

Multifunctional relay

1MRB520124-Ben Page 1 Issued: July 1998 Changed: since April 1989 Data subject to change without notice

		ALE Note BLE Note BLE 10 and BLE 10 and
Features	 Plug-in microprocessor controlled multifuncional relay with automatic shorting of c.t. circuits when the relay is withdrawn from its casing Measuring connections phase by phase to the main c.t. to form the maximum value of the phase currents and the neutral current (I₀ internal) Alternative: Measuring connections to two main c.t. (phase R and T) and a separate current input (I₀ external) to a neutral c.t. (phase S or I₀) The measured values are digitally processed by a microprocessor Ability to combine a large number of protective functions in one unit The various protective functions can be freely selected and allocated to the various auxiliary relays by means of the software tripping matrix (blocked, start signal, tripping, tripping with latching) 	 Wide setting ranges for the various protective functions Exact quartz-controlled timers Thermal replica with two separately adjustable time constants and two independently adjustable pickup values (warning and trip) If the supply voltage fails, the state of the thermal replica is memorized Memory for tripping value and time run Setting by keyboard Two four-figure LED displays, showing: all settings, momentary value of the measured values, number of motor starts, trips, elapsed times, etc. Comprehensive self-monitoring, indication of readiness to operate Supply from battery 36 – 312 V DC (or 18 – 36 V DC) or from single-phase mains 80 – 242 V, 50/60 Hz
Application	 The relay type MCX is designed for following protection purposes: Rotating AC machines, specially for asynchronous motors Large power transformers and distribution transformers 	- Line- and cable feeders It provides a large number of protection functions for detection of not only electrical faults, but also inadmissible operational states.

Application (cont'd)

Table 1: Recommended scope of protection for various objects

	Protected	Protected object			
Protective function	Motor	Transformer	Generator (small units)	Cable, line	
Short-circuit protection	1	1	1	1	
Starting protection Locked rotor protection	1				
Negative sequence protection	1		1		
Overload protection	1	1	1	1	
Earth fault protection	1	(1) ²	1	(l) ³	
Protection against low load	(l) ¹				
Backup protection Overcurrent protection	1	1	1	1	
Corresponding value of the function selector (mode 47)	1	10 (11)	5	17 (13)	
(1) only under cortain conditions		2 When the tree	oformoruinding	in not conthod	

3

(I) only under certain conditions ¹ Under definite operating conditions

The detection of faults or the recognition of critical states is based on the evaluation of the phase currents through the protected object.

When the transformer winding is not earthed In earthed radial networks

By combining various protective functions (19 possibilities) the relay can be used to replace several conventional relays. See some examples in Table 1.

Design

The principle of the relay's operation is explained below in relation to the block diagram (Fig. 4).

- Input current transformers isolate the measuring signals from the relay circuit and adapt the internal signal to a proper level.
- The signals pass bandpass filters which suppress harmonics.
- The pickup values for the various functions are related to setting current IE, which corresponds to the primary load current of the protected object (c.t. ratio compensation).
- The phase current signals are rectified and combined for detection of maximum value.
- The earth fault signal I_0 is formed by vectorial summation, the NPS-signal I_2 is derived from a negative-sequence filter.
- All generated signals: I, I_0 and I_2 then pass an A/D converter and are finally processed in digital form by the microprocessor.

Short-circuit protection $(I>>_{1,2})$ and Overcurrent protection $(I>_{1,2,3})$

With the three independent overcurrent-time functions, $I_{>1,2,3}$, together with the functions, $I_{>1,2}$, it is possible to obtain time and current grading of tripping. They are also separately adjustable. The functions $I_{>1,2,3}$ are always activated in combination with I_{start} function. When I_{start} has reset I> functions are released.

It is thus possible to distinguish between short-circuit currents and service currents of the same order of magnitude (e.g. the starting current of a motor). When used with transformers, undesired tripping due to inrush currents is prevented. For the short-circuit protection transient overcurrents which may occur in service, such as those caused by switching operations, can be overridden by a short time-lag.

Earth fault protection

The measured signal for earth fault protection is detected by either internal formation when three phases are connected (see wiring diagram, Fig. 5) or by use of an external neutral current transformer (see Fig. 6). With this arrangement a very sensitive earth fault detection can be obtained.

Negative phase sequence protection

Asymmetrical main voltages, unbalanced loads or phase failures cause a negative-sequence current. This signal can be derived from three phases. If the relay is wired to only two phase currents, the neutral current is taken into account. For I_0 more than 0,25 x set value the negative-sequence protection is blocked.

Motor starting protection

Motor starting procedures are protected by the following functions:

- I_{start} with I₂ Tstart measurement The product will be built as long as the set value of I_{start} is exceeded. A tripping takes place when I²T exceeds the set value I²T_{start}. The advantage of this feature is that motor starts can be completed with different starting times. They come up by unstable system voltages. For the tripping characteristic see also Fig. 2.
- Locked rotor protection When the stalling time of a motor is shorter than the normal starting time, a speed governor is necessary and will release a trip signal only when the rotor is not moving.
- Counter for motor starts This function consists of counters, one for cold starts and one for warm starts and a setting level for the warm condition ($\Delta \vartheta_3$). A timer t_{N-1} is adjustable for the required cooling time to permit another start. The function trips when the accepted number of starts has exceeded the set number N_{warm} or N_{cold}.

Thermal overload protection

The thermal overload protection is based on the thermal replica of the protected object. Any thermal stress that is too high or lasts too long must be prevented, otherwise it must be expected that the insulation of the protected object may be damaged and the useful life shortened.

In steady-state operation, a motor heats up according to an exponential function to an ultimate value, because heat is continuously being dissipated to the surroundings, e.g. coolant. More interesting than the absolute temperature attained is the temperature rise when operating at rated load. The temperature rise is monitored in relays MCX91., in two stages $(\Delta \vartheta_1, \Delta \vartheta_2)$. The stage $\Delta \vartheta_1$ can be used to give a warning. The reset value for $\Delta \vartheta_1$ is 5% lower than the set value. $\Delta \vartheta_2$ is employed for tripping. The tripping signal is applied until the temperature has dropped below the $\Delta \vartheta_2$ value as given by the setting H $\Delta \vartheta$.

The temperature rise of the protected object is calculated from the maximum value of the phase currents. Two time constants can be set: a heating time constant, $\tau\uparrow$, for currents with forced cooling and a cooling time constant. $\tau\downarrow$, when the machine is stationary. For currents $\geq 2 I_E$ adiabatic heating is simulated.

Fig. 1 shows the various tripping characteristics. In terms of the current and the selected time constant, it is possible to read off the time taken to reach a definite temperature rise.

$$\frac{t}{\tau \uparrow} = f \quad (I/IE, \Delta \vartheta)$$

$$\frac{t}{\tau \uparrow} = \ln \frac{(I/IE)^2}{(I/IE)^2 - \Delta \vartheta \cdot 10^{-2}} \quad for \ 0, IIE \le I \le 2IE$$

$$\frac{t}{\tau \uparrow} = \frac{\Delta \vartheta}{100 \cdot (I/IE)^2} \quad with \ \Delta \vartheta \ in \ \% \ for \ I \ge 2IE$$

The tripping times can be determined with the help of the above curves (see Fig.1) and the parameters $\Delta \vartheta = 5\%$ to 200%.

Fig. 1 Tripping characteristics from the cold state $(\Delta \vartheta_o = 0)$

Design (cont'd)

Setting, Tripping and Signalling

SETTING:

On the relay front selection and value setting of protection function is provided with a keyboard. When pressing a button two numerical LED displays show the entered number. Settings can be made at any time even when the relay is in operation. All settings can be memorized in a nonvolatile memory which means that no auxiliary supply is necessary to keep the values stored. The storing procedure is executed by entering a password.

TRIPPING:

The relay operates the control circuits via four contactors. For a selection for which the protection function gets a contactor output, (tripping or signalling contactor type) the relay has a free programmable MATRIX. The user can influence the interlinking between tripping signals and the contactors according to the designed protection scheme. A number determines whether the corresponding contactor is operated or not. See Fig. 3.

SIGNALLING:

In case of a tripping action, the displays show the particular protection function with a flashing of mode and value number. Events are then memorized in chronological order. Resetting of indications is done by pressing the reset push-button.

INDICATIONS:

The relay is able to show actual load conditions, such as load currents or thermal status of the protected feeder, on its display. The short-circuit function can display the real short-circuit current which has exceeded the set value. If the relay picks-up and resets later, without a trip, the last time run will be memorized. All the possible memory-values are selected for display by separate mode numbers.

Fig. 2 Setting/tripping characteristic for I² x T_{start}

Fig. 3 Software tripping matrix

Mode	Setting	Symbol	Setting range	Unit	Resolution
00	Setting current	Ι _Ε	0.30 to 1.20	I _{NR}	0.01
01	Short-circuit prot. 1	l>> ₁	0; 2 to 20	Ι _Ε	0.1
02	Timelag	tl>> ₁	0.00 to 9.99	S	0.01
03	Overcurrent prot.	l>1	0; 0.8 to 8	Ι _Ε	0.1
04	Timelag	tl>1	0.1 to 200	S	0.1/1
05	NSP prot.	l ₂	0; 0.1 to 0.5	Ι _Ε	0.01
06	Timelag	tl ₂	0.1 to 200	S	0.1/1
07	Earth fault prot: int. ext.	l _o l _o	0; 0.2 to 1 (0; 0.2 to 4)/k	I _E I _E	0.01 0.01 (0.001)
08	Timelag int./ext.	tl ₀	0.01 to 100	S	0.01/0.1
09	I ₀ INT/EXT	-	1 = INT, 0 = EXT	1	1
10	I_0 c.t. ratio k = 5 for MCX912-1; k = 25 for MCX912-5	k*)	K = 1 for MCX913;	1	1
11	Locked rotor prot.	I _{bIR}	0; 0.8 to 8.0	١ _E	0.1
12	Timelag	t _{bIR}	0.1 to 200	S	0.1/1
13	Starting prot.	I _{start}	0; 0.8 to 8.0	Ι _Ε	0.1
14	I ² T perm. for start	I ² T _{start}	1 to 9999	I _E ²S	0.1/1
15	Prot. against low load	l<	0; 0.3 to 3.0	Ι _Ε	0.1
16	Timelag	tl<	0.1 to 200	S	0.1/1
17	No. of motor starts from cold	N _{cold}	0; 1 to 10	1	1
18	No. of motor starts from warm state	N _{warm}	0; 1 to 10	1	1
19	Time for $N = N-1$	t _{N-1}	1 to 9999	S	1
20	Temperature rise $\Delta \vartheta_3$	$\Delta \vartheta_3$	0; 50 to 200	%	1
21	Start with overheating	N _S	0, 1, 2	1	1
30	Temperature rise $\Delta \vartheta_1$	$\Delta \vartheta_1$	0; 50 to 200	%	1
31	Temperature rise $\Delta \vartheta_2$	$\Delta \vartheta_2$	0; 50 to 200	%	1
32	Reset for $\Delta \vartheta_2$	ΗΔϑ	1 to 100	%	1
33	Heating time constant	τî	1 to 200	min	1
34	Cooling time constant	τ↓	1 to 999	min	1
35	$\Delta \vartheta_0$ automatic	$\Delta \vartheta_0$	0 to 200	%	1
39	$\Delta \vartheta_0$ manual	$\Delta \vartheta_0$	0 to 200	%	1
40	Setting time of mean value of current	k _{TE}	0=8 min, 1=15 min 2=30 min	1	1
41	Short-circuit prot. 2	l>> ₂	0; 2 to 20	۱ _E	0.1
42	Timelag	tl>>2	0.00 to 9.99	S	0.01
43	Overcurrent prot. 2	l>2	0; 0.8 to 8	١ _E	0.1
44	Timelag	tl> ₂	0.1 to 200	S	0.1/1
45	Overcurrent prot. 3	l>3	0; 0.8 to 8	Ι _Ε	0.1
46	Timelag	tl>3	0.1 to 200	S	0.1/1
47	Function selection		1 to 19	1	1
98	Elapsed-time counter			10 h	0.1/1
90	Fault annunciation	see instruc	tion 1MRB520112-Ue	en-B	1

Table 2: Setting values for the various protective function

 I_{NR} = Rated current of relay (1 A or 5 A)

Technical data

Input

Rated current I _{NR}	1 A or 5 A
Rated frequency f _N	50 or 60 Hz
Load capacity of measuring inputs MCX913 Phase	
continuously	4 I _N
for 1 s	100 In
dynamic (peak value)	250 I _N
I ₀ of MCX912-1	
continuously	1 I _N
for 10 s	6 I _N
for 1 s	20 I _N
dynamic (peak value)	50 I _N
I ₀ of MCX912-5	
continuously	0.2 I _N
for 10 s	1.2 I _N
for 1 s	4 I _N
dynamic (peak value)	10 I _N
Consumption of measuring inputs at $I_N = 1 A$	
MCX913 Phase	0.07 VA
I ₀ of MCX912-1/-5	0.38 VA at 1 A
Consumption of measuring inputs at I _N = 5 A MCX913 Phase	0.7 VA

Measuring elements

Setting ranges see Table 2

Current functions

±5% of the set value	
Accuracy of pickup values for I<: under reference conditions and for I ² t: single-phase measurement	±10% when I << 0.8 x I _F ±10%
Variation of pickup values with temperature	< 0.1%/K
Variation of pickup values with frequency in range for all other pickup values:	45 to 55 Hz (f _N = 50 Hz) or for I ₂ : < 0.015 I _E /Hz with balanced 55 to 65 Hz (f _N = 60 Hz) three-phase infeed at I = I _E (deviation proportional to I) < $\pm 0.5\%$ /Hz
Reset ratio	$>95\%$ (for I <: $>110\%$ when I < ≥0.3 x I_E; 105% when I < ≥0.8 x I_E
Response time of measuring elements	< 40 ms for a jump from 0 to 1.5 x pickup value incl. attraction time of tripping relay
Reset time of measuring elements	< 50 ms for a reduction from 1.5 x pickup value to 0, incl. dropout time of tripping relay

Thermal replica

Accuracy of pickup values	±10% of the set value (under reference conditions)
$\begin{array}{c} \text{Reset values} \Delta \vartheta_1 \\ \Delta \vartheta_2 \\ \Delta \vartheta_3 \end{array}$	$\Delta \vartheta_1 - 5\%$ $\Delta \vartheta_2 - H \Delta \vartheta$ (adjustable) $\Delta \vartheta_3 - 5\%$

Timers

Accuracy of the set time-lags	±0.05% ±10 ms guartz accuracy and
	time constants (for t_{N-1} : ±0.05% ± 1 s)

Auxiliary supply

Input voltage ranges Consumption	36 – 312 V DC and 80 – 242 V DC, 50/60 Hz or 18 – 36 V DC < 13 W max. (tripped)
Voltage range of the blocking input (E1 E5)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Contact data and signals	Tripping contacts	Signalling contacts	Frontplate signals
Rated voltage	300 V DC or AC	250 V DC or AC	availability green LED
Making current (0.5 s)	30 A	5 A	mode display four-digit
Continuous rating	10 A	1.5 A	value display LED display
Making capacity at	110 V DC	3300 W	550 W
Breaking capacity, L/R =	1 A, U \leq 120 V DC		
40 ms, 2 contacts in series	0.3 A, U \leq 250 V DC		

General data

Ambient conditions Temperature range operation Standard	−10 + 55 °C IEC 255-6 (1988)
Insulation tests Dielectric insulation voltage ¹	2 kV, 1kV (across open contacts) 1 min
Standard	IEC255-5 (1977), VDE0160KI.4. VDE0411KI. VDE0435 part 303 KI. C, BS 142-1966 ANSI/IEEE C37.90-1978 (2 UN + 1kV)
Impulse voltage ¹	1,2/50 μs, 0,5 Joule Cl. 3; 5 kV
Standard	IEC255-5 (1977), VDE0110 KI.C VDE0432, VDE0435, part 303
Electromagnetic Compatibility:	EMC

Mechanical design

Plug-in relay	in standard casing	ABB series 900 size 1 see dimensioned drawing Figures 7 to 10
Protection	casing terminals	IP52 IP10
Mass		2.9 kg

Technical data (cont'd)

Test type	Test values applied to MCX types		Standards
EMISSION	0,15 – 30 and 30 – 1000 MHz (conducted and radiated)		EN50081-2 (1994) EN55011(CISPR11) EN55022(CISPR22)CI.A
Relay type	MCX912 / MCX913		
IMMUNITY			EN50082-2 (1995)
RFI ² conducted (80% am)	10 V, 0,15 – 80 MHz		ENV50141 ENC 1000-4-6
DC power port	3 V, 47 – 68 MHz	10 V, 0,15 – 80 MHz	IEC 1000-4-6
RFI radiated	10 V/m, 80 - 1000 MHz (80% am ⁴) 10 V/m, 900 MHz, (pm ⁵)		ENV50140 (IEC1000-4-3) ENV50204
Relay type	MCX912 MCX913-x-x-0	MCX913-x-x-1	
ESD³ contact / air Relay type	4/8 kV MCX912-x-x-0 MCX913-x-x-0	6/8 kV MCX912-x-x-1 MCX913-x-x-1	EN61000-4-2(IEC1000-4-2)
Fast transients Relay type DC power port all other ports	MCX912 / MCX913 4 kV 2 kV		EN61000-4-4(IEC1000-4-4)
Power frequency magnetic field	300 A/m p	permanent	EN61000-4-8 (IEC1000-4-8)

5

For repetition, reduced values apply as per IEC 255-5 Art 6.6 and 8.6

1

2

4 Aux. signalling relay

- 3 ESD Electrostatic discharge 4
 - am amplitude modulated
 - pulse modulated pm

RFI Radio frequency interference (Radiofrequency electromagnetic field)

- R Diagrams MCX 913 ⊞ 1A/5A низч низч 7 A3 + 6 R A 10 A/D ΞIJ A11 Watch Т Α6 dog Α7 Ē (4) И S (/0) (**)** 8 \triangleright E5 E4 μP 2 E3 5 ł E1 INT 0 E2 1 S4 S65 E 20 æ 3 E19 Ŧ Ъ 511178 Protected unit Aux. tripping relays 1 5 Blocking input 6 Keypad 2 3 Aux. supply 7 Display
 - Block diagram of the overcurrent/overload relay type MCX for the protection of motors Fig. 4

8

Tripping matrix

RST

Fig. 6 Wiring diagram for earthfault detection with core balance transformer (I_0 external)

Dimensions

Standard ABB Size 1 casing (in mm)

Fig. 7 Flush mounting, rear connection

Fig. 8 Surface mounting, rear connection

Fig. 9 Surface mounting, front connection

Fig. 10 Hole in panel for relays in Fig. 7 and 8

Legend

- Aa = Rear terminals, number according to circuit diagram
- Aa1= Front terminals, number according to circuit diagram A... Terminal screw M4
 - E... Electronic plug connector
- Ir = Mounting frame, modification for surface mounting possible
- Ob = Fixing screw M5
- Ge = Earthing screw M4
- Fb = Panel cutout

Sample specification	 Three phase microprocessor base cional protection relay, with free combinations of protection function types and setting range applicable for detection of most faults in medium - and high volt Special attention is to be given tion of asynchronous motors. The sensitive earth fault function use in isolated and compensated one of the c.t. inputs. The setting ranges shall be very values have high accuracy and bility. All settings shall be made with conjunction with numerical LEE 	sed multifun- ely selectable ctions. The es shall be t common tage networks. to the protec- on shall allow d networks via v large and set long time sta- a keyboard in D indications.	The relay ous displ can be se tactors sh software be blocke remote si (e.g. dire A compre detecting local and included. The auxii wide tole reliability able, to s	y shall be ay of serv- lected. The hall be pro- tripping to ed selecting gnal to d ctional pro- chardware remote a hardware remote a liary power y. The rel implify c	designed vice - and ripping au ogramma matrix. A vely fron esign diff rotection self-supe e and soft darm faci	I so that a I tripping v nd signalli ble by me Il contacto n outside v ferent sche or for mot rvision, ca tware failu lities shall v can fluctth hall not aff pe fully wi pning and	continu- values ng con- ans of a ors shall vith a emes ors). pable of res with also be nate in a fect the thdraw- service.
Ordering	Please specify:		• Rated	current			
	• Type designation		Rating frequency				
	Quantity	intity		ary volta	ge		
	• Ordering No.		• Mount	ting of ca	ise		
	Explanation to type designation:						
	Type designation	Ν	ICX91	x – 2	х –	X –	X
	Three identical current inputs (basic version)	3					
	Increased sensitivity to I_0 (I_0 external)	2					
	Rated current 1 A	1					
	Rated current 5 A	5 5]		
	Rated frequency 50 Hz	5					
	Rated frequency 60 Hz	6					
	Aux. voltage 36 – 312 V DC and 80 – 242 V AC	1					
	18 – 36 V DC	0					

Ordering Example:

The version for 5 A, frequency of 50 Hz with sensitive detection of I_0 , DC supply 312 V DC and a case for flush mounting, rear terminals has the following designation: MCX912 - 5 - 5 - 1, Ord.Nr. HESG 440 830 R51

Ordering table

Type designation Mounting of case:	Ordering No. Flush mounting, rear terminals	Type designation Mounting of case:	Ordering No. Surface mounting front terminals
MCX912-1-5-0	HESG 441 442 R51	MCX912-1-5-0	HESG 441 442 R151
MCX912-1-5-1	HESG 440 829 R51	MCX912-1-5-1	HESG 440 829 R151
MCX912-5-5-0	HESG 441 443 R51	MCX912-5-5-0	HESG 441 443 R151
MCX912-5-5-1	HESG 440 830 R51	MCX912-5-5-1	HESG 440 830 R151
MCX912-1-6-0	HESG 441 442 R53	MCX912-1-6-0	HESG 441 442 R153
MCX912-1-6-1	HESG 440 829 R53	MCX912-1-6-1	HESG 440 829 R153
MCX912-5-6-0	HESG 441 443 R53	MCX912-5-6-0	HESG 441 443 R153
MCX912-5-6-1	HESG 440 830 R53	MCX912-5-6-1	HESG 440 830 R153
MCX913-1-5-0	HESG 441 440 R51	MCX913-1-5-0	HESG 441 440 R151
MCX913-1-5-1	HESG 440 827 R51	MCX913-1-5-1	HESG 440 827 R151
MCX913-5-5-0	HESG 441 441 R51	MCX913-5-5-0	HESG 441 441 R151
MCX913-5-5-1	HESG 440 828 R51	MCX913-5-5-1	HESG 440 828 R151
MCX913-1-6-0	HESG 441 440 R53	MCX913-1-6-0	HESG 441 440 R153
MCX913-1-6-1	HESG 440 827 R53	MCX913-1-6-1	HESG 440 827 R153
MCX913-5-6-0	HESG 441 441 R53	MCX913-5-6-0	HESG 441 441 R153
MCX913-5-6-1	HESG 440 828 R53	MCX913-5-6-1	HESG 440 828 R153

Reference	Publication:	CH-ES 22-33.10D CH-ES 22-33.10E	German English		
	Operating instruction:	1MRB520112-Uen	English		
		1MRB520112-Ude	German		
	Operating instruction (abridged):				
		1MRB520230-Ude	German		
		1MRB520230-Uen	English		
		CH-ES 82-33.11F	French		
		CH-ES 82-33.11S	Spanish		
	Reference list:	1MRB520235-Ren	German/English/French		

ABB Power Automation Ltd Haselstrasse 16/122 CH-5401 Baden/Switzerland Phone +41 56 205 77 44 Telefax +41 56 205 55 77 Home page: www.abb.com/substationautomation

Printed in Switzerland (9809-0600-0)

