
Concept for AutomationML-based interoperability
between multiple independent engineering tools

without semantic harmonization
Experiences with AutomationML

Dr. Prerna Bihani
System Projects

ABB HVDC
Ludvika, Sweden

prerna.bihani@se.abb.com

Dr.-Ing. Rainer Drath
Automation and Grid Technologies

ABB Corporate Research Center Ladenburg
Ladenburg, Germany

rainer.drath@de.abb.com

Abstract This paper describes a concept and its industrial
pilot of a methodology for how to automate the data exchange
between multiple engineering tools by means of AutomationML
without a predefined semantic harmonization or a central data-
base. Key challenges in the methodology and its industrial
application are interoperability between 20 participating inde-
pendent engineering tool platforms, identification of inconsisten-
cies and guiding the project manager to areas of inconsistency.
The key focus of this paper is not a commercial product; instead,
the authors describe the methodological challenges, derive re-
lated requirements and describe the concepts to fulfill the colle-
cted requirements.

Keywords—AutomationML, data exchange, CAEX, heterogene-
ous tool landscape, interoperability

I. THE CHALLENGE OF DATA EXCHANGE IN ENGINEERING

The term “Engineering” in this paper means all activities
required to design, test and commission complex and unique
process plants as well as discrete manufacturing lines [1]. It
entails collaboration among different persons from various
technical disciplines [2] with diverse educational backgrounds,
performing different tasks such as process engineering, control
engineering, cabinet planning, drive applications, safety appli-
cations, electrical engineering, PLC programming, robot pro-
gramming, simulation engineering, IT setup, communication
engineering etc. Each of them uses individual engineering
software tools, usually from different vendors. This means
engineering is teamwork. Engineers can perfectly exchange
their ideas verbally, because it is a human ability to communi-
cate. But when it is required to exchange data between their
engineering tools the situation becomes tricky. The ability of
engineering tools to collaborate with each other across their
tool borders, geographical locations or workflow phases, called
“interoperability”, is usually weak. Although considered an im-
portant indicator of engineering efficiency, it is rarely sup-
ported by today’s industrial software [3].

Instead, each engineering tool is locally optimized for its
individual purpose but is not designed to interact with another.
The handover of engineering data from tool to tool is a tedious,

time-consuming and error-prone task, requiring mostly manual
labor. Usual means of data exchange are printed diagrams, pdf
reports or Excel files at best. In every industrial data exchange
scenario, the project progress stalls during data exchange, and
in many cases, already engineered data are particularly lost and
need to be re-engineered.

In [3], the authors summarized the state of the art regarding
engineering tool collaboration. In short, there are mainly two
different approaches to achieve interoperability between engi-
neering tools:

∂ The first approach is the use of a common database. All
participating tools are integrated into a common system
platform. This leads to a so called “tool suite” with sub-
tools that are well-connected in the database ecosystem.
Traceability is reached by linking of data and tools, so that
data modifications on any work item are flagged and
responsible persons are automatically informed. Tool suites
with a common database sound promising, but they have
significant drawbacks: a) they bind customers to one ven-
dor, and b) the participating tools cannot innovate indepen-
dently, meaning all innovations require significant amounts
of agreements and harmonization across all connected sub-
tools. Over time, the innovation speed of tool suites is by
far slower compared to best-of-class engineering tools
which innovate independently.

∂ The second approach is the use of file-based interfaces.
Engineering tools provide predefined export/import inter-
faces, e.g. plugins based on XML or Excel. File-based data
exchange creates a “copy” of the concerned data upon
export from the source tool and another “copy” of the same
data upon importing into the target tool. The result is
consistency across the source and target tools at one
particular time. The key benefit of file-based data exchange
is the loose coupling of engineering tools which allows
them to innovate independently and gain efficiency im-
provements within the tools. A key challenge however is
the need for common semantics: importers need to under-
stand the semantics of imported data, hence the exporters

978-1-5090-6505-9/17/$31.00©2017 European Union

Paper presented at IEEE ETFA 2017 conference in Limassol, Cyprus, 14 sep, 2017

SEMASAN
Typewritten Text

SEMASAN
Typewritten Text

are expected to provide data in a well-defined format inclu-
ding well-defined semantics. This is a crucial point: a stan-
dard for the semantics of engineering data has yet to be
achieved. Standards only become mature with feedback
from their practical application, but practical use is absent
since engineering tool providers wait for the final standard:
this is called the standardization deadlock according to [4].
But even assuming this would be solved: all occurrences of
the same data would have their own lifecycles and may be
changed in their source and target tools independently,
whereby data inconsistency will continuously occur and
traceability is missing. A fundamental property and draw-
back of this approach is that there is no “data ownership”.
With data sets changing independently, determining which
one takes precedence requires constant human intervention.
This manual work is error-prone and tedious. Repeated data
exchange on file base requires careful change management.
If a file-based data exchange is established in an environ-
ment with more than two engineering tools, the organizatio-
nal overhead grows significantly. A network of file-based
data exchanges in a project is practically a complex challen-
ge, and the concept is unsuitable for complex data exchange
scenarios among multiple engineering tools.

In sum, both approaches are practically unfit for industrial
application [5]. A systematic and guided data exchange inclu-
ding difference handling and consistency checks is not avail-
able, resulting in expensive, self-manufactured, constantly re-
invented, time-consuming, and error-prone data exchange solu-
tions.

The described difficulties motivated ABB Corporate
Research to invent a methodology to overcome these issues.
This paper describes the methodology and an industrial pilot at
HVDC in Sweden which has adopted this technology and
introduced it into their workflows promising significant cost
savings and quality improvements.

II. THE IDEA OF A FILE-BASED INTERMEDIATE SOFTWARE

The basic principles pursued in this contribution is based on
[3], but it simplifies that approach significantly. The present
chapter summarizes key innovations of the original metho-
dology.

The main idea to overcome problems inherent in the
commonly used approaches is to introduce a software that acts
as a middleware providing collaboration functionality that
cannot be supplied by any data format. The key concepts are
data ownership, Collaboration Objects and data exchange
feedback loops.

1. Data ownership: Data exchange is strictly directed from
a source to a target engineering tool by means of a rigo-
rous data ownership concept. The concept distinguishes
between the owner and the receivers of engineering data.
The owner defines the shareworthy data and lends those
data to the receivers. The granularity of data is on the
object level, while an object’s exact constitution is deter-
mined by people: it may be a parameter, a signal, a phy-
sical device, etc. Receivers can borrow the owner’s data
but are not allowed to modify them. The approach impli-

citly avoids data conflicts, data branching and synchroni-
zation issues. Double ownership of data, though techni-
cally permitted, is conceptually disallowed: in rare case of
a potential conflict, project management would need to
intervene to ensure single ownership.

2. Collaboration Objects: Only the necessary and share-
worthy engineering data of data owners will be packaged
and transferred to their receivers. Data owners are
responsible for individually defining which data objects
should be transferred to their receivers. The file exchange
is implemented as file transfer and may occur via shared
folders, emails, USB data storages or a cloud. A shared
folder serves as the common location of data exchange
and is defined in advance by a project manager. The re-
ceivers have knowledge about this shared folder – they
can identify the files and import included data into their
respective engineering tools, however the data still
belongs to the data owner. In addition, a “link to the
original data” is added for each data object. The source
data are not transformed into a neutral or standardized se-
mantics: instead, they are only syntactically neutralized.
The file format is AutomationML which allows storage of
source tool specific semantics in a neutral syntax. The
mapping and translation into target tool specific semantics
is solved in the data model.

3. Data Exchange Feedback Loop: In contrast to a normal
file exchange, feedback loops are introduced. Both the
data owner and the receiver benefit from utilizing the
“link to the original data object” in order to verify consis-
tency of the exchanged data automatically. Additionally,
the receiver automatically implements feedback informa-
tion about which data are imported and actually “used” in
the target engineering tool. This is the basis for difference
calculation and versioning.

In extension to [3], the concept of semantic harmonization,
named Collaboration Objects, has been significantly simpli-
fied. While Collaboration Objects according to [3] require
semantic standardization, the present approach does not. No
common data models with standardized semantics are needed
anymore. This solves the standardization deadlock described in
[4] and allows immediate application without waiting for any
standardization. It is the first step of the maturity level concept
of semantic standardization defined in [4]. The standardization
of data models can be executed gradually and independently
from the time pressure of an industrial project.

Thus, the present approach results in functionality which a
pure data format cannot provide: systematic and guided data
exchange, change calculation, history tracking, versioning,
consistency calculation, consistency visualization and a project
manager cockpit.

A prerequisite for automatic data exchange with change
management is to have stable identifiers for objects (see
Openness criteria [7]), which are mandatory for the Automa-
tionML format. The concept is explicitly designed for iterative
data exchange between an arbitrary number of independent
engineering tool pairs.

Figure 1 shows the key concept: Emily exports data follo-
wing the source tool semantics, determines shareworthy data
for the receivers, and submits relevant data to Lisa. The
middleware performs the change management and incon-
sistency visualization.

Figure 2 illustrates a typical workflow: Emily is the owner
of PLC engineering data and sends a subset of data to Lisa, a
robot engineer, who acts as a data receiver. The middleware
knows which data has been consumed by Lisa, and it can check
and visualize at any time whether both data sets are in sync or
not. The power of the intermediate software comes into place
in the second iteration: Emily performs changes and sends a
new version of the data to Lisa. The middleware is able to
calculate the differences and visually present consistency status
via color codes to both Emily and Lisa.

Figure 2: Data exchange workflow with 2 participants [3]

Technically, the middleware is characterized by a simple
software architecture without databases, client-servers or SOA.
It is a simple file-based approach only requiring access to a
common file server, SharePoint or other cloud-based storage
system. As file format, the middleware uses the Auto-
mationML standard according to IEC62714 [8]. Sending Auto-
mationML files is done by a simple file transfer into a known
folder. Even offline data exchange is supported via email or per
USB-stick. The software automatically archives all transferred
files and provides comparison functionality to observe and
visualize all changes over time. It supports data exchange

between independent tools that are not designed to interact with
each other. Moreover, data ownership conflicts are systemati-
cally avoided to achieve data consistency across engineering
tools. The middleware provides benefits for different groups:

• For the engineer, it delivers a transparent way to exchange
data with other engineers thus offering continuous
information about the state of inconsistency between his
engineering tool and his receivers’ engineering tools. The
data exchange is initiated by the engineers themselves – this
emphasizes the responsibility of the engineers, allows
spontaneous data transfers between arbitrary pairs of
engineering tools and consequently utilizes the self-
organizing capabilities of an engineering team.

• For the project manager, it conceptually provides all infor-
mation about the current “state of inconsistency” across the
overall project, highlighting focal points for attention.

• For the software developer and hosting organization, it
delivers means to minimize their effort in exporter/importer
development.

III. PILOT APPLICATION AT HVDC SWEDEN

A. Background
ABB HVDC Sweden discovered this research concept

while looking for a solution for their data exchange challenges.
The HVDC technology was pioneered in 1954 by ABB for
reliable and efficient electrical power transmission over long
distances with minimum losses. ABB HVDC has since been
awarded over 110 projects for a total capacity of more than
120,000 megawatts and accounting for around half the global
installed base. The engineering of these HVDC systems re-
quires around 40 engineering tools on 20 engineering tool
platforms. Approximately 30 parallel workflows are in ope-
ration on an annual basis each with around 400 data exchange
interaction points between different engineering studies at the
HVDC System Design department alone. The vast majority of
these data transfers is today performed via paper format, which
is not only error-prone but also requires several man-years of
effort each year. Combined with multiple iterations, lack of
change management, lead-time delays, and essentially dupli-
cate scenarios across other engineering departments, the total
cost for HVDC is much higher.

Several improvement efforts were initiated including a
quality improvement project on dataflows to understand the
complexity of data transfers during engineering studies. The
need for automatic data exchange with change management
became increasingly apparent, and a number of desired functio-
nalities were identified for a data exchange software. Partial
attempts were made with an internal Excel-based data ex-
change tool. However, due to that tool’s basis in the Excel
platform, proper change management functionalities were not
implementable and data exchange was restricted to occurring
between Excel workbooks. A simultaneous initiative to learn
about the software tools of ABB Corporate Research Center
Germany (DECRC) put the HVDC group in touch with
DECRC scientists and marked the beginning of HVDC’s
interest in the research prototype.

Figure 1: Software prototype illustrating the base concept [3]

With the research prototype and its basis in Automation-
ML, a neutral XML-based data format designed specifically for
exchanging engineering data, simple and effective automatic
data transfer between heterogeneous engineering tools
combined with change management is made possible.

B. Methodological challenges and industrial requirements
The requirements identified for a suitable automatic data

exchange tool with change management system can be catego-
rized into typical industrial requirements for maximum
efficiency, optimal quality, and low maintenance.

Maximum efficiency requirements: Given the hetero-
geneous tool landscape with multiple users, maximizing both
development and operational efficiencies are essential. For fast
implementation, a solution allowing efficient development for
individual plugins is considered ideal. In particular, it is impor-
tant to avoid introducing semantic standardization for handling
diverse data models and instead allow common semantic mo-
dels to gradually emerge from increased usage. Furthermore, a
technology allowing extensible tool classes is necessary for
transferring additional data. For achieving operational effi-
ciency, the entire data exchange process ranging from project
setup to data transfer to data report generation and subsequent
iterations should be automated for fewest mouse-clicks via an
intuitive graphical user interface. This would contribute to
shorter lead times throughout the entire engineering workflow.
Handling capacity for large amounts of data is needed while
enabling transfer and tracking of only the relevant parameters.
Additionally, email notifications for any changes in data
versions combined with difference calculation functionality are
required for effective change management.

Optimal quality requirements: To ensure quality of the data
transfers, quality-affirming features are identified at different
levels. Firstly, it is considered mandatory to have clear
ownership for all transferred data to prevent distribution of
conflicting data versions. At the individual data item level, a
change tracking mechanism is necessary for communicating
consistency status of particular data items to both sender and
receivers. An approval option is required at the data version
level for confirming quality of the transferred data and
digitalizing the data approval process. Finally, at the highest
level, an overview feature with current usage and inconsistency
status for project-wide data transfers is needed to assist project
managers in measuring progress and identifying problem areas.

Low maintenance requirements: For smooth and effective
administration during project execution, any necessary updates
in users and parameters should require minimum effort.

C. Concepts to solve the collected requirements
The middleware prototype with its basis in AutomationML

already satisfied the essential requirements of compatibility
with different engineering tool platforms, support for large data
transfers, an intuitive graphical user interface, feedback loops,
change tracking, versioning, difference calculations, sender as
data owner, and role-based usage. It also supports external
document attachments and messaging for group communica-
tion. For developers, it enables quick plugin connection for
open engineering tools due to minimum effort required for

AutomationML programming [6]. As part of its customization
for HVDC, the following innovations were made to fulfill the
remaining identified requirements (outlined in Figure 5).

1) Mapping technology: dealing with different semantics

A key challenge has been to overcome the need for seman-
tic standardization. For this, the data to be exchanged have
been analyzed and modelled as SystemUnitClasses as shown in
Figure 3.

A custom SystemUnitClassLib named “HVDC Tool
Classes” has been introduced containing the classes named
“Project Class”, “Station Class”, and “ComponentClass” for
storing the upper hierarchical levels; and “ParameterClass” for
modeling the individual parameters (data objects) transferred
between the tools. In particular, the “ParameterClass” is used
for identifying each source tool parameter’s identifiers in the
target tools which may differ from its identifier in the source
tool. With mapping between different identifiers built directly
into the data model, data can be exchanged without semantic
standardization.

∂ In step 1, AutomationML SystemUnitClasses have been
defined for all types of data, e.g. ParameterClass.

∂ In step 2, a SystemUnitClassLib is generated for each
source tool containing source tool parameters of
ParameterClass type, e.g. “MCT Library” with MCT para-
meter “S1_No of cells”, named according to source tool, of
ParameterClass.

∂ In step 3, each source tool parameter is augmented with
multiple parameter identifier attributes for its identifier
values in the participating tools, e.g. MCT parameter
“S1_No of cells” having source tool identifier
“p.Station1.no_of_cells” assigned as “SourceToolID” attri-
bute value is also assigned receiver tool identifier attribute
“PSCAD_ID” with value of “NCELLS_S1”, the para-
meter’s identifier in the PSCAD receiver tool (see Figure
3). This models two types of information in the same place:

Figure 3: Mapping of identifiers as part of the data model

a parameter’s target tools and its identifier within each
target tool. Since objects are expected to have stable IDs,
the mapping only needs to be performed once per class and
can be reused for multiple projects. Additionally, new
parameters can always be added during project execution to
the parameter library file. The process is automated via
Excel, meaning that the administrator only needs to update
the relevant Excel table cells then execute an automatic
generation script to create the project-independent para-
meter library file. The common library file is then imme-
diately readable by all instances of the middleware software
for all projects.

This technique has a variety of benefits:

∂ Exporters only have to instantiate the predefined tool
classes and fill in the parameter values. The effort of pro-
gramming exporters is significantly reduced this way. They
don’t need any awareness about the target tools; instead,
they just need to export the data in source tool specific
semantics, since the mapping is hidden in the Auto-
mationML class model.

∂ Importers read the AutomationML file, navigate through
the parameter instances and investigate the sub attributes. If
a known identifier is found, the parameter value is imported
into the right position of the target tool; otherwise, the
parameter is ignored.

∂ The exporter and importer plugins can be programmed
generically. In case of workflow changes due to additional
engineering tools, changed identifiers, and new parameters,
the AutomationML data model can be automatically gene-
rated via a simple Excel file update by an administrator.
Since the exporter and importer plugins remain unchanged,
no maintenance effort is required.

The mapping technology via AutomationML allows to read
and interpret the data during an import on the fly. As a result,
plugin development can be started without waiting for semantic
standards. The operational benefits are twofold: 1) the relevant
data for each receiver is automatically selected for transfer at
sender’s end; 2) receivers can import data into multiple files
with a single-click and without needing to manually perform
the mapping. This works without having a common semantic
standard, a key property of AutomationML. Instead, common
semantic models can naturally emerge with extended use,
avoiding the initial standardization deadlock problem (see [4]).

Figure 4 illustrates the middleware after data exchange with a
target tool. The main form provides a tree view of the
imported data with the right column presenting color-coded
consistency status (with green color indicating used values)
for individual data exchanged between the source tool and the
target tool. The form on the right summarizes the data import
success.

2) Digital Approval: managing quality at version level

In many industrial cases, data sets need to be approved by an
expert before they are accepted for import. In this pilot, a
digital data approval has been introduced for confirming data
version quality by an “Approver” role, a special receiver role
introduced with approve/reject functionality to allow digitali-
zation of the data approval process.
Multiple approvers can be assigned to a particular data
version, which is subsequently marked ”approved” if con-
firmed by all approvers and is otherwise labelled ”rejected”.
Furthermore, versioning has been linked to approval status for
easy identification of data quality.

Figure 4: Receiver's view in the middleware after 1-click data import into multiple files

3) Project Cockpit: managing quality at project level

So far, we have considered the state of inconsistency on
individual data object level visible to data owners and their
receivers in the middleware. One of the key challenges in data
exchange across multiple engineering tools lies in obtaining a
project-level overview of the inconsistency status across data
versions in participating engineering tools for guiding the
project manager to problematic areas. A project management
cockpit has been invented to satisfy this requirement.

The Project Cockpit is designed to present version history
and current status snapshot for data transfers across an entire
project – a matrix showing color-coded status for latest data
transfers between all sender and receiver tools in the project
(see illustration in Figure 6). The idea is to present the state of
consistency and usage for every data exchange point in the
sender-receiver matrix, where each individual cell signals a
receiver’s usage and synchronization status for the corres-
ponding sender’s data. White fields indicate no data exchange.
Green fields denote full consistency with respect to latest data
version exchange for the tool pair. Red fields report presence of
inconsistencies between a tool pair, while yellow fields indicate
consistency with respect to an older data version. Gray fields
lie on the diagonal and are therefore null. The percentages in

each field indicate usage with respect to shared data amount.

Since each user is assigned a unique tool folder, and all tool
folders appear in the project cockpit, the consistency matrix
implicitly shows related users, helping the project manager to
get in contact with them.

The matrix is automatically generated from a collection of
AutomationML statistics classes designed to store and update
status information during user operations. A statistics class is a
predefined AML SystemUnitClass designed to gather a data
owner’s version information during user operations in a given
project. It is generated by data exporters and updated by data

Figure 5: Overview of original middleware concepts and innovations for meeting remaining requirements

Figure 6: The Project Cockpit, Example of status overview for 9
Project Engineers with individual tool folders, 6 tools

importers. The gathered history for all data owners across the
entire project is then used for project information and consis-
tency matrix in the project cockpit.

Current statistics information is relayed to the Project
Cockpit with a single click by Project Managers who can now
view status updates and easily identify potential problem areas
for resolution. Data owners can also access the cockpit for an
overview of their data versions and consistency status for their
respective receivers.

The statistics classes could be further used to measure
significant trends over time while the project cockpit could be
extended to provide a current status overview across all pro-
jects for higher management view.

4) User Administration via AutomationML

The overall setup of engineering tools, user roles and users
is managed via an AutomationML file. This has been achieved
by modelling multiple role classes in RoleClassLib for the
project engineer role, the project manager role and the approver
role; and system unit classes for users, projects, and tools in
SystemUnitClassLib. The classes are instantiated for each user
together with their projects, roles, and tools information in an
InstanceHierarchy. Roles are assigned by the administrator
based on project requirements in the AML administration file,
which is read by the middleware for user profiles. Access to
available profiles and data versions is handled by the
middleware based on native operating system security and
designated roles. The resulting AutomationML file provides
complete setup for all users of the middleware.

In order to avoid unauthorized modifications of this admi-
nistration model, the AutomationML file has been stored in a
folder that is readable by all middleware installations but
modifiable only by the administrator. This means that all
security is solved by means of the operating system.

All middleware installations read the administration file
and provide features according to the role of the user. Due to
the admin file, no user can select a wrong role or project.

The key benefit of modelling the administration file via
AutomationML is that user classes defined in AutomationML
allow for user profiles to be set up for project execution in a
matter of a few minutes, using just the AutomationML Editor
or any XML editor. No additional tools are required. As an
extension of this approach, the generation of these classes has
been automated, thereby requiring the administrator to only
update a simple Excel file.

5) User Notifications

Whenever a user submits new data to a receiver or appro-
ver, the middleware notifies the relevant persons within the
middleware. In addition to these internal notifications, auto-
matic email notifications are generated in Outlook for avoiding
unnecessary lag. Data owners are also notified about approval
decisions by email and within the middleware.

D. Pilot description
The plugin architecture of the middleware software has

hitherto been used to develop plugins for six core HVDC

engineering tools across multiple platforms: Main Circuit
Toolbox, Harmonic Analysis Program, insulation coordination
program ISO Light, harmonic voltage sources calculation tool
CTL Harmonics, transient studies simulation software PSCAD,
and Requirement Specifications in Excel. These six tools
exchange thousands of parameter values and comprise a major
portion of data transfers at HVDC’s System Design depart-
ment. Data can now be exchanged automatically between
senders and receivers with a few simple mouse-clicks and
without waiting for paper reports to be issued. Further
extension to other departments of HVDC is planned.

IV. SUMMARY

Using AutomationML as a neutral file format for the ex-
change of engineering information between two engineering
tools is a known an accepted method. But using Auto-
mationML for synchronization of engineering data between 20
tool platforms for multiple users and projects in parallel, with
no semantic standard under industrial requirements for cost
efficiency and time pressure is new. The application answers
challenges that naturally arise in a setup having more than just
two tools: e.g. multiple semantic models across all participating
engineering tool platforms, multiple users and user roles, role
authorization, complex change tracking, multiple paths across
the workflow, adaptations of the workflow, quality approval,
and the complexity of inconsistency and its visualization.

The presented middleware concept consequently applies
the digitalization of workflows, providing seamless electronic
data exchange between independent engineering tools based on
AutomationML, change tracking, data responsibility, a new
digital data approval process, versioning of data sets and
messaging. It combines the benefits of using best-of-class tools
from different vendors with data consistency of a tool suite.

Traceability is implemented between data owners and their
immediate receivers. Further linking of dependencies down-
stream would require engineering tools to provide dependency
information among input and output parameters (based on
internal algorithms) to the middleware, which is technically
feasible.

Scientifically of interest, this is the first industrial appli-
cation of AutomationML in data exchange without semantic
standards for the maturity-level concept described in [4]. The
data exchange between all tools happens without any semantic
standardization. Consequently, development of data exporters
and importers does not require prior standardization across all
participating tools nor do the plugins require knowledge from
each other. Instead, data mappings are externalized from the
exporter/importer software and built directly into the Automa-
tionML information model. Hence, all data models across the
tool platforms remain proprietary and no semantic standards
must be developed. This eliminates the standardization dead-
lock and instead allows gradual standardization to occur over
time [4].

Changes in the workflow and additional data items don’t
need any modifications of the importer or exporter plugins,
only the AutomationML information model needs to be up-
dated. This leads to reduced development and maintenance
efforts as well as high flexibility in the workflow.

Furthermore, this contribution has for the first time
widened the industrial application scope of AutomationML. On
top of modelling and transferring engineering data, Automa-
tionML has been successfully applied for modeling statistics
data, mapping information and project administration data for
user authorization. This demonstrates the applicability of Auto-
mationML for all engineering workflow data.

A key innovation is the introduction of a project cockpit
which synthesizes the statistics generated for all tool pairs into
a single comprehensive overview about project-wide data
transfers with a color-coded snapshot to guide the project
manager to the centers of inconsistencies. The industrial appli-
cation of the presented methods results in shorter lead times,
earlier cross-checks, and data reports that are ready earlier for
submission to customers. In numbers, automatic data exchange
results in savings of roughly 95% of time currently spent in
paper-based data exchange. Relevant adaptations of the data-
flow processes leads to related improvements. Elimination of
manual, tedious, paper-dependent workflows results in impro-
ved focus on engineering. The application promises significant
cost savings and quality improvements for HVDC workflows.

Beneficial in this first industrial application of an Auto-
mationML-based data exchange at HVDC Sweden are the
relatively low complexity of the data model and the software
support from the AutomationML e.V. with its free Automation-
ML Engine [9].

The software has entered its first industrial pilot application
in 2017.

REFERENCES

[1] Fay A., Efficient engineering of complex automation
systems, In: Schnieder (editor): Will traffic automatically
be safer?, Braunschweig, 2009, pp. 43-60 (in German
language).

[2] Biffl S., Sunindyo W.D., Moser T.: Bridging Semantic
Gaps between Stakeholders in the Production Automa-
tion Domain with Ontology Areas. In: Proc. “21st Int.
Conf. on SW Engineering and Knowledge Engineering
(SEKE 2009)”, Boston, USA, 2009, pp. 233-239.

[3] Drath R., Barth M..: Concept for interoperability between
independent engineering tools of heterogeneous
disciplines. In: proceedings of the ETFA 2011, Toulouse,
2011.2012

[4] Drath R., Barth M.: Concept for managing multiple
semantics with AutomationML - maturity level concept of
semantic standardization. In: Proceedings of 2012 IEEE
17th International Conference on Emerging Technologies
& Factory Automation (ETFA 2012), IEEE (2012),
Krakow, 2012.

[5] Tauchnitz, T.: Schnittstellen für das integrierte Engi-
neering. atp – Automatisierungstechnische Praxis 56
(2014) H. 1-2, S. 30-34.

[6] Drath R.: Let’s talk AutomationML - What is the effort of
AutomationML programming? In Proceedings of the

“IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), September 2012.

[7] Barth M., Drath R., Fay A., Zimmer F., Eckert K.: Evalu-
ation of the openness of automation tools for interopera-
bility in engineering tool chains. In Proceedings of the
“IEEE Conference on Emerging Technologies and Facto-
ry Automation (ETFA), September 2012.

[8] IEC 62714: Engineering data exchange format for use in
industrial automation systems engineering (Auto-
mationML). September 2012.

[9] www.automationml.org

