USER GUIDE

LWT300 series
Guided Wave Radar Level Transmitter
Disclaimer

This guide and any accompanying software are copyrighted and all rights are reserved by ABB. The product, including its software and documentation, may not be copied, photocopied, reproduced, translated, or reduced, in whole or in part, to any electronic medium or machine-readable format without prior written consent from ABB.

This document contains product specifications and performance statements that may be in conflict with other ABB published literature, such as product files and catalogs. All specifications, product characteristics, and performance statements included in this document are given as indications only. In case of discrepancies between specifications given in this document and specifications given in the official ABB product catalogs, the latter takes precedence.

ABB reserves the right to make changes to all equipment and software specifications, and to the content of this document, without obligation to notify any person or organization of such changes. Every effort has been made to ensure that the information contained in this document is current and accurate. However, no guarantee is given or implied that the document is error-free or that the information is accurate.

ABB makes no representations or warranties with regard to the product and instructional and reference materials, including, but not limited to, all implied warranties of merchantability and fitness for a particular purpose.

ABB does not warrant, guarantee, or make any representations regarding the use, or the results of the use, of any software or written materials in terms of correctness, accuracy, reliability, currentness, or otherwise. ABB shall not be liable for errors or omissions contained in its software or guides, any interruptions of service, loss of business or anticipatory profits and/or for incidental or consequential damages in connection with the furnishing, performance, or use of these materials, even if ABB has been advised of the possibility of such damages.

All equipment, software, and guides are sold as is. The entire risk, as to the results and performance of the equipment and software, is assumed by the user.

The software or hardware described in this document is distributed under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

© ABB, 2018
Table of Contents

1 Safety
 Definitions ... 1
 Personnel ... 3
 Electrical ... 3
 Grounding .. 4
 Environmental (WEEE) 5
 Cybersecurity .. 5
 HART protocol disclaimer 5
 General deployment guidelines 6

2 Introduction
 About this guide... 7
 Basics of LWT level measurement 7
 First look .. 9
 The head .. 9
 The coupler ... 9
 As shipped ... 10
 Basic installation procedure 11
 Disclaimers ... 11
 Improper use ... 11
 Technical limit values 11
 Operator liability 12

3 Installing the LWT
 Safety first! ... 13
 Before you start ... 13
 Environmental considerations 14
 Power-specific considerations 14
 Cable- and cable gland-specific considerations 14
 Nozzle-specific considerations 15
 Vessel-specific considerations 15
 Gathering the necessary tools 15
 Accessing the location 16
 Attaching a probe to the coupler/head assembly 17
 Attaching a probe (cable/rigid) on a standard coupler 17
 Installing the LWT system 19
 Rotating the housing 19
 Rotating the LCD 20
 Grounding the instrument 22

4 Introducing the user interface
 Introducing LWT user interfaces 29
 Accessing menus 30
 Navigating the instrument display 31

5 Configuring the instrument at startup

6 Configuring the instrument
 Configuring the display 37
 Language ... 37
 Contrast ... 37
 Number of decimals 38
 Date format .. 38
 Configuring Operator pages 39
 Enabling Operator page autoscroll 40
 Protecting access to instrument data 40
 Setting up role-based passwords 41
 Resetting passwords 41
 Preventing unwanted deletion of data 41
 Setting up the primary value (PV) 43
 Selecting the value 43
 Selecting the primary value unit 43
 Unlinking the primary value from the empty/full values .. 43
 Configuring the sensor 44
 Changing the distance measurement unit 44
 Selecting the application category 44
 Disabling tracking of false echoes 44
 Setting up the application 45
 Changing the probe type 45
 Changing the probe length 45
 Selecting a tank type 46
 Setting the nozzle length 46
 Setting the bypass/sw pipe diameter 46
 Changing the end of probe mode 46
 Toggling the remote transmitter state 46
 Setting process conditions 47

 Bringing power to the instrument 23
 Establishing communication with the instrument 26
 Upon startup ... 27

 Technical limit values 22
 Improper use .. 22
 As shipped ... 22
 Vessel-specific considerations 22
 Rotating the LCD 22
 Navigating the instrument display 22

 Introducing LWT user interfaces 22
 Accessing menus 22
 Navigating the instrument display 22

 Configuring Operator pages 22
 Enabling Operator page autoscroll 22
 Protecting access to instrument data 22
 Setting up role-based passwords 22
 Resetting passwords 22
 Preventing unwanted deletion of data 22
 Setting up the primary value (PV) 22
 Selecting the value 22
 Selecting the primary value unit 22
 Unlinking the primary value from the empty/full values .. 22
 Configuring the sensor 22
 Changing the distance measurement unit 22
 Selecting the application category 22
 Disabling tracking of false echoes 22
 Setting up the application 22
 Changing the probe type 22
 Changing the probe length 22
 Selecting a tank type 22
 Setting the nozzle length 22
 Setting the bypass/sw pipe diameter 22
 Changing the end of probe mode 22
 Toggling the remote transmitter state 22
 Setting process conditions 22
Setting data filtering parameters.................47
 Selecting a maximum level rate...............47
 Setting up a median filter...................48
 Setting up a damping period.................48
Setting process parameters......................49
 Setting process alarms........................49
 Setting process safety parameters.........50
 Managing lost echoes.......................51
Setting up linearization........................52
 Understanding linearization..................52
 Accessing the linearization function.........54
 Setting the linearization input unit........54
 Setting the linearization output unit.......54
 Setting the maximum volume/flow value......54
 Setting vessel parameters....................54
 Setting up linearization points.............55
 Saving your linearization table..............55
 Enabling the linearization function.........55
 Managing saved linearization tables.........56
Managing device setups........................57
 Saving a default user setup.................57
 Resetting to default user setup.............57
 Resetting to factory default.................57

7 Setting calibration parameters
 Setting level calibration parameters........59
 Changing the empty/zero value.............59
 Changing the full/span value...............60
 Adding a level offset........................60
 Adding a sensor offset......................61
 Setting upper/lower (4–20 mA) reference values..61
 Setting 4–20 mA D/A trim........................62
 Setting the 4 mA trim..........................62
 Setting the 20 mA trim..........................62
 Resetting the D/A trim........................63
 Setting a current simulation..................63

8 Configuring communications
 Setting dynamic values........................65
 Activating multidrop mode....................66
 Setting devices address........................66
 Locating an instrument with tags..............66
 Browsing communication info...................66

9 Maintenance and troubleshooting
 Diagnosing problems..........................67
 Browsing the diagnostics history............68
 Clearing the diagnostic history...............68

A SpecificationsA77
B HMI menu treeB79
Event codes and recommendations............69
Masking classes of events.....................70
Diagnosing from a waveform....................71
 Introducing the waveform display............71
 Accessing the waveform display..............71
 Navigating through echoes....................72
 Recording a waveform..........................72
Performing simulations and tests..............73
 Performing standard simulations..............73
 Performing current simulations..............73
Obtaining device status data...................74
 Probe length.....................................74
 Terminal voltage................................74
 Electronics temperature......................74
 Total run time..................................75
Accessing device information...................75
CHAPTER 1

Safety

This instrument has been manufactured in accordance with state-of-the-art procedures; it is operationally safe. It has been tested and left the factory in perfect working condition. The information in this guide, as well as all applicable documentation and certificates, must be observed and followed to maintain this condition throughout the period of operation.

This chapter provides an overview of the safety conditions that must be observed when installing and operating the instrument. Full compliance with all general safety requirements must be observed during instrument operation. For personnel and system safety, and to ensure optimum performance, make sure that you thoroughly understand the content of this guide before installing, using and maintaining the instrument, and carefully plan any installation, modification, or repair before actually proceeding.

Additionally, each chapter in this guide contains descriptions of processes or procedural instructions with their own specific safety information. Only by observing all safety information can you minimize the risks of hazards to personnel and/or the environment.

Definitions

This document uses the following symbols to bring attention to key technical and safety-related information.

- **DANGER—SERIOUS DAMAGE TO HEALTH/RISK TO LIFE**

 Indicates a hazardous situation that, if not avoided will result in death or serious injury.

- **WARNING—DAMAGE TO HEALTH/RISK TO LIFE**

 Indicates a hazardous situation that, if not avoided could result in death or serious injury.

- **CAUTION—DAMAGE TO HEALTH**

 Indicates a hazardous situation that, if not avoided, could result in minor or moderate injury.

- **NOTICE**

 Indicates information considered important, but not hazard related, that could impact things other than personal injury, like property damage.
<table>
<thead>
<tr>
<th>WARNING—HIGH VOLTAGE</th>
<th>Indicates the presence of electrical energy at voltages high enough to inflict harm on living organisms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING—SHARP EDGES</td>
<td>Indicates the presence of sharp edges that could cause personal injury if touched.</td>
</tr>
<tr>
<td>WARNING—HOT SURFACES</td>
<td>Indicates the presence of heat sufficient enough to cause burns.</td>
</tr>
<tr>
<td>ELECTROSTATIC DISCHARGES</td>
<td>Indicates a device or part of a device that is susceptible to electrostatic discharges.</td>
</tr>
<tr>
<td></td>
<td>Identifies any terminal intended for connection to an external conductor for protection against electrical shock in case of a fault, or the terminal of a protective earth (ground) electrode.</td>
</tr>
<tr>
<td></td>
<td>Identifies protective earth conductor terminals.</td>
</tr>
<tr>
<td></td>
<td>Indicates the presence of direct current.</td>
</tr>
</tbody>
</table>
Personnel

WARNING

Only qualified and authorized personnel should be put in charge of the installation, electrical connection, commissioning, operation, and maintenance of the instrument. This personnel must hold the necessary qualifications and authorizations, such as training or instruction, to operate and maintain devices or systems in accordance with safety engineering standards regarding electrical circuits, high pressures, aggressive media, and adequate safety systems, based on local and national safety standards, e.g., building codes, electrical codes, etc.

WARNING

The instrument can be operated at high levels of pressure and with aggressive media. As a result, serious injury or significant property damage may occur if this device is operated incorrectly.

Depressurize the vessel before opening the connection to the instrument. Any process media released may cause severe injuries.

Provide adequate protection and training against all chemicals involved in the work environment.

Electrical

Connection information in this guide must be observed; otherwise, the applicable protection type may be affected.

WARNING

Connections may only be performed by authorized personnel in accordance with the provided electrical circuit diagrams.

In addition, involved personnel must observe the relevant safety regulations regarding the installation and operation of electrical systems, and the relevant standards, regulations and guidelines about explosion protection.

If required by the relevant national electrical code, a circuit breaker or switch in the building installation, marked as the disconnect switch, shall be in close proximity to the equipment and within easy reach of the operator.

Do not make electrical connections unless the electrical code designation stamped on the instrument data plate (refer to part no. 3KXL001072U0100) matches the classification of the area in which you want to install the instrument.

When installing the instrument in hazardous areas, only use non sparking tools.

Use only tools compliant with national insulation standards, e.g., DIN EN 60900.
ELECTROSTATIC DISCHARGES

Before performing any connection, operators shall make sure that they have discharged all static electricity from their body before touching electronic components.

- All connections must be established in a de-energized state.
- Before installing the instrument, make sure that the appropriate supply voltage is available.
- The power supply shall be equipped with short circuit protection and auto restart functions.
- For continuous installation protection, a double insulation power supply (5 kV or higher) shall be used for the current loop.
- In an industrial environment where EMIs (electromagnetic interferences) are extremely present (e.g., rock quarries, mines, large chemical plants, etc.), ABB recommends the use of noise filters on the DC power supply to the instrument and on signal isolators’ 4 – 20 mA output.
- Instruments will not work if exposed to common mode voltages in excess of the maximum allowed supply voltage.

Grounding

- Ground the instrument according to requirements (see “Grounding the instrument” on page 22).

WARNING

Ensure that the equipment or any device or power cord connected to the instrument is properly grounded.

If an interruption of the protective earthing connection is suspected, make sure that the equipment is not used. All protective earthing connections (grounding) must be active at all times. The absence of grounding can lead to a potential shock hazard that could result in serious personal injury.

Use the instrument only if a properly grounded power source is available in accordance with the local electrical code.

- To avoid injury or property damage in external installations exposed to lightning, a transient voltage suppression module or galvanic isolator shall be installed, with proper grounding, before entering a building with a cable. Refer to local building and electrical codes for proper practices.

NOTICE

The presence of noise on the instrument 4 – 20 mA output can be a sign of poor or intermittent grounding, insufficient cable shielding, or noisy power line in the vicinity.
Environmental (WEEE)

The LWT series of instruments has required the extraction and use of natural resources for its production. Therefore, the instrument may contain hazardous substances that could impact health and environment. To avoid dissemination of these hazardous products into the environment, and also to reduce extraction, and protect our natural resources, ABB strongly recommends using the appropriate recycling systems to make sure that materials used to produce your equipment are reused or recycled in a sound way.

The crossed-out wheeled bin reproduced on the product label (and illustrated below) is a clear reminder that the product must not be disposed of with household waste.

For European countries, at the end of life of the instrument, refer to the LWT300 series recycling Instructions and environmental information (part no. AA019035-01) or contact your distributor before disposing of the instrument.

Cybersecurity

This product is designed to be connected to, and communicate information and data via a digital communication network interface. It is the user’s sole responsibility to provide and continuously ensure a secure connection between the product and the user’s network or any other network (as the case may be).

Users shall establish and maintain any and all appropriate measures (such as, but not limited to, the installation of firewalls, the application of authentication measures, the encryption of data, the installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized accesses, interferences, intrusions, leakages and/or theft of data or information.

ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

ABB strives to maintain cybersecurity for its products and services. By visiting the web page indicated below, you will find notifications about newly found software vulnerabilities and options to download the latest software.

It is recommended that you visit this web page regularly:

http://new.abb.com/about/technology/cyber-security

HART protocol disclaimer

The HART communication protocol used in the LWT series of instruments is inherently insecure. It can be successfully exploited by spoofing techniques that would allow access to instrument data and configurations. To prevent the use of such techniques, always ensure that physical access to the instrument and network is properly secured.
For cybersecurity reasons, ABB decided **not to password protect the HART communication protocol** in LWT series instruments. As such, before implementation, the intended application should be assessed to ensure that this communication protocol is suitable.

General deployment guidelines

- Limit and control physical access to the device and the network on which it is connected.
- Limit and control access to all HART tools.
- Use role-based access according to needs.
- Change all default passwords and strictly control their dissemination.
- Lock and/or write-protect the instrument whenever possible and/or practical.
- Disable Service access (from the Advanced access level; see “Setting up role-based passwords” on page 41).
CHAPTER 2

Introduction

The LWT series of instruments are microprocessor-based level transmitters that use very low power microwave energy to determine the level of the product being measured. A rod or cable “probe” is hung into the vessel to act as a waveguide, i.e. microwave energy stays concentrated around the length of the probe instead of being dispersed, as it would be if there was no probe.

About this guide

This user guide is intended for personnel using LWT series instruments for routine monitoring. It contains installation, usage, maintenance, and troubleshooting instructions.

Read this guide carefully before working with the instrument. For personnel and system safety, and for optimum performance, make sure that you thoroughly understand the contents of this document before installing, using or maintaining the instrument. This guide does not contain detailed information on all available models or every conceivable event that may occur during setup, operation, and maintenance work.

Basics of LWT level measurement

The instrument electronics housing (a.k.a. “the head”) is fitted with a special adapter (the coupler) that serves as a connection between the head and the process in which measurements will be taken. A rod or cable (the probe) hangs from the coupler into the product being measured (see Figure 1 on page 8).
The head sends a very short pulse of microwave energy through the coupler and down the probe 1. That pulse travels along the length of the probe 2 and, when it encounters the product surface, some of the energy is reflected and travels back towards the coupler 3. When the reflected energy reaches the coupler, it is sensed by the electronics 4. By measuring the time elapsed between the initial pulse and the reflected one, the electronics can calculate the product level 5.

Since microwave energy travels at the speed of light, one complete measurement cycle is made up of several thousand pulses. The electronics use the time domain reflectometry (TDR) sampling technique to reconstruct, from these numerous pulses, a waveform that can be processed by the microprocessor (see “Diagnosing from a waveform” on page 71). Measurement cycles are made up to five time every second (depending on configuration and probe length) and results are processed before generating a current output proportional to the level of the product.
First look

Below is a first look at the main components of the LWT series instruments:

The head

Figure 2 LWT instrument head

The coupler

Figure 3 Typical ¾ NPT LWT300 instrument coupler
As shipped

Figure 4 Head-coupler assembly
Basic installation procedure

Here are the basic installation steps described in this guide. The following chapters provide more details.

1. Access and properly secure the installation site (vessel depressurization and cool down, mains power down, etc.) (see page 16).
2. Attach the probe to the head-coupler assembly (see page 17).
3. Slide the probe in the vessel and attach the assembled LWT system on the external flange (see page 19).
4. Ground the head unit and connect it to the mains (see page 23).
5. Power up (see page 26) and configure the instrument (see page 37).

Disclaimers

ABB declares that the content of this guide is not part of any prior or existing agreements, commitments, or legal relationships, nor are they intended to amend these. ABB obligations arise from the conditions of the relevant sales agreement, which also contains the solely binding warranty regulations in full. These contractual warranty provisions are neither extended nor limited by the information provided in this guide.

Improper use

It is prohibited to use the instrument for any of the following, including but not limited to:

- A climbing aid, e.g., for mounting purposes.
- A support for external loads, e.g., as a support for pipes.
- By adding material, e.g., by painting over the name plate, or welding/soldering on parts.
- By removing material, e.g., by drilling the housing.

Repairs, alterations, and enhancements, or the installation of replacement parts, are only permissible as far as these are described in this guide. Approval by ABB must be requested in writing for any activities beyond this scope. Repairs performed by ABB-authorized centers are excluded from this article.

Technical limit values

The instrument is designed for use exclusively within the values stated on the name plates and within the technical limit values specified on the data sheets.

Technical limit values that must be observed at all time are:

- The maximum working pressure, ambient working temperature, and maximum process temperature may not be exceeded.
- The housing protection type must be observed.
- The electrical specifications must be observed.
Operator liability

Prior to using measuring corrosive and abrasive materials, the operator must check the level of resistance of all instrument parts coming into contact with the materials to be measured.

CAUTION
Prior to using the instrument, material safety data sheets (MSDS) of all products being monitored must be available at all times for users’ security.

ABB will gladly support you in selecting the materials, but cannot accept any liability in doing so. Operators must strictly observe the locally applicable national regulations with regard to installation, function tests, repairs, and maintenance of electrical devices.
CHAPTER 3

Installing the LWT

The following pages explain how to proceed with a typical physical installation of your LWT instrument. Keep in mind that there are numerous possible installation scenarios; this documentation cannot cover them all. However, all efforts have been made to properly indicate the main challenges associated with such an installation.

Safety first!

WARNING

For personnel and system safety, and to ensure optimum performance, make sure that you thoroughly understand the content of this guide, and especially the Safety chapter (see page 1), before installing, using and maintaining the instrument.

Carefully plan any installation, modification or repair before actually proceeding.

Before you start

In preparation for the installation of your LWT instrument, and taking into account that you cannot always decide the location of this installation, you should try and follow the recommendations below:

- Install the LWT instrument as far as possible from the product fill stream.
- Install the assembled LWT system (probe/coupler/head assembly) (see page 19) as far as possible from the fill/drain stream.
- When inserting probes, avoid internal obstructions such as tubing, ladders, agitators, etc.
- To prevent excessive probe movement in an agitated process, or where installation close to the vessel wall is required, secure the bottom end of a probe to the vessel. Probes installed from the top of the vessel may require the use of a stilling well.
- Weighted cable probes should be allowed to hang inside the vessel under the tension of the weights.

NOTICE

You may need to shorten the probe. Your instrument was delivered with a probe length set at the time of purchase. This probe length is programmed into the instrument. Should you have to shorten the probe, do not forget to change the probe length programmed in the instrument (see “Changing the probe length” on page 45).

- Threaded connections should be installed with thread sealant approved for use by the customer.
- Flanged connections should be made using materials (bolts, studs, nuts and gaskets) and procedures (torque specifications) approved for use by the customer.
Environmental considerations

The LWT should be installed in an area that is within its specified temperature range (see “Specifications” on page A77), taking into consideration the enclosure ratings and the construction materials.

NOTICE

If the site where the LWT will be installed is subject to severe vibration conditions, harsh environment errors might be flagged. Contact ABB for information on using a remote coaxial probe installed on a bracket to dampen oscillations.

Hazardous area considerations

- LWT housings are certified as conforming to protection type IP68 (according to IEC 60529) or Type 6P (according to NEMA).
- The external housing is not made to resist high pressures. Only the probe and coupler can come in contact with the process.
- LWT instruments must only be installed in hazardous areas for which they are properly certified. The certification plate is permanently fixed on the neck of the instrument head.

Power-specific considerations

- For maximum power supply voltage, refer to the instrument identification plate or see “Specifications” on page A77.
- For signal and power loop connections up to 1500 meters (4900 feet) in length, use Ø 0.8 to 0.35 mm² (18 to 22 AWG) twisted, stranded pair wiring. Longer loops will require larger wires.
- The 4–20 mA DC output signal and the DC power supply to the LWT instrument are carried by the same pair of wires.
- Supply voltage at the instrument terminals must be between 15.5 and 42 V DC. If using a 250 Ω resistor for the HART connection, limits are between 21 and 42 V DC if there is no other load on the line.

Cable- and cable gland-specific considerations

WARNING

Cables, cable glands and unused port plugs must comply with the intended type of protection (e.g., dust proof, flameproof, etc.) and degree of protection (e.g., IP68 or Type 6P).

It is the customers’ responsibility to use appropriate cable glands, screw plugs, lubes and/or sealants for the cable entry ports. ABB does not assume any responsibility for non ATEX- or CE-certified cable glands or adapters that do not meet the above requirements.

The installer assumes responsibility for any other type of sealing medium used.

In the particular case of explosion proof installations, remove the temporary plastic caps and close the unused opening with a plug certified for explosion containment with appropriate rating.

Wires and cable glands shall be rated to at least 90 °C.
• Avoid routing cables with other electrical cables (with inductive load, motors, etc.) or near large electrical equipment.
• You must use ½-inch NPT/M20 cable glands certified to either Ex db or Ex tb (depending on the installation), and rated to at least IP68/NEMA Type 6P. Cable glands supplied by ABB are ATEX- and CE-certified, and meet the above requirements.
• These cable glands can only be used with braided shield cables. When installing them, make sure to fold the cable shield over the O-ring which presses the braiding against the inside wall of the body, thus ensuring good contact.

NOTICE
If you plan on using cable glands that are not supplied by ABB, refer to your supplier’s data sheet for proper installation.

Nozzle-specific considerations
• Nozzle length is configured for system operation and not for calibration purposes. It is automatically taken into account (subtracted) when measurements are made.
• Probes installed in side-vessel connections require additional probe support within the nozzle connection.
• Probes installed in very agitated processes need a spacer at the top connection to prevent the probe from touching any part of the nozzle.

Vessel-specific considerations

Plastic and fiberglass tanks, and open air installations
LWT instruments installed in a non-metallic vessel or in open air environments will be subject to interference from other electromagnetic devices, e.g., radios. You may need to use stilling wells to eliminate such interferences.

Concrete tanks
Concrete tanks require mounting the probe:
• 30 cm (1 ft) from the wall (for measuring lengths up to 6.1 m [20 ft]);
• 61 cm (2 ft) from the wall (for measuring lengths over 6.1 m [20 ft]).

The face of the LWT mounting/launch plate should be even with the inner surface of the concrete roof.

Gathering the necessary tools
To proceed with the installation of a LWT instrument, you need some basic tools such as:
• 3 mm hexagonal key
• ¼”, 5/16”, ¾” and 7/16” wrenches, or adjustable wrench
• Flat head screwdriver (¼”)
• Safety footwear and goggles
• Protective gloves
• ESD protection equipment
Accessing the location

DANGER
The installation area must be secured. If necessary, tape off all limits of approach to the installation area and ensure that all personnel understands the risks associated with the installation procedure.

WARNING
Only qualified and authorized personnel should be put in charge of the installation, electrical connection, commissioning, operation, and maintenance of the instrument. This personnel must hold the necessary qualifications and authorizations, such as training or instruction, to operate and maintain devices or systems in accordance with safety engineering standards regarding electrical circuits, high pressures, aggressive media, and adequate safety systems, based on local and national safety standards, i.e., building codes, electrical codes, etc.

When installing the instrument in hazardous areas, only use non-sparking tools.

WARNING
The instrument can be operated at high levels of pressure and with aggressive media. As a result, serious injury or significant property damage may occur if this device is operated incorrectly.

Depressurize the vessel before opening the connection to the instrument. Any process media released may cause severe injuries.

Provide adequate protection and training against all chemicals involved in the work environment.

CAUTION
Prior to using the instrument, material safety data sheets (MSDS) of all products being monitored must be available at all times for users’ security.
Attaching a probe to the coupler/head assembly

Depending on your specific application, you might have to install a flexible or rigid probe.

NOTICE
LWT instruments come in a wide variety of configurations. They can come with probes already attached and/or external flanges already soldered or neither. The following pages explain the procedures to perform although those procedures might have already been performed at the factory.

ELECTROSTATIC DISCHARGES
Electronic components are sensitive to electrostatic discharges.
Before performing any connection, operators shall make sure that they have discharged all static electricity from their body before touching electronic components.

Attaching a probe (cable/rigid) on a standard coupler

To attach a standard probe:

1. Screw the provided head bolt on the screw-in end and tighten by hand until it reaches the head stop.
2. Insert the lock behind the provided bolt.

Figure 5 Installing the probe

3. Screw in the probe end and tighten by hand.
4 Once all the parts are in place, use two wrenches (one holding the head bolt and the other, the probe slot) to apply the recommended torque (see below) in both directions at the same time.

NOTICE

There are two sizes of head locks: 8.9 mm (0.35 in) and 13.5 mm (0.53 in). The recommended torque, as specified by the manufacturer, is as follows:

- 2.8 N·m (2.1 lbf.ft) for the 8.9 mm lock.
- 13.5 N·m (10.0 lbf.ft) for the 13.5 mm lock.

For more information on the reference parameters used to determine the specified torque, refer to the manufacturer's (Nord-Lock) website.
Installing the LWT system

NOTICE

Installing the LWT system directly on the top of the vessel **provides the best return signal.**

Once the probe and coupler/head assembly have been attached, you need to:

1. Insert the probe end into the flange, down the nozzle and to the bottom of the vessel.
2. Secure the coupler as necessary:
 - If you have an NPT-style coupler, apply the proper sealant (or PFTE tape\(^1\)) on the NPT threads and screw the coupler in the NPT flange.
 - If your coupler came in a flanged configuration, make sure that the appropriate gasket is installed between the process and coupler flanges, and fix the flange with the appropriate nuts and bolts to the torque required by the flange class.

Rotating the housing

To improve HMI visibility or field access to the wiring, you may rotate the LWT housing 360° from its initial position, and fix it in any of these positions.

To rotate the housing:

1. With an hexagonal key, unscrew the coupler adapter security screw (see Figure 8) by no more than one turn (**do not pull out the screw**). This should allow the housing to rotate freely.

 Figure 8 Rotating the housing

2. Loosen the coupler adapter by a quarter turn.
3. Position the housing in a way that is optimal to your location.
4. Once the housing is in the proper position, re-tighten the coupler adapter.
5. Re-tighten the coupler adapter security screw to secure the coupler adapter.

\(^1\) PFTE tape needs to be applied very carefully to ensure good electrical contact between the coupler, the flange and (if conductive) the tank.
Rotating the LCD

ELECTROSTATIC DISCHARGES

Electronic components are sensitive to electrostatic discharges. Before performing any connection, operators shall make sure that they have discharged all static electricity from their body before touching electronic components.

When the head unit is installed, it is possible to rotate its LCD in one of four different positions at 90° intervals.

To rotate the LCD:

1. Make sure that the instrument is powered off and that the M4 hex head locking screws are screwed in (see Figure 8).
2. Unscrew the housing cover on the display side (hazardous area warnings must be heeded; see “Safety” on page 1).

CAUTION

Do not grab the instrument by its threaded interface. Thread edges are sharp and constitute a risk of personal injury (see Figure 14 on page 24).

3. Pull the display away from the communication board.

4. Turn the LCD according to the new desired position.

Figure 9 Pulling out the LCD
5 Push back the display module on the communication board, making sure that the four plastic locks are properly fixed.

NOTICE

Be careful not to bend the connection pins (see Figure 11) when pushing the display back in.

6 Hand tighten the housing cover back in place.

NOTICE

For Ex d and/or flameproof installations, see note “Securing housing cover in flameproof/explosion proof areas” on page 25.
Grounding the instrument

NOTICE
Star or daisy chain configurations are not allowed under any circumstances.

The LWT must be grounded in accordance with national electrical codes, using a protective earth (PE) terminal by means of a short connection to an equipotential bonding. The equipotential bonding conductor must have a maximum cross-section of 4 mm² (12 AWG).

PE terminals are available inside and outside the instrument housing (see Figure 12). Both terminals are electrically interconnected.

Figure 12 Position of the two PE terminals

If using the external PE terminal, you must connect the grounding wire to the monitored vessel.

When grounding the LWT with a shielded wire, connect the wire to the PE terminal located inside the housing. That shielded wire should only be grounded at one end, not both.

NOTICE
The LWT instrument has a ½-inch NPT/M20 cable gland entry.

The most effective way to ground the LWT housing is a direct connection to a ground with a maximum impedance of 5 mΩ.

Outside installations or installations exposed directly or indirectly to lightning discharges shall have a secondary lightning protection module. Use of a protected terminal block in combination with a lightning arrester module is mandatory for the continuous protection of users and installations.
WARNING
The terminal block needs to be replaced if the installation shows any sign of damage resulting from direct or indirect lightning discharges. Call ABB in such situations.

Bringing power to the instrument

ELECTROSTATIC DISCHARGES
Electronic components are sensitive to electrostatic discharges. Before performing any connection, operators shall make sure that they have discharged all static electricity from their body before touching electronic components.

WARNING
All connections must be established in a de-energized state. Before working on the circuit, secure the breaker to prevent any accidental power-up. In an explosion proof/flameproof installation, do not remove the covers while the instrument is energized.

To bring power to the LWT instrument:
1. Remove the temporary plastic cap from the most convenient of the two electrical connection ports (see Figure 14 on page 24).

WARNING
In the particular case of explosion proof installations, remove the temporary plastic caps and close the unused opening with a cap certified and appropriately rated for explosion containment.

2. Make sure that the M4 hex head locking screws are screwed in (see Figure 8).
3. Remove the housing cover on the “terminals” side (see Figure 14 on page 24).
WARNING
Do not handle the instrument by the threaded interface. Threaded edges are sharp and could cause personal injuries.

NOTICE
After an interval of several weeks, increased force will be required to remove the housing cover. This situation is normal; it is caused by the type of gasket used.

4 Route the power cable through the cable gland and the open electrical connection port.

5 Connect the positive lead to the + terminal, and the negative lead to the – terminal.

![Figure 14](image) Accessing the terminals inside the LWT

6 Plug and seal the electrical connection ports.

7 Put back the housing cover. Turn it so as to seat the O-ring into the housing, then continue tightening by hand until the cover contacts the housing metal-to-metal.
WARNING

Securing housing cover in flameproof/explosion proof areas

Both sides of the electronics housing feature a M4 hex head locking screw on the bottom side.

To secure a housing installed in a hazardous location:

1. Tighten the housing covers by hand.
2. Turn both locking screws counterclockwise until their head stops at the housing cover.

3. Once installation is complete, make sure that electrical ports are properly sealed against all types of fluid ingress (rain and/or corrosive vapors or gases) and verify the following:
 - Cover installations;
 - Locking screw tightness;
 - Process connection;
 - Electrical connection.

4. Power up the instrument by switching on the circuit breaker.

At power-on, the through-the-glass (TTG) touch interface goes through a calibration process. For the TTG to work properly, it is mandatory that the housing cover be correctly tightened before power-on.

NOTICE

After power-on, wait for the LCD calibration process to complete (±30 seconds) before operating the TTG display.
Establishing communication with the instrument

Communication with your instrument is achieved using the HART communication protocol over the instrument’s 4–20 mA current loop.

The HART (Highway Addressable Remote Transducer) communication protocol is a hybrid analog and digital industrial automation protocol. It allows remote configuration of LWT instruments over legacy 4–20 mA analog device current loops, sharing the pair of wires used by analog-only host systems.

ABB provides a HART communication package. Once installed in your preferred HART application, it will allow communication with your LWT instruments.

NOTICE

Cybersecurity disclaimer

The HART communication protocol used in the LWT series of instruments is inherently insecure. It can be successfully exploited by spoofing techniques that would allow access to instrument data and configurations. To prevent the use of such techniques, always ensure that physical access to the instrument and network is properly secured.

For cybersecurity reasons, ABB decided not to password protect the HART communication protocol in LWT series instruments. As such, before implementation, the intended application should be assessed to ensure that this communication protocol is suitable.

NOTICE

The communication board for HART (located behind the interface board) cannot be replaced in the field, and cannot be moved between LWT instruments. In case of failure, the instrument must be sent back to ABB for calibration and repair.
Upon startup

Upon startup, the LCD turns on, the instrument establishes connection and the display starts showing values on Operator page 1 based on the factory-set configuration.

NOTICE
After power-on, wait for the LCD calibration process to complete (±30 seconds) before operating the TTG display.

Figure 15 Instrument LCD on power-up

Figure 16 Initial Operator page with values based on default configuration

NOTICE
During the boot process, no level information is displayed.

For more information on Operator pages, see “Configuring Operator pages” on page 39.

The next chapter introduces the standard instrument user interface: the liquid-crystal display (LCD).
Chapter 5 and Chapter 6 discuss various configuration options, but first you need a basic understanding of the various ways to interact with the instrument.

Introducing LWT user interfaces

To configure your LWT instrument, you need to understand the access methods to the parameters that you need to change and what to expect when you reach these parameters.

There are a few methods to access the parameters, but only two are discussed in the user guide:

- The instrument liquid crystal display (LCD)
- A handheld HART terminal (with HART modem)

For all intents and purposes, a handheld HART terminal is considered as providing an interface similar to the instrument LCD; thus, interface elements and menu navigation are considered as similar in the following pages.

Once the LWT instrument is powered up, its display looks like this:

Figure 17 Typical Operator screen
Accessing menus

Upon selecting the configuration menus icon (†) on the main screen, the interface displays a selection of four access levels: **Read Only, Standard, Advanced**, and **Service**.

All but the **Read Only** access level require a password (if defined). When selecting an access level, you will be asked for your password. By entering the proper password, you will gain access to features and functions associated with this access level.

The **Service** menu can only be accessed by or under the supervision of ABB service personnel.

The icon adjacent to the provided access level is displayed in the system status area.

For more information on setting passwords, see “Protecting access to instrument data” on page 40.
Navigating the instrument display

There are two operations that you can do when navigating the user interface. You can select an existing option, or edit a value.

Selecting an option

Options can be selected but not modified. This is the easiest operation to perform:
1. Using the arrow and action keys, move up, down, left or right within a menu.
2. Once you find the option that you want to set, highlight it by using the arrow keys.
3. Press the right action key (OK). The highlighted option is selected and effective immediately.
4. Press the left action key (Back) repeatedly to exit the menu.

—

Figure 19 Selecting an existing option

Setting a value

Contrary to options, you can modify values.
1. Using the arrow and action keys, move up, down, left or right within a menu.
2. Once you find the option that you want to set, highlight it by using the arrow keys.
3. Press the right action key (Edit) (see Figure 20 on page 31).
4. In the Edit screen, use the left action key (Next) to move from left to right over the editable values (see Figure 21 on page 31).
5. Once you are on the value that you want to modify, press the Up or Down arrow key to increase or decrease the highlighted value. Modify all necessary values as such.
6. Once you are done modifying values, press the right action key (OK). The modified value becomes effective immediately.
7. Press Back repeatedly to exit the menu.

—

Figure 20 Selecting a value to edit

—

Figure 21 Setting a value

The menus accessible at the first level (once the instrument is powered up and functional) are listed “First-level menu” on page B79.
CHAPTER 5
Configuring the instrument at startup

Once the LWT instrument is physically installed and properly powered, you might need to configure the various parameters to better suit your needs if they go beyond the default configuration. The following pages explain the first-time Easy Setup configuration (in more details than the Quick Start guide).

Your LWT instrument comes configured with certain default parameters, but you still need to select certain options and set specific values for your instrument to work as you expect. This configuration is performed via the Easy Setup menu. This menu makes you go through all the basic configuration items in succession until basic configuration is complete. This menu was designed to cover most typical uses.

To quickly configure your instrument, you need to know the following:

• The language needed on the display
• What you want to measure (level, ullage, etc.)
• The unit in which these measurements must be made
• The lowest and highest levels that you expect to measure in your vessel
• The dielectric constant of the vessel content
• The speed at which the vessel normally fills up or is drained (a.k.a. maximum level rate)
• The measurement that you want displayed on the first line of Operator page 1 (which appears upon powering on the instrument).
To configure with the ***Easy Setup*** menu:

1. Press **Select**. The **Language** menu appears immediately.
 - Press **Edit**. The list of available languages appears (default value: **English**).
 - Scroll up or down the list and highlight the desired language.
 - Press **OK**. The interface changes to the selected language immediately.

For more information, see “Language” on page 37.

2. Press **Next**. The **Set PV (4-20mA)** screen appears. This sets the type of measurement that you want to make.
 - Press **Edit**. The list of available measurements appears (default value: **Level**).
 - Scroll up or down the list and highlight the required measurement.
 - Press **OK**. The measurement is selected.

For more information, see “Setting up the primary value (PV)” on page 43.

3. Press **Next**. The **PV Unit** screen appears. This sets the measurement unit for the measurement type that you just previously selected.
 - Press **Edit**. The list of available measurement units appears (default value: **cm**)
 - Scroll up or down the list and highlight the required measurement unit.
 - Press **OK**. The measurement unit is selected.

For more information, see “Selecting the primary value unit” on page 43.

4. Press **Next**. The **Empty/Zero** screen appears. This sets the lowest level that you expect to measure in the vessel.
 - Press **Edit**.
 - Set the required value (see “Setting a value” on page 31).
 - Press **OK**. The value is set.

For more information, see “Changing the empty/zero value” on page 59.

5. Press **Next**. The **Full/Span** screen appears. This sets the highest level that you expect to measure in the vessel.
 - Press **Edit**.
 - Set the required value (see “Setting a value” on page 31).
 - Press **OK**. The value is set.

For more information, see “Changing the full/span value” on page 60.

6. Press **Next**. The **Application Category** screen appears. This sets the process in which level measurements will be made, based on the dielectric constant (DC) of the vessel content.
 - Press **Edit**. The list of available values appears (default value: **Water-based (DC>10)**)
 - Scroll up or down the list and highlight the required value.
 - Press **OK**. The value is applied.

For more information, see “Selecting the application category” on page 44.
7 Press **Next**. The **Max Level Rate** screen appears. This sets the expected rate at which the vessel fills up or is drained.
 a Press **Edit**. The list of available values appears (default value: **No Filter**)
 b Scroll up or down the list and highlight the required value.
 c Press **OK**. The value is applied.

For more information, see “Selecting a maximum level rate” on page 47.

8 Press **Next**. The **Display Line1 View1** screen appears (this sets the measurement displayed on the first line of text, as illustrated in Figure 24 on page 39).
 a Press **Edit**. The list of available values appears (default value: **Level**)
 b Scroll up or down the list and highlight the required value.
 c Press **Next**. The value is applied and you return to the beginning of the **Easy Setup** menu.

For more information, see “Configuring the display” on page 37.
Configuring the instrument

Once the LWT instrument is physically installed and properly powered, you might need to configure the various parameters to better suit your needs if they go beyond the default configuration. The following pages explain how to configure these various parameters.

Configuring the display

You set all LCD-specific parameters from the Display configuration menu.

Language

To set language in which the interface is displayed:

1. Select Display > Language.
2. From the Language menu, highlight the language in which you want to display the interface.
 - English is selected by default, but you can also select German (Deutsch), French (Français) or simplified Chinese (中文).
3. Press OK.

Contrast

To set the display contrast:

1. Select Display > Contrast.
2. Press the Up or Down arrow key to increase or decrease the contrast percentage.
 - By default, the contrast is set to 50%.
3. Press OK.
Number of decimals

The LWT allows you to set the number of decimals to display on screen for length, flow and volume units.

To set the number of decimals to display for these units throughout the interface:

1. Select **Display > Length Format, Flow Format or Volume Format**.
2. Press **Edit**.
3. From the list that appears, highlight the number of decimals to display (X, X.X, X.XX, X.XXX) and press **OK**.

Volume and flow data can have their own decimals settings (for more information on volume and flow measurements, see also “Setting up linearization” on page 52).

Date format

To determine how dates are displayed, you need to select a date format:

1. Select **Display > Date/Time Format**.
2. Press **Edit**.
3. From the list that appears, highlight the date format that you want to use (DD-MM-YYYY, MM-DD-YYYY, YYYY-MM-DD) and press **OK**.
Configuring Operator pages

Operator pages display relevant information about ongoing process measurements. The LWT allows you to configure and display up to four different Operator pages. Each Operator page can display bargraphs and/or up to three lines of data. You can scroll automatically between the four Operator pages with the autoscroll feature (see “Enabling Operator page autoscroll” on page 40).

Operator page 1 appears by default once the LWT is powered on.

Figure 24 The default Operator page 1

To configure an operator page:

1. Select **Display > Operator Pages > Operator Page n** (*n* being the number of the operator page that you want to configure).
2. From the **Operator Page n** screen, select **Display Mode**.
3. Press **Edit**.
4. Highlight the display mode that you want and press **OK**.
 - There are eight modes available.
5. Once the display mode is selected, press **Back** once to go back one screen to where you can select the value displayed on each line/graph of the current Operator page.
 - The values available for display depend on the display mode. For example, if you select the **2Row 9Char** display mode, the 3rd line will not be available for configuration.
6. Select the **Line** or **Bargraph**.
7. Press **Edit**.
8. Highlight the value that you want to display and press **OK**.
9. (if necessary) Repeat steps 6 through 8 to configure all remaining values.
Enabling Operator page autoscroll

The autoscroll feature allows you to move automatically between Operator pages at a set time interval. This is useful when you simply want to record specific values manually without touching the instrument. This feature is disabled by default.

To enable autoscroll:

1. Select Display > Autoscroll.
2. Press Edit.
3. Select one of the time intervals (3, 5, 7, 10 Seconds) that you want to set as a time delay after which Operator pages scroll automatically.
4. Press OK.

When the autoscroll feature is enabled, a spinning icon appears next to the Operator page number.

![Autoscroll icon](image)

NOTICE

If the feature is activated and you want to deactivate it, highlight Off instead of the already selected time interval.

Protecting access to instrument data

LWT instruments offer a few methods of protecting access to their data. You can set role-based passwords (standard and advanced users) and enable instrument write-protection (software and hardware) from the Access Control menu under the Device Setup menu.

![The Device Setup menu](image)

For more information on securing your instrument from unwanted access, see “Cybersecurity” on page 5.
Setting up role-based passwords

In LWT instruments, these passwords, comprised of six alphanumerical characters, give access to instrument functions and features based on the password entered.

To define passwords:
2. Press Edit.
3. In the edit window, press the Up and Down arrow keys to move right or left on the alphanumerical ribbon and highlight the alphanumerical characters that you need to create the password.
4. Press Next to select the highlighted character and move on to the next character to highlight.
5. Repeat steps 3 and 4 until your password is complete.
6. Press Next one last time, then OK to save your password or Cancel to cancel the password that you just created.

Resetting passwords

To reset all passwords:
2. Press OK.
 - If no passwords have been set, OK is not displayed; you can only select Back.
 - All passwords are reset.

Preventing unwanted deletion of data

To prevent inadvertent or malicious overwriting of an instrument’s settings and data, you can enable software and/or hardware write protection; both are disabled by default.

Software write-protection
To enable software write-protection:
1. Select Device Setup > Access Control > Write Protect > Software WP.
2. Press Edit
3. Highlight On and press OK.
 - Data is now protected against erasing operations.

Hardware write-protection

NOTICE
Activating hardware write-protection prevents all forms of external access to the instrument (HART, DTM, service access, etc.)

To enable hardware write-protection:
1. On the instrument head, unscrew and remove the nameplate. This exposes two buttons and the write-protection screw.
NOTICE

DO NOT use a magnetic screwdriver.

Figure 27 Accessing the write-protection screw

![Image of write-protection screw access](image)

Nameplate

Write-protection screw

2. Using a suitable screwdriver, fully press down on the write-protection screw and turn 90° clockwise to activate hardware write protection or, if already activated, 90° counterclockwise to deactivate it.

Figure 28 Activating hardware write protection

![Deactivated write protection](image)

Deactivated write protection (default)

![Activated write protection](image)

Activated write protection
Setting up the primary value (PV)

The primary value is the value that you want to measure with your LWT instrument. It is configured from the PV Setup menu under the Device Setup menu.

Selecting the value

The primary value is the only value directly linked to the 4–20 mA current loop. It impacts other parameters used by the instrument. The default primary value is Level.

To select the primary value:
1. Select Device Setup > PV Setup > Set PV (4-20mA).
2. Press Edit.
3. Highlight the primary value that you want to measure and press OK.

Selecting the primary value unit

Once you have selected the primary value, you need to select the unit in which this value will be measured. The default primary value unit is m (meters).

To set the primary value unit:
1. Select Device Setup > PV Setup > PV Unit.
2. Press Edit.
3. Highlight the primary value unit that you want to use and press OK.

Unlinking the primary value from the empty/full values

By definition, the 4 mA value is assigned to the empty level and the 20 mA value is assigned to the full level (as set first in the Easy Setup menu). Once you have set the primary values and their associated unit, you can choose to unlink the primary values from the empty/zero (4 mA) and full/span (20 mA) values. The default value is Linked.

To unlink the primary value from the 4–20 mA values:
1. Select Device Setup > PV Setup > Link 4-20mA to Z/S.
2. Press Edit.
3. Highlight Unlinked and press OK.
NOTICE

Unlinking the primary value from the 4–20 mA values requires that you manually set 4 mA and 20 mA values afterwards. Menu items for these two values appears in the PV Setup menu to do just that.

Values are automatically relinked if either the 4 mA or 20 mA value is modified at a later time.

Setting unlinked 4 mA and 20 mA values

To set 4 mA and 20 mA values after unlinking them from the empty/full values:

1. Select Device Setup > 4 mA (LRV) or 20 mA (URV).
2. Press Edit.
3. Set the appropriate value and press OK.

Configuring the sensor

Certain sensor parameters can be configured to improve measurement accuracy. This configuration can be performed from the Sensor Setup menu under the Device Setup menu.

Changing the distance measurement unit

The default unit for distance measurements (ullage, level, distance) is the meter (m).

To change that unit:

1. From the Device Setup menu, select Sensor Setup > Length Unit.
2. Press Edit.
3. Highlight the appropriate length unit and press OK.

Selecting the application category

The application category is the type of media in which the sensor will be used. Applications are based on the dielectric constant (DC) value of the medium measured. The default application category is Water-based (DC>10).

To set the application category:

2. Press Edit.
3. Highlight the appropriate application based on the measured DC of the medium and press OK.

Disabling tracking of false echoes

The tracking of false echoes by LevelExpert™ provides means of ensuring a certain level of measurement accuracy despite the presence of false echoes (e.g., 2 mm accuracy cannot be achieved in the presence of false echoes). This feature automatically identifies and tracks false echoes in time, accounting for them while the sensor is measuring changing levels. False echo tracking is enabled by default.

Certain vessel content characteristics (e.g., agitation, emulsion, the presence of foam, etc.) could require disabling of this feature.
To disable false echo tracking:
1. Select **Device Setup > Sensor Setup > False Echo Tracking**.
2. Press **Edit**.
3. Highlight **Disable** and press **OK**.

Resetting false echo tracking
There are situations, such as modifications made to the vessel, where false echo tracking might need to be reset, effectively erasing the false echo history and starting anew.

To reset the tracking of false echoes:
1. Select **Device Setup > Sensor Setup > Reset Tracking**.
2. Press **OK**.

False echo tracking is reset and you return to the previous menu.

Setting up the application
Before starting level measurements, you need to set certain hardware parameters regarding the probe, the vessel and the instrument nozzle. These parameters are set in the **Application Setup** menu under the **Device Setup** menu.

Figure 30 The Device Setup menu

Changing the probe type
Your instrument, as delivered, was configured with the type of probe ordered. Should you need to change the type of probe in the future, you also need to change the type in the LWT instrument.

To do so:
1. Select **Device Setup > Application Setup > Probe Type**.
2. Press **Edit**.
3. Highlight the appropriate probe type and press **OK**.

Changing the probe length
The probe length is already programmed into the instrument. Should you have to physically shorten the probe for any reason, do not forget to change the probe length programmed in the instrument.

To do so:
1. Select **Device Setup > Application Setup > Probe Length**.
2. Press **Edit**.
3. Set the length of the shortened probe and press **OK**.
Selecting a tank type

You can set the type of vessel in which the probe will be immersed. The type of vessel impacts the quality and nature of the signal sent down the probe. The default tank type is Metallic.

To do so:
1. Select **Device Setup** > **Application Setup** > **Tank Type**.
2. Press **Edit**.
3. Select the type of tank in which the probe will be immersed and press **OK**.

Setting the nozzle length

You can set the length of the nozzle present on your tank. For an illustration of the concept, see Figure 33 on page 49.

To do so:
1. Select **Device Setup** > **Application Setup** > **Nozzle Length**.
2. Press **Edit**.
3. Set the length of the nozzle present on your tank and press **OK**.

Setting the bypass/sw pipe diameter

If installing your LWT on a bypass or stilling well (SW), you need to set the diameter of said bypass/stilling well.

To do so:
1. Select **Device Setup** > **Application Setup** > **Bypass/SW pipe Diam.**.
2. Press **Edit**.
3. Set the length of the bypass/stilling well and press **OK**.

Changing the end of probe mode

The end of probe mode depends on your type of probe. By default, if you have a coaxial probe, your LWT is factory-set as Grounded. For rod and cable probes, your LWT is factory-set as Isolated.

To change the factory-set end-of-probe mode:
1. Select **Device Setup** > **Application Setup** > **End of Probe Mode**.
2. Press **Edit**.
3. Highlight the other end-of-probe mode and press **OK**.

Toggling the remote transmitter state

If your instrument came with a remote transmitter unit, the head unit is configured to recognize that remote transmitter. However, should you remove the transmitter, or should you choose to add a transmitter at a later date, you need to toggle the remote transmitter state to represent the new configuration.

To do so:
1. Select **Device Setup** > **Application Setup** > **Remote Transmitter**.
2. Press **Edit**.
3. Highlight **On** or **Off** and press **OK**.
Setting process conditions

You can also set the various conditions occurring inside the tank if you want them to be taken into consideration when the instrument is taking measurements. For this to happen, you need to enable any of the following conditions, when relevant:

- **Buildup detection** (residue that might be accumulated on the probe.)
- **Foaming** (foam that forms on top of the measured substance.)
- **Flashing** (drastic changes in level inside the vessel.)
- **Emulsion** (if two elements with vastly differing DCs are mixed temporarily, e.g., water and oil.)
- **Agitation** (if levels might be affected by moving objects inside the vessel, e.g. mixing blades.)
- **Changing dielectric constant** (if the dielectric constant of the vessel content changes depending of the phase of the content, e.g., liquid vs. vapor water.)

All these conditions are disabled by default. They are all enabled in a similar fashion, as explained below:

1. Select **Device Setup** > **Application Setup** > **Process Condition**.
2. Highlight the relevant process condition and press **Edit**.
3. Highlight **Enable** and press **OK**.

Setting data filtering parameters

Processes can induce noise in level measurements. The LWT filtering feature is designed stabilize measurements by filtering out extraneous data that could negatively impact the resolution of the measured level (spikes, obstructions by mixer blades, lack of signal, etc.).

These parameters are set in the **Filtering** menu under the **Device Setup** menu.

The various filters available are applied in a sequence as follows:

Max Level Rate — Median filter — Damping

Selecting a maximum level rate

The maximum level rate is the rate at which the process will reach its Full limit. This influences the processing speed of the instrument. The default value is **No Filter**.

To set the maximum level rate:

1. Select **Device Setup** > **Filtering** > **Max Level Rate**.
2. Press **Edit**.
3. Highlight the appropriate maximum level rate and press **OK**.
Setting up a median filter

The median filter is designed to filter out noisy measurement spikes in applications with fast transients (e.g., rapidly varying processes, positioning applications, etc). It is used for discarding occasional false measurements resulting from any occasional unwanted phenomena that might occur in the process.

The value entered corresponds to the number of measurements kept in the buffer. The filter then generates and returns a median value of all the measurements kept in the buffer. The buffer size can range from 1 to 50 measurements. The default value is 1.

NOTICE

Selecting 1 measurement effectively disables the median filter as no averaging can be performed.

To set a median filter:

1. Select Device Setup > Filtering > Median Filter.
2. Press Edit.
3. Set the number of measurements that you want kept in the filter buffer (between 1 and 50) and press OK.

Setting up a damping period

The instrument damping filter is designed to smooth out measurement noise in applications with slow dynamics (e.g., liquids with slow waves).

The damping value corresponds to the time constant (ranging from 1.0 to 99.9 s) applied to the measurement returned by the median filter. The default value is 0.0 s (no damping is applied).

To set a damping period:

1. Select Device Setup > Filtering > Damping.
2. Press Edit.
3. Set the damping period and press OK.
Setting process parameters

Certain parameters linked to the process itself need to be configured, chiefly process alarms and process safety parameters. The following pages explain how to set these parameters.

Setting process alarms

Alarms can be raised when process levels reach certain thresholds. **Low and high alarm thresholds are factory set and cannot be modified.** Low alarms are set at 3.6 mA and high alarms are set at 21.5 mA. Other process alarm parameters are configured from the **Process Alarm** menu.

Figure 32 The Process Alarm menu

Figure 33 illustrates these alarm-triggering thresholds.

Figure 33 Measurement concepts

The following pages explain how to set those threshold values.
Setting failure mode
You can specify whether high or low failures (saturations and alarms) raise an alarm. The default value is Low.

To specify the failure mode:
1. Select Process Alarm > Failure Mode.
2. Press Edit.
3. Highlight High or Low and press OK.

Setting saturation limits
Although process alarm levels cannot be modified, you can modify saturation limits.

To do so:
1. Select Process Alarms > Saturation Limits > High Saturation or Low Saturation.
 The low saturation default value is 3.80 mA. This value can be edited between 3.80 and 4.00 mA.
 The high saturation default value is 20.50 mA. This value can be edited between 20.00 and 20.50 mA.
2. Press Edit.
3. Set the new saturation value and press OK.

Setting process safety parameters
Safety parameters can be configured to determine LWT behavior in cases where level measurements become uncertain or impossible (e.g., levels getting exceedingly high or loss of signal (echoes).

Process safety parameters (as illustrated in Figure 35) are set from the Device Setup menu.

Setting a blocking distance
The blocking distance is the distance where you do not want the instrument to take measurements because you know that these measurements will include erroneous or useless data (e.g., right at the junction between a nozzle and the inside of the vessel, where a giant pulse usually forms.)

To set a blocking distance:
2. Press Edit.
3. Set the necessary blocking distance and press OK.
Setting a safety distance

The safety distance is a distance where you can take measurements, at levels preceding the blocking distance. Essentially, this is the distance between the sensor reference point and the 100 % full/span value, in case you might want to be informed when such levels are reached.

To set a safety distance:

2. Press Edit.
3. Set the necessary safety distance and press OK.

Activating a safety distance related alarm

You can raise an alarm when the safety distance threshold is reached.

To do so:

2. Press Edit.
3. Highlight Alarm and press OK.

Managing lost echoes

A lost echo happens when your instrument loses the signal returning to the sensor. You can set the parameters that help your instrument manage such situations.

Period

The lost echo period is the time period during which the instrument waits before reacting.

To set a lost echo period:

1. Select Device Setup > Safety Setting > Echo Lost Period.
2. Press Edit.
3. Set the period of time for lost echoes and press OK.
Reaction
You can configure the instrument reaction when echoes are lost for the set period of time: hold the last value measured, hold a constant value, raise an alarm or ramp up results from the last measured value.

To do so:

1. Select Device Setup > Safety Setting > Echo Lost Reaction.
2. Press Edit.
3. Highlight the necessary reaction and press OK.

Value
This is the value to hold if you select Constant Value from the Echo Lost Reaction menu.

To set the constant value to hold:

1. Select Device Setup > Safety Setting > Echo Lost Value.
2. Press Edit.
3. Set the value for lost echoes and press OK.

Ramp
You can set an expected rate (in %/min) at which the vessel should fill up (or drain if the %/min is negative) even once echoes are lost. This value applies when you select Ramp Value from the Lost Echo Reaction menu.

To set the ramp-up rate to apply when echoes are lost:

1. Select Device Setup > Safety Setting > Echo Lost Ramp.
2. Press Edit.
3. Set the ramp-up value in percentage per minute (%/min) and press OK.

NOTICE
The ramp-up value can be negative if you expect the level to go down.

Setting up linearization
In your LWT instrument, the linearization function allows more accurate volume measurements by referring to a preset linearization table.

Understanding linearization
Linearization is especially useful in irregularly shaped vessels (cylindrical lying tanks, spherical gas tanks, etc.), but in all applications, regardless of vessel shape, it is used to convert level to volume or flow.

The linearization table provides the instrument with data regarding known volumes at specific levels in the irregularly shaped part of a vessel.

Below is an example of the relationship between a linearization table actual measured levels:
If Figure 36 was translated in actual values, it could be put in a table as such:

<table>
<thead>
<tr>
<th>Linearization point</th>
<th>Level (m)</th>
<th>Associated volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>1500</td>
</tr>
</tbody>
</table>

As you can see, the level-to-volume conversion does not progress in a linear fashion because of the irregular shape of the vessel. By creating a linearization table with proper values, this function allows to compensate for the irregular shape of the vessel.

In LWT instruments, there is an order in which to perform operations and make the feature functional:
- Access the function.
- Set the linearization table.
- Activate the function.

All these operations are performed from the **Device Setup** menu.
Accessing the linearization function

To access the linearization function:

1. Select **Device Setup > Linearization > Setup > Output Type**.
2. Press **Edit**.
3. Highlight the measurement value that you want to use (**Volume** or **Flow**) and press **OK**. This activates a series of parameters that will be explained and configured below.

Setting the linearization input unit

To set the input unit used by the linearization function:

1. Select **Device Setup > Linearization > Setup > Input Unit**.
2. Press **Edit**.
3. Highlight the unit that will be used to input data into the linearization calculation and press **OK**.

Setting the linearization output unit

To set the volume of flow output unit resulting from the linearization calculation:

1. Select **Device Setup > Linearization > Setup > Output Unit**.
2. Press **Edit**.
3. Highlight the volume or flow unit that will be used with data output from the linearization calculation and press **OK**.

Setting the maximum volume/flow value

To set the maximum volume of flow value to measure:

1. Select **Device Setup > Linearization > Setup > Maximum**.
2. Press **Edit**.
3. Set the maximum volume or flow value that the instrument will have to measure and press **OK**.

Setting vessel parameters

NOTICE

The following parameters are only available if you selected **Volume** as your output type (see “Accessing the linearization function” on page 54).

When measuring volumes, you must set the following vessel (tank) parameters:

- Orientation
- Diameter
- Length

Setting the vessel orientation

To set the vessel orientation:

1. Select **Device Setup > Linearization > Volume Calculation > Cylinder Orientation**.
2. Press **Edit**.
3. Highlight the orientation of your tank (**Vertical** or **Horizontal**) and press **OK**.
Setting the vessel diameter
To set the vessel diameter:
2. Press Edit.
3. Set the vessel diameter and press OK.

Setting the vessel length
To set the vessel length:
2. Press Edit.
3. Set the vessel length and press OK.

Setting up linearization points
The first point is always the point with the lowest value and all other points must be set in increasing order.

To properly configure the linearization feature:
To access the linearization function:
1. Select Device Setup > Linearization > Set LIN. Points.
 The 00 linearization point is highlighted (see below).
2. Press the Left action key to select the measured level (In).
3. Press the Right action key to edit the In value, and press OK when you are done.
4. Press the Left action key to select the volume associated with the measured level (Out).
5. Press the Right action key to edit the Out value, and press OK when you are done.
6. Press the Left action key to highlight the linearization point again.
7. With the Up and Down arrow keys, change the linearization point.
8. Repeat steps 2 to 6 for all the required linearization points.
9. All your linearization points that you just created compose your linearization table.

Saving your linearization table
To save the linearization table that you just created (see above):
1. Select Device Setup > Linearization > Saved Tables > Save.
2. Press OK. Your linearization table is saved in memory.

Enabling the linearization function
To activate the linearization function:
1. Select Device Setup > Linearization > Setup > Table State.
2. Press Edit.
3. Highlight Enabled and press OK.
 The linearization function is now active and volumes (or flow) are being measured accordingly.
Managing saved linearization tables

You can clear an existing linearization table if you want to start from scratch (e.g., if you moved your instrument to a different tank) and you can restore the existing table if you want to erase the linearization table under development and reload the saved table.

Deleting the linearization table

To delete the saved linearization table that you just created (see above):

1. Select Device Setup > Linearization > Saved Tables > Clear.
2. Press OK. Your linearization table is erased.

NOTICE

Clearing the linearization table deactivates all volume measurements settings.

Restoring a linearization table

To restore your saved linearization table:

1. Select Device Setup > Linearization > Saved Tables > Restore.
2. Press OK. Your saved linearization table is restored.
Managing device setups

Configuring or reconfiguring your instrument could take a non-trivial amount of time. With that in mind, once you have properly configured your instrument, you can save your setup as a baseline configuration that you can revert to if necessary. The following pages explain how to proceed.

Saving a default user setup

To save your current configuration as your default user setup:

1. Select Device Setup > Save Setup & reset > Save as User Default.
2. Press OK. Your current setup is saved in the instrument non-volatile memory.

Resetting to default user setup

Provided that you have already saved a setup as your default setup, you can return to that default user setup at any time.

To do so:

1. Select Device Setup > Save Setup & reset > Reset to User Default.
2. Press OK. Your current setup is erased and replaced with the default user setup.

Resetting to factory default

Should you be in a situation where the default user setup does not work anymore (e.g., you have moved the LWT instrument to a new vessel), you can simply revert to the factory default setup and start configuring your instrument anew.

To do so:

2. Press OK. Your current setup is erased and replaced with the default factory setup.
CHAPTER 7

Setting calibration parameters

Should configuration with the Easy Setup menu not be enough to meet your needs, you will have to calibrate your instrument and enter specific values to perform this calibration. The following pages explain how to do this.

Setting level calibration parameters

Level calibration parameters are set under the Calibrate menu. Figure 39 illustrates these parameters.

Changing the empty/zero value

This value (probably set initially from the Easy Setup menu) represents the lowest level measurement value in your vessel.

To set that value:

2. Press Edit.
3. Set the value as necessary and press OK.

By default, the empty/zero value is linked to the 4 mA value.

NOTICE

Make sure that the empty value is less than or equal to the full value.
Changing the full/span value

This value (probably set initially from the Easy Setup menu) represents the highest level measurement value in your vessel.

To set that value:

1. Select Calibrate > Level Calibration > Full/Span.
2. Press Edit.
3. Set the value as necessary and press OK.

By default, the full/span value is linked to the 20 mA value.

Adding a level offset

A level offset is a distance that you might add and that represents the distance between the bottom of the tank and the empty/zero value.

The default value for this parameter is 0 m. The value can be set between –50 and 50 m.

To set that value:

1. Select Calibrate > Level Calibration > Level Offset.
2. Press Edit.
3. Set the value as necessary and press OK.
Adding a sensor offset

A sensor offset is a small distance that you might need to add to the sensor reference value (e.g., if the probe is bent slightly at the junction with the sensor).

The default value for this parameter is 0 m. The value can be set between –30 to 30 m.

To set that value:
1. Select Calibrate > Level Calibration > Sensor Offset.
2. Press Edit.
3. Set the value as necessary and press OK.

Setting upper/lower (4–20 mA) reference values

The upper and lower current reference values are automatically linked to the empty/zero and full/span values when configuring the LWT instrument for the first time with the Easy Setup menu.

You cannot change these current reference values while they are linked (the instrument will not let you do it). For more information on unlinking the reference values, see "Unlinking the primary value from the empty/full values" on page 43.

The default value for these parameters is 0 m. The value can be set between 0 and 75 m.

To set these values (once unlinked):
1. Select Calibrate > Level Calibration > 4 mA (LRV) or 20 mA (URV).
 - LRV is the lower reference value and URV is the upper reference value.
 - The LRV default value is 0 m. This value can be edited between 0 and 75 m.
 - The URV default value is the probe length. This value can be edited between 0 and 75 m.
2. Press Edit.
3. Set the new reference value and press OK.
Setting 4–20 mA D/A trim

LWT instruments are factory-calibrated to reflect the published declared performance specifications. No further calibration is required in normal usage condition.

Once an LWT is installed and wired, the field wiring and other current loop components may affect the mA output that is received at the point of control. The D/A trim is used to compensate for the presence of the loop components and allow the point of control to receive a true 4 mA and 20 mA currents. Performing this calibration requires a 24 V DC input in series with an ammeter.

Figure 40 Setting the D/A trim

Setting the 4 mA trim

To set the 4 mA trim:

1. Select **Calibrate > 4-20 mA D/A Trim > 4 mA Trim**.
2. Press **Edit**.
3. Change the default value to the value indicated on the ammeter and press **OK**.

Setting the 20 mA trim

To set the 20 mA trim:

1. Select **Calibrate > 4-20 mA D/A Trim > 20 mA Trim**.
2. Press **Edit**.
3. Change the default value to the value indicated on the ammeter and press **OK**.
Resetting the D/A trim
To reset the 4–20 mA trim:
1 Select Calibrate > 4-20 mA D/A Trim > Reset D/A Trim.
2 Press OK. The D/A trim is reset.

Setting a current simulation
To validate that calibration was successful, you can simulate a current output.
To perform the simulation:
1 Select Calibrate > 4-20 mA D/A Trim > Current Simulation.
2 Press Edit.
3 Set a current value (between 3.5 mA and 23.6 mA) that you want the instrument to generate and press OK.
 The ammeter should have a reading identical to the value entered.
CHAPTER 8

Configuring communications

Certain communication parameters are set from the Communication menu, including setting of the instrument network address and activation of the multi-instrument feature (a.k.a. multidrop).

Figure 41 The Communication menu

Setting dynamic values

The LWT instrument can monitor up to four values. These values are identified as primary (PV), secondary (SV), tertiary (TV), and quaternary (QV).

The primary value (PV) is the only value directly linked to the 4–20 mA loop. It impacts other parameters used by the instrument. For more information on setting the primary value, see “Setting up the primary value (PV)” on page 43.

To set the remaining values, as necessary:

1. Select Communication > Dynamic Variables > Set [SV, TV or QV].
2. Press Edit.
3. Highlight one of the available values that you want to monitor (level, distance, ullage, amplitude, electronics temperature, terminal voltage) and press OK.

NOTICE

As amplitude, electronics temperature and terminal voltage are not directly related to level measurement, they are not available as a primary value.
Activating multidrop mode

In multidrop mode, the analog loop current is fixed at 4 mA and it is possible to have more than one instrument on a signal loop. Each instrument must have a unique address.

To make your instrument available on a network, you need to activate the multidrop mode.

1. Select Communication > Multidrop Mode.
2. Press Edit.
3. Highlight On and press OK. Your instrument will now be able to appear on a network once you set the instrument address.

Setting devices address

To set the instrument address so that it can be identified on a network:

1. Select Communication > Device Address.
2. Press Edit.
3. Set an address between 0 and 63 and press OK. Your instrument should now appear on a network if you have activated the multidrop mode.

Locating an instrument with tags

A tag is intended to simplify identifying the location of a LWT instrument on the network, in the plant, etc.

To create a tag for the instrument:

1. Select Communication > Tag.
2. Press Edit.
3. Set a tag name (see “Setting a value” on page 31).

Browsing communication info

From the Communication menu, you can quickly browse through the various factory-set communication parameters such as:

- The last command received
- The device ID
- The manufacturer ID
- The device type
- The device descriptor
- The device revision number
- The HART revision number
CHAPTER 9

Maintenance and troubleshooting

LWT instruments are designed to withstand many industrial environmental conditions. They contain no moving parts and, aside from the probe, no field-replaceable parts. For this reason, no regular maintenance is required to keep the instrument in compliance.

Additionally, no user/operator adjustments inside LWT instruments are necessary or recommended by ABB. Service tasks that are not explained in this documentation are to be performed at the factory by qualified service personnel only.

Contact ABB for any additional information, or in the event of specific problems not covered in this user guide.

NOTICE

Opening the instrument for any reason other than the procedures indicated in this documentation voids the warranty.

NOTICE

Since the instrument may form part of a safety chain, ABB recommends replacing the instrument immediately if any defects are detected.

Diagnosing problems

If the LWT instrument is malfunctioning in any way, the LCD displays specific event messages destined to help you identify and understand the situation.

When an event happens, a message consisting of an icon and text appears at the bottom of the LCD.

![Figure 42 LCD before and during an error](image)

Before an error

During an error

This short message gives you a quick indication of the nature of the situation at hand. The text beside the icon provides information about the potential source of the problem.

All these text messages are saved in a diagnostic history. You can browse through this diagnostics history and clear this history when all events have been accounted for.
The following table gives you a quick way to identify the basic problems.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
<th>Error text</th>
</tr>
</thead>
<tbody>
<tr>
<td>☒</td>
<td>Error/Failure</td>
<td></td>
</tr>
<tr>
<td>🔧</td>
<td>Functional check</td>
<td>Configuration</td>
</tr>
<tr>
<td></td>
<td>(e.g., during simulation)</td>
<td>Electronic Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process Transmitter</td>
</tr>
<tr>
<td>☝</td>
<td>Out of specification</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☝</td>
<td>Maintenance required</td>
<td></td>
</tr>
</tbody>
</table>

To obtain more information about the currently diagnosed error, you need to access the Diagnostics operator menu.

To do so:
1. From the displayed Operator page, press the left action key (สั้น) to access the operator menus.
2. Highlight and select Diagnostics.

In the error description, the error number is displayed on the second line (e.g., --F200.010--). For more information on event messages, see “Event codes and recommendations” on page 69.

Browsing the diagnostics history

To browse through the diagnostics history:
1. From the Diagnostics menu, select Diagnostic History.

The last event message appears. To browse through all event messages, press the Up and Down arrow keys.
2. Once you are done browsing, press Back.

Clearing the diagnostic history

To clear all diagnostic messages kept in the history:
1. From the Diagnostics menu, select Clear History.
2. Press OK. All event messages kept in the diagnostic history are erased.
Event codes and recommendations

Below is a list of the event codes that your LWT instrument might display, should a problem arise. The first letter of the code refers to NAMUR codes:

- **F**: Failures
- **S**: Function check
- **C**: Out of specifications
- **M**: Maintenance request

<table>
<thead>
<tr>
<th>No.</th>
<th>Event message</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S080.000</td>
<td>Maximum level rate exceeded</td>
<td>Make sure that the max level rate matches the process.</td>
</tr>
<tr>
<td>S081.001</td>
<td>GPC alarm, last valid gpc used</td>
<td>Check installation, GPC marker position, buildup and process conditions.</td>
</tr>
<tr>
<td>F203.002</td>
<td>Surface has lost surface echo</td>
<td>Check installation and parameter adjustments.</td>
</tr>
<tr>
<td>F234.005</td>
<td>Electronic failure or harsh env</td>
<td>Check installation for high vibrations or EMC interference.</td>
</tr>
<tr>
<td>F200.010</td>
<td>PV value out of range</td>
<td>Check process conditions and/or device configuration</td>
</tr>
<tr>
<td>C153.011</td>
<td>GPC currently in calibration</td>
<td>Wait for calibration to finish.</td>
</tr>
<tr>
<td>S083.012</td>
<td>Too many echos detected</td>
<td>Check installation or device parameters.</td>
</tr>
<tr>
<td>F233.013</td>
<td>Reference echo not detected</td>
<td>Check installation and coupler connection.</td>
</tr>
<tr>
<td>F210.016</td>
<td>Invalid device parameters</td>
<td>Enter valid parameters.</td>
</tr>
<tr>
<td>F236.017</td>
<td>Sensor NV Failure</td>
<td>The sensor should be replaced as soon as possible.</td>
</tr>
<tr>
<td>F202.019</td>
<td>Surface inside blocking distance</td>
<td>Check process conditions and device configuration.</td>
</tr>
<tr>
<td>F237.020</td>
<td>Sensor Board communication error</td>
<td>Restart the device. If condition persists, call ABB for replacement.</td>
</tr>
<tr>
<td>F223.023</td>
<td>Electronics NV Failure</td>
<td>The electronics must be replaced; call ABB.</td>
</tr>
<tr>
<td>S082.024</td>
<td>Weak echo amplitude</td>
<td>Check installation and process conditions.</td>
</tr>
<tr>
<td>F232.025</td>
<td>Loss of RF connection</td>
<td>Check the connection between the instrument head and the coupler.</td>
</tr>
<tr>
<td>F201.026</td>
<td>Surface inside safety distance</td>
<td>Check process conditions and device configuration.</td>
</tr>
<tr>
<td>M030.031</td>
<td>Maintenance required</td>
<td>Verify instrument functionality and clear the diagnostic message.</td>
</tr>
<tr>
<td>M010.032</td>
<td>Supply voltage error</td>
<td>Make sure that power supply voltage at the device terminal is between 15.5 V DC and 42 V DC.</td>
</tr>
<tr>
<td>M011.033</td>
<td>Temperature out of range</td>
<td>Check ambient temperature Use instrument with remote option</td>
</tr>
<tr>
<td>F230.034</td>
<td>First coupler seal leak</td>
<td>Check coupler.</td>
</tr>
<tr>
<td>F235.035</td>
<td>Load sensor configuration failure</td>
<td>Restart the device. If condition persists, call ABB for replacement.</td>
</tr>
<tr>
<td>C151.036</td>
<td>Data Simulation warning</td>
<td>The level value produced in output is derived by the value simulated in input</td>
</tr>
<tr>
<td>C150.037</td>
<td>Alarm Simulation warning</td>
<td>An alarm condition is being simulated by the device.</td>
</tr>
<tr>
<td>C152.038</td>
<td>Current output in fixed mode</td>
<td>Output current is in fixed mode. This could be due to the device being used in multidrop mode or a simulation.</td>
</tr>
<tr>
<td>No.</td>
<td>Event message</td>
<td>Recommended action</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>F224.039</td>
<td>Primary current uncertain</td>
<td>4–20 mA D/A trim should be performed; if error persists, the communication board must be replaced.</td>
</tr>
<tr>
<td>F221.040</td>
<td>Electronics Board ROM failure</td>
<td>Restart the device. If condition persists, call ABB for replacement.</td>
</tr>
<tr>
<td>F220.041</td>
<td>Electronics Board RAM failure</td>
<td>Restart the device. If condition persists, call ABB for replacement.</td>
</tr>
<tr>
<td>M012.042</td>
<td>NV replace error.</td>
<td>Restart the device. If condition persists, call ABB for replacement.</td>
</tr>
<tr>
<td>S084.043</td>
<td>Current output saturated</td>
<td>Check process conditions and/or device configuration.</td>
</tr>
<tr>
<td>F222.044</td>
<td>Current output ReadBack error</td>
<td>4–20 mA D/A trim should be performed; if error persists, the communication board must be replaced.</td>
</tr>
<tr>
<td>M035.045</td>
<td>HMI validation test failure</td>
<td>Replace the HMI; call ABB.</td>
</tr>
<tr>
<td>F231.046</td>
<td>Broken probe or wrong length</td>
<td>Replace probe or adjust probe length.</td>
</tr>
<tr>
<td>M026.047</td>
<td>Build-up on probe</td>
<td>Clean probe.</td>
</tr>
</tbody>
</table>

NOTICE

Regardless of the success or failure of the recommended action, you can always contact ABB service representatives if a problem occurs.

Masking classes of events

Instrument event codes are recorded according to the NAMUR classification (see page 68). By default, these events are displayed in the diagnostic history, but you can choose to mask certain classes of events.

To do so:

1. Select **Diagnostics > Class Masking**.
2. Highlight the class of events that you want to mask:
 - **Maintenance Required**
 - **Check Function**
 - **Off Specification**
 - **Info/None**
3. Press **Edit**.
4. Highlight **Enable** for the selected class of events and press **OK**.

This class of events will now be masked.
Diagnosing from a waveform

Most echo-related problems, as listed in Table 3, can also be diagnosed with the help of the integrated waveform display. Waveform management is performed from the Diagnostics menu.

Figure 44 Accessing the waveform display

Introducing the waveform display

The waveform display illustrates the signal traveling along the probe.

Figure 45 The waveform display

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Display of the level (LVL), distance (DIS) or ullage (ULL) value</td>
</tr>
<tr>
<td>2</td>
<td>Display of the blocking distance (BLK) or safety distance (SFD)</td>
</tr>
<tr>
<td>3</td>
<td>Level marker</td>
</tr>
<tr>
<td>4</td>
<td>Exit or Edit indicator</td>
</tr>
<tr>
<td>5</td>
<td>Zoom information</td>
</tr>
<tr>
<td>6</td>
<td>Reference distance</td>
</tr>
<tr>
<td>7</td>
<td>Display value selector</td>
</tr>
<tr>
<td>8</td>
<td>Blocking distance (or safety distance, if SFD selected in 2) marker</td>
</tr>
</tbody>
</table>

Accessing the waveform display

You access the waveform display from the Diagnostics menu by selecting around which point along the waveform you want to center your marker.

- To access the waveform display, select Diagnostics > Waveform > [desired centering location]. (At Sensor Ref. Point, At Level, At Distance, or At End of Probe).
Navigating through echoes

Once you have accessed the waveform display, you can browse through and select various echoes, and see their respective distances.

Obtaining the distance for the current level

The current distance displays the measured distance between the reference point and the level. This feature allows you to select another echo as the level echo (previous or next) and confirm that the measured distance matches the real distance.

To select the current distance:

1. Select **Diagnostics > Waveform > Level Echo Selection > Current Distance**.
 - The distance of the current level echo appears.
2. Press **Back**.

Selecting another echo

To select the previous or next echo:

1. Select **Diagnostics > Waveform > Level Echo Selection > Select Previous Echo** or **Select Next Echo**.
2. Press **OK**. The chosen echo is selected.
3. Press **Back**.
4. Select **Current Distance** to verify that this is the echo that you wanted to select. If not, repeat steps 1 to 3 until you have selected the echo that you want.
5. Once you have selected the echo that you want, select **Confirm Current Echo** and press **OK**.

Recording a waveform

The recorded waveform can be used for comparison purposes, and review using DTM/FIM tools.

To record the waveform:

1. Select **Diagnostics > Waveform > Record Waveform**.
2. Press **OK**. The waveform is recorded.
Performing simulations and tests

The simulation tools, found in the Simulation menu under the Diagnostics menu, help confirm proper communication of measured values. There are three standard simulations all performed in a similar way (distance, level, ullage). There are also current simulations. All are explained below.

Performing standard simulations

Standard simulations are performed by setting a value that you want to communicate and enabling the simulation afterwards. The procedure below explains the procedure for level simulations, but a similar method can be used for distance and ullage simulations.

To perform a level simulation

1. Select Diagnostics > Simulation > Level Sim > Level Sim.
2. Press Edit.
3. Set the level value that you want to simulate and press OK.
5. Select Enable and press Edit.
6. Press OK.

The instrument sends level data signals on the network and the value set should appear as a reading on a DTM interface or HART terminal.

Performing current simulations

To perform a current simulation

1. Select Diagnostics > Simulation > Current Simulation.
2. Press Edit.
3. Set the current that you want to simulate and press OK.

The instrument sends the set current on the network and the value set should appear as a reading on a DTM interface or HART terminal.
Obtaining device status data

For diagnostic purposes, you may need to gather data about the status of the instrument (probe length, current voltage [as well as minimum and maximum recorded], current electronics temperature [as well as minimum and maximum recorded] and total instrument run time).

Probe length

To confirm probe length:

1. Select **Diagnostics > Device Status > Probe Length Status**.
 - The probe length is indicated.
2. Press **Back** to return to the **Device Status** menu.

Terminal voltage

To confirm the actual terminal voltage:

1. Select **Diagnostics > Device Status > Terminal Voltage > Terminal Voltage**.
 - The terminal voltage is indicated.
2. Press **Back** to return to the **Device Status** menu.

Minimum/maximum terminal voltage recorded

To obtain the minimum and maximum terminal voltages recorded:

1. Select **Diagnostics > Device Status > Terminal Voltage > Min Terminal Voltage** or **Max Terminal Voltage**.
 - The minimum or maximum terminal voltage recorded is indicated.
2. Press **Back** to return to the **Device Status** menu.

Resetting the minimum/maximum terminal voltage recorded

To reset the minimum and maximum terminal voltages recorded:

1. Select **Diagnostics > Device Status > Terminal Voltage > Reset Min/Max**.
2. Press **OK** to reset the values.
3. Press **Back** to return to the **Device Status** menu.

Electronics temperature

To confirm the actual electronics temperature:

1. Select **Diagnostics > Device Status > Electronic Temp. > Electronic Temp.**.
 - The electronics temperature is indicated.
2. Press **Back** to return to the **Device Status** menu.

Minimum/maximum electronics temperature recorded

To obtain the minimum and maximum electronics temperature recorded:

1. Select **Diagnostics > Device Status > Electronic Temp. > Min Electronic Temp.** or **Max Electronic Temp.**.
 - The minimum or maximum electronics temperature recorded is indicated.
2. Press **Back** to return to the **Device Status** menu.
Resetting the minimum/maximum electronics temperature recorded
To reset the minimum and maximum electronics temperature recorded:
1 Select **Diagnostics > Device Status > Electronic Temp. > Reset Min/Max**.
2 Press **OK** to reset the values.
3 Press **Back** to return to the **Device Status** menu.

Total run time
To confirm the total instrument run time:
1 Select **Diagnostics > Total Run Time**.
 The total run time of the instrument is indicated.
2 Press **Back** to return to the **Device Status** menu.

Accessing device information
When calling an ABB service representative, you might be asked to provide any of the following information, available from the **Device Info** menu:

- Manufacturer
- Name
- Model
- Device ID
- Device Serial number
- Order code
- Manufacturing date
- Installation date
- Last modify date
- Address
- City
- Phone number
- Hardware revision
- Software revision
Page intentionally left blank
APPENDIX A

Specifications

For instrument specifications, refer to the instrument datasheet.
APPENDIX B

HMI menu tree

The following pages provide an overview of the various menu items accessible through the instrument human-machine interface (HMI).

First-level menu

<table>
<thead>
<tr>
<th>Menu item</th>
<th>Details</th>
<th>Main chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Level</td>
<td>page B79</td>
<td></td>
</tr>
<tr>
<td>Easy Setup</td>
<td>page B80</td>
<td></td>
</tr>
<tr>
<td>Device Setup</td>
<td>page B80</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>page B82</td>
<td></td>
</tr>
<tr>
<td>Process Alarm</td>
<td>page B82</td>
<td></td>
</tr>
<tr>
<td>Calibrate</td>
<td>page B82</td>
<td></td>
</tr>
<tr>
<td>Diagnostics</td>
<td>page B82</td>
<td></td>
</tr>
<tr>
<td>Device Info</td>
<td>page B84</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>page B84</td>
<td></td>
</tr>
</tbody>
</table>

Access Level menu

<table>
<thead>
<tr>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logout</td>
</tr>
<tr>
<td>Read Only</td>
</tr>
<tr>
<td>Standard</td>
</tr>
<tr>
<td>Advanced</td>
</tr>
<tr>
<td>Service</td>
</tr>
</tbody>
</table>
Easy Setup menu

<table>
<thead>
<tr>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
</tr>
<tr>
<td>Set PV (4-20mA)</td>
</tr>
<tr>
<td>PV Unit</td>
</tr>
<tr>
<td>↓Empty/Zero</td>
</tr>
<tr>
<td>↑Full/Span</td>
</tr>
<tr>
<td>Application Category</td>
</tr>
<tr>
<td>Max Level Rate</td>
</tr>
<tr>
<td>Display Line1 View1</td>
</tr>
</tbody>
</table>

Device Setup menu

<table>
<thead>
<tr>
<th>Item</th>
<th>Submenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Control</td>
<td>Standard Password</td>
</tr>
<tr>
<td></td>
<td>Advanced Password</td>
</tr>
<tr>
<td></td>
<td>Reset Password</td>
</tr>
<tr>
<td></td>
<td>Write Protect</td>
</tr>
<tr>
<td></td>
<td>Software WP</td>
</tr>
<tr>
<td></td>
<td>Hardware WP</td>
</tr>
<tr>
<td>PV Setup</td>
<td>Set PV (4-20mA)</td>
</tr>
<tr>
<td></td>
<td>PV Unit</td>
</tr>
<tr>
<td></td>
<td>Link 4-20mA to Z/S</td>
</tr>
<tr>
<td></td>
<td>4mA (LRV)</td>
</tr>
<tr>
<td></td>
<td>20mA (URV)</td>
</tr>
<tr>
<td>Sensor Setup</td>
<td>Length unit</td>
</tr>
<tr>
<td></td>
<td>Gas Phase Compensation</td>
</tr>
<tr>
<td></td>
<td>GPC Mode</td>
</tr>
<tr>
<td></td>
<td>GPC Marker Distance</td>
</tr>
<tr>
<td></td>
<td>GPC Static Factor</td>
</tr>
<tr>
<td></td>
<td>Application Category</td>
</tr>
<tr>
<td></td>
<td>False Echo Tracking</td>
</tr>
<tr>
<td></td>
<td>Reset Tracking</td>
</tr>
<tr>
<td>Item</td>
<td>Submenus</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Application Setup</td>
<td>Probe Type</td>
</tr>
<tr>
<td></td>
<td>Probe Length</td>
</tr>
<tr>
<td></td>
<td>Tank type</td>
</tr>
<tr>
<td></td>
<td>Nozzle Length</td>
</tr>
<tr>
<td></td>
<td>Bypass/SW pipe Diam.</td>
</tr>
<tr>
<td></td>
<td>End Of Probe Mode</td>
</tr>
<tr>
<td></td>
<td>Remote Transmitter</td>
</tr>
<tr>
<td>Process Conditions</td>
<td>Buildup</td>
</tr>
<tr>
<td></td>
<td>Foam</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
</tr>
<tr>
<td></td>
<td>Emulsion</td>
</tr>
<tr>
<td></td>
<td>Agitated</td>
</tr>
<tr>
<td></td>
<td>Changing DC</td>
</tr>
<tr>
<td>Filtering</td>
<td>Damping</td>
</tr>
<tr>
<td></td>
<td>Median Filter</td>
</tr>
<tr>
<td></td>
<td>Max Level Rate</td>
</tr>
<tr>
<td>Safety Settings</td>
<td>Blocking Distance</td>
</tr>
<tr>
<td></td>
<td>Safety Distance</td>
</tr>
<tr>
<td></td>
<td>Safety Dist. Reaction</td>
</tr>
<tr>
<td></td>
<td>Echo Lost Period</td>
</tr>
<tr>
<td></td>
<td>Echo Lost Reaction</td>
</tr>
<tr>
<td></td>
<td>Echo Lost Value</td>
</tr>
<tr>
<td></td>
<td>Echo Lost Ramp</td>
</tr>
<tr>
<td>Linearization</td>
<td>Setup</td>
</tr>
<tr>
<td></td>
<td>Table State</td>
</tr>
<tr>
<td></td>
<td>Output Type</td>
</tr>
<tr>
<td></td>
<td>Input Unit</td>
</tr>
<tr>
<td></td>
<td>Output Unit</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
</tr>
<tr>
<td></td>
<td>Volume Calculation</td>
</tr>
<tr>
<td></td>
<td>Cylinder Orientation</td>
</tr>
<tr>
<td></td>
<td>Cylinder Diameter</td>
</tr>
<tr>
<td></td>
<td>Cylinder Length</td>
</tr>
<tr>
<td></td>
<td>Gen. Linearization</td>
</tr>
<tr>
<td></td>
<td>Set Lin. Points</td>
</tr>
<tr>
<td></td>
<td>Saved Tables</td>
</tr>
<tr>
<td></td>
<td>Clear</td>
</tr>
<tr>
<td></td>
<td>Restore</td>
</tr>
<tr>
<td></td>
<td>Save</td>
</tr>
<tr>
<td>Setup Save & Reset</td>
<td>Save as user default</td>
</tr>
<tr>
<td></td>
<td>Reset to user default</td>
</tr>
<tr>
<td></td>
<td>Global Factory Reset</td>
</tr>
</tbody>
</table>
Display menu

<table>
<thead>
<tr>
<th>Item</th>
<th>Submenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td></td>
</tr>
<tr>
<td>Contrast</td>
<td></td>
</tr>
<tr>
<td>Operator pages</td>
<td>Operator page 1</td>
</tr>
<tr>
<td></td>
<td>Operator page 2</td>
</tr>
<tr>
<td></td>
<td>Operator page 3</td>
</tr>
<tr>
<td></td>
<td>Operator page 4</td>
</tr>
<tr>
<td>Autoscroll</td>
<td></td>
</tr>
<tr>
<td>Length format</td>
<td></td>
</tr>
<tr>
<td>Flow format</td>
<td></td>
</tr>
<tr>
<td>Volume Format</td>
<td></td>
</tr>
<tr>
<td>Date/Time Format</td>
<td></td>
</tr>
</tbody>
</table>

Process Alarm menu

<table>
<thead>
<tr>
<th>Item</th>
<th>Submenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm source</td>
<td></td>
</tr>
<tr>
<td>Failure Mode</td>
<td></td>
</tr>
<tr>
<td>Low alarm current</td>
<td></td>
</tr>
<tr>
<td>High Alarm current</td>
<td></td>
</tr>
<tr>
<td>Alarm Delay</td>
<td></td>
</tr>
<tr>
<td>Saturation Limits</td>
<td>Low Saturation</td>
</tr>
<tr>
<td></td>
<td>High Saturation</td>
</tr>
</tbody>
</table>

Calibrate menu

<table>
<thead>
<tr>
<th>Item</th>
<th>Submenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>↓Empty/Zero</td>
</tr>
<tr>
<td></td>
<td>↑Full/Span</td>
</tr>
<tr>
<td></td>
<td>Level Offset</td>
</tr>
<tr>
<td></td>
<td>Sensor Offset</td>
</tr>
<tr>
<td></td>
<td>4mA (LRV)</td>
</tr>
<tr>
<td></td>
<td>20mA (URV)</td>
</tr>
<tr>
<td>4-20mA D/A Trim</td>
<td>4mA Trim</td>
</tr>
<tr>
<td></td>
<td>20mA Trim</td>
</tr>
<tr>
<td></td>
<td>Reset D/A Trim</td>
</tr>
<tr>
<td></td>
<td>Current simulation</td>
</tr>
</tbody>
</table>
Diagnostics menu

<table>
<thead>
<tr>
<th>Item</th>
<th>Submenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveform</td>
<td>At Sensor Ref Point</td>
</tr>
<tr>
<td></td>
<td>At Level</td>
</tr>
<tr>
<td></td>
<td>At Distance</td>
</tr>
<tr>
<td></td>
<td>At End of Probe</td>
</tr>
<tr>
<td>Record Waveform</td>
<td></td>
</tr>
<tr>
<td>Level Echo Selection</td>
<td>Current Distance</td>
</tr>
<tr>
<td></td>
<td>Select Previous Echo</td>
</tr>
<tr>
<td></td>
<td>Select Next Echo</td>
</tr>
<tr>
<td></td>
<td>Confirm Current Echo</td>
</tr>
<tr>
<td>Diagnostic History</td>
<td></td>
</tr>
<tr>
<td>Clear History</td>
<td></td>
</tr>
<tr>
<td>Class Masking</td>
<td>Maintenance Req.</td>
</tr>
<tr>
<td></td>
<td>Check Function</td>
</tr>
<tr>
<td></td>
<td>Off Specification</td>
</tr>
<tr>
<td></td>
<td>Info/None</td>
</tr>
<tr>
<td>Simulation</td>
<td>Distance</td>
</tr>
<tr>
<td></td>
<td>Level</td>
</tr>
<tr>
<td></td>
<td>Ullage</td>
</tr>
<tr>
<td></td>
<td>Volume</td>
</tr>
<tr>
<td></td>
<td>Flow</td>
</tr>
<tr>
<td></td>
<td>Current simulation</td>
</tr>
<tr>
<td>Device Status</td>
<td>Probe Length Status</td>
</tr>
<tr>
<td>Terminal Voltage</td>
<td>Terminal Voltage</td>
</tr>
<tr>
<td></td>
<td>Min Terminal Voltage</td>
</tr>
<tr>
<td></td>
<td>Max Terminal Voltage</td>
</tr>
<tr>
<td></td>
<td>Reset Min/Max</td>
</tr>
<tr>
<td>Electronic Temp.</td>
<td>Electronic Temp.</td>
</tr>
<tr>
<td></td>
<td>Min Electronic Temp.</td>
</tr>
<tr>
<td></td>
<td>Max Electronic Temp.</td>
</tr>
<tr>
<td></td>
<td>Reset Min/Max</td>
</tr>
<tr>
<td>Total Run Time</td>
<td></td>
</tr>
<tr>
<td>Self Test</td>
<td></td>
</tr>
</tbody>
</table>

HMI menu tree B83
Device Info menu

- **Item**
 - Manufacturer
 - Name
 - Model
 - Device ID
 - Device Serial Number
 - Order Code
 - Manufacturing Date
 - Installation Date
 - Last Modification Date
 - Address
 - City
 - Phone Number
 - Software revision
 - Hardware revision

Communication menu

- **Item**
 - Dynamic Variables
 - Multi-drop mode
 - Devices Address
 - Tag
 - Message
 - Last Command
 - Device ID
 - Manufacturer ID
 - Device Type
 - Descriptor
 - Device Revision
 - HART Revision

<table>
<thead>
<tr>
<th>Item</th>
<th>Submenus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Variables</td>
<td>SV</td>
</tr>
<tr>
<td></td>
<td>TV</td>
</tr>
<tr>
<td></td>
<td>QV</td>
</tr>
<tr>
<td>Multi-drop mode</td>
<td></td>
</tr>
<tr>
<td>Devices Address</td>
<td></td>
</tr>
<tr>
<td>Tag</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td></td>
</tr>
<tr>
<td>Last Command</td>
<td></td>
</tr>
<tr>
<td>Device ID</td>
<td></td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td></td>
</tr>
<tr>
<td>Device Type</td>
<td></td>
</tr>
<tr>
<td>Descriptor</td>
<td></td>
</tr>
<tr>
<td>Device Revision</td>
<td></td>
</tr>
<tr>
<td>HART Revision</td>
<td></td>
</tr>
</tbody>
</table>
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents—in whole or in part—is forbidden without prior written consent from ABB.

© ABB, 2018