is not allowed 

because it would affect the program execution in the connected motion task. The instructions 

WZDisable and WZEnable can be used in the background task. When there is a need to use 

a persistent variable in a multi-tasking system, set the init value to 0 in both tasks, e.g. PERS 

wztemporary share_workarea := [0];

More examples

For a complete example see instruction WZDOSet.

Structure
< dataobject of wztemporary >

< wz of num >

Related information

For information about See

World Zones Technical reference manual - RAPID overview, 
section Motion and I/O principles - World zones

World zone shape shapedata - World zone shape data on page 1179

Stationary world zone wzstationary - Stationary world zone data on page 
1228

Activate world zone limit supervision WZLimSup - Activate world zone limit supervision 
on page 753

Activate world zone digital output set WZDOSet - Activate world zone to set digital output 
on page 738

Deactivate world zone WZDisable - Deactivate temporary world zone 
supervision on page 736

Activate world zone WZEnable - Activate temporary world zone 
supervision on page 742

Erase world zone WZFree - Erase temporary world zone supervision 
on page 744

Continued



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

3HAC 16581-1  Revision: J1232

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

3.78. zonedata - Zone data

Usage

zonedata is used to specify how a position is to be terminated, i.e. how close to the 

programmed position the axes must be before moving towards the next position.

Description 

A position can be terminated either in the form of a stop point or a fly-by point.

A stop point means that the robot and external axes must reach the specified position (stand 

still) before program execution continues with the next instruction. It is also possible to define 

stop points other than the predefined fine. The stop criteria, that tells if the robot is 

considered to have reached the point, can be manipulated using the stoppointdata.

A fly-by point means that the programmed position is never attained. Instead, the direction of 

motion is changed before the position is reached. Two different zones (ranges) can be defined 

for each position:

• The zone for the TCP path.

• The extended zone for reorientation of the tool and for external axes.

xx0500002357

Zones function is the same during joint movement, but the zone size may differ somewhat 

from the one programmed. 

The zone size cannot be larger than half the distance to the closest position (forwards or 

backwards). If a larger zone is specified, the robot automatically reduces it.

The zone for the TCP path

A corner path (parabola) is generated as soon as the edge of the zone is reached (see figure 

above). 

Continues on next page



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

12333HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

The zone for reorientation of the tool

Reorientation starts as soon as the TCP reaches the extended zone. The tool is reoriented in 

such a way that the orientation is the same leaving the zone as it would have been in the same 

position if stop points had been programmed. Reorientation will be smoother if the zone size 

is increased, and there is less of a risk of having to reduce the velocity to carry out the 

reorientation.

The following figure shows three programmed positions, the last with different tool 

orientation.

xx0500002358

The following figure shows what program execution would look like if all positions were stop 

points.

xx0500002359

The following figure shows what program execution would look like if the middle position 

was a fly-by point.

xx0500002360

The zone for external axes

External axes start to move towards the next position as soon as the TCP reaches the extended 

zone. In this way, a slow axis can start accelerating at an earlier stage and thus execute more 

smoothly.

Continued

Continues on next page



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

3HAC 16581-1  Revision: J1234

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Reduced zone

With large reorientations of the tool or with large movements of the external axes, the 

extended zone and even the TCP zone can be reduced by the robot. The zone will be defined 

as the smallest relative size of the zone based upon the zone components (see Components on 

page 1235) and the programmed motion.

The following figure shows an example of reduced zone for reorientation of the tool to 36% 

of the motion due to zone_ori.

xx0500002362

The following figure shows an example of reduced zone for reorientation of the tool and TCP 

path to 15% of the motion due to zone_ori.

xx0500002363

When external axes are active they affect the relative sizes of the zone according to these 

formulas:

xx0500002364

Continued

Continues on next page



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

12353HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

NOTE!

If the TCP zone is reduced because of zone_ori, zone_leax or zone_reax, the path 

planner enters a mode that can handle the case of no TCP movement. If there is a TCP 

movement when in this mode, the speed is not compensated for the curvature of the path in a 

corner zone. For instance, this will cause a 30% speed reduction in a 90 degree corner. If this 

is a problem, increase the limiting zone component.

Components

finep

fine point

Data type: bool

Defines whether the movement is to terminate as a stop point (fine point) or as a fly-by 

point.

• TRUE: The movement terminates as a stop point, and the program execution will not 

continue until robot reach the stop point. The remaining components in the zone data 

are not used.

• FALSE: The movement terminates as a fly-by point, and the program execution 

continues about 100 ms before the robot reaches the zone.

pzone_tcp

path zone TCP

Data type: num

The size (the radius) of the TCP zone in mm.

The extended zone will be defined as the smallest relative size of the zone based upon the 

following components pzone_ori...zone_reax and the programmed motion.

pzone_ori

path zone orientation

Data type: num

The zone size (the radius) for the tool reorientation. The size is defined as the distance of the 

TCP from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp. If a lower value is 

specified, the size is automatically increased to make it the same as pzone_tcp.

pzone_eax

path zone external axes

Data type: num

The zone size (the radius) for external axes. The size is defined as the distance of the TCP 

from the programmed point in mm.

The size must be larger than the corresponding value for pzone_tcp. If a lower value is 

specified, the size is automatically increased to make it the same as pzone_tcp.

Continued

Continues on next page



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

3HAC 16581-1  Revision: J1236

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

zone_ori

zone orientation

Data type: num

The zone size for the tool reorientation in degrees. If the robot is holding the work object, this 

means an angle of rotation for the work object.

zone_leax

zone linear external axes

Data type: num

The zone size for linear external axes in mm. 

zone_reax

zone rotational external axes

Data type: num

The zone size for rotating external axes in degrees.

Basic examples

Basic examples of the data type zonedata are illustrated below.

Example 1
VAR zonedata path := [ FALSE, 25, 40, 40, 10, 35, 5 ];

The zone data path is defined by means of the following characteristics:

• The zone size for the TCP path is 25 mm.

• The zone size for the tool reorientation is 40 mm (TCP movement).

• The zone size for external axes is 40 mm (TCP movement).

If the TCP is standing still, or there is a large reorientation, or there is a large external axis 

movement with respect to the zone, the following apply instead:

• The zone size for the tool reorientation is 10 degrees.

• The zone size for linear external axes is 35 mm.

• The zone size for rotating external axes is 5 degrees.

path.pzone_tcp := 40;

The zone size for the TCP path is adjusted to 40 mm.

Predefined data

A number of zone data are already defined in the system module BASE_SHARED. 

Stop points

Use zonedata named fine.

Fly-by points

Path zone Zone

Name TCP path Orientation Ext. axis Orientation
Linear 
axis

Rotating 
axis

z0 0.3 mm 0.3 mm 0.3 mm 0.03° 0.3 mm 0.03°

z1 1 mm 1 mm 1 mm 0.1° 1 mm 0.1°

z5 5 mm 8 mm 8 mm 0.8° 8 mm 0.8°

Continued

Continues on next page



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

12373HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Structure
< data object of zonedata >

< finep of bool >

< pzone_tcp of num >

< pzone_ori of num >

< pzone_eax of num >

< zone_ori of num >

< zone_leax of num >

< zone_reax of num >

Related information

z10 10 mm 15 mm 15 mm 1.5° 15 mm 1.5°

z15 15 mm 23 mm 23 mm 2.3° 23 mm 2.3°

z20 20 mm 30 mm 30 mm 3.0° 30 mm 3.0°

z30 30 mm 45 mm 45 mm 4.5° 45 mm 4.5°

z40 40 mm 60 mm 60 mm 6.0° 60 mm 6.0°

z50 50 mm 75 mm 75 mm 7.5° 75 mm 7.5°

z60 60 mm 90 mm 90 mm 9.0° 90 mm 9.0°

z80 80 mm 120 mm 120 mm 12° 120 mm 12°

z100 100 mm 150 mm 150 mm 15° 150 mm 15°

z150 150 mm 225 mm 225 mm 23° 225 mm 23°

z200 200 mm 300 mm 300 mm 30° 300 mm 30°

Path zone Zone

Name TCP path Orientation Ext. axis Orientation
Linear 
axis

Rotating 
axis

For information about See

Positioning instructions Technical reference manual - RAPID overview, 
section RAPID summary - Motion

Movements/Paths in general Technical reference manual - RAPID overview, 
section Motion and I/O principles - Positioning during 
program execution

Configuration of external axes Application manual - Additional axes and stand 
alone controller

Other Stop points stoppointdata - Stop point data on page 1189

Continued



3 Data types

3.78. zonedata - Zone data
RobotWare - OS

3HAC 16581-1  Revision: J1238

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



4 Programming type examples

4.1. ERROR handler with movements
Path Recovery

12393HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

4 Programming type examples

4.1. ERROR handler with movements

Usage

These type examples describe how to use move instructions in an ERROR handler after an 

asynchronously raised process or movement error has occurred.

This functionality can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Description

The ERROR  handler can start a new temporary movement and finally restart the original 

interrupted and stopped movement. For example, it can be used to go to a service position or 

to clean the gun after an asynchronously raised process or movement error has occurred.

To reach this functionality, the instructions StorePath - RestoPath must be used in the 

ERROR handler. To restart the movement and continue the program execution, several RAPID 

instructions are available.

Type examples

Type examples of the functionality are illustrated below.

Principle
...

ERROR

IF ERRNO = ERR_PATH_STOP THEN

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StartMoveRetry;

ENDIF

ENDPROC

At execution of StartMoveRetry the robot resumes its movement, any active process is 

restarted and the program retries its execution. StartMoveRetry does the same as 

StartMove plus RETRY in one indivisible operation.

Continues on next page



4 Programming type examples

4.1. ERROR handler with movements
Path Recovery

3HAC 16581-1  Revision: J1240

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Automatic restart of execution
CONST robtarget service_pos := [...];

VAR robtarget stop_pos;

...

ERROR

IF ERRNO = AW_WELD_ERR THEN

! Current movement on motion base path level

! is already stopped.

! New motion path level for new movements in the ERROR handler

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1, \WObj:=wobj1);

! Do the work to fix the problem

MoveJ service_pos, v50, fine, tool1, \WObj:=wobj1;

...

! Move back to the position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Restart the stopped movements on motion base path level,

! restart the process and retry program execution

StartMoveRetry;

ENDIF

ENDPROC

This is a type example of how to use automatic asynchronously error recovery after some type 

of process error during robot movements.

Manual restart of execution
...

ERROR

IF ERRNO = PROC_ERR_XXX THEN

! Current movement on motion base path level

! is already stopped and in stop move state.

! This error must be handle manually.

! Reset the stop move state on motion base path level.

StopMoveReset;

ENDIF

ENDPROC

This is a type example of how to use manual handling of asynchronously error recovery after 

some type of process error during robot movements. 

After the above ERROR handler has executed to the end, the program execution stops and the 

program pointer is at the beginning of the instruction with the process error (also at beginning 

of any used NOSTEPIN routine). The next program start restarts the program and movement 

from the position in which the original process error ocurred.

Continued

Continues on next page



4 Programming type examples

4.1. ERROR handler with movements
Path Recovery

12413HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Program execution

Execution behavior:

• At start execution of the ERROR handler, the program leaves its base execution level

• At execution of StorePath, the motion system leaves its base execution level

• At execution of RestoPath, the motion system returns to its base execution level

• At execution of StartMoveRetry, the program returns to its base execution level

Limitations

The following RAPID instructions must be used in the ERROR handler with move instructions 

to get it working for automatically error recovery after an asynchronously raised process or 

path error:

The following RAPID instruction must be used in the ERROR handler to get it working for 

manually error recovery after an asynchronously raised process or path error:

Related information

Instruction Description

StorePath Enter new motion path level

RestoPath Return to motion base path level

StartMoveRetry Restart the interrupted movements on the motion base path 
level. Also restart the process and retry the program execution.

Same functionality as StartMove + RETRY.

Instruction Description

StopMoveReset Enter new motion path level

For information about See

To enter a new motion path level StorePath - Stores the path when an interrupt 
occurs on page 521

To return to motion base path level RestoPath - Restores the path after an 
interrupt on page 362

To restart the interrupted movement, process 
and retry program execution.

StartMoveRetry - Restarts robot movement 
and execution on page 489

Continued



4 Programming type examples

4.2. Service routines with or without movements
Path recovery

3HAC 16581-1  Revision: J1242

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

4.2. Service routines with or without movements

Usage

These type examples describe how to use move instructions in a service routine. Same 

principle about StopMove, StartMove and StopMoveReset are also valid for service 

routines without movements (only logical instructions).

Both service routines or other routines (procedures) without parameters can be started 

manually and perform movements according to these type examples.

This functionality can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks in independent or semi-coordinated mode.

Description

The service routine can start a new temporary movement and, at later program start, restart 

the original movement. For example, it can be used to go to a service position or manually 

start cleaning the gun.

To reach this functionality the instructions StorePath - RestoPath and StopMoveReset 

must be used in the service routine. 

Type examples

Type examples of the functionality are illustrated below.

Principle
PROC xxxx()

StopMove;

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StopMoveReset;

ENDPROC

StopMove is required in order to make sure that the originally stopped movement is not 

restarted upon a manually "stop program-restart program" sequence during execution of the 

service routine.

Continues on next page



4 Programming type examples

4.2. Service routines with or without movements
Path recovery

12433HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop on path
VAR robtarget service_pos := [...];

...

PROC proc_stop_on_path()

VAR robtarget stop_pos;

! Current stopped movements on motion base path level

! must not be restarted in the service routine.

StopMove;

! New motion path level for new movements in the service routine.

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1 \WObj:=wobj1);

! Do the work

MoveJ service_pos, v50, fine, tool1 \WObj:=wobj1;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for the interrupted movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the movements in the service routine start and end at the position on the 

path where the program was stopped. 

Also note that the tool and work object used are known at the time of programming.

Continued

Continues on next page



4 Programming type examples

4.2. Service routines with or without movements
Path recovery

3HAC 16581-1  Revision: J1244

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop in next stop point
TASK PERS tooldata used_tool := [...];

TASK PERS wobjdata used_wobj := [...];

...

PROC proc_stop_in_stop_point()

VAR robtarget stop_pos;

! Current move instruction on motion base path level continue

! to it’s ToPoint and will be finished in a stop point.

StartMove;

! New motion path level for new movements in the service routine

StorePath;

! Get current tool and work object data

GetSysData used_tool;

GetSysData used_wobj;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=used_tool \WObj:=used_wobj);

! Do the work

MoveJ Offs(stop_pos,0,0,20),v50,fine,used_tool\WObj:=used_wobj;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, used_tool,\WObj:=used_wobj;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for any new movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the movements in the service routine continue to and end at the ToPoint 

in the interrupted move instructions before the instruction StorePath is ready. 

Also note that the tool and work object used are unknown at the time of programming.

Program execution

Execution behavior:

• At start execution of the service routine, the program leaves its base execution level

• At execution of StorePath, the motion system leaves its base execution level

• At execution of RestoPath, the motion system returns to its base execution level

• At execution of ENDPROC, the program returns to its base execution level

Continued

Continues on next page



4 Programming type examples

4.2. Service routines with or without movements
Path recovery

12453HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The following RAPID instructions must be used in the service routine with move instructions 

to get it working:

Related information

Instruction Description

StorePath Enter new motion path level

RestoPath Return to motion base path level

StopMoveReset Reset the stop move state for the interrupted 
movement on the motion base path level

For information about See

No restart of the already stopped movement 
on the motion base path level

StopMove - Stops robot movement on page 
515

Restart of the already stopped movement on 
the motion base path level

StopMove - Stops robot movement on page 
515

To enter a new motion path level StorePath - Stores the path when an interrupt 
occurs on page 521

To return to the motion base path level RestoPath - Restores the path after an 
interrupt on page 362

Reset the stop move state for the interrupted 
movement on the motion base path level

StopMoveReset - Reset the system stop 
move state on page 519

Continued



4 Programming type examples

4.3. System I/O interrupts with or without movements
Path recovery

3HAC 16581-1  Revision: J1246

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

4.3. System I/O interrupts with or without movements

Usage

These type examples describe how to use move instructions in a system I/O interrupt routine. 

Same principle about StopMove, StartMove and StopMoveReset are also valid for 

system I/O interrupts without movements (only logical instructions).

This functionality can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks in independent or semi-coordinated mode.

Description

The system I/O interrupt routine can start a new temporary movement and, at later program 

start, restart the original movement. For example, it can be used to go to a service position or 

to clean the gun when an interrupt occurs.

To reach this functionality the instructions StorePath - RestoPath and StopMoveReset 

must be used in the system I/O interrupt routine. 

Type examples

Type examples of the functionality are illustrated below.

Principle
PROC xxxx()

StopMove;

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StopMoveReset;

ENDPROC

StopMove is required in order to make sure that the originally stopped movement is not 

restarted at start of the I/O interrupt routine. 

Without StopMove or with StartMove instead the movement in the I/O interrupt routine 

will continue at once and end at the ToPoint in the interrupted move instruction.

Continues on next page



4 Programming type examples

4.3. System I/O interrupts with or without movements
Path recovery

12473HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop on path
VAR robtarget service_pos := [...];

...

PROC proc_stop_on_path()

VAR robtarget stop_pos;

! Current stopped movements on motion base path level

! isn’t restarted in the system I/O routine.

StopMove \Quick;

! New motion path level for new movements in the system

! I/O routine.

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1 \WObj:=wobj1);

! Do the work

MoveJ service_pos, v50, fine, tool1 \WObj:=wobj1;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for the interrupted movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the interrupted movements are stopped at once and are restarted at 

program start after the system I/O interrupt routine is finished.

Also note that the tool and work object used are known at the time of programming.

Continued

Continues on next page



4 Programming type examples

4.3. System I/O interrupts with or without movements
Path recovery

3HAC 16581-1  Revision: J1248

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop in next stop point
TASK PERS tooldata used_tool := [...];

TASK PERS wobjdata used_wobj := [...];

...

PROC proc_stop_in_stop_point()

VAR robtarget stop_pos;

! Current move instruction on motion base path level continue

! to it’s ToPoint and will be finished in a stop point.

StartMove;

! New motion path level for new movements in the system

! I/O routine

StorePath;

! Get current tool and work object data

GetSysData used_tool;

GetSysData used_wobj;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=used_tool \WObj:=used_wobj);

! Do the work

MoveJ Offs(stop_pos,0,0,20),v50,fine,used_tool\WObj:=used_wobj;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, used_tool,\WObj:=used_wobj;

! Go back to motion base path level

RestoPath;

! Reset the stop move state for new movement

! on motion base path level

StopMoveReset;

ENDPROC

In this type example the movements in the system I/O routine continue at once, and end at the 

ToPoint in the interrupted move instructions. 

Also note that the tool and work object used are unknown at the time of programming.

Program execution

Execution behavior:

• At start execution of the system I/O routine, the program leaves its base execution 

level

• At execution of StorePath, the motion system leaves its base execution level

• At execution of RestoPath, the motion system returns to its base execution level

• At execution of ENDPROC, the program returns to its base execution level

Continued

Continues on next page



4 Programming type examples

4.3. System I/O interrupts with or without movements
Path recovery

12493HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Limitations

The following RAPID instructions must be used in the system IO routine with move 

instructions to get it working:

Related information

Instruction Description

StorePath Enter new motion path level

RestoPath Return to motion base path level

StopMoveReset Reset the stop move state for the interrupted movement on the 
motion base path level

For information about See

No restart of the already stopped movement 
on the motion base path level

StopMove - Stops robot movement on page 
515

Restart of the already stopped movement on 
the motion base path level

StartMove - Restarts robot movement on 
page 486

To enter a new motion path level StorePath - Stores the path when an interrupt 
occurs on page 521

To return to the motion base path level RestoPath - Restores the path after an 
interrupt on page 362

Reset the stop move state for the interrupted 
movement on the motion base path level

StopMoveReset - Reset the system stop 
move state on page 519

Continued



4 Programming type examples

4.4. TRAP routines with movements
Path Recovery

3HAC 16581-1  Revision: J1250

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

4.4. TRAP routines with movements

Usage

These type examples describe how to use move instructions in a TRAP routine after an 

interrupt has occurred.

This functionality can only be used in the main task T_ROB1 or, if in a MultiMove system, in 

Motion tasks.

Description

The TRAP routine can start a new temporary movement and finally restart the original 

movement. For example, it can be used to go to a service position or to clean the gun when 

an interrupt occurs.

To reach this functionality the instructions StorePath - RestoPath and StartMove must 

be used in the TRAP routine. 

Type examples

Type examples of the functionality are illustrated below.

Principle
TRAP xxxx

StopMove;

StorePath;

! Move away and back to the interrupted position

...

RestoPath;

StartMove;

ENDTRAP

If StopMove is used, the movement stops at once on the on-going path; otherwise, the 

movement continues to the ToPoint in the actual move instruction.

Continues on next page



4 Programming type examples

4.4. TRAP routines with movements
Path Recovery

12513HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop in next stop point
VAR robtarget service_pos := [...];

...

TRAP trap_in_stop_point

VAR robtarget stop_pos;

! Current move instruction on motion base path level continue

! to it’s ToPoint and will be finished in a stop point.

! New motion path level for new movements in the TRAP

StorePath;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=tool1 \WObj:=wobj1);

! Do the work

MoveJ service_pos, v50, fine, tool1 \WObj:=wobj1;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, tool1, \WObj:=wobj1;

! Go back to motion base path level

RestoPath;

! Restart the interupted movements on motion base path level

StartMove;

ENDTRAP

In this type example the movements in the TRAP routine start and end at the ToPoint in the 

interrupted move instructions. Also note that the tool and work object are known at the time 

of programming.

Continued

Continues on next page



4 Programming type examples

4.4. TRAP routines with movements
Path Recovery

3HAC 16581-1  Revision: J1252

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Stop on path at once
TASK PERS tooldata used_tool := [...];

TASK PERS wobjdata used_wobj := [...];

...

TRAP trap_stop_at_once

VAR robtarget stop_pos;

! Current move instruction on motion base path level stops

! at once

StopMove;

! New motion path level for new movements in the TRAP

StorePath;

! Get current tool and work object data

GetSysData used_tool;

GetSysData used_wobj;

! Store current position from motion base path level

stop_pos := CRobT(\Tool:=used_tool \WObj:=used_wobj);

! Do the work

MoveJ Offs(stop_pos,0,0,20),v50,fine,used_tool\WObj:=used_wobj;

...

! Move back to interrupted position on the motion base path level

MoveJ stop_pos, v50, fine, used_tool,\WObj:=used_wobj;

! Go back to motion base path level

RestoPath;

! Restart the interupted movements on motion base path level

StartMove;

ENDTRAP

In this type example the movements in the TRAP routine start and end at the position on the 

path where the interrupted move instruction was stopped. Also note that the tool and work 

object used are unknown at the time of programming.

Program execution

Execution behavior:

• At start execution of the TRAP routine, the program leaves its base execution level

• At execution of StorePath, the motion system leaves its base execution level

• At execution of RestoPath, the motion system returns to its base execution level

• At execution of ENDTRAP, the program returns to its base execution level

Limitations

Following RAPID instructions must be used in the TRAP routine with move instructions to get 

it working:

Instruction Description

StorePath Enter new motion path level

RestoPath Return to motion base path level

StartMove Restart the interrupted movements on the motion base path 
level

Continued

Continues on next page



4 Programming type examples

4.4. TRAP routines with movements
Path Recovery

12533HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

Related information

For information about See

To stop the current movement at once StopMove - Stops robot movement on page 
515

To enter a new motion path level StorePath - Stores the path when an interrupt 
occurs on page 521

To return to the motion base path level RestoPath - Restores the path after an 
interrupt on page 362

To restart the interrupted movement StartMove - Restarts robot movement on 
page 486

Continued



4 Programming type examples

4.4. TRAP routines with movements
Path Recovery

3HAC 16581-1  Revision: J1254

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.



Index

12553HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

A
Abs 759
AccSet 15
ACos 761
ActUnit 17
Add 19
aiotrigg 1083
AliasIO 21
AOutput 762
ArgName 764
ASin 767
Assignment

= 24
ATan 768
ATan2 769

B
BitAnd 770
BitCheck 772
BitClear 26
BitLSh 774
BitNeg 776
BitOr 778
BitRSh 780
BitSet 28
BitXOr 782
BookErrNo 30
bool 1085
Break 32
btnres 1086
busstate 1088
buttondata 1089
byte 1091
ByteToString 784

C
CalcJointT 786
CalcRobT 789
CalcRotAxFrameZ 791
CalcRotAxisFrame 795
CallByVar 33
CancelLoad 35
CDate 799
CheckProgRef 37
CirPathMode 38
CJointT 800
Clear 43
ClearIOBuff 44
ClearPath 45
ClearRawBytes 49
ClkRead 802
ClkReset 51
ClkStart 52
ClkStop 54
clock 1092
Close 55
CloseDir 56
comment 57
CompactIF 58
confdata 1093

ConfJ 59
ConfL 61
CONNECT 63
CopyFile 65
CopyRawBytes 67
CorrClear 70
CorrCon 71
corrdescr 1099
CorrDiscon 76
CorrRead 803
CorrWrite 77
Cos 804
CPos 805
CRobT 807
CSpeedOverride 810
CTime 812
CTool 813
CWObj 814

D
datapos 1101
DeactUnit 79
Decr 81
DecToHex 815
DefAccFrame 816
DefDFrame 819
DefFrame 822
Dim 825
dionum 1102
dir 1103
Distance 827
DitherAct 83
DitherDeact 85
dnum 1104
DnumToNum 829
DotProd 831
DOutput 833
DropWObj 86

E
EOffsOff 87
EOffsOn 88
EOffsSet 90
EraseModule 92
errdomain 1106
ErrLog 94
errnum 1108
ERROR handler 1239
ErrRaise 98
errstr 1114
errtype 1115
ErrWrite 103
EulerZYX 835
event_type 1116
EventType 837
exec_level 1117
ExecHandler 839
ExecLevel 840
EXIT 105
ExitCycle 106
Exp 841



Index

1256 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

extjoint 1118

F
FileSize 842
FileTime 845
FOR 108
FSSize 848

G
GetDataVal 110
GetMecUnitName 851
GetNextMechUnit 852
GetNextSym 855
GetSysData 113
GetSysInfo 857
GetTaskName 860
GetTime 862
GetTrapData 115
GInputDnum 864
GOTO 117
GOutput 866
GOutputDnum 868
GripLoad 119

H
handler_type 1120
HexToDec 870
HollowWristReset 121

I
icondata 1121
IDelete 123
identno 1123
IDisable 124
IEnable 125
IError 126
IF 129
Incr 131
IndAMove 133
IndCMove 137
IndDMove 141
IndInpos 871
IndReset 144
IndRMove 149
IndSpeed 873
intnum 1125
InvertDO 154
IOBusStart 155
IOBusState 156
iodev 1127
IODisable 159
IOEnable 162
iounit_state 1128
IOUnitState 875
IPers 165
IRMQMessage 167
IsFile 878
ISignalAI 171
ISignalAO 182
ISignalDI 186
ISignalDO 189

ISignalGI 192
ISignalGO 195
ISleep 198
IsMechUnitActive 882
IsPers 883
IsStopMoveAct 884
IsStopStateEvent 886
IsSyncMoveOn 888
IsSysId 890
IsVar 891
ITimer 200
IVarValue 202
IWatch 205

J
jointtarget 1129

L
label 207
listitem 1131
Load 208
loaddata 1132
LoadId 212
loadidnum 1137
loadsession 1138

M
MakeDir 218
ManLoadIdProc 219
MaxRobSpeed 892
MechUnitLoad 223
mecunit 1139
MirPos 893
ModExist 895
ModTime 896
MotionPlannerNo 898
MotionSup 227
motsetdata 1141
MoveAbsJ 230
MoveC 236
MoveCDO 242
MoveCSync 246
MoveExtJ 250
MoveJ 253
MoveJDO 257
MoveJSync 260
MoveL 264
MoveLDO 268
MoveLSync 271
MToolRotCalib 275
MToolTCPCalib 278

N
NonMotionMode 900
NOrient 901
num 1146
NumToDnum 903
NumToStr 904

O
Offs 906



Index

12573HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

opcalc 1148
Open 281
OpenDir 285
OpMode 908
opnum 1149
orient 1150
OrientZYX 909
ORobT 911

P
PackDNHeader 287
PackRawBytes 290
paridnum 1154
ParIdPosVaild 913
ParIdRobValid 916
paridvalidnum 1156
PathAccLim 295
PathLevel 919
pathrecid 1158
PathRecMoveBwd 298
PathRecMoveFwd 305
PathRecStart 308
PathRecStop 311
PathRecValidBwd 921
PathRecValidFwd 924
PathResol 314
PDispOff 316
PDispOn 317
PDispSet 321
PFRestart 928
pos 1160
pose 1162
PoseInv 929
PoseMult 931
PoseVect 933
Pow 935
PPMovedInManMode 936
Present 937
ProcCall 323
ProcerrRecovery 325
progdisp 1163
ProgMemFree 939
PulseDO 331

R
RAISE 334
RaiseToUser 337
rawbytes 1165
RawBytesLen 940
ReadAnyBin 340
ReadBin 942
ReadBlock 343
ReadCfgData 345
ReadDir 944
ReadErrData 349
ReadMotor 947
ReadNum 949
ReadRawBytes 352
ReadStr 952
ReadStrBin 956
ReadVar 958

RelTool 961
RemainingRetries 963
RemoveDir 355
RemoveFile 356
RenameFile 357
Reset 359
ResetPPMoved 360
ResetRetryCount 361
restartdata 1167
RestoPath 362
RETRY 364
RETURN 365
Rewind 367
RMQEmptyQueue 369
RMQFindSlot 371
RMQGetMessage 373
RMQGetMsgData 377
RMQGetMsgHeader 380
RMQGetSlotName 964
rmqheader 1171
rmqmessage 1173
RMQReadWait 383
RMQSendMessage 386
RMQSendWait 390
rmqslot 1174
robjoint 1175
RobName 966
RobOS 968
robtarget 1176
Round 969
RunMode 971

S
Save 396
SCWrite 399
SearchC 402
SearchExtJ 410
SearchL 416
SenDevice 425
Sensor Interface 343
Service routines 1242, 1246
Set 427
SetAllDataVal 429
SetAO 431
SetDataSearch 433
SetDataVal 437
SetDO 440
SetGO 442
SetSysData 445
shapedata 1179
signalxx 1181
Sin 972
SingArea 447
SkipWarn 449
SocketAccept 450
SocketBind 453
SocketClose 455
SocketConnect 457
SocketCreate 460
socketdev 1183



Index

1258 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

SocketGetStatus 973
SocketListen 462
SocketReceive 464
SocketSend 469
socketstatus 1184
SoftAct 473
SoftDeact 475
speeddata 1185
SpeedRefresh 476
SpyStart 479
SpyStop 481
Sqrt 976
StartLoad 482
StartMove 486
StartMoveRetry 489
STCalcForce 977
STCalcTorque 979
STCalib 492
STClose 496
StepBwdPath 499
STIndGun 501
STIndGunReset 503
STIsCalib 981
STIsClosed 983
STIsIndGun 985
STIsOpen 986
SToolRotCalib 504
SToolTCPCalib 507
Stop 510
STOpen 513
StopMove 515
StopMoveReset 519
stoppointdata 1189
StorePath 521
StrDigCalc 988
StrDigCmp 991
StrFind 994
string 1195
stringdig 1197
StrLen 996
StrMap 997
StrMatch 999
StrMemb 1001
StrOrder 1003
StrPart 1005
StrToByte 1007
StrToVal 1010
STTune 523
STTuneReset 527
switch 1198
symnum 1199
syncident 1200
SyncMoveOff 528
SyncMoveOn 534
SyncMoveResume 541
SyncMoveSuspend 543
SyncMoveUndo 545
system data 1201
SystemStopAction 547

T
Tan 1012
taskid 1203
TaskRunMec 1013
TaskRunRob 1014
tasks 1204
TasksInSync 1015
TEST 549
TestAndSet 1017
TestDI 1019
testsignal 1206
TestSignDefine 551
TestSignRead 1020
TestSignReset 553
TextGet 1022
TextTabFreeToUse 1024
TextTabGet 1026
TextTabInstall 554
tooldata 1207
TPErase 556
tpnum 1211
TPReadDnum 557
TPReadFK 560
TPReadNum 564
TPShow 567
TPWrite 568
TRAP routines 1250
trapdata 1212
TriggC 570
TriggCheckIO 577
triggdata 1213
TriggEquip 582
TriggInt 588
TriggIO 592
triggios 1214
triggiosdnum 1217
TriggJ 597
TriggL 603
TriggLIOs 610
TriggRampAO 616
TriggSpeed 622
TriggStopProc 629
triggstrgo 1219
Trunc 1028
TryInt 634
TRYNEXT 636
TuneReset 637
TuneServo 638
tunetype 1222
Type 1030

U
UIAlphaEntry 1032
UIClientExist 1037
UIDnumEntry 1038
UIDnumTune 1044
UIListView 1050
UIMessageBox 1057
UIMsgBox 644
UINumEntry 1064



Index

12593HAC 16581-1  Revision: J      

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.

UINumTune 1070
UIShow 651
uishownum 1223
UnLoad 655
UnpackRawBytes 658

V
ValidIO 1076
ValToStr 1078
VectMagn 1080
VelSet 662

W
WaitAI 664
WaitAO 667
WaitDI 670
WaitDO 672
WaitGI 674
WaitGO 678
WaitLoad 682
WaitRob 686
WaitSyncTask 688
WaitTestAndSet 692
WaitTime 695
WaitUntil 697
WaitWObj 701
WarmStart 704
WHILE 705
wobjdata 1224
WorldAccLim 707
Write 709
WriteAnyBin 713
WriteBin 716
WriteBlock 719
WriteCfgData 721
WriteRawBytes 725
WriteStrBin 727
WriteVar 729
WZBoxDef 732
WZCylDef 734
WZDisable 736
WZDOSet 738
WZEnable 742
WZFree 744
WZHomeJointDef 746
WZLimJointDef 749
WZLimSup 753
WZSphDef 756
wzstationary 1228
wztemporary 1230

Z
zonedata 1232



Index

1260 3HAC 16581-1  Revision: J

©
 C

op
yr

ig
ht

 2
00

4-
20

10
 A

B
B

. A
ll 

ri
gh

ts
 r

es
er

ve
d.





3H
A

C
16

58
1-

1 
R

ev
 J

,  
en

Contact us

ABB AB
Discrete Automation and Motion
Robotics 
S-721 68 VÄSTERÅS
SWEDEN
Telephone +46 (0) 21 344 400

www.abb.com


	Technical reference manual - RAPID Instructions, Functions and Data types
	Table of Contents
	Overview
	1 Instructions
	1.1. AccSet - Reduces the acceleration
	1.2. ActUnit - Activates a mechanical unit
	1.3. Add - Adds a numeric value
	1.4. AliasIO - Define I/O signal with alias name
	1.5. ":=" - Assigns a value
	1.6. BitClear - Clear a specified bit in a byte data
	1.7. BitSet - Set a specified bit in a byte data
	1.8. BookErrNo - Book a RAPID system error number
	1.9. Break - Break program execution
	1.10. CallByVar - Call a procedure by a variable
	1.11. CancelLoad - Cancel loading of a module
	1.12. CheckProgRef - Check program references
	1.13. CirPathMode - Tool reorientation during circle path
	1.14. Clear - Clears the value
	1.15. ClearIOBuff - Clear input buffer of a serial channel
	1.16. ClearPath - Clear current path
	1.17. ClearRawBytes - Clear the contents of rawbytes data
	1.18. ClkReset - Resets a clock used for timing
	1.19. ClkStart - Starts a clock used for timing
	1.20. ClkStop - Stops a clock used for timing
	1.21. Close - Closes a file or serial channel
	1.22. CloseDir - Close a directory
	1.23. Comment - Comment
	1.24. Compact IF - If a condition is met, then... (one instruction)
	1.25. ConfJ - Controls the configuration during joint movement
	1.26. ConfL - Monitors the configuration during linear movement
	1.27. CONNECT - Connects an interrupt to a trap routine 
	1.28. CopyFile - Copy a file
	1.29. CopyRawBytes - Copy the contents of rawbytes data
	1.30. CorrClear - Removes all correction generators
	1.31. CorrCon - Connects to a correction generator
	1.32. CorrDiscon - Disconnects from a correction generator
	1.33. CorrWrite - Writes to a correction generator
	1.34. DeactUnit - Deactivates a mechanical unit
	1.35. Decr - Decrements by 1
	1.36. DitherAct - Enables dither for soft servo
	1.37. DitherDeact - Disables dither for soft servo
	1.38. DropWObj - Drop work object on conveyor
	1.39. EOffsOff - Deactivates an offset for external axes
	1.40. EOffsOn - Activates an offset for external axes 
	1.41. EOffsSet - Activates an offset for external axes using known values
	1.42. EraseModule - Erase a module
	1.43. ErrLog - Write an error message
	1.44. ErrRaise - Writes a warning and calls an error handler
	1.45. ErrWrite - Write an error message
	1.46. EXIT - Terminates program execution 
	1.47. ExitCycle - Break current cycle and start next
	1.48. FOR - Repeats a given number of times
	1.49. GetDataVal - Get the value of a data object
	1.50. GetSysData - Get system data
	1.51. GetTrapData - Get interrupt data for current TRAP
	1.52. GOTO - Goes to a new instruction
	1.53. GripLoad - Defines the payload for the robot
	1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403
	1.55. IDelete - Cancels an interrupt
	1.56. IDisable - Disables interrupts
	1.57. IEnable - Enables interrupts
	1.58. IError - Orders an interrupt on errors
	1.59. IF - If a condition is met, then ...; otherwise ...
	1.60. Incr - Increments by 1
	1.61. IndAMove - Independent absolute position movement
	1.62. IndCMove - Independent continuous movement
	1.63. IndDMove - Independent delta position movement
	1.64. IndReset - Independent reset
	1.65. IndRMove - Independent relative position movement
	1.66. InvertDO - Inverts the value of a digital output signal
	1.67. IOBusStart - Start of I/O bus
	1.68. IOBusState - Get current state of I/O bus
	1.69. IODisable - Disable I/O unit
	1.70. IOEnable - Enable I/O unit
	1.71. IPers - Interrupt at value change of a persistent variable
	1.72. IRMQMessage - Orders RMQ interrupts for a data type
	1.73. ISignalAI - Interrupts from analog input signal
	1.74. ISignalAO - Interrupts from analog output signal
	1.75. ISignalDI - Orders interrupts from a digital input signal
	1.76. ISignalDO - Interrupts from a digital output signal
	1.77. ISignalGI - Orders interrupts from a group of digital input signals
	1.78. ISignalGO - Orders interrupts from a group of digital output signals
	1.79. ISleep - Deactivates an interrupt
	1.80. ITimer - Orders a timed interrupt
	1.81. IVarValue - orders a variable value interrupt
	1.82. IWatch - Activates an interrupt
	1.83. Label - Line name
	1.84. Load - Load a program module during execution
	1.85. LoadId - Load identification of tool or payload
	1.86. MakeDir - Create a new directory
	1.87. ManLoadIdProc - Load identification of IRBP manipulators
	1.88. MechUnitLoad - Defines a payload for a mechanical unit
	1.89. MotionSup - Deactivates/Activates motion supervision
	1.90. MoveAbsJ - Moves the robot to an absolute joint position
	1.91. MoveC - Moves the robot circularly
	1.92. MoveCDO - Moves the robot circularly and sets digital output in the corner
	1.93. MoveCSync - Moves the robot circularly and executes a RAPID procedure
	1.94. MoveExtJ - Move one or several mechanical units without TCP
	1.95. MoveJ - Moves the robot by joint movement
	1.96. MoveJDO - Moves the robot by joint movement and sets digital output in the corner
	1.97. MoveJSync - Moves the robot by joint movement and executes a RAPID procedure
	1.98. MoveL - Moves the robot linearly
	1.99. MoveLDO - Moves the robot linearly and sets digital output in the corner
	1.100. MoveLSync - Moves the robot linearly and executes a RAPID procedure
	1.101. MToolRotCalib - Calibration of rotation for moving tool
	1.102. MToolTCPCalib - Calibration of TCP for moving tool
	1.103. Open - Opens a file or serial channel
	1.104. OpenDir - Open a directory
	1.105. PackDNHeader - Pack DeviceNet Header into rawbytes data
	1.106. PackRawBytes - Pack data into rawbytes data
	1.107. PathAccLim - Reduce TCP acceleration along the path
	1.108. PathRecMoveBwd - Move path recorder backwards
	1.109. PathRecMoveFwd - Move path recorder forward
	1.110. PathRecStart - Start the path recorder
	1.111. PathRecStop - Stop the path recorder
	1.112. PathResol - Override path resolution
	1.113. PDispOff - Deactivates program displacement 
	1.114. PDispOn - Activates program displacement
	1.115. PDispSet - Activates program displacement using known frame
	1.116. ProcCall - Calls a new procedure
	1.117. ProcerrRecovery - Generate and recover from process-move error
	1.118. PulseDO - Generates a pulse on a digital output signal
	1.119. RAISE - Calls an error handler
	1.120. RaiseToUser - Propagates an error to user level
	1.121. ReadAnyBin - Read data from a binary serial channel or file
	1.122. ReadBlock - read a block of data from device
	1.123. ReadCfgData - Reads attribute of a system parameter
	1.124. ReadErrData - Gets information about an error
	1.125. ReadRawBytes - Read rawbytes data
	1.126. RemoveDir - Delete a directory
	1.127. RemoveFile - Delete a file
	1.128. RenameFile - Rename a file
	1.129. Reset - Resets a digital output signal
	1.130. ResetPPMoved - Reset state for the program pointer moved in manual mode
	1.131. ResetRetryCount - Reset the number of retries
	1.132. RestoPath - Restores the path after an interrupt
	1.133. RETRY - Resume execution after an error
	1.134. RETURN - Finishes execution of a routine
	1.135. Rewind - Rewind file position
	1.136. RMQEmptyQueue - Empty RAPID Message Queue
	1.137. RMQFindSlot - Find a slot identity from the slot name
	1.138. RMQGetMessage - Get an RMQ message
	1.139. RMQGetMsgData - Get the data part from an RMQ message
	1.140. RMQGetMsgHeader - Get header information from an RMQ message
	1.141. RMQReadWait - Returns message from RMQ
	1.142. RMQSendMessage - Send an RMQ data message
	1.143. RMQSendWait - Send an RMQ data message and wait for a response
	1.144. Save - Save a program module
	1.145. SCWrite - Send variable data to a client application
	1.146. SearchC - Searches circularly using the robot
	1.147. SearchExtJ - Search with one or several mechanical units without TCP
	1.148. SearchL - Searches linearly using the robot
	1.149. SenDevice - connect to a sensor device
	1.150. Set - Sets a digital output signal
	1.151. SetAllDataVal - Set a value to all data objects in a defined set
	1.152. SetAO - Changes the value of an analog output signal
	1.153. SetDataSearch - Define the symbol set in a search sequence
	1.154. SetDataVal - Set the value of a data object
	1.155. SetDO - Changes the value of a digital output signal
	1.156. SetGO - Changes the value of a group of digital output signals
	1.157. SetSysData - Set system data
	1.158. SingArea - Defines interpolation around singular points
	1.159. SkipWarn - Skip the latest warning
	1.160. SocketAccept - Accept an incoming connection
	1.161. SocketBind - Bind a socket to my IP-address and port
	1.162. SocketClose - Close a socket
	1.163. SocketConnect - Connect to a remote computer
	1.164. SocketCreate - Create a new socket
	1.165. SocketListen - Listen for incoming connections
	1.166. SocketReceive - Receive data from remote computer
	1.167. SocketSend - Send data to remote computer
	1.168. SoftAct - Activating the soft servo
	1.169. SoftDeact - Deactivating the soft servo
	1.170. SpeedRefresh - Update speed override for ongoing movement
	1.171. SpyStart - Start recording of execution time data
	1.172. SpyStop - Stop recording of time execution data
	1.173. StartLoad - Load a program module during execution
	1.174. StartMove - Restarts robot movement
	1.175. StartMoveRetry - Restarts robot movement and execution
	1.176. STCalib - Calibrate a Servo Tool
	1.177. STClose - Close a Servo Tool
	1.178. StepBwdPath - Move backwards one step on path
	1.179. STIndGun - Sets the gun in independent mode
	1.180. STIndGunReset - Resets the gun from independent mode
	1.181. SToolRotCalib - Calibration of TCP and rotation for stationary tool
	1.182. SToolTCPCalib - Calibration of TCP for stationary tool
	1.183. Stop - Stops program execution
	1.184. STOpen - Open a Servo Tool
	1.185. StopMove - Stops robot movement
	1.186. StopMoveReset - Reset the system stop move state
	1.187. StorePath - Stores the path when an interrupt occurs
	1.188. STTune - Tuning Servo Tool
	1.189. STTuneReset - Resetting Servo tool tuning
	1.190. SyncMoveOff - End coordinated synchronized movements
	1.191. SyncMoveOn - Start coordinated synchronized movements
	1.192. SyncMoveResume - Set synchronized coordinated movements
	1.193. SyncMoveSuspend - Set independent-semicoordinated movements
	1.194. SyncMoveUndo - Set independent movements
	1.195. SystemStopAction - Stop the robot system
	1.196. TEST - Depending on the value of an expression ...
	1.197. TestSignDefine - Define test signal
	1.198. TestSignReset - Reset all test signal definitions
	1.199. TextTabInstall - Installing a text table
	1.200. TPErase - Erases text printed on the FlexPendant
	1.201. TPReadDnum - Reads a number from the FlexPendant
	1.202. TPReadFK - Reads function keys
	1.203. TPReadNum - Reads a number from the FlexPendant 
	1.204. TPShow - Switch window on the FlexPendant
	1.205. TPWrite - Writes on the FlexPendant
	1.206. TriggC - Circular robot movement with events
	1.207. TriggCheckIO - Defines IO check at a fixed position
	1.208. TriggEquip - Define a fixed position and time I/O event on the path
	1.209. TriggInt - Defines a position related interrupt
	1.210. TriggIO - Define a fixed position or time I/O event near a stop point
	1.211. TriggJ - Axis-wise robot movements with events
	1.212. TriggL - Linear robot movements with events
	1.213. TriggLIOs - Linear robot movements with I/O events
	1.214. TriggRampAO - Define a fixed position ramp AO event on the path
	1.215. TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event
	1.216. TriggStopProc - Generate restart data for trigg signals at stop
	1.217. TryInt - Test if data object is a valid integer
	1.218. TRYNEXT - Jumps over an instruction which has caused an error
	1.219. TuneReset - Resetting servo tuning
	1.220. TuneServo - Tuning servos
	1.221. UIMsgBox - User Message Dialog Box type basic
	1.222. UIShow - User Interface show
	1.223. UnLoad - UnLoad a program module during execution
	1.224. UnpackRawBytes - Unpack data from rawbytes data
	1.225. VelSet - Changes the programmed velocity
	1.226. WaitAI - Waits until an analog input signal value is set
	1.227. WaitAO - Waits until an analog output signal value is set
	1.228. WaitDI - Waits until a digital input signal is set
	1.229. WaitDO - Waits until a digital output signal is set
	1.230. WaitGI - Waits until a group of digital input signals are set
	1.231. WaitGO - Waits until a group of digital output signals are set
	1.232. WaitLoad - Connect the loaded module to the task
	1.233. WaitRob - Wait until stop point or zero speed
	1.234. WaitSyncTask - Wait at synchronization point for other program tasks
	1.235. WaitTestAndSet - Wait until variable unset - then set
	1.236. WaitTime - Waits a given amount of time
	1.237. WaitUntil - Waits until a condition is met
	1.238. WaitWObj - Wait for work object on conveyor
	1.239. WarmStart - Restart the controller
	1.240. WHILE - Repeats as long as ...
	1.241. WorldAccLim - Control acceleration in world coordinate system
	1.242. Write - Writes to a character-based file or serial channel
	1.243. WriteAnyBin - Writes data to a binary serial channel or file
	1.244. WriteBin - Writes to a binary serial channel
	1.245. WriteBlock - write block of data to device
	1.246. WriteCfgData - Writes attribute of a system parameter
	1.247. WriteRawBytes - Write rawbytes data
	1.248. WriteStrBin - Writes a string to a binary serial channel
	1.249. WriteVar - write variable
	1.250. WZBoxDef - Define a box-shaped world zone
	1.251. WZCylDef - Define a cylinder-shaped world zone
	1.252. WZDisable - Deactivate temporary world zone supervision
	1.253. WZDOSet - Activate world zone to set digital output
	1.254. WZEnable - Activate temporary world zone supervision
	1.255. WZFree - Erase temporary world zone supervision
	1.256. WZHomeJointDef - Define a world zone for home joints
	1.257. WZLimJointDef - Define a world zone for limitation in joints
	1.258. WZLimSup - Activate world zone limit supervision
	1.259. WZSphDef - Define a sphere-shaped world zone

	2 Functions
	2.1. Abs - Gets the absolute value
	2.2. ACos - Calculates the arc cosine value
	2.3. AOutput - Reads the value of an analog output signal
	2.4. ArgName - Gets argument name 
	2.5. ASin - Calculates the arc sine value
	2.6. ATan - Calculates the arc tangent value
	2.7. ATan2 - Calculates the arc tangent2 value
	2.8. BitAnd - Logical bitwise AND - operation on byte data
	2.9. BitCheck - Check if a specified bit in a byte data is set
	2.10. BitLSh - Logical bitwise LEFT SHIFT - operation on byte
	2.11. BitNeg - Logical bitwise NEGATION - operation on byte data
	2.12. BitOr - Logical bitwise OR - operation on byte data
	2.13. BitRSh - Logical bitwise RIGHT SHIFT - operation on byte
	2.14. BitXOr - Logical bitwise XOR - operation on byte data
	2.15. ByteToStr - Converts a byte to a string data
	2.16. CalcJointT - Calculates joint angles from robtarget
	2.17. CalcRobT - Calculates robtarget from jointtarget
	2.18. CalcRotAxFrameZ - Calculate a rotational axis frame
	2.19. CalcRotAxisFrame - Calculate a rotational axis frame
	2.20. CDate - Reads the current date as a string
	2.21. CJointT - Reads the current joint angles
	2.22. ClkRead - Reads a clock used for timing
	2.23. CorrRead - Reads the current total offsets
	2.24. Cos - Calculates the cosine value
	2.25. CPos - Reads the current position (pos) data
	2.26. CRobT - Reads the current position (robtarget) data
	2.27. CSpeedOverride - Reads the current override speed 
	2.28. CTime - Reads the current time as a string
	2.29. CTool - Reads the current tool data
	2.30. CWObj - Reads the current work object data
	2.31. DecToHex - Convert from decimal to hexadecimal
	2.32. DefAccFrame - Define an accurate frame
	2.33. DefDFrame - Define a displacement frame
	2.34. DefFrame - Define a frame
	2.35. Dim - Obtains the size of an array
	2.36. Distance - Distance between two points
	2.37. DnumToNum - Converts dnum to num
	2.38. DotProd - Dot product of two pos vectors
	2.39. DOutput - Reads the value of a digital output signal
	2.40. EulerZYX - Gets euler angles from orient
	2.41. EventType - Get current event type inside any event routine
	2.42. ExecHandler - Get type of execution handler
	2.43. ExecLevel - Get execution level
	2.44. Exp - Calculates the exponential value
	2.45. FileSize - Retrieve the size of a file
	2.46. FileTime - Retrieve time information about a file
	2.47. FSSize - Retrieve the size of a file system
	2.48. GetMecUnitName - Get the name of the mechanical unit
	2.49. GetNextMechUnit - Get name and data for mechanical units
	2.50. GetNextSym - Get next matching symbol
	2.51. GetSysInfo - Get information about the system
	2.52. GetTaskName - Gets the name and number of current task
	2.53. GetTime - Reads the current time as a numeric value
	2.54. GInputDnum - Read value of group input signal
	2.55. GOutput - Reads the value of a group of digital output signals
	2.56. GOutputDnum - Read value of group output signal
	2.57. HexToDec - Convert from hexadecimal to decimal
	2.58. IndInpos - Independent axis in position status
	2.59. IndSpeed - Independent speed status
	2.60. IOUnitState - Get current state of I/O unit
	2.61. IsFile - Check the type of a file
	2.62. IsMechUnitActive - Is mechanical unit active
	2.63. IsPers - Is persistent
	2.64. IsStopMoveAct - Is stop move flags active
	2.65. IsStopStateEvent - Test whether moved program pointer
	2.66. IsSyncMoveOn - Test if in synchronized movement mode
	2.67. IsSysId - Test system identity
	2.68. IsVar - Is variable
	2.69. MaxRobSpeed - Maximum robot speed
	2.70. MirPos - Mirroring of a position
	2.71. ModExist - Check if program module exist
	2.72. ModTime - Get file modify time for the loaded module
	2.73. MotionPlannerNo - Get connected motion planner number
	2.74. NonMotionMode - Read the Non-Motion execution mode
	2.75. NOrient - Normalize orientation
	2.76. NumToDnum - Converts num to dnum
	2.77. NumToStr - Converts numeric value to string
	2.78. Offs - Displaces a robot position
	2.79. OpMode - Read the operating mode
	2.80. OrientZYX - Builds an orient from euler angles
	2.81. ORobT - Removes the program displacement from a position
	2.82. ParIdPosValid - Valid robot position for parameter identification
	2.83. ParIdRobValid - Valid robot type for parameter identification
	2.84. PathLevel - Get current path level
	2.85. PathRecValidBwd - Is there a valid backward path recorded
	2.86. PathRecValidFwd - Is there a valid forward path recorded
	2.87. PFRestart - Check interrupted path after power failure
	2.88. PoseInv - Inverts pose data
	2.89. PoseMult - Multiplies pose data
	2.90. PoseVect - Applies a transformation to a vector
	2.91. Pow - Calculates the power of a value
	2.92. PPMovedInManMode - Test whether the program pointer is moved in manual mode
	2.93. Present - Tests if an optional parameter is used
	2.94. ProgMemFree - Get the size of free program memory
	2.95. RawBytesLen - Get the length of rawbytes data
	2.96. ReadBin - Reads a byte from a file or serial channel
	2.97. ReadDir - Read next entry in a directory
	2.98. ReadMotor - Reads the current motor angles
	2.99. ReadNum - Reads a number from a file or serial channel
	2.100. ReadStr - Reads a string from a file or serial channel
	2.101. ReadStrBin - Reads a string from a binary serial channel or file
	2.102. ReadVar - Read variable from a device
	2.103. RelTool - Make a displacement relative to the tool
	2.104. RemainingRetries - Remaining retries left to do
	2.105. RMQGetSlotName - Get the name of an RMQ client
	2.106. RobName - Get the TCP robot name
	2.107. RobOS - Check if execution is on RC or VC
	2.108. Round - Round is a numeric value
	2.109. RunMode - Read the running mode
	2.110. Sin - Calculates the sine value
	2.111. SocketGetStatus - Get current socket state
	2.112. Sqrt - Calculates the square root value
	2.113. STCalcForce - Calculate the tip force for a Servo Tool
	2.114. STCalcTorque - Calc. the motor torque for a servo tool
	2.115. STIsCalib - Tests if a servo tool is calibrated
	2.116. STIsClosed - Tests if a servo tool is closed
	2.117. STIsIndGun - Tests if a servo tool is in independent mode
	2.118. STIsOpen - Tests if a servo tool is open
	2.119. StrDigCalc - Arithmetic operations with datatype stringdig
	2.120. StrDigCmp - Compare two strings with only digits
	2.121. StrFind - Searches for a character in a string
	2.122. StrLen - Gets the string length
	2.123. StrMap - Maps a string
	2.124. StrMatch - Search for pattern in string
	2.125. StrMemb - Checks if a character belongs to a set
	2.126. StrOrder - Checks if strings are ordered
	2.127. StrPart - Finds a part of a string
	2.128. StrToByte - Converts a string to a byte data
	2.129. StrToVal - Converts a string to a value
	2.130. Tan - Calculates the tangent value
	2.131. TaskRunMec - Check if task controls any mechanical unit
	2.132. TaskRunRob - Check if task controls some robot
	2.133. TasksInSync - Returns the number of synchronized tasks
	2.134. TestAndSet - Test variable and set if unset 
	2.135. TestDI - Tests if a digital input is set
	2.136. TestSignRead - Read test signal value
	2.137. TextGet - Get text from system text tables
	2.138. TextTabFreeToUse - Test whether text table is free
	2.139. TextTabGet - Get text table number
	2.140. Trunc - Truncates a numeric value
	2.141. Type - Get the data type name for a variable
	2.142. UIAlphaEntry - User Alpha Entry
	2.143. UIClientExist - Exist User Client
	2.144. UIDnumEntry - User Number Entry
	2.145. UIDnumTune - User Number Tune
	2.146. UIListView - User List View
	2.147. UIMessageBox - User Message Box type advanced
	2.148. UINumEntry - User Number Entry
	2.149. UINumTune - User Number Tune
	2.150. ValidIO - Valid I/O signal to access
	2.151. ValToStr - Converts a value to a string
	2.152. VectMagn - Magnitude of a pos vector

	3 Data types
	3.1. aiotrigg - Analog I/O trigger condition
	3.2. bool - Logical values
	3.3. btnres - Push button result data
	3.4. busstate - State of I/O bus
	3.5. buttondata - Push button data
	3.6. byte - Integer values 0 - 255
	3.7. clock - Time measurement
	3.8. confdata - Robot configuration data
	3.9. corrdescr - Correction generator descriptor
	3.10. datapos - Enclosing block for a data object
	3.11. dionum - Digital values (0 - 1)
	3.12. dir - File directory structure
	3.13. dnum - Double numeric values
	3.14. errdomain - Error domain
	3.15. errnum - Error number
	3.16. errstr - Error string
	3.17. errtype - Error type
	3.18. event_type - Event routine type
	3.19. exec_level - Execution level
	3.20. extjoint - Position of external joints
	3.21. handler_type - Type of execution handler
	3.22. icondata - Icon display data
	3.23. identno - Identity for move instructions
	3.24. intnum - Interrupt identity
	3.25. iodev - Serial channels and files
	3.26. iounit_state - State of I/O unit
	3.27. jointtarget - Joint position data
	3.28. listitem - List item data structure
	3.29. loaddata - Load data
	3.30. loadidnum - Type of load identification
	3.31. loadsession - Program load session
	3.32. mecunit - Mechanical unit
	3.33. motsetdata - Motion settings data
	3.34. num - Numeric values
	3.35. opcalc - Arithmetic Operator
	3.36. opnum - Comparison operator
	3.37. orient - Orientation
	3.38. paridnum - Type of parameter identification
	3.39. paridvalidnum - Result of ParIdRobValid
	3.40. pathrecid - Path recorder identifier
	3.41. pos - Positions (only X, Y and Z)
	3.42. pose - Coordinate transformations
	3.43. progdisp - Program displacement
	3.44. rawbytes - Raw data
	3.45. restartdata - Restart data for trigg signals
	3.46. rmqheader - RAPID Message Queue Message header
	3.47. rmqmessage - RAPID Message Queue message
	3.48. rmqslot - Identity number of an RMQ client
	3.49. robjoint - Joint position of robot axes
	3.50. robtarget - Position data
	3.51. shapedata - World zone shape data
	3.52. signalxx - Digital and analog signals
	3.53. socketdev - Socket device
	3.54. socketstatus - Socket communication status
	3.55. speeddata - Speed data
	3.56. stoppointdata - Stop point data
	3.57. string - Strings
	3.58. stringdig - String with only digits
	3.59. switch - Optional parameters 
	3.60. symnum - Symbolic number
	3.61. syncident - Identity for synchronization point
	3.62. System data - Current RAPID system data settings
	3.63. taskid - Task identification
	3.64. tasks - RAPID program tasks
	3.65. testsignal - Test signal
	3.66. tooldata - Tool data
	3.67. tpnum - FlexPendant window number
	3.68. trapdata - Interrupt data for current TRAP
	3.69. triggdata - Positioning events, trigg
	3.70. triggios - Positioning events, trigg
	3.71. triggiosdnum - Positioning events, trigg
	3.72. triggstrgo - Positioning events, trigg
	3.73. tunetype - Servo tune type
	3.74. uishownum - Instance ID for UIShow
	3.75. wobjdata - Work object data
	3.76. wzstationary - Stationary world zone data
	3.77. wztemporary - Temporary world zone data
	3.78. zonedata - Zone data

	4 Programming type examples
	4.1. ERROR handler with movements
	4.2. Service routines with or without movements
	4.3. System I/O interrupts with or without movements
	4.4. TRAP routines with movements

	Index



