HEIDELBERG, SEPTEMBER 2017

Webinar KNX Split Unit Gateway SUG/U
BU EPBP GPG Building Automation

Carolina Bachenheimer-Schaefer, Thorsten Reibel, Jürgen Schilder & Ilija Zivadinovic
Global Application and Solution Team
Agenda

Split Unit Gateway SUG/U 1.1
- Introduction and device overview
- Application and benefits
- ETS parametrization
- Integration i-bus Tool
Split Unit Gateway SUG/U 1.1

Introduction
Split Unit Gateway SUG/U 1.1

Overview of air-conditioning systems

Decentralized building air-conditioning systems

Split units
- With a decentralized air-conditioning system in the form of a split unit, the refrigerant is compressed outdoors, while the air-treatment processes (air conveyance, filtering and temperature control) are performed in the room to be cooled
- Many small units only recirculate the room air to cool it
- Some devices draw in a small amount of air ahead of the facade (independently of the building’s orientation), blow it into the room and usually discharge the same quantity of exhaust air from the room to the outside

Source: WIKIPEDIA
Split Unit Gateway SUG/U 1.1

What is a Split Unit Gateway?

Many manufacturers’ air-conditioning units, so-called split units, are operated using an infrared remote control from the manufacturer. The Split Unit Gateway now replaces this remote control.

The Split Unit Gateway forms the interface between the KNX system and the air-conditioning systems from many manufacturers, also referred to as split units. It allows users to integrate the split unit into a KNX system for convenient, energy efficient control.
What is a Split Unit Gateway?

The Split Unit Gateway is installed near the split unit, and the transmitter of the supplied cable is bonded directly to the receiver of the split unit.

The device converts KNX telegrams to infrared commands and sends them to the split unit.

This makes it possible to control the split unit via KNX group commands.

The air-conditioning system then no longer receives the commands from a remote control but instead can be operated via any KNX sensors or via a visual display.
What is a Split Unit Gateway?

- **Split unit (interior unit)**
- **Integration into a KNX system**
- **Operation via manufacturer’s IR remote control**
- **Manufacturer’s IR remote control is replaced**
- **Integrating the unit into a KNX system**
- **IR transmitter with cable**
- **KNX sensor (e.g. presence detector)**
- **KNX sensor (e.g. button)**
Split Unit Gateway SUG/U 1.1

Overview

Split unit (interior unit) --- IR transmitter with cable --- Split Unit Gateway SUG/U 1.1

Button --- Room thermostat --- Presence detector --- Window contact --- Touch display --- Timer switch

©ABB
October 8, 2020 | Slide 8
Product overview

Flush-mounted device for installation in a flush-mounted or surface box

Dimensions 39 x 40 x 12 mm (H x W x D)

Connection terminal for IR cable and KNX

Length of cable for IR transmitter: 2m

The transmission diode of the supplied IR cable is bonded directly to the receiver of the split unit

Power supply is via the ABB i-bus® KNX; no additional auxiliary voltage is required

Red LED and button for assignment of the physical address
Connection diagram, controls/indicators

1. KNX connection
2. IR cable connection
3. Programming LED (red)
 LED lights up when the programming button is pressed, in order to assign a physical address to the bus device
4. Programming button
 For assignment of the physical address
The device possesses an interface to the i-bus® Tool

The i-bus® Tool can be used to read out data and test functions on the connected device

The i-bus® Tool can be downloaded free from the ABB website (www.abb.com/knx)

ETS is not required for the software tool

A description of the functions is provided in the i-bus® Tool online help
Parameterization is performed using the ETS4 or ETS5 software

The free “ABB SUG/U 1.1” ETS App available from the KNX Online Shop must also be installed

Further parameters* permit functions such as

- Fan speed control
- Horizontal and vertical swing
- Swing activation
- Specification of setpoint temperature and limitation
- Activation of Silent Mode
- Scene and boost function
- Status messages

* If the function is supported by the split unit device
Overview

<table>
<thead>
<tr>
<th>Design</th>
<th>SUG/U 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order code</td>
<td>2CDG 110 207 R0011</td>
</tr>
<tr>
<td>Launch</td>
<td>available</td>
</tr>
</tbody>
</table>
Split Unit Gateway SUG/U 1.1

Product documentation

Product Manual
Technical datasheet
Installation and operating instructions

Training & Qualification Database
 - Presentation slides
 - Webinar recording (English) (MP4 file on YouTube)
Technical documents

www.abb.com/knx
→ Product category
 → Heating, Ventilation & Air Conditioning
 → Split Unit Gateway SUG/U 1.1
- ETS4 and ETS5 application software
- Product Manual
- Technical datasheet
- Installation and operating instructions
- Text for bid invitation
- Product information
- Presentation slides
- CE declaration of conformity
- • • •
Functional description of operation

The split unit can be operated via KNX using any operating elements (e.g. buttons, touch display, smartphone).

The Split Unit Gateway sends the respective current status on the KNX.

It can be indicated on the rocker switch LEDs.

Example: button with four rocker switches

<table>
<thead>
<tr>
<th></th>
<th>Object function</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker 1</td>
<td>On/Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>Rocker 2</td>
<td>Fan speed</td>
<td>UP</td>
<td>DOWN</td>
</tr>
<tr>
<td>Rocker 3</td>
<td>Setpoint temperature</td>
<td>19°C</td>
<td>21°C</td>
</tr>
<tr>
<td>Rocker 4</td>
<td>Setpoint temperature</td>
<td>23°C</td>
<td>24°C</td>
</tr>
</tbody>
</table>
Functional description of operation

<table>
<thead>
<tr>
<th>Rocker switch 1</th>
<th>On/Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker switch 2</td>
<td>Fan up/down</td>
</tr>
<tr>
<td>Rocker switch 3</td>
<td>Setpoint temp. 19 °C and 21 °C</td>
</tr>
<tr>
<td>Rocker switch 4</td>
<td>Setpoint temp. 23 °C and 25 °C</td>
</tr>
</tbody>
</table>

- **Rocker switch 1**: On/Off
- **Rocker switch 2**: Fan up/down
- **Rocker switch 3**: Setpoint temp. 19 °C and 21 °C
- **Rocker switch 4**: Setpoint temp. 23 °C and 25 °C

Button, touch display, …
ABB i-bus KNX Split Unit Gateway SUG/U 1.1

Functional description of operation

The split unit can be operated via KNX using a room thermostat.

The rocker switches can change the setpoint temperature, switch on/off and increase/decrease the fan speed.

<table>
<thead>
<tr>
<th>Object function</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker switch 1</td>
<td>On/Off</td>
<td>On</td>
</tr>
<tr>
<td>Rocker switch 2</td>
<td>Setpoint adjustment</td>
<td>Up</td>
</tr>
<tr>
<td>Rocker switch 3</td>
<td>Fan speed</td>
<td>Up</td>
</tr>
</tbody>
</table>

![Diagram of ABB i-bus KNX Split Unit Gateway SUG/U 1.1](image)
ABB i-bus KNX Split Unit Gateway SUG/U 1.1

Functional description of operation

- **Rocker switch 1**: On/Off
- **Rocker switch 2**: Setpoint adjustment
- **Rocker switch 3**: Fan up/down

<table>
<thead>
<tr>
<th>Nun Group</th>
<th>Name</th>
<th>Object Function</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4205</td>
<td>Split Unit</td>
<td>Fan up/down</td>
<td>1 bit</td>
</tr>
<tr>
<td>4212</td>
<td>Split Unit</td>
<td>Operating mode</td>
<td>1 byte</td>
</tr>
<tr>
<td>4213</td>
<td>Split Unit</td>
<td>On/Off</td>
<td>1 bit</td>
</tr>
<tr>
<td>4221</td>
<td>Split Unit</td>
<td>Status On/Off</td>
<td>1 bit</td>
</tr>
<tr>
<td>4221</td>
<td>Split Unit</td>
<td>Setpoint temperature</td>
<td>2 bytes</td>
</tr>
<tr>
<td>4221</td>
<td>Split Unit</td>
<td>Setpoint temperature up/down</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nun Group</th>
<th>Name</th>
<th>Object Function</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4212</td>
<td>rocker 1</td>
<td>switching</td>
<td>1 bit</td>
</tr>
<tr>
<td>4205</td>
<td>rocker 3</td>
<td>switching</td>
<td>1 bit</td>
</tr>
<tr>
<td>4213</td>
<td>LED 1</td>
<td>status</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

Split unit (interior unit) is connected to the Split Unit Gateway SUG/U 1.1, which in turn is connected to the room thermostat.
Functional description of window contact

A window contact (magnetic contact) is connected to an input of a KNX Security Terminal and sends the open/closed state of the window to the Split Unit Gateway.

When a window is open, the function “Window contact” is activated with a higher priority and the split unit is switched off (optional OFF delay).

Closing the window deactivates the function, and the split unit can be operated again.
Functional description of window contact

<table>
<thead>
<tr>
<th>Zone A</th>
<th>Magnetic contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone B</td>
<td>.....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuni Group</th>
<th>Name</th>
<th>Object Function</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>General</td>
<td>Reset</td>
<td>1 bit</td>
</tr>
<tr>
<td>7</td>
<td>General</td>
<td>Status Reset</td>
<td>1 bit</td>
</tr>
<tr>
<td>30</td>
<td>Zone A</td>
<td>Status</td>
<td>1 bit</td>
</tr>
<tr>
<td>31</td>
<td>Zone B</td>
<td>Status</td>
<td>1 bit</td>
</tr>
<tr>
<td>17</td>
<td>Function</td>
<td>Window contact</td>
<td>1 bit</td>
</tr>
<tr>
<td>21</td>
<td>Zone A</td>
<td>Setpoint temperature</td>
<td>2 bytes</td>
</tr>
<tr>
<td>23</td>
<td>Zone B</td>
<td>Setpoint temperature up/down</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

Split unit (interior unit)

Split Unit Gateway SUG/U 1.1

KNX Security Terminal MT/x

Window contacts
Functional description of presence

A presence detector automatically detects a person in the room, activates the function “Presence” and the parameterized state is established, e.g.

- Split unit ON, AUTO mode, setpoint temperature 22 °C, fan speed AUTO, ...

After the room is left (including a run-on time), the function “Presence” can be deactivated and the parameterized state is established

- Split Unit ON/OFF/unchanged

The function “Presence” can also be activated and deactivated via a card reader (e.g. hotel room)
Functional description of presence

<table>
<thead>
<tr>
<th>Presence</th>
<th>Motion detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>....</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Num</th>
<th>Group</th>
<th>Name</th>
<th>Object Function</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4219</td>
<td>Pl: Movement (master)</td>
<td>Output</td>
<td>1 bit</td>
</tr>
<tr>
<td>33</td>
<td>4219</td>
<td>BR: Brightness</td>
<td>Output</td>
<td>2 bytes</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Split Unit</td>
<td>Fan up/down</td>
<td>1 bit</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Split Unit</td>
<td>Operating mode</td>
<td>1 byte</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Split Unit</td>
<td>On/Off</td>
<td>1 bit</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Function</td>
<td>Presence</td>
<td>1 bit</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Split Unit</td>
<td>Setpoint temperature</td>
<td>2 bytes</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Split Unit</td>
<td>Setpoint temperature up/down</td>
<td>1 bit</td>
</tr>
</tbody>
</table>
Functional description of scenes

The function “Scenes” can be used for convenient recall of various scenes, e.g. in a conference/training room

- Welcome scene
- Presentation scene
- Break scene

The parameterized state is established as soon as the corresponding scene is recalled

<table>
<thead>
<tr>
<th>Scene</th>
<th>Welcome</th>
<th>Presentation</th>
<th>Pause</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split unit</td>
<td>On</td>
<td>On</td>
<td>Unchan.</td>
<td>Off</td>
</tr>
<tr>
<td>Setpoint temp.</td>
<td>21 °C</td>
<td>21 °C</td>
<td>22 °C</td>
<td>-</td>
</tr>
<tr>
<td>Operat. mode</td>
<td>Auto</td>
<td>Auto</td>
<td>Ventil.</td>
<td>-</td>
</tr>
<tr>
<td>Fan speed</td>
<td>1</td>
<td>Auto</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Slat adjustment</td>
<td>Start</td>
<td>Unchan.</td>
<td>Start</td>
<td>-</td>
</tr>
</tbody>
</table>
Function description of scenes

Recall of a scene via a button, timer switch, touch display, ...

<table>
<thead>
<tr>
<th>Rocker switch 1</th>
<th>Scenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocker switch 2</td>
<td>Scenes 38 and 52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Num Group</th>
<th>Name</th>
<th>Object Function</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4211 S1.1: Number of light scene</td>
<td>Output</td>
<td>1 byte</td>
</tr>
<tr>
<td>3</td>
<td>4211 S1.2: Number of light scene</td>
<td>Output</td>
<td>1 byte</td>
</tr>
<tr>
<td>15</td>
<td>4211 S2.1: Number of light scene</td>
<td>Output</td>
<td>1 byte</td>
</tr>
<tr>
<td>17</td>
<td>4211 S2.2: Number of light scene</td>
<td>Output</td>
<td>1 byte</td>
</tr>
</tbody>
</table>
Commissioning

ETS4 or ETS5 and the current application of the device are required for programming.

Ensure that the latest ETS application is used. Download from www.abb.com/knx

In addition to the ETS application, you will require the “ABB SUG/U 1.1 Configuration” app for commissioning; this can be obtained free from the KNX Online Shop.

The device possesses an interface to the i-bus® Tool (reading out data and checking functions).
ETS App “ABB SUG/U 1.1 Configuration”

Download the ETS App (ABBSUG.etsapp) and the license file (*.license) from the KNX Online Shop.

In the ETS:
- Install the app
- Add license

The app appears in the menu “Extras” → “ABB” → “ABB SUG/U Configuration”

The IR databases of the split unit devices are also installed during this process.

The IR database files are updated online in the app.
ABB i-bus KNX Split Unit Gateway SUG/U 1.1

ETS App “ABB SUG/U 1.1 Configuration”

This App is needed for configuration of the ABB SUG/U 1.1 Split Unit Gateway. The manufacturer of the split unit and the model of the remote are loaded into the ETS application. ABB SUG/U 1.1 in the project can be processed at the same time. The download into the device is done by normal ETS download.
Commissioning

Add the Split Unit Gateway to the building or topology view

Click on the Gateway and start the app (menu “Extras” → “ABB“ → “ABB SUG/U Configuration”)

Click the Gateway in the window of the “ABB SUG/U Configuration” app and select the remote control manufacturer and type in the “Properties” window

The functions supported by the split unit are displayed, and the IR codes of the selected remote control are adopted in the ETS application and parameters
ETS App “ABB SUG/U 1.1 Configuration”
Commissioning

Set the parameters as required depending on the supported split unit functions (see “Parameters” window)

Create group addresses and link with the objects

Program the physical address and load the application

Test the
 – Settings and parameters in the Split Unit Gateway (i-bus® Tool)
 – Functional implementation
 Control element/sensor – Split Unit Gateway – split unit device
The IR transmitter of the Split Unit Gateway must be correctly positioned on the receiver of the split unit.

The function “Send temperature cyclically...” enables cyclical values to be sent, which are then confirmed by the split unit with an acknowledgment tone.

This makes it possible to check whether the transmitter is in the correct position before it is affixed.

30 telegrams are sent at intervals of 4 seconds (2 minutes).
Testing and troubleshooting: smartphone camera

Important: This test function depends on the smartphone manufacturer and model!

The photo chip in a smartphone senses more than human eye can, and it also detects IR light.

Smartphones usually have an IR blocking filter, but the signal from a transmitter held in front of the lens can nevertheless still be seen in camera recording mode.

A light lights up in the smartphone display if IR radiation is present (KNX command to the Split Unit Gateway or with the test function of the i-bus® Tool, “Send temperature cyclically…”)

It is recommended to use the front camera. Its equipment quality is not as high, and it does not possess an infrared filter.
Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

© Copyright [2017] ABB. All rights reserved.