
System Description AC500

 Scalable PLC
for Individual Automation

System Technology

AC500 System Technology

CPUs

Interrupt and Counter Module DC541-CM

Ethernet Couplers

PROFIBUS DP Couplers

CANopen Couplers

DeviceNet Couplers

System Description AC500

 Scalable PLC
for Individual Automation

System Technology
of the CPUs

D
C

-I
N

 1
0W

E
T

H
E

R
N

E
T

FBP

C
O

M
1

C
O

M
2

ETH
FBP
COM1
COM2

PWR RUN ERR

RUN DIAG

VAL CFG

ESC

OK

PM581

INSERT
PUSH

MC
502

SYS
BATT

I/O-Bus

CPU
24 V DC 10 W

WARNING!
Use of

incorrect
battery may
cause fire or
explosion.

__

V7 AC500 System Technology 1 CPUs AC500 / Issued: 08.2007

Contents - System Technology of the AC500 CPUs

1 Target Support Package ... 7

1.1 Introduction .. 7

1.1.1 Control Builder PS501 versions.. 7

1.1.2 New functions in PS501 V1.2 ... 8

1.1.3 Compatibility of versions V1.0, V1.1 and V1.2 ... 9
 File structure of the target system .. 9
 Overview on target system files.. 9
 Compatibility of CPU bootcode, CPU firmware, target system and CoDeSys 13
 Conversion of a project created with version V1.0 or V1.1 to version V1.2 ... 14

1.2 Selection of the target system - Target support settings... 15

1.3 CPU parameters in the target support settings .. 16

1.3.1 "Target Platform" settings ... 16

1.3.2 "Memory Layout" settings ... 17

1.3.3 "General" settings ... 19

1.3.4 "Network Functionality" settings ... 21

1.3.5 "Visualization" settings.. 21

1.4 Overview on user program size and operands of AC500 CPUs.. 22

1.5 Installation of AC500 targets with the program installTarget.exe.. 23

2 AC500 inputs, outputs and flags .. 26

2.1 AC500 interfaces for inputs and outputs.. 26

2.1.1 Address scheme for inputs and outputs ... 27

2.1.2 Example for addressing in BOOL / BYTE / WORD / DWORD... 27

2.2 Addressing of inputs and outputs.. 28

2.3 Processing of inputs and outputs in the multitasking system ... 29

2.4 Addressable flag area (%M area) in the AC500... 30

2.4.1 Allocation of the addressable flag area in the AC500 .. 30

2.4.2 Access to the %M area using the Modbus® Protocol .. 31

2.4.3 Access to operands in the addressable flag area .. 31

2.5 Absolute addresses of operands.. 32

2.5.1 Address operator ADR.. 32

2.5.2 Bit address operator BITADR ... 32

__

V7 AC500 System Technology 2 CPUs AC500 / Issued: 08.2007

2.6 Addressable PERSISTENT area (%R area) in the AC500 ... 34

2.6.1 Special features of the addressable PERSISTENT area in the AC500 ... 34

2.6.2 Segmentation of the addressable PERSISTENT area in the AC500... 35

2.6.3 Saving the buffered data of the AC500's %R area... 35

2.6.4 Access to operands in the addressable PERSISTENT area (%R area) .. 37

3 The AC500 PLC configuration .. 38

3.1 Overview on the PLC configuration ... 38

3.1.1 PLC configuration functions.. 38

3.1.2 Export and import of configuration data.. 38

3.1.3 Default settings in the PLC configuration ... 39

3.1.4 Setting parameters in the PLC configuration.. 40

3.2 Configuration of CPU parameters .. 40

3.2.1 CPU parameters in PS501 versions V1.0 and V1.1... 40
 Remark 1: Setting the parameters Auto run and MOD using the display/keypad................................ 41

3.2.2 CPU parameters in version PS501 V1.2 .. 42
 Remark 1: Setting the parameters Auto run and MOD using the display/keypad................................ 44
 Remark 2: Error LED .. 44
 Remark 3: Behaviour of outputs in Stop... 44
 Remark 4: Reaction on floating point exceptions ... 44
 Remark 5: Stop on error class.. 45
 Remark 6: Warmstart.. 45
 Remark 7: Start PERSISTENT %Rsegment.x and End PERSISTENT %Rsegment.x........................ 46

3.3 I/O bus configuration ... 47

3.3.1 Setting the general I/O bus parameters.. 47

3.3.2 Inserting input and output modules .. 47

3.3.3 Configuring the input and output modules and channels ... 48

3.3.4 Module parameter "Ignore module" of S500 I/O devices ... 51

3.4 Configuration of the serial interfaces (Interfaces / COM1 and COM2).................................. 52

3.4.1 Setting the protocol of the serial interfaces .. 52

3.4.2 The setting 'COMx - Online access' ... 53

3.4.3 The setting 'COMx - ASCII'... 53
 Remark 1: Enable login .. 56
 Remark 2: Usage of modems... 56
 Remark 3: Telegram ending identifier .. 57
 Remark 4: Checksum ... 59

3.4.4 The setting 'COMx - Modbus' ... 60

3.4.5 The setting 'COM1 - CS31 Bus'.. 62
 Connecting the DC551 and S500 I/O devices to the CS31 bus... 64
 Overview on input/output data of S500 I/O devices ... 68
 Examples of impossible configurations .. 69

__

V7 AC500 System Technology 3 CPUs AC500 / Issued: 08.2007

3.4.6 The setting 'COMx - SysLibCom'.. 71
 Remark 1: Enable login .. 73
 Remark 2: Usage of modems... 73
 Remark 3: Telegram ending identifier .. 73
 Example for sending/receiving with "SysLibCom".. 74

3.4.7 The setting 'COMx - Multi'... 77
 Functions of the block COM_SET_PROT .. 78

3.5 FBP slave interface configuration (Interfaces / FBP slave) ... 79

3.6 Coupler configuration (Couplers)... 81

3.6.1 Configuring the internal coupler.. 82

3.6.1.1 The internal Ethernet coupler PM5x1-ETH.. 82

3.6.1.2 The internal ARCNET coupler PM5x1-ARCNET... 84
 Remark 1: Baudrate of the ARCNET coupler... 85
 Remark 2: Check of DIN identifier on receipt ... 85

3.6.2 Configuring the external couplers... 87

4 System start-up / program processing88

4.1 Terms ... 89

 Cold start... 89
 Warm start .. 89
 RUN -> STOP ... 89
 START -> STOP... 89
 Reset... 89
 Reset (cold)... 89
 Reset (original) ... 89
 STOP -> RUN ... 89
 STOP -> START... 90
 Download.. 90
 Online Change.. 90
 Data buffering ... 90

4.2 Start of the user program.. 91

4.3 Data backup and initialization ... 92

4.3.1 Initialization of variables, overview ... 92

4.3.2 Notes regarding the declaration of retentive variables and constants ... 94
 Declaration of retentive internal variables .. 94
 Declaration of retentive variables in %M area .. 94
 Declaration of constants ... 94

4.4 Processing times .. 95

4.4.1 Terms.. 95

4.4.2 Program processing time.. 95

4.4.3 Set cycle time ... 95

4.5 Task configuration for the AC500 CPU ... 96

__

V7 AC500 System Technology 4 CPUs AC500 / Issued: 08.2007

5 The diagnosis system in the AC500... 97

5.1 Summary of diagnosis possibilities .. 97

5.1.1 Structure of the diagnosis system .. 97

5.1.2 Diagnosis directly at the PLC by means of "ERR" LED, keypad and display 98

5.1.3 Plain-text display of error messages in the Control Builder status line during online mode 99

5.1.4 Diagnosis using the PLC browser commands of the Control Builder... 99

5.1.5 Diagnosis with help of the user program .. 99

5.2 Organization and structure of error numbers ... 99

5.2.1 Error classes... 100

5.2.2 Error identifiers ... 100

5.2.3 Possible error numbers... 102

5.2.4 Error list... 106

5.2.5 Coupler errors... 113

5.3 Diagnosis blocks for the AC500.. 118

5.4 AC500-specific PLC118 browser commands .. 118

6 The SD memory ca122rd in the AC500 .. 122

6.1 SD card functions ... 122

6.1.1 Summary of memory card functions... 122

6.1.2 PLC browser commands for accessing the SD card.. 122

6.2 SD card file system... 123

6.2.1 SD card file structure .. 123
 File structure in versions V1.0 and V1.1... 123
 File structure as of version V1.2 ... 124

6.2.2 The command file "SDCARD.INI"... 126
 File content in versions V1.0 and V1.1 ... 126
 File content as of version V1.2 ... 127

6.2.3 Initializing an SD card ... 129

6.2.3.1 Initializing an SD card using the AC500 .. 129

6.2.3.2 Initializing the SD card using a PC .. 129

6.3 Storing/loading the user program to/from an SD card ... 130

6.3.1 Storing the user program to an SD card... 130

6.3.2 Loading a user program from the SD card to the AC500 ... 130

6.4 Storing/reading user data to/from an SD card .. 131

6.4.1 Structure of data files stored on the SD card.. 131

__

V7 AC500 System Technology 5 CPUs AC500 / Issued: 08.2007

6.4.2 Blocks for storing/reading user data to/from the SD card... 132

6.4.3 Deleting a data file stored on the SD card.. 134

6.4.4 Storing user data to the SD card - data file without sectors ... 134

6.4.5 Storing user data to the SD card - data file with sectors .. 135

6.4.6 Loading user data from the SD card - data file without sectors.. 136

6.4.7 Loading user data from the SD card - data file with sectors... 137

6.5 Storing and loading retentive data to/from an SD card .. 138

6.6 Firmware update from the SD card .. 138

6.6.1 Storing the firmware to the SD card ... 138

6.6.2 Updating the firmware of the AC500 CPU from the SD card ... 138

6.7 Writing and reading the project sources to/from the SD card .. 139

6.7.1 Writing the project sources from PC to SD card... 140

6.7.2 Loading the project sources from the PLC's SD card into the PC.. 142

6.7.3 Loading the project sources from the SD card using the PC SD card reader.................................. 144

6.8 SD card error messages ... 145

7 Data storage in Flash memory ... 146

7.1 Blocks used for data storage... 146

7.2 Example program for data storage .. 146

8 Real-time clock and battery in the AC500.. 147

8.1 General notes concerning the real-time clock in the AC500 ... 147

8.2 Setting and displaying the real-time clock... 147

8.2.1 Setting and displaying the real-time clock with the PLC browser... 147

8.2.2 Setting and displaying the real-time clock with the user program .. 148

8.3 The AC500 battery .. 148

9 The fast counters in the AC500 .. 149

9.1 Activating the fast counters via the I/O bus... 149

9.2 Counting modes of the fast counters.. 149

10 Programming and testing.. 150

10.1 Programming interfaces to the AC500 used by the Control Builder 150

10.2 Programming via the serial interfaces .. 151

__

V7 AC500 System Technology 6 CPUs AC500 / Issued: 08.2007

10.2.1 Serial driver "Serial (RS232)" ... 152

10.2.2 Serial driver "ABB RS232 Route AC" ... 153

10.3 Programming via ARCNET ... 156

10.3.1 ARCNET driver "ABB Arcnet AC"... 157

10.4 Programming via Ethernet (TCP/IP)... 159

10.4.1 Ethernet driver "Tcp/Ip"... 160

10.4.2 Ethernet driver "ABB Tcp/Ip Level 2 AC".. 161

10.4.3 Ethernet ARCNET routing .. 164

11 Communication with Modbus RTU .. 166

11.1 Protocol description .. 166

11.2 Modbus RTU with the serial interfaces COM1 and COM2.. 167

11.2.1 Modbus operating modes of the serial interfaces... 167

11.3 Modbus on TCP/IP via Ethernet .. 167

11.4 Modbus addresses ... 168

11.4.1 Modbus address table .. 168

11.4.2 Peculiarities for accessing Modbus addresses... 170

11.4.3 Comparison between AC500 and AC31/90 Modbus addresses.. 171

11.5 Modbus telegrams .. 173

11.6 Function block COM_MOD_MAST ... 180

12 Index - System Technology of the CPUs ... 181

__

V7 AC500 System Technology 7 CPUs AC500 / Issued: 08.2007

1 Target Support Package

1.1 Introduction

1.1.1 Control Builder PS501 versions

The AC500 basic units PM57x, PM58x and PM59x are programmed using the AC500 Control Builder
(version V1.0 and later).

The Control Builder versions V1.0 and 1.1 are based on CoDeSys version V2.3 SP4 Patch 9 (V2.3.4.9+)
and later. The Control Builder version V1.2 is based on CoDeSys version V2.3 SP8 Patch 0 (V2.3.8.0)
and later.

 Note: This documentation applies to all categories of the basic units PM57x, PM58x and PM59x.
When the term "PM581" is given in the text, this text applies also to PM57x, PM58x and PM59x. Texts
that are exclusively applicable for PM581 are expressly mentioned by a note.

To be able to program the AC500 controllers with the Control Builder, a so-called Target Support
Package (TSP) must be installed. By default, the AC500 TSPs are automatically installed during
installation of the Control Builder.

The default installation paths are as follows:

• Control Builder:
..\%ProgramFiles%\3S Software\CoDeSys V2.3
The environment variable %ProgramFiles% points to the directory "Program Files" on English
operating systems and "Programme" on German operating systems.

• TSP (Target Support Package):
..\%CommonProgramFiles%\CAA-Targets\ABB_AC500
The environment variable %CommonProgramFiles% points to the directory "Program
Files\Common Files" on English operating systems and "Programme\Gemeinsame Dateien" on
German operating systems.

The chapter "Installation of a Target Support Package" describes in detail how to install a TSP.

A Target Support Package (TSP) contains all configuration and expansion files necessary to operate a
particular controller (target system) with an application. What has to be configured:

• code generator
• memory layout
• controller functions
• I/O modules
• interface assignment and parameterization

In addition, libraries, gateway drivers, target system specific help files, controller configuration files, error
description file (Errors.ini) and the help file for the PLC browser (Browser.ini) are included.

 Note: The basic units of the AC31 series 90 (07 KT 95, 07 KT 96, 07 KT 97 and 07 KT 98) are still
programmed using the programming system 907 AC 1131.

__

V7 AC500 System Technology 8 CPUs AC500 / Issued: 08.2007

1.1.2 New functions in PS501 V1.2

Version 1.2 implements the following new functions compared to versions V1.0 and V1.1:

• CD user interface in German, English, French and Spanish

• New CoDeSys version with display of the ABB Control Builder version. Available menu
languages: German, English, French, Spanish, Italian and Russian

• Allows the installation of the CoDeSys HMI

• New AC500 targets PM5xy_V12 for downward compatibility of projects created with versions
V1.0/V1.1

• ABB EDS configurator for the generation of fix configurations from modular EDS files for
DeviceNet

• Revised and expanded documentation

• Ethernet UDP: Selection of the UDP port in the PLC Configuration

• Ethernet/Online: Driver "ABB Tcp/Ip AC"
(AA/55 protocol, same driver for AC500 and AC31 S90/07KT9x)

• COMx: Protocol "SysLibCom" - Support of the blocks contained in the 3S library SysLibCom.lib

• COMx: Protocol "Multi" - Switching between two protocols, for example ASCII/Modbus with the
FB COM_SET_PROT

• COMx: Parameter 'Enable login' for CoDeSys login via COMx, if COMx is configured with the
protocol "Modbus", "ASCII", "SysLibCom" or "Multi"

• Integration of the CS31 device DC551-CS31

• ARCNET online access using the driver "ABB ARCNET AC"

• ARCNET-_5F_ARC - 5F-ARCNET protocol (as in 07KT97/07KT98)

• ARCNET data exchange with the FBs ARC_SEND, ARC_REC, ARC_STO

• ARCNET-FB: ARC_INFO, ARC_OWN_NODE

• SD card: Firmware download for field bus couplers

• New PERSISTENT area "%R area", configurable as VAR RETAIN PERSISTENT in the PLC
Configuration / CPU parameters

• PLC - Browser: Command "coupler settings" to display, for example, the IP address and the
socket assignment of the Ethernet coupler

• Call stack in case of an application crash

• CPU parameters: 'Warmstart'->off/E2/voltage dip/e2 or voltage dip
(automatic restart of the CPU after E2 errors and/or short voltage dips, as in 07KT98)

• STOP of the user program if a task has been suspended (all outputs set to FALSE/0)

• FPU-Exception: FB FPUEXINFO (for PM591, PM590 only)

• New CPU: PM590

• Blocks that enable the export/import of RETAIN data to/from the SD card (except %M area)

• Blocks that enable the export/import of the PERSISTENT area (%R area) to/from the SD card

 Note: The new functions implemented in version V1.2 can only be used together with the targets
PM5xy_V12, CoDeSys as of version V2.3.8.0 and the AC500 firmware as of version V1.2.0. Further
information about this can be found in the chapter "Compatibility of versions V1.0, V1.1 and V1.2".

__

V7 AC500 System Technology 9 CPUs AC500 / Issued: 08.2007

1.1.3 Compatibility of versions V1.0, V1.1 and V1.2

The new functions in version 1.2 listed in the chapter above require extensive changes in the firmware of
the AC500 CPUs, in the target files and also according changes in CoDeSys.

To ensure downward compatibility with versions V1.0 and V1.1, new target system files for all AC500
CPUs have been created for version V1.2. These files are installed in parallel to the target system files of
version V1.1 when installing Control Builder V1.2. Only the newest online help files will be installed.

File structure of the target system

The target system files are structured as follows in version V1.2:

Installation path (as for V1.0 and V1.1):
..\%CommonProgramFiles%\CAA-Targets\ABB_AC500

The environment variable %CommonProgramFiles% is points to the directory
- "Program Files\Common Files" on English operating systems and
- "Programme\Gemeinsame Dateien" on German operating systems.

Overview on target system files

The following files are part of the target:

No. File / Directory V1.0 V1.1 V1.2
see remark 1

1. Target files Root = ..\ Root = ..\

1 AC500_PM571.trg 2005-07-28 2005-07-28 -

2 AC500_PM581.trg 2005-07-28 2005-07-28 -

3 AC500_PM591.trg 2005-07-28 2005-07-28 -

4 AC500_multi.tnf (install) 2005-06-01 2005-06-01 -

5 AC500_PM582.trg - 2005-08-23 -

6 AC500_PM582.tnf
(install)

- 2005-08-23 -

7 AC500_PM571_V12.trg - - 2007-05-16

8 AC500_PM581_V12.trg - - 2007-05-16

9 AC500_PM582_V12.trg - - 2007-05-16

10 AC500_PM590_V12.trg - - 2007-05-16

11 AC500_PM591_V12.trg - - 2007-05-16

12 AC500_V12.tnf (install) - - 2007-05-23

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

__

V7 AC500 System Technology 10 CPUs AC500 / Issued: 08.2007

No. File / Directory V1.0 V1.1 V1.2
see remark 1

2. Target ancillary files Root = ..\ Root = ..\AC500_V12

1 AC500.hll 2004-05-27 2004-05-27 2007-04-26

2 Browser.ini 2005-09-07 2006-02-21 2006-06-02

3 Errors.ini 2005-05-23 2006-05-23 2006-05-23

4 Errors.xml
(in CoDeSys directory)

2005-06-13 2006-05-29 2006-05-29

5 TaskConfig.xml 2004-04-21 2006-02-21 -

6 TaskConfig_PM57x.xml - - 2006-02-21

7 TaskConfig_PM58x.xml - - 2006-02-21

8 TaskConfig_PM59x.xml - - 2006-02-21

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

No. File / Directory V1.0 V1.1 V1.2
see remark 1

3. Configuration files
see remark 2

Root = ..\PLCConf Root =
..\AC500_V12\PLCConf

1 AC500_COMx_V10.cfg 2005-07-26 2006-07-20 2007-04-19

2 AC500_CPU_V10.cfg 2005-07-26 2006-05-23 2007-04-19

3 AC500_FBPSlave_V10.cfg 2005-07-26 2006-05-23 2007-04-11

4 AC500_ModCS31_V10.cfg 2005-07-26 2006-07-24 2007-04-11

5 AC500_IOmodule_V10.cfg 2005-09-06 2006-07-28 2007-04-24

6 AC500_Coupler_V10.cfg 2005-09-07 2006-05-23 2007-04-13

7 AC500_CS31Base_V10.cfg - 2006-05-23 2007-04-11

8 AC500_DC541_V11.cfg - 2006-05-25 2007-04-13

9 AC500_IOmod2_V11.cfg - 2006-07-04 2007-04-11

10 AC500_CAN_DevNet_V11.cfg - 2006-07-13 2007-04-11

11 AC500_IOclass_V12.cfg - - 2007-04-11

12 AC500_ARCNET_V12.cfg - - 2007-04-11

13 AC500_COMNewProt_V12.cfg - - 2007-04-19

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

Remark 2:
The directory ..\PLCConfig may only contain the *.cfg files listed here because all *.cfg files are loaded
when loading a project. If the directory contains, for example, configuration files with partly the same
content, both files are loaded. This can lead to unforeseeable effects!

__

V7 AC500 System Technology 11 CPUs AC500 / Issued: 08.2007

No. File / Directory V1.0 V1.1 V1.2
see remark 1

4. Libraries Root = ..\Library Root =
..\AC500_V12\Library

1 BusDiag-lib 2004-08-27 2004-08-27 2004-08-27

2 CS31_AC500_V10.lib 2005-06-01 2005-06-01 2005-06-01

3 SysExt_AC500_V10.lib 2005-07-01 2005-07-01 2005-07-01

4 Serie90_AC500_V10.lib 2005-07-27 2005-07-27 2005-07-27

5 ASCII_AC500_V10.lib 2005-07-27 2005-07-27 2006-11-08

6 MODBUS_AC500_V10.lib 2005-07-28 2006-06-01 2006-06-01

7 Ethernet_AC500_V10.lib 2005-07-28 2005-07-28 2005-07-28

8 SysInt_AC500_V10.lib 2005-08-03 2006-06-02 2007-05-24

9 Diag_AC500_V10.lib 2005-08-10 2005-08-10 2005-08-10

10 PROFIBUS_AC500_V10.lib 2005-08-12 2005-08-12 2005-08-12

11 DeviceNet_AC500_V11.lib - 2006-01-26 2006-01-26

12 CANopen_AC500_V11.lib - 2006-03-02 2006-03-02

13 DC541_AC500_V11.lib - 2006-06-01 2007-04-13

14 Counter_AC500_V11.lib - 2006-06-02 2006-06-02

15 ARCNET_AC500_V12.lib - - 2007-03-01

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

No. File / Directory V1.0 V1.1 V1.2
see remark 1

5. System libraries (partly)
supported by AC500

Root = ..\Library\SysLibs Root = ..\AC500_V12\
Library\SysLibs

1 SysLibCallback.lib 2005-07-18 2005-07-18 2005-07-18

2 SysLibCom.lib 2005-07-18 2005-07-18 2005-07-18

3 SysLibEvent.lib 2005-07-18 2005-07-18 2005-07-18

4 SysLibIecTasks.lib 2005-07-18 2005-07-18 2005-07-18

5 SysLibMem.lib 2005-07-18 2005-07-18 2005-07-18

6 SysLibPLCConfig.lib 2005-07-18 2005-07-18 2005-07-18

7 SysLibPlcCtrl.lib 2005-07-18 2005-07-18 2005-07-18

8 SysLibProjectInfo.lib 2005-07-18 2005-07-18 2005-07-18

9 SysLibRtc.lib 2005-07-18 2005-07-18 2005-07-18

10 SysLibSem.lib 2005-07-18 2005-07-18 2005-07-18

11 SysLibStr.lib 2005-07-18 2005-07-18 2005-07-18

12 SysLibTasks.lib 2005-07-18 2005-07-18 2005-07-18

13 SysLibTime.lib 2005-07-18 2005-07-18 2005-07-18

14 SysLibVisu.lib - - 2002-08-08

15 SysTaskInfo.lib 2005-07-18 2005-07-18 2005-07-18

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

__

V7 AC500 System Technology 12 CPUs AC500 / Issued: 08.2007

No. File / Directory V1.0 V1.1 V1.2
see remark 1

6. Online help German version Root = ..\help\german

1 CAA-Merger-1.chm 2005-09-30 2006-08-04 2006-08-04

2 CAA-Merger-2.chm 2006-04-07 2006-07-06 2007-05-22

3 CAA-Merger-3.chm 2005-08-11 2005-08-11 2005-08-11

4 CAA-Merger-6.chm 2006-03-27 2006-06-29 2007-05-14

5 CAA-Merger-7.chm 2006-03-16 2006-09-27 2006-09-27

6 CAA-Merger-8.chm 2005-09-14 2005-09-14 2005-09-14

7. Online help English version Root = ..\help\english

1 CAA-Merger-1.chm 2005-09-30 2006-08-04 2006-08-04

2 CAA-Merger-2.chm 2006-04-12 2006-07-06 2007-05-22

3 CAA-Merger-3.chm 2005-08-18 2005-08-18 2005-08-11

4 CAA-Merger-6.chm 2006-03-27 2006-06-29 2007-05-14

5 CAA-Merger-7.chm 2006-04-18 2006-10-04 2006-09-27

6 CAA-Merger-8.chm 2005-09-14 2005-09-14 2005-09-14

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

No. File / Directory V1.0 V1.1 V1.2
see remark 1

8. Online help French version Root = ..\help\french (see remark 3)

1 CAA-Merger-1.chm - 2006-08-04 2006-08-04

2 CAA-Merger-2.chm - 2006-07-06 2007-05-22

3 CAA-Merger-3.chm - 2005-08-18 2005-08-11

4 CAA-Merger-6.chm - 2006-06-29 2007-05-14

5 CAA-Merger-7.chm - 2006-10-04 2006-09-27

6 CAA-Merger-8.chm - 2005-09-14 2005-09-14

9. Online help Spanish version Root = ..\help\spanish (see remark 3)

1 CAA-Merger-1.chm - - 2006-08-04

2 CAA-Merger-2.chm - - 2007-05-22

3 CAA-Merger-3.chm - - 2005-08-11

4 CAA-Merger-6.chm - - 2007-05-14

5 CAA-Merger-7.chm - - 2006-09-27

6 CAA-Merger-8.chm - - 2005-09-14

Remark 1:
The file date of the version V1.2 files is the date set on the CD PS501 V1.2 BETA 1. Thus, the release
version may have other files.

Remark 3:
The online help is currently only available in German and English. As soon as the translation is
completed, the according files will be replaced. The English help files are currently used in the Spanish
and French version.

__

V7 AC500 System Technology 13 CPUs AC500 / Issued: 08.2007

Compatibility of CPU bootcode, CPU firmware, target system and CoDeSys

The following table shows the possible combinations of CPU bootcode, CPU firmware, target system
files and CoDeSys.

=> all functions available

=> possible, but not all functions available

=> combination NOT possible

__

V7 AC500 System Technology 14 CPUs AC500 / Issued: 08.2007

Conversion of a project created with version V1.0 or V1.1 to version V1.2

Proceed as follows to convert a project created with version V1.0 or V1.1 to version V1.2:

1. Safe the project (for example to the directory ..\save_projects)

2. Open the project in CoDeSys

3. Project => Save as (for example under the name name_V12.pro)

4. Resources => Target Settings => Select AC500 PM5xy V1.2

5. Execute Project => Clean all and Project => Rebuild all

6. File => Save

7. Online => Download

8. Online => Create boot project

9. Online => Run

 Caution: A project created for the target PM5xy V1.2 can only be loaded into an AC500 PM5xy
with bootcode as of version V1.2.0 and firmware as of version V1.2.0.
If a controller with firmware version V1.1.7 is loaded, CoDeSys reports an according error after the
download!

If a version V1.2 target is selected, the target system files, libraries and configuration files contained in
the directory ..\ABB_AC500\AC500_V12 will be loaded. This ensures that the new functions will be
available.

A change back to a target of version V1.0 or V1.1 is no longer possible as soon as a parameter, that is
only available as of version V1.2, is set in the PLC configuration. For example, if the protocol "Multi" is
set for the serial interface or the CPU parameter "Warmstart" is set to the value "On after E2 or short
voltage dip". Since the according settings are not available in the configuration files of the targets of
version V1.0 or V1.1, the PLC configuration cannot be loaded and has to be recreated, if necessary!

Thus, always save the projects before doing the conversion!

__

V7 AC500 System Technology 15 CPUs AC500 / Issued: 08.2007

1.2 Selection of the target system - Target support settings

The assignment of a project to an AC500 CPU is done using the target support settings in the Control
Builder.

When creating a new AC500 project with File / New, the target system must be selected first:

As of Control Builder version V1.2, the following AC500 targets can be selected.

Select the desired CPU and confirm your selection with OK.

 Note: If you want to download an existing project to another AC500 CPU, the new CPU must be
set in the target system settings. To do this, select the object "Target Settings" in the "Resources" tab.
In the appearing window, select the desired CPU from the "Configuration" list box.

__

V7 AC500 System Technology 16 CPUs AC500 / Issued: 08.2007

1.3 CPU parameters in the target support settings

1.3.1 "Target Platform" settings

Once you have selected an AC500 CPU, the general CPU parameters are displayed:

The tab "Target Platform" displays the general settings for the CPU. These parameters cannot be
changed.

The parameters have the following meaning:

Parameter Meaning

Platform Target system type - PowerPC

Floating point processor PM57x/PM58x: Floating point operations are emulated
PM59x: Floating point processor

First parameter register (integer) Register where the first (integer) parameter of C function calls
is passed (range depends on the operating system).

Last parameter register (integer) Register where the last (integer) parameter of C function calls
is passed (range depends on the operating system).

Register for return value (integer) Register where the integer values of C function calls are
returned (range depends on the operating system).

Intel byte order If deactivated: Motorola byte address scheme is applied.

__

V7 AC500 System Technology 17 CPUs AC500 / Issued: 08.2007

1.3.2 "Memory Layout" settings

The tab "Memory Layout" contains all information about the memory mapping within the CPU:

__

V7 AC500 System Technology 18 CPUs AC500 / Issued: 08.2007

The parameters have the following meaning:

Parameter Meaning

Size (Code) Code area size (user program)
see chapter "User program size and operands of AC500 CPUs"

Size per segment (Global) Data area size
(VAR ... END_VAR or VAR_GLOBAL & END_VAR)
see chapter "User program size and operands of AC500 CPUs"

Area (Memory) Size of the addressable flag area (%M area)
see chapter "User program size and operands of AC500 CPUs"

Area (Input) Size of the input process image (%I area)
PM5x1: 6000 hex = 24 kB

Area (Output) Size of the output process image (%Q area)
PM5x1: 6000 hex = 24 kB

Size (Retain) Size of the area for retentive data (VAR RETAIN)
see chapter "User program size and operands of AC500 CPUs"

Retain in own segment If activated: Retentive data are administered in an own segment

Total size of data memory Can be ignored, set in firmware

Maximum number of blocks allowed in the project
see chapter "User program size and operands of AC500 CPUs"

The following applies:
- per function
- per program
- per function block
- per data type

1 POU
1 POU
2 POUs
1 POU

Maximum number of POUs

For library POUs the same number of POUs for the relevant type is
valid.

Maximum number of global
data segments

1 = all global data are administered in one segment.

The numbers for the individual areas are required for administration in the firmware. The user cannot
change any of these parameters.

__

V7 AC500 System Technology 19 CPUs AC500 / Issued: 08.2007

1.3.3 "General" settings

The tab "General" contains general information about the target system and the relevant windows in the
Control Builder.

__

V7 AC500 System Technology 20 CPUs AC500 / Issued: 08.2007

The parameters have the following meaning:

Parameter Meaning

Configurable If activated: Support configurable I/O configurations and download
configuration descriptions to the controller

Download as file If activated: When downloading, the I/O configuration file is downloaded
to the controller together with the project. If the checkbox is deactivated,
the I/O configuration will be downloaded to the controller in the download
format without displaying the download progress.

Support preemptive
multitasking

If activated: Support task configuration and download task description to
controller

No address checking If deactivated: When compiling the project, the IEC addresses are
checked

Online Change If activated: Online Change functionality

Singletask in
multitasking

not yet implemented

Byte addressing mode If deactivated: Byte addressing mode

Initialize zero If activated: General initialization with zero

Download symbol file If deactivated: The symbol file possibly created during the download will
not be loaded into the controller.

Symbol config from INI
file

If deactivated: The parameters for the symbol configuration are read from
the project options window.

PLC Browser If activated: PLC browser functionality supported.

Trace If activated: Trace recording possible.

Cycle independent
forcing

not yet implemented

VAR_IN_OUT as
reference

If activated: At a function call, VAR_IN_OUT variables are called by
reference (pointer); therefore no constants can be assigned and no
read/write access is possible from outside the function block.

Initialize inputs If activated: Init code is generated for the inputs declared with "AT %IX".

Load bootproject
automatically

If activated: After the download, a bootproject is created automatically
from the new program and sent to the PLC.

SoftMotion If deactivated: No SoftMotion functionality supported

Retain forcing If activated: Forced values are kept even at logout (provided the user has
decided to retain the force list).

Save If the options "Retain forcing" and "Save" are activated, the force list is
stored to flash memory when "Creating the bootproject".

Parameters with gray background can be changed by the user.

__

V7 AC500 System Technology 21 CPUs AC500 / Issued: 08.2007

1.3.4 "Network Functionality" settings

The tab "Network functionality" contains the settings for the network variables. Network variables are not
supported in the current version.

1.3.5 "Visualization" settings

The tab "Visualization" contains the settings for the visualization integrated in the PLC firmware. Target
and WEB visualization are not supported in the current version.

__

V7 AC500 System Technology 22 CPUs AC500 / Issued: 08.2007

1.4 Overview on user program size and operands of AC500 CPUs

The following table shows the values set for the program memory and the operands in AC500 targets:

Parameter / CPU Unit
Version

PM571 PM581 PM582 PM590 PM591

Available as of PS501 version V1.0 V1.0 V1.1 V1.2 V1.1

Available as of firmware version V1.0.2 V1.0.2 V1.1.7 V1.2.0 V1.1.7

User program (code)
see remark 1

kB 64 256 512 2048
= 2
MB

4096
= 4
MB

Number of POUs 1024 1024 1024 4096 4096

Number of tasks 3 3 3 16 16

Floating point processor
see remark 2

 no no no yes yes

Global and local variables:
VAR or VAR GLOBAL

kB 16 128 128 1024 2048

kB
up to V1.1.x

1 32 32 512 512 RETAIN area:
VAR RETAIN or
VAR RETAIN PERSISTENT
see remark 3

kB
V1.2.0 and

later

4 32 32 512 512

Addressable flag area:
VAR AT %Mx.y
VAR RETAIN AT %Mx.y
VAR RETAIN PERSISTENT AT
%Mx.y

kB 4 128 128 512 512

PERSISTENT area:
VAR AT %Rx.y

kB
V1.2.0 and

later

4 128 128 512 512

Inputs %I
see remark 4

kB 24 24 24 24 24

Outputs %Q
see remark 4

kB 24 24 24 24 24

Remark 1:
The user program is composed of:
- the compiled code of all POUs called in the program,
- the initialization code for the variables and
- the code to restore the variables set as PERSISTENT (this does not include variables in the
PERSISTENT area (%R area)!).

The configuration data are not considered in the user program size.

As of Control Builder version 1.2, the user program size (code size) is shown in the CoDeSys message
box when compiling:

POU indexes: 262 (25%)
Size of data used: 1069 of 262144 bytes (0.41%)
Size of Retain data used: 0 of 32768 bytes (0.00%)
Code size: 6726 bytes
0 errors, 0 warnings

Remark 2:
All AC500 CPUs can perform floating point operations. For CPUs without floating point processor
(PM57x and PM58x), these operations are performed by an emulation library and are therefore slower.
Emulation is faster for LREAL variables than for REAL variables. Thus, the use of LREAL variables is
recommended.

Remark 3:
The information shown in the message box does only contain the Retain data of the RETAIN area, and
not the variables of the addressable flag area %Mx.y. that are declared as VAR RETAIN.

__

V7 AC500 System Technology 23 CPUs AC500 / Issued: 08.2007

Remark 4:
The assignment of the inputs and outputs is described in detail in the chapter "AC500 inputs, outputs
and flags".

1.5 Installation of AC500 targets with the program installTarget.exe

By default, all AC500 target files are installed when installing the Control Builder. When installing version
V1.2, the target files of version V1.1 and the files of version V1.2 will be installed.

In certain cases the target files of several providers have to be installed on the PC at the same time. In
this case, the target files of the AC500 CPUs can also be installed directly.

 Note: The AC500 target of version V1.0 and V1.1 requires CoDeSys version V2.3.5.0 and later.
Targets of version V1.2 require CoDeSys version V2.3.8.0 and later. AC500 targets cannot be used
with CoDeSys V3.x.

Proceed as follows to install the target:

1. Exit CoDeSys.

2. Exit the gateway, if necessary (right mouse click on the 3S icon in the Windows status bar =>
Exit).

3. Start the program InstallTarget.exe, for example by double clicking the file in the Windows
Explorer. The program InstallTarget.exe is located in the installation directory of CoDeSys.exe,
i.e., in case of a default installation in the directory ..\%ProgramFiles%\3S Software\CoDeSys
V2.3.
The environment variable %ProgramFiles% points to the directory
- "Program Files" on English operating systems and
- "Programme" on German operating systems.

4. The following user interface appears:

__

V7 AC500 System Technology 24 CPUs AC500 / Issued: 08.2007

All targets currently installed (i.e., registered in the Windows registry) are displayed in the right-
hand area "Installed targets".

5. Click <Open> and select the directory that contains the installation file of the target(s) to be
installed. The installation file of a target has the extension *.tnf. The AC500 targets are located in
the directory CD-ROM drive:\CD_AC500\CoDeSys\Targets\ABB_AC500 on the CD PS501
Vx.y.

6. Select the desired installation file:

The following target installation files are available for the AC500 targets:
AC500_multi.tnf (PM571, PM581 and PM591 V1.1)
AC500_PM582.tnf (PM581 V1.1)
AC500_V12.tnf (PM571, PM581, PM582, PM590, PM591 V1.2)

Click <Open>.

__

V7 AC500 System Technology 25 CPUs AC500 / Issued: 08.2007

7. In the left-hand area, all targets that are part of this installation file are displayed:

Select "ABB STOTZ-KONTAKT GmbH" or a specific target (for example AC500 PM581 V1.2)
and click <Install>. All files belonging to the target will be installed.
The "Installation directory" field shows the target directory.

8. To install further targets repeat steps 5 to 7.

9. Click <Close> to exit the program.

10. If you want to uninstall one or several targets, select the desired target(s) in the "Installed
targets" area and click <Remove>.

Remark:
"Remove" does only delete the Windows registry entries. The files are still available in the
installation directory. They have to be deleted manually, if necessary.

__

V7 AC500 System Technology 26 CPUs AC500 / Issued: 08.2007

2 AC500 inputs, outputs and flags

All operands supported by CoDeSys are described in the Control Builder documentation. The
documentation you are reading here describes in detail the "address" operands (%I for inputs and %Q
for outputs) used in CoDeSys.

All addressable operands can be accessed bit-wise (X), byte-wise (B), word-wise (W) and double-word-
wise (D) in the Control Builder. The Motorola byteorder is used for operand access.

Declaration of addressable operands:

The declaration of the operands in the addressable flag area is done as follows:

Symbol AT address : Type [:= initialization value]; (* comment *)

[.] optional

The inputs and outputs are declared using the PLC configuration. Input and output devices that are
directly coupled to the base unit are declared directly in the PLC configuration. Input and output devices
connected to the coupler are configured using the field bus configurator SYCON.net which is part of the
Control Builder (see topic Controller configuration with the Control Builder).

 Caution:

For multitasking, the digital inputs and outputs for every task are byte-wise cycle consistent, i.e., for
instance inputs %IX0.0-%IX0.7 for task 1 and %IX1.0-%IX1.7 for task 2.

If, for example, task 1 has the higher priority and input %IX0.0 is used in task 1 and task 2, the value
can change during the cycle of task 2 as it is updated every time task 1 is started.

This is not relevant for programs with only one task.

2.1 AC500 interfaces for inputs and outputs AC500

The following AC500 interfaces are available for inputs and outputs:

No. Type Designation Number of inputs and outputs
Configuration with CoDeSys PLC configuration (ConfConf)
1 I/O bus Interface for I/O modules Max 7 modules with a maximum of 32

channels (IX, QX, IW, QW) per module

CS31 bus master Max 31 modules with a maximum of 32
channels per module, address 0-61

2 COM1

Decentralized I/O
expansion

RS-232 / RS-485 (version V2.0 and later)

3 COM2 Decentralized I/O
expansion

RS-232 / RS-485 (version V2.0 and later)

4 FBP FieldBusPlug - Slave Max 8 modules with 16 IW + 16 QW + 16 IB +
16 QB with modular FBP, depending on
fieldbus

5 Int. coupler Internal coupler ARCNET,.. (configuration without SYCON.net)

Configuration with integrated SYCON.net
6 Line 0 Internal coupler 4 kB %I0.xx / %Q0.xx each

7 Line 1 Coupler 1 4 kB %I1.xx / %Q1.xx each

8 Line 2 Coupler 2 4 kB %I2.xx / %Q2.xx each

9 Line 3 Coupler 3 4 kB %I3.xx / %Q3.xx each

10 Line 4 Coupler 4 4 kB %I4.xx / %Q4.xx each

__

V7 AC500 System Technology 27 CPUs AC500 / Issued: 08.2007

2.1.1 Address scheme for inputs and outputs

• The coupler I/Os are addressed as follows (two-stage process):

%I(Q)BCouplerNumber.ByteCoupler

The configuration is done using SYCON.net.

• No coupler numbers are assigned to I/Os that are connected to the CPU. These I/Os are
configured with the PLC configuration (ConfConf) in the Control Builder.

• I/Os connected to the basic unit are assigned to the following address areas:

I/O bus: %IB0 .. %IB999 and %QB0 .. %QB999

COM1: %IB1000 .. %IB1999 and %QB1000 .. %QB1999

COM2 : %IB2000 .. %IB2999 and %QB2000 .. %QB2999

FBP slave: %IB3000 .. %IB3999 and %QB3000 .. %QB3999

• Addressing of the digital channels is done byte-oriented.

• Motorola byteorder is used to access the inputs and outputs.

2.1.2 Example for addressing in BOOL / BYTE / WORD / DWORD

The Motorola byteorder is used for addressing.

Addr Addr + 1 Addr +2 Addr +3 Address

16#xxxx x000 16#xxxx x001 16#xxxx x002 16#xxxx x003

BYTE %IB0 %IB1 %IB2 %IB3

7 ... 0 7 ... 0 7 ... 0 7 ... 0 BOOL

%IX0.7 ... %IX0.0 %IX1.7 ... %IX1.0 %IX2.7 ... %IX2.0 %IX3.7 ... %IX3.0

%IW0 %IW1 WORD

15 ... 8 7 ... 0 15 ... 8 7 ... 0

%ID0 DWORD

31 ... 24 23 ... 16 15 ... 8 7 ... 0

Examples:

%IX0.0 := TRUE

 %IB0 := 1 := 16#01

 %IW0 := 256 := 16#0100 (Bit 8 = TRUE)

 %ID0 := 16777216 := 16#01000000 (Bit 24 = TRUE)

%IX3.0 := TRUE

 %IB3 := 1 := 16#01

 %IW1 := 1 := 16#0001

 %ID0 := 1 := 16#00000001

__

V7 AC500 System Technology 28 CPUs AC500 / Issued: 08.2007

2.2 Addressing of inputs and outputs

No. Device Input/Output Interface Range Addresses

Configuration with ConfConf (CPU I/Os) or SYCON.net (internal coupler)

Inputs (4kB)

I/O bus
COM1
COM2
FBP

0000..0999
1000..1999
2000..2999
3000..4095

%IB0 ... %IB4095
%IW0 ... %IW2047
%ID0 ... %ID1023
%IX0.0 ... %IX4095.7 CPU I/Os

and

Outputs (4kB)

C
P
U I/O bus

COM1
COM2
FBP

0000..0999
1000..1999
2000..2999
3000..4095

%QB0 ... %QB4095
%QW0 ... %QW2047
%QD0 ... %QD1023
%QX0.0 ... %QX4095.7

Inputs (4kB)

%IB0 ... %IB4095
%IW0 ... %IW2047
%ID0 ... %ID1023
%IX0.0 ... %IX4095.7

0
...
5

Internal
coupler

Outputs (4kB)

Line 0
0.0000 ...
0.4095 %QB0 ... %QB4095

%QW0 ... %QW2047
%QD0 ... %QD1023
%QX0.0 ... %QX4095.7

Configuration with SYCON.net

Inputs (4kB)

%IB1.0 ... %IB1.4095
%IW1.0 ... %IW1.2047
%ID1.0 ... %ID1.1023
%IX1.0.0 ... %IX1.4095.7

6 Coupler 1

Outputs (4kB)

Line 1
1.0000 ...
1.4095 %QB1.0 ... %QB1.4095

%QW1.0 ... %QW1.2047
%QD1.0 ... %QD1.1023
%QX1.0.0 ...
%QX1.4095.7

...

Inputs (4kB)

%IB4.0 ... %IB4.4095
%IW4.0 ... %IW4.2047
%ID4.0 ... %ID4.1023
%IX4.0.0 ... %IX4.4095.7

9 Coupler 4

Outputs (4kB)

Line 4
4.0000 ...
4.4095 %QB4.0 ... %QB4.4095

%QW4.0 ... %QW4.2047
%QD4.0 ... %QD4.1023
%QX4.0.0 ...
%QX4.4095.7

__

V7 AC500 System Technology 29 CPUs AC500 / Issued: 08.2007

2.3 Processing of inputs and outputs in the multitasking system

The following figure shows how the inputs and outputs are processed in the multitasking system.

Interrupt und Task fertig

Ausgänge Ext. coupler Slot 4

Hardware / DPR E/A-Abbild ImageTasks

..

Abarbeitung Anwendertask:
Lesen und Schreiben auf dem Image

Interrupt

I/O-Bus

Eingänge

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

Ausgänge

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

..

Eingänge am I/O-Bus

Eingänge an COM1

Eingänge an COM2

Eingänge am FBP interface

Eingänge Int. coupler Slot 0

Eingänge Ext. coupler Slot 4

Variablenbereich

Adressbereich (%M-Bereich)

RETAIN-Bereich

Ausgänge am I/O-Bus

Ausgänge an COM1

Ausgänge an COM2

Ausgänge am FBP interface

Ausgänge Int. coupler Slot 0

Ausgänge Ext. coupler Slot 1

..
Eingänge Ext. coupler Slot 1

Start einer Task:
Byteweises Kopieren der
in der Task verwendeten
Eingänge

..

..

..

Ende einer Task:
Byteweises Kopieren der
in der Task verwendeten
Ausgänge

Interrupt und Task fertig

Ausgänge Ext. coupler Slot 4Ausgänge Ext. coupler Slot 4

Hardware / DPR E/A-Abbild ImageTasks

..

Abarbeitung Anwendertask:
Lesen und Schreiben auf dem Image

Interrupt

I/O-Bus

Eingänge

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

Eingänge

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

Ausgänge

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

Ausgänge

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

I/O-Bus

COM1: CS31-Bus

COM2: local I/O expansion

FBP slave interface

Internal coupler – Slot 0

External coupler – Slot 1

External coupler – Slot 4

..

..

Eingänge am I/O-BusEingänge am I/O-Bus

Eingänge an COM1Eingänge an COM1

Eingänge an COM2Eingänge an COM2

Eingänge am FBP interfaceEingänge am FBP interface

Eingänge Int. coupler Slot 0Eingänge Int. coupler Slot 0

Eingänge Ext. coupler Slot 4Eingänge Ext. coupler Slot 4

VariablenbereichVariablenbereich

Adressbereich (%M-Bereich)Adressbereich (%M-Bereich)

RETAIN-BereichRETAIN-Bereich

Ausgänge am I/O-BusAusgänge am I/O-Bus

Ausgänge an COM1Ausgänge an COM1

Ausgänge an COM2Ausgänge an COM2

Ausgänge am FBP interfaceAusgänge am FBP interface

Ausgänge Int. coupler Slot 0Ausgänge Int. coupler Slot 0

Ausgänge Ext. coupler Slot 1Ausgänge Ext. coupler Slot 1

..
Eingänge Ext. coupler Slot 1Eingänge Ext. coupler Slot 1

Start einer Task:
Byteweises Kopieren der
in der Task verwendeten
Eingänge

Start einer Task:
Byteweises Kopieren der
in der Task verwendeten
Eingänge

..

..

..

Ende einer Task:
Byteweises Kopieren der
in der Task verwendeten
Ausgänge

Ende einer Task:
Byteweises Kopieren der
in der Task verwendeten
Ausgänge

Generation of the input data image:

Inputs at the I/O bus:

After all I/O modules have been processed at the I/O bus, a corresponding interrupt is generated in the
processor. The inputs are copied to the input data image during the Interrupt Service Routine (ISR). If
the outputs were updated by a task, the outputs in the output data image are copied.

Inputs at the CS31 system bus:

After the CS31 driver has processed all I/O modules, a corresponding interrupt is generated in the
processor. The inputs are copied to the input data image during the Interrupt Service Routine (ISR). If
the outputs were updated by a task, the outputs in the output data image are copied.

Inputs of couplers line 0 to 4:

Once a coupler has received new data, a corresponding interrupt is generated in the processor. The
inputs are copied from the DPR to the input data image of the processor during the Interrupt Service
Routine (ISR). If the outputs were updated by a task, the outputs in the output data image are copied to
the DPR.

Precondition for this is a valid coupler configuration.

Starting a task:

When starting a task, the inputs used in the task are copied byte-wise from the input data image to
the image. Byte-wise means that when using, for example, the input %IX0.0, the image of the inputs
%IX0.0 ... IX0.7 will be copied to the image.

Because only those inputs are copied that are directly used in the task, it is not possible to read the
inputs indirectly, if cycle consistency is required.

__

V7 AC500 System Technology 30 CPUs AC500 / Issued: 08.2007

Processing a task:

All tasks access the image, i.e., inputs are read from the image and outputs are written to the image. In
ONLINE mode, the inputs/outputs of the image are displayed.

Termination of processing the output data image by a task:

At the end of the task processing, the outputs used in the task are copied byte-wise from the image to
the output data image. Byte-wise means that when using, for example, the output %QX0.0, the image of
the outputs %QX0.0 ... QX0.7 will be copied from the image to the output data image. The internal
variables "Output data image updated" for the CS31 processor and the couplers 0 .. 4 will be set.

Writing the outputs:

Outputs at the I/O bus:

With the next interrupt of the I/O bus driver, the outputs of the output data image will be written and the
variable "Output data image updated" will be reset.

Outputs at the CS31 system bus:

With the next interrupt of the CS31 processor, the outputs of the output data image will be written and
the variable "Output data image updated" will be reset.

Outputs of the coupler line 0 to 4:

With the next interrupt of the coupler, the outputs of the output data image will be written to the DPR and
the variable "Output data image updated" will be reset.

I/O update task:

In order to update the inputs/outputs not used in the task, all inputs/outputs of the image are updated by
a lower priority task (I/O update task). This task is only processed if no other user task runs.

2.4 Addressable flag area (%M area) in the AC500

2.4.1 Allocation of the addressable flag area in the AC500

The addressable flag area for the AC500 is divided into several segments with a size of 64 kbytes per
segment. A maximum of 8 segments can be addressed. The availability of the segments or partial
segments depends on the CPU. The size of the %M area can be found in the technical data of the CPUs
(see Technical data of the CPU) and in the target system settings (see Target Support Package).

Segment Operands Size,
cumulative

[kB]

CPU PM57x CPU PM58x CPU PM59x

0 %MB0.0...%MB0.65535 64 4 kB + +

1 %MB1.0...%MB1.65535 128 - + +

2 %MB2.0...%MB2.65535 192 - - +

3 %MB3.0...%MB3.65535 256 - - +

4 %MB4.0...%MB4.65535 320 - - +

5 %MB5.0...%MB5.65535 284 - - +

6 %MB6.0...%MB6.65535 448 - - +

7 %MB7.0...%MB7.65535 512 - - +

__

V7 AC500 System Technology 31 CPUs AC500 / Issued: 08.2007

2.4.2 Access to the %M area using the Modbus® Protocol

The Modbus® RTU protocol is implemented in the AC500. With the help of the Modbus® protocol, the
segments 0 and 1 of the addressable flag area can be accessed.

The chapter Modbus in this documentation contains a detailed description of the Modbus® protocol and
the corresponding addressing (see also Modbus protocol).

 Note: For the AC500 CPU PM571, 4kB = %MB0.0 .. %MB0.4095 (i.e., not a complete segment)
are available for the addressable flag area. Thus, not all Modbus addresses can be accessed.

2.4.3 Access to operands in the addressable flag area

The operands in the %M area can be accessed bit-wise, byte-wise, word-wise and double-word-wise.

Byte
SINT / BYTE

Bit (byte-oriented)
BOOL

Word
INT / WORD

Double word
DINT / DWORD

Segment 0

%MB0.0 %MX0.0.0 ... %MX0.0.7

%MB0.1 %MX0.1.0 ... %MX0.1.7
%MW0.0

%MB0.2 %MX0.2.0 ... %MX0.2.7

%MB0.3 %MX0.3.0 ... %MX0.3.7
%MW0.1

%MD0.0

...

%MB0.65532 %MX0.65532.0 ... %MX0.65532.7

%MB0.65533 %MX0.65533.0 ... %MX0.65533.7
%MW0.32766

%MB0.65534 %MX0.65534.0 ... %MX0.65534.7

%MB0.65535 %MX0.65535.0 ... %MX0.65535.7
%MW0.32767

%MD0.16383

Segment 1

%MB1.0 %MX1.0.0 ... %MX1.0.7

%MB1.1 %MX1.1.0 ... %MX1.1.7
%MW1.0

%MB1.2 %MX1.2.0 ... %MX1.2.7

%MB1.3 %MX1.3.0 ... %MX1.3.7
%MW1.1

%MD1.0

...

%MB1.65532 %MX1.65532.0 ... %MX1.65532.7

%MB1.65533 %MX1.65533.0 ... %MX1.65533.7
%MW1.32766

%MB1.65534 %MX1.65534.0 ... %MX1.65534.7

%MB1.65535 %MX1.65535.0 ... %MX1.65535.7
%MW1.32767

%MD1.16383

Segment 2

%MB2.0 %MX2.0.0 ... %MX2.0.7

%MB2.1 %MX2.1.0 ... %MX2.1.7
%MW2.0

%MB2.2 %MX2.2.0 ... %MX2.2.7

%MB2.3 %MX2.3.0 ... %MX2.3.7
%MW2.1

%MD2.0

...

%MB2.65532 %MX2.65532.0 ... %MX2.65532.7

%MB2.65533 %MX2.65533.0 ... %MX2.65533.7
%MW2.32766

%MB2.65534 %MX2.65534.0 ... %MX2.65534.7

%MB2.65535 %MX2.65535.0 ... %MX2.65535.7
%MW2.32767

%MD2.16383

...

Segment 7

%MB7.0 %MX7.0.0 ... %MX7.0.7

%MB7.1 %MX7.1.0 ... %MX7.1.7
%MW7.0

%MB7.2 %MX7.2.0 ... %MX7.2.7

%MB7.3 %MX7.3.0 ... %MX7.3.7
%MW7.1

%MD7.0

...

%MB7.65532 %MX7.65532.0 ... %MX7.65532.7

%MB7.65533 %MX7.65533.0 ... %MX7.65533.7
%MW7.32766

%MB7.65534 %MX7.65534.0 ... %MX7.65534.7

%MB7.65535 %MX7.65535.0 ... %MX7.65535.7
%MW7.32767

%MD7.16383

__

V7 AC500 System Technology 32 CPUs AC500 / Issued: 08.2007

2.5 Absolute addresses of operands

2.5.1 Adress operator ADR

For particular blocks or in case of accessing operands via pointers, the absolute address of an operand
must be determined. To do this, the Control Builder provides the address operator ADR.

The address operator ADR is described in the documentation for the Control Builder (see CoDeSys
Documentation / ADR operator). The documentation you are reading here describes only the
peculiarities of bit operands.

The addresses provided by the address operator can be used as inputs for blocks that require absolute
addresses (such as xxx_MOD_MAST, COM_SND). If these blocks shall be applied to internal variables,
it must be guaranteed that the variables are set to successive addresses. This is achieved by declaring
ARRAYs and STRINGs.

The address operator ADR provides the address of an operand in one double word DWORD (i.e.,
32 bits). The address operator returns the address of the first byte of a variable (byte address). For the
user-definable variables, variables of the type BOOL are stored as byte.

2.5.2 Bit address operator BITADR

For inputs, outputs and variables of the addressable flag area (%M area) or addressable PERSISTENT
area (%R area), operands of the type BOOL occupy one bit. The address of this type of variables cannot
be determined with the operator ADR.

When processing the statement:

dwAddress := ADR(%MX0.0.0);

the following error message appears:

Error 4031:
PLC_PRG(xx): ADR is not allowed for bits! Use BITADR instead.

BITADR returns the bit offset within the area %I, %Q or %M as DWORD.

The following table shows the position of the operands within the memory (considering %MD0.0 and
%MD0.1 as example). Here you get information about which addresses the operator ADR returns and
which offsets BITADR returns.

 Note: The addresses shown are example addresses and thus can have other values.

__

V7 AC500 System Technology 33 CPUs AC500 / Issued: 08.2007

Position of operands within memory and values of operators ADR and BITADR:

Byte
SINT /
BYTE

Word
INT / WORD

Double word
DINT /
DWORD

Bit (byte-oriented)
BOOL

ADR BITADR

%MX0.0.0 8

%MX0.0.1 9

%MX0.0.2 10

%MX0.0.3 11

%MX0.0.4 12

%MX0.0.5 13

%MX0.0.6 14

%MB0.0

%MX0.0.7

16#08000000

15

%MX0.1.0 0

%MX0.1.1 1

%MX0.1.2 2

%MX0.1.3 3

%MX0.1.4 4

%MX0.1.5 5

%MX0.1.6 6

%MB0.1

%MW0.0

%MX0.1.7

16#08000001

7

%MX0.2.0 24

%MX0.2.1 25

%MX0.2.2 26

%MX0.2.3 27

%MX0.2.4 28

%MX0.2.5 29

%MX0.2.6 30

%MB0.2

%MX0.2.7

16#08000002

31

%MX0.3.0 16

%MX0.3.1 17

%MX0.3.2 18

%MX0.3.3 19

%MX0.3.4 20

%MX0.3.5 21

%MX0.3.6 22

%MB0.3

%MW0.1

%MD0.0

%MX0.3.7

16#08000003

23

%MX0.4.0 40

.. .. %MB0.4

%MX0.4.7

16#08000004

47

%MX0.5.0 32

.. .. %MB0.5

%MW0.2

%MX0.5.7

16#08000005

39

%MX0.6.0 56

.. .. %MB0.6

%MX0.6.7

16#08000006

63

%MX0.7.0 48

.. .. %MB0.7

%MW0.3

%MD0.1

%MX0.7.7

16#08000007

55

__

V7 AC500 System Technology 34 CPUs AC500 / Issued: 08.2007

2.6 Addressable PERSISTENT area (%R area) in the AC500

2.6.1 Special features of the addressable PERSISTENT area in the AC500

As of Control Builder version V1.2 and CPU firmware V1.2.0, the new operand area "addressable
PERSISTENT area" or %R area is available.

 Caution: The %R area is only available in combination with Control Builder version V1.2 and later
and AC500 firmware version V1.2.0 and later. For the %R area the following is relevant for Control
Builder V1.2:
 CoDeSys.exe V2.3.8.0 or higher (shown under CoDeSys / Info)
 AC500 Target PM5xx_V12 or higher (shown under InstallTarget / Installed targets)

The addressable PERSISTENT area or %R area has the following peculiarities:

1. Variables declared in the %R area are always located at the same position in the PLC's operand
memory because they have addresses assigned (like the variables in the %R area).

2. Variables in the %R area are declared as follows:

VAR (Caution: noRETAIN or PERSISTENT option)
 Symbol AT %RTypeSegment.Offset : TYPE; (* Comment *) or also
 aSymbol AT %RTypeSegment.Offset : ARRAY[start..end] OF TYPE; (* Comment *)
END_VAR

where: Symbol - symbolic name of the variable

 Type - X=BOOL (Bit), B=BYTE, W=WORD, D=DWORD

 Segment - 0..7 (availability depends on CPU type)

 Offset - 0..65535 (availability depends on CPU type)

 TYPE - BOOL, BYTE, WORD, DWORD or defined type (such as
structure)

 start - Index of the first ARRAY element

 end - Index of the last ARRAY element

3. For each segment in the %R area, an area can be set in the PLC configuration which is buffered
in case the battery is installed and fully charged. In this case, the variables behave like
variables declared as VAR RETAIN PERSISTENT, i.e.,
-> they keep their values even after
 - Online changes (like VAR RETAIN)
 - Voltage OFF/ON (like VAR RETAIN)
 - a download (like VAR PERSISTENT)

4. In contrast to the variables declared as PERSISTENT, these variables have the great advantage
that no program code is required for dumping the variables during a download.

5. The buffered part of the %R area can be written to the SD card and read from the card (see
chapter "Saving the buffered data of the %R area").

__

V7 AC500 System Technology 35 CPUs AC500 / Issued: 08.2007

2.6.2 Segmentation of the addressable PERSISTENT area in the AC500

The addressable PERSISTENT area in the AC500 is divided into several segments with a size of 64
kbytes per segment. A maximum of 8 segments can be addressed. The availability of the segments or
partial segments depends on the CPU:

Segment Operands Size, cumulative
[kB]

CPU PM57x CPU
PM58x

CPU
PM59x

0 %RB0.0...%RB0.65535 64 4 kB + +

1 %RB1.0...%RB1.65535 128 - + +

2 %RB2.0...%RB2.65535 192 - - +

3 %RB3.0...%RB3.65535 256 - - +

4 %RB4.0...%RB4.65535 320 - - +

5 %RB5.0...%RB5.65535 284 - - +

6 %RB6.0...%RB6.65535 448 - - +

7 %RB7.0...%RB7.65535 512 - - +

2.6.3 Saving the buffered data of the AC500's %R area

The buffered part of the %R area can be saved on the SD card and read from the card. This can be
necessary, if, for example, the controller has to be replaced.

Saving data is done in two steps:

1. Copying the data from the %R area and writing it to the CPU's RAM disk as file
2. Saving the file to the SD card.

Reading data from the SD card is also done in two steps:

1. Loading the file from the SD card to the CPU's RAM disk.
2. Copying the data from the RAM disk to the %R area.

Saving and reading the data can be done using function blocks in the user program or with the PLC
Browser contained in the Control Builder. The function blocks are contained in the library
SysInt_AC500_V10.LIB.

Function PLC Browser
command

Function block

Copy from %R area to RAM disk persistent save PERSISTENT_SAVE

Save file to SD card persistent
export

PERSISTENT_EXPORT

Read file from SD card to RAM disk persistent
import

PERSISTENT_IMPORT

Copy data from RAM disk to %R area persistent
restore

PERSISTENT_RESTORE

Delete buffered data of the PERSISTENT area persistent clear PERSISTENT_CLEAR

 Caution: If cycle consistency is required for the data, this has to be implemented in the user
program. That means that the data may not be changed during copying to/from the %R area from/to
the RAM disk.
If saving is done using the PLC Browser, this can be easily carried out by stopping the user program.

__

V7 AC500 System Technology 36 CPUs AC500 / Issued: 08.2007

 Caution: Copying the PERSISTENT area takes some milliseconds (see the following table).
Thus, an according cycle time has to be set in the task configuration. Please note the remarks on the
task configuration!

Action Time in ms

 CPU PM57x CPU PM58x CPU PM59x

Restoring 1 kB (1024 bytes)

PERSISTENT_CLEAR < 1 < 1 < 1

PERSISTENT_SAVE 2 2 2

PERSISTENT_EXPORT 1000 1000 500

PERSISTENT_IMPORT 500 1000 500

PERSISTENT_RESTORE 2 < 1 1

Restoring 4 kB (4096 bytes)

PERSISTENT_CLEAR < 1 < 1 < 1

PERSISTENT_SAVE 2 3 2

PERSISTENT_EXPORT 1000 1000 500

PERSISTENT_IMPORT 500 1000 500

PERSISTENT_RESTORE 3 3 2

Restoring 64 kB (65536 bytes)

PERSISTENT_CLEAR not possible 8 2

PERSISTENT_SAVE not possible 11 6

PERSISTENT_EXPORT not possible 2500 1000

PERSISTENT_IMPORT not possible 2000 500

PERSISTENT_RESTORE not possible 12 5

Restoring max. PERSISTENT area

 4 kB 128 kB 512 kB

PERSISTENT_CLEAR < 1 17 22

PERSISTENT_SAVE 2 22 35

PERSISTENT_EXPORT 1000 4000 8000

PERSISTENT_IMPORT 500 3000 4000

PERSISTENT_RESTORE 3 22 31

__

V7 AC500 System Technology 37 CPUs AC500 / Issued: 08.2007

2.6.4 Access to operands in the addressable PERSISTENT area (%R area)

The operands in the %R area can be accessed bit-wise, byte-wise, word-wise and double-word-wise.

Byte
SINT / BYTE

Bit (byte-oriented)
BOOL

Word
INT / WORD

Double word
DINT / DWORD

Segment 0

%RB0.0 %RX0.0.0...%RX0.0.7

%RB0.1 %RX0.1.0...%RX0.1.7
%RW0.0

%RB0.2 %RX0.2.0...%RX0.2.7

%RB0.3 %RX0.3.0...%RX0.3.7
%RW0.1

%RD0.0

%RB0.65532 %RX0.65532.0...%RX0.65532.7

%RB0.65533 %RX0.65533.0...%RX0.65533.7
%RW0.32766

%RB0.65534 %RX0.65534.0...%RX0.65534.7

%RB0.65535 %RX0.65535.0...%RX0.65535.7
%RW0.32767

%RD0.16383

Segment 1

%RB1.0 %RX1.0.0...%RX1.0.7

%RB1.1 %RX1.1.0...%RX1.1.7
%RW1.0

%RB1.2 %RX1.2.0...%RX1.2.7

%RB1.3 %RX1.3.0...%RX1.3.7
%RW1.1

%RD1.0

%RB1.65532 %RX1.65532.0...%RX1.65532.7

%RB1.65533 %RX1.65533.0...%RX1.65533.7
%RW1.32766

%RB1.65534 %RX1.65534.0...%RX1.65534.7

%RB1.65535 %RX1.65535.0...%RX1.65535.7
%RW1.32767

%RD1.16383

Segment 2

%RB2.0 %RX2.0.0...%RX2.0.7

%RB2.1 %RX2.1.0...%RX2.1.7
%RW2.0

%RB2.2 %RX2.2.0...%RX2.2.7

%RB2.3 %RX2.3.0...%RX2.3.7
%RW2.1

%RD2.0

%RB2.65532 %RX2.65532.0...%RX2.65532.7

%RB2.65533 %RX2.65533.0...%RX2.65533.7
%RW2.32766

%RB2.65534 %RX2.65534.0...%RX2.65534.7

%RB2.65535 %RX2.65535.0...%RX2.65535.7
%RW2.32767

%RD2.16383

Segment 7

%RB7.0 %RX7.0.0...%RX7.0.7

%RB7.1 %RX7.1.0...%RX7.1.7
%RW7.0

%RB7.2 %RX7.2.0...%RX7.2.7

%RB7.3 %RX7.3.0...%RX7.3.7
%RW7.1

%RD7.0

%RB7.65532 %RX7.65532.0...%RX7.65532.7

%RB7.65533 %RX7.65533.0...%RX7.65533.7
%RW7.32766

%RB7.65534 %RX7.65534.0...%RX7.65534.7

%RB7.65535 %RX7.65535.0...%RX7.65535.7
%RW7.32767

%RD7.16383

 Note: Only the first 4 kB in segment 0 are available for PM57x, i.e., %RB0.0..%RB0.4095 or
%RW0.0..%RW0.2047 or %RD0.0..%RD0.1023.

__

V7 AC500 System Technology 38 CPUs AC500 / Issued: 08.2007

3 The AC500 PLC configuration

3.1 Overview on the PLC configuration

3.1.1 PLC configuration functions

The general operation of the PLC configuration is described in detail in the Control Builder
documentation (see CoDeSys Documentation / PLC Configuration). This section describes the
configuration of the AC500.

The PLC configuration describes the hardware of the project. This way, the following data can be made
available in the project:

• General parameters of the AC500 CPU

• Inputs and outputs of all modules connected to the I/O bus

• Symbolic names and comments for the inputs and outputs

• Parameters of the input and output modules and the assigned I/O channels, if available

• Mode and parameter settings for the serial interfaces

• Inputs and outputs of all input/output modules connected to the serial interface COM1 in CS31
mode

• Coupler type, general parameters and logs of the installed couplers

• All required system libraries are automatically loaded according to the configuration when
building the project (started by pressing <F11>)

• Creation of a new database for exporting and importing configuration data in XML data format

The PLC configuration for the AC500 allows to load a project into all AC500 CPUs (PM571, PM581,
PM591, ..). In order to download a project to another CPU, the desired CPU has to be selected in the
target settings. It is only necessary to change the PLC configuration, if the hardware structure of the PLC
has changed, i.e., if, for example, other couplers are installed.

The PLC configuration allows to export and import the complete configuration or parts of it. Thus, it is for
example possible to store previously edited symbolic names of the inputs/outputs of an I/O module on
the PC and to import them into other projects. This is also possible for the interface settings (see also
chapter "Export and import of configuration data").

3.1.2 Export and import of configuration data

Exporting a module, all interface data or a complete configuration is done by selecting the desired
element in the PLC configuration, opening the context menu by right-clicking the element and selecting
the menu item "Export module". In the appearing window, the module can be saved to the corresponding
configuration level as XML file under the selected module name.

Importing modules is done in the same way than exporting. That means, by right-clicking the desired
module in the configuration tree and selecting the menu item "Import module" from the context menu.

 Note: Modules can only be imported into the configuration level from which they were previously
exported.

In case of I/O modules (such as I/O bus, CS31 bus), the position of the module can be ignored. Thus, a
module installed in slot 1 can be exported and imported to slot 5. The input and output addresses are
changed automatically.

__

V7 AC500 System Technology 39 CPUs AC500 / Issued: 08.2007

Example of an export/import procedure:

Example 1:

The input/output module DC532 at the I/O bus for machine part Axx shall be saved as DC532_Axx and
then be used in another project.

1. Append a DC532 module to the I/O bus by right-clicking the I/O bus element in the configuration
tree and selecting the menu item "Append Subelement" / "DC532 - 16 digital input and 16 digital
Inoutput" from the context menu.

2. Edit the symbolic names and comments of the inputs/outputs.

3. Export the DC532 module by right-clicking it in the configuration tree and selecting the menu
item "Export module" from the context menu. In the appearing window, enter the file name
"DC532_Axx" and confirm the window.
Now the file "DC532_Axx.xml" is saved to the directory Compile which is a subdirectory of the
Control Builder installation directory.

4. If necessary, save the project and open/create the project into which you want to insert the
exported module.

5. Append a DC532 module to the I/O bus of this project.

6. Right-click the module DC532 in the configuration tree, select the context menu item "Import
module" and then choose the file "DC532_Axx" (contains the exported module) in the appearing
window. The module will be inserted and the symbolic names and comments are available in the
projects afterwards.

Example 2:

The Modbus RTU settings for serial interface COM1 shall be saved as "COM1_MODBUS_Slave1".

1. Change the COM1 parameters to "COM1 - MODBUS" by right-clicking the element in the
configuration tree and selecting "Replace element" / "COM1 - MODBUS".

2. Configure the interface parameters in the "Module parameters" tab.

3. Export the new settings by right-clicking COM1 in the configuration tree and selecting the menu
item "Export module" from the context menu. In the appearing window, enter the file name
"COM1_MODBUS_Slave1" and confirm the window.
Now the file "COM1_MODBUS_Slave1.xml" is saved to the directory Compile of the Control
Builder.

3.1.3 Default settings in the PLC configuration

Once you have selected the AC500 CPU in the target settings, the CPU can be configured. To do this,
select the object "PLC Configuration" in the "Resources" tab.

In case of a new AC500 project, the PLC configuration contains the following default settings:

 Note: These default settings can be restored at any time by selecting "Extras" / "Standard
configuration". Do not change the default settings under "Settings"! As of PS501 version V1.2, the
parameter "Automatic calculation for addresses" is no longer editable.

__

V7 AC500 System Technology 40 CPUs AC500 / Issued: 08.2007

The parameters represent the interfaces of the AC500 controllers. Each interface can be configured.

The individual parameters are used to configure the following elements:

Element Configuration

CPU parameters CPU parameters.

I/O bus Input/output modules that are directly connected to the CPU.

Interfaces Serial interfaces COM1 and COM2 and FBP slave interface.

Couplers Parameters and protocols of the internal coupler and the external couplers. The
real coupler configuration (ARCNET excluded) and the configuration of the
connected input/output modules is done with the integrated fieldbus configurator
SYCON.net (see also fieldbus configuration with SYCON.net).

The PLC configuration is based on the configuration files (*.cfg) installed with the TSP.

3.1.4 Setting parameters in the PLC configuration

For all windows containing module parameters the following basic rules apply:

• All visible parameters of the configuration file are displayed.
Only the values in the column Value can be edited.

• Index: The Index is a consecutive number (i) for the parameters within a module.

• Name: Name of the parameter.

• Value : Value of the parameter, editable.
The default value is displayed initially. Values can be set directly or by means of symbolic
names. If the entries in the configuration file are not set to 'Read Only', they can be edited. To
edit a value, click on the edit field or select one of the entries from the scroll list.

• Default: Default value of the parameter.

• Min.: Minimum value of the parameter (applies only if no symbolic names are used).

• Max.: Maximum value of the parameter (applies only if no symbolic names are used).

A tooltip may give additional information on the currently selected parameter. This information is
displayed according to the language setting for the Control Builder.

3.2 Configuration of CPU parameters

3.2.1 CPU parameters in PS501 versions V1.0 and V1.1

Selecting "CPU parameters" in the configuration tree opens the configuration window as shown as
follows:

__

V7 AC500 System Technology 41 CPUs AC500 / Issued: 08.2007

The following parameters can be set:

Parameter Default
value

Value Meaning

On If the Flash memory contains a valid project,
the project will be loaded into the RAM memory
and executed when switching on the controller.

Auto run /
Start of user program
when voltage ON see
remark 1

On

Off If the Flash memory contains a valid project,
this project will be loaded into the RAM
memory but not executed when switching on
the controller.

On The error LED lights up for errors of all classes.

Off_by_E4 Warnings (E4) are not indicated by the error
LED.

Error LED On

Off_by_E3 Warnings (E4) and light errors (E3) are not
indicated by the error LED.

On The availability of the battery and the battery
status are checked. If no battery is available or
the battery is empty, a warning (E4) is
generated and the LED ERR lights up.

Check Battery On

Off The battery is not checked. No warning (E4) is
generated. This also applies if a battery is
installed but empty!

Off in
hardware and
online

In case of STOP, all outputs at the hardware
and in the online display are set to FALSE or 0.

Off in
hardware and
actual state
online

In case of STOP, all outputs at the hardware
are set to FALSE or 0. The online display
indicates the status from the last cycle of the
user program.

Behaviour of outputs
in stop

Off in
hardware
and
online

Actual state
in hardware
and online

The status of the last cycle of the user program
is kept for the outputs at the hardware and in
the online display.

No effect In case of an error, the user program is not
stopped.

E1 In case of a fatal error (E1), the user program is
stopped.

E2 In case of a fatal or serious error (E1-E2), the
user program is stopped.

E3 In case of a fatal, serious or light error (E1-E3),
the user program is stopped.

Stop on error class No effect

E4 In case of a fatal, serious or light error (E1-E3)
or a warning (E4), the user program is stopped.

Off In case of a fatal error (E2), no warmstart is
performed.

Warmstart on E2 Off

On In case of a fatal error (E2), a warmstart is
performed automatically. (V1.2.0 and higher)

Remark 1: Setting the parameters Auto run and MOD using the display/keypad

Loading and running the user program also depends on the setting for the parameter MOD using the
display/keypad. The display/keypad setting always has the higher priority.

__

V7 AC500 System Technology 42 CPUs AC500 / Issued: 08.2007

The following applies:

MOD 00: The user program will be loaded and run according to the setting for the CPU parameter
"Auto run" (default setting).

MOD 01: User program will not be loaded/run.

MOD 02: The user program will be loaded and run independent of the setting for the CPU
parameter "Auto run".

Keeping the "RUN" pushbutton pressed when booting the PLC automatically activates MOD 01, i.e., the
user program is not loaded/run. Thus, it is possible to boot the PLC in Stop status. This may be required
if, for example, both serial interfaces are set to Modbus and therefore no access with the Control Builder
software is possible via the serial interface.

3.2.2 CPU parameters in version PS501 V1.2

The CPU parameters have been revised and expanded for PS501 version V1.2:

__

V7 AC500 System Technology 43 CPUs AC500 / Issued: 08.2007

The following parameters can be set:

Parameter Default
value

Value Meaning

On If the Flash memory contains a valid project, the
project will be loaded into the RAM memory and
executed when switching on the controller.

Auto run /
Start of user
program when
voltage ON
see remark 1

On

Off If the Flash memory contains a valid project, this
project will be loaded into the RAM memory but not
executed when switching on the controller.

On The error LED lights up for errors of all classes, no
failsafe function activated.

Off_by_E4 Warnings (E4) are not indicated by the error LED,
no failsafe function activated.

Off_by_E3 Warnings (E4) and light errors (E3) are not
indicated by the error LED, no failsafe function
activated.

On+failsafe The error LED lights up for errors of all classes and
the failsafe function of the I/O bus is activated.

Off_by_E4
+failsafe

Warnings (E4) are not indicated by the error LED,
the failsafe function of the I/O bus is activated.

Error LED
see remark 2

On

Off_by_E3
+failsafe

Warnings (E4) and light errors (E3) are not
indicated by the error LED, the failsafe function of
the I/O bus is activated.

On The availability of the battery and the battery status
are checked. If no battery is available or the battery
is empty, a warning (E4) is generated and the LED
ERR lights up.

Check Battery On

Off The battery is not checked. No warning (E4) is
generated. This also applies if a battery is installed
but empty!

Off in
hardware
and online

In case of STOP, all outputs at the hardware and in
the online display are set to FALSE or 0.

Off in
hardware
and actual
state online

In case of STOP, all outputs at the hardware are
set to FALSE or 0. The online display indicates the
status from the last cycle of the user program.

Behaviour of
outputs in stop
see remark 3

Off in
hardware
and
online

Actual
state in
hardware
and online

The status of the last cycle of the user program is
kept for the outputs at the hardware and in the
online display.

E2 failure If a floating point exception occurs, an E2 error
(Err=38) is triggered. The CPU goes to STOP.
Warning: PM59x only!

Reaction on floating
point exceptions
see remark 4

E2
failure

No failure If a floating point exception occurs, no E2 error is
triggered. Using the block FPU_EXINFO in the user
program allows to react on a possibly occurred
exception.
Warning: PM59x only!

__

V7 AC500 System Technology 44 CPUs AC500 / Issued: 08.2007

Parameter Default
value

Value Meaning

No effect In case of a fatal or serious error (E1-E2), the user
program is stopped.

E1 In case of a fatal or serious error (E1-E2), the user
program is stopped.

E2 In case of a fatal or serious error (E1-E2), the user
program is stopped.

E3 In case of a fatal, serious or light error (E1-E3), the
user program is stopped.

Stop on error class
see remark 5

E2

E4 In case of a fatal, serious or light error (E1-E3) or a
warning (E4), the user program is stopped.

Off In case of a fatal error (E2), no warmstart is
performed.

On after E2
error

In case of a fatal error (E2), a warmstart is
performed automatically.

On after
short
voltage dip

A warmstart is performed after a short voltage dip.

Warmstart
see remark 6

Off

On after E2
or short
voltage dip

In case of a fatal error (E2) or after a short voltage
dip, a warmstart is performed automatically.

Start PERSISTENT
%R0.x
see remark 7

0 0..65535 Start offset for buffered area in PERSISTENT area
%R0.x

End PERSISTENT
%R0.x

0 0...65535 End offset for buffered area in PERSISTENT area
%R0.x

...

Start PERSISTENT
%R7.x

0 0...65535 Start offset for buffered area in PERSISTENT area
%R7.x

End PERSISTENT
%R7.x

0 0...65535 End offset for buffered area in PERSISTENT area
%R7.x

Remark 1: Setting the parameters Auto run and MOD using the display/keypad

See remark 1 under CPU parameters in PS501 versions V1.0 and V1.1

Remark 2: Error LED

In addition to setting the behavior of the CPU's error LED ERR, this parameter is used to set the failsafe
behavior of the I/O bus.

Remark 3: Behaviour of outputs in Stop

The setting of the parameter "Behaviour of outputs in stop" directly influences the failsafe function of the
outputs of the S500 I/O devices.

Remark 4: Reaction on floating point exceptions

As of firmware version V1.2.0 of the AC500 CPUs and Control Builder version V1.2, the behavior of the
CPUs PM59x regarding floating point exceptions can be set. In standard case, any floating point
exception triggers an E2 error: class=E2, err=38, d1=9, d2=31, d3=31.

__

V7 AC500 System Technology 45 CPUs AC500 / Issued: 08.2007

The CPU goes to STOP.

CPUs without floating point processor PM57x and PM59x do not trigger a floating point exception.

If the parameter "Reaction on floating point exceptions" is set to "No failure", no error is triggered in case
of a floating point exception. The CPU remains in RUN mode.

By means of the function block FPU_EXINFO (contained in SysInt_AC500_V10.LIB) it can be
determined whether a floating point exception occurred during calculation. Depending on the result,
either the calculation can be continued with default values or the machine can be shut down.

Program example:

PROGRAM PLC_PRG

VAR

 FPUEXINFO1 : FPU_EXINFO;

 rV1 : REAL := -1.0;

 rV2 : REAL;

 bError : BOOL;

 bWarning : BOOL;

END_VAR

bWarning := bError := FALSE;

rV2 := SQRT(rV1); (* floating point calculation *)

FPUEXINFO1(); (* check for exception occurred *)

IF FPUEXINFO1.ERR THEN

 (* evaluation of exception *)

 (* for example, shut down system, continue calculation with default values or corrected values *)

 rV1 := 1.0;

 bWarning := TRUE;

 (* same calculation with corrected values *)

 rV2 := SQRT(rV1);

 FPUEXINFO1(); (* recheck.. *)

 IF FPUEXINFO1.ERR = TRUE THEN

 bError := TRUE;

 END_IF

END_IF

(* here, for example, evaluation of bWarning, bError.. *)

Remark 5: Stop on error class

As of firmware version V1.2.0 of the AC500 CPUs, the user program is stopped with any serious error
(class E2) independent of the setting for the parameter "Stop on error class". The settings "No effect"
and "E1" have the same behavior as the setting "E2".

The texts could not be changed due to downward compatibility to PS501 V1.0 and V1.1 projects.

Remark 6: Warm start

The parameter "Warmstart" allows to the set the behavior of the CPU in case of

- serious errors (class E2) and
- short voltage dips.

If the default setting is used, the CPU changes to STOP mode if a serious error occurs. The CPU is
switched off for voltage dips >10ms. The display shows "AC500".

The new settings allow to perform a warmstart of the CPU after a serious error or after short voltage dips
or in case of both events.

__

V7 AC500 System Technology 46 CPUs AC500 / Issued: 08.2007

The following figure shows the behavior of the CPU for different control voltage signals.

Short voltage dips, i.e., the control voltage falls below a value lower than "Powerfail OFF" (<11 VDC) for
less than 10 ms, are bridged by the PLC, i.e., the CPU remains on.

If the control voltage is switched off, the CPU remains on for > 10 ms.

If the control voltage is lower than 11 V DC (but > 6 V DC) for longer than 10 ms and then goes back to
the normal value, the behavior of the CPU depends on the setting for the parameter "Warmstart". If the
parameter is set to "Off", the CPU remains in power fail mode, i.e., it does not restart. A restart of the
CPU can only be done by switching the control voltage OFF/ON. If the parameter is set to "On after short
voltage dip" or "On after E2 or short voltage dip", the CPU is restarted when the control voltage is greater
than 17 V DC for 5 seconds. However, if the control voltage falls once more below 11 V DC within these
5 seconds, the time is restarted. Thus, the control voltage must have a value > 17 V DC for 5 seconds.

Remark 7: Start PERSISTENT %Rsegment.x and End PERSISTENT %Rsegment.x

With version V1.2 of PS501 and firmware V1.2.0 the new addressable variables area %Rx.x is available.
The parameters "Start PERSISTENT %Rsegment.x" and "End PERSISTENT %Rsegment.x" are used to
buffer this area. In the particular segment, "Start PERSISTENT %Rsegment.x" specifies the start byte
and "End PERSISTENT %Rsegment.x" the end byte of the area to be buffered.

The new operand area is described in detail in chapter "The addressable PERSISTENT area
%Rsegment.x".

__

V7 AC500 System Technology 47 CPUs AC500 / Issued: 08.2007

3.3 I/O bus configuration

3.3.1 Setting the general I/O bus parameters

Selecting "I/O-Bus" in the configuration tree opens the following configuration window:

In the same way as described for the CPU parameters, the general parameters for the CPU's I/O bus
can be set in this window. The following parameter can be set:

Parameter Default
value

Value Meaning

No In case of a configuration error, the user program is not
started.

Run on config
fault

No

Yes The user program is run independent of a faulty I/O bus
configuration.

3.3.2 Inserting input and output modules

To make the inputs and/or outputs of the input and output modules connected to the I/O bus available in
the project, the hardware must be reproduced in the PLC configuration.

Input and output modules connected to the I/O bus of the CPU occupy the I/O following area:

%IB0 .. %IB999 or %QB0 .. %QB999.

There is no fix assignment between module number and the input/output addresses of the channels.

Right-clicking the "I/O-Bus" element in the configuration tree opens the context menu where you can
change the "I/O_Bus" mode. Select "Append Subelement". The sub menu displays all available input
and output modules:

Select the desired module depending on its hardware configuration. Repeat this step for all modules. A
maximum of 7 input/output modules (10 modules as of V1.2.0) can be appended to the I/O bus.

__

V7 AC500 System Technology 48 CPUs AC500 / Issued: 08.2007

The following figure shows an example for a configuration with the maximum number of modules:

If the maximum number of modules (7 modules or 10 modules as of V1.2.0) are appended, the context
menu item "Append Subelement" can no longer be selected.

Changing the configuration is possible by deleting modules and inserting or appending new modules.

 Note: As of firmware version V1.2.0 and PS501 version V1.2, 10 input/output modules can be
appended to the CPU's I/O bus.

3.3.3 Configuring the input and output modules and channels

All inputs and/or outputs of the module are created when inserting the input/output module. In case of
digital modules, the channels are provided as WORD, BYTE and BOOL.

If version V1.0 or V1.1 of the Control Builder is used, the module parameters are directly shown when
clicking on an input/output module. As of Control Builder version V1.2, the Base parameters tab is
opened.

A module name can be entered into the Comment field. This name also appears in the tree structure.

__

V7 AC500 System Technology 49 CPUs AC500 / Issued: 08.2007

If you expand, for instance, the analog module AX522 and select the module parameters, the following is
displayed:

PLCconf_IO4_E.gif

Because the analog inputs can also be configured as digital inputs, bit 0 of each channel is also
available as BOOL.

__

V7 AC500 System Technology 50 CPUs AC500 / Issued: 08.2007

The following settings are possible:

1. The window with the module-specific parameters is displayed by selecting the module in the
configuration tree. The parameters differ for the individual modules. For a description of the module
parameters refer to the documentation for the input/output modules (parameterization) (see also I/O
Device Description / Modules).

If an input/output module contains channel-related parameters, the following window appears when
selecting the corresponding channel in the configuration tree:

The parameters differ for the individual modules. For a description of the module parameters refer to the
documentation for the input/output modules.

2. The symbolic name of a channel can be entered in front of the string "AT" in the channel declaration.

 Note: All channels should have a symbolic name and only symbolic names should be used in the
program code. If the hardware configuration has changed or if you want to download the project to a
PLC with another hardware configuration and thus the PLC configuration has to be changed, the
addresses of the inputs and outputs can change. In case of symbolic programming (i.e., symbolic
names are used), the program code does not have to be changed.

Example how to enter a symbolic name:

3. For each channel, a comment can be entered into the field "Comment" in the "Base parameters" tab.

__

V7 AC500 System Technology 51 CPUs AC500 / Issued: 08.2007

3.3.4 Module parameter "Ignore module" of S500 I/O devices

All S500 I/O devices have the module parameter "Ignore module". This parameter allows to set whether
the I/O device specified in the PLC configuration is considered or not when checking the configuration
data.

The parameter setting No (default setting) requires that the device is physically available.

If the parameter is set to Yes, the device must not be connected!

Thus, it is for example possible to create a project for machines with different hardware configuration and
to exclude unnecessary input/output devices from checking by setting the parameter Ignore module to
TRUE.

Example:

In full installation (type A), a machine shall be controlled with an AC500 with the following hardware
configuration: CPU PM581 + 2xDC532 + 1xAX522

PM581 DC532 DC532 AX522

For a variant (type B) of the machine, the second DC532 is not required. This results in the following
PLC hardware configuration: CPU PM581 + 1xDC532 + 1xAX522

DC532 AX522PM581

The PLC configuration is identical for both machines:

In the project for machine type B, the module parameter Ignore module is set to TRUE for the second
DC532. Thus, all inputs and outputs have the same addresses.

A further advantage of this parameter is that, for example, not all devices must be available for test
purposes.

__

V7 AC500 System Technology 52 CPUs AC500 / Issued: 08.2007

3.4 Configuration of the serial interfaces (Interfaces / COM1 and COM2)

The AC500 CPU is equipped with the two interfaces COM1 and COM2 which can be operated as RS
232 and RS 485.

 Note: RS 485 operation of an interface is only possible, if the parameter "RTS control" is set to
"telegram".

3.4.1 Setting the protocol of the serial interfaces

By default, the serial interfaces are set to 'Online access', i.e., the access is done with help of the Control
Builder.

The protocol of the serial interfaces can be changed by right-clicking the interface 'COM1' or 'COM2' in
the configuration tree and selecting the context menu item 'Replace element'.

That means, the interface protocol is directly set in the PLC configuration. No block (such as MODINIT,
COMINIT) is required.

The serial interface settings can be read in online mode using the PLC browser commands "com
settings" and "com protocols". Chapter "AC500-specific PLC browser commands" contains a description
of these commands.

__

V7 AC500 System Technology 53 CPUs AC500 / Issued: 08.2007

3.4.2 The setting 'COMx - Online access'

If 'COMx - Online access' is selected, the interface parameters are set to the following fixed values:

Baudrate=19200 Baud, Stop bit=1, Parity=none, Data bits=8

 Note: As of firmware version V1.1.7 and Control Builder version V1.2, the parameter "RTS control"
is set to "telegram". This also allows programming via RS 485 (for example using an according
converter).

The parameters are read-only (not editable).

The serial interface settings must match the settings for the serial gateway driver in the Control Builder
(see also Programming and Testing / Serial Driver).

3.4.3 The setting 'COMx - ASCII'

With the selection "ASCII", the initialization of the serial interface is done for the "free protocol", i.e., all
interface parameters can be set and any protocol can be realized.

Sending and receiving data is done by means of the blocks COM_SEND and COM_REC (contained in
library ASCII_AC500_V10.LIB). A detailed description of these blocks can be found in the
ASCII_AC500_V10.LIB documentation.

 Caution: To be able to receive data using the block COM_REC, a buffer of the size 272 bytes
must be available (for example abyRecData : ARRAY[0..271] OF BYTE).
This is also required if only short telegrams are received.

The operating system provides a total of 32 buffers with 272 bytes each for the transmission and
reception of data. If the PLC is in STOP mode (= pause) or the input EN at the block COM_REC is set to
FALSE or the block is not called, these buffers run full.

If the block COM_REC is called again (with EN:=TRUE) before all buffers are used, the data received
meanwhile are made available.

If all buffers were full, the error Invalid handle with ERR=TRUE and ERNO=16#2001=8193 is reported
for one cycle. After this the reception is reset.

The reception is always reset after a download or the command Online/Reset.

__

V7 AC500 System Technology 54 CPUs AC500 / Issued: 08.2007

Selecting "ASCII" displays the following window:

The parameters define how the serial interface will be initialized. The parameters can be grouped. They
are used to initialize the following functions:

• Monitoring the programming login:
Enable login

• Modem control and RS485:
RTS control, TLS, CDLY

• Recognition of telegram ending for reception:
Character timeout, Telegram ending selection, Telegram ending value, Telegram ending
character

• Checksum

• Transmission parameters:
Baudrate, Parity, Data bits, Stop bits

The following settings are possible:

Parameter Default
value

Value Meaning

Disabled There is no check with regard to the Control Builder
login telegram.

Enable login
see
remark 1

Disabled

Enabled Telegrams received are checked with regard to the
Control Builder login sequence. If the sequence is
detected, the protocol setting is changed to 'Online
access'.
-> available as of firmware 1.2.0 and PS501 V1.2

None No RTS control (direction control) RTS control
see
remark 2

none

telegram RTS control activated
(absolutely necessary for RS 485!)

TLS
see
remark 2

0 0...65535 Carrier lead time in [ms]
(TLS > CDLY)

CDLY
see
remark 2

0 0...65535 Carrier delay time in [ms]
(CDLY <= TLS)

Character
timeout

0 0...65535 Character timeout in characters (must be 0 if
Telegram ending selection = Character timeout)

__

V7 AC500 System Technology 55 CPUs AC500 / Issued: 08.2007

see
remark 3

none No telegram ending identifier

String
(check
receive)

2 characters, e.g. <CR><LF> (16#0d, 16#0a ->
16#0d0a)
in parameter "Telegram ending value"

Telegram
length

Telegram ending identifier set by telegram length

Duration Telegram ending identifier set by time

Telegram
ending selection
see
remarks
3 and 4

none

Character
timeout

Telegram ending identifier set by character timeout

16#0d 0...255 Up to version V1.1.x: Telegram ending character Telegram
ending
character
see
remark 3

0 0...1 As of version V1.2.0: Number of end characters in
case of telegram ending selection "String"

0 0...65535 Up to version V1.1.x: Telegram ending identifier
value for settings "Duration" and "Character timeout"

Telegram
ending value
see
remark 3

0 0...65535 As of version V1.2.0: Telegram ending identifier
value for settings "Duration", "Character timeout" and
"String"

None No checksum

CRC8 CRC8 checksum
-> available as of firmware V1.2.0

CRC16 CRC16 checksum (Motorola format)
-> available as of firmware V1.2.0

LRC Add all values to byte (ignore overflow), result
multiplied by -1
-> available as of firmware V1.2.0

ADD Add all values to byte (ignore overflow)
-> available as of firmware V1.2.0 and PS501 V1.2

CS31 CS31 bus checksum
-> available as of firmware V1.2.0 and PS501 V1.2

CRC8-FBP CRC8 FBP field bus neutral protocol
-> available as of firmware V1.2.0 and PS501 V1.2

XOR XOR all values to byte (ignore overflow)
-> available as of firmware V1.2.0 and PS501 V1.2

Checksum
see
remark 4

none

CRC16
(Intel)

Like CRC16, result swapped
-> available as of firmware V1.2.0 and PS501 V1.2

None No handshake

RTS/CTS Hardware handshake

XON/XOFF Not yet implemented

3964R
master

Not yet implemented

Handshake none

3964R
slave

Not yet implemented

Baudrate 19200 300
1200
4800
9600

14400
19200
38400
57600

115200
125000
187500

Character length in bits/s

__

V7 AC500 System Technology 56 CPUs AC500 / Issued: 08.2007

None No parity check

Odd Odd parity

Even Even parity

Mark Parity bit := TRUE

Parity none

Space Parity bit := FALSE

Data bits 8 5, 6, 7, 8 Character length in bits/character

Stop bits 1 1, 2 Number of stop bits

Remark 1: Enable login

This parameter is available as of firmware version V1.2.0 and PS501 V1.2!

If "Enable login" is set to Yes, all received telegrams are checked with regard to the CoDeSys login
service.

 Caution: It is recommended to activate the automatic login detection only for those projects for
which this function is absolutely required because it slows down communication via the serial interface
and also influences the PLC performance.

If the connection is directly made via RS 232, a login telegram will only be detected if the same
parameters as used by CoDeSys (Baudrate=19200 Baud, Stop bits=1, Parity=None, Data bits=8 Bit) are
set when initializing the interface.

The same applies if the connection is made via RS 232/RS 485 interface converters. The login telegram
can only be detected, if the initialization parameters have the same values as the parameters set in
CoDeSys. Because for such an application usually more than one device are connected to the RS 485
transmission line, the following has to be observed additionally:

The CoDeSys login telegram does not contain a device address. Thus, the service is first identified by all
devices connected to the RS 485 transmission line that can be programmed using CoDeSys and the
interface of which is able to read the login telegram (interface with Enable login=Yes). Due to this,
telegram collisions can occur during the subsequent acknowledgement of the login request by these
devices, resulting in an interruption of the communication.

If the connection between CoDeSys and the PLC is established via modem, the communication is not
influenced by the interface parameters set in the PLC configuration. The parameter values required for
the modem used have to be set. Once the initialization is completed, the mode processes the received
telegrams according to the parameter settings. Also the assignment between login request and an
individual PLC is guaranteed because the connection is established using the modem's phone number
or MSN.

The login with CoDeSys first causes a reinitialization of the interface. All blocks accessing this interface
are locked during the online session, i.e., they do not perform any function. During this period the block
outputs have the following values:

DONE = FALSE
ERR = TRUE
ERNO = PROTOCOL_PROTECTED = 16#301F = 12319

The blocks will be re-activated after the logout by CoDeSys.

The login monitoring for an interface is only done if CoDeSys is not already logged in via another
interface (Ethernet, ARCNET or other COM).

Remark 2: Usage of modems

The ASCII protocol considers the special properties of modems, interface converters and repeaters. If
these devices are used at a serial interface operated in 'free mode', the compression mechanism
possibly supported by these devices has to be deactivated. For detailed information, please refer to the
operation manual of the used device.

__

V7 AC500 System Technology 57 CPUs AC500 / Issued: 08.2007

Some repeaters, modems or interface converters require a control signal in order to set the transfer
direction. The direction control can be enabled or disabled via the input RTSCTRL.

Various devices additionally require a lead time to stabilize their carrier signal. These devices can only
transfer data in send direction after this time has elapsed. This carrier lead time can be set via the input
TLS.

Additionally, for some devices it is necessary to sustain the carrier signal in send direction for some time
after data transfer is completed. Only if this time has elapsed, the complete transfer of a telegram is
ensured and the devices are ready for data transfer in opposite direction. This carrier delay time can be
set via the input CDLY.

 Note: Carrier lead time (TLS) and carrier delay time (CDLY) must be adjusted for all
communication devices connected to the same transmission line.
The times are only considered for RTS control = telegram.

 Remark 3: Telegram ending identifier

The telegram ending identifier is set using the parameters Character timeout, Telegram ending selection,
Telegram ending character and Telegram ending value.

Character silent time monitoring:
Monitoring of the character timeout can be set for all possible telegram ending settings (except
Character timeout).

If the parameter "Character timeout" = 0, no character timeout monitoring is done.

With "Character timeout" > 0 the character timeout monitoring is activated.

The character silent time is defined in number of characters. The number of characters and the interface
parameters (Baudrate, Parity, Data bits and Stop bits) are used to calculate the silent time.

Example: Baudrate=9600 Baud, Parity=none, Data bits=8, Stop bits=1, Character timeout=3

This results in a frame of 10 bits/character:
1 start bit + 8 data bits + 0 parity bit + 1 stop bit

Character silent time = 1000 x Character timeout x Frame / Baudrate [ms]
Character timeout = 1000 x 3 x 10 / 9600 = 3.125 ms ~ 4 ms.

If the time between the reception of two characters exceeds the character silent time, the reception is
aborted with an error and the characters received up to this moment are made available.

__

V7 AC500 System Technology 58 CPUs AC500 / Issued: 08.2007

The following parameter combinations are possible:

Character
timeout

Telegram
ending
selection

Telegram
ending
character

Telegram
ending
value

Character
timeout

see remark on
character
silent time
monitoring

Type of
telegram
ending
identifier

Telegram
ending
character

- = ignored

Telegram
ending
value

- = ignored

Description

Number of
characters
0 or >0

None - - No telegram ending identifier,
i.e., the characters received
since last call are provided. The
maximum number of characters
is limited to 256.

String
(check
receive)

Number of
telegram
ending
characters
1 or 2

2 characters
(for example
16#0d0a)

According to value set for
"Telegram ending character", it
is checked for 1 or 2 ending
characters.
The ending character(s) is (are)
not passed, i.e., they are not
contained in DATA area.

1 1 16#0d =
13dec =
<CR>

After reception of 16#0d,
telegram received is reported.

Number of
characters
0 or >0

2 2 16#0d0a =
3338dec =
<CR><LF>

After reception of 16#0d and
subsequently 16#0a, telegram
received is reported.

Number of
characters
0 or >0

Telegram
length

- Number
of characters
>0 and
<=256

Telegram received is reported
once the number of characters
defined in "Telegram ending
value" is received.

Number of
characters
0 or >0

Duration - Time in [ms] Telegram received is reported
once the time set for "Telegram
ending value" (in [ms]) is
elapsed. The time starts with
the first FALSE -> TRUE edge
at input EN of the receive block
COM_REC.

0 Character
timeout

- Number
of characters
>0 and
<=256

The number of characters set
for "Telegram ending value" and
the interface parameters
(Baudrate, Parity, Data bits and
Stop bits) are used to calculate
the silent time.
Telegram received is reported if
the silent time between two
characters is >= the calculated
silent time.

 Caution: The setting for the telegram ending selection "String" has been changed for firmware
version V1.2.x and Control Builder version V1.2. This setting is not compatible with the setting in the
firmware versions V1.0.x and V1.1.x and Control Builder versions V1.0 and V1.1.

Up to version V1.2.x, the telegram ending character was set with the parameter "Telegram ending
character", the parameter "Telegram ending value" was ignored. Only one telegram ending character
could be set.
Thus, the user program has to be changed accordingly when updating to V1.2.x!

__

V7 AC500 System Technology 59 CPUs AC500 / Issued: 08.2007

Remark 4: Checksum:

The parameter "Checksum" takes effect as of CPU firmware version V1.2.0.

Sending with block COM_SEND:
With "Checksum" <> none, the selected checksum is appended when sending. If the parameter
"Telegram ending selection" is set to "String (check receive)", the checksum of the ending character(s) is
entered. The character(s) is (are) appended according to the inputs END_LEN and END_CH of the block
COM_SEND.

Receiving with block COM_REC:
With "Checksum" <> none, the selected checksum is checked during reception. If the parameter
"Telegram ending selection" is set to "String (check receive)", the checksum of the ending character(s) is
expected.
The ending character(s) and the checksum are not output, i.e., they are not contained in the DATA area.

A telegram should look as follows:

Data 0 Data 1 Data 2 .. Data n Check 1 [Check 2] End 1 [End 2]

The values enclosed in [] are only relevant for 16 bit checksum or 2 ending characters.
At the blocks COM_SEND and COM_REC, the area addressed via the input DATA contains the
following values:

Data 0 Data 1 Data 2 .. Data n

Example:

Setting in PLC configuration:
"Telegram ending selection" = String
"Telegram ending character" = 2
"Telegram ending value" = 16#0d0a
"Checksum" = CRC16 (i.e., Motorola format)

Send with COM_SEND:
LEN = n+1
END_LEN = 2
END_CH = 16#0d0a

The area addressed via input DATA contains the following data:

Data 0 Data 1 Data 2 .. Data n

The following data are sent via the interface:

Data 0 Data 1 Data 2 .. Data n CRC16
high

CRC16
low

16#0d 16#0a

Reception with COM_REC:
The interface receives the following telegram:

Data 0 Data 1 Data 2 .. Data n CRC16
high

CRC16
low

16#0d 16#0a

The following data are written to the area addressed via DATA:

Data 0 Data 1 Data 2 .. Data n

__

V7 AC500 System Technology 60 CPUs AC500 / Issued: 08.2007

3.4.4 The setting 'COMx - Modbus'

For the protocol setting 'MODBUS', the following window is displayed:

The following settings are possible:

Parameter Default
value

Value Meaning

Disabled There is no check with regard to the Control Builder
login telegram.

Enable login Disabled

Enabled Telegrams received are checked with regard to the
Control Builder login sequence. If the sequence is
detected, the protocol setting is changed to 'Online
access'.
-> available as of firmware V1.2.0

None No RTS control RTS control None

Telegram RTS control for telegram activated
-> available as of firmware V1.2.0

TLS 0 0...65535 Carrier lead time in [ms] or characters (TLS > CDLY)
-> available as of firmware V1.2.0

CDLY 0 0...65535 Carrier delay time in [ms] or characters (CDLY <=
TLS)
-> available as of firmware V1.2.0

Telegram
ending value

3 0...65535 Number of characters for character timeout

None No flow control

RTS/CTS Hardware handshake
-> available as of firmware V1.2.0

Handshake None

XON/XOFF Software handshake
-> Not yet implemented

Baudrate 19200 300
1200
4800
9600

14400

Character length in bits/s

__

V7 AC500 System Technology 61 CPUs AC500 / Issued: 08.2007

19200
38400
57600

115200
125000
187500

None No parity

Odd Odd parity

Even Even parity

Mark Parity bit := TRUE

Parity Even

Space Parity bit := FALSE

Data bits 8 5, 6, 7, 8 Number of data bits, 5 to 8

Stop bits 1 1, 2 Number of stop bits, 1 or 2

None None

Master Master

Operation
mode

None

Slave Slave

Address 0 0...255 Address for Modbus slave

Disable write
to %MB0.x
from

0 0...65535 Disable write access for segment 0 starting at
%MB0.x

Disable write
to %MB0.x to

0 0...65535 Disable write access for segment 0 up to %MB0.x

Disable read
to %MB0.x
from

0 0...65535 Disable read access for segment 0 starting at
%MB0.x

Disable read
to %MB0.x to

0 0...65535 Disable read access for segment 0 up to %MB0.x

Disable write
to %MB1.x
from

0 0...65535 Disable write access for segment 1 starting at
%MB1.x

Disable write
to %MB1.x to

0 0...65535 Disable write access for segment 1 up to %MB1.x

Disable read
to %MB1.x
from

0 0...65535 Disable read access for segment 1 starting at
%MB1.x

Disable read
to %MB1.x to

0 0...65535 Disable read access for segment 1 up to %MB1.x

The selection "COMx - MODBUS" sets the serial interface x to the Modbus RTU protocol (see also
Modbus protocol).

For Modbus slave operation, an area without read and/or write access can be set in the segments
%M0.x and %M1.x. Reading/writing is disabled beginning at the set address and is valid up to the set
end address (inclusive).

 Note: The parameter "Data bits" always has to be set to 8 for Modbus.

__

V7 AC500 System Technology 62 CPUs AC500 / Issued: 08.2007

3.4.5 The setting 'COM1 - CS31 Bus'

If the protocol 'CS31-Bus' is selected for the interface COM1, the interface is definitely set as CS31 bus
master.

COM2 cannot be used as CS31 bus interface.

As of AC500 firmware version V1.2.0 and Control Builder version V1.2, the parameter "Operation mode"
can be set to "Master" (default value) and "Master, ignore config fault" for the CS31.

 Note: The settings "Slave" or "Slave, ignore config fault" are not allowed for the "CS31 bus"
protocol. The default value "Master" is applied if these values are set.

The parameter "Operation mode" influences the beginning of the inputs/outputs update and the start of
the user program.

Setting "Master" (default):

Setting "Master, ignore config fault":

To make the inputs and/or outputs of the input and output modules connected to the CPU available in
the project, the hardware must be reproduced in the PLC configuration.

__

V7 AC500 System Technology 63 CPUs AC500 / Issued: 08.2007

Right-clicking the "COM1 - CS31-Bus" element in the configuration tree opens the context menu where
you can change the module "COM1". Select "Append Subelement". The sub menu displays all input and
output modules available for the CS31 bus:

Select the desired input/output module.

A maximum of 31 modules (slaves) can be connected to the CS31 bus. Please note that for a module
containing digital and analog expansions two modules are registered on the CS31 bus.

The configuration is described using the digital input module 07DI92 as an example. Once the module is
inserted, the inputs and outputs of the module are available. In the 'Module parameters' window, set the
'Module address' to the module's hardware address (this is the address defined at the module with DIL
switches).

 Note: For AC31 CPUs used as CS31 slave, the address is set via software.

__

V7 AC500 System Technology 64 CPUs AC500 / Issued: 08.2007

The module address has to be set for all modules connected to the CS31 bus.

 Caution: There is no fix connection between module address and the input/output addresses of
the channels. The input/output addresses are assigned automatically and change when inserting new
modules.

When setting the module address, observe the following rules:

1. It is recommended to set a unique address for each module.

2. It is allowed to specify the same module address for a digital module and an analog module, but
this is not recommended.

3. If the same module address is set for a digital input module and a digital output module, only the
first module in the PLC configuration is detected. This also applies to analog modules!

4. DIL switch 8 (used to allocate the channels 8..15 for series 90) is ignored as all inputs/outputs
are byte-oriented.

5. In case of expandable CS31 modules, the maximum configurations have to be observed.

Input/output modules connected to COM1 occupy the following I/O area:

COM1: %IB1000 .. %IB1999 or %QB1000 .. %QB1999

Further parameters and settings for the CS31 modules are optional and can be found in the descriptions
for the individual modules.

The S500 modules are described here: S500 module description. AC31 modules are described in the
907 AC 1131 documentation.

Connecting the DC551 and S500 I/O devices to the CS31 bus

The base module "DC551-CS31" is available in two versions in the PLC configuration:

1. DC551-CS31 8 DI + 16 DC / without fast counter
The addresses 00...69 can be set at the module and in the PLC configuration.

2. DC551-CS31 8 DI + 16 DC + 2FC / with 2 fast counters
The hardware addresses 70...99 can be set at the module. This corresponds to the module addresses
00...29 with activated counter. In the PLC configuration and at the block CNT_DC551, the module
address (00..29) is set.
(See also library Counter_AC500_V11.LIB / CNT_DC551).

The following parameters can be set in the PLC configuration for the DC551:

__

V7 AC500 System Technology 65 CPUs AC500 / Issued: 08.2007

Parameter Default
value

Value Meaning

No It is checked whether the module exists on
the CS31 bus.

Ignore module
see
remark 1

No

Yes Module is not checked.
-> available as of CPU firmware V1.2.0 and
PS501 V1.2

0...69 Module address of the DC551 without fast
counter

Module
address

0

0...29 Module address of the DC551 with fast
counter

On The error LED lights up for errors of all
classes, no failsafe function activated.

Off_by_E4 Warnings (E4) are not indicated by the error
LED, no failsafe function activated.

Off_by_E3 Warnings (E4) and light errors (E3) are not
indicated by the error LED.
No failsafe function activated.

On+failsafe The error LED lights up for errors of all
classes and the failsafe function of the CS31
bus is activated.
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Off_by_E4+failsafe Warnings (E4) are not indicated by the error
LED, the failsafe function of the CS31 bus is
activated.
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Error-LED
see
remark 2

On

Off_by_E3+failsafe Warnings (E4) and light errors (E3) are not
indicated by the error LED, the failsafe
function of the CS31 bus is activated.
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

On Control voltage monitoring ON Check supply On

Off Control voltage monitoring OFF

Input delay 8 ms 0.1 / 1 / 8 / 32 ms Input delay 0.1 / 1 / 8 / 32 ms

Fast counter 0-No
counter

0-No counter Operation mode of the fast counter
(see also hardware / description of fast
counters)

On Output short-circuit detection ON Detection
short-circuits
at outputs

On

Off Output short-circuit detection OFF

Off Behavior of outputs at communication faults
on the CS31 bus OFF

Last value Last value
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Substitute value Substitute value
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Last value 5 sec. Last value for 5 seconds
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Behaviour of
outputs at
communication
fault
see remark 2

Off

Substitute value 5
sec.

Substitute value for 5 seconds
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

__

V7 AC500 System Technology 66 CPUs AC500 / Issued: 08.2007

Last value 10 sec. Last value for 10 seconds
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Substitute value 10
sec.

Substitute value for 10 seconds
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Substitute
value
see
remark 2

0 0...65535
0000hex...FFFFhex

Substitute value for the outputs, one bit per
output, bit 0=C8 .. bit 15=C23
-> available as of CPU firmware V1.2.0,
DC551 firmware V1.9 and PS501 V1.2

Remark 1: Ignore module

A detailed description of the parameter "Ignore module" can be found in the chapter "The module
parameter 'Ignore module' of S500 I/O devices".

Remark 2: Failsafe function of CS31 bus

Further information on the failsafe function of the CS31 bus are contained in the chapter "The failsafe
function of S500 I/O devices".

Further S500 modules can be coupled to the base module "DC551-CS31" via the I/O bus. Right-clicking
the element "DC551-CS31" in the configuration tree and selecting the menu item "Append Subelement"
displays all available input/output modules that can be added to the module "DC551-CS31".

A maximum of 7 expansions with a total of 240DI/240DO and 32AI/32AO can be appended to the
module.

The following peculiarities concerning the CS31 bus in the AC500 must be observed when
addressing S500 I/O devices at the CS31 bus:

1. A CS31 software module can occupy a maximum of
-> 15 bytes of inputs and 15 bytes of outputs in the digital area.
This corresponds to 15 x 8 = 120 digital inputs and 120 outputs.

2. A CS31 software module can allocate a maximum of
-> 8 words of inputs and 8 words of outputs in the analog area.

3. A maximum of 31 of these CS software modules are allowed for connection to the CS31 bus.

4. If a device has more than 15 bytes or 8 words of inputs or outputs, it occupies 2 or more of the
31 CS31 software modules.

__

V7 AC500 System Technology 67 CPUs AC500 / Issued: 08.2007

5. The DC551 can internally manage 2 CS31 software modules in the digital area and 4 CS31
software modules in the analog area. This corresponds to a maximum of:
- 240 digital inputs (2 x 15 bytes) and
- 240 digital outputs (2 x 15 bytes) and
- 32 analog inputs (4 x 8 words) and
- 32 analog outputs (4 x 8 words).

6. Address setting is done at the DC551 using two rotary switches at the module’s front
plate.

7. To enable the fast counter of the DC551, the hardware address (HW_ADR) has to be set to the
module address + 70. With activated fast counter, the module addresses 0..28 (hardware
address setting 70..98) are allowed.
Then, the DC551 registers as 2 CS31 software modules using the module address (hardware
address 70), once in the digital area and once in the analog area.

8. CS31 software module 1 in digital area:
-> registers using the module address.
CS31 software module 2 in digital area:
-> registers using module address+7 and bit "Channel >= 7" set.
CS31 software module 1 in analog area:
-> registers using the module address.
CS31 software module 2 in analog area:
-> registers using module address and bit "Channel >= 7" set.
CS31 software module 3 in analog area:
-> registers using the module address+1.
CS31 software module 4 in analog area:
-> registers using module address+1 and bit "Channel >= 7" set.

9. The DC551 can manage a maximum of 255 parameters.
This does not cause any restrictions in all configurations with the currently available S500 I/O
devices.

10. The next free address for a DC551 is derived from the highest address occupied in the digital
area or the analog area of the previous DC551.

11. When connecting several S500 expansion modules to a DC551 via the I/O bus, their inputs and
outputs follow the DC551's inputs and outputs without gap. Such a cluster can occupy up to 5
CS31 software modules.

12. A maximum of 7 S500 expansion modules (extensions) can be connected to a DC551.

__

V7 AC500 System Technology 68 CPUs AC500 / Issued: 08.2007

A configuration consisting of two combined input/output modules could look as follows:

 Note: The fast counters of the input/output modules (e.g., "DC532") are only available if the
modules are connected to the CPU's I/O bus.

Summary of input/output data of S500 I/O devices

The following input/output data and parameters are available with S500 I/O devices:

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device ID I/O range

Byte Byte Words Words Byte

DC551 2716 8 DI + 16 DC 3 2 0 0 15

DC551+FC 2715 8 DI + 16 DC +
FC

5 4 4 8 16

AI523 1515 16 AI 0 0 16 0 36

AO523 1510 16 AO 0 0 0 16 41

AX521 1505 4 AI + 4 AO 0 0 4 4 23

AX522 1500 8 AI + 8 AO 0 0 8 8 39

DC522 1220 16 DC 2 2 0 0 8

DC523 1215 24 DC 3 3 0 0 10

DC532 1200 16 DI + 16 DC 4 2 0 0 8

DI524 1000 32 DI 4 0 0 0 4

DX522 1210 8 DI + 8 DX 1 1 0 0 6

DX531 1205 8 DI + 4 DX 1 1 0 0 6

__

V7 AC500 System Technology 69 CPUs AC500 / Issued: 08.2007

Examples of impossible configurations

Due to the peculiarities concerning the CS31 bus and the DC551 described at the beginning of this
chapter, some configurations cannot be realized. Here are some examples:

Example 1: DC551 + 6 x DC532

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC 3 2 0 0 15

DC532 16 DI + 16 DC 4 2 0 0 9

DC532 16 DI + 16 DC 4 2 0 0 9

DC532 16 DI + 16 DC 4 2 0 0 9

DC532 16 DI + 16 DC 4 2 0 0 9

DC532 16 DI + 16 DC 4 2 0 0 9

DC532 16 DI + 16 DC 4 2 0 0 9

DC532 16 DI + 16 DC 4 2 0 0 9

Total 120 DI + 128 DC 31 16 0 0 78

This configuration is not possible because the DC551 can manage a maximum of 30 bytes in the digital
area (= 120 inputs/outputs).

Example 2: DC551 + 5 (or more) AX522

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC 3 2 0 0 15

AX522 8 AI + 8 AO 0 0 8 8 40

AX522 8 AI + 8 AO 0 0 8 8 40

AX522 8 AI + 8 AO 0 0 8 8 40

AX522 8 AI + 8 AO 0 0 8 8 40

AX522 8 AI + 8 AO 0 0 8 8 40

Total 8 DI + 16 DC +
32 AI + 32 AO

3 2 40 40 215

This configuration is not possible because the DC551 can manage a maximum of 32 words in the analog
area. For 6 or 7 AX522, the number of analog channels increases accordingly.

Example 3: DC551 + 3 (or more) AO523

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC 3 2 0 0 15

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

Total 8 DI + 16 DC +
48 AO

3 2 0 48 141

This configuration is not possible because the DC551 can manage a maximum of 32 words in the analog
area. For each further AO523, the number of analog channels increases accordingly.

__

V7 AC500 System Technology 70 CPUs AC500 / Issued: 08.2007

Example 4: DC551 + 3 (or more) AI523

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC 3 2 0 0 15

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

Total 8 DI + 16 DC +
48 AI

3 2 48 0 126

This configuration is not possible because the DC551 can manage a maximum of 32 words in the analog
area. For each further AI523, the number of analog channels increases accordingly.

Example 5: DC551 + 5 (or more) PD501

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC 3 2 0 0 15

PD501 8 DO + 8 AI 0 1 8 0 21

PD501 8 DO + 8 AI 0 1 8 0 21

PD501 8 DO + 8 AI 0 1 8 0 21

PD501 8 DO + 8 AI 0 1 8 0 21

PD501 8 DO + 8 AI 0 1 8 0 21

Total 8 DI + 16 DC +
48 DO + 40 AI

3 7 40 0 120

This configuration is not possible because the DC551 can manage a maximum of 32 words in the analog
area. For 6 or 7 PD501, the number of analog channels increases accordingly.

Example 6: DC551 with FC + 2 (or more) AO523

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC + FC 5 4 4 8 16

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

Total 8 DI + 16 DC + FC
+ 32 AO

5 4 4 40 100

This configuration is not possible because the DC551 can manage a maximum of 32 words in the analog
area. For each further AO523, the number of analog channels increases accordingly.

__

V7 AC500 System Technology 71 CPUs AC500 / Issued: 08.2007

Example 7: DC551 with FC + 2 (or more) AI523

Digital area Analog area

Inputs Outputs Inputs Outputs

Para-
meter

Device I/O range

Byte Byte Words Words Byte

DC551 8 DI + 16 DC + FC 5 4 4 8 16

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

Total 8 DI + 16 DC + FC
+ 32 AI

5 4 36 8 90

This configuration is not possible because the DC551 can manage a maximum of 32 words in the analog
area. For each further AI523, the number of analog channels increases accordingly.

3.4.6 The setting 'COMx - SysLibCom'

As of Control Builder version V1.2 and firmware version V1.2.0 the protocol

- 'COMx - SysLibCom'

is available.

If the protocol 'COMx - SysLibCom' is selected for the serial interface COMx, the interface is prepared for
operation with the blocks contained in the library "SysLibCom.lib" and the according protocols.

The library SysLibCom.lib contains the following functions:

Function Meaning Note

SysComClose Closes an interface

SysComGetVersion2300 Internal version synchronization Only internal

SysComOpen Opens an interface

SysComRead Reads data from an interface

SysComSetSettings Parameterization of an interface

SysComSetSettingsEx Extended parameterization of an
interface

Currently not supported

SysComWrite Write data to an interface

 Note: All blocks in the "SysLibCom.lib" library are functions. The blocks are processed until the
according action is completed or processing is aborted due to a possibly set timeout. During sending,
the block waits, for example, until the characters have been actually output.
This can cause the suspension of the task in case of too small task cycle times!

The interface is initialized in the PLC configuration according to the defined settings when starting the
PLC, after a download or after a reset. The following settings are possible:

Parameter Default
value

Value Meaning

Disabled There is no check with regard to the Control Builder
login telegram.

Enable login
see
remark 1

Disabled

Enabled Telegrams received are checked with regard to the
Control Builder login sequence. If the sequence is
detected, the protocol setting is changed to 'Online
access'.

None No RTS control (direction control) RTS control
see
remark 2

None

telegram RTS control activated
(absolutely necessary for RS 485!)

__

V7 AC500 System Technology 72 CPUs AC500 / Issued: 08.2007

TLS
see
remark 2

0 0...65535 Carrier lead time in [ms]
(TLS > CDLY)

CDLY
see
remark 2

0 0...65535 Carrier delay time in [ms]
(CDLY <= TLS)

Character
timeout
see remark
3

0 0...65535 Character timeout in characters (must be 0 if
Telegram ending selection = Character timeout)

None No telegram ending identifier

String
(check
receive)

2 characters, e.g. <CR><LF> (16#0d, 16#0a ->
16#0d0a) in parameter "Telegram ending value"
Setting not recommended!

Telegram
length

Telegram ending identifier set by telegram length
Setting not recommended!

Duration Telegram ending identifier set by time
Setting not recommended!

Telegram
ending
selection
see remark
3

None

Character
timeout

Telegram ending identifier set by character timeout

Telegram
ending
character
see remark
3

0 0...1 Number of end characters in case of telegram ending
selection "String"

Telegram
ending value
see remark
3

0 0...65535 Telegram ending identifier value for settings
"Duration", "Character timeout" and "String"

None No handshake

RTS/CTS Hardware handshake

XON/XOFF Not yet implemented

3964R master Not yet implemented

Handshake None

3964R slave Not yet implemented

Baudrate 19200 300
1200
4800
9600
19200
38400
57600
115200
125000
187500

Character length in bits/s

None No parity check

Odd Odd parity

Even Even parity

Mark Parity bit := TRUE

Parity None

Space Parity bit := FALSE

Data bits 8 5, 6, 7, 8 Character length in bits/character

Stop bits 1 1, 2 Number of stop bits

Remark 1: Enable login

See remark 1 under "ASCII" protocol settings

__

V7 AC500 System Technology 73 CPUs AC500 / Issued: 08.2007

Remark 2: Usage of modems

See remark 2 under "ASCII" protocol settings

Remark 3: Telegram ending identifier

See remark 3 under "ASCII" protocol settings

Because the receive function SysComRead() interrupts the processing of the user program until the
ending criteria (telegram ending selection or timeout) is detected, it is recommended to set the telegram
ending selection only to the following values:

- None
- Character timeout

During processing of the user program, the following parameters can be changed using the function
SysComSetSettings():

- Baudrate
- Number of stop bits
- Parity

This is done by adding the parameters to the structure COMSETTINGS. The structure is as follows:

Parameter Type Default
value

Meaning / valid values

dwBaudRate DWORD none Baudrate
300, 1200, 4800, 9600, 14400, 19200, 38400
57600, 115200, 125000, 187500
Warning:
The structure must have a valid value assigned to it. The
function reports an error for any invalid values (also 0).

byStopBits BYTE 0 Number of stop bits
0=1, 1=1,5, 2=2 stop bits

byParity BYTE 0 Parity
0=No, 1=odd, 2=even

dwTimeout DWORD 0

dwBufferSize DWORD 0

dwScan DWORD 0

Currently not supported!
Specified values are ignored.

__

V7 AC500 System Technology 74 CPUs AC500 / Issued: 08.2007

Example for sending/receiving with "SysLibCom"

The following example shows how data are sent/received with the protocol "SysLibCom".
-> Telegrams of 32 bytes length are to be received and sent.

1. Setting in PLC configuration:

2. Declaration part of the program PROGRAM proSysLibCom_Test

VAR

 strComSettings : COMSETTINGS; (* Structure of COM settings *)

 dwHandle : DWORD;

 byStep : BYTE; (* Step chain *)

 dwRead : DWORD; (* Number of characters received *)

 dwWritten : DWORD; (* Number of characters sent *)

 bEnSend : BOOL; (* Enable sending *)

 byCom : BYTE := COM2; (* COM number *)

 dwBaudrate : DWORD := 19200; (* Baudrate *)

 wLenRec : WORD := 32; (* Number of characters to be received *)

 wLenTele : WORD := 32; (* Telegram length, here 32 characters for
example *)

 wLenSend : WORD := 32; (* Number of characters to be sent, for example
32 characters *)

 dwTimeoutSend : DWORD := 0; (* Timeout in [ms] for sending *)

 dwTimeoutRec : DWORD := 0; (* Timeout in [ms] for receiving *)

 abyRecBuffer : ARRAY[0..271] OF
BYTE;

(* Receive butter, 272 bytes min.! *)

 abyTeleBuffer : ARRAY[0..543] OF
BYTE;

(* Telegram buffer, 2 x receive buffer min. *)

 aby SendBuffer : ARRAY[0..271] OF
BYTE;

(* Send buffer, telegram length max.! *)

 strDataRec : StrucReceiveData; (* Structure of receive telegram *)

 strDataSend : StrucSendData (* Structure of send telegram *)

END_VAR

__

V7 AC500 System Technology 75 CPUs AC500 / Issued: 08.2007

3. Code part of the program

-> Processing of a step chain containing the following steps

CASE byStep OF

0: (* Step 0: Open the interface COMx -> SysComOpen -> get handle *)

 strComSettings.Port := byCom; (* COM_Number *)

 dwHandle := SysComOpen(strComSettings.Port); (* Open COM interface -> get
handle *)

 byStep := SEL(dwHandle <> INVALID_HANDLE, 250,
1);

(* handle ok -> Step 1,
otherwise error step 250 *)

1: (* Step 1: Transfer of COMx interface parameters *)

 strComSettings.dwBaudRate := dwBaudrate; (* Set baudrate *)

 (* Enter at this point the number of stop bits and parity, if necessary *)

 (* set COM settings -> if OK, run step 2, in case of an error step 250 *)

 byStep := SEL(SysComSetSettings(dwHandle, ADR(strComSettings)), 250, 2);

2: (* Step 2: Initialization completed successfully -> now receiving and/or sending *)

 (* Receive data:
read all data received since last run, but wLenRec max.! *)

 dwRead := SysComRead(dwHandle,

 ADR(abyRead),
WORD_TO_DWORD(wLenRec),
dwTimeoutRec); (* READ DATA *)

 IF (dwRead > 0) THEN (* Number of characters received; in bytes *)

 (* here, ignore for example all characters until valid telegram start detected *)

 (* Number of receiving cycles for the telegram *)

 dwNumReadPerTele[byCom] := dwNumReadPerTele[byCom] + 1;

 (* Copy data to buffer *)

 SysMemCpy(dwDest := ADR(abySumDataRead[dwSum]DataRead]),
dwSrc := ADR(abyRead[0]),
dwCount := dwRead);

 (* Sum of read data of a telegram *)

 dwSumDataRead := dwSumDataRead + dwRead;

 IF dwSumDataRead >= wLenTele THEN (* Telegram complete ? *)

 dwRecCount := dwRecCount +1; (* Number of telegrams received *)

 (* Copy received telegram to structure strDataRec *)

 SysMemCpy(dwDest := ADR(strDataRec,

 dw Src := ADR(abySumDataRead[0]),
dwCount := wLenTele);

 dwNumReadPerTele := 0; (* init for following telegram *)

 dwSumDataRead := 0;

 (* here the evaluation of data starts !!! *)

 END_IF; (* Telegram complete *)

__

V7 AC500 System Technology 76 CPUs AC500 / Issued: 08.2007

 END_IF; (* Data received *)

 (* Send data *)

 (* Enabling the sending of data can be done, for example, cyclical or by program control *)

 IF bEnSend THEN (* Enable sending *)

 (* Copy data to be sent to send buffer *)

 SysMemCpy(dwDest: := ADR(abyDataSend[0]),
dwSrc := ADR(strDataSend),
dwCount := wLenSend);

 (* Send data *)

 dwWritten := SysComWrite(dwHandle,

 ADR(abyDataSend[0]),
WORD_TO_DWORD(wLenSend),
dwTimeoutSend); SEND DATA !!! *)

 IF (dwWritten <> wLenSend THEN

 byStep := 250; (* Error when sending *)

 END_IF; (* dwWritten *)

 bEnSend := FALSE; (* Deactivate enable sending *)

 END_IF; (* bEnSend *)

250: (* Step 250: Error step -> Close COMx and start with step 0 *)

 bResult := SysComClose(dwHandle);
dwHandle := 0;
byStep := 0;

(* Close COM interface *)

END_CASE; (* End of step chain *)

__

V7 AC500 System Technology 77 CPUs AC500 / Issued: 08.2007

3.4.7 The setting 'COMx - Multi'

As of Control Builder version V1.2 and firmware version V1.2.0 the protocol 'COMx- Multi' can be used.

If the protocol 'COMx - Multi' is set for the serial interface COMx, the interface is prepared for operation
with two selectable protocols.

Both protocols are appended to the protocol 'COMx - Multi' as modules. This is done in the same way
than appending input/output modules to the I/O bus:
i.e., by right-clicking the interface, selecting Append Subelement and selecting the desired protocol.

Once both protocols have been appended, the parameters have to be set for each protocol:

The protocol parameters are identical to the parameters described for the individual protocols.

When restarting the program, i.e., after switching power ON, a download or a reset, the protocol
appended first is always active.

Switching between the protocols is done using the block "COM_SET_PROT" (contained in the library
SysInt_AC500_V10.lib). At the block input COM, the number of the serial interface is applied and at the
input IDX the protocol index is set. The protocol appended first in the PLC configuration has the index 0,
the second protocol the index 1.

__

V7 AC500 System Technology 78 CPUs AC500 / Issued: 08.2007

Functions of the block COM_SET_PROT

The block COM_SET_PROT can be used for different functions:

• Switching between two different protocols, for example ASCII / Modbus

• Switching the interface parameters of a protocol, for example changing the baudrate

• Re-initialization of an interface protocol (for example, if an interface "hangs up")

• Switching between "Online access" and ASCII/Modbus/SysLibCom depending on the current
PLC mode, for example STOP=Online access, RUN=Modbus (or ASCII, SysLibCom). In this
case, the parameter "Enable login" does not have to be activated and the interface can use
other interface parameters than required for "Online access" (see the following program
example).

Example for switching COM2 between "Online access" and Modbus (master)

1. Setting in the PLC configuration:
-> Protocol with index 0: Online access

-> Protocol with index 1: Modbus (master)

2. Setting the system events START and STOP in the task configuration:

__

V7 AC500 System Technology 79 CPUs AC500 / Issued: 08.2007

3. Call of block COM_SET_PROT in system events

FUNCTION callback_Start: DWORD
VAR_INPUT
 dwEvent : DINT;
 dwFilter: DINT;
 dwOwner : DINT;
END_VAR
COM_SET_PROT(EN := FALSE); (* for edge creation *)
COM_SET_PROT(EN := TRUE, COM := 2, IDX := 1); (* switch to Modbus *)

FUNCTION callback_Stop : BOOL
VAR_INPUT
 dwEvent : DINT;
 dwFilter: DINT;
 dwOwner : DINT;
END_VAR
COM_SET_PROT(EN := FALSE); (* for edge creation *)
COM_SET_PROT(EN := TRUE, COM := 2, IDX := 0); (* switch to Online access *)

3.5 FBP slave interface configuration (Interfaces / FBP slave)

The FBP slave interface is used to connect the AC500 controllers as fieldbus slave via FieldBusPlug
(FBP).

No protocol is set for the FBP interface in the standard configuration (setting "FBP - none").

 Note: The FBP interface is configured as "Online access" for PM57x and PM58x (as of firmware
version V1.1.7) and PM59x (as of version V1.2.0).
This allows programming via the FBP slave interface using the device UTF21-FBP adapter USB.

Setting the protocol "FBP - Slave" is done using the command "Replace element".

The following setting is possible:

Parameter Default value Value Meaning

Address 0 0...255 Address as FBP slave

 Note: If the FBP slave interface address (ADR > 0) is set using the display/keypad, this address
has priority over the PLC configuration setting.

The FBP slave interface occupies the I/O area:

%IB3000 .. %IB3999 or %QB3000 .. %QB3999.

Depending on the fieldbus master, the AC500 CPU can exchange a different amount of input/output data
with the master.

__

V7 AC500 System Technology 80 CPUs AC500 / Issued: 08.2007

Right-clicking the "FBP-Slave" element in the configuration tree opens the context menu where you can
change the "FBP" module. Select "Append Subelement". The sub menu displays all available input and
output modules for the FBP slave interface:

A maximum of 8 modules can be appended to the FBP slave interface. A module can have a maximum
of 16 byte and 16 word inputs and outputs. The number and size of possible modules depends on the
used FBP, fieldbus and fieldbus master coupler.

FBP Fieldbus I/O range

PDP21 PROFIBUS DP
V0

1 module with a maximum of 16 bytes and 16 words (inputs
or outputs),
for example 1 x "Module 16 Byte and 16 Word In/Out"

PDP22 DP V1
modular

PROFIBUS DP
V0/V1

8 modules, but a total of 32 bytes and 128 words in/out, 244
bytes max. per direction, a total of 368 bytes per slave

DNP21 DeviceNet 1 module with a maximum of 16 bytes and 16 words (inputs
or outputs),
for example 1 x "Module 16 Byte and 16 Word In/Out"

DNP21 modular DeviceNet 8 modules, but a total of 16 bytes and 16 words (input or
output)

The Byte inputs and outputs are provided as BYTE and BOOL and the Word inputs and outputs as
WORD, BYTE and BOOL.

The I/O modules saved in the PLC configuration and their addresses must match the entries in the
configuration of the respective fieldbus master.

If you want to exchange less data than the maximum allowed amount of I/O data with the fieldbus
master, you can setup a configuration consisting of different modules.

In the following example, the AC500 CPU operating as fieldbus slave no. 10 shall exchange 8 Byte
inputs, 4 Byte outputs, 4 Word inputs and 16 Word outputs with a fieldbus master.

The following modules are appended using the context menu items:

2 x "4 Byte Input"
1 x "4 Byte Output"
1 x "4 Word Input" and
1 x "16 Word Output".

__

V7 AC500 System Technology 81 CPUs AC500 / Issued: 08.2007

The final configuration looks as follows:

In this configuration, the Byte inputs and outputs are provided as BYTE and BOOL and the Word inputs
and outputs as WORD, BYTE and BOOL.

3.6 Coupler configuration (Couplers)

In the standard configuration selected with "File" / "New" or "Extras" / "Standard configuration", the PLC
configuration contains no couplers:

PLCconf_Coupler1.gif

The following assignment between coupler line and slot applies to the couplers:

• Line 0 corresponds to the internal coupler (installed in the CPU's housing)
• Line 1 is the coupler installed in the first slot on the left of the CPU
• Line 2 is the coupler installed in the second slot on the left of the CPU
• Line 3 and 4 are installed in the third and fourth slot on the left of the CPU

The allocation of inputs/outputs for the couplers is done slot-oriented and independent of the coupler
type.

 Note: If a coupler slot is empty, the entry "External none" has to be set for this coupler slot. This is
not necessary, if no external coupler is inserted.
Example: Internal Ethernet coupler and PROFIBUS coupler in slot 2
1. Replace element: "Internal none" by "PM5x1 Internal Ethernet"
2. Append subelement: "External none" to empty slot 1
3. Append subelement: "CM572 External PROFIBUS DP Master" in slot 2

__

V7 AC500 System Technology 82 CPUs AC500 / Issued: 08.2007

3.6.1 Configuring the internal coupler

For an AC500 controller with internal coupler, the coupler must be specified in the PLC configuration.
This is done by right-clicking the element "Internal - none" in the configuration tree and selecting the sub
menu "Replace element". All available internal couplers are shown:

Select the coupler required for the used hardware.

3.6.1.1 The internal Ethernet coupler PM5x1-ETH

The following parameters can be set for the internal Ethernet coupler "PM5x1-ETH - Internal Ethernet":

Parameter Default value Value Meaning

No In case of a configuration error, the user program
is not started.

Run on config
fault

No

Yes The user program is started even if the internal
Ethernet coupler is configured incorrectly.

Only the behavior of the CPU in case of a configuration error of the coupler and the required protocols
are set in the PLC configuration. The actual configuration of the Ethernet coupler such as the setting of
the IP address is done with the integrated fieldbus configurator SYCON.net (see SYCON.net).

__

V7 AC500 System Technology 83 CPUs AC500 / Issued: 08.2007

The protocol "MODBUS on TCP/IP" is available by default. Here, the following parameters can be set:

Like for Modbus RTU on the serial interfaces COMx, it is also possible to disable read and/or write
access to individual segments for slave operation. Reading/writing is disabled beginning at the set
address and is valid up to the set end address (inclusive).

Parameter Default
value

Value Meaning

Disable write
to %MB0.x
from

0 0...65535 Disable write access for segment 0 starting at
%MB0.x

Disable write
to %MB0.x to

0 0...65535 Disable write access for segment 0 up to %MB0.x

Disable read
to %MB0.x
from

0 0...65535 Disable read access for segment 0 starting at
%MB0.x

Disable read
to %MB0.x to

0 0...65535 Disable read access for segment 0 up to %MB0.x

Disable write
to %MB1.x
from

0 0...65535 Disable write access for segment 1 starting at
%MB1.x

Disable write
to %MB1.x to

0 0...65535 Disable write access for segment 1 up to %MB1.x

Disable read
to %MB1.x
from

0 0...65535 Disable read access for segment 1 starting at
%MB1.x

Disable read
to %MB1.x to

0 0...65535 Disable read access for segment 1 up to %MB1.x

The protocol "UDP data exchange" can be appended to the coupler by right-clicking the internal Ethernet
coupler "PM5x1-ETH - Internal Ethernet" in the configuration tree and selecting the context menu item
"Append UDP data exchange".

__

V7 AC500 System Technology 84 CPUs AC500 / Issued: 08.2007

The following parameters can be set for the "UDP data exchange" protocol:

Parameter Default
value

Value Meaning

Size of receive
buffer

8192 1464..65535 Size of receive buffer in bytes
The minimum size is equal to the maximum size
of an UDP telegram

Size of transmit
buffer high prio

4096 0..65535 Size of transmit buffer (in bytes) for telegrams
with high priority

Size of transmit
buffer low prio

4096 0..65535 Size of transmit buffer (in bytes) for telegrams
with low priority

Size of timeout
buffer

2048 0..65535 Size of buffer (in bytes) for timeout data
packages

Number of header
data

10 0..1464 Number of header data to be copied to the
timeout buffer for timeout packages (in bytes)

Disable Reception of broadcast telegrams disabled
(data packages to all stations)

Receive broadcast Disable

Enable Reception of broadcast telegrams enabled (data
packages to all stations)

Overwrite Behavior on overflow of the receive buffer: The
oldest data packages stored in the receive
buffer are overwritten with the new incoming
data packages.

Behavior on receive
buffer overflow

Overwrite

Reject Behavior on overflow of the receive buffer: New
incoming data are dismissed.

3.6.1.2 The internal ARCNET coupler PM5x1-ARCNET

 Note: The controller with internal ARCNET coupler will be available as of version V1.2.

In the PLC configuration, the following parameters can be set for the internal ARCNET coupler "PM5x1-
ARCNET - Internal ARCNET":

__

V7 AC500 System Technology 85 CPUs AC500 / Issued: 08.2007

Parameter Default
value

Value Meaning

No In case of a configuration error, the user program is
not started.

Run config fault No

Yes The user program is started independent of a faulty
configuration of the internal ARCNET coupler.

Address 0 0...255 Address (node ID) of the ARCNET coupler

2.5 MB/s

1.25 MB/s

625 kB/s

Baudrate
see
remark 1

2.5 MB/s

312.5 kB/s

Baudrate set for the ARCNET coupler

Very small
net (=0)

Small net
(=1)

Big net
(=2)

Extended
timeout
ET1/ET2

Very
small net

Very big
net (=3)

ARCNET timeout setting. The following applies:
Bit 0 configures ET2 of the coupler
Bit 1 configures ET1 of the coupler

Value ET1 ET2 Meaning

 0 1 1 Max. network expansion 2
km
 1 1 0
 2 0 1
 3 1 1 for large networks

Enable Enable long data packages (512 bytes) Long packets Enable

Disable Incoming long data packages are received and
dismissed. The SEND block indicates an error in case
of long data packages.

Enable Enable check of DIN identifier on receipt Evaluate DIN on
receipt
see remark 2

Enable

Disable Disable check of DIN identifier on receipt

Remark 1: Baudrate of the ARCNET coupler

 Note: If the baudrate set for the ARCNET coupler differs from the default value (2.5 MB/s),
programming via ARCNET using the SoHard-ARCNET PC boards is no longer possible. The same
baudrate has to be set for all subscribers of the ARCNET network. The ARCNET PC boards are firmly
set to 2.5 MB/s.

Remark 2: Check of DIN identifier on receipt

If the parameter "Evaluate DIN on receipt" is enabled (default setting), the following DIN identifiers are
reserved:

DIN identifier

Hex Dec

Protocol

4F 79 "Online access" - Programming/OPC with CoDeSys / AC1131

5F 95 5F_ARCNET (MODBUS functions for ARCNET)

6F 111 PC331 programming (not used for AC1131/CoDeSys)

7F 127 Default DIN identifier for data exchange with function blocks:
ARC_REC, ARC_SEND, ARC_STO, ARC_INFO
All DIN identifiers except the reserved identifiers can be used for data exchange.

 Caution: If the parameter "Evaluate DIN on receipt" is disabled, programming and/or OPC via
ARCNET is not possible!

__

V7 AC500 System Technology 86 CPUs AC500 / Issued: 08.2007

The protocols "ARCNET data exchange" and/or "5F_ARC" can be appended to the coupler by right-
clicking the internal ARCNET coupler "PM5x1-ARC - Internal ARCNET" in the configuration tree and
selecting the corresponding context menu item.

The following parameters can be set for the "ARCNET data exchange" protocol:

Parameter Default
value

Value Meaning

Size of receive
buffer

8192 512...65535 Receive buffer size in bytes. The minimum size is
equal to the maximum size of an UDP telegram.

Size of
transmit buffer
high prio

4096 0...65535 Size of transmit buffer (in bytes) for telegrams with
high priority.

Size of
transmit buffer
low prio

4096 0...65535 Size of transmit buffer (in bytes) for telegrams with
low priority.

Size of timeout
buffer

2048 0...65535 Size of buffer (in bytes) for timeout data packages.

Number of
header data

10 0...1464 Number of header data to be copied to the timeout
buffer for timeout packages (in bytes).

Disable Reception of broadcast telegrams disabled (data
packages to all stations).

Receive
broadcast

Disable

Enable Reception of broadcast telegrams enabled (data
packages to all stations).

Overwrite Behavior on overflow of the receive buffer. The
oldest data packages stored in the receive buffer are
overwritten with the new incoming data packages.

Behavior on
receive buffer
overflow

Overwrite

Reject Behavior on overflow of the receive buffer. New
incoming data are dismissed.

__

V7 AC500 System Technology 87 CPUs AC500 / Issued: 08.2007

The following parameters can be set for the "5F_ARC" protocol:

Parameter Default
value

Value Meaning

Disable write to
%MB0.x from

0 0...65535 Disable write access for segment 0 starting at
%MB0.x

Disable write to
%MB0.x to

0 0...65535 Disable write access for segment 0 up to %MB0.x

Disable read
%MB0.x from

0 0...65535 Disable read access for segment 0 starting at
%MB0.x

Disable read
%MB0.x to

0 0...65535 Disable read access for segment 0 up to %MB0.x

Disable write to
%MB1.x from

0 0...65535 Disable write access for segment 1 starting at
%MB1.x

Disable write to
%MB1.x to

0 0...65535 Disable write access for segment 1 up to %MB1.x

Disable read
%MB1.x from

0 0...65535 Disable read access for segment 1 starting at
%MB1.x

Disable read
%MB1.x to

0 0...65535 Disable read access for segment 1 up to %MB1.x

 Note: For the AC500 CPU PM571, 4kB = %MB0.0 .. %MB0.4095 (i.e., not a complete segment)
are available for the addressable flag area. Thus, not all Modbus addresses can be accessed.

3.6.2 Configuring the external couplers

For an AC500 controller with external couplers, the couplers must be specified in the PLC configuration
in the same order as they are installed in the hardware.

The following assignment between coupler line and slot applies to the couplers:

• Line 0 corresponds to the internal coupler (installed in the CPU's housing)

• Line 1 is the coupler installed in the first slot on the left of the CPU

• Line 2 is the coupler installed in the second slot on the left of the CPU

• Line 3 and 4 are installed in the third and fourth slot on the left of the CPU

The allocation of inputs/outputs for the couplers is done slot-oriented and independent of the coupler
type.

To append the external coupler, right-click the element "Couplers" in the configuration tree and select the
sub menu "Append Subelement". All available external couplers are shown:

__

V7 AC500 System Technology 88 CPUs AC500 / Issued: 08.2007

 Note: The external couplers "CM578 - External CANopen", "CM575 - External DeviceNet" and the
module "DC541 - Interrupt / counter IO" are available as of version V1.1.

For external couplers, the same applies as for internal couplers: only the behavior of the CPU in case of
a coupler configuration error and the required protocols are set in the PLC configuration. The actual
configuration of the external couplers is done with the integrated fieldbus configurator SYCON.net. For a
detailed description of this procedure refer to the chapter "System Technology of the Couplers" (see also
System Technology of the Couplers).

The following settings are possible:

Parameter Default
value

Value Meaning

No In case of a configuration error, the user program is not
started.

Run config fault No

Yes The user program is started independent of a faulty
configuration of the particular external coupler.

The following figure shows an example of a PLC configuration consisting of an internal Ethernet coupler
"PM5x1-ETH - Internal-Ethernet", an external Ethernet coupler "CM577 - External-Ethernet" and a
PROFIBUS DP master coupler "CM572 - External-PROFIBUS DP Master":

PLCconf_Coupler6_E.gif

For the external Ethernet coupler "CM577 - External-Ethernet", the same parameters and protocol
settings are possible as for the internal Ethernet coupler "PM5x1 - Internal-Ethernet" (see also Internal
Ethernet coupler).

__

V7 AC500 System Technology 89 CPUs AC500 / Issued: 08.2007

4 System start-up / program processing

4.1 Terms

Cold start:

• A cold start is performed by switching power OFF/ON if no battery is connected.
• All RAM memory modules are checked and erased.
• If no user program is stored in the Flash EPROM, the default values (as set on delivery) are applied

to the interfaces.
• If there is a user program stored in the Flash EPROM, it is loaded into RAM.
• The default operating modes set by the PLC configuration are applied.

Warm start:

• A warm start is performed by switching power OFF/ON with a battery connected.
• All RAM memory modules are checked and erased except of the buffered operand areas and the

RETAIN variables.
• If there is a user program stored in the Flash EPROM, it is loaded into RAM.
• The default operating modes set by the PLC configuration are applied.

RUN -> STOP:

• RUN -> STOP means pressing the RUN key on the PLC while the PLC is in RUN mode (PLC
display "run").

• If a user program is loaded into RAM, execution is stopped.
• All outputs are set to FALSE or 0.
• Variables keep their current values, i.e., they are not initialized.
• The PLC display changes from "run" to "StoP".

START -> STOP:

• START -> STOP means stopping the execution of the user program in the PLC's RAM using the
menu item "Online/Stop" in the programming system.

• All outputs are set to FALSE or 0.
• Variables keep their current values, i.e., they are not initialized.
• The PLC display changes from "run" to "StoP".

Reset:

• Performs a START -> STOP process.
• Preparation for program restart, i.e., the variables (VAR) are set to their initialization values.
• Reset is performed using the menu item "Online/Reset" in the programming system.

Reset (cold):

• Performs a START -> STOP process.
• Preparation for program restart, i.e., the variables (VAR) are set to their initialization values.
• Reset (cold) is performed using the menu item "Online/Reset (cold)" in the programming system.

Reset (original):

• Resets the controller to its original state (deletion of Flash, SRAM (%M, RETAIN), coupler
configurations and user program!).

• Reset (original) is performed using the menu item "Online/Reset (original)" in the programming
system.

STOP -> RUN:

• STOP -> RUN means pressing the RUN key on the PLC while the PLC is in STOP mode (PLC
display "StoP").

__

V7 AC500 System Technology 90 CPUs AC500 / Issued: 08.2007

• If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to their
initialization values.

• The PLC display changes from "StoP" to "run".

STOP -> START:

• STOP -> START means continuing the execution of the user program in the PLC's RAM using the
menu item "Online/Start" in the programming system.

• If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to their
initialization values.

• The PLC display changes from "StoP" to "run".

Download:

• Download means loading the complete user program into the PLC's RAM. This process is started by
selecting the menu item "Online/Download" in the programming system or after confirming a
corresponding system message when switching to online mode (menu item "Online/Login").

• Execution of the user program is stopped.
• In order to store the user program to the Flash memory, the menu item "Online/Create boot project"

must be called after downloading the program.
• Variables are set to their initialization values according to the initialization table.
• RETAIN variables can have wrong values as they can be allocated to other memory addresses in

the new project!
• A download is forced by the following:

- changed PLC configuration
- changed task configuration
- changed library management
- changed compile-specific settings (segment sizes)
- execution of the commands "Project/Clean all" and "Project/Rebuild All".

Online Change:

• After a project has changed, only these changes are compiled when pressing the key <F11> or
calling the menu item "Project/Build". The changed program parts are marked with a blue arrow in
the block list.

• The term Online Change means loading the changes made in the user program into the PLC's RAM
using the programming system (after confirming a corresponding system message when switching to
online mode, menu item "Online/Login").

• Execution of the user program is not stopped. After downloading the program changes, the program
is re-organized. During re-organization, no further online change command is allowed. The storage
of the user program to the Flash memory using the command "Online/Create boot project" cannot be
initiated until re-organization is completed.

• Online Change is not possible after:

- changes in the PLC configuration
- changes in the task configuration
- changes in the library management
- changed compile-specific settings (segment sizes)
- performing the commands "Project/Clean all" and "Project/Rebuild All".

Data buffering:

• Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery is connected.
The following data can be buffered completely or in parts:
- Data in the addressable flag area (%M area)
- RETAIN variable
- PERSISTENT variable (number is limited, no structured variables)
- PERSISTENT area (%R area, as of V1.2)

• In order to buffer particular data, the data must be excluded from the initialization process.

__

V7 AC500 System Technology 91 CPUs AC500 / Issued: 08.2007

4.2 Start of the user program

The user program (UP) is started according to the following table. Here it is assumed that a valid user
program is stored to the Flash memory.

Action No SD card with
UP 1) installed,
Auto run = ON

No SD card with
UP 1) installed,
Auto run = OFF

SD card with UP
1) installed, Auto
run = ON

SD card with UP 1)
installed, Auto run =
OFF

Voltage ON

or
Warm start

or
Cold start

UP is loaded from
Flash into RAM
and started from
Flash.

No UP is loaded
from Flash.
When logging in,
the message
"No program
available in the
controller ..." is
displayed.

UP is loaded from
the SD card into
Flash memory
and RAM and
then started from
RAM.

UP is loaded from
the SD card to the
Flash memory.
RAM remains
empty. When
logging in, the
message "No
program available
in the controller ..."
is displayed.

STOP -> RUN UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

STOP ->
START

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

Download 2) The UP currently
stored in the
CPU's RAM is
stopped. The built
UP is loaded from
the PC into the
PLC's RAM.

The built UP is
loaded from the
PC into the
PLC's RAM.

The UP currently
stored in the
CPU's RAM is
stopped. The built
UP is loaded from
the PC into the
PLC's RAM.

The built UP is
loaded from the PC
into the PLC's RAM.

Online
Change 3)

Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
re-organized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is re-
organized.

Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
re-organized and
processed.

The changes made
to the UP are
loaded from the PC
into the PLC's RAM.
The UP is re-
organized.

Remarks:

1) The version of the PLC operating system used to generate the SD card and the version of the PLC
operating system to which the UP is to be loaded from the SD card must be the same. If the
versions differ, the SD card is not loaded.

2) After the download is completed, the program is not automatically stored to the Flash memory. To
perform this, select the menu item "Online/Create boot project". If the UP is not stored to the Flash
memory, the UP is reloaded from the Flash memory after voltage OFF/ON.

The program is started either by pressing the RUN/STOP key or using the menu item
"Online/Start" in the programming system.

3) After the Online Change process is completed, the program is not automatically stored to the
Flash memory. To perform this, select the menu item "Online/Create boot project" after re-
organization is completed. During re-organization and flashing, no further online change command
is allowed.

If the UP is not stored to the Flash memory, the UP is reloaded from the Flash memory after
voltage OFF/ON.

__

V7 AC500 System Technology 92 CPUs AC500 / Issued: 08.2007

4.3 Data backup and initialization

4.3.1 Initialization of variables, overview

The initialization of variables to 0 or to the initialization value is performed by switching voltage ON, by a
reset or after downloading the user program.

If internal variables shall be buffered, these variables have to be marked as "VAR_RETAIN" or
"VAR_RETAIN PERSISTENT". This applies to both the internal variables and the variables of the
addressable flag area (%M area).

 Note: The order of the internal RETAIN variables is only kept when using the online change
command. If the program is re-built, the order can change and, due to this, the buffered variables do no
match.
See also CoDeSys / Retentive variables, chapter "Behavior of RETAIN variables on download".

The following table shows an overview of the initialization values of the individual variableles:

__

V7 AC500 System Technology 93 CPUs AC500 / Issued: 08.2007

0

un
ch

.

un
ch

.

un
ch

.

0 ??
? 0 0

un
ch

.

un
ch

.

0

un
ch

.

0 0 0 ??
? 0

va
lu

e

un
ch

.

un
ch

.

va
lu

e

un
ch

.

va
lu

e

va
lu

e

va
lu

e

??
?

va
lu

e

va
lu

e

un
ch

.

un
ch

.

va
lu

e

un
ch

.

va
lu

e

va
lu

e

va
lu

e

??
?

va
lu

e

0

un
ch

.

un
ch

.

0

un
ch

.

0 0 0 ??
? 0 0

un
ch

.

un
ch

.

0

un
ch

.

0 0 0 ??
? 0

va
lu

e

un
ch

.

un
ch

.

va
lu

e

un
ch

.

va
lu

e

va
lu

e

va
lu

e

??
?

va
lu

e

va
lu

e

va
lu

e

un
ch

.

un
ch

.

un
ch

.

va
lu

e

va
lu

e

va
lu

e

??
?

va
lu

e

0

un
ch

.

un
ch

.

0

un
ch

.

un
ch

.

0 0 ??
? 0

un
ch

.

un
ch

.

un
ch

.

0

un
ch

.

un
ch

.

0

un
ch

.

??
? 0

0

un
ch

.

un
ch

.

va
lu

e

un
ch

.

un
ch

.

va
lu

e

0 ??
?

va
lu

e

un
ch

.

un
ch

.

un
ch

.

va
lu

e

un
ch

.

un
ch

.

va
lu

e

un
ch

.

??
?

va
lu

e

0

un
ch

.

un
ch

.

0

un
ch

.

un
ch

.

0 0 ??
? 0

un
ch

.

un
ch

.

un
ch

.

0

un
ch

.

un
ch

.

0

un
ch

.

??
? 0

0

un
ch

.

un
ch

.

va
lu

e

un
ch

.

un
ch

.

0

va
lu

e

??
?

va
lu

e

va
lu

e

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

va
lu

e

??
?

va
lu

e

0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 0 ??
? 0 0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 0 ??
? 0

va
lu

e

un
ch

.

un
ch

.

un
ch

.

un
ch

.

va
lu

e

va
lu

e

??
?

va
lu

e

va
lu

e

un
ch

.

un
ch

.

un
ch

.

un
ch

.

va
lu

e

va
lu

e

??
?

va
lu

e

0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 0 ??
? 0 0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 0 ??
? 0

va
lu

e

un
ch

.

un
ch

.

un
ch

.

un
ch

.

va
lu

e

va
lu

e

??
?

va
lu

e

un
ch

.

va
lu

e

un
ch

.

un
ch

.

un
ch

.

va
lu

e

va
lu

e

??
?

va
lu

e

0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 ??
? 0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

??
? 0

0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 ??
?

va
lu

e

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

??
?

va
lu

e

0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 ??
? 0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

??
? 0

0

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

0 ??
?

va
lu

e

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

un
ch

.

??
?

va
lu

e

0 00

0 0

va
lu

e

va
lu

e

0 0

va
lu

e

va
lu

e

0 0

va
lu

e

va
lu

e

0 0

va
lu

e

va
lu

e

V
ol

ta
ge

 O
N

S
T

O
P

 –
>

 R
U

N
 (

pu
sh

bu
tto

n)

Action

Variable
w

ith
ou

t b
at

te
ry

S
T

O
P

 –
>

 S
TA

R
T

(P
C

)

D
ow

nl
oa

d

O
nl

in
e

C
ha

ng
e

R
es

et

R
es

et
 (

co
ld

)

V
ol

ta
ge

 O
F

F
/O

N
 a

fte
r

R
es

et
 (

co
ld

)

R
es

et
 (

or
ig

in
),

 fa
ct

or
y

se
tti

n
g

D
ow

nl
oa

d
af

te
r

R
es

et
 (

or
ig

in
)

w
ith

 b
at

te
ry

V
ol

ta
ge

 O
N

S
T

O
P

 –
>

 R
U

N
 (

pu
sh

bu
tto

n)

S
T

O
P

 –
>

 S
TA

R
T

(P
C

)

D
ow

nl
oa

d

O
nl

in
e

C
ha

ng
e

R
es

et

R
es

et
 (

co
ld

)

V
ol

ta
ge

 O
F

F
/O

N
 a

fte
r

R
es

et
 (

co
ld

)

R
es

et
 (

or
ig

in
),

 fa
ct

or
y

se
tti

n
g

D
ow

nl
oa

d
af

te
r

R
es

et
 (

or
ig

in
)

:= Value

VAR

VAR

%MDx.x
VAR

%MDx.x := Value
VAR

:= Value

VAR_RETAIN

VAR_RETAIN

%MDx.x
VAR_RETAIN

%MDx.x := Value
VAR_RETAIN

:= Value

VAR_PERSISTENT

VAR_PERSISTENT

%MDx.x
VAR_PERSISTENT

%MDx.x := Value
VAR_PERSISTENT

:= Value

VAR_RETAIN

PERSISTENT
VAR_RETAIN

PERSISTENT

%MDx.x

VAR_RETAIN
PERSISTENT

%MDx.x := Value

VAR_RETAIN
PERSISTENT

un
ch

. =
 u

nc
ha

ng
ed

un
ch

. =
 u

nc
ha

ng
ed

__

V7 AC500 System Technology 94 CPUs AC500 / Issued: 08.2007

4.3.2 Notes regarding the declaration of retentive variables and constants

To guarantee the correct initialization or backing up of variables according to the table shown above, the
following rules have to be observed when declaring variables.

Declaration of retentive internal variables:

The variables have to be declared as VAR_RETAIN or VAR_GLOBAL RETAIN.

Example:

(* Declaration in the global variable lists *)

VAR_GLOBAL RETAIN
byVar : BYTE;
wVar : WORD;
rVar : REAL;

END_VAR

(* Declaration in the program *)

VAR RETAIN
byVar1 : BYTE;

END_VAR

Declaration of retentive variables in %M area:

The variables have to be declared as VAR_RETAIN or VAR_GLOBAL RETAIN.

 Note: As of Control Builder version V1.2 and firmware version V1.2.0, a new persistent area is
available which can be buffered by a specific setting in the PLC configuration
(see also chapter "The addressable PERSISTENT area").

Declaration of constants:

Constants are declared as VAR_GLOBAL CONSTANT or VAR_CONSTANT.

Example:

(* Declaration as global constants *)

VAR_GLOBAL CONSTANT
byConst_1 : BYTE := 1;

END_VAR

(* Declaration in the program *)

VAR CONSTANT
byConst_2 : BYTE := 2;

END_VAR

 Note: Using the option "Replace constants" available under "Project" => "Options" => "Build", it is
possible to specify whether constants are treated as variables (i.e., writing the variable is possible) or
the value is directly entered into the code when building the project.

__

V7 AC500 System Technology 95 CPUs AC500 / Issued: 08.2007

4.4 Processing times

4.4.1 Terms

The most important times for the use of the AC500 basic unit with or without connected remote modules
are:

• The reaction time is the time between a signal transition at the input terminal and the signal
response at the output terminal.
For binary signals, the reaction time is composed of the input delay, the cycle time of the
program execution and the bus transmission time if the system is expanded by remote modules.

• The cycle time determines the time intervals after which the processor restarts the execution of
the user program.
The cycle time has to be specified by the user. It should be greater than the program processing
time of the user program plus the data transfer times and the related waiting times.
The cycle time is also the time base for some time-controlled functions, such as for the INTK.

• The program processing time is the net time for processing the user program.

4.4.2 Program processing time

Statements PM57x PM58x PM59x

- Binary statements of the type:

!M /M &M =M
!NM /NM &NM =NM
!M /M &M =SM
!NM /NM &NM =RM
Processing time for 1000 statements: 0.3 ms 0.15 ms 0.02 ms

- Word statements of the type:

!MW +MW -MW =MW
!-MW -MW +MW =-MW
!MW *MW :MW =MW
!-MW *-MW :-MW =-MW
Processing time for 1000 statements: 0.3 ms 0.15 ms 0.01 ms

- Floating point:

Processing time for 1000 statements: 6 ms 3 ms 0.02 ms

4.4.3 Set cycle time

It is assumed that the processor always gets access in a moment with a worst-case condition.

The cycle time is stored in the task configuration and can be selected in steps of 1 ms. If the selected
cycle time is too short, the processor will not be able to completely process the tasks assigned to it every
cycle. This will result in a time delay.

If this lack of time becomes too large over several cycles, the processor aborts the program execution
and outputs an error (E2).

For some function blocks, such as the PID controller, the error-free execution depends on an exact
timing sequence. Make sure that there is a larger time reserve.

To check the correct cycle time, perform the following steps:

• Load the user program into the basic unit.

• Check the capacity utilization with "Online/PLC Browser/cpuload".

• Change the cycle time until the capacity utilization is below 80 %.

__

V7 AC500 System Technology 96 CPUs AC500 / Issued: 08.2007

When setting the cycle time, consider the following values:

• Time for reading and copying the input signals from the I/O driver to the I/O image.

• Time for copying the input signals of the user task from the I/O image to the image memory.

• Program processing time

• Time for copying the output signals of the user task from the image memory to the I/O image.

• Time for copying the output signals from the I/O image to the I/O driver and applying the I/Os to
the I/O module.

• Receiving/sending interrupts from coupler telegrams within the cycle time.

• Receiving/sending interrupts from the serial interface within the cycle time.

• Task changes.

• Runtime of the watchdog task.

4.5 Task configuration for the AC500 CPU

How to use the task configuration for the Control Builder is described in detail in the chapter "Resources
/ Task configuration" (see also 3S: CoDeSys Programming System / Resources / Task configuration).

This section describes the specialities for the task configuration for the AC500.

The possible number of tasks depends on the CPU type. For PM571 and PM581, a maximum of 3 user
tasks can be created, for PM591 a maximum of 16 user tasks is allowed.

If no task configuration is specified in the project, a task with the following properties is created
automatically.

Type = cyclic
Priority = 10
Cycle time = t#10ms
Program call= PLC_PRG.

In version 1.0, the following task types are possible for the AC500 CPU: "cyclic" and "free running".
The types "event triggered" and "external event triggered" are not possible.

As of Control Builder version V1.1 and firmware version V1.1.7, also the task type "external event
triggered" can be selected for the interrupt and counting device DC541 (see also System Technology
DC541 - Interrupt-Mode).

All 32 priorities can be selected for the user tasks, where 0 is the highest priority and 31 the lowest. The
default priority is 10.

Priorities lower than 10 are reserved for high-priority processes with a very short program execution
time. The priorities 10 to 31 are intended for "normal" user tasks or tasks with a long program execution
time.

 Caution: Using, for example, a priority lower than 10 for a task with a long program execution
time can cause, for example, the CS31 bus and/or the FBP interface to fail.

__

V7 AC500 System Technology 97 CPUs AC500 / Issued: 08.2007

5 The diagnosis system in the AC500

5.1 Summary of diagnosis possibilities

5.1.1 Structure of the diagnosis system

The AC500 contains a diagnosis system that allows to manage up to 100 error messages in a circular
buffer. For each of these events, a time stamp with date and time based on the controller's real-time
clock (RTC) is generated in the runtime system. The time stamp consists of three entries:

• Error occurrence (come)
• Error disappearance (gone)
• Error acknowledgement

If no battery is insterted in the PLC, the PLC clock is set to the following value when switching on the
control voltage:

01. January 1970, 00:00

Each error message has a unique error number. This number provides the following information:

• State (come, gone, acknowledged)
• Error class
• Faulty component
• Faulty device
• Faulty module
• Faulty channel
• Error identifier

For a description of the error numbers, please refer to section Organization and structure of error
numbers later in this chapter.

The error numbers are divided into the following error classes:

Class Type Description Example

E1 Fatal error Safe operation of the operating system is no
longer ensured.

Checksum error in
system Flash, RAM
error

E2 Serious error The operating system works correctly, but
the error-free execution of the user program
is not ensured.

Checksum error in
user Flash, task cycle
times exceeded

E3 Light error It depends on the application whether the
user program has to be stopped by the
operating system or not. The user decides
which reaction is to be done.

Flash memory cannot
be programmed, I/O
module failed

E4 Warning Errors that occur on peripheral devices or
that will have an effect only in the future.
The user decides which reactions are to be
done.

Short circuit in an I/O
module, battery
empty/not installed

There are different possibilities to access the error messages:

• Diagnosis directly at the PLC by means of "ERR" LED, keypad and display
• Plain-text display of the error messages in the status line of the Control Builder in online mode
• Diagnosis with the PLC browser commands of the Control Builder
• Diagnosis with help of the user program using the diagnosis blocks of the library

SysInt_AC500_Vxx.LIB

__

V7 AC500 System Technology 98 CPUs AC500 / Issued: 08.2007

5.1.2 Diagnosis directly at the PLC by means of "ERR" LED, keypad and display

If the PLC contains a non-acknowledged error, the red error LED "ERR" lights up.

 Note: The CPU parameter "Error LED" in the PLC configuration allows to set for which error class
the LED indicates an error. The default setting is "On", i.e., errors of all error classes are indicated. If
the parameter is set for example to "Off_by_E3", the LED "ERR" does not light up in case of errors of
the classes E3 and E4. However, if an E2 error occurs, the LED always lights up.
See also chapter "Configuration of the CPU parameters".

If one or several non-acknowledged errors exist, the errors can be displayed and acknowledged
according to their occurrence order using the <DIAG> key. Pressing the <DIAG> key the first time
displays the error class and error identifier. After this, pressing the <DIAG> key several times browses
through the detail information d1=component, d2=device, d3=module and d4=channel. If the "d4"
information is displayed and the <DIAG> key is pressed once more, the error class/error identifier is re-
displayed.

If you quit the diagnostic display by pressing <ESC>, the error is not acknowledged and displayed again
when pressing the <DIAG> key.

If you quit the diagnostic display with the <QUIT> key, the error is acknowledged.

The LED "ERR" goes off when all errors are acknowledged.

Example:

The error "Battery empty or not installed" appears in the PLC display as follows:

Pushbutton Display Meaning

<DIAG> E4 008 E4=Warning / Identifier = Empty/Not available

<DIAG> d1 009 Detail information d1 = 009 -> Component=CPU

<DIAG> d2 022 Detail information d2 = 022 -> Device=Battery

<DIAG> d3 031 Detail information d3 = 031 -> Module=no specification

<DIAG> d4 031 Detail information d4 = 031 -> Channel=no specification

<DIAG> E4 008 E4=FK4 / Identifier = Empty/Not available

<ESC> run/StoP Diagnostic display is quit without error acknowledgement.

<DIAG> E4 008 E4=FK4 / Identifier = Empty/Not available

<QUIT> run/StoP Diagnostic display is quit with error acknowledgement. If no further non-
acknowledged errors exist, the LED "ERR" goes off.

For a description of the error numbers refer to the chapter Organization of the error numbers.

__

V7 AC500 System Technology 99 CPUs AC500 / Issued: 08.2007

5.1.3 Plain-text display of error messages in the Control Builder status line during online
mode

When the Control Builder is switched to online mode, incoming error messages or status changes of an
error message (come, gone, acknowledged) are displayed as plain-text in the status line. For example,
the acknowledgment of the error message "Battery empty or not installed" described in the previous
section is displayed in online mode as follows:

#152502216: x 1970-01-01 06:33:53 E4 :' No battery or battery empty

With:

#152502216 Online error number

x Error acknowledged (+ = Error come, - = Error gone)

1970-01-01 06:33:53 Time stamp (time of acknowledgement)

E4 : Error class 4 = Warning
No battery or battery
empty

Error text (according to language setting for the Control Builder)

 Note: The error text is read from the file Errors.ini and displayed according to the online error
number. The language of the error text depends on the language setting for the Control Builder. Errors
which do not have an entry in the file Errors.ini are displayed without error text. The file Errors.ini is part
of the Target Support Package (TSP) and located in the directory ..\Targets\ABB_AC500 or
..\Targets\ABB_AC500\AC500_V12.

5.1.4 Diagnosis using the PLC browser commands of the Control Builder

All errors or errors of a certain error class can be displayed and/or acknowledged using the PLC browser
of the Control Builder. Also the complete diagnosis system can be deleted.

The PLC browser commands are described in detail in the chapter AC500-specific PLC browser
commands.

5.1.5 Diagnosis with help of the user program

The entries in the diagnosis system can also be accessed from the user program with the help of specific
diagnosis blocks. These blocks are described in the chapter The diagnosis blocks of the AC500.

5.2 Organization and structure of error numbers

For each error, an error number is stored in the firmware. This error number is coded as follows:

Status Error
class

Faulty
component

Faulty
device

Faulty
module

Faulty
channel

Error
identifier

 28...29 24...27 16...23 11...15 6...10 0...5

4 bits 2 bits 4 bits 8 bits 5 bits 5 bits 6 bits

 0...3 0...15 0...255 0...31 0...31 0...63

Status value Meaning

Bit 0 not used

Bit 1 Error occurrence (come)

Bit 2 Error removed (gone)

Bit 3 Error acknowledgement

__

V7 AC500 System Technology 100 CPUs AC500 / Issued: 08.2007

In addition to the error information, the diagnosis message also contains status information (1 bit per
status). Each status is set by a specific event:

• Error occurrence (come)
• Error acknowledgement
• Error removal (gone)

The diagnosis message is generated when an error occurs. In this case, the status bit 1 is set. If this
error is acknowledged or removed afterwards, the corresponding status bits are set additionally.

In the Control Builder, the online error number is displayed. This error number is sent to the Control
Builder when working in online mode and decoded language-dependent using the controller description
file Errors.ini. The error number is coded as follows:

Faulty
component

Faulty
device

Faulty
module

Faulty
channel

Error identifier

24...27 16...23 11...15 6...10 0...5

4 bits 8 bits 5 bits 5 bits 6 bits

0...15 0...255 0...31 0...31 0...63

The error status (come, gone, acknowledged) and the error class are hidden in the online error number
and displayed as plain-text.

5.2.1 Error classes

The error classes are coded as follows:

Value error class

Bit 29 Bit 28 Class

Meaning

0 0 1 E1 fatal errors

0 1 2 E2 serious errors

1 0 3 E3 light errors

1 1 4 E4 warnings

5.2.2 Error identifiers

The following error identifiers are defined. The identifiers are kept generally in order to reach a maximum
systematic. The exact meaning of each error depends on the further information provided by the error
messages. For example, the error identifiers 'Highest level' and 'Lowest level' for analog channels
correspond to the 'Out of Range' message.

__

V7 AC500 System Technology 101 CPUs AC500 / Issued: 08.2007

Error Identifier

Err Meaning Meaning

0 Fehler allgemein General

1 Fehler falscher Wert Wrong value

2 Fehler ungültiger Wert Invalid value

3 Fehler Timeout Timeout

4 Fehler oberster Grenzwert Highest level

5 Fehler oberer Grenzwert High level

6 Fehler unterer Grenzwert Low level

7 Fehler unterster Grenzwert Lowest level

8 Fehler leer/fehlt Empty or missing

9 Fehler voll Full

10 Fehler zu groß Too big

11 Fehler zu klein Too small

12 Fehler beim Lesen Read

13 Fehler beim Schreiben Write

14 Fehler beim Löschen Delete

15 Fehler beim Reservieren von Speicher Alloc memory

16 Fehler beim Freigeben von Speicher Free memory

17 Fehler beim Zugriff Access

18 Fehler beim Testen Test

19 Fehler Checksumme Checksum

20 Fehler Message Message

21 Fehler bei PutMessage Put message

22 Fehler bei GetMessage Get message

23 Fehler Warten auf freie Message Wait message

24 Fehler Message gelöscht Message deleted

25 Fehler Warten auf Antwort Wait answer

26 Fehler Konfiguration Config data

27 Fehler keine Konfiguration No config

28 Fehler Unterschied Soll-/Ist-Konfiguration Different config

29 Fehler beim Schreiben der Konfiguration Write config

30 Fehler beim Lesen der Konfiguration Read config

31 Fehler anderer Typ / anderes Modell Wrong type or model

32 Fehler unbekannter Typ / unbekanntes Modell Unknown type or model

33 Fehler WaitReset Wait reset

34 Fehler WaitReady Wait ready

35 Fehler WaitRun Wait run

36 Fehler WaitCom Wait com

37 Fehler Zykluszeit Cycle time

38 Fehler Exception Exception

39 Fehler unbekannter Baustein Unknown POU

40 Fehler Version Version

41 Fehler Übertragung Transmit

42 Fehler Empfang Receive

43 Fehler intern Internal

44 Fehler keine Abgleichwerte No adjustment values

45 Drahtbruch Cut wire

46 Überlast Overload

47 Kurzschluss Short circuit

48 Überlast / Drahtbruch Overload / Cut wire

49 Kurzschluss / Drahtbruch Short-circuit / Cut wire

50 Überlast / Kurzschluss Overload / Short-circuit

51 Überlast / Kurzschluss / Drahtbruch Overload / Short-circuit / Cut wire

63 (max.) weitere others

__

V7 AC500 System Technology 102 CPUs AC500 / Issued: 08.2007

5.2.3 Possible error numbers

The following tables contain the possible combinations of error numbers.

Component Device Module or type Channel Remark

Comp Dev Mod Ch <- PLC browser No.

d1

No.

d2

No.

d3

No.

d4 <- Display

1 Initialization error

2 Runtime error

3 Configuration error

1 Operating
system

31 Operating system

1 Initialization error

2 Runtime error

3 Configuration error

2 Runtime system

31 Operating system

1 Initialization error

0 CPU

4 IEC task online
display %s 2 Runtime error

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

1 External
coupler
1...6 or
internal

31 Coupler

0 not used

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

2 External
coupler 2

31 Coupler

0 not used

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

3 External
coupler 3

31 Coupler

0 not used

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

4 External
coupler 4

31 Coupler

0 not used

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

10 Internal
coupler

31 Coupler

0 not used

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

11 COM1

31 COM

0 not used

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

12 COM2

31 COM

0 not used

1 Initialization

2 Runtime error

3 Configuration 26,

4 Protocol

9 CPU

13 FBP

31 FBP

0 not used

__

V7 AC500 System Technology 103 CPUs AC500 / Issued: 08.2007

1 Initialization 18, 15

2 Runtime error

3 Configuration

4 Protocol

14 I/O bus

31 I/O bus

0 not used

16 System
EPROM

0...31 0...31

17 RAM 0...31 0...31

18 Flash
EPROM

0...31

Sector,
block no. or
similar

0...31

Sector,
block no.
or similar (%s)

19 HW
watchdog

31 Watchdog 31 Watchdog

1 Initialization 0...31

2 Runtime error 0...31

3 Configuration 0...31

4 Protocol 0...31

20 SD
Memory
Card

31 SD card 0...31

Sector,
block no.
or similar (%s)

1 Initialization

2 Runtime error

4 Protocol

31 Display

21 Display

0 not used

22 Battery 31 Battery 31 Battery 8,

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

23 Clock

31 Clock

0 not used

__

V7 AC500 System Technology 104 CPUs AC500 / Issued: 08.2007

Component Device Module or type Channel Remark

No. Comp No. Dev No. Mod No. Ch <- PLC
browser

 d1 d2 d3 d4 <- Display

0..29 Module number 0..31 Channel
number

30 Module number > 29 0..31 Channel
number

0..254 Address/
Socket:
Fieldbus:
Slave
ARCNET:
ID partner
- 1
Modbus:
Comm
partner

31 Slave device 31 Slave device

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

0 not used

5 Operating system
coupler

6 Task 1 coupler

7 Task 2 coupler

8 Task 3 coupler

9 Task 4 coupler

10 Task 5 coupler

11 Task 5 coupler

12 Task 7 coupler

13 Watchdog coupler

1..4
10

External
coupler
1..4 or
internal

255 Coupler

31 Coupler

0...15 Bit 4...7 of the
error number
reported by
the coupler

see chapter
"Coupler
errors"

0...15
Bit 0...3 of
the error
number
reported by
the coupler

see chapter
"Coupler
errors"

0..29 Module number
CS31: Module type:
00 - Digital input
01 - Analog input
02 - Digital output
03 - Analog output
04 - Digital in/output
05 - Analog in/output

0..31 Channel
number

8, 48

30 Module number > 29 0..31 Channel
number

0..254 Address:
CS31:
Slave
Dec.
expansion:
Slave
Modbus:
Comm
partner

31 Slave device 31 Slave device

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

11 COM1

255 COM

31 COM

0 not used

0..29 Module number 0..31 Channel
number

30 Module number > 29 0..31 Channel
number

0..254 Address:
CS31:
Slave
Dec.
expansion:
Slave
Modbus:
Comm
partner

31 Slave device 31 Slave device

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

12 COM2

255 COM

31 COM

0 not used

__

V7 AC500 System Technology 105 CPUs AC500 / Issued: 08.2007

Component Device Module or type Channel Remark

Comp Dev Mod Ch <- PLC
browser

No.

d1

No.

d2

No.

d3

No.

d4 <- Display

0...
254

Module
number
Parameter
number

0..30 Slot number 0..31 Channel
number

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

13 FBP

255 FBP

31 FBP

0 not used

0..6 Module type:
00 - Digital input
01 - Analog input
02 - Digital output
03 - Analog output
04 - Digital in/output
05 - Analog in/output
06 - others (e.g., fast
counter)

0..31 Channel
number

%s

1 Initialization
error

2 Runtime error

3 Configuration 26,

4 Protocol

0...
254

I/O bus
module

31 Module

31 Module

1 Initialization

2 Runtime error

3 Configuration

4 Protocol

14 I/O bus

255 I/O bus

31 I/O bus

0 not used

15 User 0...
255

any 0..31 any 0..31 any, meaning
is project-
specific

__

V7 AC500 System Technology 106 CPUs AC500 / Issued: 08.2007

5.2.4 List of all errors

E1..E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

Class Comp Dev Mod Ch Err PS501
PLC browser

Byte 6
Bit 6..7 - Byte 3 Byte 4 Byte 5 Byte 6

Bit 0..5
FBP-
diagnosis block

<- displayed in 5)

Class Inter-
face

De-
vice

Mod-
ule

Chan-
nel

Error
identifier Error message Remedy

 1) 2) 3) 4)

AC500 CPU errors

Errors directly reported by the CPU
Serious errors

2 9 0 2 0 15 Not enough memory to generate the
external reference list

2 9 0 2 2 37 Cycle time is greater than the set
watchdog time

Change task
configuration

2 9 0 2 2 38
Access violation by an IEC task (for
example zero pointer) (detail in call
hierarchy as of V1.2)

Correct program

2 9 1..4/10 1 0 15 Watchdog task could not be installed Check coupler

2 9 1..4/10 1 0 15 Installation of the coupler bus driver
failed Check coupler

2 9 1..4/10 1 0 15 Initialization error, not enough memory
- Check coupler
- Check CPU FW
version

2 9 1..4/10 1 0 17 Accessing test to the coupler failed
- Check coupler
- Check CPU FW
version

2 9 1..4/10 1 0 18 Watchdog test for the coupler failed Check coupler

2 9 1..4/10 1 0 34 Timeout when setting the warm start
parameters of the coupler

Check coupler

2 9 1..4/10 1 0 38 Installation of the coupler driver failed Check coupler and
FW version

2 9 1..4/10 2 0 15 Error occurred when creating the I/O
description list of the coupler

Check coupler and
FW version

2 9 1..4/10 4 0 15 Installation of a driver for the coupler
failed

Check coupler and
FW version

2 9 1..4/10 31 0..7 3 Watchdog error coupler/channel Check coupler and
FW version

2 9 11..13 1 0 15
Installation of a protocol driver for the
serial interface failed, not enough
memory

Check CPU FW
version

2 9 11..13 1 0 17 Initialization of the protocol driver for
the serial interface failed

Check CPU FW
version

2 9 11..13 1 0 38 Installation of the hardware for the
serial interface failed

Check CPU FW
version

2 9 14 1 0 15 Not enough resources for the I/O-Bus Check CPU FW
version

2 9 14 1 0 17 Installation of the I/O-Bus driver failed Check CPU FW
version

2 9 14 1 0 43 Incorrect data format of the hardware
driver of the I/O-Bus

Check CPU FW
version

2 9 24 2 1 38 FPU division by zero Clear up program

2 9 24 2 2 38 FPU overflow Clear up program

2 9 24 2 3 38 FPU underflow Clear up program

2 9 24 2 4 38 Forbidden FPU operation (e.g. 0/0) Clear up program

2 9 24 2 6 38 FPU library function generated Clear up program

Light errors

3 9 0 2 1 17 Registering the handler for persistent
data areas, areas do not work correctly

Check CPU FW
version

3 9 0 2 2 37 User program contains an endless
loop, a stop by hand is necessary

Correct user program

3 9 0 2 3 26 Configuration error Adapt PLC
configuration

__

V7 AC500 System Technology 107 CPUs AC500 / Issued: 08.2007

3 9 0 4..31 3 26 Event-controlled task, unknown
external event

Check task
configuration

3 9 1..4/10 2 0 12 Error occurred when reading the I/O
description

Check coupler
configuration

3 9 1..4/10 2 0 26
Program was not started because of
invalid configuration data of the
coupler

Configure coupler

3 9 1..4/10 2 0 29 Error ucurred when deleting the
configuration

Check coupler

3 9 1..4/10 3 0 26
In the PLC configuration, the coupler
was not configured correctly or not at
all

Adapt PLC
configuration

3 9 11..13 3 0 26 Configuration error of the serial
interface

Check configuration

3 9 14 3 0 26

Parameter "Error LED"=Failsafe is only
allowed, if parameter "Behaviour of
outputs in stop=actual state in
hardware and online"

Change configuration

3 9 16 1 0 13
Deleting of the boot project failed
(possibly no valid boot project
available)

Reload project

3 9 21 31 0 17 Display could not be installed Check FW

Warnings

4 9 0 2 2 20
Program not started because of an
existing error (see PLC configuration
CPU parameters, stop on error class)

Eliminate error and
acknowledge

4 9 0 2 2 37 Cycle time exceeded, but shorter than
watchdog time

Adapt task
configuration

4 9 0 2 2 43
Control system was restarted by FK2
or power dip according to PLC
configuration

4 9 0 3 1 40 Boot code versions V1.1.3. (or older
versions) support smaller RAM disk

Update boot code to
1.2.0

4 9 1..4/10 1 0 32 Installation of the coupler driver failed,
unknown coupler type

Check configuration

4 9 1..4/10 2 0 3
Within the specified time, connection
could not be established to all of the
slaves, I/O data may be (partly) invalid

Check slave for
existence or set
times according to
the slave behaviour

4 9 1..4/10 2 0 4 No socket available
Check coupler
settings with PLC
browser

4 9 18 1 0 17 PLC Config file could not be read Reload project

4 9 18 2 0 8 Error firmware update of SD card, file
could not be opened

Check SD card, e.g.
removed without
"ejected"

4 9 20 1 2 2 Invalid value for FunctionOfCard in
SDCARD.INI, value will be ignored

Check file
SDCARD.INI on the
SD card

4 9 20 1 10..14 8 Error Firmware update of the SD card,
file could not be opened

Check SD card

4 9 20 1 10..14 12 Error Firmware update of the SD card,
error while reading the file

Check SD card

4 9 20 1 10..14 13 Error Firmware update of the SD card,
error while writing the file

Check CPU +
coupler

4 9 20 1 10..14 17 Error Firmware update of the SD card,
error while accessing the coupler

Check coupler

4 9 20 1 10..14 31 Error Firmware update of the SD card,
file does not match the coupler type

Check SD card

4 9 20 3 20..24 8
Error while reading/writing the
configuration data from/to the SD card,
file could not be opened

Check SD card

4 9 20 3 20..24 12
Error while reading/writing the
configuration data from/to the SD card,
error while reading the file

Check SD card

4 9 20 3 20..24 13
Error while reading/writing the
configuration data from/to the SD card,
error while writing the file

Check SD card

4 9 20 3 20..24 17 Error while reading/writing the Check SD card and

__

V7 AC500 System Technology 108 CPUs AC500 / Issued: 08.2007

configuration data from/to the SD card,
error while accessing the coupler

hardware
configuration

4 9 20 3 20..24 31
Error while reading/writing the
configuration data from/to the SD card,
file does not match the coupler type

Check SD card and
hardware
configuration

4 9 20 31 0..15 0..15

Coupler update failed,
error message of the coupler:
Channel = Bit 4..7
Error = Bit 0..3

see table "Coupler
errors"

4 9 20 31 1 2 File does not exist Check SD card

4 9 20 31 1 8 Error: Invalid file Check SD card

4 9 20 31 1 40 Version is not supported, e.g. obsolete
software

Check FW version,
update to latest
version

4 9 20 31 1 43 Other error, e.g. not enough memory
or file system error

Update CPU FW

4 9 20 31 2 12 No SD card inserted or SDCARD.INI
file not found

Check SD card

4 9 20 31 3 13

SD card errors:
- SDCARD.INI on SD card is missing,
default was generated
- Copying the boot project from the SD
card failed
- Copying the boot project from the SD
card failed (may be that there is no
valid boot project)
- Creating of the boot project failed
(may be that there is no valid boot
project)

Check SD card

4 9 20 31 5 13 Loading the source code failed Check SD card,
reload

4 9 20 31 31 8 Missing or exhausted battery
Insert battery or set
parameter "Check
Battery" to "Off"

Error messages of the I/O-Bus
Serious errors

2 14 1..10 31 1 34 Timeout while initializing an I/O
module

Replace module

2 14 1..10 31 4 42
Failure of the module, more than the
max. permissible communication
errors have occurred in sequence

Check module, FW
version
(PLC-browser: IO-
bus desc)

Light errors

3 14 1..10 31 1 32

Master and module could not agree on
any protocol variant, no variant found
which is supported by both the master
and the module

Check FW version
CPU / I/O module

3 14 1..10 31 3 26 Configuration error
PLC configuration master Check configuration

3 14 255 2 0 3 Timeout while updating the I/O data at
the program start

Check FW version
CPU / I/O modules

3 14 255 2 0 26 Program was not started because of
configuration error of the I/O-Bus

Check configuration

2 14 255 3 0 26 Configuration error
PLC configuration master

Check configuration

Warnings

4 14 1..10 31 1 34 Timeout during parameterization Check FW version
CPU / IO modules

4 14 1..10 31 31 44 Module has not passed factory test Replace module

Error messages of the coupler interface
Serious errors

2 1..4/10 255 3 0 2 Same Node ID twice in the net Use Node IDs only
once

Light errors

3 1..4/10 255 3 0 26 Incorrect or missing coupler
configuration

Configure coupler

3 1..4/10 255 5 0..15 0..15 Error message of the operating system
of the coupler:

see table "Coupler
errors"

__

V7 AC500 System Technology 109 CPUs AC500 / Issued: 08.2007

Channel = Bit 4..7
Error = Bit 0..3

3 1..4/10 255 6..12 0..15 0..15

Error message of the task x of the
coupler:
Task x = 'Module' - 5
Channel = Bit 4..7
Error = Bit 0..3

see table "Coupler
errors"

3 1..4/10 255 31 0 33 Timeout while waiting for reset of the
coupler

Check coupler

3 1..4/10 255 31 0 34 Timeout while waiting for readiness of
the coupler

Check coupler

Warnings

4 1..4/10 0..7 31 31 47 Short-circuit coupler/channel Fix short-circuit

4 1..4/10 0..254 31 0..15 0..15
Communication error to the slave,
Channel = Bit 4..7
Error = Bit 0..3

see table "Coupler
errors"

4 1..4/10 255 2 0..15 0..15
Communication error of the coupler,
Channel = Bit 4..7
Error = Bit 0..3

see table "Coupler
errors"

Error messages of the serial interfaces
Serious errors

2 11..13 255 31 0 17

Access errorsr:
- Interface could not be closed
- Interface could not be opened
- Timeslotmode could not be activated

Check FW version,
replace CPU if
necessary

Warnings

4 13 255 4 0 42 Receiving error or timeout of the FBP
slave interface

Error messages of the CS31 bus (COM1 = CS31 master)

Class Inter-
face

Addr-
ess

Module
type

Chan-
nel

Error
identifier Error message Remedy

Light errors

3 11 0..61 0..5 0 8 No module found on the CS31 bus Adapt configuration

3 11 0..61 1..8 0..31 0..63 S500 class 3 diagnostic sent by
DC551

see tablee
"S500 errors"

3 11 255 1 0 8 No module found on the CS31 bus Check configuration

Warnings

4 11 0..61 0..5 0 8
ICMK 14 with extensions configured,
the extensions was not found on the
bus

Check configuration

4 11 0..61 0..5 0 28 Module discarded and registered
again; is only reported at the start

4 11 0..61 0..5 0 32 Not configured module found on the
bus, again discarded

Check CS31 bus,
insert CS31_DIAG
function block into
the project

4 11 0..61 0..5 0..15 1 Internal error (error 1), reported by an
AC31 I/O module Check module

4 11 0..61 0..5 0..15 28 Configured module does not match the
module registered to the bus

Check PLC
configuration, insert
CS31_DIAG function
block into the project

4 11 0..61 0..5 0..15 32 Not configured module registered to
the bus

Check PLC
configuration, insert
CS31_DIAG function
block into the project

4 11 0..61 0..5 0..15 47 Short-circuit on CS31 module/channel Fix short-circuit

4 11 0..61 0, 2, 4 0..15 2 Cut wire (Error 2) of an AC31 I/O
module

4 11 0..61 0, 2, 4 0..15 4 Overload (Error 4) of an AC31 I/O
module

4 11 0..61 0, 2, 4 0..15 6 Overload + cut wire (Error 6) of an
AC31 I/O module

4 11 0..61 0, 2, 4 0..15 10
Short-circuit + cut wire or "out of
range" at analog modules (Error 10) of
an AC31 I/O module

1 11 0..61 0, 2, 4 0..15 12 Overload + short-circuit (Error 12) of

Remove error at the
module or the
channel

__

V7 AC500 System Technology 110 CPUs AC500 / Issued: 08.2007

an AC31 I/O module

4 11 0..61 0, 2, 4 0..15 14 Short-circuit + overload + cut wire
(Error 14) of an AC31 I/O module

4 11 0..61 1, 3, 5 0..15 3 Analog value exceeded (Error 3) of an
AC31 I/O module

4 11 0..61 1, 3, 5 0..15 9 Cut wire (Error 9) of an AC31 analog
module

4 11 0..61 1..8 0..31 0..63 E4 error messages of DC551 and
S500 I/O modules, see table below

see tablee
"S500 errors"

4 11 0..61 31 31 9
Impossible configuration DC551 and
S500 I/O modules (too many I/Os in
one cluster)

Change configuration

4 11 0..61 31 31 31
Impossible configuration DC551 and
S500 I/O modules (too many
parameters in one cluster)

Change configuration

4 11 0..61 31 31 34
Outputs are written before the
configuration of the modules DC551 +
S500 I/O have been finished

Notes
 1) AC500 uses the following interface identification:

14 = I/O bus, 11 = COM1 (e.g., CS31 bus), 12 = COM2
FBP diagnosis blocks do not contain this identifier.

 2) The assignment for "Device" is as follows:
31 = Module, 1..7 = Expansion 1..7

 3) The assignment for "Module" is as follows:
31 = Module or module type (2=DO)

 4) In case of module errors, "31 = Module" is reported for the channel.

 5) In the current AC500 CPU firmware version, errors reported to the AC500 CPU by the
DC505 FBP cannot be directly made visible on the display or in the PLC browser of the
Control Builder PS501.

__

V7 AC500 System Technology 111 CPUs AC500 / Issued: 08.2007

E1..E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

Class Comp Dev Mod Ch Err PS501
PLC browser

Byte 6
Bit 6..7 - Byte 3 Byte 4 Byte 5 Byte 6

Bit 0..5
FBP diagnosis
block

<- displayed in 5)

Class Inter-
face

De-
vice

Mod-
ule

Chan-
nel

Error
identifier Error message Remedy

 1) 2) 3) 4)

Errors of the S500 I/O modules

S500 I/O module errors
Light errors

14 1..7 31
3

11 / 12 ADR 1..7
31 3 Timeout in the I/O module Replace I/O module

14 1..7 31
3

11 / 12 ADR 1..7
31 9 Overflow diagnosis buffer Restart

14 1..7 31 3

11 / 12 ADR 1..7
31 11 Process voltage too low Check process

voltage

14 1..7 31
3

11 / 12 ADR 1..7
31 19 Checksum error in the I/O module Replace I/O module

14 1..7 31
3

11 / 12 ADR 1..7
31 26 Parameter error Check master

14 1..7 31
3

11 / 12 ADR 1..7
31 36 Internal data interchange disturbed Replace I/O module

14 1..7 31
3

11 / 12 ADR 1..7
31 40 Different hardware and firmware

versions in the module
Replace I/O module

14 1..7 31
3

11 / 12 ADR 1..7
31 43 Interner Fehler im Gerät Replace I/O module

14 1..7 31
3

11 / 12 ADR 1..7
31 47 Sensor voltage too low Check sensor

voltage

Warnings

14 1..7 31
4

11 / 12 ADR 1..7
31 45 Process voltage switched off

(ON->OFF) Process voltage ON

Channel errors of the S500 I/O modules
Warnings

14 1..7 1
4

11 / 12 ADR 1..7
0..7 7 Measurement underflow at the analog

input
Check input value

14 1..7 1
4

11 / 12 ADR 1..7
0..7 47 Short-circuit at the analog input Check terminal

14 1..7 1
4

11 / 12 ADR 1..7
0..7 48 Measurement overflow or cut wire at

the analog input
Check input value
and terminal

14 1..7 2
4

11 / 12 ADR 1..7
0..23 47 Short-circuit at the digital output Check terminal

14 1..7 3
4

11 / 12 ADR 1..7
0..7 48 Measurement overflow at the analog

output
Check output value

14 1..7 3
4

11 / 12 ADR 1..7
0..7 7 Measurement underflow at the analog

output
Check output value

Module errors DC551-CS31
Light errors

3 11 ADR 31 31 3 Timeout in the I/O module Replace I/O module

3 11 ADR 31 31 9 Overflow of diagnosis buffer Restart

3 11 ADR 31 31 11 Process voltage too low Check process
voltage

3 11 ADR 1..7 31 17 No communication with the I/O
module

Replace I/O module

3 11 ADR 31 31 19 Checksum error in the I/O module Replace I/O module

3 11 ADR 31 31 26 Parameter error Check master

3 11 ADR 31 31 36 Internal data interchange disturbed

__

V7 AC500 System Technology 112 CPUs AC500 / Issued: 08.2007

3 11 ADR 31 31 40 Different hardware and firmware
versions in the module

Replace I/O module

3 11 ADR 31 31 43 Internal error in the module Replace I/O module

Warnings

4 11 ADR 31 31 45 Process voltage ON/OFF Process voltage ON

4 11 ADR 31/1..7 31 34 No response during initialization of
the I/O module

Replace I/O module

4 11 ADR 31/1..7 31 32 Wrong I/O module on the slot
Replace I/O module
and check
configuration

Channel errors DC551-CS31
Warnings

4 11 ADR 31/1..7 8..23 47 Short-circuit at the digital output Check terminal

Module errors DC505-FBP
Light errors

3 - 1..7 31 31 11 Process voltage too low Check process
voltage

3 - 1..7 31 31 17 No communication with the I/O
module

3 - 31 31 31 3 Timeout in the I/O module

3 - 31 31 31 19 Checksum error in the I/O module

3 - 31 31 31 36 Internal data interchange disturbed

3 - 31 31 31 40 Different hardware and firmware
versions in the module

3 - 31 31 31 43 Internal error in the module

Replace I/O module

3 - 31 31 31 9 Overflow of diagnosis buffer Restart

3 - 31 31 31 26 Parameter error Check master

Warnings

4 - 31 31 31 45 Process voltage ON/OFF Process voltage ON

4 - 31/1..7 31 31 32 Wrong I/O module on the slot
Replace I/O module
and check
configuration

4 - 31/1..7 31 31 34 No response during initialization of
the I/O module

Replace I/O module

Channel errors DC505-FBP
Warnings

4 - 31 2 8..15 47 Short-circuit at the digital output Check terminal

Notes
 1) AC500 uses the following interface identification:

14 = I/O bus, 11 = COM1 (e.g., CS31 bus), 12 = COM2
FBP diagnosis blocks do not contain this identifier.

 2) The assignment for "Device" is as follows:
31 = Module, 1..7 = Expansion 1..7

 3) The assignment for "Module" is as follows:
31 = Module or module type (2=DO)

 4) In case of module errors, "31 = Module" is reported for the channel.

 5) In the current AC500 CPU firmware version, errors reported to the AC500 CPU by the
DC505 FBP cannot be directly made visible on the display or in the PLC browser of the
Control Builder PS501.

__

V7 AC500 System Technology 113 CPUs AC500 / Issued: 08.2007

5.2.5 Coupler errors

E1..E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

Class Comp Dev Mod Ch Err PS501
PLC browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

FBP
diagnosis block

<- displayed in 5)

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Error of the coupler's operating system

General operating system errors
3 1..4/10 255 5 0 1 01hex = 1dec Error priority MAX

3 1..4/10 255 5 0 2 02hex = 2dec Error priority NULL

3 1..4/10 255 5 0 3 03hex = 3dec Error priority DOUBLE

3 1..4/10 255 5 0 4 04hex = 4dec Stack size error

3 1..4/10 255 5 0 5 05hex = 5dec EPROM size error

3 1..4/10 255 5 0 6 06hex = 6dec RAM size error

3 1..4/10 255 5 0 7 07hex = 7dec Segment counter error

3 1..4/10 255 5 0 8 08hex = 8dec Segment size error

3 1..4/10 255 5 0 9 09hex = 9dec Cycle time error

3 1..4/10 255 5 0 10 0Ahex = 10dec Frequency error

3 1..4/10 255 5 0 11 0Bhex = 11dec Trace buffer size error

3 1..4/10 255 5 0 12 0Chex = 12dec Error min. RAM

3 1..4/10 255 5 0 13 0Dhex = 13dec Device address error

3 1..4/10 255 5 0 14 0Ehex = 14dec MCL token error

3 1..4/10 255 5 0 15 0Fhex = 15dec Driver type error

3 1..4/10 255 5 1 0 10hex = 16dec SCC error

3 1..4/10 255 5 1 1 11hex = 17dec Flash type OPT error

3 1..4/10 255 5 1 2 12hex = 18dec Flash type BSL error

3 1..4/10 255 5 1 3 13hex = 19dec Flash DIR name error

3 1..4/10 255 5 1 4 14hex = 20dec Function table error

3 1..4/10 255 5 1 5 15hex = 21dec RAM type error

3 1..4/10 255 5 1 6 16hex = 22dec Flash DIR type error

3 1..4/10 255 5 3 2 32hex = 50dec RAM test error

3 1..4/10 255 5 3 3 33hex = 51dec Data segment error

3 1..4/10 255 5 3 4 34hex = 52dec RAM error

3 1..4/10 255 5 3 5 35hex = 53dec EPROM error

3 1..4/10 255 5 3 6 36hex = 54dec DONGLE error

3 1..4/10 255 5 3 7 37hex = 55dec Wrong RCS identifier
error

3 1..4/10 255 5 3 8 38hex = 56dec Error allocating memory

3 1..4/10 255 5 6 4 64hex = 100dec RCS task not ready

3 1..4/10 255 5 6 5 65hex = 101dec Task 1 not ready

3 1..4/10 255 5 6 6 66hex = 102dec Task 2 not ready

3 1..4/10 255 5 6 7 67hex = 103dec Task 3 not ready

3 1..4/10 255 5 6 8 68hex = 104dec Task 4 not ready

3 1..4/10 255 5 6 9 69hex = 105dec Task 5 not ready

3 1..4/10 255 5 6 10 6Ahex = 106dec Task 6 not ready

3 1..4/10 255 5 6 11 6Bhex = 107dec Task 7 not ready

3 1..4/10 255 5 6 12 6Chex = 108dec Task 8 not ready

3 1..4/10 255 5 6 13 6Dhex = 109dec Task 9 not ready

3 1..4/10 255 5 6 14 6Ehex = 110dec Task 10 not ready

3 1..4/10 255 5 6 15 6Fhex = 111dec Task 11 not ready

3 1..4/10 255 5 7 0 70hex = 112dec Task 12 not ready

3 1..4/10 255 5 7 1 71hex = 113dec Task 13 not ready

__

V7 AC500 System Technology 114 CPUs AC500 / Issued: 08.2007

3 1..4/10 255 5 7 2 72hex = 114dec Task 14 not ready

3 1..4/10 255 5 7 3 73hex = 115dec Task 15 not ready

3 1..4/10 255 5 7 8 78hex = 120dec MCL 0 missing

3 1..4/10 255 5 7 9 79hex = 121dec MCL 1 missing

3 1..4/10 255 5 7 10 7Ahex = 122dec MCL 2 missing

3 1..4/10 255 5 8 0 80hex = 128dec MCL double

3 1..4/10 255 5 8 1 81hex = 129dec MCL start address

3 1..4/10 255 5 8 2 82hex = 130dec MCL 0 error

3 1..4/10 255 5 8 3 83hex = 131dec MCL 1 error

3 1..4/10 255 5 8 4 84hex = 132dec MCL 2 error

3 1..4/10 255 5 8 10 8Ahex = 138dec MCL mode

3 1..4/10 255 5 8 12 8Chex = 140dec RCS 0 missing

3 1..4/10 255 5 8 13 8Dhex = 141dec RCS 1 missing

3 1..4/10 255 5 8 14 8Ehex = 142dec RCS 2 missing

3 1..4/10 255 5 8 15 8Fhex = 143dec RCS 3 missing

3 1..4/10 255 5 9 0 90hex = 144dec RCS 4 missing

3 1..4/10 255 5 9 1 91hex = 145dec RCS 5 missing

3 1..4/10 255 5 9 2 92hex = 146dec RCS 6 missing

3 1..4/10 255 5 9 3 93hex = 147dec RCS 7 missing

3 1..4/10 255 5 9 4 94hex = 148dec RCS double

3 1..4/10 255 5 9 5 95hex = 149dec RCS start address

3 1..4/10 255 5 9 6 96hex = 150dec RCS 0 error

3 1..4/10 255 5 9 7 97hex = 151dec RCS 1 error

3 1..4/10 255 5 9 8 98hex = 152dec RCS 2 error

3 1..4/10 255 5 9 9 99hex = 153dec RCS 3 error

3 1..4/10 255 5 9 10 9Ahex = 154dec RCS 4 error

3 1..4/10 255 5 9 11 9Bhex = 155dec RCS 5 error

3 1..4/10 255 5 9 12 9Chex = 156dec RCS 6 error

3 1..4/10 255 5 9 13 9Dhex = 157dec RCS 7 error

3 1..4/10 255 5 10 0 A0hex = 160dec LIB 0 missing

3 1..4/10 255 5 10 1 A1hex = 161dec LIB 1 missing

3 1..4/10 255 5 10 2 A2hex = 162dec LIB 2 missing

3 1..4/10 255 5 10 3 A3hex = 163dec LIB 3 missing

3 1..4/10 255 5 10 4 A4hex = 164dec LIB 4 missing

3 1..4/10 255 5 10 5 A5hex = 165dec LIB 5 missing

3 1..4/10 255 5 10 6 A6hex = 166dec LIB 6 missing

3 1..4/10 255 5 10 7 A7hex = 167dec LIB 7 missing

3 1..4/10 255 5 10 8 A8hex = 168dec LIB double

3 1..4/10 255 5 10 9 A9hex = 169dec LIB start address

3 1..4/10 255 5 10 10 AAhex = 170dec LIB 0 error

3 1..4/10 255 5 10 11 ABhex = 171dec LIB 1 error

3 1..4/10 255 5 10 12 AChex = 172dec LIB 2 error

3 1..4/10 255 5 10 13 ADhex = 173dec LIB 3 error

3 1..4/10 255 5 10 14 AEhex = 174dec LIB 4 error

3 1..4/10 255 5 10 15 AFhex = 175dec LIB 5 error

3 1..4/10 255 5 11 0 B0hex = 176dec LIB 6 error

3 1..4/10 255 5 11 1 B1hex = 177dec LIB 7 error

3 1..4/10 255 5 12 8 C8hex = 200dec unknown IRQ

3 1..4/10 255 5 12 9 C9hex = 201dec Watchdog

3 1..4/10 255 5 12 10 CAhex = 202dec SCC TX IRQ

3 1..4/10 255 5 12 11 CBhex = 203dec SCC RX IRQ

3 1..4/10 255 5 12 12 CChex = 204dec Task state

3 1..4/10 255 5 14 6 E6hex = 230dec Task 0

3 1..4/10 255 5 14 7 E7hex = 231dec Task 1

3 1..4/10 255 5 14 8 E8hex = 232dec Task 2

3 1..4/10 255 5 14 9 E9hex = 233dec Task 3

3 1..4/10 255 5 14 10 EAhex = 234dec Task 4

3 1..4/10 255 5 14 11 EBhex = 235dec Task 5

__

V7 AC500 System Technology 115 CPUs AC500 / Issued: 08.2007

3 1..4/10 255 5 14 12 EChex = 236dec Task 6

3 1..4/10 255 5 14 13 EDhex = 237dec Task 7

3 1..4/10 255 5 15 0 F0hex = 240dec DBG task 0 segment

3 1..4/10 255 5 15 1 F1hex = 241dec DBG task 1 segment

3 1..4/10 255 5 15 2 F2hex = 242dec DBG task 2 segment

3 1..4/10 255 5 15 3 F3hex = 243dec DBG task 3 segment

3 1..4/10 255 5 15 4 F4hex = 244dec DBG task 4 segment

3 1..4/10 255 5 15 5 F5hex = 245dec DBG task 5 segment

3 1..4/10 255 5 15 6 F6hex = 246dec DBG task 6 segment

3 1..4/10 255 5 15 7 F7hex = 247dec DBG task 7 segment

General task errors
3 1..4/10 255 6..12 0 1 01hex = 1dec No communication

3 1..4/10 255 6..12 0 2 02hex = 2dec Idle

3 1..4/10 255 6..12 3 2 32hex = 50dec Base initialization

3 1..4/10 255 6..12 6 4 64hex = 100dec Parity error

3 1..4/10 255 6..12 6 5 65hex = 101dec Frame error

3 1..4/10 255 6..12 6 6 66hex = 102dec Overrun

3 1..4/10 255 6..12 6 7 67hex = 103dec Data count

3 1..4/10 255 6..12 6 8 68hex = 104dec Checksum error

3 1..4/10 255 6..12 6 9 69hex = 105dec Timeout

3 1..4/10 255 6..12 6 10 6Ahex = 106dec Protocol error

3 1..4/10 255 6..12 6 11 6Bhex = 107dec Data error

3 1..4/10 255 6..12 6 12 6Chex = 108dec NACK

3 1..4/10 255 6..12 6 14 6Ehex = 110dec Protocol base

3 1..4/10 255 6..12 9 6 96hex = 150dec Invalid message
header

3 1..4/10 255 6..12 9 7 97hex = 151dec Invalid message length

3 1..4/10 255 6..12 9 8 98hex = 152dec Invalid message
command

3 1..4/10 255 6..12 9 9 99hex = 153dec Invalid message
structure

3 1..4/10 255 6..12 9 10 9Ahex = 154dec Message error

3 1..4/10 255 6..12 9 11 9Bhex = 155dec Message timeout

3 1..4/10 255 6..12 9 12 9Chex = 156dec Invalid message
sequence

3 1..4/10 255 6..12 9 13 9Dhex = 157dec Invalid message
number

3 1..4/10 255 6..12 9 14 9Ehex = 158dec Unable to run the
command, since execution of the
previous command is not yet finished

3 1..4/10 255 6..12 10 0 A0hex = 160dec Error in telegram
header

3 1..4/10 255 6..12 10 1 A1hex = 161dec Invalid device address

3 1..4/10 255 6..12 10 2 A2hex = 162dec Wrong address data
area

3 1..4/10 255 6..12 10 3 A3hex = 163dec Data address and data
count cause a buffer overflow

3 1..4/10 255 6..12 10 4 A4hex = 164dec Invalid data index

3 1..4/10 255 6..12 10 5 A5hex = 165dec Invalid data count

3 1..4/10 255 6..12 10 6 A6hex = 166dec Unknown data type

3 1..4/10 255 6..12 10 7 A7hex = 167dec Unknown function

3 1..4/10 255 6..12 10 10 AAhex = 170dec Message base

3 1..4/10 255 6..12 12 8 C8hex = 200dec Task not initialized,
coupler not configured

3 1..4/10 255 6..12 12 9 C9hex = 201dec Busy

3 1..4/10 255 6..12 12 10 CAhex = 202dec No segment of RCS
received

3 1..4/10 255 6..12 12 11 CBhex = 203dec Unknown or wrong
sender of a command message

3 1..4/10 255 6..12 13 2 D2hex = 210dec No database

__

V7 AC500 System Technology 116 CPUs AC500 / Issued: 08.2007

3 1..4/10 255 6..12 13 3 D3hex = 211dec Error writing the
database

3 1..4/10 255 6..12 13 4 D4hex = 212dec Error reading the
database

3 1..4/10 255 6..12 13 5 D5hex = 213dec Error registering the
diagnosis structure

3 1..4/10 255 6..12 13 6 D6hex = 214dec Parameter error

3 1..4/10 255 6..12 13 7 D7hex = 215dec Configuration

3 1..4/10 255 6..12 13 8 D8hex = 216dec Function list

3 1..4/10 255 6..12 13 9 D9hex = 217dec System

3 1..4/10 255 6..12 13 10 DAhex = 218dec Not enough internal
memory available

3 1..4/10 255 6..12 13 11 DBhex = 219dec No DPR

3 1..4/10 255 6..12 13 12 DChex = 220dec System base

E1..E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

Class Comp Dev Mod Ch Err PS501
PLC browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

FBP
diagnosis block

<- displayed in 5)

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Ethernet coupler errors

IP task (task 7) errors, see remark 1
3 1..4/10 255 12 3 2 32hex = 50dec No TCP task initialized

3 1..4/10 255 12 3 3 33hex = 51dec Error when initializing
the task configuration

3 1..4/10 255 12 3 4 34hex = 52dec No Ethernet address

3 1..4/10 255 12 3 5 35hex = 53dec Wait for warm start

3 1..4/10 255 12 3 6 36hex = 54dec Invalid flags

3 1..4/10 255 12 3 7 37hex = 55dec Invalid IP address

3 1..4/10 255 12 3 8 38hex = 56dec Invalid net mask

3 1..4/10 255 12 3 9 39hex = 57dec Invalid gateway

3 1..4/10 255 12 3 11 3Bhex = 59dec Unknown hardware

3 1..4/10 255 12 3 12 3Chex = 60dec No IP address

3 1..4/10 255 12 3 13 3Dhex = 61dec Error initializing the
driver

3 1..4/10 255 12 3 14 3Ehex = 62dec No IP address
configuration

3 1..4/10 255 12 3 15 3Fhex = 63dec Invalid serial number

3 1..4/10 255 12 4 0 40hex = 64dec No memory on chip

3 1..4/10 255 12 6 14 6Ehex = 110dec Timeout

3 1..4/10 255 12 6 15 6Fhex = 111dec Timeout invalid

3 1..4/10 255 12 7 3 73hex = 115dec Target not reachable

3 1..4/10 255 12 7 6 76hex = 118dec IP address invalid

3 1..4/10 255 12 7 12 7Chex = 124dec Ethernet address
invalid

3 1..4/10 255 12 8 2 82hex = 130dec Unknown mode

3 1..4/10 255 12 8 3 83hex = 131dec ARP cache full

3 1..4/10 255 12 8 6 86hex = 134dec No ARP entry found

3 1..4/10 255 12 9 5 95hex = 149dec Unexpected response

TCP/UDP task (task 6) errors, see remark 1
3 1..4/10 255 11 3 2 32hex = 50dec Init of IP task not

completed

3 1..4/10 255 11 3 3 33hex = 51dec Error when initializing
the task configuration

__

V7 AC500 System Technology 117 CPUs AC500 / Issued: 08.2007

3 1..4/10 255 11 3 4 34hex = 52dec Init of IP task failed

3 1..4/10 255 11 3 7 37hex = 55dec No memory available
for init

3 1..4/10 255 11 6 14 6Ehex = 110dec Timeout

3 1..4/10 255 11 6 15 6Fhex = 111dec Invalid timeout

3 1..4/10 255 11 7 0 70hex = 112dec Invalid socket

3 1..4/10 255 11 7 1 71hex = 113dec Socket status

3 1..4/10 255 11 7 3 73hex = 115dec Target not reachable

3 1..4/10 255 11 7 4 74hex = 116dec Option not supported

3 1..4/10 255 11 7 5 75hex = 117dec Invalid parameter

3 1..4/10 255 11 7 6 76hex = 118dec Invalid IP address

3 1..4/10 255 11 7 7 77hex = 119dec Invalid port

3 1..4/10 255 11 7 8 78hex = 120dec CONN closed

3 1..4/10 255 11 7 9 79hex = 121dec CONN reset

3 1..4/10 255 11 7 10 7Ahex = 122dec Unknown protocol

3 1..4/10 255 11 7 11 7Bhex = 123dec No sockets

3 1..4/10 255 11 8 2 82hex = 130dec Unknown mode

3 1..4/10 255 11 8 3 83hex = 131dec Max. data length
exceeded

3 1..4/10 255 11 8 4 84hex = 132dec Message count
exceeded

3 1..4/10 255 11 8 5 85hex = 133dec Max. group exceeded

3 1..4/10 255 11 9 5 95hex = 149dec Unexpected response
message

OMB task (Modbus TCP) errors (task 3), see remark 1
3 1..4/10 255 8 3 4 34hex = 52dec Invalid configuration

data, server connections

3 1..4/10 255 8 3 5 35hex = 53dec Invalid configuration
data, task timeout

3 1..4/10 255 8 3 6 36hex = 54dec Invalid configuration
data, OMB timeout

3 1..4/10 255 8 3 7 37hex = 55dec Invalid configuration
data, mode

3 1..4/10 255 8 3 8 38hex = 56dec Invalid configuration
data, send timeout

3 1..4/10 255 8 3 9 39hex = 57dec Invalid configuration
data, connect timeout

3 1..4/10 255 8 3 10 3Ahex = 58dec Invalid configuration
data, close timeout

3 1..4/10 255 8 3 11 3Bhex = 59dec Invalid configuration
data, swap

3 1..4/10 255 8 3 12 3Chex = 60dec TCP_UDP task not
found, TCP task not ready

3 1..4/10 255 8 3 13 3Dhex = 61dec PLC task not found,
PLC task not ready

3 1..4/10 255 8 3 14 3Ehex = 62dec Error initializing OMB
task

3 1..4/10 255 8 3 15 3Fhex = 63dec Error initializing PLC
task mode

3 1..4/10 255 8 6 15 6Fhex = 111dec Unknown sender of a
response

3 1..4/10 255 8 7 0 70hex = 112dec Error code in response

3 1..4/10 255 8 7 1 71hex = 113dec No socket found in
searched status

3 1..4/10 255 8 7 2 72hex = 114dec Invalid value in request

3 1..4/10 255 8 7 3 73hex = 115dec Error message of TCP
task

3 1..4/10 255 8 7 4 74hex = 116dec Modbus error

3 1..4/10 255 8 7 5 75hex = 117dec No socket available

3 1..4/10 255 8 7 6 76hex = 118dec Invalid socket handle

3 1..4/10 255 8 7 7 77hex = 119dec Timeout in client
socket

__

V7 AC500 System Technology 118 CPUs AC500 / Issued: 08.2007

3 1..4/10 255 8 7 8 78hex = 120dec Socket closed, without
response to command

3 1..4/10 255 8 7 9 79hex = 121dec Not ready flag set

3 1..4/10 255 8 7 10 7Ahex = 122dec TCP task no longer
ready

3 1..4/10 255 8 7 11 7Bhex = 123dec Watchdog event

3 1..4/10 255 8 7 12 7Chex = 124dec Device in
reconfiguration

3 1..4/10 255 8 7 13 7Dhex = 125dec PLC task not
initialized

3 1..4/10 255 8 7 14 7Ehex = 126dec OMB server socket
closed

Remark 1:
The error information is also available at the output ERNO of the blocks used for the coupler.
The following applies: ERNO := 6000hex OR error.

5.3 Diagnosis blocks for the AC500

The folder "Diagnosis" in the AC500 library SysInt_AC500_Vxx.LIB contains the following diagnosis
blocks:

Block Function

DIAG_EVENT Generates an error entry in the diagnosis system

DIAG_GET Provides detailed information and the error code for the next error of the
selected error class

DIAG_INFO Indicates that an error of the class 1..4 exists

DIAG_ACK Acknowledges an error with error code

DIAG_ACK_ALL Acknowledges all errors of an error class (except errors that have to be
acknowledged exclusively)

The diagnosis blocks are described in detail in the documentation for the SysInt_AC500_Vxx.LIB library.

5.4 AC500-specific PLC browser commands

The PLC browser interface of the Control Builder provides CoDeSys standard commands as well as
AC500-specific commands. The general operation of the PLC browser is described in the according user
manual.

This section only describes AC500-specific commands and commands that provide special data for the
AC500.

For all commands online help information is available. The help information is displayed language-
dependent by entering "?command" when operating in online mode. The command "?" lists all available
firmware commands.

The commands listed in online mode can differ from the commands shown when pressing the button [...]
as the Control Builder version and firmware version can differ. The commands listed when clicking the
button [...] are defined in the file "Browser.ini" that belongs to the selected target system package (TSP).

__

V7 AC500 System Technology 119 CPUs AC500 / Issued: 08.2007

The PLC browser provides the following AC500-specific commands:

Command Meaning Implementation

? Displays all implemented commands Standard

mem Memory dump from up to Standard

memc Memory dump relative to code area Standard

memd Memory dump relative to data area Standard

reflect Reflect actual command line (for test purposes) Standard

dpt Displays the data pointer table Standard

ppt Displays the block pointer table Standard

pid Displays the project ID Standard

pinf Displays project information in the format:
pinf
Address of Structure: 16#0013CF74
Date: 4213949F
Project Name: MODBUS_Test_BB.pro
Project Title: Test MODBUS
Project Version: V1.0
Project Author: Brigitte Blei
Project Description:
Test of serial interfaces
End of Project-info.

Standard

tsk Displays the IEC task list with task information in the format:
tsk
Number of Tasks: 1
Task 0: Main program, ID: 1519472
 Cycle count: 45402
 Cycle time: 1 ms
 Cycle time (min): 1 ms
 Cycle time (max): 1 ms
 Cycle time (avg): 1 ms
 Status: RUN
 Mode: CONTINUE

 Priority: 10
 Interval: 5 ms
 Event: NONE

 Function pointer: 16#00601584
 Function index: 131

Standard

startprg Starts the user program Standard

stopprg Stops the user program Standard

resetprg Resets the user program Standard

resetprgcold Resets the user program (cold) Standard

resetprgorg Resets the user program (origin) Standard

reload Reloads the boot project from Flash Standard

getprgprop Displays program properties in the format:
getprgprop
Name: MODBUS_FBP_Test_BB.pro
Title: Test MODBUS
Version: V1.0
Author: Brigitte Blei
Date: 4213949F

Standard

getprgstat Displays the program status in the format:
getprgstat
Status: Run
Last error: Id 00000000 TimeStamp 000055F3
Parameter 00000000 Text
Flags:

Standard

__

V7 AC500 System Technology 120 CPUs AC500 / Issued: 08.2007

filecopy File command copy No

filerename File command rename No

filedelete File command delete No

filedir File command dir No

saveretain In V1.0 and V1.1: Saves the RETAIN variables to the SD
card.
As of V1.2: Writes the RETAIN variables to RAM
(same as retain save)

Specific

restoreretain In V1.0 and V1.1: Restores the RETAIN variables from the
SD card.
As of V1.2: Restores the RETAIN variables from RAM
(same as retain restore)

Specific

setpwd Sets the PLC password
(required at logon!)

Standard

delpwd Deletes the PLC password Standard

plcload Displays the PLC utilization
(system+IEC+tasks+communication)

Standard

rtsinfo Displays the firmware information (version, driver) in the
format:
rtsinfo
rts version: 2.4.5.2
OS version: SMX smxPPC 3.5.2
uses IO driver interface
rts api version: 2.407
4 driver(s) loaded
driver 1: AC500 CPU driver, device interface
version: 2.403
driver 2: AC500 I/O-BUS driver, device
interface version: 2.403
driver 3: AC500 COM driver, device interface
version: 2.403
driver 4: AC500 Coupler driver, device
interface version: 2.403
AC500 PM581(DISP) : V1.0
AC500 PM581(BOOT) : V1.2.0,(Build:May 3
2007,12:33:32,Release)
AC500 PM581(FW) : V1.2.0,(Build:May 10
2007,16:32:40,Release)

Specific

traceschedon Enables task tracing No

traceschedoff Disables task tracing No

traceschedstore Stores task trace to RAM No

ipaddr Sets the IP address of the CPU No

basetick Sets the basetick to µs No

diagreset Resets the diagnosis system Specific

diagack all Acknowledges all errors (except errors that have to be quit
exclusively)

Specific

diagack x Acknowledges all errors of the class X (with X= 1...4) Specific

diagshow all Shows all errors in the format:
diagshow all

--- All errors ---
State Class Comp Dev Mod Ch Err

0152502216
active and quitted 4 9 22 31 31 8
 1970-01-01 00:00:08 occurred
 disappeared
 1970-01-01 00:00:15 quitted

Specific

__

V7 AC500 System Technology 121 CPUs AC500 / Issued: 08.2007

0152369165
active not quitted 4 9 20 31 0 13
 1970-01-01 01:19:12 occurred
 - disappeared
 - quitted

--- end ---

time Displays and sets the time of the realtime clock Specific

date Displays and sets the date of the realtime clock Specific

batt Polls the battery status Specific

sdappl Saves the boot project to the SD card Specific

sdfunc Displays and changes the SD card function Specific

sdboot Updates the bootcode from the SD card Specific

sdfirm Updates the firmware from the SD card Specific

sdcoupler x Updates the firmware of coupler x from the SD card Specific

cpuload Displays the CPU load (current, min., max., average) Specific

delappl Deletes the user program in the Flash memory Specific

retain Saving and restoring the RETAIN variables:
retain clear -> Clears all RETAIN variables
retain save -> Saves the RETAIN variables to the RAM disk
retain restore -> Restores the RETAIN variables from the
RAM disk
retain export -> Exports the RETAIN variables from the RAM
disk to the SD card
retain import -> Imports the RETAIN variables from the SD
card to the RAM disk

Specific as of V1.2

persistent Saving and restoring the persistent area %R area:
persistent clear -> Clears the %R area
persistent save -> Saves the buffered %R area to the RAM
disk
persistent restore -> Restores the buffered %R area from the
RAM disk
persistent export -> Exports the buffered %R area from the
RAM disk to the SD card
persistent import -> Imports the buffered %R area from the
SD card to the RAM disk

Specific as of V1.2

io-bus stat Displays the I/O bus statistic Specific

io-bus desc Displays the I/O bus configuration Specific

com protocols Displays the protocols available for the serial interfaces Specific

com settings Displays the serial interface settings Specific

coupler desc Displays information on the coupler interfaces (type,
firmware, serial number, date)

Specific

coupler settings Displays the current coupler settings, for example, IP address
and socket assignment

Specific as of V1.2

reboot Reboots the PLC (CoDeSys performs a logout when
restarting or logout possible up to 3 seconds after command
input)

Specific

__

V7 AC500 System Technology 122 CPUs AC500 / Issued: 08.2007

6 The SD memory card in the AC500

6.1 SD card functions

6.1.1 Summary of memory card functions

The AC500 controller contains a FLASH memory card of the type "SD Memory Card" (in short SD card)
as external storage medium which is accessed by the PLC like a floppy disk drive. The SD card is used
to transfer data between a commercially available PC with SD card interface and the AC500.

In the AC500, the SD card can be used to:

• update the AC500-CPU processor firmware

• update the CPU boot code

• update the display controller firmware (as of version V2.0)

• update the coupler firmware (as of version V1.2.0)

• update the firmware of the I/O modules connected to the I/O bus (as of version V2.0)

• load and save user programs (boot project)

• load and save the source code of the user program

• load and save retentive variables (RETAIN, %R area)

• load and save user data (with blocks)

The SD card can be operated by:

• writing/reading files using a standard PC card reader with SD card interface

• specific PLC browser commands

• reading and writing data from the user program using specific blocks

6.1.2 PLC browser commands for accessing the SD card

Command Function

sdfunc Displays and sets the SD card function "FunctionOfCard":
0 None
1 Load user program
2 Load firmware
3 Load user program and firmware

sdappl Saves the user program (boot project) stored in Flash memory to the SD card (files
Default.prg and Default.chk) and sets the SD card function to "Load user program"
Set FunctionOfCard=+1 (bit 0 = 1)

saveretain Up to V1.1: Saves the RETAIN variables "RETAIN.BIN" to the SD card (not from %M
area)

restoreretain Up to V1.1: Restores the RETAIN variables "RETAIN.BIN" from SD card to SRAM (not
from %M area)

retain As of V1.2: Saving and restoring the RETAIN variables:
retain export -> Exports the RETAIN variables from the RAM disk to the SD card
retain import -> Imports the RETAIN variables from the SD card to the RAM disk

persistent As of V1.2: Saving and restoring the persistent area %R area:
persistent export -> Exports the buffered %R area from the RAM disk to the SD card
persistent import -> Imports the buffered %R area from the SD card to the RAM disk

__

V7 AC500 System Technology 123 CPUs AC500 / Issued: 08.2007

6.2 SD card file system

6.2.1 SD card file structure

In the PLC, the SD card is accessed like a PC floppy disk drive. The type of the file system is FAT
(Microsoft DOS format). The file names are stored in 8.3 format (no "long" names) on the SD card.

File structure in versions V1.0 and V1.1

In versions V1.0 and V1.1, the file structure on the SD card looks as follows:

• The root directory on the SD card contains the command file SDCARD.INI (for a detailed
description see the following section).

• The subdirectory "Firmware" contains further subdirectories for the:
- CPUs PM571, PM581 and PM591.
Each of these subdirectories contains the boot code MixxB.gza and the CPU firmware Mixx.gza.
Boot code and firmware for the CPU PM582 are contained in the directory PM581.

• The subdirectory "UserData" contains the subdirectories:
- "UserPrg", user program
- "UserProj", source code of the user program
- "UserDat", user data and
- "RetDat", retentive data
These directories contain the user data.

• xx in the file name represents the data file number.

__

V7 AC500 System Technology 124 CPUs AC500 / Issued: 08.2007

File structure as of version V1.2

The SD card file structure has been revised and expanded for version V1.2. The following new functions
are implemented:

1. Management of several boot code and firmware versions on one SD card.

2. Each CPU has its own directory.
Up to version V1.1, there were only directories for controller classes PM57x, PM58x and PM59x.
Due to this, the PM581 and PM582 data were stored to the same directory, for example
..\PM581.

3. Loading the field bus coupler firmware from the SD card by specific settings in the file
SDCARD.INI or using the PLC browser command.

4. Management of several field bus coupler firmware versions.

5. Saving/restoring RETAIN data (%M area excluded) to/from the SD card via the user program
and/or the PLC browser.

6. Saving/restoring the PERSISTENT area (%R area) to/from the SD card via the user program
and/or the PLC browser.

As of version V1.2, the file structure looks as follows:

__

V7 AC500 System Technology 125 CPUs AC500 / Issued: 08.2007

__

V7 AC500 System Technology 126 CPUs AC500 / Issued: 08.2007

6.2.2 The command file "SDCARD.INI"

The command file "SDCARD.INI" located in the root directory on the SD card determines the behavior
when starting the AC500 with installed SD card and when installing the card (firmware update, loading
the user program, etc.).

The file SDCARD.INI is created in Windows INI format.

File content in versions V1.0 and V1.1

[Status]
FunctionOfCard=0

[FirmwareUpdate]
CPUPM5x1=0
CPUEC500=0
Display=0
Coupler_0=0
Coupler_1=0
Coupler_2=0
Coupler_3=0
Coupler_4=0

[UserProg]
UserProgram=0
RetainData=0
AddressData=0

The entries have the following meaning:

• [Status]
FunctionOfCard=0

The parameter FunctionOfCard determines which function is performed when inserting the SD
card.
With:
FunctionOfCard=0 Perform no function when inserting the card or voltage ON
FunctionOfCard=1 Load user program according to entry in group [UserProg]
FunctionOfCard=2 Start firmware update according to entry in group [FirmwareUpdate]
FunctionOfCard=4 Reserved for factory test

If you want to load the firmware and user program, set FunctionOfCard = 3.

• [FirmwareUpdate]
CPUPM5x1=0 (0 = no update, 1 = Update CPU firmware)
Display=0 (0 = no update, 1 = Update display controller)
Coupler_0=0 (0 = no update, 1 = Update internal coupler)
Coupler_1=0 (0 = no update, 1 = Update coupler in slot 1)
Coupler_2=0 (0 = no update, 1 = Update coupler in slot 2)
Coupler_3=0 (0 = no update, 1 = Update coupler in slot 3)
Coupler_4=0 (0 = no update, 1 = Update coupler in slot 4)

The parameters in the group [FirmwareUpdate] specify which firmware is loaded. In version
V1.0, only the CPU processor firmware can be loaded.

• [UserProg]
UserProgram=0 (0 = no update, 1 = Update user program)
RetainData=0 (0 = no update, 1 = Update RETAIN variables)

The parameters in the group [UserProg] specify which user data are loaded. Up to version V1.1,
only the user program can be loaded.

__

V7 AC500 System Technology 127 CPUs AC500 / Issued: 08.2007

File content as of version V1.2

[Status]
FunctionOfCard=0

[FirmwareUpdate]
CPUPM5x1=0
CPUEC500=0
Display=0
Coupler_0=0
Coupler_1=0
Coupler_2=0
Coupler_3=0
Coupler_4=0

[UserProg]
UserProgram=0
RetainData=0
AddressData=0

[PM571]
TYPE=1
VERSION=1_2_0
PLCBOOT=1_2_0

[PM581]
TYPE=1
VERSION=1_2_0
PLCBOOT=1_2_0

[PM582]
TYPE=1
VERSION=1_2_0
PLCBOOT=1_2_0

[PM590]
TYPE=1
VERSION=1_2_0
PLCBOOT=1_2_0

[PM591]
TYPE=1
VERSION=1_2_0
PLCBOOT=1_2_0

[PM5x1]
TYPE=4
VERSION=1_045

[CM572]
TYPE=4
VERSION=1_097

[CM575]
TYPE=4
VERSION=1_077

[CM577]
TYPE=4
VERSION=1_045

[CM578]
TYPE=4
VERSION=1_109

__

V7 AC500 System Technology 128 CPUs AC500 / Issued: 08.2007

The entries have the following meaning:

• [Status]
FunctionOfCard=0

The parameter FunctionOfCard determines which function is performed when inserting the SD
card.
With:
FunctionOfCard=0 Perform no function when inserting the card or voltage ON
FunctionOfCard=1 Load user program according to entry in group [UserProg]
FunctionOfCard=2 Update firmware according to entry in group [FirmwareUpdate]
FunctionOfCard=3 Update firmware according to entry in group [FirmwareUpdate]
 and load user program according to entry in [UserProg]
FunctionOfCard=4 Reserved for factory test
FunctionOfCard=8 Functions 0..4 + save debug data in case of possible failures
Entry: 8 + function, Example: Function=1 ? FunctionOfCard=8+1=9

• [FirmwareUpdate]
CPUPM5x1=0
Display=0 (0 = no update, currently no further mode available)
Coupler_0=0 (0 = no update, 2/3 = Update internal coupler)
Coupler_1=0 (0 = no update, 2/3 = Update coupler in slot 1)
Coupler_2=0 (0 = no update, 2/3 = Update coupler in slot 2)
Coupler_3=0 (0 = no update, 2/3 = Update coupler in slot 3)
Coupler_4=0 (0 = no update, 2/3 = Update coupler in slot 4)

0 = no update,

1 = Update CPU firmware from base directory on the CPU
This mode is fully compatible to the firmware update of versions V1.0 and V1.1.

2 = Update with specific version
In mode 2, the update is only performed if the key 'version' in a product section (for example
[PM581]) returns a different result than the version on the PLC. If the key 'version' is missing, no
update is performed.

3 = Update firmware only if the SD card firmware is newer than the PLC firmware.
For mode 3 the same applies as for mode 2. However, an update is only performed if the
firmware is newer than the PLC's firmware version.
For this mode it must be ensured that the firmware versions can be read safely.

The parameters of the group [FirmwareUpdate] specify which firmware is loaded.

• [UserProg]
UserProgram=0 (0 = no update, 1 = Update user program)
RetainData=0 (0 = no update, 1 = Update RETAIN variables)

The parameters of the group [UserProg] specify which user data are loaded. In version V1.0,
only the user program can be loaded.

• [PM571] or [PM581], [PM582], [PM590], [PM591]
TYPE=1
VERSION=1_2_0
PLCBOOT=1_2_0

Which firmware or boot code version is to be loaded is entered to the key for the according CPU
PM5xy. The key is only evaluated for mode 2 and 3 in the key
[FirmwareUpdate] / CPUPM5x1=2 or 3.

The following applies for TYPE:
TYPE=1 CPU
TYPE=2 DISPLAY
TYPE=3 I/O device at the CPU's I/O bus
TYPE=4 Coupler (0-internal, 1..4-external)

__

V7 AC500 System Technology 129 CPUs AC500 / Issued: 08.2007

The CPU firmware version is set with VERSION. For example, VERSION has to be set to
VERSION=1_2_0 for version V1.2.0 and VERSION=1_1_7 for version V1.1.7.

The entry PLCBOOT specifies the boot code version of the CPU. For example, VERSION has to
be set to VERSION=1_2_0 for version V1.2.0 and VERSION=1_1_3 for version V1.1.3.

• [PM5x1] or [CM572], [CM575], [CM577], [CM578]
TYPE=4
VERSION=1_045

For the couplers always TYPE=4 has to be entered.

VERSION specifies the firmware version of the coupler. For the Ethernet coupler, VERSION has
to be set to, for example, VERSION=1_045 for version V01.045.

6.2.3 Initializing an SD card

6.2.3.1 Initializing an SD card using the AC500

The file structure described above is created on the SD card when a formatted SD card is inserted into
the AC500. The file SDCARD.INI contains the following entries:

[Status]
FunctionOfCard=0
[FirmwareUpdate]
CPUPM5x1=0
Display=0
Coupler_0=0
Coupler_1=0
Coupler_2=0
Coupler_3=0
Coupler_4=0
[UserProg]
UserProgram=0
RetainData=0
AddressData=0

The following error message is displayed if you insert a non-formatted SD card:

152369164 FK4 Warning Unable to read the SD card

Other files or subdirectories in the root directory on the SD card are kept unchanged.

6.2.3.2 Initializing an SD card using a PC

It is also possible to create the above described file structure on the hard disk of a PC with SD card
interface.

To do this, create the required directories and an ASCII file named SDCARD.INI with Notepad, for
example.

It is also possible to copy the file structure from an initialized SD card to the hard disk and then from the
hard disk to SD cards that are not initialized.

__

V7 AC500 System Technology 130 CPUs AC500 / Issued: 08.2007

6.3 Storing/loading the user program to/from an SD card

6.3.1 Storing the user program to an SD card

To store the user program to the SD card, proceed as follows:

1. Build the complete project using the menu items
"Project" / "Clean all" and "Project" / "Rebuild all".

2. Load the project into the AC500.

3. Create the boot project on the controller using "Online" / "Create boot project".
The boot project files (DEFAULT.PRG and DEFAUL.CHK) are loaded into the AC500 and flashed.
The RUN LED on the AC500 flashes while data flashing is in progress.

4. Insert the SD card. If the SD card does not already contain the required file structure, the structure will
be created
(see also: “Initializing an SD card using the AC500”).

 Caution: If a user program is already stored on the SD card, i.e., the directory
UserData\PM5x1\UserPrg already contains the files DEFAULT.PRG and DEFAULT.CHK, these files
will be overwritten without any warning.

If you want to store several user programs to the SD card, you have to copy them into other
directories using the PC.

5. Open the PLC Browser from the Resources tab and enter the command "sdappl"<ENTER>.
The files DEFAULT.PRG and DEFAULT.CHK are loaded from the Flash memory and stored to the
directory UserData\PM5x1\UserPrg on the SD card.
In the file SDCARD.INI, the parameter "FunctionOfCard" is set to 1 (bit 0 = 1) and the parameter
"UserProgram" is set to 1, i.e., the function "Load the user program" is activated.
The RUN LED on the AC500 flashes while writing to the SD card is in progress.

If you insert the SD card containing the user program into the AC500, the SD card is loaded into the
Flash memory of the AC500 (see next section).

6.3.2 Loading a user program from the SD card to the AC500

If an SD card is inserted into the AC500 when the PLC is in STOP mode or if the SD card is already
inserted when switching on the control voltage, the file structure on the SD card is checked. If the file
structure exists, the file SDCARD.INI is read. If the parameter "FunctionOfCard" is set to 1 (bit 0 = 1) and
the parameter "UserProgram" = 1, the files DEFAULT.PRG and DEFAULT.CHK in the directory
UserData\PM5x1\UserPrg on the SD card are loaded into the Flash memory of the AC500.

 Caution: In versions V1.0 and V1.1, the user program can only be loaded with control voltage ON
if FunctionOfCard=3 (i.e., firmware update and user program are loaded). To disable the firmware
update, the according firmware file has to be deleted!

The RUN LED on the AC500 flashes while loading and flashing the user program is in progress.

The loaded program is activated after a PLC restart.

If the user program cannot be loaded (for example, due to missing files, wrong directory structure or
mismatching project for the controller), a corresponding error message appears.

A summary of the SD card errors can be found in the section "SD card error messages".

If you insert the SD card into the AC500 when the PLC is in RUN mode, the user program is not loaded
independent of the settings for the parameters "FunctionOfCard" (bit 0=1) and "UserProgram" (=1).
Thus, the function "Load user program" can be deactivated with the PLC browser command "sdfunc 0"
even if no PC card reader is available.

__

V7 AC500 System Technology 131 CPUs AC500 / Issued: 08.2007

6.4 Storing/reading user data to/from an SD card

6.4.1 Structure of data files stored on the SD card

Depending on the AC500 CPU type, the data are stored in the following SD card directory:

AC500 CPU Directory File

PM571 ..\UserData\PM571\UserDat USRDATxx.DAT

PM581 ..\UserData\PM581\UserDat USRDATxx.DAT

PM591 ..\UserData\PM591\UserDat USRDATxx.DAT

A maximum of 100 files (USRDAT00.DAT...USRDAT99.DAT) can be stored in one directory.

Each data file USRDATxx.DAT can be divided into individual sectors, if necessary. The "sector label"
enclosed in square brackets (such as [Sector_01]<CR><LF>) indicates the start of the sector. Within a
sector, data are saved as data sets in ASCII format. The individual values of a data set are separated by
semicolon. Each data set is closed with <CR><LF> (0Dhex, 0Ahex).

This enables the direct import/export of the data from/to EXCEL. The data files can be viewed and edited
using a standard ASCII editor (such as Notepad).

When saving/loading data files, observe the following rules:

• Data sets within a sector must always have the same number of values.

• Data sets in different sectors can have a different number of values.

• Values of integer data types can be stored. REAL or LREAL variables cannot be stored.

• The values of a data set must have the same data format (BYTE, WORD, INT,..).

• A sector can have data sets with different data format.
(Warning: The user has to know the structure of the data for reading them.)

• The data sets are always appended to the end of the file when writing.

• Searching for a "sector label" within a file is possible when reading it.

• Data sets can be read starting from a particular "sector label".

• A particular data set of a sector cannot be read or written.

• If you want to read each data set individually, a "sector label" must be inserted before each data
set.

• Reading and writing the data with help of the user program is done with the blocks SD_READ
and SD_WRITE.

• The values of a data set must be available in variables successively stored in the PLC (e.g.,
ARRAY, STRING, %M area).

• A data file can be deleted with help of the PLC program.

• Individual data sets and/or sectors cannot be deleted with the user program.
This has to be done on the PC using an ASCII editor such as Notepad.

__

V7 AC500 System Technology 132 CPUs AC500 / Issued: 08.2007

Data file examples:

Example 1:

Data file USRDAT5.DAT without sectors:
-> 5 data sets, each with 10 DINT values:

600462;430;506;469;409;465;466;474;476;-1327203
600477;446;521;484;425;480;482;490;491;-1327187
600493;461;537;499;440;496;497;505;507;-1327172
600508;477;552;515;456;511;513;521;522;-1327156
600524;492;568;530;471;527;528;536;538;-1327141

Example 2:

Data file USRDAT7.DAT with sectors:
-> 3 sectors, each with 3 data sets and 10 DINT values per data set:

[Sector_01]
610439;10408;10483;10446;10387;10442;10444;10452;10453;-1317225
610455;10423;10499;10462;10402;10458;10460;10467;10469;-1317209
610476;10445;10520;10483;10424;10479;10481;10489;10490;-1317188

[Sector_02]
610570;10539;10614;10577;10518;10573;10575;10583;10584;-1317094
610585;10554;10630;10592;10533;10589;10591;10598;10600;-1317078
610602;10571;10646;10609;10550;10605;10607;10615;10616;-1317062

[Sector_03]
610701;10670;10746;10708;10649;10704;10706;10714;10715;-1316963
610717;10686;10761;10724;10665;10720;10722;10730;10731;-1316947
610739;10708;10783;10746;10686;10742;10744;10751;10753;-1316926

6.4.2 Blocks for storing/reading user data to/from the SD card

The following blocks are used to write and read user data from the PLC program to/from the SD card:

Library: SysInt_AC500_Vxx.lib

Folder: ..\Data Storage\ SD card
The library SysExt_AC500_Vxx.lib is also required. Both libraries are loaded automatically
when creating a project for an AC500 CPU.

Blocks: SD_WRITE - Writes user data
SD_READ - Reads user data

The blocks SD_WRITE and SD_READ are described in the documentation for the block library
SysInt_AC500_Vxx.lib.

__

V7 AC500 System Technology 133 CPUs AC500 / Issued: 08.2007

The inputs and outputs of the block SD_WRITE and their functions are as follows:

Name Type Assignment

Inputs

EN BOOL The FALSE->TRUE edge starts the write process

ATTRIB BYTE Write attribute of the block:
1 - Delete file
2 - Write append
3 - Write sector label

FILENO BYTE Consecutive file number 0 <= xx <= 99 (USRDATxx.DAT)

SEG POINTER TO STRING Pointer to sector label string (via ADR operator)

FORMAT BYTE Data format:
00 hex - 0 - BYTE
01 hex - 1 - CHAR
10 hex - 16 - WORD
11 hex - 17 - INT
20 hex - 32 - DWORD
21 hex - 33 - DINT

NVAR WORD Number of variables to be written

ADRVAR DWORD Address of the first variable, starting from which the data
are available in the PLC (via ADR operator)

Outputs

DONE BOOL Function completed

ERR BOOL Error: FALSE=no error, TRUE=error

ERNO INT Error number

The inputs and outputs of the block SD_READ and their functions are as follows:

Name Type Assignment

Inputs

EN BOOL The FALSE->TRUE edge starts the read process

ATTRIB BYTE Read attribute of the block:
1 - Open file, seek sector, read data set
2 - Open file, read data set
3 - Open and read next data set
4 - Read data set, close file
5 - Close file

FILENO BYTE Consecutive file number 0 <= xx <= 99 (USRDATxx.DAT)

SEG POINTER TO STRING Pointer to sector label string (via ADR operator)

FORMAT BYTE Data format:
00 hex - 0 - BYTE
01 hex - 1 - CHAR
10 hex - 16 - WORD
11 hex - 17 - INT
20 hex - 32 - DWORD
21 hex - 33 - DINT

NVAR WORD Number of variables to be read

ADRVAR DWORD Address of the first variable starting from which the data are
stored to the PLC (via ADR operator)

Outputs

DONE BOOL Function completed

ERR BOOL Error: FALSE=no error, TRUE=error

ERNO INT Error number

The error messages of the blocks SD_READ and SD_WRITE are described in the chapter Function
block error messages.

__

V7 AC500 System Technology 134 CPUs AC500 / Issued: 08.2007

6.4.3 Deleting a data file stored on the SD card

To delete a data file from the SD card, proceed as follows:

1. Insert the SD card.

2. Call the block SD_WRITE with the following settings:

 EN := TRUE
 ATTRIB := 1 (* delete *)

 FILENO := 0...99 (* number of the file to be deleted *)

 SEG, FORMAT, NVAR, ADRVAR - any

6.4.4 Storing user data to the SD card - data file without sectors

Proceed as follows to store user data to the SD card in a data file without sectors:

1. Insert the SD card.

2. Write a data set by calling the block SD_WRITE with the following settings:

 EN := TRUE (* FALSE/TRUE edge starts writing *)

 ATTRIB := 2 (* write append *)

 FILENO := 0...99 (* number of the file to which the data set is to be appended *)
 SEG := Address of the variable of the sector label (* any *)

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable to be written

 If no corresponding file exists, then it is created.
The write process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A write error is indicated by ERR:=TRUE and ERNO<>0.

3. Further data sets can be written with the same block settings after the completion message is

indicated (output DONE=TRUE). This process is started with a FALSE/TRUE edge at input EN.

 Note: The file USRDATxx.DAT is saved as USRDATxx.BAK for each write process and an "Open
file / Write file / Close file" procedure is performed.

__

V7 AC500 System Technology 135 CPUs AC500 / Issued: 08.2007

6.4.5 Storing user data to the SD card - data file with sectors

Proceed as follows to store user data to the SD card in a data file with sectors:

1. Insert the SD card.

2. Write the sector label by calling the block SD_WRITE with the following settings:

 EN := TRUE

 ATTRIB := 3 (* write sector *)

 FILENO := 0...99 (* number of the file to which the data set is to be appended *)
 SEG := Address of the variable of the sector label

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable to be written

 If no corresponding file exists, then it is created.
The sector is successfully written when output DONE:=TRUE and output ERR:=FALSE. A write
error is indicated by ERR:=TRUE and ERNO<>0.

3. Write a data set by calling the block SD_WRITE with the following settings:

 EN := TRUE (* FALSE/TRUE edge starts writing *)

 ATTRIB := 2 (* write append *)

 FILENO := 0...99 (* number of the file to which the data set is to be appended *)
 SEG := Address of the variable of the sector label

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable to be written

 The write process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A write error is indicated by ERR:=TRUE and ERNO<>0.

4. Further data sets can be written with the same block settings after the completion message is

indicated (output DONE=TRUE). This process is started with a FALSE/TRUE edge at input EN.

5. If you want to write further sectors and data sets, repeat steps 2..4.

 Note: The file USRDATxx.DAT is saved as USRDATxx.BAK for each write process and an "Open
file / Write file / Close file" procedure is performed.

__

V7 AC500 System Technology 136 CPUs AC500 / Issued: 08.2007

6.4.6 Loading user data from the SD card - data file without sectors

Proceed as follows to read user data from a data file without sectors on the SD card and write them to
the PLC:

1. Insert the SD card.

2. Read a data set by calling the block SD_READ with the following settings:

 EN := TRUE (* FALSE/TRUE edge starts reading *)

 ATTRIB := 2 (* open / read *)
 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label (* any *)

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable into which data are to be written

 The read process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A read error is indicated by ERR:=TRUE and ERNO<>0.

3. Further data sets can be read with the following settings after the completion message is

displayed (output DONE=TRUE). This process is started with a FALSE/TRUE edge at input EN:

 EN := TRUE (* FALSE/TRUE edge starts reading *)

 ATTRIB := 3 (* continue read *)
 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label (* any *)

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable into which data are to be written
 If an unexpected sector label or the end of file (EOF) is detected when reading, a corresponding

error message is generated.

4. To read a further data set and to close the file afterwards, call the block SD_READ with the
following settings after the completion message (output DONE=TRUE) and start the process with
a FALSE/TRUE edge at input EN:

 EN := TRUE (* FALSE/TRUE edge starts reading *)

 ATTRIB := 4 (* read / close *)

 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label (* any *)

 FORMAT := Data format

 NVAR := Number of values in data set
 ADRVAR := Address of the first variable into which data are to be written

 If an unexpected sector label or the end of file (EOF) is detected when reading, a corresponding
error message is generated.

5. To close the file, call the block SD_READ with the following settings after the completion

message (output DONE=TRUE) and start the process with a FALSE/TRUE edge at input EN:

 EN := TRUE (* FALSE/TRUE edge starts close process *)

 ATTRIB := 4 (* close *)

 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label (* any *)

 FORMAT := Data format
 NVAR := Number of values in data set (* any *)

 ADRVAR := Address of first variable (* any *)

__

V7 AC500 System Technology 137 CPUs AC500 / Issued: 08.2007

6.4.7 Loading user data from the SD card - data file with sectors

Proceed as follows to read user data from a data file with sectors on the SD card and write them to the
PLC:

1. Insert the SD card.

2. Seek a sector label and read a data set by calling the block SD_READ with the following settings:

 EN := TRUE (* FALSE/TRUE edge starts reading *)

 ATTRIB := 1 (* open / seek / read *)
 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable into which data are to be written

 The read process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A seek error is indicated by ERR:=TRUE and ERNO<>0.

3. Further data sets can be read with the following settings after the completion message is

indicated (output DONE=TRUE). This process is started with a FALSE/TRUE edge at input EN:

 EN := TRUE (* FALSE/TRUE edge starts reading *)

 ATTRIB := 3 (* continue read *)
 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label (* any *)

 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable into which data are to be written
 If an unexpected sector label or the end of file (EOF) is detected when reading, a corresponding

error message is generated.

4. If you want to read further sectors / data sets, close the file and then repeat steps 2 and 3.

5. To read a further data set and to close the file afterwards, call the block SD_READ with the
following settings after the completion message (output DONE=TRUE) and start the process with
a FALSE/TRUE edge at input EN:

 EN := TRUE (* FALSE/TRUE edge starts reading *)

 ATTRIB := 4 (* read / close *)

 FILENO := 0...99 (* number of the file which is to be read *)

 SEG := Address of the variable of the sector label
 FORMAT := Data format

 NVAR := Number of values in data set

 ADRVAR := Address of the first variable into which data are to be written

 If an unexpected sector label or the end of file (EOF) is detected when reading, a corresponding
error message is generated.

6. To close the file, call the block SD_READ with the following settings after the completion

message (output DONE=TRUE) and start the process with a FALSE/TRUE edge at input EN:

 EN := TRUE (* FALSE/TRUE edge starts close process *)

 ATTRIB := 4 (* close *)

 FILENO := 0...99 (* number of the file to be read *)
 SEG := Address of the variable of the sector label

 FORMAT := Data format

 NVAR := Number of values in data set (* any *)

 ADRVAR := Address of first variable (* any *)

__

V7 AC500 System Technology 138 CPUs AC500 / Issued: 08.2007

6.5 Storing and loading retentive data to/from an SD card

Retentive variables (RETAIN variables) declared with VAR_RETAIN .. END_VAR or VAR_GLOBAL
RETAIN .. END_VAR are set to their initialization values during download. If the RETAIN variables shall
keep their values also after a download, they have to be saved before starting the download and
reloaded after the download is completed.

This is possible using the PLC browser commands "saveretain" and "restoreretain". The command
"saveretain" saves the RETAIN variables to the file RETAIN.BIN on the SD card.

Depending on the CPU type, the files are stored to the following directories on the SD card:

AC500 CPU Directory Files

PM571 ..\UserData\PM571\RetDat RETAIN.BIN

PM581 ..\UserData\PM581\RetDat RETAIN.BIN

PM591 ..\UserData\PM591\RetDat RETAIN.BIN

6.6 Firmware update from the SD card

6.6.1 Storing the firmware to the SD card

Storing the firmware to the SD card is done using a standard PC card reader with SD card interface.

To do this, proceed as follows:

1. Initialize the SD card, i.e., create the file structure the PLC requires by, for example, inserting a new
SD card into the AC500 (see also: "Initializing an SD card using the AC500").

2. Copy the firmware files into the corresponding directory:

AC500 CPU Directory File

PM571 ..\Firmware\PM571 MICR.GZA

PM581 ..\Firmware\PM581 MINI.GZA

PM591 ..\Firmware\PM591 MIDI.GZA

3. Change the command file SDCARD.INI located in the root directory on the SD card as follows:
Parameter "FunctionOfCard=2" (or =3 for firmware and user program update)
Parameter CPUPM5x1=1

A specific firmware version can be loaded as of version V1.2. This is done by setting the parameter
CPUPM5x1=2 or 3 and creating an according key for the CPU. The firmware has to be copied to the
according directory. See the chapter The command file "SDCARD.INI".

6.6.2 Updating the firmware of the AC500 CPU from the SD card

To update the firmware of the AC500 CPU via SD card, proceed as follows:

1. Prepare the SD card as described in the section "Storing the firmware to the SD card".

2. Switch off the PLC control voltage.

3. Insert the SD card.

4. Switch on the PLC control voltage.
The file structure on the SD card is checked when booting the PLC. If the file structure exists, the file
SDCARD.INI is read. If the parameter "FunctionOfCard" is set to 2 (bit 1 = 1) and the parameter
"CPUPM5x1" = 1, the file MIxx.gzaS19 is searched in the directory Firmware\PM5x1 (depends on the
used CPU type) and then loaded into the PLC, checked and flashed.
The individual steps are indicated as follows:

__

V7 AC500 System Technology 139 CPUs AC500 / Issued: 08.2007

Process Indication Remark

Reading the firmware RUN LED flashes fast If you remove the SD card during
reading, the previously stored
firmware version is kept.

Flashing the firmware RUN LED and ERR LED flash
fast

Warning: If the control voltage is
switched off during flashing, the
firmware will be corrupted!

Firmware update
completed successfully

RUN LED flashes slow (app.
1Hz)

Incorrect firmware update RUN LED and ERR LED flash
slow (app. 1Hz)

A specific firmware version can be loaded as of version V1.2. This is done by setting the parameter
CPUPM5x1=2 or 3 and creating an according key for the CPU. The firmware has to be copied to the
according directory. See the chapter The command file "SDCARD.INI".

 Note: If the file SDCARD.INI contains the parameter setting "FunctionOfCard=3" (firmware update
 / load user program), first the firmware and then the user program are read from the SD card and then
stored in the according Flash memory.

6.7 Writing and reading the project sources to/from the SD card

Usually it is sufficient to load the boot project (compiled user program) to the PLC. Sometimes, however,
the user may wish to transfer the entire project sources to the PLC. This is why two different commands
are available for this: The command "Online" => "Create boot project" writes the boot project to the flash
memory of the PLC whereas the command "Online" => "Sourcecode download" stores the project
sources to the SD card.

The project sources and all parts of a project are packed in the compressed file "SOURCE.DAT":

• All blocks in all IEC languages with all comments and symbols

• All visualizations

• Task configuration

• PLC configuration

• Online change information

The following is also contained if set accordingly in the project options:

• All loaded libraries

• All required configuration files

Reading the project sources can be done in two ways:

• Reading the compressed file SOURCE.DAT from the PLC (with an SD card inserted)

• Opening the compressed project directly on the PC using an SD card reader or opening a copy
of the file SOURCE.DAT stored on the hard disk of the PC.

__

V7 AC500 System Technology 140 CPUs AC500 / Issued: 08.2007

6.7.1 Writing the project sources from PC to SD card

Writing the project sources to the SD card is done as follows:

• Select the project sources to be written by selecting:
"Project" => "Options" => "Source download"

The "Timing" options specify the time when the project sources are to be written. The default
setting is "On demand".
The "Extent" options define which files are to be written. Using the option "Source code only"
writes all files that are part of the project. The option "All files" also includes the libraries and
configuration files.
Especially with the option "All files" the compressed file SOURCE.DAT can have a size of
several megabytes (in particular if visualizations with bitmaps are included!).

• Insert the SD card into the CPU. In case a new SD card is used, the directory structure required
for the AC500 is created. This is indicated by the flashing LED RUN.

• Login to the PLC (via serial interface, Ethernet or ARCNET, depending on the interfaces
available for your PLC).

• If possible, stop the PLC with the command "Online" => "Stop". (In Stop mode of the PLC,
loading the project sources is much faster than in Run mode.)

• Select "Online" => "Sourcecode download".

__

V7 AC500 System Technology 141 CPUs AC500 / Issued: 08.2007

• The compressed file SOURCE.DAT is created, downloaded to the PLC and written to the SD
card. The file is located in the following directory on the SD card:
[device]:\USERDATA\USERPROJ\SOURCE.DAT

• Restart the PLC with "Online" => "Start".

• Logout from the PLC by selecting "Online" => "Logout".

__

V7 AC500 System Technology 142 CPUs AC500 / Issued: 08.2007

Example of the project sources size:

Project file Upload_Test_PM581.pro

Size of built user program 18638
Bytes

18 kB

Size of project sources (all files) 321503
Bytes

314
kB

Size of project sources (sources only) 90297
Bytes

89 kB

6.7.2 Loading the project sources from the PLC's SD card into the PC

Loading the project sources from the SD card into the PC is done as follows:

• Insert the SD card into the CPU (if not already inserted).

• Start the Control Builder PS501 (CoDeSys.exe).

• Select "File" => "Open".

• Click "PLC".

• Select the required CPU type (target), for example PM581.

• Select the communication channel, for example an Ethernet channel.

__

V7 AC500 System Technology 143 CPUs AC500 / Issued: 08.2007

• The project sources are loaded block-wise.

• Once the last block has been loaded, the project is decompressed by the software automatically.
Now all project files are available.

You can use this project to directly login to the PLC (no build required).

__

V7 AC500 System Technology 144 CPUs AC500 / Issued: 08.2007

• If you want to change the project, save it under a new name, change and build the source code
and then download the changed and built code (user program) to the PLC. Reload the boot
project and the project sources.

6.7.3 Loading the project sources from the SD card using the PC SD card reader

It is also possible to read the file SOURCE.DAT containing the project sources directly using the SD card
reader for the PC. Proceed as follows:

• Insert the SD card into the PC SD card reader.

• Start the Control Builder PS501 (CoDeSys.exe).

• Select "File" => "Open".

• "Source archive (*.dat)" from the "Files of type" list box

• In the "Look in" list box, navigate to the SD card directory
[Device]:\USERDATA\PM5x1\USERPROJ\SOURCE.DAT
and select the file SOURCE.DAT. Click "Open".

__

V7 AC500 System Technology 145 CPUs AC500 / Issued: 08.2007

• The project is loaded and then decompressed automatically.
It is now possible to directly switch to online mode (without saving the project).

• If you want to change the project, save it under a new name, change and build it and then
download the built user program with the boot project to the PLC. Insert the SD card into the
PLC and rewrite the project sources to the SD card.

6.8 SD card error messages

The following table shows the error messages generated by the SD card.

Error
number

Class Description Effect Remedy

 E4
Warning

Incorrect directory structure
when reading the user
program

User program not
loaded

Correct the
directory structure
with the PC

152369165 E4
Warning

Write error or SD card full Data not written Check the SD card
with the PC and, if
necessary, delete
some files on the
SD card or cut and
paste them to the
PC or insert
another SD card

152369164 E4
Warning

Unable to read the SD card Check the SD card
with the PC

152369233 E4
Warning

Write-protection: Unable to
initialize the SD card

Directory structure
cannot be created

Remove write-
protection

152369297 E4
Warning

Write-protection: Error writing
the PLC program to the SD
card

Data not written Remove write-
protection

152369361 E4
Warning

Write-protection: Error when
storing the PLC firmware to
the SD card

Data not written Remove write-
protection

152369425 E4
Warning

Write-protection: Error when
storing the retentive variables
(RETAIN.BIN) to the SD card

Data not written Remove write-
protection

152369489 E4
Warning

Write-protection: Error when
writing the card function to
the SD card

Data not written Remove write-
protection

__

V7 AC500 System Technology 146 CPUs AC500 / Issued: 08.2007

7 Data storage in Flash memory

7.1 Blocks used for data storage

The library "SysInt_AC500_V10.lib" located in the directory "Data storage" / "Flash" contains the
following blocks which are used to store data in the Flash memory:

Block Function

FLASH_DEL Deletes a data segment in the Flash memory

FLASH_READ Reads a data segment from the Flash memory

FLASH_WRITE Writes a data segment to the Flash memory

7.2 Example program for data storage

On the PS501 CD-ROM the directory:

[Device]:\CD_AC500\Examples\Flash_Data

contains the examples:

- FlashData_Structure_v10.pro Saves/loads structured data to/from Flash memory
- PM581_ST_Flash.pro Saves/loads data sets

__

V7 AC500 System Technology 147 CPUs AC500 / Issued: 08.2007

8 Real-time clock and battery in the AC500

8.1 General notes concerning the real-time clock in the AC500

The real-time clock in the AC500 operates as a PC clock. It saves date and time to a DWORD in DT
format (DATE AND TIME FORMAT), i.e., in seconds passed since the start time: 1 January 1970 at
00:00.

If a battery is connected and full, the real-time clock continues to run even if the control voltage is
switched off.

If no battery is inserted or the battery is empty, the real-time clocks starts with the value 0 (=1970-01-01,
00:00:00).

When switching on the control voltage, the system clock of the operating system is set to the value of the
real-time clock.

8.2 Setting and displaying the real-time clock

8.2.1 Setting and displaying the real-time clock with the PLC browser

The PLC browser commands date and time are used to set the real-time clock.

The commands date <ENTER> or time <ENTER> display the current date and time of the real-time
clock.

The command:
date yyyy-mm-dd<ENTER> (year-month-day)
sets the date.

The command:
time hh-mm-ss<ENTER> (hours-minutes-seconds)
sets the time.

Example:
The real-time clock should be set to 22 February 2005, 16:50.

Enter the date:
date 2005-02-22<ENTER>

Display:
date 2005-02-22
Clock set to 2005-02-22 08:01:07
(Remark: the time remains unchanged)

Enter the time:
time 16:50<ENTER> (seconds are optional)

Display:
time 16:50
Clock set to 2005-02-22 16:50:00

__

V7 AC500 System Technology 148 CPUs AC500 / Issued: 08.2007

8.2.2 Setting and displaying the real-time clock with the user program

The following blocks located in the folder "Realtime clock" of the system library SysExt_AC500_Vxx.LIB
can be used to set and display the real-time clock (RTC) with help of the user program:

Block Function

CLOCK Sets and displays the real-time clock with values for year, month, day, hours, minutes
and seconds.
Also the day of week is indicated
(Mo=0, Tue=1, Wed=2, Thu=3, Fr=4, Sa=5, Su=6).
Note: The week of day cannot be set. It is given by the real-time clock. The input
DAY_SET is ignored.

CLOCK_DT Sets and displays the real-time clock in DT format, for example DT#2005-02-17-
17:15:00.

The blocks CLOCK and CLOCK_DT are described in the documentation for the system library
SysExt_AC500_Vxx.LIB.

8.3 The AC500 battery

The AC500 battery buffers the following data in case of "control voltage off":

• Retentive variables in SDRAM (VAR_RETAIN..END_VAR)
• File "Persistent.dat" in SDRAM (VAR_RETAIN PERSISTENT .. END_VAR) (in version V1.0.x only)
• Persistent data in %R area (as of version V1.2.0)
• Date and time of the real-time clock

If no battery is inserted or if the battery is empty, a warning (E4) is generated and the LED "ERR" lights
up.

If no battery is required for the application (and thus no battery is inserted), a warning is generated and
the error LED lights up each time the controller is switched on. To avoid this battery error indication, the
parameter "Check Battery" is available under "CPU parameters" in the PLC configuration. The default
setting of this parameter is "On", i.e., battery check is performed. If this parameter is set to "Off", the
battery check is still performed and a corresponding error message is still generated each time the
control voltage is switched on, but the system automatically quits this error and therefore the error LED
does not light up (provided no further error exists).

The status of the battery can be checked in the PLC browser using the command "batt". The following is
output:

0 Battery empty
20 Remaining battery charge below 20 %

100 Battery charge OK

In the user program, the battery status can be checked with the function "BATT" which is available in the
folder "Battery" of the system library SysExt_AC500_Vxx.LIB. The following is output:

0 Battery empty

20 Remaining battery charge below 20 %, battery must be replaced

100 Battery charge OK

__

V7 AC500 System Technology 149 CPUs AC500 / Issued: 08.2007

9 The fast counters in the AC500

9.1 Activating the fast counters via the I/O bus

The function "fast counters" is available in S500 I/O modules with firmware version V1.3 and later.

The digital I/O modules on the I/O bus contain two fast counters per module. If the I/O module does not
have digital outputs, the corresponding counter modes are not valid. In case of an incorrect parameter
setting, a diagnosis message is sent.

The fast counters are activated by setting the counter mode with the parameter "Fast counter" in the
PLC configuration for the according I/O device (see also chapter "PLC configuration / I/O bus").

Control of the fast counter(s) is performed via the I/O data contained in the control byte of the submodule
"Fast counter".

9.2 Counting modes of the fast counters

The counting modes of the fast counters are described in detail in the chapter "The fast counters of S500
I/O devices".

For an easy use, the blocks in the library Counter_AC500_V11.LIB can be used. These blocks are
described in detail in the library documentation.

__

V7 AC500 System Technology 150 CPUs AC500 / Issued: 08.2007

10 Programming and test

10.1 Programming interfaces to the AC500 used by the Control Builder

The AC500 controllers provide the following interfaces for communication with other devices:

No. Designation Interface Programming access

0 CPU Own CPU CPU for online operation

1 COM1 Serial interface COM1 yes

2 COM2 Serial interface COM2 yes

3 FBP FBP slave interface yes (PM59x as of FW
V1.2.0)

4 I/O bus I/O bus no

1x Line 0 Internal coupler with channel 0 x 9 depends on type

2x Line 1 Coupler inserted in slot 1 with chan. 0 x 19 depends on type

4x Line 2 Coupler inserted in slot 2 with chan. 0 x 19 depends on type

6x Line 3 Coupler inserted in slot 3 with chan. 0 x 19 depends on type

8x Line 4 Coupler inserted in slot 4 with chan. 0 x 19 depends on type

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3
1x

2x4x6x8x

4

Communication drivers:

The following communication drivers are available for programming the AC500:

Serial (RS232) Serial interface driver

ABB RS232 Route AC Driver for serial interfaces with routing functionality
(as of PS501 V1.2, routing as of firmware V1.3.x)

TCP/IP Ethernet driver

ABB Tcp/Ip Level 2 AC Ethernet driver with routing functionality
(as of PS501 V1.2, routing as of firmware V1.3.x)

ABB Arcnet Route fast AC Driver for programming via ARCNET with routing and adjustable block
size (as of PS501 V1.2, routing as of firmware V1.3.x)

Serial (Modem) Modem driver for modem connected to serial interface of the PC and
PLC

__

V7 AC500 System Technology 151 CPUs AC500 / Issued: 08.2007

 Note: Routing is available with version V1.3.x of the Control Builder and PLC firmware.

Gateway configuration:

In the Control Builder, select "Online/Communication Parameters/Gateway" and select "Local" from the
"Connection" list box (see also 3S Operation Manual / The Individual Components / Online
Communication Parameters):

The following gateway settings apply for the Ethernet driver "ABB Tcp/Ip Level 2 AC":

Connection: Tcp/Ip
Address: localhost
Port: 1210

Setting the communication parameters:

The communication parameters and address data are set in the Control Builder by selecting the desired
driver and specifying the parameters in the "Communication Parameters" window, which can be opened
using the menu item "Online/Communication Parameters".

The following sections describe the drivers listed above and their settings.

10.2 Programming via the serial interfaces

The operation modes of the serial interfaces COM1 and COM2 are described in the chapter "PLC
configuration". Both serial interfaces COM1 and COM2 are defined as programming interface by default.

The Installation guide provides information how to set the serial interfaces for the different PC operating
systems.

PC and PLC are connected via the system cable TK501.

The interface parameters are set to fixed values and cannot be changed.

Baudrate: 19200 baud
Parity bit: no
Data bits: 8
Stop bits: 1
Synchronization: none
Motorola byteorder: yes

The following drivers are available for programming via the serial interfaces:

- Serial (RS232)
- ABB RS232 Route AC (as of PS501 V1.2, routing as of firmware V1.3.x)

__

V7 AC500 System Technology 152 CPUs AC500 / Issued: 08.2007

10.2.1 Serial driver "Serial (RS232)"

The serial driver "Serial (RS232)" provides the following functions:

o Online operation of the PLC with the Control Builder
o Online operation of the PLC with the fieldbus configurator SYCON.net
o OPC connection with OPC server, as of version V1.0
o Parallel operation of Control Builder and SYCON.net
o Parallel operation of Control Builder and OPC server

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

COM1 or COM2 COMx

To define a new gateway channel for the serial driver, select "Online/Communication Parameters" and
press the button "New" in the "Communication Parameters" window. In the appearing window, enter a
name for the channel (for example USB->COM4) and select the driver "Serial RS232" from the device
list. Select the desired values by double clicking the corresponding parameter:

Port: COM port on the PC
Baud rate: 19200 Baud
Motorola byteorder: Yes

__

V7 AC500 System Technology 153 CPUs AC500 / Issued: 08.2007

10.2.2 Serial driver "ABB RS232 Route AC"

As of version V1.2.0, the serial routing driver "ABB RS232 Route AC" is available in addition to the serial
driver. This driver provides the following functions:

o Online operation of the PLC with the Control Builder
o Online operation of the PLC with the fieldbus configurator SYCON.net
o OPC connection with OPC server, as of version V1.2.0
o Online operation of PLCs connected via Ethernet or ARCNET using the serial interface

(Control Builder version V1.3 and later)
o Parallel operation of Control Builder and SYCON.net
o Parallel operation of Control Builder and OPC server
o Online operation of AC31 series 90 controllers (07KT9x)

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

COM1 or COM2 COMx

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

Ethernet

To define a new gateway channel for the serial routing driver, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the appearing
window, enter a name for the channel (for example AC COM1 Route ARC 2) and select the driver "ABB
RS232 Route AC" from the device list.

__

V7 AC500 System Technology 154 CPUs AC500 / Issued: 08.2007

The following communication parameters can be set for the serial routing driver "ABB RS232 Route AC":

Parameter Possible values Meaning
Port COMx (PC dependant) Serial interface of the PC

Baudrate 19200 Always 19200 baud

Parity No Always no parity

Stop bits 1 Always one stop bit

Routing levels 0...2 Routing levels (0 = none)

Coupler (Level 1) 0, line 0...line 4 Coupler for level 1

Channel (Level 1) 0...19 Channel on coupler level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target coupler level 1

Coupler (Level 2) 0, line 0...line 4 Coupler for level 2

Channel (Level 2) 0...19 Channel on coupler level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target coupler level 2

Motorola byteorder yes Selection of Motorola or Intel byteorder

If you want to use the serial routing driver in order to directly access the connected CPU, set all routing
parameters (parameter Routing levels and following parameters listed in the table above) to 0.

 Note: Routing is available with version V1.3.x of the Control Builder and PLC firmware.

__

V7 AC500 System Technology 155 CPUs AC500 / Issued: 08.2007

The following applies to the routing levels:

Routing levels = 0 No routing (parameters for Level 1 and Level 2 not set)
Routing levels = 1 Single-level routing (set parameters for Level 1)
Routing levels = 2 Double-level routing (set parameters for Level 1 and Level 2)

Example:

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

COM1 or COM2 COMx

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

IP: 10.49.88.203

Ethernet

IP: 10.49.88.205

Configuration of PLC 2 (IP: 10.49.88.205) shall be performed via the external Ethernet coupler (IP:
10.49.88.203) inserted in slot 1 of PLC 1. The serial PC interface COM2 is connected to the serial
interface COM1 of PLC 1:

Parameter Value Remark

Port COM2 PC COM2

Baudrate 19200

Parity No

Stop bits 1

Routing levels 1 Single-level routing

Coupler (Level 1) Line 1 Coupler in slot 1

Channel (Level 1) 0 Channel 1

Address (Level 1) 10, 49, 88, 205, 0 Subscriber address of the target PLC (Node 2)

Coupler (Level 2) 0 No level 2

Channel (Level 2) 0

Address (Level 2) 0, 0, 0, 0, 0

Motorola byteorder yes Motorola byteorder

__

V7 AC500 System Technology 156 CPUs AC500 / Issued: 08.2007

10.3 Programming via ARCNET

 Note: The ARCNET coupler is available as of Control Builder version V1.2 and PLC firmware
version V1.2.0.

Programming via ARCNET is only possible on a PC with installed ARCNET board. The installation of the
board(s) and drivers is described in the Installation chapter (see also Installation / ARCNET drivers).

When programming via ARCNET, the PC is an ARCNET node.

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

ARCNET

The "sender node", i.e., the ARCNET subscriber address of the PC is set in the file:

Arcnet_xx.ini with the parameter NodeID1 = 254.

The file Arcnet_xx.ini is located in the folder where the PC operating system is installed (for example
C:\WINNT for Win2000).

For a PC with installed ARCNET board, the file Arcnet_xx.ini contains for example the following entries:

[ARCNET]
DriverAccessName1=FARC
;Default = Farc
NodeID1 = 254
; Default = 254

;DriverAccessName2=FARC1
; Default = Farc1
;NodeID2 = 253
; Default = 253

;DriverAccessName3=FARC11
; Default = Farc11
;NodeID3 = 252
; Default = 252

;DriverAccessName4=FARC111
; Default = Farc111
;NodeID4 = 251
; Default = 251

__

V7 AC500 System Technology 157 CPUs AC500 / Issued: 08.2007

10.3.1 ARCNET driver "ABB Arcnet AC"

As of PLC runtime system version V1.2.0 and Control Builder version V1.2, the driver "ABB Arcnet AC"
is available. This driver provides the following functions:

o Online operation of the PLC with the Control Builder
o Online operation of the PLC with the fieldbus configurator SYCON.net
o OPC connection with OPC server, as of version V1.3
o Parallel operation of Control Builder and SYCON.net
o Parallel operation of Control Builder and OPC server
o Parallel operation of Control Builder instances with several PLCs
o Online operation of AC31 series 90 controllers (07KT9x)

To define a new gateway channel for the ARCNET routing driver, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the appearing
window, enter a name for the channel (for example ARC AC 254 -> 2) and select the driver "ABB Arcnet
AC" from the device list.

The following communication parameters can be set for the ARCNET routing driver "ABB Arcnet AC":

__

V7 AC500 System Technology 158 CPUs AC500 / Issued: 08.2007

Parameter Possible values Meaning

Driver instance FARC DriverAccessName set in Arcnet_xx.ini

Target node 1...255 ARCNET subscriber address of the PLC

Receive Timeout >= 2000 Timeout [ms] for response

Routing levels 0...2 Routing levels (0 = none)

Coupler (Level 1) 0, line 0...line 4 Coupler for level 1

Channel (Level 1) 0...19 Channel on coupler level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target coupler level 1

Coupler (Level 2) 0, line 0...line 4 Coupler for level 2

Channel (Level 2) 0...19 Channel on coupler level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target coupler level 2

Block size 128...226 / 246...480 User data size

Motorola byteorder yes/no Motorola or Intel byteorder

If you want to use the ARCNET routing driver to directly access the connected CPU, set all routing
parameters (parameter Routing levels and following parameters listed in the table above) to 0.

The parameter "Block size" (128...480) sets the number of user data within one block. The default value
is 480 (this is the maximum allowed block size). Values in the range of 227 .. 245 are not allowed.

 Note: If you want to access a fieldbus coupler using SYCON.net via ARCNET, the parameter
"Block size" always must be set to 128!

The parameter "Motorola byteorder" must be set to "Yes" for AC500 controllers.

__

V7 AC500 System Technology 159 CPUs AC500 / Issued: 08.2007

10.4 Programming via Ethernet (TCP/IP)

Programming via Ethernet is only possible on a PC with installed Ethernet board and installed network.
Programming can be done via the internal and external Ethernet coupler.

Programming via internal Ethernet coupler:

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

Ethernet

Programming via external Ethernet coupler (in this example coupler 1 in slot 1):

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

Ethernet

 Note: Information how to set the IP addresses is available in the section "System
Technology"=>"System technology of internal couplers"=>"The Ethernet coupler".

__

V7 AC500 System Technology 160 CPUs AC500 / Issued: 08.2007

Gateway configuration for Ethernet:

In the Control Builder, select "Online/Communication Parameters" and press the button "Gateway" in the
"Communication Parameters" window. In the appearing window, select "Tcp/Ip" from the "Connection"
list box (see CoDeSys / chapter The Individual Components / Online Communication Parameters).

10.4.1 Ethernet driver "Tcp/Ip"

Programming AC500 controllers with internal and/or external Ethernet coupler via Ethernet can be done
by using the driver "Tcp/Ip". This driver provides the following functions:

o Online operation of the PLC with the Control Builder
o Online operation of the PLC with the fieldbus configurator SYCON.net
o OPC connection with OPC server, as of version V1.3
o Parallel operation of Control Builder and SYCON.net
o Parallel operation of Control Builder and OPC server
o Parallel operation of Control Builder instances with several PLCs

To define a new gateway channel for the Ethernet interface, select "Online/Communication Parameters"
and press the button "New" in the "Communication Parameters" window. In the appearing window, enter
a name for the channel (for example ETH 169.254.145.200) and select the driver "Tcp/Ip" from the
device list.

__

V7 AC500 System Technology 161 CPUs AC500 / Issued: 08.2007

The following communication parameters can be set for the Ethernet driver "Tcp/Ip":

Parameter Possible values Meaning

Address 0.0.0.0 IP address or hostname of the PLC

Port 1201 Port 1201

Motorola byteorder Yes (Yes/No) Motorola or Intel byteorder (=Yes for AC500)

10.4.2 Ethernet driver "ABB Tcp/Ip Level 2 AC"

As of version V1.2, the driver "ABB Tcp/Ip Level 2 AC" is available for programming AC500 controllers
with internal and/or external Ethernet coupler via Ethernet. This driver provides the following functions:

o Online operation of the PLC with the Control Builder
o Online operation of the PLC with the fieldbus configurator SYCON.net
o OPC connection with OPC server, as of version V1.3
o Parallel operation of Control Builder and SYCON.net
o Parallel operation of Control Builder and OPC server
o Parallel operation of Control Builder instances with several PLCs
o Online operation of PLCs connected via ARCNET. One PLC equipped with Ethernet coupler and

one PLC with ARCNET coupler (Routing Ethernet -> ARCNET), as of version V2.x
o Online operation of AC31 series 90 controllers (07KT9x)

To define a new gateway channel for the Ethernet interface, select "Online/Communication Parameters"
and press the button "New" in the "Communication Parameters" window. In the appearing window, enter
a name for the channel (for example ETH 169.254.145.200) and select the driver "ABB Tcp/Ip Level 2
AC" from the device list.

__

V7 AC500 System Technology 162 CPUs AC500 / Issued: 08.2007

The following communication parameters can be set for the Ethernet driver "ABB Tcp/Ip Level 2 AC":

Parameter Possible values Meaning

Address 0.0.0.0 IP address or hostname of the PLC

Port 1200 Port 1200

Timeout (ms) >= 2000 Timeout [ms] for response

Routing levels 0...2 Routing levels (0 = none)

Coupler (Level 1) 0, line 0...line 4 Coupler for level 1

Channel (Level 1) 0...19 Channel on coupler level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target coupler level 1

Coupler (Level 2) 0, line 0...line 4 Coupler for level 2

Channel (Level 2) 0...19 Channel on coupler level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target coupler level 2

Block size 1430 (128...1430) Bytes per telegram (unallowed 227..245)

Motorola byteorder Yes (Yes/No) Motorola or Intel byteorder (=Yes for AC500)

__

V7 AC500 System Technology 163 CPUs AC500 / Issued: 08.2007

If you want to use the Ethernet driver to directly access the PLC, set all routing parameters (parameter
Routing levels and following parameters listed in the table above) to 0.

The "Address" parameter sets the IP address or hostname of the PLC. To be able to use hostnames, the
names have to be added to the file "Hosts". Under Win2000, this file is located in the directory
"WINNT\System32\drivers\etc".

If you have changed the "Hosts" file accordingly, you can enter the symbolic name for the "Address"
parameter instead of the IP address. In the following figure, the IP address "169.254.34.38" is replaced
by the hostname "SPS_2".

__

V7 AC500 System Technology 164 CPUs AC500 / Issued: 08.2007

10.4.3 Ethernet ARCNET routing

 Note: Routing is available as of PLC firmware version V1.3.

For controllers with Ethernet and ARCNET coupler, the PLCs connected via ARCNET can be
programmed using the PLC Ethernet interface.

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

Ethernet

DC532DC532CM577CM572CM577CM572 PM581

0

1 2

3 1x

2x4x6x8x

4

IP: 10.49.88.205 IP: 10.49.88.200

ARCNET Node: 2

For each PLC connected via ARCNET, one gateway channel has to be defined. To do this, select
"Online/Communication Parameters" and press the button "New" in the "Communication Parameters"
window. In the appearing window, enter a name for the channel (for example TcpIp: PLC1:169.29.44.48
-> ARC_2) and select the driver "ABB Tcp/Ip Level 2 AC" from the device list.

__

V7 AC500 System Technology 165 CPUs AC500 / Issued: 08.2007

For example, set the communication parameters as follows for the configuration shown above:

Parameter Possible values Meaning

Address 10.49.88.205 IP address of PLC 1

Port 1200 Port 1200

Timeout (ms) 2000 Timeout [ms] for response

Routing levels 1 Single-level routing

Coupler (Level 1) Line 0 Coupler for level 1 (internal: ARCNET)

Channel (Level 1) 0 Channel on coupler level 1

Address (Level 1) 2, 0, 0, 0, 0 ARCNET node of the target PLC (Node 2)

Coupler (Level 2) 0 No level 2

Channel (Level 2) 0

Address (Level 2) 0, 0, 0, 0, 0

Block size 480 Bytes per block: 128...1430

Motorola byteorder Yes

For the parameter "Coupler (Level 1)", enter the slot where the ARCNET coupler "Line 0" is inserted (the
ARCNET coupler is always the internal coupler).

The ARCNET coupler has only one communication channel. Thus, the "Channel" value must always be
0.

For the ARCNET coupler, 1 byte is required for the subscriber address (node). The address (Node=2) of
the target PLC is entered to the first byte of the address byte.

The default value for the block size is 1430. If routing on ARCNET is required (and "large ARCNET
packages" are enabled for the target PLC), the block size can be increased to 480 bytes. Values in the
range of 227 .. 245 are not allowed.

__

V7 AC500 System Technology 166 CPUs AC500 / Issued: 08.2007

11 Communication with Modbus RTU

11.1 Protocol description

The Modbus protocol is used worldwide. The MODICON Modbus® RTU protocol is implemented in the
AC500 CPU.

Numerous automation devices, such as PLC installations, displays, variable-frequency inverters or
monitoring systems have a Modbus® RTU interface by default or as an option and can therefore
communicate with AC500 basic units without any problems.

Modbus® is a master-slave protocol. The master sends a request to the slave and receives its response.

Modbus master

In operating mode MODBUS master, the telegram traffic with the slave(s) is handled via the function
block MODMAST. The function block MODMAST sends Modbus request telegrams to the slave via the
set interface and receives Modbus response telegrams from the slave via this interface.

For Modbus on TCP/IP, the function block ETH_MODMAST is used and for serial interfaces the function
block COM_MODMAST (link to function blocks: ETH_MODMAST in library Ethernet_AC500_Vxx.lib and
COM_MODMAST in library Modbus_AC500_Vxx.lib).

The Modbus® blocks transferred by the master contain the following information:

• Modbus® address of the interrogated slave (1 byte)
• Function code that defines the request of the master (1 byte)
• Data to be exchanged (n bytes)
• CRC16 control code (2 bytes)

Modbus slave

In operating mode MODBUS slave, no function block is required for Modbus communication. Sending
and receiving Modbus telegrams is performed automatically.

The AC500 CPUs process only the following Modbus® operation codes:

Function code

DEC HEX
Description

01 or 02 01 or 02 read n bits

03 or 04 03 or 04 read n words

05 05 write one bit

06 06 write one word

07 07 fast reading the status byte of the CPU

15 0F write n bits

16 10 write n words

__

V7 AC500 System Technology 167 CPUs AC500 / Issued: 08.2007

The following restrictions apply to the length of the data to be sent:

Function code Max. length

DEC HEX Serial Modbus on TCP/IP

01 or 02 01 or 02 2000 bits 255 bits (up to coupler FW
V01.033)
xxx bits (as of coupler FW
V01.041)

03 or 04 03 or 04 125 words / 62 double words 100 words / 50 double words

05 05 1 bit 1 bit

06 06 1 word 1 word

07 07 8 bits 8 bits

15 0F 1968 bits 255 bits (up to coupler FW
V01.033)
xxx bits (as of coupler FW
V01.041)

16 10 123 words / 61 double words 100 words / 50 double words

11.2 Modbus RTU with the serial interfaces COM1 and COM2

11.2.1 Modbus operating modes of the serial interfaces

Both serial interfaces of the AC500 CPUs can be operated simultaneously as Modbus interfaces and can
operate as Modbus master as well as Modbus slave.

The Modbus operating mode and the interface parameters are set in the PLC Configuration (see also
Controller configuration / Modbus).

Description of the Modbus® protocol:

Supported standard EIA RS-232 / RS-485

Number of connection points 1 master
max. 1 slave with RS 232 interface
max. 31 slaves with RS 485

Protocol Modbus® (Master/Slave)

Data transmission control CRC16

Data transmission speed up to 187500 baud

Encoding 1 start bit
8 data bits
1 parity bit, even or odd (optional)
1 or 2 stop bits

Max. cable length for RS 485: 1200 m at 19200 baud

11.3 Modbus on TCP/IP via Ethernet

Modbus on TCP/IP is described in the chapter System Technology Coupler / The Ethernet coupler (see
also System Technology Ethernet Coupler / Modbus on TCP/IP).

__

V7 AC500 System Technology 168 CPUs AC500 / Issued: 08.2007

11.4 Modbus addresses

11.4.1 Modbus address table

A range of 128 kbytes is allowed for the access via Modbus, i.e., the segments line 0 and line 1 of the
addressable flag area (%M area) can be accessed. Thus, the complete address range 0000hex up to
FFFFhex is available for Modbus.

The availability of the segments depends on the CPU. The size of the %M area can be found in the
technical data of the CPUs (see Technical data of the CPUs) and in the target system settings (see
Target Support Package).

Inputs and outputs cannot be directly accessed using Modbus.

The address assignment for word and double word accesses is done according to the following table:

Modbus address

HEX DEC

Byte
BYTE

Bit (byte-oriented)
BOOL

Word
WORD

Double word
DWORD

Line 0

%MB0.0 %MX0.0.0...%MX0.0.7
0000 0

%MB0.1 %MX0.1.0...%MX0.1.7
%MW0.0

%MB0.2 %MX0.2.0...%MX0.2.7
0001 1

%MB0.3 %MX0.3.0...%MX0.3.7
%MW0.1

%MD0.0

%MB0.4 %MX0.4.0...%MX0.4.7
0002 2

%MB0.5 %MX0.5.0...%MX0.5.7
%MW0.2

%MB0.6 %MX0.6.0...%MX0.6.7
0003 3

%MB0.7 %MX0.7.0...%MX0.7.7
%MW0.3

%MD0.1

...

%MB0.65532 %MX0.65532.0
...%MX0.65532.7

7FFE 32766
%MB0.65533 %MX0.65533.0

...%MX0.65533.7

%MW0.32766

%MB0.65534 %MX0.65534.0
...%MX0.65534.7

7FFF 32767
%MB0.65535 %MX0.65535.0

...%MX0.65535.7

%MW0.32767

%MD0.16383

Line 1

%MB1.0 %MX1.0.0...%MX1.0.7
8000 32768

%MB1.1 %MX1.1.0...%MX1.1.7
%MW1.0

%MB1.2 %MX1.2.0...%MX1.2.7
8001 32769

%MB1.3 %MX1.3.0...%MX1.3.7
%MW1.1

%MD1.0

%MB1.4 %MX1.4.0...%MX1.4.7
8002 32770

%MB1.5 %MX1.5.0...%MX1.5.7
%MW1.2

%MB1.6 %MX1.6.0...%MX1.6.7
8003 32771

%MB1.7 %MX1.7.0...%MX1.7.7
%MW1.3

%MD1.1

...

%MB1.65532 %MX1.65532.0
...%MX1.65532.7

FFFE 65534
%MB1.65533 %MX1.65533.0

...%MX1.65533.7

%MW1.32766

%MB1.65534 %MX1.65534.0
...%MX1.65534.7

FFFF 65535
%MB1.65535 %MX1.65535.0

...%MX1.65535.7

%MW1.32767

%MD1.16383

__

V7 AC500 System Technology 169 CPUs AC500 / Issued: 08.2007

The address assignment for bit accesses is done according to the following table:

Modbus address

HEX DEC

Byte
BYTE

Bit (byte-oriented)
BOOL

Word
WORD

Double word
DWORD

Line 0

0000 0 %MX0.0.0

0001 1 %MX0.0.1

0002 2 %MX0.0.2

0003 3 %MX0.0.3

0004 4 %MX0.0.4

0005 5 %MX0.0.5

0006 6 %MX0.0.6

0007 7

%MB0.0

%MX0.0.7

0008 8 %MX0.1.0

0009 9 %MX0.1.1

000A 10 %MX0.1.2

000B 11 %MX0.1.3

000C 12 %MX0.1.4

000D 13 %MX0.1.5

000E 14 %MX0.1.6

000F 15

%MB0.1

%MX0.1.7

%MW0.0

0010 16 %MX0.2.0

0011 17 %MX0.2.1

0012 18 %MX0.2.2

0013 19 %MX0.2.3

0014 20 %MX0.2.4

0015 21 %MX0.2.5

0016 22 %MX0.2.6

0017 23

%MB0.2

%MX0.2.7

0018 24 %MX0.3.0

0019 25 %MX0.3.1

001A 26 %MX0.3.2

001B 27 %MX0.3.3

001C 28 %MX0.3.4

001D 29 %MX0.3.5

001E 30 %MX0.3.6

001F 31

%MB0.3

%MX0.3.7

%MW0.1

%MD0.0

0020 32 %MX0.4.0

0021 33 %MX0.4.1

0022 34

%MB0.4

%MX0.4.2

%MW0.2 %MD0.1

...

0FFF 4095 %MB0.511 %MX0.511.7 %MW0.255 %MD0.127

1000 4096 %MB0.512 %MX0.512.0 %MW0.256 %MD0.128

...

7FFF 32767 %MB0.4095 %MX0.4095.7 %MW0.2047 %MD0.1023

8000 32768 %MB0.4096 %MX0.4096.0 %MW0.2048 %MD0.1024

...

FFFF 65535 %MB0.8191 %MX0.8191.7 %MW0.4095 %MD0.2047

__

V7 AC500 System Technology 170 CPUs AC500 / Issued: 08.2007

Calculation of the bit variable from the hexadecimal address:

Formula:

 Bit variable (BOOL) := %MX0.BYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

Examples:

Address hexadecimal = 16#2002
DEC := HEX2DEC(16#2002) := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX0.1024.2

Address hexadecimal = 16#3016
DEC := HEX2DEC(16#3016) := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX0.1538.6

Address hexadecimal = 16#55AA
DEC := HEX2DEC(16#55AA) := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX0.2741.2

Calculation of the hexadecimal address from the bit variable:

Formula:

Address hexadecimal := DEC2HEX(BYTE * 8 + BIT)

Examples:

Bit variable := %MX0.515.4
Address hex := DEC2HEX(515 * 8 + 4) := DEC2HEX(4124) := 16#101C

Bit variable := %MX0.3.3
Address hex := DEC2HEX(3 * 8 + 3) := DEC2HEX(27) := 16#001B

Bit variable := %MX0.6666.2
Address hex := DEC2HEX(6666 * 8 + 2) := DEC2HEX(53330) := 16#D052

11.4.2 Peculiarities for accessing Modbus addresses

Peculiarities for bit access:

• As you can see in the address table, a WORD in the %M area is assigned to each Modbus address
0000hex .. FFFFhex

• Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0.0 .. %MW0.4095

Write/read-protected areas for the Modbus slave:

As described in the PLC configuration, one write-protected and one read-protected area can be defined
for each segment line 0 and line 1. (see also Controller configuration / The setting 'COMx - Modbus'). If
you try to write to a write-protected area or to read from a read-protected area, an error message is
generated.

__

V7 AC500 System Technology 171 CPUs AC500 / Issued: 08.2007

Segment exceedance for line 0 and line 1:

A write- or read-protected area that lies in both segments, line 0 and line 1, cannot be accessed with a
write/read operation. In case of a segment exceedance, an error message is generated.

Example:
Read 10 words beginning at address := 7FFEhex
This includes the addresses: 7FFEhex...8007hex with the operands %MW0.32766...%MW1.7. Because
line 0 is exceeded in this case, an error message is generated.
Due to this, two telegrams have to be generated here:
1. Read 2 words beginning at address := 7FFEhex and
2. Read 8 words beginning at address := 8000hex.

Valid data areas for reading/writing the Modbus master:

If the AC500 control system operates as Modbus master, the data exchange with the Modbus slaves is
controlled using a MODMAST block (ETH_MOD_MAST for Modbus on TCP/IP and COM_MOD_MAST
for serial interfaces). (Link to blocks: ETH_MODMAST in library Ethernet_AC500_Vxx.lib and
COM_MODMAST in library Modbus_AC500_Vxx.lib).

The address of the area from which data are to be read or to which data are to be written is specified at
block input "Data" via the ADR operator.

For the AC500, the following areas can be accessed using the ADR operator:

• Inputs area (%I area)

• Outputs area (%Q area)

• Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)

• Addressable flag area (also protected areas for %M area)

• Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN .. END_VAR)

11.4.3 Comparison between AC500 and AC31/S90 Modbus addresses

The following table shows the addresses for AC500 controllers and its predecessor AC31 / S90

__

V7 AC500 System Technology 172 CPUs AC500 / Issued: 08.2007

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses

0000...0FFF 01, 02 %IX0.0...%IX255.15 01, 02, 05, 07, 0F %MX0.0.0...%MX0.511.7

0000 %IX0.0 %MX0.0.0

0001 %IX0.1 %MX0.0.1

0002 %IX0.2 %MX0.0.2

...

0010 %IX1.0 %MX0.2.0

...

0FFF

%IX255.15

%MX0.511.7

1000...1FFF 01, 02, 05, 0F %QX0.0...%QX255.15 01, 02, 05, 07, 0F %MX0.512.0...%MX0.1023.7

1000 %QX0.0 %MX0.512.0

1001 %QX0.1 %MX0.512.1

1002 %QX0.2 %MX0.512.2

...

1010 %QX1.0 %MX0.514.0

...

1FFF

%QX255.15

%MX0.1023.7

2000...2FFF 01, 02, 05, 07, 0F %MX0.0...%MX255.15 01, 02, 05, 07, 0F %MX0.1024.0...%MX0.1535.7

2000 %MX0.0 %MX0.1024.0

2001 %MX0.1 %MX0.1024.1

2002 %MX0.2 %MX0.1024.2

...

2010 %MX1.0 %MX0.1026.0

...

2FFF

%MX255.15

%MX0.1535.7

3000...3FFF 01, 02, 05, 07, 0F %MX5000.0...%MX5255.15 01, 02, 05, 07, 0F %MX0.1536.0...%MX0.2047.7

3000 %MX5000.0 %MX0.1536.0

3001 %MX5000.1 %MX0.1536.1

3002 %MX5000.2 %MX0.1536.2

...

3010 %MX5001.0 %MX0.1538.0

...

3FFF

%MX5255.15

%MX0.2047.7

4000...FFFF No access 01, 02, 05, 07, 0F %MX0.2048.0...%MX0.8191.7

Word accesses

0000...0CFF 03, 04 %IW1000.0...%IW1207.15 03, 04, 06, 10 %MW0.0...%MW0.3327

0D00...0FFF 03, 04 No access 03, 04, 06, 10 %MW0.3328...%MW0.4095

1000...1CFF 03, 04, 06, 10 %QW1000.0...%QW1207.15 03, 04, 06, 10 %MW0.4096...%MW0.7423

1D00...1FFF No access 03, 04, 06, 10 %MW0.7424...%MW0.8191

2000...2FFF 03, 04, 06, 10 %MW1000.0...%MW1255.15 03, 04, 06, 10 %MW0.8192...%MW0.12287

3000...359F 03, 04, 06, 10 %MW3000.0...%MW3089.15 03, 04, 06, 10 %MW0.12288...%MW0.13727

35A0...3FFF No access 03, 04, 06, 10 %MW0.13728...%MW0.16383

4000...47FF %MW2000.0.0...%MW2063.15.1
No access

03, 04, 06, 10 %MW0.16384...%MW18431

4800...4FFF No access 03, 04, 06, 10 %MW0.18432...%MW0.20479

5000...517F %MW4000.0.0...%MW4023.15.1
No access

03, 04, 06, 10 %MW0.20480...%MW0.21247

5180...FFFF No access 03, 04, 06, 10 %MW0.21248...%MW1.32767

Double word accesses

0000...3FFF No access 03, 04, 06, 10 %MD0.0...%MD0.8191

4000...47FF 03, 04, 06, 10 %MD2000.0...%MD2063.15 03, 04, 06, 10 %MD0.8192...%MD0.9215

4800...4FFF No access 03, 04, 06, 10 %MD0.9216...%MD0.10239

5000...537F 03, 04, 06, 10 %MD4000.0...%MD4023.15 03, 04, 06, 10 %MD0.1240...%MD0.10815

5480...FFFF No access 03, 04, 06, 10 %MD0.10816...%MD1.16383

__

V7 AC500 System Technology 173 CPUs AC500 / Issued: 08.2007

11.5 Modbus telegrams

The send and receive telegrams shown in this section are not visible in the PLC. However, the complete
telegrams can be made visible using a serial data analyzer connected to the connection line between
master and slave, if required.

The amount of user data depends on the properties of the master and slave.

For the following examples, it is assumed that an AC500 Modbus module is used as slave. There may
be different properties if modules of other manufacturers are used.

FCT 1 or 2: Read n bits

Master request

Slave operand address Number of bits CRC Slave
address

Function
code High Low High Low High Low

Slave response

CRC Slave
address

Function
code Number of bytes ...Data...

High Low

Modbus interface of the master: COM1

Master reads from: Slave 1

Data: %MX0.1026.4 = FALSE;
%MX0.1026.5 = TRUE
%MX0.1026.6 = FALSE

Source address at slave: %MX0.1026.4 : 2014HEX = 8212DEC

Target address at master: abReadBit : ARRAY[0..2] OF BOOL;

Example:

The values of the flags %MX0.1026.4..%MX0.1026.6 on the slave are written to the
ARRAY abReadBool on the master.

Modbus request of the master

Slave operand address Number of bits CRC Slave
address

Function
code High Low High Low High Low

01HEX 01HEX 20HEX 14HEX 00HEX 03HEX 37HEX CFHEX

Modbus response of the slave

CRC Slave
address

Function
code Number of bytes Data

High Low

01HEX 01HEX 01HEX 02HEX D0HEX 49HEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of bits

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 1 Application-
specific

8212 3 ADR
(abReadBool[0])

__

V7 AC500 System Technology 174 CPUs AC500 / Issued: 08.2007

FCT 3 or 4: Read n words

Master request

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

Slave response

CRC Slave
address

Function
code Number of bytes ...Data...

High Low

Modbus interface of the master: COM1

Master reads from: Slave 1

Data: %MW0.8196 = 4;
%MW0.8197 = 5;
%MW0.8198 = 6

Source address at slave: %MW0.8196 : 2004HEX = 8196DEC

Target address at master: awReadWord : ARRAY[0..2] OF WORD;

Example:

The values of the flag words %MW0.8196..%MW0.8198 on the slave are written to the
ARRAY awReadWord on the master.

Modbus request of the master

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

01HEX 03HEX 20HEX 04HEX 00HEX 03HEX 4FHEX CAHEX

Modbus response of the slave

Data Data Data CRC Slave
address

Function
code

Number of
bytes High / Low High / Low High / Low High Low

01HEX 03HEX 06HEX 00HEX /04HEX 00HEX /05HEX 00HEX /06HEX 40HEX B6HEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of words

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 3 Application-
specific

8196 3 ADR
(awReadWord[0])

FCT 3 or 4: Read n double words

The function code "read double word" is not defined in the Modbus RTU standard. This is why the
double word is composed of a low word and a high word (depending on the manufacturer).

Master request

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

Slave response

CRC Slave
address

Function
code Number of bytes ...Data...

High Low

__

V7 AC500 System Technology 175 CPUs AC500 / Issued: 08.2007

Modbus interface of the master: COM1

Master reads from: Slave 1

Data: %MD0.8193 = 32DEC = 00000020HEX;
%MD0.8194 = 80000DEC = 00013880HEX

Source address at slave: %MD0.8193: 4002HEX = 16386DEC

Target address at master: adwReadDWord : ARRAY[0..1] OF DWORD

Example:

The values of the flag double words %MD0.8193..%MD0.8194 on the slave are written to
the ARRAY adwReadDWord on the master.

Modbus request of the master

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

01HEX 03HEX 40HEX 02HEX 00HEX 04HEX F0HEX 09HEX

Modbus response of the slave

Data Data Data Data CRC Slave
address

Function
code

Number
of
bytes

High / Low High / Low High / Low High / Low High Low

01HEX 03HEX 08HEX 00HEX / 00HEX 00HEX / 20HEX 00HEX / 01HEX 38HEX /80HEX 57HEX B0HEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of words

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 31 Application-
specific

16386 4 ADR
(adwReadDWord[0])

FCT 5: Write 1 bit

For the function code "write 1 bit", the value of the bit to be written is encoded in one word.

BIT = TRUE -> Data word = FF 00 HEX

BIT = FALSE -> Data word = 00 00 HEX

Master request

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

Slave operand address Data CRC Slave

address
Function
code High Low High Low High Low

Slave response

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

Modbus interface of the master: COM1

Master writes to: Slave 1

Data: bBit := TRUE

Source address at master: bBit : BOOL;

Target address at slave: %MX0.1026.7 : 2017HEX = 8215DEC

Example:

The value of the BOOL variable bBit on the master is written to %MX0.1026.7 on the
slave.

__

V7 AC500 System Technology 176 CPUs AC500 / Issued: 08.2007

Modbus request of the master

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

01HEX 05HEX 20HEX 17HEX FFHEX 00HEX 37HEX FEHEX

Modbus response of the slave (mirrored)

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

01HEX 05HEX 20HEX 17HEX FFHEX 00HEX 37HEX FEHEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of bits

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 5 Application-
specific

8215 1 ADR
(bBit)

FCT 6: Write 1 word

Master request

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

Slave response

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

Modbus interface of the master: COM1

Master writes to: Slave 1

Data: wData := 7

Source address at master: wData : WORD;

Target address at slave: %MW0.8199 : 2007HEX = 8199DEC

Example:

The value of the WORD variable bBit on the master is written to %MW0.8199 on the
slave.

Modbus request of the master

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

01HEX 06HEX 20HEX 07HEX 00HEX 07HEX 72HEX 09HEX

Modbus response of the slave (mirrored)

Slave operand address Data CRC Slave
address

Function
code High Low High Low High Low

01HEX 06HEX 20HEX 07HEX 00HEX 07HEX 72HEX 09HEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of words

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 6 Application-
specific

8215 1 ADR
(wData)

__

V7 AC500 System Technology 177 CPUs AC500 / Issued: 08.2007

FCT 7: Fast reading the status byte of the CPU

Master request

CRC Slave
address

Function
code High Low

Slave response

CRC Slave
address

Function
code Data byte

High Low

Modbus interface of the master: COM1

Master writes to: Slave 1

Data:

Source address at slave:

Target address at slave:

Example:

In version V1.x, this function always returns 0!

Modbus request of the master

CRC Slave
address

Function
code High Low

01HEX 07HEX 41HEX E2HEX

Modbus response of the slave

CRC Slave
address

Function
code Data byte

High Low

01HEX 07HEX 00HEX xxHEX xxHEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of bits

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 7 Application-
specific

0 0 ADR
(BoolVar)

 Note: In version V1.x, function 7 always returns 0!

FCT 15: Write n bits

Master request

Slave operand
address

Number of bits CRC Slave
address

Function
code

High Low High Low

Number of
bytes

...Data...

High Low

Slave response

Slave operand address Number of bits CRC Slave
address

Function
code High Low High Low High Low

__

V7 AC500 System Technology 178 CPUs AC500 / Issued: 08.2007

Modbus interface of the master: COM1

Master writes to: Slave 1

Data: abWriteBool[0] := TRUE;
abWriteBool[1] := FALSE;
abWriteBool[2] := TRUE

Source address at master: abWriteBool : ARRAY[0..2] OF BOOL;

Target address at slave: %MX0.1026.1 : 2011HEX = 8209DEC

Example:

The values of the BOOL variables abWriteBool[0]..abWriteBool[2] on the master are
written to %MX0.1026.1..%MX0.1026.3 on the slave.

Modbus request of the master

Slave operand
address

Number of bits CRC Slave
address

Function
code

High Low High Low

Number of
bytes

Data

High Low

01HEX 0FHEX 20HEX 11HEX 00HEX 03HEX 01HEX 05HEX B4HEX 37HEX

Modbus response of the slave

Slave operand address Number of bits CRC Slave
address

Function
code High Low High Low High Low

01HEX 0FHEX 20HEX 11HEX 00HEX 03HEX 4EHEX 0FHEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of bits

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 15 Application-
specific

8209 3 ADR
(abWriteBool[0])

FCT 16: Write n words

Master request

Slave operand
address

Number of words CRC Slave
address

Function
code

High Low High Low

Number of
bytes

...Data...

High Low

Slave response

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

Modbus interface of the master: COM1

Master writes to: Slave 1

Data: awWriteWord[0] := 1;
awWriteWord[1] := 2;
awWriteWord[2] := 3

Source address at master: awWriteWord : ARRAY[0..2] OF WORD;

Target address at slave: %MW0.8193 : 2001HEX = 8193DEC

Example:

The values of the WORD variables awWriteWord[0]..awWriteWord[2] on the master are
written to %MW0.8193..%MW0.8195 on the slave.

__

V7 AC500 System Technology 179 CPUs AC500 / Issued: 08.2007

Modbus request of the master

Slave operand
address

Number of
words

Data Data Data CRC
Slave
address

Function
code

High / Low High / Low

Number
of

bytes High / Low High / Low High / Low High /
Low

01HEX 10HEX 20HEX / 01HEX 00HEX /
03HEX

06HEX 00HEX /
01HEX

00HEX /
02HEX

00HEX /
03HEX

C0HEX /
84HEX

Modbus response of the slave

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

01HEX 10HEX 20HEX 01HEX 00HEX 03HEX DAHEX 08HEX

Parameterization of the COM_MOD_MAST block inputs
NB = Number of words

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 16 Application-
specific

8193 3 ADR
(awWriteWord[0])

FCT 16: Write n double words

The function code "write double word" is not defined in the Modbus RTU standard. This is why the
double word is composed of a low word and a high word (depending on the manufacturer).

Master request

Slave operand
address

Number of words CRC Slave
address

Function
code

High Low High Low

Number of
bytes

...Data...

High Low

Slave response

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

Modbus interface of the master: COM1

Master writes to: Slave 1

Data: adwWriteDWord[0] := 18DEC = 00000012HEX;
adwWriteDWord[1] := 65561DEC = 00010019HEX;

Source address at master: adwWriteDWord : ARRAY[0..1] OF WORD;

Target address at slave: %MD0.8192 : 4000HEX = 16384DEC

Example:

The values of the Double WORD variables adwWriteDWord[0].. adwWriteDWord[1] on the
master are written to %MD0.8192..%MD0.8193 on the slave.

Modbus request of the master

Slave operand
address

Number
of words

Number of
bytes Data Data Data Data CRC

Slave
address

Function
code

High / Low High /
Low

High / Low High / Low High / Low High / Low High / Low High / Low

01HEX 10HEX 40HEX / 00HEX 00HEX /
04HEX

00HEX /
08HEX

00HEX /
00HEX

00HEX /
12HEX

00HEX /
01HEX

00HEX /
19HEX

60HEX /
B3HEX

Modbus response of the slave

Slave operand address Number of words CRC Slave
address

Function
code High Low High Low High Low

01HEX 10HEX 40HEX 00HEX 00HEX 04HEX DAHEX 0AHEX

__

V7 AC500 System Technology 180 CPUs AC500 / Issued: 08.2007

Parameterization of the COM_MOD_MAST block inputs
NB = Number of words = 2 x Number of double words

EN COM SLAVE FCT TIMEOUT ADDR NB DATA

FALSE
-> TRUE

1 1 16 Application-
specific

16384 4 ADR
(adwWriteDWord[0])

Error telegram

In operating mode Modbus master, the AC500 does only send telegrams, if the parameters at the
MODMAST inputs are logically correct. Nevertheless, it can happen that a slave cannot process the
request of the master or that the slave cannot interpret the request due to transmission errors. In those
cases, the slave returns an error telegram to the master. In order to identify this telegram as an error
telegram, the function code returned by the slave is a logical OR interconnection of the function code
received from the master and the value 80HEX.

Slave response

CRC Slave
address

Function code
OR 80HEX

Error code

High Low

Possible error codes of the slave

Code Meaning

01DEC The slave does not support the function requested by the master

02DEC Invalid operand address in the slave

02DEC Operand area exceeded

03DEC At least one value is outside the permitted value range

12DEC The amount of data is higher than the slave can process

13DEC The telegram contains an odd number of words in case of double word access

10DEC Length specifications in the telegram do not match

11DEC The type of operand area and the function do not match

Example:

Modbus request of the master:

 Function code: 01 (Read n bits)

 Slave operand address: 4000HEX = 16384DEC (Area for read access disabled in slave)

Modbus response of the slave:

 Function code: 81HEX

 Error code: 03

11.6 Function block COM_MOD_MAST

This function block is only required in the operating mode Modbus master. It handles the communication
(transmission of telegrams to the slaves and reception of telegrams from the slaves). The function block
can be used for the local interfaces COM1 and COM2 of the controller. A separate instance of the
function block has to be used for each interface.

COM_MOD_MAST is contained in the library Modbus_AC500_V1x.LIB (version V1.0 and later).

__

V7 AC500 System Technology 181 CPUs AC500 / Issued: 08.2007

Index - System Technology of the CPUs

A

2 AC500 inputs, outputs and flags 26

2.1 AC500 interfaces for inputs and outputs 26
2.1.1 Address scheme for inputs and outputs 27
2.1.2 Example for addressing in BOOL / BYTE / WORD / DWORD 27

2.2 Addressing of inputs and outputs 28

2.3 Processing of inputs and outputs in the multitasking system 29

2.4 Addressable flag area (%M area) in the AC500 30
2.4.1 Allocation of the addressable flag area in the AC500 30
2.4.2 Access to the %M area using the Modbus® Protocol 31
2.4.3 Access to operands in the addressable flag area 31

2.5 Absolute addresses of operands 32
2.5.1 Address operator ADR 32
2.5.2 Bit address operator BITADR 32

2.6 Addressable PERSISTENT area (%R area) in the AC500 34
2.6.1 Special features of the addressable PERSISTENT area in the AC500 34
2.6.2 Segmentation of the addressable PERSISTENT area in the AC500 35
2.6.3 Saving the buffered data of the AC500's %R area 35
2.6.4 Access to operands in the addressable PERSISTENT area (%R area) 37

C

11 Communication with Modbus RTU 166

11.1 Protocol description 166

11.2 Modbus RTU with the serial interfaces COM1 and COM2 167
11.2.1 Modbus operating modes of the serial interfaces 167

11.3 Modbus on TCP/IP via Ethernet 167

11.4 Modbus addresses 168
11.4.1 Modbus address table 168
11.4.2 Peculiarities for accessing Modbus addresses 170
11.4.3 Comparison between AC500 and AC31/90 Modbus addresses 171

11.5 Modbus telegrams 173

11.6 Function block COM_MOD_MAST 180

D

7 Data storage in Flash memory 146

7.1 Blocks used for data storage 146

7.2 Example program for data storage 146

__

V7 AC500 System Technology 182 CPUs AC500 / Issued: 08.2007

P

10 Programming and testing 150

10.1 Programming interfaces to the AC500 used by the Control Builder 150

10.2 Programming via the serial interfaces 151
10.2.1 Serial driver "Serial (RS232)" 152
10.2.2 Serial driver "ABB RS232 Route AC" 153

10.3 Programming via ARCNET 156
10.3.1 ARCNET driver "ABB Arcnet AC" 157

10.4 Programming via Ethernet (TCP/IP) 159
10.4.1 Ethernet driver "Tcp/Ip" 160
10.4.2 Ethernet driver "ABB Tcp/Ip Level 2 AC" 161
10.4.3 Ethernet ARCNET routing 164

R

8 Real-time clock and battery in the AC500 147

8.1 General notes concerning the real-time clock in the AC500 147

8.2 Setting and displaying the real-time clock 147
8.2.1 Setting and displaying the real-time clock with the PLC browser 147
8.2.2 Setting and displaying the real-time clock with the user program 148

8.3 The AC500 battery 148

S

4 System start-up / program processing 79

4.1 Terms 89
 Cold start 89
 Warm start 89
 RUN -> STOP 89
 START -> STOP 89
 Reset 89
 Reset (cold) 89
 Reset (original) 89
 STOP -> RUN 89
 STOP -> START 90
 Download 90
 Online Change 90
 Data buffering 90

4.2 Start of the user program 91

4.3 Data backup and initialization 92
4.3.1 Initialization of variables, overview 92
4.3.2 Notes regarding the declaration of retentive variables and constants 94
 Declaration of retentive internal variables 94
 Declaration of retentive variables in %M area 94
 Declaration of constants 94

4.4 Processing times 95
4.4.1 Terms 95
4.4.2 Program processing time 95
4.4.3 Set cycle time 95

4.5 Task configuration for the AC500 CPU 96

__

V7 AC500 System Technology 183 CPUs AC500 / Issued: 08.2007

T

1 Target Support Package 7

1.1 Introduction 7
1.1.1 Control Builder PS501 versions 7
1.1.2 New functions in PS501 V1.2 8
1.1.3 Compatibility of versions V1.0, V1.1 and V1.2 9
 File structure of the target system 9
 Overview on target system files 9
 Compatibility of CPU bootcode, CPU firmware, target system and CoDeSys 13
 Conversion of a project created with version V1.0 or V1.1 to version V1.2 14

1.2 Selection of the target system - Target support settings 15

1.3 CPU parameters in the target support settings 16
1.3.1 "Target Platform" settings 16
1.3.2 "Memory Layout" settings 17
1.3.3 "General" settings 19
1.3.4 "Network Functionality" settings 21
1.3.5 "Visualization" settings 21

1.4 Overview on user program size and operands of AC500 CPUs 22

1.5 Installation of AC500 targets with the program installTarget.exe 23

3 The AC500 PLC configuration 38

3.1 Overview on the PLC configuration 38
3.1.1 PLC configuration functions 38
3.1.2 Export and import of configuration data 38
3.1.3 Default settings in the PLC configuration 39
3.1.4 Setting parameters in the PLC configuration 40

3.2 Configuration of CPU parameters 40
3.2.1 CPU parameters in PS501 versions V1.0 and V1.1 40
 Remark 1: Setting the parameters Auto run and MOD using the display/keypad 41
3.2.2 CPU parameters in version PS501 V1.2 42
 Remark 1: Setting the parameters Auto run and MOD using the display/keypad 44
 Remark 2: Error LED 44
 Remark 3: Behaviour of outputs in Stop 44
 Remark 4: Reaction on floating point exceptions 44
 Remark 5: Stop on error class 45
 Remark 6: Warmstart 45
 Remark 7: Start PERSISTENT %Rsegment.x and End PERSISTENT %Rsegment.x 46

3.3 I/O bus configuration 47
3.3.1 Setting the general I/O bus parameters 47
3.3.2 Inserting input and output modules 47
3.3.3 Configuring the input and output modules and channels 48
3.3.4 Module parameter "Ignore module" of S500 I/O devices 51

3.4 Configuration of the serial interfaces (Interfaces / COM1 and COM2) 52
3.4.1 Setting the protocol of the serial interfaces 52
3.4.2 The setting 'COMx - Online access' 53
3.4.3 The setting 'COMx - ASCII' 53
 Remark 1: Enable login 56
 Remark 2: Usage of modems 56
 Remark 3: Telegram ending identifier 57
 Remark 4: Checksum 59
3.4.4 The setting 'COMx - Modbus' 60
3.4.5 The setting 'COM1 - CS31 Bus' 62
 Connecting the DC551 and S500 I/O devices to the CS31 bus 64
 Overview on input/output data of S500 I/O devices 68
 Examples of impossible configurations 69

__

V7 AC500 System Technology 184 CPUs AC500 / Issued: 08.2007

3.4.6 The setting 'COMx - SysLibCom' 71
 Remark 1: Enable login 73
 Remark 2: Usage of modems 73
 Remark 3: Telegram ending identifier 73
 Example for sending/receiving with "SysLibCom" 74
3.4.7 The setting 'COMx - Multi' 77
 Functions of the block COM_SET_PROT 78

3.5 FBP slave interface configuration (Interfaces / FBP slave) 79

3.6 Coupler configuration (Couplers) 81
3.6.1 Configuring the internal coupler 82
3.6.1.1 The internal Ethernet coupler PM5x1-ETH 82
3.6.1.2 The internal ARCNET coupler PM5x1-ARCNET 84
 Remark 1: Baudrate of the ARCNET coupler 85
 Remark 2: Check of DIN identifier on receipt 85
3.6.2 Configuring the external couplers 87

5 The diagnosis system in the AC500 97

5.1 Summary of diagnosis possibilities 97
5.1.1 Structure of the diagnosis system 97
5.1.2 Diagnosis directly at the PLC by means of "ERR" LED, keypad and display 98
5.1.3 Plain-text display of error messages in the Control Builder status line during online mode 99
5.1.4 Diagnosis using the PLC browser commands of the Control Builder 99
5.1.5 Diagnosis with help of the user program 99

5.2 Organization and structure of error numbers 99
5.2.1 Error classes 100
5.2.2 Error identifiers 100
5.2.3 Possible error numbers 102
5.2.4 Error list 106
5.2.5 Coupler errors 113

5.3 Diagnosis blocks for the AC500 118

5.4 AC500-specific PLC browser commands 118

9 The fast counters in the AC500 149

9.1 Activating the fast counters via the I/O bus 149

9.2 Counting modes of the fast counters 149

6 The SD memory card in the AC500 122

6.1 SD card functions 122
6.1.1 Summary of memory card functions 122
6.1.2 PLC browser commands for accessing the SD card 122

6.2 SD card file system 123
6.2.1 SD card file structure 123
 File structure in versions V1.0 and V1.1 123
 File structure as of version V1.2 124
6.2.2 The command file "SDCARD.INI" 126
 File content in versions V1.0 and V1.1 126
 File content as of version V1.2 127
6.2.3 Initializing an SD card 129
6.2.3.1 Initializing an SD card using the AC500 129
6.2.3.2 Initializing the SD card using a PC 129

6.3 Storing/loading the user program to/from an SD card 130
6.3.1 Storing the user program to an SD card 130
6.3.2 Loading a user program from the SD card to the AC50 130

__

V7 AC500 System Technology 185 CPUs AC500 / Issued: 08.2007

6.4 Storing/reading user data to/from an SD card 131
6.4.1 Structure of data files stored on the SD card 131
6.4.2 Blocks for storing/reading user data to/from the SD card 132
6.4.3 Deleting a data file stored on the SD card 134
6.4.4 Storing user data to the SD card - data file without sectors 134
6.4.5 Storing user data to the SD card - data file with sectors 135
6.4.6 Loading user data from the SD card - data file without sectors 136
6.4.7 Loading user data from the SD card - data file with sectors 137

6.5 Storing and loading retentive data to/from an SD card 138

6.6 Firmware update from the SD card 138
6.6.1 Storing the firmware to the SD card 138
6.6.2 Updating the firmware of the AC500 CPU from the SD card 138

6.7 Writing and reading the project sources to/from the SD card 139
6.7.1 Writing the project sources from PC to SD card 140
6.7.2 Loading the project sources from the PLC's SD card into the PC 142
6.7.3 Loading the project sources from the SD card using the PC SD card reader 144

6.8 SD card error messages 145

__

V7 AC500 System Technology 186 CPUs AC500 / Issued: 08.2007

System Description AC500

 Scalable PLC for
Individual Automation

System Technology
of the DC541-CM Module

DC541

__

V7 AC500-System Technology I/O Modules 1 DC541 AC500 / Issued: 09.2006

Contents System Technology DC541-CM

1 Functionality and configuration of the module DC541-CM............................. 3

1.1 Functionality of the module DC541-CM .. 3

1.2 Application examples for the module DC541-CM... 6

1.3 Configuring the module DC541-CM ... 7

2 Use of the module as an interrupt I/O device.. 9

2.1 Configuring the module DC541-CM for use as interrupt I/O device .. 9

2.2 Creation of the interrupt task for the interrupt inputs... 10

2.3 Structure of the interrupt program ... 12

2.4 Configuration example: DC541-CM used as interrupt I/O device .. 13

3 Module used as counting device.. 19

3.1 Configuring the module DC541-CM for use as counting device .. 19

3.2 Calling the counting functions of the DC541-CM ... 20

3.3 The 32 bit up/down counter of module DC541-CM .. 20

3.3.1 Description of the module's up/down counter functionality .. 20

3.3.2 Configuration example: 32 bit up/down counter (encoder mode) .. 22

3.3.3 Configuration example: 32 bit up/down counter (up/down mode) .. 26

3.4 The 32 bit forward counter of module DC541-CM .. 30

3.4.1 Description of the module's forward counter functionality .. 30

3.4.2 Configuration example: 32 bit forward counter... 30

3.5 Pulse width modulation (PWM) using the DC541-CM ... 34

3.5.1 Description of the module's PWM functionality .. 34

3.5.2 Configuration example: Pulse width modulation (PWM) .. 34

3.6 Time and frequency measurement using the DC541-CM... 37

3.6.1 Description of the module's time and frequency measurement functionality 37

3.6.2 Configuration example: Frequency output.. 38

3.7 Frequency output using the DC541-CM.. 41

3.7.1 Description of the module's frequency output functionality .. 41

3.7.2 Configuration example: Frequency output.. 41

__

V7 AC500-System Technology I/O Modules 2 DC541 AC500 / Issued: 09.2006

4 Index System Technology DC541-CM .. 42

__

V7 AC500-System Technology I/O Modules 3 DC541 AC500 / Issued: 09.2006

The Interrupt and Counter Module DC541-CM

1 Functionality and configuration of the module DC541-CM

1.1 Functionality of the module DC541-CM

The interrupt and counter module DC541-CM has to be inserted into one of the coupler slots of the
AC500. Slot 1 is the first slot on the left-hand side of the CPU. Depending on the used terminal base
TB5x1, up to 4 DC541 modules can be used.

The module DC541-CM has 8 channels C0...C7 which can be configured individually as input or output
as desired.

The device can be used in two operating modes: as interrupt input/output device (IO mode) or as
counting device (counting mode).

In the operating mode interrupt input/output, the channels can be configured as follows:

• Input

• Output

• Interrupt input

In the operating mode counting device, the channels can be configured as follows:

• Input

• Output

• 32 bit up/down counter (uses C0...C3) (32 bit counter without limit)

• 32 bit periodic counter (limited 32 bit counter)

• Limiter for 32 bit counter (limit channel 0)

• 32 bit forward counter (count-up counter)

• Pulse width modulation (PWM)

• Time and frequency measurement

• Frequency output

 Note: The implementation of the module functions of the DC541 is performed by means of function
blocks. Access to the channels configured as normal inputs and outputs is also performed using a
function block (DC541_IO).

The adjustment of the module's operating mode and its channel configuration is performed in the PLC
configuration of the Control Builder. Specific function blocks are available for all module functions. The
corresponding library DC541_AC500_V11.LIB is automatically included into the project.

The module's cycle time is set automatically depending on its channel configuration. The following
values are possible for the cycle time:

I/O
device:

 50 µs

Counting
device:

1-2 functions
3-4 functions
5-8 functions

50 µs
100 µs
200 µs

__

V7 AC500-System Technology I/O Modules 4 DC541 AC500 / Issued: 09.2006

"Functions" are:

- PWM - Pulse width modulator

- FREQ - Time and frequency measurement

- FREQ_OUT - Frequency output

- 32BIT_CNT - 32 bit counter

- FWD_CNT - 32 bit forward counter

- LIMIT - Limit value monitoring for the 32 bit counter

The used cycle time can be read at output CYCLE of the block DC541_GET_CFG.

The following table shows an overview of all possible combinations.

Con-
figu-
red
as

Function/
can be
con-
figured for
channel

C0 C1 C2 C3
C4
to
C7

Max.
number
of
channels
for this
function

Remark and reference to
alternative combinations
(a and b)

Mode 1: Interrupt function; mutually exclusive with mode 2 (counting functions).

Dig. input 1 1 1 1 4 8

Interrupt inp. 1 1 1 1 4 8
Inter-
rupt

Dig. output 1 1 1 1 4 8

Each channel can be configured
individually as interrupt input or output.

Mode 2: Counting functions and multifunctional I/Os; mutually exclusive with mode 1 (interrupt
functions).

Dig. input 1 1 1 1 4 8 Normal input

Dig. output 1 1 1 1 4 8 Normal output

PWM,
resolution
10 kHz

1 1 1 1 4 8 Outputs a pulsed signal with an
adjustable on-off ratio.

Frequency
output,
resolution
2.5 kHz

1 1 1 1 4 8
Outputs an adjustable frequency
(endless output or output of a specified
number of pulses).

Up/down
counter,
50 kHz

1 1
OK
*1)

OK
*1)

OK
*1) 2

*1)
a) Both channels (0 and 1) configured as
50 kHz counter => Channels 2 to 7 can
be configured as digital I/Os.
b) Only one channel (0 or 1) configured
as 50 kHz counter => Second channel
can be configured as counter < 50 kHz
or for time/frequency measurement with
a max. resolution of 200 µs. The
remaining channels (2 to 7) can be
configured as digital I/Os.

Up/down
counter,
5 kHz

1 1 1 1
OK
*2)

4

*2)
a) Four channels (0 to 3) configured as 5
kHz counter => Channels 4 to 7 can be
configured as digital I/Os.
b) Only a portion of the 4 channels (0 to
3) configured as 5 kHz counter => The
other ones (of channels 0 to 3) can be
configured as desired: as 2.5 kHz
counter or for time/frequency
measurement with a max. resolution of
200 µs
or as digital I/Os. The remaining
channels (4 to 7) can be configured as
digital I/Os.

M
u

lt
i-

fu
n

ct
io

n
 I/

O
s,

 f
u

n
ct

io
n

s
d

ig
it

al
 I/

O
s,

 P
W

M
, c

o
u

n
te

rs
, t

im
e

an
d

 f
re

q
u

en
cy

 m
ea

su
ri

n
g

Up/down
counter,
2.5 kHz

1 1 1 1 4 8

__

V7 AC500-System Technology I/O Modules 5 DC541 AC500 / Issued: 09.2006

Con-
figu-
red
as

Function/
can be con-
figured for
channel

C0 C1 C2 C3
C4
to
C7

Max.
number
of
channels
for this
function

Remark and reference to
alternative combinations
(a and b)

Mode 2: Counting functions and multifunctional I/Os; mutually exclusive with mode 1 (interrupt
functions).

Time/
frequency
measurement,
resolution
50 µs

1
OK
*3)

OK
*3)

OK
*3)

OK
*3)

1

*3)
Channel 0 configured for a max.
resolution of 50 µs => Channels 1 to 7
can be configured as digital I/Os.

Time/
frequency
measurement,
resolution
100 µs

1 1
OK
*4)

OK
*4)

OK
*4)

2

*4)
a) Two channels (0 and 1) configured
for a max. resolution of 50 µs =>
Channels 3 to 7 can be configured as
digital I/Os.
b) Only one channel (0 or 1) configured
for a max. resolution of 50 µs =>
Second channel (0 or 1) can be
configured as counter < 50 kHz or for
time/frequency measurement with a
max. resolution of 200 µs. The
remaining channels (2 to 7) can be
configured as digital I/Os.

M
u

lt
i-

fu
n

ct
io

n
 I/

O
s,

 f
u

n
ct

io
n

s
d

ig
it

al
 I/

O
s,

P

W
M

, c
o

u
n

te
rs

, t
im

e
an

d
 f

re
q

u
en

cy

m
ea

su
ri

n
g

Time/
frequency
measurement,
resolution
200 µs

1 1 1 1 4 8
Times, frequencies and rotational
speeds are measured with a max.
resolution of 200 µs.

Bidirectional
32 bit
counter,
50 kHz max.

Channels 0 to 3:
Track A, track B, zero
track, touch trigger

OK
*6)

1

For connection of an incremental
transmitter. For signals up to 50 kHz.
This frequency corresponds to a motor
with a rotational speed of 3000 rpm.
The counter always uses the first 4
channels (0 to 3).
*6) The remaining channels (4 to 7)
can be configured as limit values, as 5
kHz counters, for time/frequency
measurement with a resolution of 200
µs or as digital I/Os

Axis of
rotation
(endless
counting)

1
OK
*7)

1

"Endless" forward counting. An
overflow occurs corresponding to the
32 bit value.
*7) The remaining channels can be
configured as limit values, as 5 kHz
counters, for time/frequency
measurement with a resolution of 200
µs or as digital I/Os.

32 bit
counter
incl. sign

1
OK
*8)

1

*8) The remaining channels can be
configured as limit values, as 5 kHz
counters, for time/frequency
measurement with a resolution of 200
µs or as digital I/Os.

H
ig

h
-s

p
ee

d
 c

o
u

n
te

rs

Limit values
for 32 bit
counter

OK *9) 1 1

Various counting values of the 32 bit
counter can be displayed directly via
these outputs.
*9) In this case, the channels 0 to 3 are
used as 32 bit counters.

__

V7 AC500-System Technology I/O Modules 6 DC541 AC500 / Issued: 09.2006

1.2 Application examples for the module DC541-CM

The module DC541 can be used for a wide variety of control tasks. In this documentation, a small choice
of possible tasks is described together with the corresponding configuration for the DC541 and with
reference to the corresponding example projects.

__

V7 AC500-System Technology I/O Modules 7 DC541 AC500 / Issued: 09.2006

1.3 Configuring the module DC541-CM

The configuration of the interrupt and counting module DC541 is done in the PLC configuration of the
Control Builder PS501. A detailed description of the PLC configuration for the AC500 can be found in
chapter "System Technology of the CPUs" / "PLC configuration".

This section describes the procedure for configuring the DC541 when used with a AC500 CPU (PM581).

After creating a project for the target system PM581, the PLC configuration looks as follows:

The device DC541 has to be entered at the corresponding coupler slot according to the hardware setup.
Right click the entry "Couplers[FIX]" to open the context menu for appending a coupler. Select "Append
Subelement" to display all devices available for the coupler slots.

If the DC541 is inserted in slot 1 (i.e. the first slot on the left of the CPU), you then have to select the
entry "DC541 - Interrupt / counter IO". If the DC541 is e.g. inserted in slot 2 and slot 1 is empty or should
be used for another coupler, you first have to enter an "External - none" for an empty slot or the inserted
coupler respectively. In the example, the coupler is inserted in slot 1.

After the device has been added successfully, the module parameters have to be specified:

__

V7 AC500-System Technology I/O Modules 8 DC541 AC500 / Issued: 09.2006

The following module parameters are available:

Parameter Default value Value Meaning

No In case of a configuration error, the user
program is not started.

Run on config fault No

Yes The user program is started even if the internal
Ethernet coupler is configured incorrectly.

No The configuration of the DC541 is not deleted in
case of a reset (original).

Do not delete config
on Reset (original)

On

Yes In case of a reset (original), the configuration of
the DC541 is deleted, too.

Num edges ignore
input 0

0 0...255 Number of edges that may occur at input 0
without initiating the interrupt task, if channel C0
is configured as interrupt input.

On Mutual time monitoring between the CPU and
the DC541 is switched on.

Watchdog On

Off No time monitoring.

The library DC541_AC500_V11.LIB is included automatically during the first compilation of the project
after the device has been added to the PLC configuration.

__

V7 AC500-System Technology I/O Modules 9 DC541 AC500 / Issued: 09.2006

2 Module used as interrupt I/O device

2.1 Configuring the module DC541-CM for use as interrupt I/O device

For use as an interrupt I/O device, the device and the channels have to be configured in the PLC
configuration accordingly.

How to add the device in the PLC configuration is described in the chapter before.

The next step is to set the operating mode of the device. To do so, position the cursor on the entry of the
device DC541, right click to open the context menu and then select the function "Append Subelement":

Then, select "IO mode" to configure the device as an interrupt IO.

In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt inputs.

To do so, select the corresponding value for each channel.

__

V7 AC500-System Technology I/O Modules 10 DC541 AC500 / Issued: 09.2006

In the example, the channels 0 and 1 are configured as interrupt inputs, channels 2 and 3 as inputs and
channels 4 to 7 as outputs. In this case, the configuration looks as follows:

The configuration of the device DC541 for use as interrupt IO device is now completed.

The specified configuration can be read using the block DC541_GET_CFG.

2.2 Creating an interrupt task for the interrupt inputs

If one or more channels of the DC541 are configured as interrupt inputs, a corresponding interrupt task
has to be created to enable the processing of the interrupt(s).

For this purpose, a new task has to be added in the task configuration of the Control Builder. Enter the
task name, set the task type to "external event triggered" and specify the event that triggers the task.

For each coupler slot, two types of interrupt tasks are available in the "Event" list box:

• Ext_CouplerX_InputAny:
The task is triggered by any interrupt from coupler slot X with the priority specified in the Priority
field (0...31).

• Ext_CouplerX_InpuAny_high_prio:
The task is triggered by any interrupt from coupler slot X with highest priority, i.e. with a priority
higher than the max. adjustable "0" and higher than the priority of the communication task. In
this case, the priority (0...31) specified in the Priority field is without any significance.

 CAUTION: If the interrupt task is started with high priority
(Ext_CouplerX_InpuAny_high_prio), the program execution time must not be longer than
approx. 400 µs. Otherwise online access is no longer possible.

In the example below, the task is named HIGHInterrupt_1, meaning that it is a high-priority interrupt from
coupler slot 1. The task type is "external event triggered" and the event to trigger the task is
"Ext_Coupler1_InputAny_high_priority".

__

V7 AC500-System Technology I/O Modules 11 DC541 AC500 / Issued: 09.2006

Like for all other tasks, a program call has to be assigned to the task.

In the example, the program DC541_Interrupt_Ext1() shall be started with any interrupt from coupler slot
1.

The task configuration for an AC500 equipped with two DC541 modules inserted in the coupler slots 1
and 2 and containing one cyclically running "background program" PLC_PRG could for example look as
follows. Here, an interrupt from slot 1 should start the program DC541_Interrupt_Ext1 with high priority,
an interrupt from slot 2 should start the program DC541_Interrupt_Ext2 with priority 2:

__

V7 AC500-System Technology I/O Modules 12 DC541 AC500 / Issued: 09.2006

2.3 Structure of the interrupt program

The following blocks contained in the library DC541_AC500_V11.LIB are available for the interrupt
program:

• DC541_INT_IN Determination of the interrupt initiating source

• DC541_IO Reading and writing of channels C0...C7

It is possible to start one interrupt task per coupler slot. This task can be started by any channel
(C0...C7) configured as interrupt input. Therefore, it is necessary for the interrupt program to differentiate
which channel(s) triggered the interrupt in order to enable the processing of the corresponding actions.

The information whether a channel (C0...C7) has triggered an interrupt since the last call of the block is
provided by the outputs IN0...IN7 of the block DC541_INT_IN. This is why this block always has to be
called at the beginning of the interrupt program, if more than one channel is configured as interrupt input.

The access to the channels configured as inputs or outputs is done using the block DC541_IO.
Therefore, it makes sense to call this block at the beginning of the interrupt program in order to read the
inputs and at the end of the interrupt program in order to write the outputs.

__

V7 AC500-System Technology I/O Modules 13 DC541 AC500 / Issued: 09.2006

2.4 Configuration example: DC541-CM used as interrupt I/O device

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuInterruptExample_PM591_V11.pro

Hardware configuration:

The example control system shall have the following configuration:

- Terminal base TB521 (two coupler slots)
- DC541 in coupler slot 1 (first slot on the left of the CPU)
- PM591-ETH CPU with internal Ethernet coupler (configuration using SYCON.net)
- I/O module DC532 on the I/O bus

Wiring:

The channels are connected as follows:

DC532 / C16 -------------- DC541 / C0
DC532 / C17 -------------- DC541 / C1
DC532 / C18 -------------- DC541 / C2
DC532 / C19 -------------- DC541 / C3
DC532 / C20 -------------- DC541 / C4
DC532 / C21 -------------- DC541 / C5

PLC configuration:

- DC541 in slot 1, operating mode "IO mode"

-
Configuration:

Channels C0...C4 Interrupt input

 Channel C5 Input

 Channels C6...C7 Outputs
- Specification of the Ethernet coupler as internal coupler (if available)
(Ethernet coupler configuration using SYCON.net)

- DC532 on the I/O bus

Task configuration:

- Task 1: Cyclic program / Prio = 10 / Interval = t#10ms / PLC_PRG
- Task 2: HIGHInterrupt_1 / DC541_Interrupt_Ext1()

Purpose of the interrupt program DC541_Interrupt_Ext1():

The interrupt program should fulfill the following functionality:

- Counting of all interrupts
- Counting of the interrupts per input
- Calculation of the interrupt frequency in [Int/s]
- Reporting of the number of interrupts per input
- Input C4: Resetting the counters
- Input C5: Input
- Output C6: Status of input C5
- Output C7: Toggle output

__

V7 AC500-System Technology I/O Modules 14 DC541 AC500 / Issued: 09.2006

The declaration part of the program looks as follows:

PROGRAM DC541_Interrupt_Ext1

VAR

 dwIntCount : DWORD; (* count all interrupts *)

 dwIntCountOld : DWORD; (* start value for next measure *)

 tActual : TIME; (* systemtick in ms *)

 tStart : TIME; (* start value of systemtick for next
calculation *)

 dwUsedTime : DWORD; (* time for 1000 interrupts in ms *)

 dwFrequenz : DWORD; (* interrupt frequency in [Int / sec] *)

 DC541_IntSource : DC541_INT_IN; (* instance FB: read interrupt source *)

 DC541_Ios : DC541_IO; (* instance FB: read/write inputs/outputs *)

 dwCount_InX : ARRAY[0..cbyDC541_IntInp] OF
DWORD;

(* count interrupts of In0..In3 *)

 dwCount_InXOld : ARRAY[0..cbyDC541_IntInp] OF
DWORD;

(* start value for next 1000 interrupts *)

 dwIntHisto : ARRAY[0..cbyDC541_IntInp,
0..cbyDC541_MaxHist] OF DWORD;

(* histo data C0...C3 *)

 wIndex : WORD; (* index for histo data *)

 byInd : BYTE; (* loop index *)

END_VAR

VAR CONSTANT

 cbyDC541_SLOT : BYTE := 1; (* SLOT number of DC541 *)

 cbyDC541_MaxHist : BYTE := 9; (* max number of histo entries *)

 cbyDC541_IntInp : BYTE := 4; (* number of interrupt inputs -1 *)

END_VAR

The instruction part looks as follows:

At the beginning, the interrupts are counted in dwIntCount. After each 1000 interrupts, a calculation of
the frequency is performed and the counting values for the interrupts per input are stored.

dwIntCount := dwIntCount + 1; (* count all interrupts *)

IF dwIntCount - dwIntCountOld >= 1000 THEN (* after 1000 interrupts -> calculate frequency *)

 dwIntCountOld := dwIntCount; (* save dwIntCount for next call *)

 tActual := TIME();

 dwUsedTime := TIME_TO_DWORD(tActual - tStart); (* duration in ms for 1000 interrupts *)

 dwFrequenz := 1000000 / dwUsedTime; (* [Interrupt / sec] 1000 Int * 1000 ms/sec *)

 tStart := tActual; (* for next measure *)

 dwIntHisto[0,wIndex] := dwCount_InX[0] - dwCount_InXOld[0]; (* IN0 interrupts of last 1000 *)

 dwCount_InXOld[0] :=dwCount_InX[0]; (* start value for next measure *)

 dwIntHisto[1,wIndex] := dwCount_InX[1] - dwCount_InXOld[1]; (* IN1 interrupts of last 1000 *)

 dwCount_InXOld[1] :=dwCount_InX[1]; (* start value for next measure *)

 dwIntHisto[2,wIndex] := dwCount_InX[2] - dwCount_InXOld[2]; (* IN2 interrupts of last 1000 *)

 dwCount_InXOld[2] :=dwCount_InX[2]; (* start value for next measure *)

 dwIntHisto[3,wIndex] := dwCount_InX[3] - dwCount_InXOld[3]; (* IN3 interrupts of last 1000 *)

 dwCount_InXOld[3] :=dwCount_InX[3]; (* start value for next measure *)

 wIndex := wIndex + 1; (* increase index *)

 IF wIndex > cbyDC541_MaxHist THEN wIndex := 0; END_IF; (* reset index, if >1000 *)

END_IF; (* 1000 Interrupts *)

__

V7 AC500-System Technology I/O Modules 15 DC541 AC500 / Issued: 09.2006

After this, the block DC541_INT_IN is called to identify the interrupt source and then the interrupt
counters of the channels are updated depending on the outputs of this block.

(* Read interrupt source --> if output = TRUE --> interrupt since last call *)
DC541_IntSource(EN := TRUE, SLOT := cbyDC541_SLOT);

(* count the interrupts for each interrupt input C0..C3 *)
dwCount_InX[0] := dwCount_InX[0] + BOOL_TO_DWORD(DC541_IntSource.IN0);
dwCount_InX[1] := dwCount_InX[1] + BOOL_TO_DWORD(DC541_IntSource.IN1);
dwCount_InX[2] := dwCount_InX[2] + BOOL_TO_DWORD(DC541_IntSource.IN2);
dwCount_InX[3] := dwCount_InX[3] + BOOL_TO_DWORD(DC541_IntSource.IN3);
dwCount_InX[4] := dwCount_InX[4] + BOOL_TO_DWORD(DC541_IntSource.IN4);

In case of an interrupt on channel 4, the counters are reset.

IF DC541_IntSource.IN4 THEN (* Input channel C4 = TRUE *)

 dwIntCount := dwIntCountOld := 0; (* reset count all interrupts *)

 FOR byInd := 0 TO cbyDC541_IntInp-1 DO (* reset channel interrupt counters C0..C3 *)

 dwCount_InX[byInd] := dwCount_InXOld[byInd] := 0;

 END_FOR; (* byInd *)

 wIndex := 0; (* start historical data from 0 *)

END_IF; (* C4 = TRUE *)

At the end, the static inputs and outputs are processed, i.e.:

- reading the inputs,
- execution of actions
- writing the outputs.

(* Read inputs of DC541 *)

DC541_IOs(EN := TRUE, SLOT := cbyDC541_SLOT);

DC541_IOs.OUT6 := DC541_IOs.IN5; (* C6 := state of input channel C5 *)

DC541_IOs.OUT7 := NOT DC541_IOs.OUT7; (* toggle channel C7 *)

(* Write outputs to DC541*)

DC541_IOs(EN := TRUE, SLOT := cbyDC541_SLOT);

Purpose of the cyclic program PLC_PRG:

The cyclic program PLC_PRG contains the following functions:

- Cycles counter
 dwC := dwC + 1;
- Reading the configuration of the DC541
 Calling of block DC541_GET_CFG
- Reading the status of the DC541
 Calling of block DC541_STATE
- Reading/writing the static channels of the DC541
 Calling of block DC541_IO
- Simulation of the interrupts for the DC541
 Calling of block Simu_Pulse

The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation.

__

V7 AC500-System Technology I/O Modules 16 DC541 AC500 / Issued: 09.2006

The block Simu_Pulse is used to generate an adjustable number of pulses. Its representation in the
function block diagram (FBD) is as follows:

The meanings of the block's inputs and outputs are as follows:

Instance fbSimuPulse Instance name

bEn Input/Output BOOL Enabling of the pulse output

bAutoReset Input/Output BOOL Automatic reset of the pulse counter after the specified
number of pulses have been output and after
expiration of tResetTime

bReset Input/Output BOOL Reset of the pulse counter

tResetTime Input/Output TIME Time until the reset is initiated after the specified
number of pulses is reached, if bAutoReset = TRUE

dwPulse Input/Output DWORD Number of pulses to be output:
=0: Endless mode (pulse output continues until bEn =
FALSE or bReset = TRUE
> 0: Cyclic mode (output of the specified number of
pulses)

bDone Output BOOL Completion message after tResetTime has expired or
bReset = TRUE for 1 cycle

bToggle_0 Output BOOL Provides a FALSE->TRUE edge with each 2nd call
(i.e. the output is toggled with each call)

bToggle_1 Output BOOL Provides a FALSE->TRUE edge with each 4th call

bToggle_2 Output BOOL Provides a FALSE->TRUE edge with each 8th call

bToggle_3 Output BOOL Provides a FALSE->TRUE edge with each 16th call

dwActPulse Output DWORD Displays the number of pulses output (corresponds to
the number of edges at bToggle_0)

tActTime Output TIME Displays the elapsed time while tResetTime is running

In the example, bEn: = bAutoReset: = TRUE. 10000 pulses are output (dwSetPulse). After the specified
number of pulses has been reached, a wait time of 10 seconds is applied and then counting is started
from the beginning.

The example has a visualization implemented which can be used to operate the program. After 10000
pulses, the visualization looks as follows:

9375 interrupts are generated:
 5000 x C0 + 2500 x C1 + 1250 x C2 + 625 x C3 = 9375

__

V7 AC500-System Technology I/O Modules 17 DC541 AC500 / Issued: 09.2006

Act Pulse

Value IN 3
8

IN 2
4

IN 1
2

IN 0
1

Triggers the following interrupts:

0 0 0 0 0 none

1 0 0 0 1 IN 0 -> in every 2. cycle (10000 : 2 = 5000)

2 0 0 1 0 IN 1 -> in every 4. cycle (10000 : 4 = 2500)

3 0 0 1 1 IN 0

4 0 1 0 0 IN 2 -> in every 8. cycle (10000 : 8 = 1250)

5 0 1 0 1 IN 0

6 0 1 1 0 IN 1

7 0 1 1 1 IN 0

8 1 0 0 0 IN 3 -> in every 16. cycle (10000 : 16 = 625)

9 1 0 0 1 IN 0

10 1 0 1 0 IN 1

11 1 0 1 1 IN 0

12 1 1 0 0 IN 2

13 1 1 0 1 IN 0

14 1 1 1 0 IN 1

15 1 1 1 1 IN 0

16 0 0 0 0 none

__

V7 AC500-System Technology I/O Modules 18 DC541 AC500 / Issued: 09.2006

__

V7 AC500-System Technology I/O Modules 19 DC541 AC500 / Issued: 09.2006

3 Module used as counting device

3.1 Configuring the module DC541-CM for use as counting device

For use as a counting device, the device and the channels have to be configured in the PLC
configuration accordingly.

How to add the device in the PLC configuration is described in the chapter before (link to "Configuring
the module DC541").

The next step is to set the operating mode of the device. To do so, position the cursor on the entry of the
device DC541, right click to open the context menu and then select the function "Append Subelement":

Then, select "Counter mode" to configure the device as a counting device.

In the module parameters, the channels C0...C7 can be configured as:

 Input - Input

 Output - Output

 32 bit counter - 32 bit up/down counter (uses channels C0...C3)

 Limit channel 0 - Limiter for 32 bit counter

 Forward counter - 32 bit forward counter

 PWM - Pulse width modulation

 Frequency
measurement

- Time and frequency measurement

 Frequency output - Frequency output

To do so, select the corresponding value for each channel.

__

V7 AC500-System Technology I/O Modules 20 DC541 AC500 / Issued: 09.2006

 Note: If channel C0 is configured as "32 bit counter", the channels C1...C3 are automatically used,
too. In the PLC configuration, these channels are left at the default setting "Input".

The specified configuration can be read using the block DC541_GET_CFG.

3.2 Calling the counting functions of the DC541-CM

Function blocks are available for all module functions of the DC541 used as counting device. The blocks
are contained in the library DC541_AC500_V11.lib and described in detail in the library documentation.

The table below lists the assignment of the individual functions to the available function blocks:

Function Configuration Function block

Input Input DC541_IO

Output Output DC541_IO

32 bit up/count-down counter 32 bit up/down counter DC541_32BIT_CNT

Limiter for the 32 bit counter Limit channel 0 DC541_LIMIT

32 bit forward counter 32 bit forward counter DC541_FWD_CNT

Pulse width modulation PWM DC541_PWM

Time and frequency
measurement

Time and frequency
measurement

DC541_FREQ

Frequency output Frequency output DC541_FREQ_OUT

The blocks DC541_GET_CFG and DC541_STATE are available for diagnosis.

The following section describes the individual functions and provides a configuration example for each
function.

3.3 The 32 bit up/down counter of module DC541-CM

3.3.1 Description of the module's up/down counter functionality

The 32 bit up/down counter functionality is provided by the block DC541_32BIT_CNT.

This 32 bit counter is a count-up/count-down counter with a directional discriminator. The counter can be
used in two counting modes:

- EN_UD = FALSE: Encoder mode

Connection of an incremental transmitter (track A / track B, offset by 90°)

It is possible to count signals up to approx. 60 kHz. This corresponds to a motor with a rotational speed
of 3600 rpm and a transmitter with 1000 pulses per rotation. Pulse multiplication (x2 or x4) is not used.

- EN_UD = TRUE: Up / down mode

Up-/down counter

It is possible to count signals up to approx. 60 kHz. Count-up for signals on channel C1, count-down
for signals on channel C0.

__

V7 AC500-System Technology I/O Modules 21 DC541 AC500 / Issued: 09.2006

The counter always uses the channels C0...C3 of the DC541:

• C0: Track A of the incremental transmitter

• C1: Track B of the incremental transmitter

• C2 and C3: Reference cam or touch trigger

The counter can be used in two operating modes:

• Infinite counter (endless mode)

• Limiting counter (limit mode)

The operating mode is selected at input EN_LIM.

If EN_LIM = FALSE, the counter operates as infinite counter (endless mode). An overflow occurs
corresponding to the 32 bit value at 16#FFFFFFFF = 4 294 967 295. In this mode, any exceeding of the
limit value LIM_MAX or falling below the limit value LIM_MIN is displayed at the outputs MAX_LIM or
MIN_LIM.

If EN_LIM = TRUE (limit mode), the counting range is between the limit values LIM_MIN and LIM_MAX.
In case of an overflow, i.e. if LIM_MAX is reached, the counter restarts again at LIM_MIN.

The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If the lower limit
value LIM_MIN is higher than the upper limit value LIM_MAX, a corresponding error message is applied
at the outputs ERR/ERNO. In this case, the values for LIM_MIN and LIM_MAX are not forwarded to the
DC541. The difference between LIM_MAX and LIM_MIN has to be at least twice the number (frequency)
of counting pulses per DC541 cycle.

Example:

- Number of counting pulses (frequency) = 40 kHz = 40000 increments/s = 40 increments/ms
- Cycle time of the DC541 = 100 µs
- LIM_MIN = 0

-> Number of counting pulses per DC541 cycle: 40 increments/ms = 4 increments/100 µs
-> LIM_MAX > 8

Input SET can be used to set the counter to the value CNT_SET. This counting value is kept as long as
input SET = TRUE.

If the reference point approach is enabled at input EN_REF, the counter is set to the value of input
CNT_SET when a rising edge occurs on channel C2 or C3.

Using input EN_TOUCH, a touch trigger measurement is enabled. This means: With the rising edge on
channel C2 or C3, the counting value is stored and displayed at output CNT_TOUCH. The validity of
CNT_TOUCH is indicated by output RDY_TOUCH. This functionality can be used to determine the
counter value with regard to an external event. The results are increment accurate.

Only one function may be enabled at a time, either the reference point approach or the touch trigger
measurement. If both functions are enabled simultaneously or if the execution of one function is not yet
completed when enabling the other function, a corresponding error message is displayed at the outputs
ERR/ERNO.

To initiate a new reference point approach or touch trigger measurement, a positive edge at the
corresponding enabling input is necessary.

If the zero track of an incremental transmitter is wired to channel C2 or C3, no touch trigger
measurement may be performed in the region of the reference cam!

The device DC541 must be configured as counting device (counter mode).

The block DC541_32BIT_CNT has an integrated visualization visuDC541_32BIT_CNT which can be
used to control all block functions in parallel to the user program, if input EN_VISU = TRUE. A detailed
functional description of the visualization and how to integrate it can be found at the end of the block
description.

__

V7 AC500-System Technology I/O Modules 22 DC541 AC500 / Issued: 09.2006

The block DC541_LIMIT is used for limit value monitoring of the 32 bit counter. The block can be used to
directly display various counting values of the 32 bit counter (DC541_32BIT_CNT) via binary outputs.
Using the input SIGNAL you can determine whether the corresponding output is switched to FALSE or
TRUE.

The time resolution of the block is < 100 µs, i.e., the result is increment accurate up to a frequency of 10
kHz.

The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If the lower limit
value LIM_MIN is higher than the upper limit value LIM_MAX, a corresponding error message is
displayed at the outputs ERR/ERNO.

The device DC541 must be configured as counting device (counter mode) and channel C0 as 32 bit
counter.

The inputs and outputs of the blocks DC541_32BIT_CNT and DC541_LIMIT are described in detail in
the library documentation.

3.3.2 Configuration example: 32 bit up/down counter (encoder mode)

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuCounter_32BITEncoderExample_PM591_V11.pro

The 32 bit up/down counter in the operating mode "encoder mode" or "endless mode" corresponds to
mode 7 (1 UpDown directional discriminator) of the high-speed counter of the digital input/output
modules. However, the 32 bit counter of the DC541 additionally has one input for the zero track
(reference point approach) and one touch trigger input.

In the configuration example, the counting pulses are therefore applied in parallel to the DC541 inputs
and the counting inputs of the DC532.

Hardware configuration:

The example control system shall have the following configuration:

- Terminal base TB521 (two coupler slots)
- DC541 in coupler slot 1 (first slot on the left of the CPU)
- PM591-ETH CPU with internal Ethernet coupler (configuration using SYCON.net)
- I/O module DC532 on the I/O bus

Wiring:

The channels are connected as follows:

DC532 / C16 -------------- DC541 / C0
DC532 / C17 -------------- DC541 / C1
DC532 / C18 -------------- DC541 / C2
DC532 / C19 -------------- DC541 / C3
DC532 / C20 -------------- DC541 / C4
DC532 / C21 -------------- DC541 / C5
DC532 / C22 -------------- DC541 / C6
DC532 / C23 -------------- DC541 / C7
DC532 / C16 -------------- DC532 / C24
DC532 / C17 -------------- DC532 / C25

__

V7 AC500-System Technology I/O Modules 23 DC541 AC500 / Issued: 09.2006

PLC configuration:

- DC541 in slot 1, operating mode "counter mode"

- Configuration: - Channel C0 32 bit counter

 - Channels C1...C4 Input

 - Channel C5 Output

 - Channels C6...C7 Limit channel 0

- Specification of the Ethernet coupler as internal coupler (if available)
(Ethernet coupler configuration using SYCON.net)

- DC532 on the I/O bus / parameter "Fast counter" = 7-1 UpDown directional discriminator

Task configuration:

- Task 1: Cyclic program / Prio=10 / Interval = t#100ms / PLC_PRG
- Task 2: Simulation / Prio=15 / Interval = t#5ms / Simulation_Task

Purpose of the cyclic program PLC_PRG:

The cyclic program PLC_PRG contains the following functions:

- Reading the cycle of PLC_PRG
Calling of block TASK_INFO;
- Reading the configuration of the DC541
Calling of block DC541_GET_CFG
- Reading the status of the DC541
Calling of block DC541_STATE
- Reading/writing the static channels of the DC541
Calling of block DC541_IO
- Calling of the sequence control for the counters
Calling of program pro32BitCounter

The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation.

The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in the
corresponding documentation.

The actual execution of the 32 bit up/down counter functionality is implemented in the program
pro32BitCounter.

__

V7 AC500-System Technology I/O Modules 24 DC541 AC500 / Issued: 09.2006

Purpose of the program pro32BitCounter:

The program pro32BitCounter executes the following step chain:

Step
(byStep) DC541_32BIT_CNT DC532 / CNT_IO

0 Initialization, set counter to 250 Initialization, set counter to 250

1 1000 pulses / endless mode / UP 1000 pulses / UP

2 Wait 5 seconds Wait 5 seconds

3 1000 pulses / endless mode / DOWN 1000 pulses / DOWN

4 Wait 5 seconds Wait 5 seconds

5 3000 pulses / limit mode between 250
and 1000 (4 executions)

3000 pulses / UP

6 Wait 5 seconds Wait 5 seconds

7 3000 pulses / limit mode between 250
and 1000 (4 executions)

3000 pulses / DOWN

8 Wait 5 seconds Wait 5 seconds

9 Endless mode / UP Start reference point
approach

No significance

10 Set reference input (C2 = TRUE) and
stop pulse output

No significance

11 Wait 5 seconds No significance

12 Terminate reference point approach
(EN_REF = FALSE)
Reset reference input (C2 = FALSE)

No significance

13 Wait 5 seconds No significance

14 Enable touch trigger (EN_TOUCH) and
start pulse output

No significance

15 Set touch trigger input (C3 = TRUE) No significance

16 Wait 5 seconds No significance

17 Terminate touch trigger
(EN_TOUCH = FALSE)
Reset touch trigger input
(C3 = FALSE)

No significance

200 Manual operation Manual operation

249 Program end,
restart from step 0 after 5 seconds

Program end,
restart from step 0 after 5 seconds

The wait steps (5 seconds) have been inserted to allow an easier observation of the execution.

The channels C6 and C7 of the DC541 are configured as "Limit channel 0". Depending on the settings
for LIM_MIN (= 500), LIM_MAX (= 750) and SIGNAL, the following values result for the channels C6 and
C7:

DC541_32BITCNT.ACT_CNT
Channel

00...499 500...750 751...

C6 (SIGNAL = TRUE) FALSE TRUE FALSE

C7 (SIGNAL = FALSE) TRUE FALSE TRUE

__

V7 AC500-System Technology I/O Modules 25 DC541 AC500 / Issued: 09.2006

The block Sim_32BitCount is used to generate an adjustable number of pulses. Its representation in the
function block diagram (FBD) is as follows:

Instance fbSimuPulse Instance name

bEn Input/Output BOOL Enabling of the pulse output

bUpDown Input/Output BOOL Selection UP / DOWN

dwPulse Input/Output DWORD Number of pulses to be output

bDone Output BOOL Completion message after the number of pulses
specified at dwPulse or after every pulse if
dwPulse = 0

bOut_A Output BOOL Output track A

bOut_B Output BOOL Output track B

dwCycleDone Output DWORD Number of pulses output

In the example, the block Sim_32BitCount is called in a 5 ms task in order to generate the pulses with an
offset of 90 degrees. The pulse output is enabled or stopped via input bEn. If input dwPulse = 0, the
pulses are output continuously. If dwPulse > 0, only the specified number of pulses is output. When the
specified number of pulses is reached, output bDone is set to TRUE.

The example program has a visualization implemented that displays all states:

Clicking on the button <Enable visu control> (bEnVisuControl = TRUE) causes the program to jump from
the current step to step 200 (manual operation). Then, the operation of the blocks is done via the
corresponding pushbuttons/switches of the individual blocks. When manual operation is switched off
again (bEnVisuControl = FALSE), the program jumps to step 249 and restarts from step 0 after the wait
time.

__

V7 AC500-System Technology I/O Modules 26 DC541 AC500 / Issued: 09.2006

3.3.3 Configuration example: 32 bit up/down counter (up/down mode)

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuCounter_32BITUpDownExample_PM591_V11.pro

The configuration example for the "up/down" counting mode of the 32 bit up/down counter essentially
corresponds to the example for the counting mode "encoder mode". Depending on the counting mode,
the simulation task counts pulses alternately on C0 and C1.

Hardware configuration:

The example control system shall have the following configuration:

- Terminal base TB521 (two coupler slots)
- DC541 in coupler slot 1 (first slot on the left of the CPU)
- PM591-ETH CPU with internal Ethernet coupler (configuration using SYCON.net)
- I/O module DC532 on the I/O bus

Wiring:

The channels are connected as follows:

DC532 / C16 -------------- DC541 / C0
DC532 / C17 -------------- DC541 / C1
DC532 / C18 -------------- DC541 / C2
DC532 / C19 -------------- DC541 / C3
DC532 / C20 -------------- DC541 / C4
DC532 / C21 -------------- DC541 / C5
DC532 / C22 -------------- DC541 / C6
DC532 / C23 -------------- DC541 / C7
DC532 / C16 -------------- DC532 / C24
DC532 / C17 -------------- DC532 / C25

PLC configuration:

- DC541 in slot 1, operating mode "counter mode"

- Configuration: - Channel C0 32 bit counter

 - Channels C1...C4 Input

 - Channel C5 Output

 - Channels C6...C7 Limit channel 0

- Specification of the Ethernet coupler as internal coupler (if available)
(Ethernet coupler configuration using SYCON.net)

- DC532 on the I/O bus / parameter "Fast counter" = 3-2 UpDown counters

Task configuration:

- Task 1: Cyclic program / Prio=10 / Interval = t#100ms / PLC_PRG
- Task 2: Simulation / Prio=15 / Interval = t#5ms / Simulation_Task

__

V7 AC500-System Technology I/O Modules 27 DC541 AC500 / Issued: 09.2006

Purpose of the cyclic program PLC_PRG:

The cyclic program PLC_PRG contains the following functions:

- Reading the cycle of PLC_PRG
Calling of block TASK_INFO;
- Reading the configuration of the DC541
Calling of block DC541_GET_CFG
- Reading the status of the DC541
Calling of block DC541_STATE
- Reading/writing the static channels of the DC541
Calling of block DC541_IO
- Calling of the sequence control for the counters
Calling of program pro32BitCounter

The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation.

The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in the
corresponding documentation.

The actual execution of the 32 bit up/down counter functionality is implemented in the program
pro32BitCounter.

Purpose of the program pro32BitCounter:

The program pro32BitCounter executes the following step chain:

DC541_32BIT_CNT DC532 / CNT_IO

Actual value
Step

byStep Sequence Act.
value Sequence

1 2

0 Initialization, set counter to 0 0 Initialization, set counter
Counter 1: UD1 = TRUE ->
Down (backward)
SET1 = 10000
Counter 2: UD2 = FALSE ->
Up (forward)
SET2 = 0

10000 0

1 1000 pulses / endless mode /
UP
Pulses on channel C1

1000 1000 pulses / UP
Pulses on counter 2

10000 1000

2 Wait 5 seconds 1000 Wait 5 seconds 10000 1000

3 1000 pulses / endless mode /
DOWN
Pulses on channel C0

0 1000 pulses / DOWN
Pulses on counter 1

9000 1000

4 Wait 5 seconds 300 Wait 5 seconds 9000 1000

5 Set value = 300
3000 pulses / UP / limit mode
between 300 and 800 (6
executions)

800 3000 pulses / UP
Pulses on counter 2

9000 4000

6 Wait 5 seconds 800 Wait 5 seconds 9000 4000

7 3000 pulses / DOWN / limit
mode between 300 and 800
(6 executions)

300 3000 pulses / DOWN
Pulses on counter 1

6000 4000

8 Wait 5 seconds 300 Wait 5 seconds 6000 4000

9 Endless mode / UP
Start reference point
approach

810 No significance,
counter 2 continues counting

6000 4510

10 Set reference input (C2 =
TRUE) and stop pulse output
Counter is set to SET = 300

300 No significance 6000 4510

__

V7 AC500-System Technology I/O Modules 28 DC541 AC500 / Issued: 09.2006

11 Wait 5 seconds 300 No significance 6000 4510

12 Terminate reference point
approach (EN_REF =
FALSE)
Reset reference input (C2 =
FALSE)

300 No significance 6000 4510

13 Wait 5 seconds 300 No significance 6000 4510

14 Enable touch trigger
(EN_TOUCH) and start pulse
output

810 No significance,
counter 2 continues counting

6000 5320

15 Set touch trigger input (C3 =
TRUE)
In the example, touch trigger
output CNT_TOUCH = 810

810 No significance 6000 5320

16 Wait 5 seconds 1350 No significance 6000 5560

17 Terminate touch trigger
(EN_TOUCH = FALSE)
Reset touch trigger input (C3
= FALSE)

1350 No significance 6000 5560

200 Manual operation xxx Manual operation xxx xxx

249 Program end,
restart from step 0 after 5
seconds

1350 Program end,
restart from step 0 after 5
seconds

6000 5560

The wait steps (5 seconds) have been inserted to allow an easier observation of the execution.

The channels C6 and C7 of the DC541 are configured as "Limit channel 0". Depending on the settings
for LIM_MIN (= 500), LIM_MAX (= 750) and SIGNAL, the following values result for the channels C6 and
C7:

DC541_32BIT_CNT.ACT_CNT
Channel

0...499 500...750 751...

C6 (SIGNAL = TRUE) FALSE TRUE FALSE

C7 (SIGNAL = FALSE) TRUE FALSE TRUE

The block Sim_32BitCount is used to generate an adjustable number of pulses. Its representation in the
function block diagram (FBD) is as follows:

Instance fbSimuPulse Instance name

BEn Input/Output BOOL Enabling of the pulse output

bUpDown Input/Output BOOL Selection UP / DOWN

bReset Input/Output BOOL TRUE = Reset of the pulse counter,
bDone = TRUE

bAutoReset Input/Output BOOL TRUE and cyclic mode - The time tResetTime
is started when the number of pulses set with
dwPulse is reached. After this time, the pulse
output is restarted again.

tResetTime Input/Output TIME Wait time until restart, if bAutoReset = TRUE

__

V7 AC500-System Technology I/O Modules 29 DC541 AC500 / Issued: 09.2006

dwPulse Input/Output DWORD Number of pulses to be output:
= 0: Endless mode (pulse output continues until
bEn = FALSE or bReset = TRUE)
> 0: Cyclic mode (output of the specified
number of pulses)

bDone Output BOOL Completion message after the number of
pulses specified at dwPulse or after bReset if
dwPulse = 0

BUp Output BOOL Output UP (forward)

bDown Output BOOL Output DOWN (backward)

dwActNumPulse Output DWORD Number of pulses output

tActTime Output TIME Elapsed time in [ms] while tResetTime is
running

In the example, the block Sim_32BitCount is called in a 5 ms task. The pulses are applied at output bUp
or bDown depending on the value present at input bUpDown. The pulse output is enabled or stopped via
input bEn. If input dwPulse = 0, the output of pulses is performed continuously. If dwPulse > 0, only the
specified number of pulses is output. When the specified number of pulses is reached, output bDone is
set to TRUE.

The example program has a visualization implemented that displays all states:

Clicking on the button <Enable visu control> (bEnVisuControl = TRUE) causes the program to jump from
the current step to step 200 (manual operation). Then, the operation of the blocks is done via the
corresponding pushbuttons/switches of the individual blocks. When manual operation is switched off
again (bEnVisuControl = FALSE), the program jumps to step 249 and restarts from step 0 after the wait
time.

__

V7 AC500-System Technology I/O Modules 30 DC541 AC500 / Issued: 09.2006

3.4 The 32 bit forward counter of module DC541-CM

3.4.1 Description of the module's forward counter functionality

The 32 bit forward counter functionality is provided by the block DC541_FWD_CNT.

The block DC541_FWD_CNT provides a 32 bit forward counter which is able to count a maximum
frequency of 50 kHz at the inputs C0 and C1 or 5 kHz at the inputs C2...C7. In the DC541, the counter is
implemented as a 16 bit counter. The actual counter value ACT_CNT is calculated by the block by
adding the counter differences that occur within the individual cycles. In order not to loose any counting
pulses, the block has to be called cyclically with at least the following interval:

- Channel 0...1: 50 kHz max. -> 32767 / 50 = 655 ms
- Channel 2...7: 5 kHz max. -> 32767 / 5 = 6550 ms

Using the counter e.g. in a 100 ms task will prevent any loss of counting pulses.

The counter can be used in two operating modes:

- Infinite counter (endless mode)
- Limiting counter (limit mode)

The operating mode is selected at input EN_LIM.

If EN_LIM = FALSE, the counter operates as infinite counter (endless mode). An overflow occurs
corresponding to the 32 bit value at 16#FFFFFFFF = 4 294 967 295. In this mode, any exceeding of the
limit value LIM_MAX or falling below the limit value LIM_MIN is displayed at the outputs MAX_LIM or
MIN_LIM.

If EN_LIM = TRUE (limit mode), the counting range is between the limit values LIM_MIN and LIM_MAX.
In case of an overflow, i.e. if LIM_MAX is reached, the counter restarts again at LIM_MIN.

The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If the lower limit
value LIM_MIN is higher than the upper limit value LIM_MAX, a corresponding error message is applied
at the outputs ERR/ERNO.

The device DC541 must be configured as counting device (counter mode).

The block DC541_FWD_CNT has an integrated visualization visuDC541_FWD_CNT which can be used
to control all block functions in parallel to the user program, if input EN_VISU = TRUE.

The inputs and outputs of the block DC541_FWD_CNT are described in detail in the library
documentation.

3.4.2 Configuration example: 32 bit forward counter

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuCounter_32BitForwardExample_PM591_V11.pro

All of the 8 channels of the DC541 can be used as count-up counter. In the configuration example, all 8
channels of the DC541 are configured as 32 bit forward counter (count-up). The channels C0...C3
operate as infinite counters (endless mode), the channels C4...C7 as limit counters (limit mode).

The 32 bit count-up counter configured as infinite counter (endless mode) corresponds to mode 1 (1 Up
counter) of the high-speed counter of the digital input/output modules. In the configuration example, the
counting pulses for the first forward counter are therefore applied in parallel to input C0 of the DC541
and counting input C24 of the DC532.

__

V7 AC500-System Technology I/O Modules 31 DC541 AC500 / Issued: 09.2006

Hardware configuration:

The example control system shall have the following configuration:

- Terminal base TB521 (two coupler slots)
- DC541 in coupler slot 1 (first slot on the left of the CPU)
- PM591-ETH CPU with internal Ethernet coupler (configuration using SYCON.net)
- I/O module DC532 on the I/O bus

Wiring:

The channels are connected as follows:

DC532 / C16 -------------- DC541 / C0
DC532 / C17 -------------- DC541 / C1
DC532 / C18 -------------- DC541 / C2
DC532 / C19 -------------- DC541 / C3
DC532 / C20 -------------- DC541 / C4
DC532 / C21 -------------- DC541 / C5
DC532 / C22 -------------- DC541 / C6
DC532 / C23 -------------- DC541 / C7
DC532 / C16 -------------- DC532 / C24

PLC configuration:

- DC541 in slot 1, operating mode "Counter mode"
- Configuration: - Channel C0..C7 Forward counter
- Specification of the Ethernet coupler as internal coupler (if available)
(Ethernet coupler configuration using SYCON.net)
- DC532 on the I/O bus / parameter "Fast counter" = 1-1 Up counter

Task configuration:

- Task 1: Cyclic program / Prio = 10 / Interval = t#100ms / PLC_PRG
- Task 2: Simulation / Prio = 15 / Interval = t#5ms / Simulation_Task

Purpose of the cyclic program PLC_PRG:

The cyclic program PLC_PRG contains the following functions:

- Reading the cycle of PLC_PRG
Calling of block TASK_INFO;
- Reading the configuration of the DC541
Calling of block DC541_GET_CFG
- Reading the status of the DC541
Calling of block DC541_STATE
- Reading/writing the static channels of the DC541
Calling of block DC541_IO
- Calling of the sequence control for the counters
Calling of program proForwardCounter

The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation.

The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in the
corresponding documentation.

The actual execution of the 32 bit forward counter functionality is implemented in the program
proForwardCounter.

__

V7 AC500-System Technology I/O Modules 32 DC541 AC500 / Issued: 09.2006

Purpose of the program proForwardCounter:

The program proForwardCounter executes the following step chain:

Counter
block

DC541_FWD_CNT CNT_IO CNT_IO

Step|Chan C0 C1 C2 C3 C4 C5 C6 C7 1

0 | Action Init: SET = 0, endless counter,
limit values MIN = 300 / MAX = 1300

Init: SET = 0, limit counter,
limit values MIN = 300 / MAX = 1300

Init

| Value 0 0 0 0 0 0 0 0 0

1 | Action Reset of SET input

| Value 0 0 0 0 300 300 300 300 0

2 | Action Start of pulse output - 2000 pulses

| Value 0 0 0 0 300 300 300 300 0

3 | Action Wait until pulse output is completed

| Value 2000 1000 500 250 1299 1300 800 550 2000

4 | Action Selection last step: byStep = 249

| Value 2000 1000 500 250 1299 1300 800 550 2000

200|Action Manual operation

| Value xxx xxx xxx xxx xxx xxx xxx xxx xxx

249|Action Wait time 5 seconds, then restart from step 0

| Value 2000 1000 500 250 1299 1300 800 550 2000

The block Simu_Pulse is used to generate an adjustable number of pulses. Its representation in the
function block diagram (FBD) is as follows:

Instance fbSimuPulse Instance name

Ben Input/Output BOOL Enabling of the pulse output

bReset Input/Output BOOL TRUE = Reset of the pulse counter, bDone =
TRUE

bAutoReset Input/Output BOOL TRUE and cyclic mode - The time tResetTime is
started when the number of pulses set with
dwPulse is reached. After this time, the pulse
output is restarted again.

tResetTime Input/Output TIME Wait time until restart, if bAutoReset = TRUE

dwPulse Input/Output DWORD Number of pulses to be output:
= 0: Endless mode (pulse output continues until
bEn = FALSE or bReset = TRUE)
> 0: Cyclic mode (output of the specified number
of pulses)

Bdone Output BOOL Completion message after the number of pulses
specified at dwPulse or after bReset if dwPulse =
0

bToggle_0 Output BOOL Output: Edge with each clock cycle

__

V7 AC500-System Technology I/O Modules 33 DC541 AC500 / Issued: 09.2006

bToggle_1 Output BOOL Output: Edge with each 2. clock cycle

bToggle_2 Output BOOL Output: Edge with each 4. clock cycle

bToggle_3 Output BOOL Output: Edge with each 8. clock cycle

dwActNumPulse Output DWORD Number of pulses output

tActTime Output TIME Elapsed time in [ms] while tResetTime is running

In the example, the block Simu_Pulse is called in a 5 ms task. The pulse output is enabled or stopped
via input bEn. If input dwPulse = 0, the output of pulses is performed continuously. If dwPulse > 0, only
the specified number of pulses is output. When the specified number of pulses is reached, output bDone
is set to TRUE.

In the example, the block is called with dwPulse = 2000. The wait time function is not used.

The example program has a visualization implemented that displays all states:

Clicking on the button <Enable visu control> (bEnVisuControl = TRUE) causes the program to jump from
the current step to step 200 (manual operation). Then, the operation of the blocks is done via the
corresponding pushbuttons/switches of the individual blocks. When manual operation is switched off
again (bEnVisuControl = FALSE), the program jumps to step 249 and restarts from step 0 after the wait
time.

__

V7 AC500-System Technology I/O Modules 34 DC541 AC500 / Issued: 09.2006

3.5 Pulse width modulation (PWM) using the DC541-CM

3.5.1 Description of the module's PWM functionality

The pulse width modulation functionality of the DC541 is provided by the block DC541_PWM.

The block DC541_PWM outputs a pulsed signal with an adjustable on-off ratio. The adjustment of the on
and off times is done as 8 bit numbers.

The minimum switching time is specified at input CYCLE, i.e. if an output has been switched to FALSE
or TRUE by the PWM, this output remains in this state for at least this time (CYCLE µs).

The minimum time specified at input CYCLE must not be shorter than the cycle time of the device
DC541. Depending on its configuration, the cycle time of the DC541 can be 50, 100 or 200 µs. The cycle
time can be polled using the block DC541_GET_CFG (output CYCLE).

Examples:

PULSE PAUSE CYCLE Result (x = number of cycles of the DC541)

Cycle time of DC541 = 50 µs

1 2 500 10 x TRUE / 20 x FALSE / 10 x TRUE / 20 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs = FALSE

4 8 500 10 x TRUE / 20 x FALSE / 10 x TRUE / 20 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs = FALSE
(as in example 1, i.e. ratio 1 : 2)

3 2 3000 90 x TRUE / 60 x FALSE / 90 x TRUE / 60 x FALSE / …
i.e. 4500 µs = TRUE and 3000 µs = FALSE

Cycle time of DC541 = 100 µs

1 2 500 5 x TRUE / 10 x FALSE / 5 x TRUE / 10 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs = FALSE

4 8 500 5 x TRUE / 10 x FALSE / 5 x TRUE / 10 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs = FALSE
(as in example 1, i.e. ratio 1 : 2)

3 2 30000 45 x TRUE / 30 x FALSE / 45 x TRUE / 30 x FALSE / …
i.e. 4500 µs = TRUE and 3000 µs = FALSE

Cycle time of DC541 = 200 µs

1 2 500 3 x TRUE / 6 x FALSE / 3 x TRUE / 6 x FALSE /...
i.e. 600 µs = TRUE, 1200 µs = FALSE

4 8 500 3 x TRUE / 6 x FALSE / 3 x TRUE / 6 x FALSE / ...
i.e. 600 µs = TRUE, 1200 µs = FALSE
(as in example 1, i.e. ratio 1 : 2)

3 2 3000 22 x TRUE / 15 x FALSE / 23 x TRUE / 15 x FALSE / …
i.e. first 4400 µs = TRUE and 3000 µs = FALSE and then
4600 µs = TRUE and 3000 µs = FALSE

The device DC541 must be configured as counting device (counter mode).

The inputs and outputs of the block DC541_PWM are described in detail in the documentation of the
library DC541_AC500_V11.LIB.

3.5.2 Configuration example: Pulse width modulation (PWM)

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuCounter_PWM_FREQ_Example_PM591_V11.pro

__

V7 AC500-System Technology I/O Modules 35 DC541 AC500 / Issued: 09.2006

In the configuration example, channel 0 of the DC541 is configured for pulse width modulation (PWM).
The output signal is measured using the function "Time and frequency measurement" of the DC541. This
function is described in the next section.

The following on-off ratio shall be used:

PULSE PAUSE CYCLE Result (x = number of cycles of the DC541)

Cycle time of DC541 = 100 µs

1 2 2000 20 x TRUE / 40 x FALSE / 20 x TRUE / 40 x FALSE / …
i.e. 2000 µs = TRUE and 4000 µs = FALSE

Hardware configuration:

The example control system shall have the following configuration:

- Terminal base TB521 (two coupler slots)
- DC541 in coupler slot 1 (first slot on the left of the CPU)
- PM591-ETH CPU with internal Ethernet coupler (configuration using SYCON.net)
- I/O module DC532 on the I/O bus

Wiring:

The channels are connected as follows:

DC541 / C0 -------------- DC541 / C1

PLC configuration:

- DC541 in slot 1, operating mode "counter mode"

-
Configuration:

-
Channel

C0 PWM

 C1 FREQ

 C2...C7 Input

- Specification of the Ethernet coupler as internal coupler (if available)
(Ethernet coupler configuration using SYCON.net)

Task configuration:

- Task 1: Cyclic program / Prio = 10 / Interval = t#1ms / PLC_PRG

Purpose of the cyclic program PLC_PRG:

The cyclic program PLC_PRG contains the following functions:

- Reading the cycle of PLC_PRG
Calling of block TASK_INFO;
- Reading the configuration of the DC541
Calling of block DC541_GET_CFG
- Reading the status of the DC541
Calling of block DC541_STATE
- Reading/writing the static channels of the DC541
Calling of block DC541_IO
- Calling of the sequence control for PWM and FREQ
Calling of program proPWM_FREQ

The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation.

The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in the
corresponding documentation.

__

V7 AC500-System Technology I/O Modules 36 DC541 AC500 / Issued: 09.2006

Calling the pulse width modulation functionality as well as measurement and acquisition of measured
values are performed in the program proPWM_FREQ. The program proPWM_FREQ contains the calls
for the function blocks DC541_PWM and DC541_FREQ as well as the acquisition of the measured
values. The function block DC541_FREQ is configured in a way that it measures the time between each
edge change.

The example program has a visualization implemented that displays all states:

Input EN_VISU of the function block DC541_FREQ is TRUE. Therefore, the inputs of the block can be
modified using the buttons <Enable>, <En 0>, <En 1> and <En Freq> in the visualization.

The measured values are 2000, 4000 or 6000 µs depending on which edges were considered for
measurement.

__

V7 AC500-System Technology I/O Modules 37 DC541 AC500 / Issued: 09.2006

3.6 Time and frequency measurement using the DC541-CM

3.6.1 Description of the module's time and frequency measurement functionality

The time and frequency measurement functionality of the DC541 is provided by the block DC541_FREQ.

The block DC541_FREQ is used to measure times, frequencies and rotational speeds with a resolution
of 100 µs.

It is able to measure frequencies from 0 up to 2000 Hz (2 kHz). In order to obtain a precise
measurement of frequencies > 50 Hz, a correspondingly high accuracy setting has to be chosen. It is
recommended to use an accuracy of PREC = 1000, i.e. 0.001.

This block has to be called cyclically, one time per second at least.

The inputs EN_0, EN_1 and EN_FREQ are used to determine the edges to be measured. If input
EN_FREQ = TRUE, the frequency and the rotational speed are calculated in addition to the time
measurement.

EN_0 EN_1 EN_FREQ Edges measured FREQ/RPM

FALSE FALSE TRUE No measurement is performed. yes

FALSE TRUE TRUE Measurement of time between two rising edges

yes

TRUE FALSE TRUE Measurement of time between two falling edges

yes

TRUE TRUE TRUE Measurement of time between any two edges

yes

FALSE FALSE FALSE No measurement is performed. no

FALSE TRUE FALSE Measurement of time between the falling edge
and the subsequent rising edge

no

TRUE FALSE FALSE Measurement of time between the rising edge
and the subsequent falling edge

no

TRUE TRUE FALSE Measurement of time between any two edges

no

__

V7 AC500-System Technology I/O Modules 38 DC541 AC500 / Issued: 09.2006

The following example shows the different time measurement results depending on the values applied to
the inputs EN_0, EN_1 and EN_FREQ.

Time measurement (DUR) in [µs]
EN_0 EN_1 EN_FREQ

1 2 3 4

FALSE FALSE TRUE 0 0 0 0

FALSE TRUE TRUE - 500 - 450

TRUE FALSE TRUE - - 350 -

TRUE TRUE TRUE 300 200 150 300

FALSE FALSE FALSE 0 0 0 0

FALSE TRUE FALSE 300 - 150 -

TRUE FALSE FALSE - 200 - 300

TRUE TRUE FALSE 300 200 150 300

Output NEW indicates that new measurement results are available.

 Note: If indicated by NEW, the PLC program always reads the last measurement value. The
measurement values are not buffered in the DC541.

The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency measurement.

The block DC541_FREQ has an integrated visualization visuDC541_FREQ which can be used to control
all block functions in parallel to the user program, if input EN_VISU = TRUE.

The inputs and outputs of the block DC541_FREQ are described in detail in the documentation of the
library DC541_AC500_V11.LIB.

3.6.2 Configuration example: Frequency output

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuCounter_FREQ_Example_PM591_V11.pro

In the configuration example, channel 0 of the DC541 is configured for frequency output. The output
signal is measured using the function "Time and frequency measurement" of the DC541. The function
frequency output is described in the next section.

Hardware configuration:

The example control system shall have the following configuration:

- Terminal base TB521 (two coupler slots)
- DC541 in coupler slot 1 (first slot on the left of the CPU)
- PM591-ETH CPU with internal Ethernet coupler (configuration using SYCON.net)
- I/O module DC532 on the I/O bus

__

V7 AC500-System Technology I/O Modules 39 DC541 AC500 / Issued: 09.2006

Wiring:

The channels are connected as follows:

DC541 / C0 -------------- DC541 / C1

PLC configuration:

- DC541 in slot 1, operating mode "counter mode"

-
Configuration:

-
Channel

C0 Frequency output

 C1 Frequency measurement

 C2...C7 Input

- Specification of the Ethernet coupler as internal coupler (if available)
(Ethernet coupler configuration using SYCON.net)

Task configuration:

- Task 1: Cyclic program / Prio = 10 / Interval = t#5ms / PLC_PRG

Purpose of the cyclic program PLC_PRG:

The cyclic program PLC_PRG contains the following functions:

- Reading the cycle of PLC_PRG
Calling of block TASK_INFO;
- Reading the configuration of the DC541
Calling of block DC541_GET_CFG
- Reading the status of the DC541
Calling of block DC541_STATE
- Reading/writing the static channels of the DC541
Calling of block DC541_IO
- Calling of the sequence control for frequency output and measurement
Calling of program proFrequency

The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation.

The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in the
corresponding documentation.

The calling of the frequency output functionality as well as the measurement and acquisition of
measured values are performed in the program proFrequency. The program proFrequency contains the
calls for the function blocks DC541_FREQ_OUT and DC541_FREQ as well as the acquisition of the
measured values.

The following values are output if FREQ is set to 1250 (1250 Hz = 1.25 kHz):

The example program has a visualization implemented that displays all states:

Input EN_VISU of the function blocks DC541_FREQ_OUT and DC541_FREQ is TRUE. Therefore, the
block inputs can be controlled using the buttons in the visualization.

__

V7 AC500-System Technology I/O Modules 40 DC541 AC500 / Issued: 09.2006

__

V7 AC500-System Technology I/O Modules 41 DC541 AC500 / Issued: 09.2006

3.7 Frequency output using the DC541-CM

3.7.1 Description of the module's frequency output functionality

The frequency output functionality of the DC541 is provided by the block DC541_FREQ_OUT.

The block DC541_FREQ_OUT is used to output pulses with a fixed frequency on one channel of the
DC541. The module is able to output pulses with a frequency between 0.2 and 2.5 kHz. The pulse jitter
depends on the cycle time of the DC541. The pulse length is always a multiple of the cycle time of the
DC541.

In case of a presetting of PULSE = 0, the output of pulses is infinite. The pulse output is started with a
positive edge at input START. The output is aborted if START = FALSE. A positive edge at input STOP
interrupts the pulse output. The output is continued, if STOP = FALSE.

If input PULSE > 0, the block outputs the number of pulses specified at input PULSE with the frequency
specified at input FREQ on the channel specified at input CH. After the block has output the number of
pulses specified at PULSE, the output RDY becomes TRUE.

The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency output.

The block DC541_FREQ_OUT has an integrated visualization visuDC541_FREQ_OUT which can be
used to control all block functions in parallel to the user program, if input EN_VISU = TRUE.

The inputs and outputs of the block DC541_FREQ_OUT are described in detail in the documentation of
the library DC541_AC500_V11.LIB.

3.7.2 Configuration example: Frequency output

The configuration example described in this section is contained in the following folder on the Control
Builder PS501 CD-ROM (V1.1 and later):

..\CD_AC500\Examples\DC541

File name:

DC541_DokuCounter_FREQ_Example_PM591_V11.pro

For frequency output, the same configuration example is used as for the time and frequency
measurement. A description of the example can be found in the chapter about frequency and time
measurement.

Link to chapter: 3.6.2 Configuration example: Frequency output

__

V7 AC500-System Technology I/O Modules 42 DC541 AC500 / Issued: 09.2006

4 Index System Technology DC541-CM

A

Application examples for the module DC541-CM 6 (1.2)

C

Calling the counting functions of the DC541-CM 20 (3.2)

Configuration example: 32 bit forward counter 30 (3.4.2)

Configuration example: 32 bit up/down counter (encoder mode) 22 (3.3.2)

Configuration example: 32 bit up/down counter (up/down mode) 26 (3.3.3)

Configuration example: DC541-CM used as interrupt I/O device 13 (2.4)

Configuration example: Frequency output 38 (3.6.2)

Configuration example: Frequency output 41 (3.7.2)

Configuration example: Pulse width modulation (PWM) 34 (3.5.2)

Configuring the module DC541-CM 7 (1.3)

Configuring the module DC541-CM for use as counting device 19 (3.1)

Configuring the module DC541-CM for use as interrupt I/O device 9 (2.1)

Creation of the interrupt task for the interrupt inputs 10 (2.2)

D

Description of the module's forward counter functionality 30 (3.4.1)

Description of the module's frequency output functionality 41 (3.7.1)

Description of the module's PWM functionality 34 (3.5.1)

Description of the module's time and frequency measurement functionality 37 (3.6.1)

Description of the module's up/down counter functionality 20 (3.3.1)

F

Frequency output using the DC541-CM 41 (3.7)

Functionality and configuration of the module DC541-CM 3 (1.0)

Functionality of the module DC541-CM 3 (1.1)

M

Module used as counting device 19 (3.0)

P

Pulse width modulation (PWM) using the DC541-CM 34 (3.5)

__

V7 AC500-System Technology I/O Modules 43 DC541 AC500 / Issued: 09.2006

S

Structure of the interrupt program 12 (2.3)

T

The 32 bit forward counter of module DC541-CM 30 (3.4)

The 32 bit up/down counter of module DC541-CM 20 (3.3)

Time and frequency measurement using the DC541-CM 37 (3.6)

U

Use of the module as an interrupt I/O device 9 (2.0)

__

V7 AC500-System Technology I/O Modules 44 DC541 AC500 / Issued: 09.2006

System Description AC500

 Scalable PLC
for Individual Automation

System Technology
of the Ethernet Couplers

Ethernet

__

V7 AC500 System Technology Couplers 1 Ethernet AC500 / Issued: 05.2006

Contents "The Ethernet Coupler"

1 Ethernet and protocols ... 4

1.1 History ... 4

1.1.1 History of Ethernet .. 4

1.1.2 History of TCP/IP protocols .. 4

1.2 Ethernet ... 5

1.2.1 Frame formats .. 5

1.2.2 Bus access methods... 5

1.2.3 Half duplex and full duplex.. 6

1.2.4 Auto negotiation.. 6

1.2.5 Ethernet and TCP/IP... 6

1.3 Protocols and applications .. 8

1.3.1 Point-to-Point Protocol (PPP) ... 8

1.3.2 Internet Protokoll (IP).. 8

1.3.3 Internet Control Message Protocol (ICMP)... 13

1.3.4 Transmission Control Protocol (TCP)... 15

1.3.5 User Datagram Protocol (UDP) .. 19

1.3.6 OpenModbus on TCP/IP... 20

1.3.7 BootP and DHCP.. 22

1.3.8 Address Resolution Protocol (ARP) ... 24

1.3.9 Other protocols and applications .. 25

1.4 Cabling... 29

1.4.1 Network cables ... 29

1.4.2 Connector pin assignment .. 30

1.4.3 1:1 cables and crossover cables .. 30

1.4.4 Cable length restrictions ... 31

1.5 Network components... 32

1.5.1 Terminal devices... 32

1.5.2 Repeaters and hubs ... 32

1.5.3 Bridges, switches and switching hubs .. 35

1.5.4 Media converters .. 37

1.5.5 Routers ... 37

__

V7 AC500 System Technology Couplers 2 Ethernet AC500 / Issued: 05.2006

1.5.6 Gateways .. 38

2 The Ethernet coupler .. 39

2.1 Features .. 39

2.1.1 Supported protocols.. 39

2.1.2 Sockets ... 39

2.1.3 Restrictions ... 40

2.2 Technical data... 40

2.2.1 Technical data of the coupler.. 40

2.2.2 Interfaces .. 40

2.2.3 Technical data of the Ethernet interface... 41

2.3 Connection and data transfer media ... 41

2.3.1 Attachment plug for Ethernet cable .. 41

2.3.2 Ethernet cable... 41

2.4 Ethernet implementation... 41

2.4.1 Configuration .. 41

2.4.2 Running operation .. 41

2.4.3 Error diagnosis.. 42

2.5 Diagnosis .. 42

3 Designing and planning a network .. 43

3.1 Introduction .. 43

3.2 Concepts for structuring a network .. 43

3.2.1 Hierarchy model.. 44

3.2.2 Redundant model ... 44

3.2.3 Safe models .. 45

3.3 Utilization and performance... 46

4 Planning examples .. 49

4.1 Introduction .. 49

4.2 Integration of couplers into the controller configuration... 49

4.3 General procedure for configuring the coupler ... 50

4.4 Programming access via Ethernet .. 56

__

V7 AC500 System Technology Couplers 3 Ethernet AC500 / Issued: 05.2006

4.5 Modbus on TCP/IP .. 56

4.5.1 Server / slave operation.. 56

4.5.2 Client / master operation... 57

4.6 Fast data communication via UDP/IP .. 63

4.6.1 Example configuration for data communication via UDP/IP... 63

4.6.2 Configuring the Ethernet couplers for data communication via UDP/IP... 63

4.6.3 Implementation in the user program... 63

5 Used terms and explanations .. 70

5.1 Terms ... 70

5.2 Explanations ... 71

6 Index ... 72

__

V7 AC500 System Technology Couplers 4 Ethernet AC500 / Issued: 05.2006

The Ethernet coupler

1 Ethernet and protocols

1.1 History

Ethernet is the most commonly used network technology for many fields of application. Based on the
physics of Ethernet, numerous protocols are used today. One of the best-known representatives of these
protocols is TCP/IP.

1.1.1 History of Ethernet

The history of today's Ethernet goes back to the early seventies. At that time, Ethernet was originally
developed by Xerox Corporation to link a printer. Then, on 13 December 1979, Xerox Corporation had
Ethernet patented as 'Multipoint Data Communication System with Collision Detection' in the US
Register of Patents under the number 4 063 220.

As a result, the DIX group, a consortium consisting of DEC, Intel and Xerox, started its further
development. The goal of this consortium was to establish the Ethernet technology as a LAN standard.
For this purpose, the company-internal specification of the Ethernet LAN (which is today called Ethernet
version 1) was published in September 1980.

Later, the American standardization Institute IEEE founded a study group named 802.3 to work out an
internationally accepted standard on the basis of this publication. On 23 June 1983, Ethernet was
approved for the first time as standard IEEE 802.3. In 1990, the 10BaseT standard IEEE 802.3i followed
which specified the use of an unshielded twisted pair cable instead of the coaxial cable used before.
Later, the original transfer rate of 10 Mbit/s was increased step by step and various other transfer media,
e.g. optical fibres, were adapted with further standards.

1.1.2 History of TCP/IP protocols

The development of today's TCP/IP protocols (Transmission Control Protocol / Internet Protocol)
originated in military and occurred independent of the development of the Ethernet. As early as the
beginning sixties, the RAND corporation in USA accepted the challenge to develop a communication
network which should be resistant against military attacks. Among other things, this concept included
that the system had to deal without a susceptible central control. However, during the sixties this concept
could not really make progress.

The actual history of TCP/IP protocols started in 1968, as a department of the American ministry of
defense started a series of experiments for computer-to-computer connections based on multiplexed
lines. In 1969, this resulted in the ARPANET project. The Advanced Research Projects Agency was the
leading instance for the development of ARPAnet and at the same time provided the name. The
ARPAnet enabled scientists to use computer data and programs on other people's computers located far
away. In 1972, the ARPAnet already consisted of 37 nodes. The intensification of access control
performed by the Pentagon resulted in a change of the name to DARPAnet (D from defense).

At that time, the net structures (e.g. telecommunication via satellite, local area networks (LAN)) were
completely new and required the further development of the previous NCP protocol. Thereupon, the
ARPA study group 'Internet Working Group' (INWG) established principles for the data transfer between
independent networks, which produced the Protocol-for-Packet Network Intercommunication. This
resulted in the development of the Kahn-Cerf protocols which became well-known under the name
TCP/IP protocols.

On 1 January 1983, the previous NCP protocol was finally replaced by the set of TCP/IP protocols.
Likewise in 1983, the DARPA net, which was previously strictly kept under the control of the Pentagon,
was divided into a military and non-military network.

__

V7 AC500 System Technology Couplers 5 Ethernet AC500 / Issued: 05.2006

1.2 Ethernet

1.2.1 Frame formats

One fundamental part of the Ethernet specification is the arrangement of the data transfer format. When
transferring data via Ethernet, the actual user data are preceded by a so-called preamble (which is
among other things used to synchronize the receiver stations) as well as the hardware source and target
address and a type length field. A checksum follows after the user data. All information mentioned above
together constitute an Ethernet frame. During the development of the Ethernet, different types of frames
arose. The following figure shows the structure of an Ethernet 802.3 frame.

Preamble
8 bytes

Target add r.
6 bytes

Source add r.
6 bytes

Length
2 bytes

User data
46 to 1500 bytes

CRC
4 bytes

Figure 1-1: Structure of an Ethernet 802.3 frame

It has to be observed that the transferred user data do not inevitably contain only useful information.
When transmitting data using a protocol above Ethernet (refer to 1.2.5), each protocol layer passed prior
to the actual transmission supplements the original user data by its specific frame or header, so that the
maximum number of actual user data is smaller, depending on the used protocols.

MAC address:

Each Ethernet terminal device that has the MAC layer functions implemented (refer to 1.2.5 Ethernet and
TCP/IP) has a world-wide unique hardware and MAC address. In this 6 bytes address, the two most
significant bits of the first byte have specific functions. The most significant bit is also called the I/G bit
(Individual/Group bit) and indicates whether it is an individual world-wide unique address (unicast
address, I/G bit = 0) or a group address (I/G bit = 1). The second most significant bit is called the G/L bit
and indicates whether it is a globally or a locally administered MAC address. A GAA (Globally
Administered Address, G/L bit = 0) is an address which is fixed programmed by the device manufacturer
and has to be unique all over the world. An LAA (Locally Administered Address, G/L bit = 1) can be a
MAC address which has been changed afterwards for the use within a network. For this, it has to be
observed that a MAC address has to be unique within a network.

The first 3 bytes of a MAC address are the manufacturer-related address part. Using this value, the
manufacturer of an Ethernet chip can be determined. Each manufacturer of Ethernet components has
one or several pre-defined address ranges assigned he can use for his products. 3COM, for example,
uses among others the MAC address range 02-60-8C-xx-xx-xx.

For Ethernet, the MAC address is represented in a canonical form. This representation starts with the
least significant bit (LSB) and ends with the most significant bit (MSB) of a byte. The following figure
shows a global unicast address of the manufacturer 3COM.

Canonical representation 02-60-8C-00-00-01
Binary representation 01000000-01100000-00110001-00000000-00000000-10000000

1.2.2 Bus access methods

Ethernet uses the CSMA/CD access method (Carrier Sense Multiple Access / Collision Detection). With
this method, the station that wants to transmit data, first "listens" to the carrier whether data are currently
being transmitted by another station (carrier sense). If the carrier is busy, the station later tries to access
the carrier again. If the carrier is idle, the station starts the transmission.

With this method, particularly in greater networks, it can happen that several stations try to transmit at
the same time (multiple access). As a result, they "listen" to the carrier, detect that the carrier is free and
correspondingly start the transmission. This can cause collisions between the different data packages.
This is why each station verifies whether a collision occurred during transmission (collision detection). If
this is the case, the station aborts the transmission and then tries to send its data again after a wait time
which is determined by a random generator.

Collisions within an Ethernet network do not cause loss of data, but they reduce the available bandwidth
of the network. In practice, for a network with 30 stations on the bus, a net bandwidth of approx. 40 % is
assumed. This means that a bandwidth of only approx. 4 Mbit/s is available in a network with a
theoretical bandwidth of 10 Mbit/s, for instance. This has to be considered when planning an Ethernet

__

V7 AC500 System Technology Couplers 6 Ethernet AC500 / Issued: 05.2006

network. The number of collisions can be reduced to a minimum if the network is carefully planned and if
only suitable network components are used (refer to 1.4 Cabling and 1.5.4 Media converters).

1.2.3 Half duplex and full duplex

If communication is only possible in one direction (transmission or reception), this is called half duplex
mode. However, the separate transmit and receive lines of today's twisted pair cabling for Ethernet
networks also allow full duplex operation. In full duplex mode, the stations can simultaneously exchange
data in both directions independent from each other. Due to this, the CSMA/CD method is not necessary
in full duplex mode. Networks with more than two stations working in full duplex mode can only be
implemented using switches because these switches establish peer-to-peer connections between the
individual stations (refer to 1.4 Cabling).

1.2.4 Auto negotiation

Today, Ethernet uses transmission rates of 10, 100 or 1000 Mbit/s in half duplex or in full duplex mode.
However, not all devices support all possible settings. This particularly makes the optimum network
configuration more difficult for networks using twisted pair cables of the same kind and components
which can be used with 10 Mbit/s or 100 Mbit/s in half duplex or in full duplex mode as desired. Imperfect
configurations can lead to link errors or at least to performance losses because the maximum possible
transmission rate is not used.

Due to this, the auto negotiation functionality (in the past also called Nway) has been established with
the introduction of Fast Ethernet. With this functionality, the stations agree on the highest possible
transmission rate and, if possible, full duplex operation. Then, all subscribers on the network configure
themselves optimally.

However, problems could arise if one component in one segment is configured manually, i.e. if it has
been set to a fixed transmission rate and mode and the auto negotiation function has been switched off.
In this case, a device operating in auto negotiation mode informs the manually configured device about
its possible settings but does not receive any response.

1.2.5 Ethernet and TCP/IP

Like nearly all standards in the field of data transmission, Ethernet also follows the ISO/OSI layer model.
Based on this reference model, the principle course of a transmission is described. Each of the 7 parts
(layers) has a particular function and makes it available for the next higher layer.

The Ethernet standard IEEE-802.3 defines the function of the two lowest layers. These layers consist of
the following components and the Logical Link Control (LLC) which is described in the IEEE standard
802.2.

• Media Access Control Protocol (MAC)
• Physical Layer Signalling (PLS)
• Attachment Unit Interface (AUI)
• Medium Dependent Interface (MDI)
• Physical Medium Attachment (PMA)

Since the ISO/OSI model did not yet exist when the development of TCP/IP protocols started, these
protocols are based on the DoD architecture. The DoD model cannot be clearly transferred to the
ISO/OSI model. The following figure shows a comparison of Ethernet in the ISO/OSI model and the
TCP/IP protocols adapted to that model. This shall explain that Ethernet does not necessarily mean
TCP/IP (and vice versa). To be precise, TCP/IP is only based on Ethernet and can also be used in other
data networks (e.g. for satellite links). In return, TCP/IP is not the only protocol used in Ethernet
networks. Actually, TCP/IP is only one of numerous protocols which are used side by side.

__

V7 AC500 System Technology Couplers 7 Ethernet AC500 / Issued: 05.2006

Application
Presentation

Session
Transport
Network

Data link

Physical1

2

3
4
5
6
7

ISO/OSI layers

MAC
PLS
AUI

PMA
MDI

Ethernet
IEEE 802.2 / 802.3

Higher protocols

LLC

DoD protocols

Network access

FTP, SMTP,
OpenModbus etc.

TCP

IP

Figure 1-2: Ethernet in the ISO/OSI model

__

V7 AC500 System Technology Couplers 8 Ethernet AC500 / Issued: 05.2006

1.3 Protocols and applications

Section 1.2.5 Ethernet and TCP/IP only describes the context between Ethernet and TCP/IP. But
actually numerous protocols are used in parallel in Ethernet networks. Furthermore, the protocols
described here are not tied to Ethernet, as shown in the following figure.

TCP UDP

IP / ICMP

Others / Free spacesF
T

P

S
M

T
P

O
pe

nM
od

bu
s

O
th

er
ap

pl
ic

at
io

ns

D
H

C
P

B
O

O
T

P

Ethernet X.25 FDDI Token Ring Other
�network

access

PPP

Serial dial-up
or dedicated

line

Figure 1-3: Ethernet protocols

1.3.1 Point-to-Point-Protocol (PPP)

PPP is a protocol for the transmission of LAN protocols (e.g. IP) via wide area networks. Thus, the point-
to-point protocol enables the transmission of data via synchronous and asynchronous dial and leased
lines. Since PPP is working independent of the corresponding physical interface, it can be used for
modem connections as well as for ISDN connections or on RS232.

1.3.2 Internet Protocol (IP)

With the TCP/IP protocols, the Internet protocol takes on the tasks of the network layer. IP transmits the
data packages of the higher protocol layers (incl. their headers) in the form of so-called datagrams via
the network. The transport mechanism used for IP is connectionless, which means that the IP module of
a transmitter does not verify whether the recipient actually received the data. This task has to be
performed by higher protocol layers (e.g. TCP). Through the internet protocol, each datagram is
transmitted as a single individual data package. During transmission, an independent route of transport
is determined for each datagram in a network. Here it can happen that IP datagrams pass themselves on
their way to the recipient and correspondingly arrive in a changed order. The task to sort the packages
into the correct order is left to the protocols on the transport layer.

If a protocol of a higher layer passes data to be transmitted to the IP protocol, the IP protocol first
generates a datagram consisting of the data to be passed and the IP header. If the target station is
located in the local network, IP directly transmits the datagram to this station. If the target is located in a
remote network, the datagram is first transmitted to a router in the local network which forwards the
datagram to the target station, if necessary via further routers. During this process, each router involved
in the transport of the datagram generates a new IP header.

Because in today's complex networks often several routes of transport are available between sender and
recipient, several subsequent telegrams are not necessarily routed via the same way. Furthermore it can
occur during the transport between sender and recipient that data packages are routed via networks with
a maximum permitted telegram length smaller than the length of the datagram to be transmitted. In this
case, the adjacent router splits the datagram into smaller data packages. This process is referred to as

__

V7 AC500 System Technology Couplers 9 Ethernet AC500 / Issued: 05.2006

fragmentation. The individual fragments are provided with an own IP header and forwarded as
independent data packages which can be routed to the target station via different ways and therefore
also in a different order. The target station then has to assemble the data fragments to one single
datagram before this datagram can be passed to the next higher layer. This process is called re-
assembly mechanism.

IP header:

Each datagram transmitted via IP has a preceding IP header. Among other things, this header contains
the IP addresses of the sender and the recipient, a checksum and a time to live identifier. The following
figure shows the principle structure of an IP header.

Version
(4 bits)

IHL
(4 bits)

Type of Service (TOS)
(8 bits)

Total Length
(16 bits)

Identification
(16 bits)

Flags
(3 bits)

Fragment Offset
(13 bits)

Time to Live (TTL)
(8 bits)

Protocol
(8 bits)

IP Header Checksum
(16 bits)

IP Source Address, I P Address of the Sende r
(32 bits)

IP Destination Address, IP Address of the Receive r
(32 bits)

Options
(variable)

Padding, Filling Character
(variable)

Figure 1-4: Principle structure of an IP header

The total length of an IP header is defined in the IHL field (Internet Header Length) in numbers of 32 bit
units (4 octets) and is, due to the variable size of the options field, 20 bytes or longer (5 x 4 octets =
20 bytes).

The following figure explains that an IP datagram embedded in the Ethernet frame reduces the actually
transmittable user information. Further reductions result from the headers of the higher layers.

Preamble
8 bytes

Ethernet Header
14 bytes

Ethernet User Data
46 to 1500 bytes

CRC
4 bytes

IP Header
min. 20 bytes

IP User Data
max. 1480 bytes

Figure 1-5: IP datagram in the Ethernet frame

Detailed descriptions of the content and meaning of the individual fields of the IP header are not given
here, since such detailed knowledge is not necessary for normal application. Only the meaning of the
checksum and the time to live identifier (TTL) as well as the structure of the IP addresses are described
in the following sections.

The checksum is used by the recipient of an IP datagram to verify that the data package has been
transmitted without errors. Datagrams with a faulty checksum are dismissed by the routers involved in
routing the datagram as well as by the final recipient.

Each time a router receives an IP datagram, it reduces the time-to-live timer of the datagram by 1. If the
value reaches 0, the datagram is destroyed or no longer forwarded. This shall prevent datagrams from
endless straying in the network.

__

V7 AC500 System Technology Couplers 10 Ethernet AC500 / Issued: 05.2006

IP addresses:

Each station using the IP protocol must have at least one IP address. The IP address must not be
confused with the Ethernet MAC address (refer to 1.2 Frame formats). An IP address is a 32 bit value
which is normally represented using the 'dotted decimal notation' (e.g. 89.129.197.1).

An IP address is divided into two parts: the network address and the computer's address (node address).
The network address part includes up to three bytes. The size of the network address, which determines
the address class, is defined by the first four bits of the first octet of the IP address. The following table
gives an overview of the various classes with their identification and use.

Class 1st octet Use

Class A 000 - 127 Few networks, many computers

Class B 128 - 191 Medium distribution of networks and computers

Class C 192 - 223 Many networks, few computers

Class D 224 - 239 Multicast addresses

Class E 240 - 255 not defined

Table 1-1: Classes of IP addresses

Class A addresses consist of one octet for the network address and three octets for the computer
address. For example, the IP address 89.129.197.1 designates computer 129.197.1 in network 89. Since
the highest bit of the network address is always 0 and the IP addresses 0 and 127 are of particular
significance, only 126 networks can be addressed by a class A address. Using the three octets left for
the computer address, up to 16.777.216 computers can be addressed within these networks. Value 255
is reserved in each octet of the IP address for the broadcast address.

Class B addresses consist of two octets for the network address and two octets for the computer
address. For example, the IP address 129.89.197.1 designates computer 197.1 in network 129.89. Since
the two highest bits of the network address always have a value of 10, the address range reaches from
128 to 191. The second octet is also interpreted as a part of the network address. This way, 16.384
networks with up to 65.536 nodes each can be addressed with the class B address. Value 255 is
reserved in each octet of the IP address for the broadcast address.

Class C addresses consist of three octets for the network address and one octet for the computer
address. For example, the IP address 197.129.89.1 designates computer 1 in network 197.129.89. The
three highest bits of the network address always have a value of 110. Consequently, the values 192 to
223 are valid in the first octet and the values 1 to 254 in the subsequent two octets. This results in an
address range of 2.097.152 networks with up to 254 nodes each. Value 255 is reserved in each octet of
the IP address for the broadcast address.

The range 224 to 239 (class D) is intended for multicast addressing as it is frequently used today for
newer protocols of the IP protocol family.

Class E addresses are reserved for future use.

The following table gives an overview of the IP address structure for the individual classes.

0 1 2 3 4 5 6 7

1st octet

0 1 2 3 4 5 6 7

2nd octet

0 1 2 3 4 5 6 7

3rd octet

0 1 2 3 4 5 6 7

4th octetNetwork address

Class A

Class B

Class C

Class D

Class E

0 Network address

1 0

0

0

Computer address

1 1

11 1

111 1

Network address

Multicast address

Computer address

Computer address

Network address

Undefined format

Table 1-2: Overview of IP address structures

__

V7 AC500 System Technology Couplers 11 Ethernet AC500 / Issued: 05.2006

IP address assignment:

The allocation of IP addresses or the assignment of an IP address to a device can be done in different
ways (see also 2 The Ethernet coupler).

The simplest case is the static assignment of the IP address. Here, the device is configured with a fixed
address which is assigned by the network administrator. Since the IP address always includes the
identification of the network the device is used in, the network administrator has to be informed about the
device's place of installation. One disadvantage of this method appears, if the device shall be later used
in another network. In this case, an IP address has again to be requested from the administrator and set
manually. The advantage of this method is that the IP address of the device is known and that the device
can always be called under this address.

Alternatively the IP address can also be obtained from a BOOTP or a DHCP server (refer to 1.3.7 BootP
and DHCP). In this case, the IP address is assigned on the basis of the device's MAC address when
switching on or booting the device. Here, we have to distinguish static and dynamic assignment. The
advantage of both methods is that no further settings have to be done for the device. This also applies if
the device is later used in another network. The disadvantage of the dynamic method is that the IP
address of a device can possibly change when it is switched on again the next time. Therefore, it is not
possible to implement a fixed communication connection to another device (e.g. two controllers via
function blocks).

For all methods mentioned above, fixed implemented connections to other devices have to be
implemented again if the IP address of the device has changed. In the first two cases (direct address
configuration on the device and automatic static assignment), this will normally not be necessary since
the IP address of the device has only to be changed if the device shall be used in another network. In the
latter case (dynamic IP address assignment), this problem is not only restricted to inter-network
connections since the IP address of a device can change each time the device is switched on, even if
both devices involved in the connection are located within the same network or if their places of
installation do not change.

Special IP addresses:

As already mentioned in the section before, special IP addresses with a special function exist. These
addresses are concisely described below.

127.x.x.x

The class A network address with the number 127 is reserved for the loopback function of a station,
independent of its network class. By definition, all IP addresses beginning with 127 may only be used for
internal testing. They must not be transmitted via the network. Datagrams addressed to network address
127 are returned to the sender within the TCP/IP software (loop). This allows testing of the software
function. The network controller itself is not tested this way. If the network controller shall be included in
the test, it is recommended to use the ping application.

Value 255 in an octet

The value 255 is reserved as a broadcast address (all one broadcast). To address all computers within
the same network, the computer's part of the network address has to be set to 255 (e.g. 91.49.1.255).
The use of subnet masks possibly complicates the calculation of the broadcast address since in this
case an extended algorithm has to be used.

Value 0 in an octet

There are two definitions for the use of the value 0 within an IP address. An earlier definition intended
value 0 as a broadcast. This all zero broadcast should no longer be used today. Now, the all one
broadcast (see above) should be used instead. The second definition for the address value 0 which is
presently valid allows the identification of the own network (this net) or computer (this host). For
example, an IP address of 0.1.1.1 means that computer 1.1.1 in this network shall be called.

__

V7 AC500 System Technology Couplers 12 Ethernet AC500 / Issued: 05.2006

Subnet mask:

When configuring a device, which is connected to a TCP/IP network, it is often possible not only to set
the IP address but also to preset a so-called subnet mask. If the IP address of the device is configured
manually, the subnet mask has also to be entered manually, if it is used. If the device is set to automatic
IP address assignment (refer to sections "IP address assignment" and "1.3.7 BootP and DHCP"), the
assignment of a possibly required subnet mask is also performed automatically.

The use of subnet masks allows network administrators to divide a large network into several small (sub)
networks. Subnetworks are often used to image the topological structure of large networks (e.g. the
departments or floors within one building) or to decentralize the administration of the network.
Furthermore, logical transitions between different transfer media can be easily implemented this way. An
IP router is able to connect different physical networks to each other. The only condition for this function
is the existence of an own network address for the router in each connected network. A subnet is only
known by the computers connected to the local network. Outside of the local network, such an address
appears as a usual IP address.

With this method which is called 'subnetting', specific bits of the computer's IP address part are used to
expand the class-specific network address part. This reduces the address range available for the
addressing of computers in the subnet. The IP address is then divided into the network address, the
subnet number and the computer's address. The subnet number is defined by means of a bit mask
(subnet mask). With this, the IP address and the subnet mask are bit-wise logically interconnected by an
AND. Consequently, the subnet mask defines which parts of an octet are to be interpreted as the (sub)
network or as the node address. As a result, the software of the IP protocol distinguishes devices
connected to the local subnet and devices located in other subnets. The computer is located in the local
network if the result of the AND interconnection of the IP address and the subnet mask delivers the local
network address and the local subnet number. Otherwise the datagram is routed to another subnet
router.

For example, by applying a subnet mask of 255.255.0.0, a class A address (e.g. 126.x.y.z) with a default
subnet mask of 255.0.0.0 becomes a class B address and by applying a subnet mask of 255.255.255.0,
this address becomes a class C address. The use of subnet masks is explained in the following
examples.

Example 1:

Computer A with IP address 89.236.4.85 and subnet mask 255.224.0.0 wants to establish a connection
to computer B with IP address 89.234.85.50.

IP address computer B (bin) 01011001 11101010 01010101 00110010

Subnet mask computer A (bin) 11111111 11100000 00000000 00000000

AND interconnection (bin) 01011001 11100000 00000000 00000000

The result corresponds to the IP address of computer A expanded by the subnet mask. Consequently,
computer B is located in the local subnet and can be addressed directly.

IP address computer A (bin) 01011001 11101100 00000100 01010101

Subnet mask computer A (bin) 11111111 11100000 00000000 00000000

AND interconnection (bin) 01011001 11100000 00000000 00000000

Example 2:

Computer A with IP address 89.236.4.85 and subnet mask 255.224.0.0 wants to establish a connection
to computer C with IP address 89.211.1.22.

IP address computer C (bin) 01011001 11010011 00000001 00010110

Subnet mask computer A (bin) 11111111 11100000 00000000 00000000

AND interconnection (bin) 01011001 11000000 00000000 00000000

The result does not correspond to the IP address of computer A expanded by the subnet mask (refer to
example 1). Consequently, computer C is not located in the local subnet. The datagram has to be
transferred to computer C via a router.

__

V7 AC500 System Technology Couplers 13 Ethernet AC500 / Issued: 05.2006

Example 3:

A network with the class A address 126.x.y.z can be divided into two subnets by means of the subnet
mask 255.128.0.0 where one subnet covers the range from 126.0.y.z to 126.127.y.z and one the IP
address range from 126.128.y.z to 126.255.y.z. For the broadcast addresses of the subnet masks the
addresses 126.127.255.255 and 126.255.255.255 respectively are automatically used since in these
cases all bits of the host part of the address are set to 1 (all one broadcast).

Gateway:

Another parameter that can be set in the IP software of some devices is the gateway or standard
gateway parameter. This parameter defines the IP address of the gateway (router) to which datagrams
addressed to a computer outside of the local network are to be transferred. If the IP address of the
device is configured manually, the IP address of the gateway has also to be entered manually, if it is
used. If the device is set to automatic IP address assignment (refer to sections "IP address assignment"
and "1.3.7 BootP and DHCP"), the assignment of a possibly existing gateway is also performed
automatically.

1.3.3 Internet Control Message Protocol (ICMP)

Aside from the main protocol IP, the auxiliary protocol ICMP also exists on the network layer. ICMP is
used to exchange information and error messages between the network subscribers. The ICMP protocol
is based on the IP protocol and is thus treated by IP like a protocol of a higher layer. ICMP data are
always transferred together with a complete IP header. The actual ICMP messages are included in the
subsequent IP data part.

The following information messages are defined in the ICMP protocol:

• Echo
• Information
• Address mask / address format
• Router discovery

Echo request/reply message

The recipient of an echo request datagram returns all data contained in the received data package to the
sender by means of an echo reply datagram.

The best-known tool based on ICMP echo packages is the ping command. Ping (Packet Internet
Gopher) is implemented in virtually all IP terminal devices. It is based on the principle that one device
sends an ICMP echo request and then waits for the response. Depending on the implementation, only a
success message (host alive) or a failure message (no response from host) is output or even the wait
time for the response.

Information request/reply message

By means of an information request message, the sender of a datagram is able to poll the network
address of the network it is connected to. For this purpose, it sends a corresponding request to IP
address 0 and then receives a reply message with the local network address from any device connected
to the network.

Timestamp request/reply message

In a timestamp request, the sender transfers its local time as the sending time in the datagram to the
recipient. The recipient of the request then repeats the sender's sending time in its reply message to the
sender and supplements this by its local reception time of the request and the local sending time of the
reply.

Address format request/reply message

By means of an address format message, the sender of a datagram is able to poll the subnet mask
length or address as bit values from another subscriber in the network.

__

V7 AC500 System Technology Couplers 14 Ethernet AC500 / Issued: 05.2006

Router discovery message

By means of the router discovery messages, a device in the network is enabled to automatically
determine the IP addresses of the connected routers (gateways). It is distinguished between router
advertisement messages and router solicitation messages. With router advertisement messages a router
periodically transmits the availability of its network interfaces by multicast. In contrast to this, router
solicitation messages are sent by a network node to one or more routers after its initialization. The
routers that received this message then return one single router advertisement message.

Furthermore, the following ICMP error messages exist:

• Destination unreachable
• Redirect
• Source quench (resources exhausted)
• Time exceeded
• Parameters problem

Using the ICMP error messages, the sender of a datagram is informed about the reason why the
datagram could not be transmitted.

Destination unreachable message

A destination unreachable message can have different causes. For example, it is possible that the higher
protocol on the target computer is unknown or that the called destination port is already in use.
Interruptions of the network can also cause destination unreachable messages.

Redirect message

Using a redirect message, the sender of a datagram is informed via which router the datagram can be
transmitted to the target network. This message is generated by a router if it receives a datagram which
is addressed to a target network that cannot be reached via this router. However, the router knows the IP
address of the correct router and informs the sender about this address using a redirect message.

Source quench message

A source quench message is for example output by a target computer if it is not able to process the
amount of received data fast enough. Using this message, the sender is requested to reduce the data
transfer rate until no more source quench messages are received.

Time exceeded message

One reason for a time exceeded message could be for example that the IP protocol is not able to re-
assemble a fragmented datagram within a defined period of time to a full data stream during the re-
assembly process.

Parameter problem message

For example, a parameter problem message is issued if a router detects an error in the IP header of a
datagram (e.g. an incorrectly set argument in the IP options) and consequently destroys the datagram or
doesn't forward it.

__

V7 AC500 System Technology Couplers 15 Ethernet AC500 / Issued: 05.2006

1.3.4 Transmission Control Protocol (TCP)

The transmission control protocol implements the tasks of the transport layer in the ISO/OSI model and
therefore is directly based on the IP protocol. TCP works connection-oriented. It makes connection
services available for an order-accurate and secure transmission of user data. TCP enables the
detection of data losses, the automatic re-transmission of lost data packages as well as the detection of
duplicates. Compared with TCP, connectionless operating protocols of the transport layer which do not
support such mechanisms (e.g. UDP) provide higher performance.

TCP treats the data handed over by the higher protocols as one quasi-continuous data stream,
segments these data and then transmits them in single data packages. On the receiver's side, the single
segments are re-assembled again and made available for the higher protocols as a data stream. The
TCP protocol is completely independent of the individual network-specific properties. Hence, a TCP
segment can have a length of up to 65 kB. When data are transmitted via a network, the lower IP
protocol has to fragment the TCP segments further into several small packages of a low order according
to the properties of the network (e.g. Ethernet). The following figure shows the course of the transfer
processes.

protocol
Higher

TCP

1

IP

2

layer
Data Link

3

4

protocol
Higher

TCP

8

IP

7

layer
Data Link

6

5

Physical medium

Figure 1-6: Course of the transfer processes

Port:

The multiplex mechanism of the transmission control protocol (TCP) allows the simultaneous use of TCP
by a large number of higher protocols and application processes. The assignment of the individual data
streams to the above applications is done via so-called ports. For the access to specific standard
applications firmly defined port numbers exist (well-known ports). These port numbers range from 0 to
1023 and are assigned by the IANA (Internet Assigned Numbers Authority). All other ports from 1024 to
65535 are not under the control of the IANA and can be used as desired.

In the following table some well-known ports are listed.

Application Port number

FTP data (FTP data channel) 20

FTP control (FTP control channel) 21

Telnet 23

SMTP (Simple Mail Transfer Protocol) 25

DNS (Domain Name Server) 53

http (HyperText Transfer Protocol) 80

OpenModbus 502

Table 1-3: Well-known ports

__

V7 AC500 System Technology Couplers 16 Ethernet AC500 / Issued: 05.2006

Socket:

For the purpose of unique identification of a TCP application process, the port number and the IP
address of a device are locally summarized to a so-called socket. A socket with a firmly defined port
number is designated as well-known port. The following simplified example explains the principle of the
logical connections between pairs of sockets.

FTP

TCP

Network access
IP

TELNET

Device B

FTP

TCP

Network access
IP

TELNET

Device A

FTP

TCP

Network access
IP

TELNET

Device C

140221 1390 23 116223

Figure 1-7: Principle of the logical connections between pairs of sockets

The devices A, B and C are located within the same network. Each device has a unique IP address. The
individual TCP modules have several independent ports with unique port numbers.

Device A wants to exchange files with device B via FTP and establishes for this purpose a connection
from its local port 1402 to the well-known socket 21 of device B. For this, the local port number of the
device that initiated the connection (here: device A) is not of importance because the corresponding
application is already uniquely defined by the active connection establishment. The connection
establishment only requires that the request can be identified as FTP control in device B through the use
of the socket or port 21.

At the same time device B dials in (from local port 1390) to device A. There it uses port 23 (Telnet).
Since it's a telnet access, the well-known socket 23 is several times available in device A. Therefore,
device C is able to establish a parallel telnet connection to device A via its local port 1162.

After the respective logical connection has been established successfully, all application data of the
respective active device to be transferred are disassembled into TCP segments and transferred to the
corresponding port of the respective remote device. Each port of the TCP module of a remote device
accepts and sends only data from and to the TCP module of the corresponding active device. In our
example, device A has only two telnet ports. This is why every request for another connection to this port
is denied as long as both connections are open. Once all data have been exchanged within the bounds
of a connection, the respective connection is closed and the corresponding port is available again for
new requests.

__

V7 AC500 System Technology Couplers 17 Ethernet AC500 / Issued: 05.2006

TCP header:

Each data package transmitted via TCP has a preceding TCP header. Among other things this header
contains the respective ports of the sender and the recipient. The meaning of the term ports is explained
earlier. Detailed descriptions of the further components of the TCP header and their functions are not
given here, since such detailed knowledge is not necessary for normal application. The following figure
shows the principle structure of a TCP header.

Data Offset
(4 bits)

Source Port
(16 bits)

Destination Port
(16 bits)

Window Size
(16 bits)

Options
(variable)

Padding, filling characters
(variable)

Sequence Number
(32 bits)

Acknowledgement Number
(32 bits)

reserviert
(6 bits)

Control Flags
(6 bits)

Checksum
(16 bits)

Urgent Pointer
(16 bits)

Figure 1-8: Principle structure of a TCP header

The total length of the TCP header depends on the type and number of options and is at least 24 bytes.

The following figure explains that a TCP segment embedded in an IP datagram and then packed in the
Ethernet frame reduces the actually transmittable user information. Further reductions result from the
headers of the higher layers.

Preamble
8 bytes

Ethernet Header
14 bytes

Ethernet User Data
46 to 1500 bytes

CRC
4 bytes

IP Header
min. 20 bytes

IP User Data
max. 1480 bytes

TCP Header
min. 24 bytes

TCP User Data
max. 1456 bytes

Figure 1-9: TCP segment in the Ethernet frame

Phases of a communication:

In the previous sections, it was only explained that TCP connections are established first, then guarantee
a safe transmission and finally are closed again after transmission is finished. For a better understanding
of these processes in the TCP protocol, the context is explained in more detail below. The following
figure shows a simplified state diagram of a TCP module.

__

V7 AC500 System Technology Couplers 18 Ethernet AC500 / Issued: 05.2006

Start

Closed

Passive Open Active Open

Get
Socket

Wait
Connect

Connect

Connect
Timeout

Established

Connected Connected

Closing

Send /
Receive

Close

Connect
Timeout

Figure 1-10: Simplified state diagram of a TCP module

In the figure above it is assumed that a device is switched on or that an application is started (state:
start). The first TCP action starts with the request for a socket. After a successful assignment of a socket
through the TCP module, the actual TCP starting point is reached. Starting from this state, there are two
possibilities to open a connection, in active mode or in passive mode. In active mode, an active
connection establishment to a network node is tried (Connect) whereas a device in passive mode waits
for an incoming connection request (Wait Connect). Between the active and the passive device, first
various connection parameters are negotiated. Then the connection is established (Established) and
data can be exchanged between the higher protocols (Send / Receive). After all data have been
exchanged, the disconnection (Close) is initiated. After a further exchange of connection parameters
(Closing), the connection is closed and the TCP module is again set to the Closed state.

Aside from different safety mechanisms, each TCP state has timing supervision functions. Since
some of these timers can be parameterized by the application or by the user, we want to briefly explain
their functions below.

Connect Timeout

The connect timeout function determines the time period after which an attempt of a connection
establishment shall be aborted. In active mode, setting this time period is obligatory, i.e. a finite time
value has to be preset for the connection setup. If the TCP module cannot establish the specified
connection within this time, the attempt is aborted with an error message. Possible reasons for this could
be for example that the addressed node is not located inside the network or that no corresponding
socket is in the Wait Connect / Passive Open state.

In passive mode, presetting of a connect timeout value is optional. If a time period is specified, the list
state (Passive Open) is left with an error message if no attempt for a connection setup to the local socket
occurred during this period. If no time period is specified, TCP waits for an incoming connection for an
unlimited time.

Retransmission Timeout

Following a successful connection establishment the TCP data transmission phase takes place. The
reception of a data package is confirmed to the sender by a positive acknowledgement (ACK) of the
recipient. Due to the flow rate, only one single ACK message is used to confirm the reception of a whole
series of packages instead of confirming each single data package. The confirmations of reception are
monitored on the sender's side using the so-called retransmission timer. One retransmission timer is

__

V7 AC500 System Technology Couplers 19 Ethernet AC500 / Issued: 05.2006

started each time a data block is sent. If (e.g. due to a transmission error) no confirmation is received
before the timer has elapsed, the package is sent again.

Give-Up Timeout / Send Timeout

The give-up timer is also used for timing monitoring of the reception confirmations for data segments
sent by the recipient. After this time period, the connection is closed if no data segments have been
confirmed by the target node.

Inactive Timeout

The inactive timeout is used to monitor the activity on a connection and is normally implemented by the
application. The timer is newly started with each data reception. If no data packages are received before
this timer has elapsed, the connection is automatically closed. The use of the inactive timeout function is
optional. The inactive timeout cannot be used together with the keep alive mechanism (described
below).

Keep Alive Timeout

The keep alive mechanism can be used to test whether a connection that did not carry data over a
longer period of time still exists. The timer is newly started with each data reception. After this period of
time, the keep alive timer generates data packages (so-called keep alive probes) which are sent to the
other side of the connection. If these packages are not confirmed, the connection is closed. The use of
the keep alive timeout function is optional. The keep alive mechanism cannot be used together with the
inactive timeout (described above).

Close Timeout

A TCP connection is closed after data transmission is finished. There are two possible methods for
closing a connection, a graceful close or an abortion. Graceful close describes the normal and
coordinated closing of a connection. Both communication partners come to an agreement about closing
the connection. Optionally, this phase can be monitored by defining a close timeout value. The
respective timer is started with the request for a connection establishment. If the connection cannot be
closed in a coordinated manner within the specified time period, the connection is aborted (hard close).
A close timeout value of 0 results in an immediate abortion of the connection. An abortion represents the
closing of a connection forced by one side. This can lead to a loss of all data on the communication
connection.

1.3.5 User Datagram Protocol (UDP)

In addition to TCP, the user datagram protocol is a second protocol implemented on the transport layer
(layer 4). It is also directly based on the IP protocol. In contrast to TCP, UDP is operating connectionless
and not connection-oriented. It does not provide end-to-end control. Transmission via UDP does not
guarantee the correct delivery of a datagram to the recipient, the detection of duplicated datagrams and
the order-accurate transmission of the data. If necessary, this has to be guaranteed by suitable
mechanisms on the application side.

Compared to TCP, UDP has the advantage of a considerably higher performance. This is particularly
reached by the missing safety mechanisms. No logical connections are established. The individual
datagrams are treated as completely independent events instead. This particularly becomes apparent for
multicasts or broadcasts. In case of TCP, first numerous connections have to be established for this,
then the data have to be transmitted and finally the connections have to be closed again. For UDP this is
restricted to the pure data transmission. In the end, the functions mentioned before result in the fact that
the UDP header is considerably shorter than the TCP header and thus causes less protocol overhead.

Port:

Like TCP, UDP provides several ports (access addresses) to allow simultaneous access to the protocol
for several processes (see also "Port" in section "1.3.4 Transmission Control Protocol (TCP)"). The
assignment of the port numbers to the application processes is performed dynamically and optional.
However, fixed port numbers (assigned numbers) are defined for specific frequently used standard
processes. The following table shows some of these assigned numbers.

__

V7 AC500 System Technology Couplers 20 Ethernet AC500 / Issued: 05.2006

Application Port number

Reserved 0

Echo 7

IEN 116 42

Domain Name Service 53

BootP 67/68

Table 1-4: Fixed port numbers (assigned numbers) for standard processes

Socket:

For unique identification of a UDP application process, the port number and the IP address of a device
are locally summarized to a so-called socket. A socket with a firmly defined port number is designated as
well-known port. A pair of sockets uniquely identifies a pair of processes communicating with each other
(see also the example under "Socket" in section "1.3.4 Transmission Control Protocol (TCP)").

UDP header:

Each data package transmitted via UDP has a preceding UDP header. This header is considerably
shorter and simpler than the TCP header and only contains the source and destination codes (port
number of the source in the sender and the target in the recipient) as well as the total length of the data
package and a checksum. The UDP user data immediately follow the header. The following figure shows
the principle structure of a UDP header.

Source Port
(16 bits)

Destination Port
(16 bits)

Length
(16 bits)

Checksum
(16 bits)

Figure 1-11: Principle structure of a UDP header

The UDP header has a length of only 8 bytes. The calculation of a checksum is optional. A UDP
checksum value of 0 means for the recipient that no checksum has been calculated in the sender.

The following figure shows a comparison between a UDP and a TCP data package, both embedded in
an IP datagram and then packed in the Ethernet frame. Further reductions of the maximum possible user
data length result from the headers of the higher protocol and application layers.

Preamble
8 bytes

Ethernet Header
14 bytes

Ethernet User Data
46 to 1500 bytes

CRC
4 bytes

IP Header
min. 20 bytes

IP User Data
max. 1480 bytes

TCP Header
min. 24 bytes

TCP User Data
max. 1456 bytes

UDP Header
8 bytes

UDP User Data
max. 1472 bytes

Figure 1-12: Comparison between UDP and TCP data packages

1.3.6 OpenModbus on TCP/IP

OpenModbus is a protocol of the application layer above TCP/IP. The basis for (Open-)Modbus is
provided by the Modbus RTU specification. Modbus RTU is a standardized master-slave protocol for
serial transmission lines which allows the master to read and write bit (coil) and word values (register)
from/to the slaves (see also reference to the existing documentation "Modbus Telegrams").

__

V7 AC500 System Technology Couplers 21 Ethernet AC500 / Issued: 05.2006

The major field of application for the Modbus protocol is the fast data exchange between the automation
devices as well as between visualization systems (HMI / SCADA) and automation devices.

OpenModbus on TCP/IP uses port 502 by default.

Telegram structure:

Modbus telegrams are composed of a transmission path-independent telegram part (simple Protocol
Data Unit, PDU) and a network- or bus-specific header. The PDU and the header together are the
application data unit (ADU). The following figure shows the general structure of a Modbus telegram as
well as the structure of an OpenModbus on TCP/IP telegram.

Function
code

Data
Check-

sum
Address

PDU

ADU (general)

Function
code Data

MBAP
Header

PDU

ADU (TCP/IP-specific)

Figure 1-13: Structure of an OpenModbus on TCP/IP telegram

The telegram structure differs in some points from the original Modbus RTU format for serial
transmission:

• The slave address at the beginning of the telegram is replaced by the 'Unit Identifier' field in the
MBAP header (see below).

• The telegrams are structured in a way that the recipient is able to clearly identify their size. For some
function codes the telegram length is fixed, so that it is possible to immediately determine the length
from the function code. For function codes with variable telegram lengths, the data part of the
telegram contains an additional length specification.

• Since the IP header as well as the TCP header and the Ethernet frame have their own checksums,
the additional Modbus checksum is not required.

Modbus Application Protocol Header (MBAP)

The Modbus Application Protocol Header has a length of seven bytes and is structured as follows.

Transaction Identifie r
(16 bits)

Protocol Identifier
(16 bits)

Length
(16 bits)

Unit Identifier
(8 bits)

Figure 1-14: Structure of the Modbus Application Protocol Header

The 'Transaction Identifier' identifies a single process. The value is individually assigned by the master
(client) on the occurrence of a request and copied to the respective response by the slave (server). This
way the master is able to clearly assign an incoming telegram to the previous request even if there are
several services running simultaneously.

The 'Protocol Identifier' is used to distinguish different future protocols. A Modbus master always sets
this value to 0. A slave copies the value in the request to the header of the response.

The length field specifies the total length of the subsequent fields including the 'Unit Identifer' and the
user data in bytes. The length is calculated by a master as well as by the slave when a telegram is
generated.

__

V7 AC500 System Technology Couplers 22 Ethernet AC500 / Issued: 05.2006

The 'Unit Identifier' is used for routing purposes. Typically it is used for the conversion of a telegram by a
gateway, if the master is located in a TCP/IP network and connected via this gateway to a serially
connected Modbus or Modbus+ slave.

1.3.7 BootP and DHCP

The addresses on the lowest layers of a network arise from the used network technology. In case of
Ethernet, these are the MAC addresses which are predetermined for each device. The IP addresses are
located above layer 2. IP addresses are freely assigned depending on the network structure. By
definition, each device within a TCP/IP network must have a unique IP address before it can send or
receive data via the network. If a device is able to permanently store the IP address once it has been set,
the protocol software is initialized with the stored IP address each time the device is booted later. If a
device is not able to store its IP address or if it still has the delivery settings, the device is booted without
a valid IP address. For such cases, protocols exist which allow the assignment of IP addresses via the
network. The best-known representatives of these protocols, BootP and DHCP, are described in the
following sections.

Bootstrap Protocol (BootP):

The bootstrap protocol is specified in RFC 951. As an application it is directly based on UDP. BootP
works in accordance to the client-server principle. It uses port 67 for the communication with the server
and port 68 for the communication with the client. The BootP client communicates with the server by
exchanging one single data package. Aside from the IP address of the computer, this data package can
additionally contain the IP addresses of the next router and a particular server as well as the name of the
boot file. By means of another manufacturer-specific input-output map, additional information can be
entered, for example the subnet address and the domain name server.

In the initial state, the client first has no valid IP address. To be able to send a request to the BootP
server via IP, the client first uses the special IP address 255.255.255.255 (broadcast). Among other
things, this request contains the MAC address of the client. The response from the BootP server is also
sent as IP broadcast. By comparing the received MAC address with its own address, a client determines
whether this data package is directed to it. This way the client is informed about his own IP address and
other things. The assignment of an IP address (and the additional information belonging to that) to a
MAC address is performed in the BootP server using static tables administered by the network
administrator.

Since the Bootstrap protocol is based on UDP, the transmission safety mechanisms known from TCP
are not available. BootP has to be able to detect possible errors on its own. Each time it sends a BootP
request, the client starts a retransmission timer. If it doesn't receive a BootP reply before the timer has
elapsed, it generates the data packages again. To avoid that all clients send their requests to the BootP
server at the same time (e.g. after a voltage breakdown) and thus cause a server overload, the BootP
specification recommends to use a random value for this timer.

Aside from the possibility to poll its own IP address, the bootstrap protocol can also be used by clients
that already know their IP address to poll additional information, e.g. Name Server.

Dynamic Host Configuration Protocol (DHCP):

Today, many bigger companies have complex and sometimes global TCP/IP networks. The set-up and
maintenance of such large networks is very expensive. Moves of individual employees or entire
departments normally require to change the IP addresses and other parameters, e.g. the subnet mask.
Furthermore already in the beginning nineties worries came up that a bottle-neck could arise in the
assignment of free IP addresses. For these reasons the Dynamic Host Configuration Protocol (DHCP)
was developed on the basis of the existing bootstrap protocol and published in 1993 in the RFC 1541.
DHCP enables a central administration and maintenance of all TCP/IP configuration parameters by a
network administrator and thus allows to build up a plug-and-play TCP/IP network. In contrast to BootP
which only allows the static assignment of network addresses, DHCP supports three alternative ways of
IP address assignment.

__

V7 AC500 System Technology Couplers 23 Ethernet AC500 / Issued: 05.2006

Automatic IP address assignment

With the automatic assignment, any fixed IP address is assigned to a client. On the initial login of the
client to the server, a free address is assigned to the client. This assignment is stored in the server.
Then, this IP address is assigned to the client each time it logs in to the server. This IP address cannot
be used by another computer even if is not actually needed by the client, e.g. because the client is
temporarily disconnected from the network. Compared with the method of setting the IP address directly
on the device itself, this method has the disadvantage that for example a connection between two
devices cannot be implemented until both devices have logged in to the DHCP server at least one time
since the IP address is not known before.

Dynamic IP address assignment

The dynamic address assignment assigns an IP address to the client only for a specific period of time
when it logs in to the server. The client can also release this address on his own initiative before the time
is over if it doesn't need it any more. The advantage of this method is that an IP address which is no
longer needed by a client can be assigned to any other client. In practice, this could for example be used
for an office that has less IP addresses than employees and where always only a part of the employees
is present. A disadvantage of this method is that no fixed connections can be implemented between
network nodes using IP addresses since the IP address can change with each login of a client. In
practice, this could for example be relevant for an installation with several controllers that exchange the
process data via corresponding function blocks in the user program.

Manual IP address assignment

Using the manual assignment, the network administrator is able to explicitly assign an IP address to a
client by defining corresponding static tables in the server. This means that the administrator already
defines in advance which configuration he wants to assign to which client. In this case, DHCP is only
used as a means of transport. A disadvantage is that the IP addresses cannot be used flexibly. An
advantage arises from the fact that the IP addresses of all devices are known from the beginning and
can be taken into account for the implementation of fixed communication connections already during
planning phase.

Function

DHCP also supports the BootP relay agents defined in the bootstrap protocol. The BootP relay agents
have the task to forward DHCP messages from and to network segments which do not have an own
DHCP server. Therefore, relay agents to a certain extent carry out the functionality of a router on DHCP
level. The use of relay agents has the advantage that not every subnet requires its own DHCP server.

The processes of the DHCP protocol are implemented using seven different types of messages.

Type of message Description

DHCP Discover Client broadcast to localize the available DHCP servers in the network.

DHCP Offer Broadcast or unicast response of a server to a discover message with
configuration parameters for the client.

DHCP Request Broadcast of a client to all servers to request the offered parameters from a
dedicated server with the simultaneous rejection of the parameters of all other
servers.

DHCP Ack Message from a server to a client, includes configuration parameters and the IP
address.

DHCP Nak Message from a server to a client, rejection of the request for configuration
parameters and IP address.

DHCP Decline Message from a client to a server saying that the configuration parameters and
the IP address are invalid.

DHCP Release Message of a client to a server saying that the IP address is no longer needed
and available for use again.

Table 1-5: Message types of the DHCP protocol

__

V7 AC500 System Technology Couplers 24 Ethernet AC500 / Issued: 05.2006

Below the initialization process for a dynamic assignment is explained from the client's point of view.

After the boot process, the client is first in the initial state and sends a DHCP Discover message within
its local subnet (subnet broadcast). This message can optionally already include a suggestion of the
client for the required parameters. This can be the case if the client has already received corresponding
values during a previous process and stored this. In any case, the client has to hand over the hardware
address (MAC address) since at this point in time it is not yet clear whether the client already has a valid
IP address and can be accessed via this address. Since not every subnet necessarily has its own DHCP
server, the DHCP Discover message is also forwarded to further subnets via possibly existing relay
agents.

After it has sent the DHCP Discover message, the client is waiting for configuration offers in the form of
DHCP Offer messages from DHCP servers that are waiting for its request. The servers try to directly
respond to the client's request with a unicast. However, this is only possible if the client already has an
IP address assigned (e.g. from a previous session) the lease period (assignment period) of which is not
yet expired. Otherwise a DHCP server sends its message to the broadcast address 255.255.255.255.
Aside from the available network address (IP address) for the client and the further communication
parameters this message also contains the hardware address (MAC address) previously transmitted by
the client with the DHCP Discover message. This way the client is able to determine whether the DHCP
Offer message of a server is directed to it.

While the client is now waiting for the DHCP Offer message from the servers, a timer is running. If the
server doesn't receive a DHCP Offer until the timer has expired, the DHCP Discover message is
repeated. If the client has received one or more DHCP Offer messages from one or several servers, it in
turn responds with a DHCP Request message as a broadcast. This message contains a server identifier
with the designation of the DHCP server the parameters of which the client has chosen. The message is
sent as a broadcast to inform all servers about which server the client has decided for. The servers,
which were not chosen by the client, determine this fact by comparing the 'server identifier' field with their
own designation and then interpret the DHCP request as a rejection. As a result, they release the
parameters temporarily reserved for the client which can then be used for requests by other clients.

The server chosen by the client with the DHCP Request then responds with a DHCP Ack message
containing all configuration parameters for the client including the assignment period (lease period). The
client then tests the parameters (e.g. ARP for the assigned IP address, refer to 0). If the test is
successful, the configuration of the client is finished. The client is now able to send and receive TCP/IP
packages. If, however, the client detects faulty parameters in the DHCP Ack message, it sends a DHCP
Decline message to the server and then repeats the configuration process. The configuration process is
also started again if the client receives a DHCP Nak message from a server instead of a DHCP Ack
message.

After a successful configuration, the client permanently verifies the expiry of the lease period and, if
necessary, sends a DHCP Request message to the configuring server to renew its lease period. If,
however, a client wants to finish its address assignment (prematurely), it sends a DHCP Release
message to exactly this server.

1.3.8 Address Resolution Protocol (ARP)

On the physical layer diverse mechanisms are used to address the individual devices in the network. For
example, Ethernet uses a 48 bit long MAC address. During the installation of TCP/IP protocols a 32 bit
long IP address is assigned to this hardware address. Since the physical layer is working completely
independent of the above layers, the IP protocol does not know the hardware addresses of the
communication parameters. This is why the Address Resolution Protocol (ARP) has been developed as
an auxiliary protocol for layer 3. ARP converts IP addresses to the respective network-specific hardware
addresses. This address mapping is performed using either the static or the dynamic method.

Static address mapping

For static address mapping, the system administrator has to create tables in the used devices containing
the fixed mapping between the hardware and the IP address. In order to setup a connection to a device
configured this way, first the respective entry with the IP address of the target node is searched in the
table. If a corresponding entry is found, the connection can be established. The use of the static method
makes only sense in small networks since each modification of the network or a device requires the
tables of all devices to be updated.

__

V7 AC500 System Technology Couplers 25 Ethernet AC500 / Issued: 05.2006

Dynamic address mapping

Today, the most common method of converting IP addresses to hardware addresses is the dynamic
method. Before data are transmitted via the network, the Internet protocol verifies whether the entry for
the target node is present in the ARP address table (ARP cache) of the device. If no corresponding entry
can be found, the wanted address is requested from all existing computers in the network using a
broadcast (ARP Request). Only those computers respond which have an entry for the wanted IP
address. This is at least the wanted computer itself. The response (ARP Reply) is stored in the local
ARP cache of the requesting device. The table entry first only exists for 20 minutes before it is deleted by
the ARP timer. Each further use of the entry starts the timer again. The local storage of the combination
of IP and hardware addresses considerably reduces the access to the network. The time limitation
prevents the table size from growing caused by entries which are no longer needed. This way it is
furthermore guaranteed that the respective entries are checked and/or updated from time to time. If, for
example a computer is replaced by another one with the same IP number but a different hardware
address, the ARP entries about the replaced computer in the other devices are invalid until the timer
expires.

1.3.9 Other protocols and applications

Aside from the ones described above, numerous further protocols and applications exist in TCP/IP
networks. However, since these are not part of the basic functionality and only optionally supported by
some devices, they are not described in detail here. In the following sections only some of the best-
known representatives of the higher protocols and applications are briefly described.

Hypertext Transfer Protocol (HTTP):

The Hypertext Transfer Protocol (HTTP) is used to exchange hypertext documents between www clients
and www servers. Thus, HTTP which is already used as a standard protocol since 1990 is a
communication protocol of the application layer. HTTP is based on a connection-oriented transport
mechanism. If a client wants to download the data identified by a URL (e.g. www.abb.com/index.html)
from a server, it establishes the TCP connection to the server via the logic port 80. The procedure for a
communication between a www client (e.g. a PC) and a www server is always as follows:

1. The client establishes a TCP/IP connection to the respective server.
2. After the connection has been established completely, the client transfers the HTTP requests to the

server.
3. The server responds to the requests and transfers the corresponding sets of data to the client.
4. Finally the TCP/IP connection is completely closed again.

Thus, HTTP is a request/response protocol. The www client transfers the HTTP request to the server.
The server reacts with a HTTP response consisting of the response header (status line, used HTTP
version, status/error message, server information) and the actual message (message body).

File Transfer Protocol (FTP):

The File Transfer Protocol provides a standardized interface for the exchange of files between
computers, independent of their design and operating system as well as for the administration of stored
data. FTP is directly based on TCP and described in RFC 959 and the MIL-STD 1780 specifications. The
FTP protocol uses port 21 for the control connection and port 20 for the data connection.

Communication between an FTP client (client PI, PI = Protocol Interpreter) and an FTP server (server PI)
is performed using a set of specific commands with corresponding acknowledgements. Generally a
command is composed of a four-figure character string (e.g. STOR) followed by additional information
(e.g. specification of the path). Acknowledgements consist of three-figure character strings with optional
text.

__

V7 AC500 System Technology Couplers 26 Ethernet AC500 / Issued: 05.2006

The following figure shows the FTP command syntax.

<Command> <SP> <Parameter> <EOL>

Character sequence consisting of
three or four printable characters

At least one space character
as limiter

Character sequence, syntax mostly system-dependent,
(e.g. path C:\PATH\PATH2)

Character sequence, e.g. <CRLF>,
causes the execution of the command

Figure 1-15: FTP command syntax

Common FTP implementations have a uniform and partly graphical user interface. So, for example many
applications have the commands GET for transferring a file from a remote computer to the local
computer and PUT for transferring a file from the local computer to the remote computer. These two
commands are not defined by FTP. However, there are existing FTP commands with corresponding
functions (GET -> RETR, PUT -> STOR). Consequently it's the application's task to convert user
commands to corresponding FTP commands. For the user itself, this conversion is not visible.

Simple Mail Transfer Protocol (SMTP):

The Simple Mail Transfer Protocol enables the transmission of Email messages. SMTP is directly based
on TCP and uses the well-known port 25. The protocol is described in RFC 821 and the MIL-STD 1781
standard. SMTP only enables the transmission of Emails via a data network. It is not determined how the
message is switched between the user and SMTP nor how the received message is stored and
presented to the user. These tasks have to be done by the higher applications.

Messages sent by means of SMTP normally have the format defined in RFC 822. A 822 message is
composed of some lines of header information followed by an empty line as a separator and the text.
This text is also called the message body. Normally a header line consists of a keyword, a colon and a
value (text, address) for the respective keyword. Examples of typical keywords are "from", "to" or
"subject". They describe the sender and the recipient of the message as well as its subject. SMTP allows
to specify several recipients one behind the other to simultaneously send a message to several
recipients. The message body consists of pure text (7 bit ASCII) of any length. The following example
shows an SMTP message in 822 format.

FROM: Paul Muster <Paul@Muster.COM>
SUBJECT: Confirmation of appointment
TO: Hans.Beispiel@Test.DE

Date on Thursday, 12 a.m. is ok.

Paul

Network Information Service (NIS):

The Network Information Service is used for the centralized administration and maintenance of a local
network and its users. This is implemented by several databases which are used to administer the
computer names, user groups, services and user accounts. NIS furthermore allows to structure a local
network and its users into smaller administration units, the so-called domains. Not least because of the
missing data encryption and various safety deficiencies, the NIS protocol has later been further
developed to NIS+.

__

V7 AC500 System Technology Couplers 27 Ethernet AC500 / Issued: 05.2006

Domain Name Service Protocol (DNS):

Prior to the introduction of the Domain Name Service a central host table (hosts.txt) has been
administered by the Network Information Center of the Defense Data Networks. The goal of
development of the protocol was to replace this table by a distributed database application in order to
ease the maintenance of the host and domain names and to reduce and distribute the load caused by
the transmission of host tables in the tremendously growing Internet.

DNS is based on UDP (port 53). The domain names used in the Domain Name Service are based on a
hierarchical naming concept. A domain name consists of several subnames separated by dots (e.g.
sample.example.com). The Domain Name System is structured like a tree, starting from the so-called
root. Each node in this tree is a zone (domain). A Domain Name Server always only knows the next
higher and the next lower server of the respective domain. A Domain Name Server is responsible for one
complete zone. A zone begins in a node and contains all branches included under this node. The highest
domain level is called the Top Level Domain. The following figure shows the Top Level Domains for the
USA.

/

COM EDU GOV MIL NETORGARPA

Root

Figure 1-16: Top Level Domains of the USA

The task of a Domain Name Server is to deliver a requesting client computer the IP addresses for a
symbolic name.

Internet Name Service (IEN 116):

The Internet Name Service protocol is the oldest name service protocol. It was published 1979 as
Internet Engineering Note 116 (IEN 116). This protocol is directly based on UDP and converts logical
symbolic names into IP addresses.

If a computer wants to establish a connection to another device in the network but the user only knows
the logical device name (e.g. controller1) and not its IP address, the computer first transmits a name
request containing the logical device name to the name server. The name server then returns the IP
address of the device and the client can now use this IP address to establish the connection to the
device. The name server has to be known by the local computer. This is normally specified by the
responsible system administrator in a name server file.

Hosts file:

In the previous sections different naming services are described which allow a determination of the IP
address of a device by means of its symbolic name. However, if no name server is available in a network
or if the device to be called is not registered in the name server, using the host table of the local
computer still represents a simple possibility to call the respective device using its symbolic name.

On Windows computers, the hosts file is normally located in the subdirectory ...\etc (e.g. for Windows NT
C:\WINNT\SYSTEM32\DRIVERS\ETC\HOSTS). This file is a simple text file containing the assignment
of IP addresses to the host names and can be edited using any editor. By default, the hosts file at least
contains the loopback address (127.0.0.1 localhost) and, if applicable, the IP address of the local
computer. This list can be expanded as desired. For this purpose the entries must have the following
structure: IP address of the computer, followed by the respective host name and optional alias names.
The IP address and the host name (as well as the alias names) have to be separated by at least one
blank character. The # character identifies the beginning of a comment. The end of a comment is
automatically defined by the line end. Comments are ignored by the system when interpreting the hosts
file.

__

V7 AC500 System Technology Couplers 28 Ethernet AC500 / Issued: 05.2006

The following example shows a hosts file.

#Loopback address for localhost
127.0.0.1 localhost

#System part 1
193.0.4.1 Head office
193.0.4.2 Visualization #Control Room
193.0.4.3 Controller1: Silo
193.0.4.4 Controller2 Pumping station

#System part 2
193.0.5.1 Mixer
193.0.5.2 Heating
193.0.5.3 Control cabinet

__

V7 AC500 System Technology Couplers 29 Ethernet AC500 / Issued: 05.2006

1.4 Cabling

1.4.1 Network cables

There are numerous standards regarding the Ethernet cabling which are to be observed when
configuring a network. So, the standards TIA/EIA-586-A and ISO/IEC 11801 define the properties of the
cables to be used and divide the cables into categories. While the TIA/EIA specification is more directed
to the American market, the ISO/IEC standard meets the international requirements. Furthermore, the
European standard EN 50173 which is derived from ISO/IEC 11801 represents the standard to be
observed for structured cabling.

Usually twisted-pair cables (TP cables) are used as transmission medium for 10 Mbit/s Ethernet
(10Base-T) as well as for 100 Mbit/s (Fast) Ethernet (100Base-TX). For a transmission rate of 10 Mbit/s,
cables of at least category 3 (IEA/TIA 568-A-5 Cat3) or class C (according to European standards) are
allowed. For Fast Ethernet with a transmission rate of 100 Mbit/s, cables of category 5 (Cat5) or class D
or higher have to be used. The following table shows the specified properties of the respective cable
types per 100 m.

Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]

Attenuation [dB / 100m] 10.7 23.2

NEXT [dB / 100m] 23 24

ACR [dB / 100m] N/A 4

Return loss [dB / 100m] 18 10

Wave impedance [Ohms] 100 100

Category 3 or higher 5

Class C or higher D or higher

Table 1-6: Specified cable properties

The TP cable has eight wires where always two wires are twisted to one pair of wires. Different color
codes exist for the coding of the wires where the coding according to EIA/TIA 568, version 1, is the most
commonly used. In this code the individual pairs are coded with blue, orange, green and brown color.
While one wire of a pair is single-colored, the corresponding second wire is colored alternating with white
and the respective color. For shielded cables it is distinguished between cables that have one common
shielding around all pairs of wires and cables that have an additional shielding for each pair of wires. The
following table shows the different color coding systems for TP cables:

Pairs EIA/TIA 568
Version 1

EIA/TIA 568
Version 2

DIN 47100 IEC 189.2

Pair 1 white/blue blue green red white brown white blue

Pair 2 white/orange orange black yellow green yellow white orange

Pair 3 white/green green blue orange grey pink white green

Pair 4 white/brown brown brown slate blue red white brown

Table 1-7: Color coding of TP cables

Two general variants are distinguished for the pin assignment of the normally used RJ45 connectors:
EIA/TIA 568 version A and version B where the wiring according to EIA/TIA 568 version B is the most
commonly used variant.

__

V7 AC500 System Technology Couplers 30 Ethernet AC500 / Issued: 05.2006

T568A

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 3 Pair 4Pair 1

Pair 2

T568B

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 2 Pair 4Pair 1

Pair 3

Figure 1-17: Pin assignment of RJ45 sockets

1.4.2 Connector pin assignment

Today, RJ45 connectors are accepted as a standard for the cabling of 10 Mbit/s networks (10Base-T) as
well as for 100 Mbit/s networks (100Base-TX). Generally, the same pin assignment is used for both
variants.

Pin number Signal

1 TD+ (data output)

2 TD- (data output)

3 RD+ (data input)

4 -

5 -

6 RD- (data input)

7 -

8 -

Table 1-8: Pin assignment of RJ45 connectors

1.4.3 1:1 cables and crossover cables

A direct connection of two terminal devices is the simplest variant of an Ethernet network. In this case, a
so-called crossover cable (also called crossconnect or crosslink cable) has to be used to connect the
transmission lines of the first station to the reception lines of the second station. The following figure
shows the wiring of a crossover cable.

12345678

1
2
3
4

5
6
7
8

1
2
3
4
5
6
7
8

12345678

Figure 1-18: Wiring of a crossover cable

For networks with more than two subscribers, hubs or switches have to be used additionally for
distribution (see also section "1.4 Cabling"). These active devices already have the crossover
functionality implemented which allows a direct connection of the terminal devices using 1:1 cables.

__

V7 AC500 System Technology Couplers 31 Ethernet AC500 / Issued: 05.2006

12345678

1
2
3
4

5
6
7
8

1
2
3
4
5
6
7
8

12345678

Figure 1-19: Wiring of a 1:1 cable

1.4.4 Cable length restrictions

For the maximum possible cable lengths within an Ethernet network various factors have to be taken into
account. So, for twisted pair cables (for transmission rates of 10 Mbit/s and 100 Mbit/s) the maximum
length of a segment which is the maximum distance between two network components is restricted to
100 m due to the electric properties of the cable.

Furthermore, the length restriction for one collision domain has to be observed. A collision domain is the
area within a network which can be affected by a possibly occurring collision (i.e. the area the collision
can propagate over). This, however, only applies if the components operate in half duplex mode since
the CSMA/CD access method is only used in this mode. If the components operate in full duplex mode,
no collisions can occur. Reliable operation of the collision detection method is important which means
that it has to be able to detect possible collisions even for the smallest possible frame size of 64 bytes
(512 bits). But this is only guaranteed if the first bit of the frame arrives at the most distant subscriber
within the collision domain before the last bit has left the transmitting station. Furthermore, the collision
must be able to propagate to both directions within the same time. Therefore, the maximum distance
between two ends must not be longer than the distance corresponding to the half signal propagation
time of 512 bits. Thus, the resulting maximum possible length of the collision domain is 2000 m for a
transmission rate of 10 Mbit/s and 200 m for 100 Mbit/s. In addition, the bit delay times caused by the
passed network components have also to be considered.

__

V7 AC500 System Technology Couplers 32 Ethernet AC500 / Issued: 05.2006

1.5 Network components

The topology of an Ethernet network is like a star or tree structure. Up to two stations can be connected
to each segment where active distribution devices like hubs or switches are also considered as a station.
The following figure shows an example of a simple Ethernet network.

Control

PC

PC

PC

Hub/Switch

PM581
-ETH

PM581
-ETH

PM581
-ETH

system

Control
system

Control
system

Figure 1-20: Example of a simple network

The following sections introduce the different types of components required for a network.

1.5.1 Terminal devices

Terminal devices are devices that are able to send and receive data via Ethernet, e.g. controllers with an
Ethernet coupler or PCs with an integrated network adapter. With this, one of the essential functions of a
network adapter is to transfer all data packages to the PC itself instantly and without any loss. Occurring
defiles or even errors can cause data packages to be lost. Such losses of data have to be got under
control by higher protocols (e.g. TCP/IP) which results in considerable performance reductions. The
direct implementation of higher protocols on the network adapter can increase the performance and save
the resources of the host system (e.g. controller).

1.5.2 Repeaters and hubs

At the dawning of the Ethernet, the repeaters had only two network connections and were used to
connect two segments to each other in order to extend the segment length. Later, repeaters with more
than two network connections were available. Those star distributors are called hubs. They are able to
connect several segments. Apart from the number of network connections the functionality of hubs and
repeaters is identical. This is why we only use the term "hub" in the following descriptions.

Hubs are operating on the lowest layer of the ISO/OSI model and are therefore independent of the
protocols used on Ethernet. The network connections of hubs are exclusively operated in half duplex
mode. Due to this, collision domains can freely propagate beyond the hubs. A hub can only support one
transmission rate for all connections. Therefore it is not possible to connect segments with different
transmission rates via a simple hub. For this purpose a dual-speed hub has to be used. The fundamental
functions of hubs are as follows:

__

V7 AC500 System Technology Couplers 33 Ethernet AC500 / Issued: 05.2006

• Restoration of the signal magnitude
• Regeneration of the signal timing
• Propagation of a detected collision
• Expansion of short fragments
• Creation of a new preamble
• Isolation of a faulty segment

When transmitted over the medium (e.g. a twisted pair cable) the data signal is attenuated. The task of a
hub is to amplify an incoming signal in order to make the full signal magnitude available at the outputs
again. Furthermore, a distortion of the binary signal's on-off ratio (jitter) can occur during data
transmission. When transmitted via a hub, the hub is able to restore the correct on-off ratio of the signal
which avoids propagation of the signal jitter beyond the segment.

However, one of the most important tasks of a hub is to propagate occurring collisions within the entire
collision domain so that the collision can be detected by all connected stations. If it detects a collision on
one of his connections, the hub sends a so-called jam signal over all connections. If a hub receives a
data fragment which, by its principle, could only be created by a collision, it first brings the fragment to a
length of 96 bits and then forwards it via the ports. This shall guarantee that the data fragment can be
received by all stations independent of their distance to the hub and removed from the network. The
detected data fragments are removed by the terminal devices by not forwarding them to the higher
layers.

By means of the data package preamble the beginning of a data package is detected so that the
recipient can synchronize to the incoming data stream. However, during the data transmission it can
occur that the first bits of a preamble are lost. The task of the hub is to restore a possibly incomplete
preamble before forwarding it.

If collisions occur within one segment in large numbers in a short period of time or if e.g. a short circuit
on a data line causes failures, the hub switches off the faulty segment to avoid interference to the entire
collision domain.

10 Mbit/s hubs:

The 10Base-T connections of a 10 Mbit/s hub are implemented as MDI-X ports and therefore already
crossed internally. The advantage is that the terminal devices can be directly connected using 1:1
twisted pair cables and no crossover cables are required. Some hubs additionally have a so-called uplink
port which can be used to connect another hub. In order to also enable the use of a 1:1 cable for this
port, it is implemented as a normal non-crossed MDI port. In many cases this port can also be switched
between MDI and MDI-X or is implemented as a double port with two connections in parallel (1 x MDI, 1
x MDI-X). In this case, it has to be observed that these parallel ports may only be used alternatively and
not at the same time.

Hubs are normally equipped with several LEDs for status indication. So, for example a Link LED
indicates the correct connection between the terminal device and port at the hub. This way, incorrect
cabling can be quickly detected. Further LEDs indicate for example the data traffic over a port or the
collisions.

The maximum permitted number of 10 Mbit/s hubs within one collision domain is limited to 4. This
restriction is due to two reasons. One reason is that the bit period time delay, which is inevitably
increased by each hub, must not exceed 576 bit periods. The second reason is that the so-called
interframe gap (IFG) must not be shorter than at least 47 bit periods. The interframe gap describes the
time interval between two data packages and shall allow the receiving stations to recover from the
incoming data stream. However, the regeneration of an incomplete preamble performed by the hub
reduces the time between the data packages due to the completion of possibly missing bits.

One possibility to get round the restriction to four hubs is the use of stackable hubs. These hubs are
connected to each other via a special interface instead of using the uplink port and therefore constitute
one logic unit. As a result, they appear as one single big hub to the external.

__

V7 AC500 System Technology Couplers 34 Ethernet AC500 / Issued: 05.2006

PM581
-ETH

PM581
-ETH

Control

�Stackable hubs,
internal connection

�1:1 uplink,
MDI <-> MDI-X

�1:1 uplink,
MDI <-> MDI-X

Simple hub

Simple hub

�1:1 uplink,
MDI <-> MDI-X

1:1 cable

Simple hub

system
Control
system

Figure 1-21: Stackable hubs

100 Mbit/s hubs:

The principle operation of 100 Mbit/s hubs is like the 10 Mbit/s hubs. However, the hubs for 100 Mbit/s
Ethernet have to be additionally distinguished to class I and class II hubs.

Class I hubs (or class I repeaters) are able to connect two segments with different transmission media.
For this purpose the complete data stream has to be decoded on the receiving side and encoded again
on the transmission side according to the transmission medium. This conversion process leads to higher
delay times. Due to this, only one class I hub is permitted within one collision domain.

In contrast, class II hubs support only one transmission medium. No conversion of the data stream is
required. This leads to shorter delay times compared with class I hubs. This is why for two segments
with a maximum length of 100 m each, up to two class II hubs which are again connected to each other
via a 5 m long segment can be used within one collision domain.

PM581
-ETH

PM581
-ETH

Control system Control systemClass II hub Class II hub

max. 100 m max. 100 m
max. 5 m

Figure 1-22: Use of a class II hub

10/100 Mbit/s dual-speed hubs

In contrast to the simple hubs, dual-speed hubs are able to support two transmission rates and thus
enable to connect two Ethernet networks with different data rates to each other. Dual-speed hubs are
internally structured like two separate hubs or paths (one for each data rate). By means of the auto
negotiation function the transmission rate of the connected station is determined and automatically
switched to the corresponding path. Each internal path is a separate hub. For the temporary storage of
the data packages, the paths are connected to each other via an internal switch. Dual-speed hubs
likewise operate in half duplex mode. However, the internal switch provides a clear separation of the 10
Mbit/s and the 100 Mbit/s side so that unlike the simple hubs a collision domain cannot reach beyond the
borders of the corresponding side of the dual speed hub.

__

V7 AC500 System Technology Couplers 35 Ethernet AC500 / Issued: 05.2006

1.5.3 Bridges, switches and switching hubs

Basically the terms bridge, switch and switching hub designate the same. In the early beginning of the
Ethernet, the term bridge was formed by the fact that a bridge had only two network connections. Later,
so-called multiport bridges with several connections came up which were also called switches or
switching hubs. This is why we use the common term "switch" in the following descriptions for all the
components mentioned above.

The use of a switch is another variant of connecting network segments to each other. The decisive
difference between a hub and a switch is that a switch is operating on the second layer of the ISO/OSI
model, the MAC layer.

The following sections describe the functionality of such a layer 2 switch. For reasons of completeness it
has to be mentioned that switches operating on higher and therefore protocol-specific layers also exist.

Using a switch, load separation between networks can be implemented which leads to an increased
performance due to the reduced load of the individual segments. In contrast to a hub, a switch does not
operate transparently (i.e. it doesn't forward all data packages via all ports) but decides on the basis of
the MAC target address whether and via which port an incoming data package has to be forwarded. The
data package is only forwarded if the target station is located in another segment or if the target address
of the data package contains a multicast or broadcast address.

As already mentioned, the decisive advantage of a switch is the logical separation of networks.
Therefore, a switch represents a border for a collision domain. Aside from the performance
improvement, the use of a switch allows a network to be extended beyond the usual borders.

__

V7 AC500 System Technology Couplers 36 Ethernet AC500 / Issued: 05.2006

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

Hub

Installation part A Installation part B

Data traffic of both installation parts

employs the entire network

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

Switch

Installation part A Installation part B

Data traffic of Data traffic of

installation part A installation part B

Figure 1-23: Use of hubs and switches

To enable crosswise traffic between the segments, a switch has to be able to temporarily store the
incoming data packages until they can be transmitted on the forwarding segment. The decision about
forwarding of data packages is done using address tables. These address tables are generated by the
switch itself during a self-learning process. During this process, the switch remembers the source
addresses (MAC addresses) of incoming data packages of a port. If it later receives further data
packages, the switch compares their target addresses with the entries in the address tables of the ports
and, in case of a match, forwards the respective package via the corresponding port. Here, the following
cases have to be distinguished:

• If the source station and the target station are located within the same segment, the data package is
not forwarded.

• If the station of the target address is located in another segment than the source station, the data
package is forwarded to the target segment.

• Data packages containing a multicast or a broadcast address as the target address are forwarded
via all ports.

• A data package with a target address which is not contained in the address tables is forwarded via
all ports (Frame Flooding).

The latter case normally only occurs during the first time after starting a switch since the address is
usually entered after some time when exchanging a data package.

__

V7 AC500 System Technology Couplers 37 Ethernet AC500 / Issued: 05.2006

In order to limit the size of the address tables, addresses which are not used over a longer period of time
are additionally removed from the tables. This also avoids incorrect forwarding as it would appear e.g.
when a station is moved within the network.

To enable the building of a redundant network structure (as it is often found in more complex networks)
using switches, the so-called spanning tree method has been introduced. With this method, the switches
exchange configuration messages among themselves. This way the optimum route for forwarding data
packages is determined and the creation of endless loops is avoided. The exchange of messages is
performed cyclic. As a result a connection breakdown is detected and forwarding is automatically
changed to another route.

Switch

Switch Switch

Switch Switch Switch

Figure 1-24: Redundant network structure using switches

Using a switch instead of a hub increases the bandwidth of the individual segments and therefore leads
to an increased performance. Building a network consistently with switches furthermore enables full
duplex operation and thus simultaneous data traffic in both directions since switches are able to
establish dedicated peer-to-peer connections between the individual ports. The use of the access
method CSMA/CD is not required since collisions can no longer occur. Depending on the network
structure, this can further increase the performance drastically. For full duplex connections furthermore
no length restrictions of the collision domain have to be observed.

1.5.4 Media converters

Media converters provide the possibility of connecting components to each other via different media. The
most frequently occurring case for this is the conversion between twisted pair (TP) and fibre optic
cabling.

When using media converters it has to be observed that a connected port operating in half duplex mode
is no collision domain border. This is often not considered when using optical fibres to bridge a larger
distance. The fibre optical port of a media converter furthermore does not support the auto negotiation
function. Due to this, if an Ethernet component is directly connected to the fibre optic side of a media
converter, the transmission mode has to be set fixed according to the component connected on the
twisted pair side. If a connection between two twisted pair components is established using two media
converters, it is absolutely required that both twisted pair components are operating with the same
transmission mode. If necessary, manual setting has to be performed.

1.5.5 Routers

Routers connect networks with identical protocols or addressing mechanisms. The main task of a router
is to perform the routing for the transmission of data packages from the sender to the recipient. Routers
are able to effectively reduce the data traffic between individual networks by using different algorithms.
The dynamic routing leads to a load reduction for the entire network. If the router has several alternative
routes to the target station available, it will always choose the optimum way depending on the current
load on the network and the expected costs.

In contrast to the switches which forward the packets on the basis of layer 2 (e.g. Ethernet), the routers
operate on layer 3 (e.g. IP). While the switches forward the packets on the basis of the MAC addresses,
the routers evaluate the contained IP addresses. For this purpose, when receiving a data package a
router first has to remove the outer telegram frame in order to be able to interpret the addresses of the
inner protocol and then it has to re-assemble the data package again before forwarding it. This results in
higher latency periods (time of stay) of the data within the router itself. The investigation of a data
package necessary for routing makes clear that a router has to be able to process all network protocols
to be routed over this router. Due to the increasing spread of heterogeneous networks, today often

__

V7 AC500 System Technology Couplers 38 Ethernet AC500 / Issued: 05.2006

routers are used which are able to support several network protocols (e.g. IP, IPX, DECnet, AppleTalk)
instead of special IP routers. Such routers which are able to process several network protocols are
called multi-protocol routers. Some routers additionally have a bridge functionality (bridge routers,
Brouters) which enables them to also forward the data packages of protocols a router cannot interpret or
which do not support the routing function (e.g. NetBios).

1.5.6 Gateways

A gateway is a computer which is able to couple completely different networks. Gateways are operating
on a layer above layer 3 of the ISO/OSI model. They are used to convert different protocols to each
other. For the connected subnetworks, a gateway is a directly addressable computer (node) with the
following tasks:

• Address and format transformation
• Conversions
• Flow control
• Necessary adaptations of transmission rates for the transition to the other subnetworks.

Gateways can furthermore be used to implement safety functions on the application layer (firewalls). For
example, gateways are used for the coupling of PCs located in local area networks (LAN) to public long
distance communications (wide area networks, WAN).

__

V7 AC500 System Technology Couplers 39 Ethernet AC500 / Issued: 05.2006

2 The Ethernet coupler

2.1 Features

2.1.1 Supported protocols

IP - Internet Protocol (RFC 791):

• Freely configurable IP address and network mask
• Configurable IP address of the standard gateway
• IP datagram size: 1500 bytes max.
• Route Cache size: 32 entries
• Route Timeout: 900 seconds
• Number of IP multicast groups: 64 for reception, unlimited for transmission

TCP - Transmission Control Protocol (RFC 793, RFC 896):

• Amount of user data for TCP telegrams: 1460 bytes max.

UDP - User Datagram Protocol (RFC 768):

• Amount of user data for UDP telegrams: 1472 bytes max.

BOOTP - Bootstrap Protocol (RFC 951, RFC 1542, RFC 2132):

DHCP - Dynamic Host Configuration Protocol (RFC 2131, RFC 2132):

OpenModbus:

• Client and/or server mode (several times)
• Up to 8 simultaneous client or server connections
• Supported function codes: 1, 2, 3, 4, 5, 6, 7, 15, 16
• Maximum amount of data per telegram: 100 coils (words) or 255 registers (bits)
• Configurable connection monitoring functions

NetIdent:

• Devices can be identified and accessed via the network (even unconfigured devices)
• Unique identification and localization via rotary switch on the devices

ARP - Address Resolution Protocol (RFC 826):

• ARP Cache size: 64 entries
• ARP Timeout: 600 seconds

ICMP - Internet Control Message Protocol (RFC 792):

IGMPv2 - Internet Group Management Protocol, version 2 (RFC 2236):

Further protocols and applications are in preparation

2.1.2 Sockets

• Number of sockets: 16
• Socket options can be set individually

__

V7 AC500 System Technology Couplers 40 Ethernet AC500 / Issued: 05.2006

2.1.3 Restrictions

• IP fragmentation is not supported
• TCP Urgent Data is not supported
• TCP port 0 is not supported
• TCP port 502 is reserved for OpenModbus
• TCP port 1200 is reserved for gateway access
• UDP port 67 is reserved for BOOTP and DHCP
• UDP port 25383 is reserved for NetIdent protocol
• UDP port 32768 is reserved for UDP blocks

2.2 Technical data

2.2.1 Technical data of the coupler

Internal Ethernet coupler PM5x1-ETH

Coupler type Ethernet coupler, internal

Processor EC1-160, 48 MHz

Ethernet controller EC1-160 internal

Internal power supply with +5 V, 280 mA typ.

Internal RAM memory (EC1) 256 kbytes

External RAM memory -

External Flash memory 512 kbytes (firmware)

CE sign yes

External Ethernet coupler CM577

Coupler type Ethernet coupler, external

Processor EC1-160, 48 MHz

Ethernet controller EC1-160 internal

Internal power supply with +5 V, 420 mA typ.

Internal RAM memory (EC1) 256 kbytes

External RAM memory 2 x 128 kbytes (web server)

External Flash memory 512 kbytes (firmware), 2 Mbytes (web sever)

CE sign yes

2.2.2 Interfaces

Internal Ethernet coupler PM5x1-ETH

Ethernet 10/100 Base-TX, RJ45 socket

LED indication none

Station identification input via keypad, 0...255

External Ethernet coupler CM577

Ethernet 10/100 Base-TX, internal switch, 2 x RJ45 socket

LED indication status indication via 5 LEDs

Station identification rotary switch, 0...255 (00...FFhex)

__

V7 AC500 System Technology Couplers 41 Ethernet AC500 / Issued: 05.2006

2.2.3 Technical data of the Ethernet interface

Transmission mode Half or full duplex operation, adjustable

Transmission rate 10 or 100 Mbit/s, adjustable

Auto negotiation optionally adjustable

MAC address optionally configurable

Ethernet frame types Ethernet II (RFC 894), IEEE 802.3 receive only (RFC 1042)

2.3 Connection and data transfer media

2.3.1 Attachment plug for Ethernet cable

8-pole RJ45 plug

See also chapter "1.4 Cabling".

Assignment:

Pin No. Signal Meaning

1 TxD+ Transmit data (line) +

2 TxD- Transmit data (line) -

3 RxD+ Receive data (line) +

4 NC Not used

5 NC Not used

6 RxD- Receive data (line) -

7 NC Not used

8 NC Not used

Shield Cable shield

Table 2-1: Pin assignment of the attachment plug for the Ethernet cable

2.3.2 Ethernet cable

For structured Ethernet cabling only use cables according to TIA/EIA-586-A, ISO/IEC 11801 or
EN 50173 (see also chapter "1.4 Cabling").

2.4 Ethernet implementation

2.4.1 Configuration

The Ethernet coupler is configured via PC using the SYCON.net configuration software . The
configuration data created with SYCON.net have to be downloaded to the controller separately (in
addition to a CoDeSys project). In the controller, the data are automatically stored in the Flash memory.

If the user defined project is written to SMC, the configuration data are also saved automatically.

2.4.2 Running operation

The integrated protocols are automatically processed by the coupler and the operating system of the
controller. The coupler is only completely ready for operation if it has been configured correctly before.
Online access via the Ethernet coupler is available at any time, independent of the controller's state.
Designable protocols (e.g. fast data exchange via UDP) require function blocks. They are only active
while the user program is running. If the user program is stopped, all the planned connections possibly
still existing are closed automatically.

__

V7 AC500 System Technology Couplers 42 Ethernet AC500 / Issued: 05.2006

2.4.3 Error diagnosis

The Ethernet coupler's operating condition as well as possible communication errors are indicated by
LEDs (in case of external couplers) or on the display (in case of internal couplers). Malfunctions of the
integrated protocol drivers or the coupler itself are indicated via the Ex error flags and the corresponding
LEDs . In case of designable protocols, information about occurring errors are additionally available at
the outputs of the corresponding function blocks.

2.5 Diagnosis

Status LEDs of the external Ethernet coupler:

Status indication via 5 LEDs:

LED Color Meaning

PWR green Supply voltage

RDY yellow The coupler is ready for operation.

RUN green Status of configuration and communication.

STA yellow Status of Ethernet communication.

ERR red Communication error

Table 2-2: Status LEDs

Ethernet error messages:

The Ethernet error messages are listed in the following topic: "Error tables of the Ethernet coupler ".

Function blocks:

In case of designable protocols (e.g. fast data exchange via UDP), information about possibly occurring
errors are additionally available at the outputs of the corresponding function blocks.

Online diagnosis:

The field bus configuration tool SYCON.net provides extensive online diagnosis functions (refer to
documentation for the field bus configuration tool SYCON.net.

__

V7 AC500 System Technology Couplers 43 Ethernet AC500 / Issued: 05.2006

3 Designing and planning a network

3.1 Introduction

To obtain optimum performance within a network, it is absolutely essential to plan the network
beforehand. This applies to both the initial installation as well as its expansion. Rashly installed networks
can not only cause poor network performance, they even can lead to a loss of data since restrictions
given by the standard are possibly not kept. At first glance, designing a network causes additional costs,
but it will later reduce maintenance expenditures during operation.

The following sections shall explain some principle methods for determining a suitable network structure
and give some hints how to find out the network utilization and performance.

3.2 Concepts for structuring a network

Three fundamental aims are to be considered when designing the concept of a network: Performance,
quality and safety. The performance of a network is primarily described by the data throughput (as high
as possible) and the transmission delay (as short as possible). Quality means stability, fail-safety and
availability of the network. The safety aspect considers the safety of the transmitted data, i.e. protection
against access to confidential data by unauthorized persons. Whereas performance and quality are
planning goals for all kinds of networks, safety has mainly to be considered for networks which can be
accessed from the "outside world". For example, a "closed" network inside an installation containing only
automation components does not require particular protection of the data against unauthorized access.

Therefore, a detailed requirements analysis has to be done prior to the actual conception of a network in
order to meet the specific requirements of the particular network.

Apart from planning the passive structured cabling, making a network conception also includes the
selection of suitable active components such as hubs, switches or routers. Planning a new network
starts with a registration of all systems (e.g. controllers) to be installed which shall be connected by the
network and the requirements to the intended data exchange between these systems. When expanding
or optimizing an existing network, first the actual situation has to be determined and the performance of
the existing components with regard to the new requirements has to be assessed.

Regarding the network technology the following three general models are distinguished:

• Hierarchy model
• Redundant model
• Safe model

The selection of the suitable model as a basis for planning a network depends on the specific
requirements of the installation. Office networks are typically built up based on the hierarchy model since
the individual clients do not very often exchange data with each other but only periodically contact the
server. Installation-internal networks which do not have any connection to the company network often
only consist of automation devices and do not have a server. The connected controllers transmit data in
short intervals directly to each other. Furthermore, the operational safety of installation-internal networks
has a higher importance since data transmission malfunctions can result in incorrect behavior of the
installation or even in production stops. In such cases it is more suitable to choose the redundant model
or a safe model.

In the end, all three models shown above are based on the use of switching hubs (switches). Whereas in
the past simple hubs were increasingly used to set up a network wherever permitted by the
requirements, today almost exclusively switches are used. Using switches, historic Ethernet rules such
as the length restrictions of a collision domain no longer have to be observed. This considerably
simplifies the network design. Even though the use of switches could make us believe that networks can
be expanded to infinite size, it has to be considered that each switch involved in a data transfer causes a
delay. Therefore, the IEEE-802.1d bridging standard recommends to limit the number of switches to be
passed between two terminal devices to a maximum of seven switches.

__

V7 AC500 System Technology Couplers 44 Ethernet AC500 / Issued: 05.2006

3.2.1 Hierarchy model

The hierarchy model intends the subdivision of the network into several levels and a graduation of the
data rate between the individual levels. For this purpose, normally at least two grades are used e.g. by
connecting the server with a data rate of 100 Mbit/s to the network and the clients with 10 Mbit/s. The
advantage of this design is that the server has 10 times the bandwidth of the clients available which
enables the server to provide sufficient bandwidth and response time for several clients. Despite the fact
that 10 times the bandwidth does not mean that 10 clients can simultaneously access the server, the
data transmitted to or from the clients do only need one tenth of the time. In total, this reduces the
response time for each individual client.

Server

Switch Switch

Switch

Client Client Client Client Client Client

100 Mbits/s

10 Mbits/s

Figure 3-1: Hierarchy model

When dimensioning the individual levels the utilization of the particular level has to be considered.
Devices connected to each other via hubs can only be operated in half-duplex mode. Consequently they
have to share the commonly used network (shared media). If the utilization of such a shared media is
higher than 40 % over a longer period of time, a switch should be used instead of a hub in order to
subdivide the collision domain and thus remove load from it. The utilization threshold within such a
switched media is 80 %. If this value is exceeded, the utilization should be reduced by selecting a
smaller grouping.

3.2.2 Redundant model

The meshed Ethernet structure is a typical example for a redundant network model. To obtain fault
tolerance, several connections have to be established between switches or nodes. This way, data
exchange can be performed using another (redundant) connection if one connection fails.

Server
Switch

Client Server

Switch Switch Switch

Switch Switch

Client

Figure 3-2: Redundant model

__

V7 AC500 System Technology Couplers 45 Ethernet AC500 / Issued: 05.2006

However, this meshed constellation leads to loops which would make well-ordered data exchange
impossible. The loops would cause the broadcast or multicast data packages to endless stray in the
network. In order to suppress such loops, the spanning tree mechanism (refer to 1.5.3 Bridges, switches
and switching hubs) is used which always activates only one unique connection and deactivates all other
possible connections. On the occurrence of a fault (e.g. caused by an interruption of the network line) the
redundant connection is re-activated and then maintains communication between the switches.
However, switching of the connection is not without interruption. The time needed for switching depends
on the size and structure of the network.

The use of link aggregation which is often also called "trunking" likewise provides increased transmission
reliability. Link aggregation actually means the parallel connection of several data lines. This way the
bandwidths of the individual data lines are bundled in order to increase the total bandwidth. Furthermore,
the parallel connection establishes a redundant connection. If one data line fails, the data can still be
transmitted via the remaining lines even though only with reduced bandwidth.

3.2.3 Safe models

To obtain a certain grade of safety for the transmitted data against unauthorized access or to optimize
the network utilization, it is suitable to design so-called Virtual Bridged Local Area Networks (VLANs). In
a VLAN the data flow is grouped. The simplest variant of a VLAN is obtained by a port-related grouping
which means that particular ports of a switch are assigned to a VLAN and data exchange is then only
performed within this VLAN. A VLAN can be considered as a group of terminal stations which
communicate like in a usual LAN although they can be located in different physical segments. In the end,
establishing VLANs leads to a limitation of the broadcast domains. As a result, all subscribers of a VLAN
only receive data packages which have been sent by subscribers of the same VLAN. Independent of
their physical location, all subscribers of a VLAN are logically put together to one broadcast domain. The
limitation of the broadcast domains relieves load from the network and provides safety since only the
members of the VLAN are able to receive the data packages.

VLAN2VLAN1

Figure 3-3: Safe models

In order to enable a terminal device connected to a switch to exchange data beyond the borders of the
VLAN, the port of the switch has to be assigned to several VLANs. Apart from the simple variant of the
port-based VLAN, it is also possible to establish VLANs by evaluating additional information contained in
the Ethernet frames.

__

V7 AC500 System Technology Couplers 46 Ethernet AC500 / Issued: 05.2006

3.3 Utilization and performance

In the description of the network models it has already been mentioned that the existing hubs should be
replaced by switches in order to subdivide the collision domain and thus remove load, if the utilization of
a shared media is higher than 40 % over a longer period of time. If the utilization within such a switched
media is permanently above 80 %, it is recommended to further relieve load by performing smaller
grouping.

However, a network should basically not be dimensioned for the burst utilization. During normal
operation usually many smaller data packages are transmitted rather than large data streams. This
means that the network load regarding the bandwidth is not as high. Nevertheless, if any bottle-necks
occur, the simplest method to eliminate them is to increase the data rate (e.g. from 10 Mbit/s to
100 Mbit/s). In existing networks, however, this is not always possible without problems since the cable
infrastructure is possibly not suitable for the higher data rate and the expenditure for a new cabling is
possibly not defensible. The only solution in such cases is a segmentation of the network which results in
a reduction of the number of devices within the network or collision domain and thus provides more
bandwidth for the remaining devices.

A segmentation of a network can be obtained with routers, bridges or switches. However, segmentation
is only meaningful if the 80/20 rule is considered and observed. The 80/20 rule says that 80 % of the
data traffic have to take place within the segment and only 20 % of the data traffic are forwarded to
another segment. This is why a previous analysis of the network traffic is required to enable meaningful
grouping. In this analysis it has to be determined which station is communicating with which other
stations in the network and which amount of data is flowing for this communication. For shared media
the network should be divided in a way that stations producing roughly the same load should be grouped
in one collision domain, if it is not possible to make a division based on the communication paths. This
way it is guaranteed that stations with lower data traffic are able to meet the typical requirements
regarding short response times. Stations with permanently high data traffic generally cause a drastic
increase of the response times.

Best performance increase can be obtained by using switches and connecting each single station
directly to the switches. This way each station has its own connection to a switch and thus can use the
full bandwidth of a port in full-duplex mode. This subdivision and the provision of the dedicated
connections is called micro-segmentation. For micro-segmentation the 80/20 rule does no longer apply.
It has only to be guaranteed that a switch is able to provide sufficient internal bandwidth.

Switch

Control
PM581
-ETH systemControl

PM581
-ETH

system

Control

PM581
-ETH

system Control
PM581
-ETH system

Control

PM581
-ETH

system

Control

PM581
-ETH

system

Figure 3-4: Direct connection of all stations to switches

In order to plan a network with optimum performance, we have to think about the question what a
network is able to achieve at all. Taking the standards as a basis it can be determined how many data
per time can be transmitted via a network theoretically. The smallest Ethernet frame size is 64 bytes long
and contains 46 bytes of user data, the maximum frame size is 1518 bytes at 1500 bytes of user data,
each plus 64 bits for the preamble and 96 bits for the inter-frame gap. This results in a minimum length
of 672 bits (64 x 8 + 64 + 96) and a maximum length of 12304 bits (1518 x 8 + 64 + 96). The
transmission of one bit takes 10 ns for fast Ethernet (100 Mbit/s) and 100 ns for Ethernet (10 Mbit/s).

__

V7 AC500 System Technology Couplers 47 Ethernet AC500 / Issued: 05.2006

Using these values we can calculate how many data packages of the smallest and the maximum length
can be transmitted per second theoretically (see tables). The calculation of the corresponding amount of
user data which can be transmitted (without taking into account the additional overheads of the higher
protocols) now shows the considerably higher protocol overhead caused by the small data packages.

10 Mbit/s Length
[bits]

Time/bit
[ns]

Time/frame
[ns]

Frames
[ns]

User data/
frame [1/s]

User data
[bytes/s]

min. frame 672 100 67 200 14 880 46 684 480

max. frame 12 304 100 1 230 400 813 1 500 1 219 500

Table 3-1: Data rate at 10 Mbit/s

100 Mbit/s Length
[bits]

Time/bit
[ns]

Time/frame
[ns]

Frames
[ns]

User data/
frame [1/s]

User data
[bytes/s]

min. frame 672 10 6 720 148 800 46 6 844 800

max. frame 12 304 10 123 400 8 127 1 500 12 195 000

Table 3-2: Data rate at 100 Mbit/s

The corresponding net bandwidth can be calculated from the ratio of the amount of user data per second
to the available network bandwidth. The net bandwidth is independent of the transmission rate and
calculated in the following table taking a transmission rate of 100 Mbit/s as an example.

100 Mbit/s User data
[bits/s]

Network bandwidth
[bits/s]

Net bandwidth
[%]

min. frame 54 758 400 100 000 000 54.7

max. frame 97 524 000 100 000 000 97.5

Table 3-3: Net bandwidth at 100 Mbit/s

These calculations point out that the percentage of the network performance is considerably higher for
the transmission of larger frames. The efficiency of the data transmission which is independent of the
transmission rate is shown in the following table using some selected frame sizes as an example.
However, the values given in the table only consider the protocol overhead of the MAC and the network
layer. The user data are reduced accordingly by the additional overhead of the corresponding higher
layers.

User data
[bits]

Frame size
[bits]

Overhead
[%]

Efficiency
[%]

1500 1518 1.2 98.8

982 1000 1.8 98.2

494 512 3.6 96.4

46 64 39.1 60.9

Table 3-4: Efficiency of data transmission

A calculation of the typical transmitted frame sizes may be still possible for small closed networks inside
an installation with only automation devices connected. But, for instance, if PCs are additionally
connected to the network (even if they are connected only temporarily) the frame sizes can vary
considerably. This makes it impossible to perform an exact calculation of the bandwidth or to make a
precise statement regarding the performance. However, the following index values could be determined
with the help of various studies about network performance.

• For low utilization of 0 to 50 % of the available bandwidth, short response times can be expected.
The stations are able to send frames with a typical delay of smaller than 1 ms.

• For medium utilization between 50 and 80 %, the response times can possibly increase to values
between 10 and 100 ms.

• For high utilization over 80 %, high response time and wide distribution can be expected. The
sending of frames can possibly take up to 10 seconds.

This is why the following principles should be observed when designing an Ethernet network.

__

V7 AC500 System Technology Couplers 48 Ethernet AC500 / Issued: 05.2006

• Mixed operation of stations which have to transmit high data volumes and stations which have to
operate with short response times (real time) should be avoided. Due to the wide distribution, short
response times cannot be guaranteed within such combinations.

• As few as possible stations should be positioned inside of one collision domain. For this purpose,
collision domains should be subdivided using switching hubs.

__

V7 AC500 System Technology Couplers 49 Ethernet AC500 / Issued: 05.2006

4 Planning examples

4.1 Introduction

The Ethernet coupler is only completely ready for operation if a valid configuration has been loaded
before. Configuring the coupler is always necessary, independent of the intended use of the coupler.
Only the parameters to be adjusted depend on the application. Furthermore, some cases require
additional implementation within the user program.

In the following sections the general procedure for configuring the Ethernet coupler and the application-
specific parameter assignment are explained as well as the possibly required implementation in the user
program. In each section regarding the application-specific parameter assignment, one specific
application case is described separately. Of course the different functions can also be mixed in any
combination.

4.2 Integration of couplers into the controller configuration

First, all couplers to be used in the AC500 have to be specified in the controller configuration (see also
System technology of the CPUs / Controller configuration).

To do this, open the "Resources" tab in the left-hand window and then double click on "PLC
Configuration".

For an internal coupler, select "Internal", press the right mouse button and then select "Replace Element"
-> "PM5x1-ETH".

For an external coupler, select "Couplers", press the right mouse button and then select "Append
Subelement" -> "CM572".

Please observe that the couplers have to be assigned to the correct slots: The first slot on the left of the
CPU is slot 1, the next slot on the left of slot 1 is slot 2, etc. The internal coupler is slot 0.

__

V7 AC500 System Technology Couplers 50 Ethernet AC500 / Issued: 05.2006

The protocol "MODBUS on TCP/IP" is installed together with the couplers by default. If you also want to
use UDP, right-click on the corresponding coupler and then select "Append UDP data exchange" from
the context menu.

The basic settings of the coupler should not be changed since these settings cover all usual applications.

4.3 General procedure for configuring the coupler

In this section the general procedure for configuring the coupler is described. This procedure has to be
performed in any case. All further application-specific parameter assignment is described in the
subsequent sections.

To create a configuration file, you first have to start the field bus configuration tool SYCON.net from the
"Tools" folder of the "Resources" tab in the Control Builder software.

__

V7 AC500 System Technology Couplers 51 Ethernet AC500 / Issued: 05.2006

The following overview is loaded after the start of the configuration tool SYCON.net.

In the right upper window in the register "Ethernet/Master", click on "PM5x1-ETH" (internal coupler) or
 "CM577-ETH" (external coupler) and draw it to the green rule into the middle window. With the right
position, a "+" appears.

Internal coupler

To configure the Ethernet coupler, move cursor on "PM5x1-ETH", then select "right mouse button" and
"Configuration".

__

V7 AC500 System Technology Couplers 52 Ethernet AC500 / Issued: 05.2006

In the register "Configuration/IP_SETUP" the IP-address, subnet mask and, if necessary, the gateway
address is entered (caution: entries begin with the last byte). The values for flag 0 (7 corresponds "to IP
ADDRESS available, Netmask available and Gateway available") and flag 1 (5 corresponds "to auto
detect and auto negotiate") can be taken over.

If OpenModbus is used, the "OMB_SETUP" can be carried out next.

__

V7 AC500 System Technology Couplers 53 Ethernet AC500 / Issued: 05.2006

In this example, the number of the "server connections" (number of the clients which may access in
parallel to a Modbus server (slave)) on 2 and "Swap" is set to TRUE (True corresponds to Motorola byte
order).

The configuration can be downloaded now into the Ethernet coupler. To do this, the interface, via which
the data has to be loaded into the coupler, must be defined first. The corresponding interface can be
configured in the configuration window of the Ethernet coupler in the register "Settings/Driver/3S
Gateway Driver".

__

V7 AC500 System Technology Couplers 54 Ethernet AC500 / Issued: 05.2006

In the window on the left, select "Device".

Select the driver "3S Gateway Driver".

Select "Gateway Configuration".

Select or create new "Gateway", then confirm with "OK".

__

V7 AC500 System Technology Couplers 55 Ethernet AC500 / Issued: 05.2006

The configuration tool SYCON.net now searches for Ethernet couplers, which are attached at the given
interface. A list of the detected Ethernet couplers can be seen in the configuration window of the
Ethernet coupler in the register "Settings/Device Assignment".

Select the corresponding coupler and confirm with "OK".

The access to the Ethernet coupler is defined with that. To download the configuration into the coupler,
move the cursor in the graphic window on "PM5x1-ETH", then use "right mouse button" and "Connect".

The PM5x1-ETH icon is then highlighted by green background color.

Switch the AC500 to "Stop".

Position the cursor again on the PM5x1-ETH icon in the graphic window, press the right mouse button
and select "Download".

Confirm the appearing inquiry dialog with "Yes" to start the download process for the configuration of the
internal Ethernet coupler.

__

V7 AC500 System Technology Couplers 56 Ethernet AC500 / Issued: 05.2006

After a successful download, the coupler is configured.

In the graphic window, position the cursor on the PM5x1-ETH icon, press the right mouse button and
select "Disconnect".

The configuration of the internal coupler is now completed.

External coupler

The configuration of the external Ethernet coupler has to be carried out equivalently for the configuration
of the internal Ethernet coupler. The distinction between an internal or an external Ethernet coupler is
carried out at the beginning of the configuration by choosing the coupler "CM577-RTH".

4.4 Programming access via Ethernet

For programming access via Ethernet the same gateway can be used as for the configuration of the
second Ethernet controller. This gateway has to be selected in the CoDeSys software under "Online /
Communication Parameters".

4.5 MODBUS on TCP/IP

For the standardized (Open)Modbus protocol two operating modes are distinguished. Controllers with
Ethernet coupler can be operated as Modbus on TCP/IP client (master) as well as as server (slave).
Simultaneous operation as client and server is also possible. In all operating modes, several
Modbus on TCP/IP connections can be provided simultaneously. The maximum possible number of
simultaneous connections is only limited by the number of available sockets. Here it has to be observed
that each additional communication connection aside from Modbus on TCP/IP also requires one or more
sockets.

Operation of the controller as Modbus server only requires a corresponding configuration for the
Ethernet coupler to be set up. Operation as Modbus client furthermore requires the implementation of
blocks in the user program.

 Caution: The user program should not be implemented as a cyclic task (PLC_PRG) if high
communication traffic is expected due to the operation as Modbus on TCP/IP client and/or server. A
task configuration has to be implemented instead with the cycle time to be adjusted in a way that
sufficient communication resources are available in addition to the actual processing time for the
program.

4.5.1 Server / slave operation

A typical application for the operation of a controller as (Open)Modbus on TCP/IP server is the linking of
an operating terminal via Ethernet. With this application, the operating terminal operates as Modbus
client and sends telegrams for reading or writing variables to the controller which executes them
accordingly. Since (Open)Modbus on TCP/IP is a standardized protocol, every device supporting this
protocol can be connected this way independent of the device type and manufacturer.

For our design example a closed installation-internal network is used. The network consists of four
subscribers, two operating terminals and two controllers. The devices are connected to each other via a

__

V7 AC500 System Technology Couplers 57 Ethernet AC500 / Issued: 05.2006

switch. The operating terminals shall have the IP addresses 10.49.91.251 and 10.49.91.252. The
controllers shall have the IP addresses 10.49.91.253 and 10.49.91.254. Both operating terminals shall
be able to access both controllers. Since the terminals are not time-synchronized, simultaneous access
of both terminals to the same controller must be possible.

MODBUS server
Control system

MODBUS server
Control system

MODBUS client
Operating terminal

MODBUS client
Operating terminal

Switch

PM581
-ETH

PM581
-ETH

Figure 4-1: Example for OpenModbus on TCP/IP - controller operated as server

Designing the operating terminals as Modbus clients is not subject of this description. For information
about this, please contact the corresponding manufacturer. Please refer to the description of the
ETH_MOD_MAST function block contained in the AC500 documentation for the cross-reference list for
client access to the operands of the controller.

 Caution: The specified number of parallel server connections results in a permanent reservation
of a corresponding number of sockets for these connections. These sockets cannot be used by other
protocols. If many clients are used that shall be able to access the controller simultaneously, this can
result in a lack of sockets for other protocols. In this case the maximum possible number of
simultaneous server connections has to be reduced.

Now, repeat the configuration for the second controller using a different IP address of e.g. 10.49.91.254.
All other parameter settings are identical to the settings for the first controller.

Implementation in the user program:

The design process for Modbus server operation is now completed. Since the protocol is automatically
processed by the controller, no further blocks in the user program are required. If necessary, the function
block ETH_MOD_INFO can be inserted into the project for diagnosis. The function block is contained in
the library Ethernet_AC500_V10.lib (or higher version).

4.5.2 Client / master operation

One possible application for the operation of a controller as (Open)Modbus on TCP/IP client is for
example the linking of sensors with Ethernet connection supporting the Modbus protocol. With this
application the controller operates as Modbus client and sends telegrams for reading or writing data to
the corresponding sensor which in turn generates a corresponding answer. Since
(Open)Modbus on TCP/IP is a standardized protocol, every device supporting this protocol can be
connected this way independent of the device type and manufacturer.

For our design example a closed installation-internal network is used. The network consists of three
subscribers, one controller and two temperature sensors with Ethernet connection. The devices are
connected to each other via a switch. The controller shall have the IP address 10.49.91.253. The
sensors shall have the IP addresses 10.49.91.251 and 10.49.91.252.

__

V7 AC500 System Technology Couplers 58 Ethernet AC500 / Issued: 05.2006

TT MODBUS server
Sensor

MODBUS client
Control system

Switch

MODBUS server
Sensor

PM581
-ETH

Figure 4-2: Example for OpenModbus on TCP/IP - controller operated as client

Planning the sensors (setting the IP address) as Modbus server is not subject of this description. For
information about this, please contact the corresponding manufacturer.

The parameters Task timeout and Omb time are relevant for controller operation as Modbus client and
were already set in the OMB SETUP.

The Task timeout parameter determines how long the client shall wait for the server's answer after the
transmission of the request to the server before the process is aborted with an error message. For the
network considered in our example the default value of 20 x 100 ms can be maintained or even reduced.
However, for larger networks with high utilization it can be necessary to increase this value. The valid
values for the task timeout parameter range from 1 x 100 ms to 60000 x 100 ms. Here it has to be
observed that the controller normally cannot access a server either until it has received its answer or
until the timeout has expired. This is why the task timeout value should be dimensioned in a way that no
abortion occurs even during temporarily higher utilization. On the other hand, the time reserve should not
be too high in order to enable the detection of communication errors as early as possible for a
correspondingly high connection performance. For this example a task timeout value of 20 x 100 ms
(default) is selected.

The Omb time specifies how long the connection shall be maintained after reception of the response
telegram. Modbus is based on TCP/IP. One characteristic of this protocol is that a logical communication
connection is first established, then the data are exchanged and finally the connection is closed again.
The process for establishing and closing the connection takes some time. If data communication
between the controller and the servers shall only be performed in longer intervals it makes sense to
close the connection immediately after data communication is finished. This avoids unnecessary long
blocking of the Modbus access. For fast cyclic data exchange between the client and the server the
frequency of connection establishment and closing can be reduced by setting a higher "omb time".

 Caution: It has to be observed that the concerning Modbus access (socket) is blocked for other
clients as long as the connection is established. If a Modbus server only has a logical access, this
results in the fact that no other client can access this server during this time. As long as the connection
is established, it also seizes a socket on the controller side. Under certain circumstances this can lead
to the fact that not enough sockets can be made available for other protocols during this time.

For this example it is committed that the controller operating as Modbus client shall request the
temperature every second from the sensors operating as Modbus servers. Since no other client is
accessing the sensors, the connections can be kept open for 1 second. The remain open time is
restarted for each connection after each reception of a response from the corresponding server.
Therefore, please enter the value 10 x 100 ms here.

The three TCP parameters Send timeout, Connect timeout and Close timeout are related to the TCP
protocol used by Modbus. They are considered for client operation as well as for server operation. In the
corresponding input fields the respective times have to be specified in milliseconds where 0 is the
respective default timeout value. Valid values are 0 to 2.000.000.000.

__

V7 AC500 System Technology Couplers 59 Ethernet AC500 / Issued: 05.2006

The Send timeout parameter determines how long the controller shall attempt to send a request to a
server. Normally the default value 0 which corresponds to 31 seconds can be kept.

The Connect timeout parameter determines how long the controller shall attempt to establish a TCP
connection to a server. Normally the default value 0 which corresponds to 31 seconds can be kept.

The Close timeout parameter determines how long the controller shall attempt to close a TCP
connection to a server. Normally the default value 0 which corresponds to 13 seconds can be kept.

The Swap parameter is also relevant for both the client operation and the server operation. With this
parameter you can determine whether the two bytes in the words shall be swapped automatically during
the transmission of data words. Swapping the word data can be necessary if devices with different
processor types are used. If, for example, a server is operating in Motorola format, the word data from
the operand memory sent by the controller have to be converted from Intel format into Motorola format
(Swap = TRUE) prior to the actual transmission to the server. In the opposite direction the word data of
the server are converted into Intel format before they are written to the operand memory of the controller.

Since all subscribers used in this example are processing the data in Motorola format, the Swap
parameter has to be set to TRUE.

Thus, the Open Modbus parameter settings are as follows:

The creation of the configuration data is now completed. Continue as described in section "4.3 General
procedure for configuring the coupler" and download the configuration data to the Ethernet coupler.

__

V7 AC500 System Technology Couplers 60 Ethernet AC500 / Issued: 05.2006

Implementation in the user program:

The coupler is now ready for Modbus client operation. Now the blocks for starting the requests to the
servers have to be implemented into the user program.

For this purpose, start the CoDeSys programming software and create a new project or open a
corresponding existing project. At first integrate the used Ethernet coupler in the PLC configuration.
Insert an instance of the function block ETH_MOD_MAST in your project now.

Assign the slot number (module number) of the used Ethernet coupler to the block input Slot. If the
internal Ethernet coupler is used, this corresponds to module number 0. When using external couplers,
these couplers are numbered consecutively from right to left. The first external coupler has the module
number 1.

The IP address of the first sensor is 10.49.91.251. This IP address has to be applied to input IP_ADR of
the MODMAST block. Each byte in IP_ADR represents one octet of the address. Thus, for our example
the value 16#0A315BFB (hexadecimal) or 171006971 (decimal) has to be assigned to IP_ADR.

Since the temperatures shall be read from the sensors in the form of a word, the value 3 has to be
assigned to FCT and 1 has to be specified for NB. At input ADDR, the register address in the server has
to be specified from which the word should be read. Starting from the assumption that the current
temperature is stored in the sensor under register address 0, you have to enter the value 0 here.

Furthermore, the data read from the first sensor shall be stored in the variable Data_MM1 in the operand
memory of the controller. Thus, block input DATA has to be wired with this operand via the ADR block.

The Modbus request to a server is started with a FALSE –> TRUE edge at input EN. The release
of input EN is controlled by a step chain depending on the outputs DONE and ERR (available for exactly
one PLC cycle after the task execution).

Represented in FBD, this results in the following program part for the first server.

__

V7 AC500 System Technology Couplers 61 Ethernet AC500 / Issued: 05.2006

Declaration of variables

Step chain to control
the ETH_MOD_MAST
function block.

The enable of the next task
is delayed as long as the
old task has not been com-
pleted without errors
(the DONE output is TRUE
for one cycle, the ERR
output must be FALSE
during this period
of time).

Block allocation

EN Enable

Slot 0 =

1 = 1st external slot

2 = 2nd external slot

IP_ADR TCP/IP address of the receiver

Unit_ID

FCT

ADDR

NB

DATA

Modbus slave address of a serial
slave (if a gateway is used)

Modbus Function Code

Address in the memory of the receiver

Number of bytes

Location of data in the master

internal

Now insert a corresponding block for the second server. The assignments for the block inputs are almost
identical. Only the IP address (16#0A315BFC), the operand used to store the read values (Data_MM2)
and the step chain are different.

__

V7 AC500 System Technology Couplers 62 Ethernet AC500 / Issued: 05.2006

If required, the program additionally has to be expanded by an evaluation of possible errors. If an error
occurs during the processing of a Modbus request, this is indicated at output ERR of the corresponding
ETH_MODMAST block. The general Modbus processing status can be displayed and evaluated using
the ETH_MODSTAT block.

Download the project to the controller. After this, implementation of the Modbus client is completed.

__

V7 AC500 System Technology Couplers 63 Ethernet AC500 / Issued: 05.2006

4.6 Fast data communication via UDP/IP

4.6.1 Example configuration for data communication via UDP/IP

Fast data communication via UDP/IP is a proprietary (manufacturer-specific) protocol. This protocol is
only supported by AC31 series 90 or AC500 controllers. It serves for the transmission of any data
between the controllers and can be used in parallel to all other protocols. This protocol is based on the
standardized protocols UDP and IP. The actual protocol is lying above UDP/IP.

Protocol handling corresponds to a large extent to the ARCNET processing. Aside from the
corresponding configuration of the Ethernet coupler, the implementation of the following bocks is
required for fast data communication via UDP/IP:

• ETH_UDP_REC
• ETH_UDP_SEND
• ETH_UDP_STO

 Caution: The user program should not be implemented as a cyclic task (PLC_PRG) if high
communication traffic caused by the protocol for fast data communication via UDP/IP is expected. A
task configuration has to be implemented instead with the cycle time to be adjusted in a way that
sufficient communication resources are available in addition to the actual processing time for the
program.

For our design example a closed installation-internal network is used. The network consists of two
AC500 controllers. The devices are connected to each other via a switch. The controllers shall have the
IP addresses 10.49.91.253 and 10.49.91.254. Each controller shall send 2 bytes of data to the other
controller. The uniform and constant user data length has been chosen only to simplify the example. If
necessary, it is also possible to use different data lengths for each controller as well as variable data
lengths for each transmission.

The individual transmissions shall be controlled in different ways for each controller.

Controller 1 (IP address 10.49.91.253)
transmits the data to the other controller periodically and receives data from the other controller.

Controller 2 (IP address 10.49.91.254)
transmits the data to the other controller periodically and receives data from the other controller.

Switch

ControlControl

PM581
-ETH

PM581
-ETH

system system

Figure 4-3: Example configuration for data communication via UDP/IP

4.6.2 Configuring the Ethernet couplers for data communication via UDP/IP

The configuration of the couplers has to be performed according to section 4.3.

4.6.3 Implementation in the user program

Configuring the couplers for fast data communication via UDP/IP is completed. Now the blocks for
processing the protocol have to be implemented into the different user programs.

__

V7 AC500 System Technology Couplers 64 Ethernet AC500 / Issued: 05.2006

For this purpose, start the CoDeSys programming software and create a new project or open a
corresponding existing project. At first integrate the used Ethernet coupler in the PLC configuration.

Protocol processing initialization:

The procedure for initializing the protocol processing is identical for all controllers used in this example.

The initialization of the protocol processing and the required resources is done in the controller
configuration.

The desired receive buffer length in bytes is specified using the parameter "Size of receive buffer". All
received telegrams are first stored in this buffer and can then be read by means of the ETH_UDP_REC
block. Aside from the actual user data of a telegram the sender's IP address and the telegram length are
stored. The value 8192 bytes should be sufficient for most applications.

The parameters "Size of transmit buffer high prio" and "Size of transmit buffer low prio" are used
to specify the transmit buffer sizes for telegrams with high or low priority in bytes. UDP telegrams can be
transmitted either with normal or high priority. For each priority a separate transmit buffer is available. If
only one transmit priority is used in the program, the corresponding transmit buffer has to be configured
with a sufficient size.

If mixed priorities are used, the telegrams with high priority are transmitted first. Telegrams with normal
priority (if available) are not transmitted until the transmit buffer for telegrams with high priority does no
longer contain any telegrams. If another message with high priority is written into the transmit buffer
before the transmission of all telegrams with normal priority is finished, the normal priority transmission is
interrupted for the transmission of the high priority message. After this, the transmission of telegrams
with normal priority is continued.

The parameter "Size of timeout buffer" is used to specify the length of the timeout buffer. This buffer is
used to automatically store information about telegrams which could not be transmitted to the recipient
due to an error. Errors can be caused e.g. by an interrupted Ethernet line, an incorrectly specified IP
address for the recipient which does not exist in the network or a recipient controller which is in STOP
state.

The parameter "Receive broadcast" is used to specify whether received broadcast telegrams shall be
stored in the receive buffer (Enable) or dismissed (Disable). In our example no broadcasts are used. The
parameter is therefore set to 'Disable'.

The parameter "Behavior on receive buffer overflow" is used to specify what should happen if further
telegrams are received after the receive buffer is full. If the parameter is set to 'Overwrite', the oldest
telegrams stored in the buffer are replaced by the received new telegrams. If it is set to 'Reject', the data
stored in the buffer are kept and the subsequently received telegrams are dismissed instead until
sufficient space is available again in the buffer.

 Note: In order to avoid receive buffer overflow e.g. due to higher data traffic than expected, enlarge
the receive buffer or read the buffer more frequently via the ETH_UDP_REC block.

__

V7 AC500 System Technology Couplers 65 Ethernet AC500 / Issued: 05.2006

Transmission of data:

The transmit process or the process of storing a telegram to be transmitted in the corresponding buffer is
initiated by a rising edge applied at input EN of the ETH_UDP_SEND block. The block confirms this
process with a rising edge at output DONE. If an error occurred during this process (e.g. receive buffer
full), this is indicated at output ERR. A telegram to be transmitted was only stored successfully in the
corresponding transmit buffer if DONE = TRUE and ERR = 0. The variable to be used to store a transmit
telegram has to be applied to block input DATA via the ADR operator.

Reception of data:

Reading telegrams from the receive buffer is done using the ETH_UDP_REC block. If necessary, it is
also possible to use several instances of the ETH_UDP_REC block within one program to enable faster
reading of the telegrams. The block is processed if input EN = TRUE. The corresponding coupler has to
be specified at input SLOT (0 = int. coupler, 1 = 1st ext. coupler slot, etc.). The variable to be used to
store a receive telegram has to be applied to block input DATA via the ADR operator.

The following program can be used for our example (data exchange between two controllers):

Declaration of variables

__

V7 AC500 System Technology Couplers 66 Ethernet AC500 / Issued: 05.2006

Step chain to control
the ETH_UDP_SEND
function block.

The enable of the next task
is delayed as long as the
old task has not been com-
pleted without errors
(the DONE output is TRUE
for one cycle, the ERR
output must be FALSE
during this period
of time).

Block allocation

EN Enable

SLOT 0 =

1 = 1st external slot

2 = 2nd external slot

IP_ADR TCP/IP address of the receiver

PRIO

TOUT

LEN

DATA

TRUE = Sending with high priority
FALSE = Sending with low priority

�Timeout waiting time of the sender,
�with entries >0, the receiver must

send an acknowledgement

Number of bytes (length)

Location of data to be sent

internal

The values TRUE at output DONE and 0 at output ERR indicate that a telegram has been successfully
read from the buffer during the present cycle and copied to the area specified at input DATA. The user
data length of the telegram is output at LEN. The block always reads the next receive telegram stored in
the buffer without taking into account the IP address of its sender. The sender's IP address of the
respective telegram is output at IP_ADR.

The program for the second controller is almost identical.

__

V7 AC500 System Technology Couplers 67 Ethernet AC500 / Issued: 05.2006

__

V7 AC500 System Technology Couplers 68 Ethernet AC500 / Issued: 05.2006

Instead of specifying the TCP/IP address as a hex value at block ETH_UDP_SEND, the function
"IP_ADR_STRING_TO_DWORD" contained in library "ETHERNET_AC500_V10.lib" (folder "IP
conversions") can also be used. In this case, the address is specified as string.

For output IP_ADR of block "ETH_UDP_REC", an inverse function is available in order to obtain the
TCP/IP address as string (IP_ADR_DWORD_TO_STRING).

If telegrams are received from different controllers and if the data received from the respective controller
shall not be overwritten by the data received from another controller, it is furthermore required to copy
the data to a specific area for the sender's IP address.

The implementation of this distribution is easier to realize using an ST program.

__

V7 AC500 System Technology Couplers 69 Ethernet AC500 / Issued: 05.2006

Here, the data are copied to different areas according to the TCP/IP address using the "CASE"
command.

16#0A31B5FE 10.49.91.254

16#0A31B5FD 10.49.91.253

In case of higher amounts of data, complete arrays can be created instead of an integer.

This example can be easily expanded for a higher number of stations.

If a telegram stored in the transmit buffer could not be transmitted to the target controller for any reason
or if the target controller did not acknowledge the reception of the telegram within the specified send
timeout of 100 ms, the information about this telegram specified during the initialization are stored in the
timeout buffer. In case of a buffer overflow, the respective oldest entry is overwritten and the number of
entries still stays at the maximum value.

If the individual controllers are started one after the other, it can happen that the value of LEVLTOS first
increases in the controllers already started since the controllers, which are not yet in RUN state, are not
yet able to process the protocol. Then, after all controllers are in RUN state and if the Ethernet network is
connected correctly and not overloaded, the LEVLTOS values should no longer change in any controller.

If necessary, the information about the undeliverable transmit telegrams stored in the timeout buffer can
be read via the ETH_UDP_STO block and evaluated. The figure below shows the corresponding block
call for all controllers.

If output DONE is TRUE and ERR is 0, a data record has been read from the buffer and stored in
TIMEOUT_DATA. If necessary, it is now possible to further evaluate the data record. Furthermore, the
number of entries in this buffer is decremented if no other timeout occurred in the meantime. According
to the initialization of the protocol processing, TIMEOUT_DATA[1] to [4] contain the IP address of the
target controller and TIMEOUT_DATA[5] contains the first byte of the original user data.

Download the projects to the corresponding controllers. The implementation of fast data communication
via UDP/IP is now completed.

__

V7 AC500 System Technology Couplers 70 Ethernet AC500 / Issued: 05.2006

5 Terms and explanations

5.1 Terms

ACR Attenuation to Crosstalk Radio

ARP Address Resolution Protocol

AUI Attachment Unit Interface

BOOTP Bootstrap Protocol

CSMA/CD Carrier Sense Multiple Access / Collision Detection

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

DoD Department of Defense

ELFEXT Equal Level Far End Cross Talk

FEXT Far End Cross Talk

FTP File Transfer Protocol

http Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronical Engineers

IFG Interframe Gap

IP Internet Protocol

LAN Local Area Network

LLC Logical Link Control

MAC Media Access Control Protocol

MDI Medium Dependent Interface

MDI-X Medium Dependent Interface, crossed

NEXT Near End Cross Talk

NIS Network Information Service

PLS Physical Layer Signalling

PMA Physical Medium Attachment

PPP Point-to-Point Protocol

SMTP Simple Mail Transfer Protocol

STP Shielded Twisted Pair

TCP Transmission Control Protocol

TOS Type of Service

TP Twisted Pair

TTL Time to Live

UDP User Datagram Protocol

URL Uniform Resource Locator

UTP Unshielded Twisted Pair

WAN Wide Area Network

WWW World Wide Web

__

V7 AC500 System Technology Couplers 71 Ethernet AC500 / Issued: 05.2006

5.2 Explanations

• IP is connectionless

• UDP is connectionless

• TCP is connection oriented (secure communication)

• IP implements the transmission of normal datagrams

• ICMP serves for the transmission of error and information messages

• An IP module of a device can have several IP addresses

• Sockets consist of an IP address and a port and are the interface between TCP and the above
application

• Ports are (partly standardized) symbolic numbers

• Transmission of data by an application is performed via an actively open socket

• Reception of data by an application in the target computer is performed by assigning the receive
telegram

• (IP address/port) to a passively open socket

• TCP communication phases:

• Connection setup -> data transmission -> closing of connection

• FTP:
File Transfer Protocol, protocol used for the transfer of files

• HTTP:
Hyper Text Transfer Protocol, protocol used for the transfer of Internet pages (webservers)

• SMTP:
Protocol used for sending Emails

• POP3:
Protocol used for the reception of Emails via an Email server

• Hub:
Simple "distribution box" for star topology, received telegrams are forwarded to all connected
subnetworks

• Switch:
Intelligent "distribution box" for star topology with knowledge about the structure and the subscribers
of the connected subnetworks, specific forwarding of received telegrams to the concerning
connected subnetwork or subscriber which reduces the load within the network compared with hubs

• Router, Server:
Connection of a local network (LAN, e.g. Ethernet) to the "outside world" (WAN, e.g. DSL)

• DHCP:
Protocol for the automatic IP address assignment performed by the server

• BOOTP:
Protocol for the automatic IP address assignment performed by the server

__

V7 AC500 System Technology Couplers 72 Ethernet AC500 / Issued: 05.2006

6 Index

A

Address Resolution Protocol (ARP) 24 (1.3.8)
dynamic address mapping 25 (1.3.8)
static address mapping 24 (1.3.8)

B

BootP and DHCP 22 (1.3.7)
automatic IP address assignment 23 (1.3.7)
Bootstrap Protocol (BootP) 22 (1.3.7)
Dynamic Host Configuration Protocol (DHCP) 22 (1.3.7)
dynamic IP address assignment 23 (1.3.7)
function 23 (1.3.7)
manual IP address assignment 23 (1.3.7)

E

Ethernet 4 (1.0)
1:1 cables and crossover cables 30 (1.4.3)
Address Resolution Protocol (ARP) 24 (1.3.8)
auto negotiation 6 (1.2.4)
BootP and DHCP 22 (1.3.7)
bridges, switches and switching hubs 35 (1.5.3)
bus access methods 5 (1.2.2)
concepts for structuring a network 43 (3.2)
configuring the coupler for Modbus on TCP/IP – server 58 (4.5.1)
configuring the coupler (general procedure) 50 (4.3)
configuring the Ethernet couplers for UDP/IP 63 (4.6.2)
connection and transfer media 41 (2.3)
connector pin assignment 30 (1.4.2)
designing and planning a network 43 (3.0)
diagnosis 42 (2.5)
Domain Name Service Protocol (DNS) 27 (1.3.9)
dualspeed hubs for 10/100 Mbit/s 32 (1.5.2)
Ethernet and TCP/IP 6 (1.2.5)
Ethernet coupler 39 (2.0)
example configuration for UDP/IP 63 (4.6.1)
explanations 71 (5.2)
fast data transfer via UDP/IP 63 (4.6)
features 39 (2.1)
File Transfer Protocol (FTP) 25 (1.3.9)
frame formats 5 (1.2.1)
gateways 38 (1.5.6)
half duplex and full duplex 6 (1.2.3)
hierarchy model 44 (3.2.1)
hosts file 27 (1.3.9)
hubs for 10 Mbit/s 33 (1.5.2)
hubs for 100 Mbit/s 34 (1.5.2)
Hypertext Transfer Protocol (HTTP) 25 (1.3.9)
implementation 41 (2.4)
Internet Control Message Protocol (ICMP) 13 (1.3.3)
Internet Name Service (IEN 116) 27 (1.3.9)
Internet-Protocol (IP) 8 (1.3.2)
length restrictions 31 (1.4.4)
MAC address 5 (1.2.1)
media converters 37 (1.5.4)
Modbus on TCP/IP – example 57 (4.5)
network cable 29 (1.4.1)
network components 32 (1.5)

__

V7 AC500 System Technology Couplers 73 Ethernet AC500 / Issued: 05.2006

Network Information Service (NIS) 26 (1.3.9)
OpenModbus on TCP/IP 20 (1.3.6)
operation as Modbus on TCP/IP – client 58 (4.5.2)
operation as Modbus on TCP/IP – server 58 (4.5.1)
planning examples 49 (4.0)
Point-to-Point Protocol (PPP) 8 (1.3.1)
protocols and application 8 (1.3)
redundant model 44 (3.2.2)
repeaters and hubs 32 (1.5.2)
restrictions 40 (2.1.3)
routers 37 (1.5.5)
safe models 45 (3.2.3)
Simple Mail Transfer Protocol (SMTP) 26 (1.3.9)
sockets 39 (2.1.2)
supported protocols 39 (2.1.1)
technical data 40 (2.2)
terminal devices 32 (1.5.1)
terms 70 (5.0)
terms and explanations 70 (5.0)
Transmission Control Protocol (TCP) 15 (1.3.4)
User Datagram Protocol (UDP) 19 (1.3.5)
user program for Modbus on TCP/IP – client 58 (4.5.2)
user program for Modbus on TCP/IP – server 58 (4.5.1)
user program for UDP/IP 63 (4.6.3)
utilization and performance 46 (3.3)

H

history of Ethernet 4 (1.1)

I

Internet Control Message Protocol (ICMP) 13 (1.3.3)
address format request/reply message 13 (1.3.3)
destination unreachable message 14 (1.3.3)
echo request/reply message 13 (1.3.3)
information request/reply message 13 (1.3.3)
parameter problem message 14 (1.3.3)
redirect message 14 (1.3.3)
router discovery message 14 (1.3.3)
source quench message 14 (1.3.3)
time exceeded message 14 (1.3.3)
timestamp request/reply message 13 (1.3.3)

Internet Protocol (IP) 8 (1.3.2)
gateway 13 (1.3.2)
IP address assignment 11 (1.3.2)
IP addresses 10 (1.3.2)
IP header 9 (1.3.2)
special IP address 11 (1.3.2)
subnet mask 12 (1.3.2)

O

OpenModbus on TCP/IP 20 (1.3.6)
telegram structure 21 (1.3.6)

T

Transmission Control Protocol (TCP) 15 (1.3.4)
close timeout 19 (1.3.4)
communication phases 17 (1.3.4)
connect timeout 18 (1.3.4)

__

V7 AC500 System Technology Couplers 74 Ethernet AC500 / Issued: 05.2006

give-up timeout / send timeout 19 (1.3.4)
inactive timeout 19 (1.3.4)
keep alive timeout 19 (1.3.4)
port 19 (1.3.4)
retransmission timeout 18 (1.3.4)
socket 16 (1.3.4)
TCP header 17 (1.3.4)

U

User Datagram Protocol (UDP) 19 (1.3.5)
port 19 (1.3.5)
socket 20 (1.3.5)
UDP header 20 (1.3.5)

System Description AC500

 Scalable PLC
for Individual Automation

System Technology of the
PROFIBUS DP Couplers

PROFIBUS

__

V7 AC500 System Technology Couplers 1 PROFIBUS DP AC500 / Issued: 10.2006

Contents "The PROFIBUS DP Coupler"

1 The PROFIBUS DP Coupler ... 2

1.1 Brief overview .. 2

1.1.1 Fundamental properties and fields of application... 2

1.1.2 Features.. 3

1.2 Technical data.. 4

1.2.1 Technical data of the coupler.. 4

1.2.2 Technical data of the interface ... 4

1.3 Connection and data transfer media ... 4

1.3.1 Attachment plug for the bus cable .. 4

1.3.2 Bus terminating resistors .. 5

1.3.3 Bus cable .. 5

1.3.4 Maximum line lengths (bus segment)... 5

1.3.5 Repeaters ... 6

1.4 Possibilities for networking ... 7

1.4.1 Single master system ... 7

1.4.2 Multi master system.. 8

1.5 PROFIBUS DP configuration example .. 10

1.5.1 Configuration .. 10

1.5.2 Running operation .. 25

1.5.3 Error diagnosis.. 26

1.5.4 Function blocks... 26

1.6 PROFIBUS DP diagnosis .. 27

1.6.1 Status-LEDs.. 27

1.6.2 PROFIBUS DP error messages ... 27

1.6.3 Function blocks... 27

1.7 Further information .. 28

1.7.1 Standardization... 28

1.7.2 Important addresses ... 28

1.7.3 Terms, definitions and abbreviations.. 28

2 Index ... 29

__

V7 AC500 System Technology Couplers 2 PROFIBUS DP AC500 / Issued: 10.2006

1 The PROFIBUS DP Coupler

1.1 Brief overview

1.1.1 Fundamental properties and fields of application

PROFIBUS-DP is designed for the rapid transfer of process data between central controller modules
(such as PLC or PC) and decentralized field modules (such as I/O modules, drives and valves) in the
field level. The communication occurs mainly cyclic. For intelligent field modules, additionally acyclic
communication functions are required for parameter assignment, diagnosis and alarm handling during
the running cyclic data transfer.

During normal operation, a central controller (DP master of class 1) cyclically reads the input data of the
connected decentralized I/O modules (DP slaves) and sends output data to them. Per slave a maximum
of 244 bytes of input and output data can be transferred in one cycle.

Apart from the user data traffic, PROFIBUS-DP provides extensive commissioning and diagnosis
functions. The present diagnosis messages of all slave modules are summarized in the master. This
enables a quick localization of errors.

Using PROFIBUS-DP, mono-master systems and multi-master systems can be realized. Multi-master
systems are built of functionally independent subsystems which each consist of one master and a
portion of the slaves which are integrated in the entire system. Normal bus masters cannot exchange
information with each other.

PROFIBUS-DP distinguishes two types of masters. The class 1 master carries out the cyclic transfer of
user data with the slaves and supplies the user data. The class 1 master can be called by a class 2
master using specific functions. These functions are restricted services, for example the interrogation of
diagnosis information of the slaves or the master itself. Thus, a class 2 master is also considered as a
programming and diagnosis device.

PROFIBUS-DP uses the hybrid bus access method. This guarantees on the one hand that complex
automation devices used as DP masters obtain the opportunity to handle their communication tasks in
defined time intervals. On the other hand, it enables the cyclic and real-time related data exchange
between the master and peripheral devices (DP slaves). The assigned slave modules on the bus are
handled by the master one after the other using the polling operation mode. So, each slave becomes
active only after it was requested by the master. This avoids simultaneous access to the bus.

The hybrid access method used with PROFIBUS allows a combined operation of multiple bus masters
and even a mixed operation of PROFIBUS-DP and PROFIBUS-FMS in one bus section. This, however,
assumes the correct configuration of the bus system and the unique assignment of the slave modules to
the masters.

The characteristic properties of a PROFIBUS-DP module are documented in form of an electronic data
sheet (modules master data file, GSD file). The modules master data describe the characteristics of a
module type completely and clearly in a manufacturer independent format. Using this defined file format
strongly simplifies the planning of a PROFIBUS-DP system. Usually the GSD files are provided by the
module's manufacturer. In addition, the PROFIBUS user organization (PNO) makes the GSD files of
numerous PROFIBUS-DP modules available for a free of charge download via internet in their GSD
library. The address of the PROFIBUS user organization (PNO) is: http://www.profibus.com.

__

V7 AC500 System Technology Couplers 3 PROFIBUS DP AC500 / Issued: 10.2006

1.1.2 Features

Transmission technique:

• RS485, potential separated, insulation voltage up to 850 V.

• Twisted pair cable or optical fibre as a medium for the bus.

• Transfer rate from 9.6 kbit/s up to 12 Mbit/s.

• Bus length up to 1200 m at 9.6 kbit/s and up to 100 m at 12 Mbit/s.

• Up to 32 subscribers (master and slave modules) without repeaters and up to 126 subscribers on
one bus with repeaters.

• 9-pole SUB-D socket for bus connection; assignment according to standard.

• Integrated repeater controller.

Communication:

• Up to 244 bytes of input data and 244 bytes of output data per slave, 2944 I/O points max.

• Cyclic user data transfer between DP master and DP slave.

• Acyclic data transfer from master to master.

• Slave configuration check.

• Efficient diagnosis functions, 3 graduated diagnosis messaging levels.

• Synchronization of inputs and/or outputs via control commands.

Protection functions:

• Message transfer with Hamming distance HD = 4.

• Errors during data transfer are detected by the CRC check and cause a repetition of the telegram.

• Access protection for inputs and outputs of the slaves.

• Incorrect parameter settings are avoided since bus subscribers with faulty parameters are not
included in the user data operation.

• A failure of a bus subscriber is registered in the master and indicated via a common diagnosis.

Status indication via 4 LEDs

• PWR (green): Supply voltage

• RDY (yellow): Coupler is ready for operation.

• RUN (green): Configuration and communication status.

• STA (yellow): Data exchange.

• ERR (red): PROFIBUS error.

__

V7 AC500 System Technology Couplers 4 PROFIBUS DP AC500 / Issued: 10.2006

1.2 Technical data

1.2.1 Technical data of the coupler

Coupler type PROFIBUS coupler

Processor EC1-160, 48 MHz

Internal power supply with +5 V, 330 mA typ.

Internal RAM memory (EC1) 256 kbytes

External Flash memory 512 kbytes (firmware)

CE sign yes

1.2.2 Technical data of the interface

Interface socket 9-pole, SUB-D socket

Transmission standard EIA RS-485 acc. to EN 50170, potential-free

Transmission protocol PROFIBUS-DP, 12 Mbaud max.

Transmission rate Baudrate 9.6 kbit/s up to 12000 kbit/s

Status indication by 5 LEDs

Number of subscribers
(master/slave modules per bus
segment)

32 max.

Number of subscribers via repeaters 126 max.

1.3 Connection and data transfer media

1.3.1 Attachment plug for the bus cable

9-pin SUB-D connector, male

Assignment:

Pin No. Signal Meaning

1 Shield Shielding, protective earth

2 not used

3 RxD/TxD-P Reception / transmission line, positive

4 CBTR-P Control signal for repeater (optional)

5 DGND Reference potential for data lines and +5V

6 VP +5 V, supply voltage for bus terminating resistors

7 not used

8 RxD/TxD-N Reception / transmission line, negative

9 CNTR-N Control signal for repeater, negative (optional)

Table 1-1: Pin assignment of the attachment plug for the bus cable

Supplier:

e.g. Erbic® BUS Interface Connector

ERNI Elektroapparate GmbH
Seestraße 9
D-72099 Adelberg, Germany
Phone: +49 7166 50 176
Telefax: +49 7166 50 103
Internet: http://www.erni.com

__

V7 AC500 System Technology Couplers 5 PROFIBUS DP AC500 / Issued: 10.2006

1.3.2 Bus terminating resistors

The line ends (of the bus segments) have to be terminated using bus terminating resistors according to
the drawing below. The bus terminating resistors are usually placed inside the bus connector.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

Data line B
(RxD/TxD-P)

Data line A
(RxD/TxD-N)

GND (0 V)

Configuration of the resistors Symbol

R

Figure: Bus terminating resistors connected to the line ends

1.3.3 Bus cable

Type Twisted pair cable (shielded)

Wave impedance (cable impedance) 135...165 Ω

Cable capacity (distributed capacitance) < 30 pF/m

Diameter of line cores (copper) ≥ 0.64 mm

Cross section of line cores ≥ 0.34 mm²

Line resistance per core ≤ 55 Ω/km

Loop resistance (serial resistance of 2 cores) ≤ 110 Ω/km

Supplier:

e.g. UNITRONIC® BUS
U.I. LAPP GmbH
Schulze-Delitzsch-Straße 25
D-70565 Stuttgart, Germany
Phone: (+49) 711 7838 01
Telefax: (+49) 711 7838 264
Internet: http://www.lappkabel.de

1.3.4 Maximum line lengths (bus segment)

1200 m at a transfer rate of 9.6 / 19.2 / 93.75 kbit/s

1000 m at a transfer rate of 187.5 kbit/s

400 m at a transfer rate of 500 kbit/s

200 m at a transfer rate of 1500 kbit/s

100 m at a transfer rate of 3000 / 6000 / 12000 kbit/s

Branch lines are generally permissible for baud rates of up to 1500 kbit/s. But in fact they should be
avoided for transmission rates higher than 500 kbit/s.

__

V7 AC500 System Technology Couplers 6 PROFIBUS DP AC500 / Issued: 10.2006

1.3.5 Repeaters

One bus segment can have up to 32 subscribers. Using repeaters a system can be expanded to up to
126 subscribers. Repeaters are also required for longer transfer lines. Please note that a repeater's load
to the bus segment is the same as the load of a normal bus subscriber. The sum of normal bus
subscribers and repeaters in one bus segment must not exceed 32.

Station 32 Station 61

Bus segment 2:
max. 30 stations
+ 2 repeaters

R Repeater RR Repeater R

Station 1 Station 31

Bus segment 1:
max. 31 stations
+ 1 repeater

R
max. 200 m max. 200 m

Figure: Principle example for a PROFIBUS-DP system with repeaters (1500 kbit/s baud rate)

__

V7 AC500 System Technology Couplers 7 PROFIBUS DP AC500 / Issued: 10.2006

1.4 Possibilities for networking

The PROFIBUS coupler is connected to the bus via the 9-pole SUB-D socket. For EMC suppression and
protection against dangerous contact voltages, the shield of the bus line has to be connected to
protective earth outside the housing.

1.4.1 Single master system

The single master system is the simplest version of a PROFIBUS network. It consists of a class 1 DP
master and one or more DP slaves. Up to 31 DP slaves can be connected to the bus without using a
repeater. If the number of bus segments is increased by means of repeaters, up to 126 DP slaves can
be handled. The line ends of the bus segments have to be terminated using bus terminating resistors.

The DP master of class 1 is able to:

1. Parameterize DP slaves (e.g. timing supervision, bus interchange).

2. Configure DP slaves (e.g. type / number of channels).

3. Read input and output data of the DP slaves.

4. Write output data of the DP slaves.

5. Read diagnosis data of the DP slaves.

6. Send control commands to the DP slaves (e.g. freezing input signals).

__

V7 AC500 System Technology Couplers 8 PROFIBUS DP AC500 / Issued: 10.2006

07 DC 92

R

R

PROFIBUS DP

07 KT 9x

DP Slave 2
e.g. valve island

DP Slave 31
e.g. power

C
S

31
 s

ys
te

m
 b

us

I/O modules

PM581 as
DP Master
Class 1

PM581 as
DP Slave 1

inverter

Figure: Single master system example

1.4.2 Multi master system

A PROFIBUS network containing several DP masters is called a multi-master system. Up to 32
subscribers (DP masters and DP slaves) can be operated on one bus segment. Using repeaters the
system can be expanded to up to 126 subscribers. In a multi-master system no data exchange between
the DP masters is performed. The entire system is divided into logical subsystems inside of which one
DP master communicates with the assigned DP slaves. Each DP slave can be assigned to only one DP
master. The master has unlimited access to its assigned slaves while all other masters on the bus can
only read the input and output data of these slaves.

All DP masters of class 1 (normal bus master, here: AC500) and class 2 (commissioning device, typically
a PC) can read the input and output data of all slaves.

Additionally the DP masters of class 1 and class 2 have the following access possibilities to their
assigned DP slaves. They are able to:

• Parameterize DP slaves (e.g. timing supervision, bus interchange).
• Configure DP slaves (e.g. type / number of channels).
• Write output data of the DP slaves.
• Read diagnosis data of the DP slaves.
• Send control commands to the DP slaves (e.g. freezing input signals).

__

V7 AC500 System Technology Couplers 9 PROFIBUS DP AC500 / Issued: 10.2006

A DP master of class 2 is additionally able to:

• Read and write configuration data of the class 1 DP masters.
• Read configuration data of the DP slaves.
• Read diagnosis data of the class 1 DP masters.
• Read out the diagnosis data of the DP slaves assigned to the respective DP master.

07 DC 92

R

R

PROFIBUS DP

07 KT 9x

DP Slave 28
e.g. valve island

DP Slave 29
e.g. power

C
S

31
 s

ys
te

m
 b

us I/O modules

PM581 as
DP Slave 1

PM581 as
DP Master Class 1

DP Master
Class 2 (PC)

PM581 as
DP Master Class 1

inverter

Figure: Multi master system example

__

V7 AC500 System Technology Couplers 10 PROFIBUS DP AC500 / Issued: 10.2006

1.5 PROFIBUS DP configuration example

1.5.1 Configuration

The integration of the coupler in the PLC configuration is an assumption for the correct function of the
PROFIBUS coupler CM572. Configuration of the coupler and the connected PROFIBUS subscribers is
done using the tool SYCON.net which is part of the CoDeSys programming software.

The PROFIBUS DP coupler CM572 has to be configured as the PROFIBUS master. The PROFIBUS
slave functionality is made available via the FBP interface and an FBP PROFIBUS plug.

The following construction is used as an example of a PROFIBUS configuration:

DC532 AX522DC532DC505 AX522

PM581CM572

PM581 DC532CM572

DC532 DI524DC505-FBP DX522 AX522

PDP22-FBP

AC500 configuration: CPU (PM581) with an expansion DC532 at the I/O-Bus as well as one
decentralized expansion over PROFIBUS (CM572) with the devices PDP22-FBP, DC505-FBP as well as
the S500 modules DC532, DI524, DX522 and AX522.

__

V7 AC500 System Technology Couplers 11 PROFIBUS DP AC500 / Issued: 10.2006

PLC configuration

To add the coupler: Select "Couplers", press the right mouse button and then select "Append
Subelement" -> "CM572".

__

V7 AC500 System Technology Couplers 12 PROFIBUS DP AC500 / Issued: 10.2006

Do not change the default values for the coupler parameters.

The coupler is now integrated in the PLC configuration.

For the following example, an I/O module (DC532) is then inserted into this configuration at the I/O-Bus.

For the module settings of the DC532, the default values are left as is.

__

V7 AC500 System Technology Couplers 13 PROFIBUS DP AC500 / Issued: 10.2006

Declaration of the I/Os of the devices is done byte-by-byte.

Inputs: By_LE_DC532_I_0
By_LE_DC532_I_1
By_LE_DC532_I_2
By_LE_DC532_I_3

Outputs: By_LE_DC532_O_0
By_LE_DC532_O_1

Configuration using SYCON.net

When configuring the PROFIBUS coupler, the configuration data are a definite element of a project.
They are created in CoDeSys using the tool SYCON.net (Resources tab -> Tools / SYCON.net). The
transfer of the configuration data to the coupler is done within the SYCON.netTool.

__

V7 AC500 System Technology Couplers 14 PROFIBUS DP AC500 / Issued: 10.2006

The following overview is loaded after starting the configuration tool SYCON.net.

In the top right window, click on the entry "CM572-DPM" and drag it onto the green line displayed in the
middle window. Correct insertion positions are displayed by a "+".

A dialog appears where you have to select the card number according to the coupler slot. The first slot
left of the CPU is slot 1 (or card number 1).

In order to configure the coupler, place the cursor on the "CM572" icon and then press the right mouse
button and select "Configuration".

__

V7 AC500 System Technology Couplers 15 PROFIBUS DP AC500 / Issued: 10.2006

In the folder "Bus parameters", choose the baud rate for the PROFIBUS and then confirm the remaining
parameters with "OK".

Next the PROFIBUS slaves are configured. In the top right window, click on the entry "PDP22-FBP
(DPV1 modular)" in the folder "PROFIBUS DPV 0/Slave" and drag it onto the purple line (PROFIBUS
line) displayed in the middle window. Correct insertion positions are displayed by a "+".

In order to configure the PROFIBUS slave, select the slave, then press the right mouse button and
choose "Configuration".

__

V7 AC500 System Technology Couplers 16 PROFIBUS DP AC500 / Issued: 10.2006

In this example, the folder "General" remains unchanged. If the station address should not equal the HW
address, this can be adapted correspondingly after the configuration of the slaves in the configuration
window of the master in the folder "station address".

In the next step, all the modules are configured, which are connected to the PDP22-FBP DPV1. For this,
change into the folder "Configuration/Modules".

__

V7 AC500 System Technology Couplers 17 PROFIBUS DP AC500 / Issued: 10.2006

Select the individual modules in the window "Available Modules" beginning with the S500 head station
"DC505-FBP" and append them to the "configured modules" by using "Append". The order of the
"configured modules" should represent the existing hardware.

__

V7 AC500 System Technology Couplers 18 PROFIBUS DP AC500 / Issued: 10.2006

Now the modules are configured.

Next the parameters of the individual modules are defined. Change to the folder
"Configuration/Parameters" and select the first device "DC505-FBP" using "Module".

__

V7 AC500 System Technology Couplers 19 PROFIBUS DP AC500 / Issued: 10.2006

In this tab, you can set the device parameters of the individual I/O modules.

A selection of possible parameters can be displayed by double clicking on the settings in the "Value"
column.

For the digital devices the settings always apply to the entire module. For the analog devices the settings
additionally have to be performed for each channel.

__

V7 AC500 System Technology Couplers 20 PROFIBUS DP AC500 / Issued: 10.2006

The setting of the parameters is completed now. All other settings can be left as is. Exit the configuration
of the "PDP22-FBP (DPV1 modular)" and the modules by clicking on "OK".

After the configuration of the PROFIBUS slaves has been finished, the PROFIBUS station addresses
can be set. This is carried out using the configuration window of the PROFIBUS master. Call the master
configuration once more and change to the folder "Configuration/Station table".

__

V7 AC500 System Technology Couplers 21 PROFIBUS DP AC500 / Issued: 10.2006

The station address of the slave can be set now. All other settings can be taken on.

The configuration can be loaded down into the PROFIBUS master now. To do this, the interface must be
defined first, via which the data are loaded into the coupler. The corresponding interface can be
configured over the configuration window of the PROFIBUS master in the register "Settings/Drivers/3S
Gateway Driver".

__

V7 AC500 System Technology Couplers 22 PROFIBUS DP AC500 / Issued: 10.2006

Select "Configure Gateway".

The configuration tool SYCON.net is looking now for PROFIBUS couplers which are connected to the
indicated interface. A list of the detected PROFIBUS couplers can be looked through over the
configuration window of the PROFIBUS master register "Equipment Allocation".

__

V7 AC500 System Technology Couplers 23 PROFIBUS DP AC500 / Issued: 10.2006

Select the representing coupler and confirm with "OK" then.

Move cursor on "CM572", click the right mouse button and "Connect".

CM572 is shaded green.

Put the control system to Stop.

Move cursor on "CM572", click the right mouse button and "Download".

Confirm query with "Yes".

__

V7 AC500 System Technology Couplers 24 PROFIBUS DP AC500 / Issued: 10.2006

After the successful download the "PWR LED" is on and the "RUN LED" flashes at the CM572.

Move cursor on "CM572", click right mouse button and "Disconnect".

The configuration of the coupler is now completed.

The variable names can be listed in the field "Variable Name". A double-click leads into the
corresponding entry field.

In order to use the PROFIBUS data in the PLC program, the physical addresses should be assigned
corresponding variable names with SYCON.net. These variables are available in the Control Builder then
and can be used directly.

The netConnect window of the SYCON.net is used here.

You can enter the variable names in the field "Variable Name". Double click to open the corresponding
input field.

All variables which were declared here are written down on the directory of the "Global Variables"
automatically at the focus change from SYCON.net to Control Builder.

__

V7 AC500 System Technology Couplers 25 PROFIBUS DP AC500 / Issued: 10.2006

The declaration of the variables is completed now. The coupler variables can be used now in the user
program.

For the test of the PROFIBUS configuration, the inputs "In 0...7" of the module DC532 are copied to the
outputs "Out 8...15" of the module DC505 in the user program.

The user program can now be transmitted and started in the control system.

The exchange of the PROFIBUS data is indicated by a permanent "ON" of the "RUN LED", shown at the
CM572.

1.5.2 Running operation

The PROFIBUS-DP protocol is automatically handled by the coupler and the operating system of the
controller. The coupler is only active on the bus if it was correctly initialized before and if the user
program is running. No connection elements are required for the cyclic exchange of process data via
PROFIBUS-DP. Special PROFIBUS-DP functions can be realized using the function blocks of the
corresponding PROFIBUS library.

Communication via PROFIBUS is established by the coupler when starting the user program and starts
with the initialization of the configured slaves. After its successful initialization, the slave is added to the
cyclic process data exchange. The "RDY" LED lights up steadily after at least one slave was
successfully taken into operation. If the user program is stopped, the coupler shuts down the PROFIBUS
system in a controlled manner.

__

V7 AC500 System Technology Couplers 26 PROFIBUS DP AC500 / Issued: 10.2006

The DP master operation mode is completely integrated to the operating system of the controller. The
transmit or receive data of the slaves can be directly accessed in the corresponding operand areas.
Access can be performed either via operands or symbolically. No function blocks are required.

The function block library contains various blocks which can be used e.g. to poll status information of the
coupler or to execute specific acyclic PROFIBUS-DP functions. If necessary, these blocks can be
inserted additionally.

1.5.3 Error diagnosis

PROFIBUS-DP communication errors are generally indicated by the red "ERR" LED of the coupler.
Malfunctions of the PROFIBUS driver or the coupler itself are additionally indicated via the E error flags
and the corresponding LEDs of the CPU. Furthermore, the PROFIBUS library provides different function
blocks that allow a detailed error diagnosis. Amongst other things, the following information can be
polled:

o the condition of the coupler itself,

o a detailed PROFIBUS diagnosis of an individual slave or

o a system diagnosis overview.

1.5.4 Function blocks

Control
Builder

 Libraries Remark

V1.0 V1.0 or later PROFIBUS_Master_S90_V43.LIB
Coupler_AC500_V10.LIB

Table 1-2: Overview of PROFIBUS libraries

Profibus_Master_AC500_V10.LIB

Group Function block Function

General

 PROFI_INFO Reading of coupler information

Status / Diagnosis

 DPM_STAT Reading the coupler status

 DPM_SLVDIAG Reading the detailed PROFIBUS diagnosis of a slave

 DPM_SYSDIAG Reading the system diagnosis

Controller

 DPM_CTRL Sending control commands to slaves

Acyclic reading

 DPM_READ_INPUT Reading input data of slaves which are not assigned to the
master

 DPM_READ_OUTPUT Reading output data of slaves which are not assigned to the
master

Table 1-3: Function blocks contained in the library PROFIBUS_Master_AC500_V10.LIB

Coupler_AC500_V10.LIB

Contains various internal functions which are used by the corresponding field bus coupler libraries.

__

V7 AC500 System Technology Couplers 27 PROFIBUS DP AC500 / Issued: 10.2006

1.6 PROFIBUS DP diagnosis

1.6.1 Status LEDs

The following figure shows the positions of the five status LEDs.

CM572

PWR
RDY
RUN

STA
ERR

POWER
READY
RUN

STATUS
ERROR

Figure: Positions of the status LEDs

LED Color Status Meaning

on Supply voltage available PWR green

off Supply voltage not available

on Coupler ready

flashes cyclic Bootstrap loader active

flashes irregularly Hardware or system error

RDY yellow

off Defective hardware

on Communication is running

flashes cyclic Communication stopped

flashes irregularly Missing or faulty configuration

RUN green

off No communication

DP slave: data exchange with DP master on

DP master: sending data or token

DP slave: no data exchange

STA yellow

off

DP master: no token

on PROFIBUS error ERR red

off no error

Table: Meanings of the status LEDs

1.6.2 PROFIBUS-DP error messages

The PROFIBUS error messages are listed in section ‚Error messages of the couplers‘.

1.6.3 Function blocks

PROFIBUS-DP master

DPM_STAT Reading the coupler status

DPM_SLVDIAG Reading the detailed PROFIBUS diagnosis of a slave

DPM_SYSDIAG Reading the system diagnosis

PROFIBUS-DP slave

DPS_STAT Reading the coupler status

__

V7 AC500 System Technology Couplers 28 PROFIBUS DP AC500 / Issued: 10.2006

Online diagnosis

The online diagnosis is described in the documentation for the field bus configuration tool SYCON.net .

1.7 Further information

1.7.1 Standardization

• EN 50170
• DIN 19245 part 1
• DIN 19245 part 3

1.7.2 Important addresses

PROFIBUS Nutzerorganisation e.V. (PNO)
Haid-und-Neu-Straße 7
Germany, D-76131 Karlsruhe
Phone: (+49) 721 9658 590
Telefax: (+49) 721 9658 589
Internet: http://www.profibus.com

1.7.3 Terms, definitions and abbreviations

PROFIBUS DP PROCESS FIELDBUS - DECENTRALIZED PERIPHERY

DPM1 DP master (class 1), normal bus master

DPM2 DP master (class 2), commissioning device

DPS DP slave

GSD Modules master data

DPV1 Guideline for functional expansions of PROFIBUS DP

PNO PROFIBUS Nutzer Organisation (PROFIBUS user organization)

__

V7 AC500 System Technology Couplers 29 PROFIBUS DP AC500 / Issued: 10.2006

2 Index

A

attachment plug for the bus cable 4 (1.3.1)

B

brief overview 2 (1.1)

bus cable 5 (1.3.3)

bus terminating resistors 5 (1.3.2)

C

Configuration 10 (1.5.1)

connection and data transfer media 4 (1.3)

E

error diagnosis 26 (1.5.3)

F

Features 3 (1.1.2)

function blocks 26 (1.5.4)

function blocks 27 (1.6.3)

fundamental properties and fields of application 2 (1.1.1)

further information 28 (1.7)

I

important addresses 28 (1.7.2)

interface specification 4 (1.2.2)

M

maximum line lengths (bus segment) 5 (1.3.4)

multi master system 8 (1.4.2)

P

possibilities for networking 7 (1.4)

PROFIBUS-DP configuration example 10 (1.5)

PROFIBUS-DP coupler 2 (1.0)

PROFIBUS-DP diagnosis 27 (1.6)

PROFIBUS-DP error messages 27 (1.6.2)

__

V7 AC500 System Technology Couplers 30 PROFIBUS DP AC500 / Issued: 10.2006

R

Repeaters 6 (1.3.5)

running operation 25 (1.5.2)

S

single master system 7 (1.4.1)

standardization 28 (1.7.1)

status LEDs 27 (1.6.1)

T

technical data 4 (1.2)

technical data of the coupler 4 (1.2.1)

terms, definitions and abbreviations 28 (1.7.3)

System Description AC500

 Scalable PLC
for Individual Automation

System Technology
of the CANopen Couplers

CANopen

__

V7 AC500 System Technology Couplers 1 CANopen AC500 / Issued: 04.2006

Contents "The CANopen Coupler"

1 The CANopen Coupler .. 3

1.1 Brief overview ... 3

1.1.1 Fundamental properties and fields of application... 3

1.1.2 Communication mechanisms.. 3

1.1.3 Network Management... 4

1.1.4 Emergency messages .. 5

1.1.5 Node guarding and heartbeat ... 5

1.1.6 Object directory... 6

1.1.7 Identifiers .. 7

1.1.8 PDO mapping ... 8

1.1.9 EDS files ... 8

1.1.10 Features.. 8

1.2 Technical data.. 10

1.2.1 Technical data of the coupler.. 10

1.2.2 Technical data of the interface ... 10

1.3 Connection and data transfer media ... 12

1.3.1 Attachment plug for the bus cable .. 12

1.3.2 Bus terminating resistors .. 12

1.3.3 Bus cables .. 13

1.4 Possibilities for networking ... 14

1.5 CANopen implementation... 15

1.5.1 Configuration .. 15

1.5.2 Running operation .. 23

1.5.3 Error diagnosis.. 23

1.5.4 Function blocks... 24

1.6 Diagnosis .. 25

1.6.1 Status LEDs.. 25

1.6.2 CANopen error messages .. 25

1.6.3 Function blocks... 25

__

V7 AC500 System Technology Couplers 2 CANopen AC500 / Issued: 04.2006

1.7 Further information .. 26

1.7.1 Standardization... 26

1.7.2 Important addresses ... 26

1.7.3 Terms, definitions and abbreviations.. 26

2 Index ... 27

__

V7 AC500 System Technology Couplers 3 CANopen AC500 / Issued: 04.2006

1 The CANopen coupler

1.1 Brief overview

1.1.1 Fundamental properties and fields of application

CANopen is a standardized layer 7 protocol used for decentralized industrial automation systems based
on the Controller Area Network (CAN) and the CAN Application Layer (CAL). CANopen is based on a
communication profile containing the determination of basic communication mechanisms and their
descriptions, such as the mechanisms used for exchanging process data in real-time or for sending
alarm telegrams. This common communication profile is the basis for the various CANopen device
profiles. The device profiles describe the specific functionality and/or the parameters of a device class.
Such device profiles are available for the most important device classes used in industrial automation,
such as digital and analog I/O modules, sensors, drives, control units, regulators, programmable
controllers or encoders. Further device profiles are projected.

The central element of the CANopen standard is the device functionality description in an object
directory (OD). The object directory is divided into one general area containing information about the
device (e.g. device identification, manufacturer's name, etc.) as well as communication parameters, and
the device-specific area describing the particular functionality of the device. These properties of a
CANopen module are documented in the form of a standardized "electronic data sheet" (EDS file).

A CANopen network can consist of a maximum of 128 modules, one NMT master and up to 127 NMT
slaves. In contrast to the typical master-slave systems (e.g. PROFIBUS systems), the meanings of the
terms master and slave are different for CANopen. In operational mode, all modules are independently
able to send messages via the bus. Moreover, the master is able to change the operating mode of the
slaves. The CANopen master is normally implemented by a PLC or a PC. The bus addresses of the
CANopen slaves can be set in the range between 1 and 127. The device address results in a number of
identifiers occupied by this module.

CANopen supports transmission rates of 10 kbit/s, 20 kbit/s, 50 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s,
800 kbit/s and 1 Mbit/s. Each CANopen device has at least to support a transmission rate of 20 kbit/s.
Other transmission rates are optional.

1.1.2 Communication mechanisms

CANopen distinguishes two basic mechanisms for data transmission: The fast exchange of short
process data via Process Data Objects (PDOs) and the access to entries of the Object Directory using
Service Data Objects (SDOs). Service Data Objects are primarily used to transmit parameters during
device configuration. The transmission of Process Data Objects is normally performed event oriented,
cyclic or on request as broadcast objects.

Service Data Objects

Service Data Objects (SDOs) are used to modify Object Directory entries as well as for status requests.
Transmission of SDOs is performed as a confirmed data transfer with two CAN objects in the form of a
peer-to-peer connection between two network nodes. The corresponding Object Directory entry is
addressed by specifying the index and the sub-index of the entry. It is possible to transmit messages of
unlimited length. If necessary, the data are segmented into several CAN messages.

__

V7 AC500 System Technology Couplers 4 CANopen AC500 / Issued: 04.2006

Process Data Objects

For the transmission of process data, the Process Data Object (PDO) mechanism is available. A PDO is
transmitted unconfirmed because, in the end, the CAN link layer ensures the error-free transmission.
According to the CAN specification, a maximum of 8 data bytes can be transmitted within one PDO. In
conjunction with a synchronization message, the transmission as well as the take over of PDOs can be
synchronized over the entire network (synchronous PDOs). The assignment of application objects to a
PDO can be set using a structural description (PDO mapping) that is stored in the object directory. Thus,
an adaptation according to the requirements of the individual applications is possible. The transmission
of process data can be performed by various methods.

Event

The PDO transmission is controlled by an internal event, e.g. by a changing level of a digital input or by
an expiring device-internal timer.

Request

In this case, another bus subscriber is requesting the process data by sending a remote transmission
request (RTR) message.

Synchronous

In case of synchronous transmission, synchronization telegrams are sent by a bus subscriber. These
telegrams are received by a PDO producer which in turn transmits the process data.

1.1.3 Network Management

Within a CANopen network, only one NMT master exists (NMT = Network management). All other
modules are NMT slaves. The NMT master completely controls all modules and is able to change their
states. The following states are distinguished:

Initialization

After switching-on, a node is first in the initialization state. During this phase, the device application and
the device communication are initialized. Furthermore, a so-called boot-up message is transmitted by the
node to signalize its basic readiness for operation. After this phase is finished, the node automatically
changes to the pre-operational state.

Pre-operational

In this state, communication with the node is possible via Service Data Objects (SDOs). The node is not
able to perform PDO communication and does not send any emergency messages.

Prepared

In the prepared state, a node is completely disconnected from the network. Neither SDO communication
nor PDO communication is possible. A state change of the node can only be initiated by a corresponding
network command (e.g. Start Node).

__

V7 AC500 System Technology Couplers 5 CANopen AC500 / Issued: 04.2006

1.1.4 Emergency messages

Emergency messages are used to signalize device errors. An emergency message contains a code that
clearly identifies the error (specified in the communication profile DS-301 and in the individual device
profiles DS-40x). The following table shows some of the available error codes. Emergency messages
are automatically sent by all CANopen modules.

Emergency error
code (hex)

Meaning / error cause

00xx Error on reset or no error

10xx General error

20xx Current error

21xx - Error on device input side

22xx - Error inside the device

23xx - Error on device output side

30xx Voltage error

31xx - Supply voltage error

32xx - Error inside the device

33xx - Error on device output side

40xx Temperature error

41xx - Ambient temperature

42xx - Temperature inside the device

50xx Hardware error in the device

60xx Software error in the device

61xx - Device-internal software

62xx - Application software

63xx - Data

70xx Error in additional modules

80xx Monitoring

81xx Communication

90xx External error

F0xx Error of additional functions

FFxx Device-specific errors

Table: Error codes in emergency messages

1.1.5 Node guarding and heartbeat

Testing the functionality of a CAN node is particularly required if the node does not continuously send
messages (cyclic PDOs). Two mechanisms can alternatively be used to monitor the CANopen nodes.
When the node guarding protocol is used, the NMT master sends messages to the available CANopen
slaves which have to respond to these messages within a certain time period. Therefore, the NMT
master is able to detect if a node fails. Furthermore, the heartbeat protocol can be used with CANopen.
In this case, each node automatically sends a periodic message. This message can be monitored by
each other subscriber in the network.

__

V7 AC500 System Technology Couplers 6 CANopen AC500 / Issued: 04.2006

1.1.6 Object directory

The object directory describes the entire functionality of a CANopen device. It is organized as a table.
The object directory does not only contain the standardized data types and objects of the CANopen
communication profile and the device profiles. If necessary, it also contains manufacturer-specific
objects and data types. The entries are addressed by means of a 16 bit index (table row, 65536 entries
max.) and an 8 bit sub-index (table column, 256 entries max.). Thus, objects belonging together can be
easily grouped. The following table shows the structure of this CANopen object directory:

Index

dec hex

Object

0 0000 not used

1...31 0001...001F Static data types

32...63 0020...003F Complex data types

64...95 0040...005F Manufacturer-specific data types

96...127 0060...007F Profile-specific static data types

128...159 0080...009F Profile-specific complex data types

160...4095 00A0...0FFF Reserved

4096...8191 1000...1FFF Communication profile (DS-301)

8192...24575 2000...5FFF Manufacturer-specific parameters

24576...40959 6000...9FFF Parameters of the standardized device profiles

40960...65535 A000...FFFF Reserved

Table: Structure of the object directory

Several data types are defined for the objects themselves. If required, other structures (e.g. ARRAY,
STRUCT) can be created from these standard types.

__

V7 AC500 System Technology Couplers 7 CANopen AC500 / Issued: 04.2006

1.1.7 Identifiers

CANopen always uses identifiers with a length of 11 bits (standard frames). The number of available and
allowed identifiers given by this is divided into several ranges by the pre-defined connection set. This
structure is designed in a way that a maximum of 128 modules (1 NMT master and up to 127 slaves) can
exist in a CANopen network. The list of identifiers is composed of some fix identifiers (e.g. network
management identifier 0) and various functional groups where each existing node, that supports the
corresponding function, is assigned to one unique identifier (e.g. Receive PDO 1 of node 3 = 512 + node
number = 515). Using the pre-defined connection set therefore avoids double assignment of identifiers.

Identifier Function Calculation

0 Network management (NMT) -

1...127 not used -

128 Synchronization (SYNC) -

129...255 Emergency message 128 + node ID

256 Timestamp message -

257...384 not used -

385...511 Transmit PDO 1 384 + node ID

512 not used -

513...639 Receive PDO 1 512 + node ID

640 not used -

641...767 Transmit PDO 2 640 + node ID

768 not used -

769...895 Receive PDO 2 768 + node ID

896 not used -

897...1023 Transmit PDO 3 896 + node ID

1024 not used -

1025...1151 Receive PDO 3 1024 + node ID

1152 not used -

1153...1279 Transmit PDO 4 1152 + node ID

1280 not used -

1281...1407 Receive PDO 4 1280 + node ID

1408 not used -

1409...1535 Transmit SDO 1408 + node ID

1536 not used -

1537...1663 Receive SDO 1536 + node ID

1664...1792 not used -

1793...1919 NMT error (node guarding, heartbeat, boot-up) 1792 + node ID

1920...2014 not used -

2015...2031 NMT, LMT, DBT -

Table: Assignment of identifiers

__

V7 AC500 System Technology Couplers 8 CANopen AC500 / Issued: 04.2006

1.1.8 PDO mapping

As already explained, all 8 data bytes of a CAN message are available for the transmission of process
data. As there is no additional protocol information, the data format has to be agreed between the
sending (producer) and the receiving party (consumer). This is done by the so-called PDO mapping.

If a fixed mapping is used, the process data are arranged in a pre-defined order within the PDO
message. This arrangement is predetermined by the device manufacturer and cannot be changed. If
variable mapping is used, the process data can be arranged as desired within the PDO message. For
this purpose, the address, consisting of index and sub-index, as well as the size (number of bytes) of an
object directory entry are entered into the mapping object.

1.1.9 EDS files

The characteristic properties of a CANopen module are documented in the form of an electronic data
sheet (EDS file, electronic data sheet). The file completely and clearly describes the characteristics
(objects) of a module type in a standardized and manufacturer independent format. Programs for
configuring a CANopen network use the module type descriptions available in the EDS files. This
strongly simplifies the configuration of a CANopen system. Usually the EDS files are provided by the
device manufacturer.

1.1.10 Features

CANopen:

• Operating mode CANopen-Master

• Process image with a maximum of 57344 I/O points

• Supports min. boot-up, emergency messages and life guarding

• Supported PDO modes: Event-controlled, synchronous, cyclic and remote PDO transmission

• Integrated device profiles: CiA DS-401, CiA DS-402 and CiA DS-406

CAN (additional functionality, not necessary for pure CANopen operation):

• Support of 11 bit identifiers according to CAN 2.0 A and 29 bit identifiers according to CAN 2.0 B

• Transmission and reception of any CAN telegrams via function blocks in the user program

Transmission technique:

• ISO 11898, potential separated

• Transfer rates of 20 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s and 1 Mbit/s

• Bus length up to 1000 m at 20 kbit/s and up to 40 m at 1 Mbit/s

• One bus can have up to 128 subscribers (master + 127 slaves)

• 5-pin COMBICON socket for bus connection

__

V7 AC500 System Technology Couplers 9 CANopen AC500 / Issued: 04.2006

Communication:

• Message-oriented bus access, CSMA/CA

• Predefined master-slave connections

• 8 bytes of non-fragmented user data, for fragmentation any size is possible

• Synchronization of inputs and/or outputs via synchronous PDOs

Protection functions:

• Message transfer with Hamming distance HD = 6

• CAN fault recognition mechanisms via 15 bit CRC, frame check, acknowledge, bit monitoring
and bit stuffing

• Incorrect parameter settings are avoided because bus subscribers with faulty parameters are not
included in the user data operation.

• Adjustable behavior on subscriber failure. System continues normal operation and the error is
indicated at the master or the entire system is stopped.

• Response monitoring of the subscribers (node guarding)

Diagnosis:

• Status indication with 5 LEDs

- PWR (green): Supply voltage

- RDY (yellow): Coupler ready for operation

- RUN (green): Configuration and communication status

- STA (yellow): Data transfer

- ERR (red): CANopen error

• Extensive online diagnosis functions in SYCON.net

• Detailed diagnosis in the user program using function blocks

__

V7 AC500 System Technology Couplers 10 CANopen AC500 / Issued: 04.2006

1.2 Technical data

1.2.1 Technical data of the coupler

Coupler CM578-CN

Field bus CANopen

Transmission rate 10 kbit/s up to 1 Mbit/s

Protocol CANopen master

Attachment plug for field bus Pluggable 5-pin COMBICON connector

Processor EC1, 160 pins

Clock frequency 48 MHz

Possible CPUs PM571-xxx, PM581-xxx, PM591-xxx

Possible terminal bases All

Ambient temperature 0 °C...55 °C

Coupler interface Dual-port memory, 8 kbytes

Current consumption over the coupler bus typ. 290 mA

Internal RAM memory (EC1) 256 kbytes

External RAM memory -

External Flash memory 512 kbytes (firmware)

Status display PWR, RDY, RUN, STA, ERR

Weight approx. 150 g

Table: Technical data of the CANopen coupler

1.2.2 Technical data of the interface

Interface socket 5-pin COMBICON

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (baud rate) 20 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s and 1 Mbit/s

Status indication 5 LEDs (see following figure)

Number of subscribers 127 slaves max.

CAN_GND
CAN_L
CAN_SHLD

CAN_H

unused

1
2
3

4

5

1
2
3

4

5

Pin assignment

Combicon,
5-pole, male
coupler interface

Combicon,
5-pole, female
removable plug
with spring terminals

Figure: Pin assignment of the interface

__

V7 AC500 System Technology Couplers 11 CANopen AC500 / Issued: 04.2006

CM578

PWR
RDY
RUN

STA
ERR

Figure: Position of the LEDs

LED Color Status Meaning

ON Voltage on
PWR green

OFF Voltage off

ON Coupler ready

flashes cyclic Bootstrap loader active

flashes non-cyclic Hardware or system error
RDY yellow

OFF Defective hardware

ON Communication in progress

flashes cyclic Ready for communication

flashes non-cyclic Parameterization error
RUN green

OFF No communication or voltage off

ON CANopen master: Sends data
STA yellow

OFF CANopen master: No data

ERR red ON CANopen error

 OFF No error

Table: Meaning of the LED states

__

V7 AC500 System Technology Couplers 12 CANopen AC500 / Issued: 04.2006

1.3 Connection and data transfer media

1.3.1 Attachment plug for the bus cable

Assignment:

5-pin COMBICON connector

Pin No. Signal Meaning

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line, LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line, HIGH

5 - -

Table: Pin assignment of the attachment plug for the bus cable

Supplier:

e.g. COMBICON

Phoenix Contact GmbH & Co.
Flachsmarktstraße 8 - 28
D-32825 Blomberg
Germany
Phone: (+49) (0)52 35 / 3-00
Fax: (+49) (0)52 35 / 3-4 12 00
Internet: http://www.phoenixcontact.com

1.3.2 Bus terminating resistors

The ends of the data lines have to be terminated with a 120 Ω bus termination resistor. The bus
termination resistor is usually installed directly at the bus connector.

12
0

12
0

Data line,
twisted pairCAN_H 4

CAN_L 2

CAN_GND 1

Shield

4 CAN_H

2 CAN_L

1 CAN_GND

3 Shield

COMBICON connection COMBICON connection
CANopen interface CANopen interface

Figure: CANopen interface, bus terminating resistors connected to the line ends

__

V7 AC500 System Technology Couplers 13 CANopen AC500 / Issued: 04.2006

1.3.3 Bus cables

For CANopen, only bus cables with characteristics as recommended in ISO 11898 have to be used. The
requirements to the bus cables depend on the length of the bus segment. Regarding this, the following
recommendations are given by ISO 11898:

Length of
segment

[m]

Bus cable Max. baud rate
[kbit/s]

 Conductor cross
section
[mm²]

Line resistance
[Ω/km]

Wave impedance
[Ω]

0...40 0.25...0.34 / AWG23,
AWG22

70 120 1000 at 40 m

40...300 0.34...0.60 / AWG22,
AWG20

< 60 120 < 500 at 100 m

300...600 0.50...0.60 / AWG20 < 40 120 < 100 at 500 m

600...1000 0.75...0.80 / AWG18 < 26 120 < 50 at 1000 m

Table: Recommendations for bus cables

Supplier:

e.g. UNITRONIC® BUS CAN

U.I. LAPP GmbH
Schulze-Delitzsch-Straße 25
D-70565 Stuttgart
Germany
Phone: (+49) (0)711 7838 01
Fax: (+49) (0)711 7838 264
Internet: http://www.lappkabel.de

__

V7 AC500 System Technology Couplers 14 CANopen AC500 / Issued: 04.2006

1.4 Possibilities for networking

The CANopen coupler is connected to the bus using the 5-pin COMBICON socket. For EMC
suppression and protection against dangerous contact voltages, the shield of the bus line has to be
connected to protective earth outside the housing. The line ends of the bus cable have to be terminated
using bus terminating resistors.

Within a CANopen network, the controller with the CANopen coupler is the NMT master. No other NMT
master is allowed in this network. The NMT master completely controls all modules and their operational
states. Up to 127 NMT slaves can be connected to an NMT master.

The CANopen master is able to:

• Change operational states of the slaves

• Parameterize the slaves (e.g. communication connections, time supervision, bus traffic)

• Configure slaves (e.g. type, number and channel operating mode)

• Read input data of the slaves

• Write output data of the slaves

• Read diagnostic data of the slaves

• Monitor the availability of the slaves

• Transmit control commands to synchronize the inputs or outputs of the slaves

• Read and write slave objects even during running operation

The CANopen coupler is as well able to:

• Transmit and receive CAN telegrams according to CAN 2.0 A (11 bit identifier) and CAN 2.0 B
(29 bit identifier). (This additional functionality is not required for pure CANopen operation.)

__

V7 AC500 System Technology Couplers 15 CANopen AC500 / Issued: 04.2006

1.5 CANopen implementation

1.5.1 Configuration

The integration of the coupler into the PLC configuration of AC500 is an assumption for the correct
function of the CANopen coupler CM578. The configuration of the coupler and the connected CANopen
subscribers is done using the tool SYCON.net which is part of the Control Builder programming software.

In the following configuration example, the coupler CM578 is configured as CANopen master device. An
I/O device is used as CANopen slave.

PM581CM578 AX522DC532

R

CANopen Slave,
I/O module,

R

CANopen

CM578 as
CANopen Master

8 digital I/O channels

Figure: Example configuration consisting of an AC500 with a CANopen coupler and a CANopen slave

__

V7 AC500 System Technology Couplers 16 CANopen AC500 / Issued: 04.2006

PLC configuration

The configuration of the CANopen coupler starts with the integration of the coupler into the PLC
configuration.

To insert the coupler into the configuration, select "Couplers", press the right mouse button and then
select "Append Subelement" -> "CM578".

Do not change the default values for the coupler parameters.

The coupler is now integrated in the PLC configuration.

__

V7 AC500 System Technology Couplers 17 CANopen AC500 / Issued: 04.2006

Configuration using SYCON.net

When configuring the CANopen coupler, the configuration data are a definite element of a project. They
are specified using the tool SYCON.net (Resources tab -> Tools -> SYCON.net) which is part of the
Control Builder. The configuration data are transferred to the coupler with the SYCON.net tool.

The following view appears when starting the configuration tool SYCON.net.

In the top right window, click on the entry "CM578-COM" in the folder "CANopen/Master" and drag it onto
the green line displayed in the middle window. Correct insertion positions are displayed by a "+".

__

V7 AC500 System Technology Couplers 18 CANopen AC500 / Issued: 04.2006

A dialog appears where you have to select the board number according to the coupler slot. The first slot
left of the CPU is slot 1 (or board number 1).

To configure the CANopen master, place the cursor on the "CM578" icon and then press the right mouse
button and select "Configuration".

Enter the node ID, select the baud rate of the CANopen coupler and apply the parameters by pressing
"OK".

In the top right window, click on the entry "CAN-CBM-DIO8" in the folder "CANopen/Slave" and drag it
onto the purple line (CANopen line) displayed in the middle window. Correct insertion positions are
displayed by a "+".

__

V7 AC500 System Technology Couplers 19 CANopen AC500 / Issued: 04.2006

To configure the CANopen slave, place the cursor on the slave icon and then press the right mouse
button and select "Configuration".

In this example, we do not change the configuration of the CANopen slave. Only the node ID of the slave
is changed according to the HW setting. This is done in the master configuration dialog. Open the master
configuration and select the subitem "Node ID table" in the "Configuration" folder.

Set the node ID of the slave. Leave all other settings unchanged.

Now the configuration can be downloaded to the CANopen master. To do this, first the interface used to
download the data to the coupler has to be specified. The interface to be used is configured in the tab
"Settings -> Driver -> 3S Gateway Driver" in the CANopen master configuration.

__

V7 AC500 System Technology Couplers 20 CANopen AC500 / Issued: 04.2006

Press the button "Gateway Configuration".

Select the gateway and click on "OK".

Now the configuration tool SYCON.net searches for CANopen couplers that are connected to the
selected interface. The tab "Device Assignment" in the CANopen master configuration shows the
detected CANopen couplers.

__

V7 AC500 System Technology Couplers 21 CANopen AC500 / Issued: 04.2006

Select the desired coupler by marking the relevant checkbox and confirm your selection with "OK".

Position the cursor on the "CM578" icon, press the right mouse button and select "Connect".

The CM578 icon is then highlighted by green background.

Set the controller to stop state.

Position the cursor on the "CM578" icon, press the right mouse button and select "Download".

Confirm the appearing dialog with "Yes".

__

V7 AC500 System Technology Couplers 22 CANopen AC500 / Issued: 04.2006

After successful completion of the download process, the "PWR" LED at the CM578 is on and the "RUN"
LED flashes.

Position the cursor on the "CM578" icon, press the right mouse button and select "Disconnect".

The coupler configuration is now completed.

To be able to use the CANopen data in the PLC program, you should assign corresponding variable
names to the physical addresses using SYCON.net. These variables will then be available in the Control
Builder and can be used directly there.

The assignment of the variable names is done in the netConnect window in SYCON.net.

The variable name has to be entered in the field "Variable Name". Double click to open the
corresponding input field.

All variables declared here are automatically added to the "Global variables" folder when switching from
SYCON.net to the Control Builder.

__

V7 AC500 System Technology Couplers 23 CANopen AC500 / Issued: 04.2006

The declaration of the variables is now completed. The coupler variables can now be used in the user
program.

The CANopen configuration is now tested by copying the CANopen slave ID2 inputs to the CANopen
slave ID2 outputs in the user program.

Now the user program can be downloaded to the controller and started.

During exchange of CANopen data, the "RUN" LED at the CM578 continuously lights up.

1.5.2 Running operation

The CANopen protocol is automatically processed by the coupler and the operating system of the
controller. The coupler is only active on the bus if it has been initialized correctly before and if the user
program is running. No function blocks are necessary for exchanging process data via CANopen.
Special CAN functions can be realized using the function blocks of the CANopen library.

The coupler starts communication via CANopen after the user program is started and then attempts to
initialize the configured slaves. After a successful initialization, the slave exchanges the process data.
The exchange of I/O data with the slaves is done automatically.

If the user program is stopped, the coupler shuts down the CANopen communication in a controlled
manner.

1.5.3 Error diagnosis

CANopen communication errors are indicated by the coupler LEDs. Malfunctions of the CANopen driver
or the coupler itself are indicated by the corresponding error class in the PLC (refer to System
Technology of the CPU / The diagnosis system in AC500). Furthermore, the CANopen library provides
different function blocks which allow detailed error diagnosis (refer to "The CANopen Library").

__

V7 AC500 System Technology Couplers 24 CANopen AC500 / Issued: 04.2006

1.5.4 Function blocks

Libraries:

CANopen_AC500_V11.lib

Group: CAN 2.0A

CAN2A_INFO Reading information about CAN 2.0A communication

CAN2A_REC Reading CAN 2.0A telegrams (with 11 bit identifier) from a receive buffer

CAN2A_SEND Transmitting CAN 2.0A telegrams (with 11 bit identifier)

Group: CAN 2.0B

CAN2B_INFO Reading information about CAN 2.0B communication

CAN2B_REC Reading CAN 2.0B telegrams (with 29 bit identifier) from a receive buffer

CAN2B_SEND Transmitting CAN 2.0B telegrams (with 29 bit identifier)

Group: CANopen master / NMT controller

CANOM_NMT Controlling NMT node states via network management

Group: CANopen master / Status / Diagnosis

CANOM_NODE_DIAG Polling diagnosis data from a slave

CANOM_RES_ERR Resetting the coupler's error indications

CANOM_STATE Reading the CANopen coupler status

CANOM_SYS_DIAG Displaying status surveys of all slaves

Group: SDO parameters

CANOM_SDO_READ Reading the value of a slave object

CANOM_SDO_WRITE Writing the value of a slave object

__

V7 AC500 System Technology Couplers 25 CANopen AC500 / Issued: 04.2006

1.6 Diagnosis

1.6.1 Status LEDs

LED Color Status Meaning

ON Voltage on
PWR green

OFF Voltage off

ON Coupler ready

flashes cyclic Bootstrap loader active

flashes non-cyclic Hardware or system error
RDY yellow

OFF Defective hardware

ON Communication in progress

flashes cyclic Ready for communication

flashes non-cyclic Parameterization error
RUN green

OFF No communication or voltage off

ON CANopen master: Sends data
STA yellow

OFF CANopen master: No data

ERR red ON CANopen error

 OFF no error

1.6.2 CANopen error messages

The CANopen error messages are listed in the section 'Error messages for the block libraries'.

1.6.3 Function blocks

CANopen master:

Refer to 1.5.4 Function blocks

Online diagnosis:

Refer to the documentation for the field bus configuration tool SYCON.net

__

V7 AC500 System Technology Couplers 26 CANopen AC500 / Issued: 04.2006

1.7 Further information

1.7.1 Standardization

BOSCH CAN specification - version 2.0, part A & part B

ISO 11898

CiA DS 201 V1.1 - CAN Application Layer

CiA DS 301 V3.0 - CAL based Communication Profile for Industrial Systems

CiA DS 301 V4.02 - CANopen Application Layer and Communication Profile

CiA DS 401 V2.1 - CANopen Device Profile Generic I/O modules

CiA DS 402 V2.0 - CANopen Device Profile Driver and Motion Control

CiA DS 406 V3.0 - CANopen Device Profile Encoder

1.7.2 Important address

CAN in Automation (CiA)
Am Weichselgarten 26
D-91058 Erlangen
Germany

Phone: (+49) 9131 69086-0
Fax: (+49) 9131 69086-79
Internet: http://www.can-cia.de

1.7.3 Terms, definitions and abbreviations

CAL CAN Application Layer

CAN Controller Area Network

CiA CAN in Automation international users and manufacturers group e.V.

DLC Data Length Code

EDS Electronic Data Sheet

ISO International Standardization Organization

NMT Network Management

OD Object Directory

PDO Process Data Object

RTR Remote Transmission Request

SDO Service Data Object

__

V7 AC500 System Technology Couplers 27 CANopen AC500 / Issued: 04.2006

Index - System Technology of the CANopen Couplers

A

attachment plug for the bus cable 12 (1.3.1)

B

brief overview 3 (1.1)

bus cables 13 (1.3.3)

bus terminating resistors 12 (1.3.2)

C

CANopen error messages 25 (1.6.2)

CANopen implementation 15 (1.5)

communication mechanisms 3 (1.1.2)

configuration 15 (1.5.1)

connection and data transfer media 12 (1.3)

D

Diagnosis 25 (1.6)

E

EDS files 8 (1.1.9)

emergency messages 5 (1.1.4)

error diagnosis 23 (1.5.3)

F

Features 8 (1.1.10)

function blocks 24 (1.5.4)

function blocks 25 (1.6.3)

fundamental properties and fields of application 3 (1.1.1)

further information 26 (1.7)

I

Identifier 7 (1.1.7)

important addresses 26 (1.7.2)

interface specification 10 (1.2.2)

N

network management 4 (1.1.3)

node guarding and heartbeat 5 (1.1.5)

__

V7 AC500 System Technology Couplers 28 CANopen AC500 / Issued: 04.2006

O

object directory 6 (1.1.6)

P

PDO mapping 8 (1.1.8)

possibilities for networking 14 (1.4)

R

running operation 23 (1.5.2)

S

Standardization 26 (1.7.1)

status LEDs 25 (1.6.1)

T

technical data 10 (1.2)

technical data of the coupler 10 (1.2.1)

technical data of the interface 10 (1.2.2)

terms, definitions and abbreviations 26 (1.7.3)

System Description AC500

 Scalable PLC
for Individual Automation

System Technology
of the DeviceNet Couplers

DeviceNet

__

V7 AC500 System Technology Couplers 1 DeviceNet AC500 / Issued: 04.2006

Contents "The DeviceNet Coupler"

1 The DeviceNet Coupler ... 3

1.1 Brief overview .. 3

1.1.1 Fundamental properties and fields of application... 3

1.1.2 Communication model .. 4

1.1.3 Connection types .. 4

1.1.4 Object model... 5

1.1.5 EDS files ... 7

1.1.6 Features.. 7

1.2 Technical data.. 9

1.2.1 Technical data of the coupler.. 9

1.2.2 Technical data of the interface ... 9

1.3 Connection and data transfer media ... 11

1.3.1 Attachment plug for the bus cable .. 11

1.3.2 Bus terminating resistors .. 12

1.3.3 Bus cables .. 12

1.3.4 Maximum line lengths ... 13

1.4 Possibilities for networking ... 14

1.4.1 Single master system ... 14

1.4.2 Multi master system.. 15

1.5 DeviceNet implementation ... 17

1.5.1 Configuration .. 17

1.5.2 Running operation .. 26

1.5.3 Error diagnosis.. 27

1.5.4 Function blocks... 27

1.6 Diagnosis .. 28

1.6.1 Status LEDs.. 28

1.6.2 DeviceNet error messages ... 28

1.6.3 Function blocks... 28

__

V7 AC500 System Technology Couplers 2 DeviceNet AC500 / Issued: 04.2006

1.7 Further information .. 29

1.7.1 Standardization... 29

1.7.2 Important addresses ... 29

1.7.3 Terms, definitions and abbreviations.. 29

2 Index ... 30

__

V7 AC500 System Technology Couplers 3 DeviceNet AC500 / Issued: 04.2006

1 The DeviceNet Coupler

1.1 Brief overview

1.1.1 Fundamental properties and fields of application

DeviceNet is mainly used to transfer process data between central controller modules (such as PLC or
PC) and decentralized peripheral modules such as I/O modules, drives and valves. To perform this,
DeviceNet uses the physics and data transport mechanisms of the Controller Area Network (CAN).
Communication is performed message-oriented. The subscribers exchange data cyclically, change-
controlled or event-controlled via the logical interconnections specified during configuration. DeviceNet
supports transfer rates of 125 kbaud, 250 kbaud and 500 kbaud.

Each of the up to 64 subscribers in a DeviceNet network has an own MAC ID
(Media Access Control Identifier, bus address). The Duplicate MAC ID test algorithm, which is executed
when booting the system, guarantees that each MAC ID exists only once in the network. DeviceNet does
not use the conventional master/slave principle. Each subscriber is generally authorized for
transmission. As soon as a module reaches a state that activates a configured connection (e.g. changed
input value), the module tries to transmit a corresponding telegram via the bus. In this case, it may
happen that several subscribers try to send a telegram at the same time. Telegram collisions are
detected and removed by the CSMA/CA procedure (Carrier Sense Multiple Access/Collision Avoidance).
Each telegram contains a priority identification. The lower this value is, the higher is the priority of the
message. The bus address of the sender is part of this priority identification. Due to this, subscribers with
a low MAC ID have a higher priority than subscribers with higher addresses when assigning the bus
accesses. If a transmission attempt of a subscriber is interrupted by a telegram with a higher priority, the
interrupted subscriber disconnects from the bus and then repeats its transmission attempt after the
transmission of the high-priority telegram is finished. If a default number of failed transmit attempts is
exceeded, the DeviceNet module changes to the fault state. Due to this, normally as low as possible
MAC IDs are assigned to DeviceNet masters.

DeviceNet distinguishes three device types: Clients, servers and devices which combine both types of
functionality. In principle, all device types can receive (consume) or send (produce) data or perform both.
A client (master) typically sends data in form of a request and receives data as an answer to this
request. Servers (slaves) typically consume requests and then produce the answers. Depending on the
configured connection, slaves are also able to send data via the bus without any previous request by a
master. Some devices (clients and servers) can only consume messages (pure output devices) or
produce messages (pure input devices).

With DeviceNet, mono master as well as multi master and multi client systems can be realized. In theory
each master can access all slaves (servers). The actually realized communication connections are
specified during configuration prior to commissioning. Configuration of the connections is done in
masters. When booting the system, the master establishes the corresponding connections, i.e. it informs
the slaves how to perform communication between the slaves and the master. Pure servers cannot
initiate connections, pure clients cannot receive requests. Communication connections are only possible
between a master (client) and several slaves (servers) and devices which support both types of
functionality. Mixed devices can communicate with other mixed devices as well as with pure servers.

__

V7 AC500 System Technology Couplers 4 DeviceNet AC500 / Issued: 04.2006

Client/Server

Server

Client

Client/Server

Client

Server

Response

Request

Figure: Communication connections

1.1.2 Communication model

DeviceNet uses the Producer Consumer Model. As soon as a DeviceNet subscriber has to transmit
data as required by the configured connections, it produces data, i.e. it transmits data via the bus. All
modules, which are waiting for data, monitor the bus. If a subscriber recognizes that it is the receiver of
the data by reading the identifier contained in the telegram header, it consumes the data, i.e. it reads the
complete telegram. Here, it is possible that a message can be directed to one single subscriber (single
cast) or several subscribers (multi cast).

DeviceNet defines two types of messages: I/O messaging (I/O data transfer) and explicit messaging
(direct connection). I/O messaging is used for exchanging time-critical data (e.g. process data). The data
are exchanged via single or multi cast connections and typically use identifiers with a high priority. The
meaning of the messages is set with the connection IDs (CAN identifier). Before DeviceNet modules can
exchange messages that use these IDs, the modules have to be configured accordingly. The
configuration data contain the source and destination address of the object attributes to be transferred
for the sender and receiver of the messages. Explicit messaging is a low-priority point to point
communication connection between two devices and is typically used for configuration and diagnostic
purposes. DeviceNet telegrams (I/O messaging and explicit messaging) contain a maximum of 8 bytes
user data. If greater data volumes are to be exchanged, the data have to be split into smaller data
packages by fragmenting prior to transmitting. These fragments are then transmitted one after the other
and recombined in the receiver.

In addition, DeviceNet knows so-called default master slave connections. These connections use special
identifiers of the message group 2. In contrast to all other message types, these types use the MAC ID
as destination address and not as source address. Default connections allow to simplify the
communication relations. Here, the connection types Bit Strobe, Polling, Change of State and Cyclic are
available.

1.1.3 Connection types

For Change of State connections (transfer in case of a state change), a DeviceNet subscriber only
transmits the data if they have changed since the last transmission. In case of slow processes, this can
lead to longer send pauses. Due to this, all devices are equipped with an adjustable heartbeat timer. If
this heartbeat timer is elapsed and the data did not change in the mean time, they are transmitted
nevertheless. The heartbeat timer is triggered with every new transmit process. That means, the
subscriber transmits the data in case of a state change, but definitely when the heartbeat interval is
elapsed. This way, the receiver is informed that the sender works correctly and did not fail. Hence,
transmitting a request to the sender of the data is not required.

Cyclic connections are mainly used if a fixed time slot pattern is set by default. If, for example, a
temperature sensor is used in a slow closed-loop control circuit with a sampling rate of 500ms, it is
recommended to update the temperature value cyclically in intervals of 500ms. Shorter update intervals

__

V7 AC500 System Technology Couplers 5 DeviceNet AC500 / Issued: 04.2006

would not provide additional information to the loop controller but cause unnecessary high load on the
bus instead.

Change of State connections and Cyclic connections are Acknowledged Exchanges per default, i.e. the
consumer (receiver) of the data transmits an acknowledgement to the producer (transmitter) as a receipt
confirmation. These acknowledgements can be suppressed using the Acknowledge Handler Object
(refer to the object model) in order to avoid additional telegram traffic for systems which are anyway
heavily loaded due to fast update times.

Multi Cast connections are also managed using the Acknowledge Handler Object. The slave data are not
only read by the master but also by other subscribers, e.g. by operating stations which monitor the
telegram traffic and process and acknowledge the data they require for display, alarm and archive
purposes.

In case of Polling connections, the master transmits a poll command to the slave. If the master contains
data intended for the slave, these data are also transferred. This can be performed using one single
telegram or with help of the fragmentation services. Data volumes with a size greater than 8 bytes are
divided into subsets and then transferred one after the other. The slave recombines the data packages
received from the master. If the slave contains data that are directed to the polling master, it transmits
these data to the master. The response telegram of the slave alternatively or additionally contains status
information. If the slave does not respond to a polling request of the master, a timeout occurs. Especially
in case of slow processes, a disadvantage of Polling connections is that they cause unnecessary high
load on the bus since often the data do not change between two procedures.

Bit Strobe connections are used to transfer small data volumes between a master and one or several
slaves. The Bit Strobe telegram transmitted by the master contains 64 bits of user data. Each bit is
assigned to one subscriber or bus address. Therefore, Bit Strobe telegrams have a broadcast
functionality. As all addressed slaves receive the telegram at the same time, Bit Strobe is often used for
the synchronization of input or output data. A slave can provide the assigned bit directly at an output or
interpret the bit as a trigger condition in order to freeze input values and to transfer these values to the
master with the next polling telegram. The data sent back by the slave are limited to a size of 8 bytes.
Thus, Bit Strobe causes lower bus load than the Polling method.

1.1.4 Object model

DeviceNet is based on an abstract object model. This model defines the organization and
implementation of the attributes (data), services (methods, procedures) and the behavior of the individual
components of a DeviceNet subscriber. The complete definition is part of the corresponding specification
that can be obtained from the ODVA. The model provides a four-step addressing schema for each
attribute. The first level is the NodeAddress (MAC ID, bus address), the second is the
Object Class Identifier, the third level is the Instance Number and the last level is the Attribute Number.

Classes:

Each DeviceNet module contains a collection of objects where each object has a certain class. The
DeviceNet standard already contains the definition of many standard classes. These standard classes
describe, for example, fundamental properties, the communication behavior or parameters of individual
channels of a subscriber. In addition, further manufacturer-specific classes can be defined for a
DeviceNet module.

The definition of classes can be compared to the definition of STRUCT data types or function blocks
included in libraries. When defining a structure, no data are created at first. Only a possible data format
is described. If a function block library is inserted into a project, the included function blocks are not
executed. The library only contains descriptions of the available function blocks.

Objects and instances:

Each DeviceNet subscriber contains one or several objects of the different classes. An object is an
instance of a class. Depending on the type of class, only one object or several objects of this class can
be available. The instances are numbered continuously.

This is comparable with the creation of variables of previously defined STRUCT types. For a library, this
corresponds to the insertion of a function block included in the library into the project. After a symbolic
name has been entered, an instance of this type is generated in the project.

__

V7 AC500 System Technology Couplers 6 DeviceNet AC500 / Issued: 04.2006

Attributes:

Data (attributes) are combined in an object instance. These attributes describe the different properties of
a DeviceNet module and can be (partly) read or written by other modules via the bus.

In relation to the STRUCT variables in a project, attributes can be compared with the individual elements
of a structure. Reading and writing the individual elements is done by assignments in the program. For
function blocks, the inputs and outputs can be seen as attributes.

Standard objects:

The standard objects described below are contained in any DeviceNet module, provided no other
information is available in this document. Some information contained in these objects are, for example,
read automatically by a DeviceNet master from the particular device when commissioning the bus and
are then compared with the required configuration. When establishing the communication connections
during the boot process of the system, a master writes objects to the assigned slaves. This informs the
slave how it has to use the bus.

Each DeviceNet module has an instance of the Identity Object (class identifier 1, instance number 1).
Parts of this instance are, for example, the attributes manufacturer code, device type, product code,
version identifier, status, serial number and product name. This information can be read out from a
device using the DeviceNet service Get_Attribute_Single. The following table shows the structure of the
Identity Object.

Identity Object: class identifier 1, instance number 1

Attribute
No.

Attribute name Data format Description Implementation

1 Vendor ID UINT Manufacturer identifier required

2 Device Type UINT Device type required

3 Product Code UINT Product number required

4 Major Revision
Minor Revision

USINT
USINT

Version identifier required

5 Status WORD General status required

6 Serial Number UDINT Serial number required

7 Product Name STRING(32) Product name required

8 State USINT Current state optional

9 Configuration
Consistency Value

UINT Device configuration optional

10 Heartbeat Interval USINT Time interval in
seconds

optional

Table: Structure of the Identity Object

In addition, DeviceNet modules have an instance of the Message Router Object. The
Message Router Object is part of a device which explicitly routes messages to other objects. Usually it is
not possible to directly access this object within the DeviceNet network.

The instance of a DeviceNet object of a device contains the attributes (data) bus address (MAC ID),
baud rate, bus off reaction, bus off counter, allocation selection and the MAC ID of the master. These
data are also accessed using the Get_Attribute_Single service.

DeviceNet modules have at least one Assembly Object. The main task of these objects is to combine
different attributes (data) of different Application Objects into one attribute that can be transmitted in one
single message.

In addition, DeviceNet modules have at least two Connection Objects. Each Connection Object
represents one end point of a virtual connection between two subscribers of a DeviceNet network. These
virtual connections are named explicit messaging and I/O messaging (refer to the description above).
Explicit messages contain the address and value of an attribute as well as a service identifier that
describes how the data are handled. In contrast, an I/O message contains only data. The information
how the data have to be handled are contained in the Connection Object to which this message is
assigned.

__

V7 AC500 System Technology Couplers 7 DeviceNet AC500 / Issued: 04.2006

The Parameter Object is an optional object and is only used by devices which have adjustable
parameters. An own instance is available for each parameter. The Parameter Object provides
standardized access to all parameters for the configuration tools. The configuration options are attributes
of the Parameter Object and can be, for example, a value range or scaling of channels, texts or limits.

Normally, at least one Application Object exists in each DeviceNet module in addition to the objects of
the assembly or parameter class. At this point, these objects are not described in detail. A description
can be found in the DeviceNet Object library.

1.1.5 EDS files

The characteristic properties of a DeviceNet module are documented in the form of an electronic data
sheet (EDS file). The file completely and clearly describes the characteristics (objects) of a module type
in a standardized and manufacturer-independent format. Programs used to configure a DeviceNet
network use the module type descriptions available in the EDS files. This strongly simplifies the
configuration of a DeviceNet system. Usually the EDS files are provided by the device manufacturer. In
addition, the ODVA provides many EDS files in the Internet which can be downloaded free of charge.

The Internet address of the ODVA is: http://www.odva.org.

1.1.6 Features

Mode of operation:

• DeviceNet master (client)

• Check for double subscriber addresses (MAC IDs) on the bus when initializing the system

• A maximum of 256 bytes of input data and 256 bytes of output data per slave

• A maximum of 57344 I/O points

Transmission technique:

• ISO 11898, potential separated

• Data lines, twisted-pair line and power supply in only one cable

• Transfer rates of 125 kbit/s, 250 kbit/s and 500 kbit/s

• Bus length up to 500 m at 125 kbit/s and up to 100 m at 500 kbit/s (Trunk Cable)

• One bus can have up to 64 subscribers

• 5-pin COMBICON socket for bus connection

Communication:

• Message-oriented bus access, CSMA/CA

• Data transfer: Poll, bit strobe, cyclic or change of state, explicit peer-to-peer (acyclic) via class 2,
UCMM group 1, 2 and 3 fragmentation

• Predefined master-slave connections

• 8 bytes of non-fragmented user data, for fragmentation any size is possible

• Synchronization of inputs and/or outputs via bit strobe connections

__

V7 AC500 System Technology Couplers 8 DeviceNet AC500 / Issued: 04.2006

Protection functions:

• Message transfer with Hamming distance HD = 6

• Fault recognition mechanisms via 15 bit CRC, frame check, acknowledge, bit monitoring and bit
stuffing

• Incorrect parameter settings are avoided because bus subscribers with faulty parameters are not
included in the user data operation

• The system keeps running in case of a subscriber failure. The failure is registered in the master
and indicated via a common diagnosis.

• Response monitoring of the subscribers (heartbeat) by a cyclic check for double subscriber
addresses

• Removing, adding and exchanging of subscribers during running operation is possible

Status indication with 4 LEDs:

• PWR (green): Power supply for the coupler

• RDY (yellow): Coupler ready for operation

• RUN (green): Configuration and communication status

• NET/MOD (green/red): Module status

__

V7 AC500 System Technology Couplers 9 DeviceNet AC500 / Issued: 04.2006

1.2 Technical data

1.2.1 Technical data of the coupler

Coupler CM575-DN

Field bus DeviceNet

Transmission rate 125 kbit/s up to 500 kbit/s

Protocol DeviceNet master

Attachment plug for field bus Pluggable 5-pin COMBICON connector

Processor EC1, 160 pins

Clock frequency 48 MHz

Possible CPUs PM571-xxx, PM581-xxx, PM591-xxx

Possible terminal bases All

Ambient temperature 0 °C...55 °C

Coupler interface Dual-port memory, 8 kbytes

Current consumption over the coupler bus typ. 180 mA

Internal RAM memory (EC1) 256 kbytes

External RAM memory -

External Flash memory 512 kbytes (firmware)

Status display PWR, RDY, RUN, NET, MOD

Weight approx. 150 g

Table: Technical data of the DeviceNet coupler

1.2.2 Technical data of the interface

Interface socket 5-pin COMBICON

Transmission standard ISO 11898, potential-free

Transmission protocol DeviceNet, 500 kBaud max.

Transmission rate Baud rate 125 kbit/s, 250 kbit/s, 500kbit/s

Status indication 4 LEDs

Number of subscribers 63 max.

The pin assignment of the DeviceNet interface is as follows:

Power –
CAN_L
Drain or Shield

CAN_H

Power +

1
2
3

4

5

1
2
3

4

5

Pin assignment

Combicon,
5-pole, male
coupler interface

Combicon,
5-pole, female
removable plug
with spring terminals

Figure: Pin assignment of the field bus interface DeviceNet

__

V7 AC500 System Technology Couplers 10 DeviceNet AC500 / Issued: 04.2006

The following figure shows the position of the LEDs. The LED states and their meanings are described in
the following table.

CM575

PWR
RDY
RUN

NET MOD

LED Color State Meaning

ON Voltage on
PWR green

OFF Voltage off

ON Coupler ready

flashes cyclic Bootstrap loader active

flashes non-cyclic Hardware or system error
RDY yellow

OFF Defective hardware or voltage off

ON Communication in progress

flashes cyclic Ready for communication

flashes non-cyclic Parameterization error
RUN green

OFF No communication or voltage off

ON (green) Device is in online mode and has established one or
several connections

flashes cyclic (green) Device is in online mode and has established no
connection

flashes cyclic
(green/red)

Faulty communication

ON (red) Critical connection error, device has detected a network
error (duplicated MAC ID or bus interrupted)

flashes cyclic (red) Connection timeout

NET/
MOD

green/
red

OFF After start of the device and during duplicate MAC ID
check

__

V7 AC500 System Technology Couplers 11 DeviceNet AC500 / Issued: 04.2006

1.3 Connection and data transfer media

1.3.1 Attachment plug for the bus cable

Assignment:

5-pin COMBICON connector

Pin no. of the
interface plug (from

top to bottom)

Signal Typical
core
color

Meaning

1 Power − black Reference potential for external power supply

2 CAN_L blue Receive/transmit line LOW

3 Drain blank Shield of the bus cable

4 CAN_H white Receive/transmit line HIGH

5 Power + red +24 V, external power supply

Table: Pin assignment of the attachment plug for the bus cable

It is absolutely necessary that all cables (i.e. the data lines CANH / CANL, the external 24 V power
supply +V / -V and the shielding) are connected.

Supplier:

e.g. COMBICON

Phoenix Contact GmbH & Co.
Flachsmarktstraße 8 - 28
32825 Blomberg, Germany

Phone: (+49) (0)52 35 / 3-00
Fax: (+49) (0)52 35 / 3-4 12 00
Internet: http://www.phoenixcontact.com

__

V7 AC500 System Technology Couplers 12 DeviceNet AC500 / Issued: 04.2006

1.3.2 Bus terminating resistors

The ends of the data lines (bus segments) have to be terminated with a 120Ω bus termination resistor.
The bus termination resistor is usually installed directly at the bus connector.

12
0

12
0

Data lines,
twisted pair cable

COMBICON connection

CAN_H 4

CAN_L 2

Drain/Shield 3

Power – 1

4 CAN_H

2 CAN_L

3 Drain/Shield

1 Power –

Power + 5
red

black

+24 V

0 V

white

blue

bare

COMBICON connection

DeviceNet
power supply

DeviceNet interface DeviceNet interface

5 Power +

Figure: DeviceNet interface, bus terminating resistors connected to the line ends

1.3.3 Bus cables

Two cable types are used with DeviceNet: Trunk Cables and Drop Cables. The Trunk Cable has a
greater line diameter than the Drop Cable. In principle, both line types can be used as main lines (Trunk
Line) and as branch lines (Drop Line). However, using the thinner line reduces the maximum line
lengths.

Trunk Cable (main lines):

Data lines:

Type Twisted pair cable (shielded)

Wave impedance (cable impedance) 120 Ω

Cable capacity (distributed capacitance) ≤ 40 nF/km

Conductor cross section ≥ 1.0 mm² (18 AWG / 19)

Line resistance per core ≤ 22.5 Ω/km

Loop resistance (serial resistance of 2 cores) ≤ 45 Ω/km

Power supply:

Loop resistance (serial resistance of 2 cores) ≤ 45 Ω/km

Conductor cross section ≥ 1.5 mm² (15 AWG / 19)

__

V7 AC500 System Technology Couplers 13 DeviceNet AC500 / Issued: 04.2006

Drop Cable (branch lines):

Data lines:

Type Twisted pair cable (shielded)

Wave impedance (cable impedance) 120 Ω

Cable capacity (distributed capacitance) ≤ 40 nF/km

Conductor cross section ≥ 0.25 mm² (24 AWG / 19)

Line resistance per core ≤ 92 Ω/km

Loop resistance (serial resistance of 2 cores) ≤ 184 Ω/km

Power supply:

Loop resistance (serial resistance of 2 cores) ≤ 45 Ω/km

Conductor cross section ≥ 0,34 mm² (22 AWG / 19)

Supplier:

e.g. UNITRONIC® BUS DeviceNet

U.I. LAPP GmbH
Schulze-Delitzsch-Straße 25
70565 Stuttgart, Germany
Phone: (+49) (0)711 7838 01
Fax: (+49) (0)711 7838 264
Internet: http://www.lappkabel.de

1.3.4 Maximum line lengths

Transmission rate 125 kbit/s 250 kbit/s 500 kbit/s

Max. line length main strand
Trunk Cable

500 m
(1.610 ft)

250 m
(820 ft)

100 m
(328 ft)

Max. line length main strand
Drop Cable

100 m
(328 ft)

100 m
(328 ft)

100 m
(328 ft)

Max. line length per branch line
Trunk Cable / Drop Cable

6 m
(20 ft)

6 m
(20 ft)

6 m
(20 ft)

Max. line length: sum of branch lines
Trunk Cable / Drop Cable

156 m
(512 ft)

78 m
(256 ft)

39 m
(128 ft)

Table: Maximum line lengths

__

V7 AC500 System Technology Couplers 14 DeviceNet AC500 / Issued: 04.2006

1.4 Possibilities for networking

The DeviceNet coupler is connected to the bus using the 5-pin COMBICON socket. For EMC
suppression and protection against dangerous contact voltages, the shield of the bus line has to be
connected to protective earth outside the housing.

1.4.1 Single master system

The single master system is the simplest version of a DeviceNet network. It consists of a DeviceNet
master (Client) and up to 63 slaves (Server). The line ends of the busses have to be terminated using
bus termination resistors.

The DeviceNet master is able to:

• automatically determine the structure of the system, i.e. the description and configuration
possibilities of all subscribers.

• detect double bus addresses in the network.

• parameterize the slaves (e.g. communication connections, time supervision, bus traffic).

• configure slaves (e.g. type, number and channel operating mode).

• read input data of the slaves.

• write output data of the slaves.

• read diagnostic data of the slaves.

• send control commands to the slaves (via bit strobe, e.g. freeze input signals).

• read, write and reset slave objects even if the slaves are in running mode.

__

V7 AC500 System Technology Couplers 15 DeviceNet AC500 / Issued: 04.2006

R

DeviceNet

PM581 AX522DC532

CM575 as
DeviceNet Master

CM575

R

Slave 1
e.g. valve island

Slave 63
e.g. power

DeviceNet
power supply

converter

Figure: Example of a single master system

1.4.2 Multi master system

A DeviceNet network that contains several masters is called a multi master system. Up to 64 subscribers
(master and slaves) can be operated in this type of network. In a multi master system, master-slave
communication is possible as well as the data exchange between masters.

Masters are able to:

• automatically determine the structure of the system, i.e. the description and configuration
possibilities of all subscribers.

• parameterize the slaves (e.g. communication connections, time supervision, bus traffic).

• configure slaves (e.g. type, number and channel operating mode).

• read input data of the slaves.

• write output data of the slaves.

• read diagnostic data of the slaves.

• send control commands to the slaves (via bit strobe, e.g. freeze input signals).

• read, write and reset slave objects even if the slaves are in running mode.

__

V7 AC500 System Technology Couplers 16 DeviceNet AC500 / Issued: 04.2006

PM581 AX522DC532

CM575 as
DeviceNet Master

CM575

R

R

DeviceNet

Slave 2
e.g. valve island

Slave 63
e.g. power

DeviceNet
power supply

other
DeviceNet
Master

converter

Figure: Example of a multi master system

__

V7 AC500 System Technology Couplers 17 DeviceNet AC500 / Issued: 04.2006

1.5 DeviceNet implementation

1.5.1 Configuration

The integration of the coupler into the PLC configuration of the AC500 is an assumption for the correct
function of the DeviceNet coupler CM575. The configuration of the coupler and the connected DeviceNet
subscribers is done using the tool SYCON.net which is part of the Control Builder programming software.

In the following configuration example, the coupler CM575 is configured as DeviceNet master device.
The functionality of the DeviceNet slave is made available via an FBP DeviceNet plug at a motor
controller (UMC).

PM581 AX522DC532

CM575 as
DeviceNet Master

CM575

R

UMC as
DeviceNet Slave

FBP

Figure: Example configuration consisting of an AC500 with a DeviceNet coupler and a DeviceNet slave
(FBP on a UMC)

PLC configuration

The configuration of the DeviceNet coupler starts with the integration of the coupler into the PLC
configuration.

__

V7 AC500 System Technology Couplers 18 DeviceNet AC500 / Issued: 04.2006

To insert the coupler into the configuration, select "Couplers", press the right mouse button and then
select "Append Subelement" -> "CM575".

Do not change the default values for the coupler parameters.

The coupler is now integrated in the PLC configuration.

Configuration using SYCON.net

When configuring the DeviceNet coupler, the configuration data are a definite element of a project. They
are specified using the tool SYCON.net (Resources tab -> Tools -> SYCON.net) which is part of the
Control Builder. The configuration data are transferred to the coupler with the SYCON.net tool.

__

V7 AC500 System Technology Couplers 19 DeviceNet AC500 / Issued: 04.2006

The following view appears when starting the configuration tool SYCON.net.

In the top right window, click on the entry "CM575-DNM" in the folder "DeviceNet/Master" and drag it
onto the green line displayed in the middle window. Correct insertion positions are displayed by a "+".

A dialog appears where you have to select the board number according to the coupler slot. The first slot
left of the CPU is slot 1 (or board number 1).

To configure the DeviceNet master, place the cursor on the "CM575" icon and then press the right
mouse button and select "Configuration".

__

V7 AC500 System Technology Couplers 20 DeviceNet AC500 / Issued: 04.2006

Enter the MAC ID, select the baud rate of the DeviceNet coupler and apply the parameters by pressing
"OK".

In the top right window, click on the entry "UMC22-V33-FBP" in the folder "DeviceNet/Slave" and drag it
onto the yellow line (DeviceNet line) displayed in the middle window. Correct insertion positions are
displayed by a "+".

To configure the DeviceNet slave, place the cursor on the slave icon and then press the right mouse
button and select "Configuration".

__

V7 AC500 System Technology Couplers 21 DeviceNet AC500 / Issued: 04.2006

In this example, we do not change the configuration of the DeviceNet slave. Only the MAC ID of the
slave is changed according to the HW setting. This is done in the master configuration dialog. Open the
master configuration and select the subitem "MAC ID table" in the "Configuration" folder.

__

V7 AC500 System Technology Couplers 22 DeviceNet AC500 / Issued: 04.2006

Set the MAC ID of the slave. Leave all other settings unchanged.

Now the configuration can be downloaded to the DeviceNet master. To do this, first the interface has to
be specified that is used to download the data to the coupler. The interface to be used is configured in
the tab "Settings -> Driver -> 3S Gateway Driver" in the DeviceNet master configuration.

__

V7 AC500 System Technology Couplers 23 DeviceNet AC500 / Issued: 04.2006

Press the button "Gateway Configuration".

Select the gateway and click on "OK".

Now the configuration tool SYCON.net searches for DeviceNet couplers that are connected to the
selected interface. The tab "Device Assignment" in the DeviceNet master configuration shows the
detected DeviceNet couplers.

__

V7 AC500 System Technology Couplers 24 DeviceNet AC500 / Issued: 04.2006

Select the desired coupler by marking the relevant checkbox and confirm your selection with "OK".

Select the "CM575" icon, press the right mouse button and select "Connect".

The CM575 icon is then highlighted by green background.

Set the controller to stop state.

Select the "CM575" icon, press the right mouse button and select "Download".

Confirm the appearing dialog with "Yes".

__

V7 AC500 System Technology Couplers 25 DeviceNet AC500 / Issued: 04.2006

After successful completion of the download process, the "PWR" LED at the CM575 is on and the "RUN"
LED flashes.

Select the "CM575" icon, press the right mouse button and select "Disconnect".

The coupler configuration is now completed.

To be able to use the DeviceNet data in the PLC program, you should assign corresponding variable
names to the physical addresses using SYCON.net. These variables will then be available in the Control
Builder and can be used directly there.

The assignment of the variable names is done in the netConnect window in SYCON.net.

The variable name has to be entered in the field "Variable Name". Double click to open the
corresponding input field.

All variables declared here are automatically added to the "Global variables" folder when switching from
SYCON.net to the Control Builder.

__

V7 AC500 System Technology Couplers 26 DeviceNet AC500 / Issued: 04.2006

The declaration of the variables is now completed. The coupler variables can now be used in the user
program.

The DeviceNet configuration is now tested by copying the DeviceNet slave ID2 inputs to the DeviceNet
slave ID2 outputs in the user program

Now the user program can be downloaded to the controller and started.

During exchange of DeviceNet data, the "RUN" LED at the CM575 continuously lights up.

1.5.2 Running operation

The DeviceNet protocol is automatically processed by the coupler and the operating system of the
controller. The coupler is only active on the bus if it has been initialized correctly before and if the user
program is running. No function blocks are necessary for exchanging process data via DeviceNet.
Special DeviceNet functions can be realized using the function blocks of the DeviceNet library.

The coupler starts communication via DeviceNet after the user program is started and then attempts to
initialize the configured slaves. After a successful initialization, the slave exchanges the process data.
The exchange of I/O data with the slaves is done automatically.

If the user program is stopped, the coupler shuts down the DeviceNet communication in a controlled
manner.

__

V7 AC500 System Technology Couplers 27 DeviceNet AC500 / Issued: 04.2006

1.5.3 Error diagnosis

DeviceNet communication errors are indicated by the coupler LEDs. Malfunctions of the DeviceNet
driver or the coupler itself are indicated by the corresponding error class in the PLC (refer to System
Technology of the CPU / The diagnosis system in AC500). Furthermore, the DeviceNet library provides
different function blocks which allow detailed error diagnosis (refer to "The DeviceNet Library").

1.5.4 Function blocks

Libraries:

DeviceNet_AC500_V11.lib

Group: Status / Diagnosis

DNM_DEV_DIAG Polling diagnosis data from a slave

DNM_STATE Reading the DeviceNet coupler status

DNM_SYS_DIAG Displaying status surveys of all slaves

Group: Parameters

DNM_GET_ATTR Reading an attribute from a slave object

DNM_RES_OBJ Resetting a slave object

DNM_SET_ATTR Writing an attribute to a slave object

__

V7 AC500 System Technology Couplers 28 DeviceNet AC500 / Issued: 04.2006

1.6 Diagnosis

1.6.1 Status LEDs

LED Color Status Meaning

ON Voltage on
PWR green

OFF Voltage off

ON Coupler ready

flashes cyclic Bootstrap loader active

flashes non-cyclic Hardware or system error
RDY yellow

OFF Defective hardware or voltage off

ON Communication in progress

flashes cyclic Communication stopped

flashes non-cyclic Missing or faulty configuration
RUN green

OFF No communication or voltage off

ON (green) Device is in online mode and has established one or
several connections

flashes cyclic (green) Device is in online mode and has established no
connection

flashes cyclic
(green/red)

Faulty communication

ON (red) Critical connection error, device has detected a network
error (duplicated MAC ID or bus interrupted)

flashes cyclic (red) Connection timeout

NET/
MOD

green/
red

OFF After start of the device and during duplicate MAC ID
check

Table: Status LEDs of the DeviceNet coupler

1.6.2 DeviceNet error messages

The DeviceNet error messages are listed in the section 'Error messages for the block libraries'.

1.6.3 Function blocks

DeviceNet master

Refer to 1.5.4 Function blocks

Online diagnosis

Refer to the documentation for the field bus configuration tool SYCON.net

__

V7 AC500 System Technology Couplers 29 DeviceNet AC500 / Issued: 04.2006

1.7 Further information

1.7.1 Standardization

BOSCH CAN Specification - Version 2.0, Part A

ISO 11898

ODVA DeviceNet Specification Release 2.0, Errata 1 & 2

1.7.2 Important addresses

Open DeviceNet Vendor Association (ODVA)
PMB 499
20423 State Road 7 #F6
Boca Raton, FL 33498-6797
U.S.A.

Phone: (+1) 954 340-5412
Fax: (+1) 954 340-5413
Internet: http://www.odva.org

DeviceNet Europe
c/o Teja Ulrich
Elektrastraße 14
D-81925 München
Germany

Phone: (+49) 8991049571
Fax: (+49) 8991049573
E-Mail: Teja.Ulrich@munich.netsurf.de

1.7.3 Terms, definitions and abbreviations

ACK Acknowledged Exchange

ODVA Open DeviceNet Vendor Association

CAN Controller Area Network

COS Change Of State

EDS Electronic Data Sheet

MAC ID Media Access Control Identifier, bus address

Trunk Line Main strand of the bus

Drop Line Branch line

UCMM Unconnected Message Manager

__

V7 AC500 System Technology Couplers 30 DeviceNet AC500 / Issued: 04.2006

2 Index

A

attachment plug for the bus cable 11 (1.3.1)

B

brief overview 3 (1.1)

bus cables 12 (1.3.3)

bus terminating resistors 12 (1.3.2)

C

communication model 4 (1.1.2)

configuration 17 (1.5.1)

connection and data transfer media 11 (1.3)

connection types 4 (1.1.3)

D

DeviceNet coupler 3 (1)

DeviceNet error messages 28 (1.6.2)

DeviceNet implementation 17 (1.5)

diagnosis 28 (1.6)

E

EDS files 7 (1.1.5)

error diagnosis 27 (1.5.3)

F

features 7 (1.1.6)

function blocks 27 (1.5.4)

fundamental properties and fields of application 3 (1.1.1)

further information 29 (1.7)

I

important addresses 29 (1.7.2)

M

maximum line lengths 13 (1.3.4)

multi master system 15 (1.4.2)

__

V7 AC500 System Technology Couplers 31 DeviceNet AC500 / Issued: 04.2006

O

object model 5 (1.1.4)

P

possibilities for networking 14 (1.4)

R

running operation 26 (1.5.2)

S

single master system 14 (1.4.1)

standardization 29 (1.7.1)

status LEDs 28 (1.6.1)

T

technical data 9 (1.2)

technical data of the coupler 9 (1.2.1)

technical data of the interface 9 (1.2.2)

terms, definitions and abbreviations 29 (1.7.3)

__

V7 AC500 System Technology Couplers 32 DeviceNet AC500 / Issued: 04.2006

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82 69123 Heidelberg, Germany
Postfach 10 16 80 69006 Heidelberg, Germany
Telephone (06221) 701-0
Telefax (06221) 701-240
Internet http://www.abb.de/stotz-kontakt
E-Mail desst.helpline@de.abb.com

M
an

ua
l N

o.
: 2

C
D

C
 1

25
 0

22
 M

02
01

	System Technology (Title Page)
	System Technology of the AC500 CPUs
	Contents
	1 Target Support Package
	1.1 Introduction
	1.1.1 Control Builder PS501 versions
	1.1.2 New functions in PS501 V1.2
	1.1.3 Compatibility of versions V1.0, V1.1 and V1.2

	1.2 Selection of the target system - Target support settings
	1.3 CPU parameters in the target support settings
	1.3.1 "Target Platform" settings
	1.3.2 "Memory Layout" settings
	1.3.3 "General" settings
	1.3.4 "Network Functionality" settings
	1.3.5 "Visualization" settings

	1.4 Overview on user program size and operands of AC500 CPUs
	1.5 Installation of AC500 targets with the program installTarget.exe

	2 AC500 inputs, outputs and flags
	2.1 AC500 interfaces for inputs and outputs AC500
	2.1.1 Address scheme for inputs and outputs
	2.1.2 Example for addressing in BOOL / BYTE / WORD / DWORD

	2.2 Addressing of inputs and outputs
	2.3 Processing of inputs and outputs in the multitasking system
	2.4 Addressable flag area (%M area) in the AC500
	2.4.1 Allocation of the addressable flag area in the AC500
	2.4.2 Access to the %M area using the Modbus® Protocol
	2.4.3 Access to operands in the addressable flag area

	2.5 Absolute addresses of operands
	2.5.1 Adress operator ADR
	2.5.2 Bit address operator BITADR

	2.6 Addressable PERSISTENT area (%R area) in the AC500
	2.6.1 Special features of the addressable PERSISTENT area in the AC500
	2.6.2 Segmentation of the addressable PERSISTENT area in the AC500
	2.6.3 Saving the buffered data of the AC500's %R area
	2.6.4 Access to operands in the addressable PERSISTENT area (%R area)

	3 The AC500 PLC configuration
	3.1 Overview on the PLC configuration
	3.1.1 PLC configuration functions
	3.1.2 Export and import of configuration data
	3.1.3 Default settings in the PLC configuration
	3.1.4 Setting parameters in the PLC configuration

	3.2 Configuration of CPU parameters
	3.2.1 CPU parameters in PS501 versions V1.0 and V1.1
	3.2.2 CPU parameters in version PS501 V1.2

	3.3 I/O bus configuration
	3.3.1 Setting the general I/O bus parameters
	3.3.2 Inserting input and output modules
	3.3.3 Configuring the input and output modules and channels
	3.3.4 Module parameter "Ignore module" of S500 I/O devices

	3.4 Configuration of the serial interfaces (Interfaces / COM1 and COM2)
	3.4.1 Setting the protocol of the serial interfaces
	3.4.2 The setting 'COMx - Online access'
	3.4.3 The setting 'COMx - ASCII'
	3.4.4 The setting 'COMx - Modbus'
	3.4.5 The setting 'COM1 - CS31 Bus'
	3.4.6 The setting 'COMx - SysLibCom'
	3.4.7 The setting 'COMx - Multi'

	3.5 FBP slave interface configuration (Interfaces / FBP slave)
	3.6 Coupler configuration (Couplers)
	3.6.1 Configuring the internal coupler
	3.6.1.1 The internal Ethernet coupler PM5x1-ETH
	3.6.1.2 The internal ARCNET coupler PM5x1-ARCNET

	3.6.2 Configuring the external couplers

	4 System start-up / program processing
	4.1 Terms
	4.2 Start of the user program
	4.3 Data backup and initialization
	4.3.1 Initialization of variables, overview
	4.3.2 Notes regarding the declaration of retentive variables and constants

	4.4 Processing times
	4.4.1 Terms
	4.4.2 Program processing time
	4.4.3 Set cycle time

	4.5 Task configuration for the AC500 CPU

	5 The diagnosis system in the AC500
	5.1 Summary of diagnosis possibilities
	5.1.1 Structure of the diagnosis system
	5.1.2 Diagnosis directly at the PLC by means of "ERR" LED, keypad and display
	5.1.3 Plain-text display of error messages in the Control Builder status line during online mode
	5.1.4 Diagnosis using the PLC browser commands of the Control Builder
	5.1.5 Diagnosis with help of the user program

	5.2 Organization and structure of error numbers
	5.2.1 Error classes
	5.2.2 Error identifiers
	5.2.3 Possible error numbers
	5.2.4 List of all errors
	5.2.5 Coupler errors

	5.3 Diagnosis blocks for the AC500
	5.4 AC500-specific PLC browser commands

	6 The SD memory card in the AC500
	6.1 SD card functions
	6.1.1 Summary of memory card functions
	6.1.2 PLC browser commands for accessing the SD card

	6.2 SD card file system
	6.2.1 SD card file structure
	6.2.2 The command file "SDCARD.INI"
	6.2.3 Initializing an SD card
	6.2.3.1 Initializing an SD card using the AC500
	6.2.3.2 Initializing an SD card using a PC

	6.3 Storing/loading the user program to/from an SD card
	6.3.1 Storing the user program to an SD card
	6.3.2 Loading a user program from the SD card to the AC500

	6.4 Storing/reading user data to/from an SD card
	6.4.1 Structure of data files stored on the SD card
	6.4.2 Blocks for storing/reading user data to/from the SD card
	6.4.3 Deleting a data file stored on the SD card
	6.4.4 Storing user data to the SD card - data file without sectors
	6.4.5 Storing user data to the SD card - data file with sectors
	6.4.6 Loading user data from the SD card - data file without sectors
	6.4.7 Loading user data from the SD card - data file with sectors

	6.5 Storing and loading retentive data to/from an SD card
	6.6 Firmware update from the SD card
	6.6.1 Storing the firmware to the SD card
	6.6.2 Updating the firmware of the AC500 CPU from the SD card

	6.7 Writing and reading the project sources to/from the SD card
	6.7.1 Writing the project sources from PC to SD card
	6.7.2 Loading the project sources from the PLC's SD card into the PC
	6.7.3 Loading the project sources from the SD card using the PC SD card reader

	6.8 SD card error messages

	7 Data storage in Flash memory
	7.1 Blocks used for data storage
	7.2 Example program for data storage

	8 Real-time clock and battery in the AC500
	8.1 General notes concerning the real-time clock in the AC500
	8.2 Setting and displaying the real-time clock
	8.2.1 Setting and displaying the real-time clock with the PLC browser
	8.2.2 Setting and displaying the real-time clock with the user program

	8.3 The AC500 battery

	9 The fast counters in the AC500
	9.1 Activating the fast counters via the I/O bus
	9.2 Counting modes of the fast counters

	10 Programming and test
	10.1 Programming interfaces to the AC500 used by the Control Builder
	10.2 Programming via the serial interfaces
	10.2.1 Serial driver "Serial (RS232)"
	10.2.2 Serial driver "ABB RS232 Route AC"

	10.3 Programming via ARCNET
	10.3.1 ARCNET driver "ABB Arcnet AC"

	10.4 Programming via Ethernet (TCP/IP)
	10.4.1 Ethernet driver "Tcp/Ip"
	10.4.2 Ethernet driver "ABB Tcp/Ip Level 2 AC"
	10.4.3 Ethernet ARCNET routing

	11 Communication with Modbus RTU
	11.1 Protocol description
	11.2 Modbus RTU with the serial interfaces COM1 and COM2
	11.2.1 Modbus operating modes of the serial interfaces

	11.3 Modbus on TCP/IP via Ethernet
	11.4 Modbus addresses
	11.4.1 Modbus address table
	11.4.2 Peculiarities for accessing Modbus addresses
	11.4.3 Comparison between AC500 and AC31/S90 Modbus addresses

	11.5 Modbus telegrams
	11.6 Function block COM_MOD_MAST

	Index System Technology CPUs

	System Technology of the DC541-CM Module
	Contents
	The Interrupt and Counter Module DC541-CM
	1 Functionality and configuration of the module DC541-CM
	1.1 Functionality of the module DC541-CM
	1.2 Application examples for the module DC541-CM
	1.3 Configuring the module DC541-CM

	2 Module used as interrupt I/O device
	2.1 Configuring the module DC541-CM for use as interrupt I/O device
	2.2 Creating an interrupt task for the interrupt inputs
	2.3 Structure of the interrupt program
	2.4 Configuration example: DC541-CM used as interrupt I/O device

	3 Module used as counting device
	3.1 Configuring the module DC541-CM for use as counting device
	3.2 Calling the counting functions of the DC541-CM
	3.3 The 32 bit up/down counter of module DC541-CM
	3.3.1 Description of the module's up/down counter functionality
	3.3.2 Configuration example: 32 bit up/down counter (encoder mode)
	3.3.3 Configuration example: 32 bit up/down counter (up/down mode)

	3.4 The 32 bit forward counter of module DC541-CM
	3.4.1 Description of the module's forward counter functionality
	3.4.2 Configuration example: 32 bit forward counter

	3.5 Pulse width modulation (PWM) using the DC541-CM
	3.5.1 Description of the module's PWM functionality
	3.5.2 Configuration example: Pulse width modulation (PWM)

	3.6 Time and frequency measurement using the DC541-CM
	3.6.1 Description of the module's time and frequency measurement functionality
	3.6.2 Configuration example: Frequency output

	3.7 Frequency output using the DC541-CM
	3.7.1 Description of the module's frequency output functionality
	3.7.2 Configuration example: Frequency output

	4 Index System Technology DC541-CM

	System Technology of the Ethernet Couplers
	Contents
	1 Ethernet and protocols
	1.1 History
	1.1.1 History of Ethernet
	1.1.2 History of TCP/IP protocols

	1.2 Ethernet
	1.2.1 Frame formats
	1.2.2 Bus access methods
	1.2.3 Half duplex and full duplex
	1.2.4 Auto negotiation
	1.2.5 Ethernet and TCP/IP

	1.3 Protocols and applications
	1.3.1 Point-to-Point-Protocol (PPP)
	1.3.2 Internet Protocol (IP)
	1.3.3 Internet Control Message Protocol (ICMP)
	1.3.4 Transmission Control Protocol (TCP)
	1.3.5 User Datagram Protocol (UDP)
	1.3.6 OpenModbus on TCP/IP
	1.3.7 BootP and DHCP
	1.3.8 Address Resolution Protocol (ARP)
	1.3.9 Other protocols and applications

	1.4 Cabling
	1.4.1 Network cables
	1.4.2 Connector pin assignment
	1.4.3 1:1 cables and crossover cables
	1.4.4 Cable length restrictions

	1.5 Network components
	1.5.1 Terminal devices
	1.5.2 Repeaters and hubs
	1.5.3 Bridges, switches and switching hubs
	1.5.4 Media converters
	1.5.5 Routers
	1.5.6 Gateways

	2 The Ethernet coupler
	2.1 Features
	2.1.1 Supported protocols
	2.1.2 Sockets
	2.1.3 Restrictions

	2.2 Technical data
	2.2.1 Technical data of the coupler
	2.2.2 Interfaces
	2.2.3 Technical data of the Ethernet interface

	2.3 Connection and data transfer media
	2.3.1 Attachment plug for Ethernet cable
	2.3.2 Ethernet cable

	2.4 Ethernet implementation
	2.4.1 Configuration
	2.4.2 Running operation
	2.4.3 Error diagnosis

	2.5 Diagnosis

	3 Designing and planning a network
	3.1 Introduction
	3.2 Concepts for structuring a network
	3.2.1 Hierarchy model
	3.2.2 Redundant model
	3.2.3 Safe models

	3.3 Utilization and performance

	4 Planning examples
	4.1 Introduction
	4.2 Integration of couplers into the controller configuration
	4.3 General procedure for configuring the coupler
	4.4 Programming access via Ethernet
	4.5 MODBUS on TCP/IP
	4.5.1 Server / slave operation
	4.5.2 Client / master operation

	4.6 Fast data communication via UDP/IP
	4.6.1 Example configuration for data communication via UDP/IP
	4.6.2 Configuring the Ethernet couplers for data communication via UDP/IP
	4.6.3 Implementation in the user program

	5 Terms and explanations
	5.1 Terms
	5.2 Explanations

	6 Index

	System Technology of the PROFIBUS DP Couplers
	Contents
	1 The PROFIBUS DP Coupler
	1.1 Brief overview
	1.1.1 Fundamental properties and fields of application
	1.1.2 Features

	1.2 Technical data
	1.2.1 Technical data of the coupler
	1.2.2 Technical data of the interface

	1.3 Connection and data transfer media
	1.3.1 Attachment plug for the bus cable
	1.3.2 Bus terminating resistors
	1.3.3 Bus cable
	1.3.4 Maximum line lengths (bus segment)
	1.3.5 Repeaters

	1.4 Possibilities for networking
	1.4.1 Single master system
	1.4.2 Multi master system

	1.5 PROFIBUS DP configuration example
	1.5.1 Configuration
	1.5.2 Running operation
	1.5.3 Error diagnosis

	1.6 PROFIBUS DP diagnosis
	1.6.1 Status LEDs
	1.6.2 PROFIBUS-DP error messages
	1.6.3 Function blocks

	1.7 Further information
	1.7.1 Standardization
	1.7.2 Important addresses
	1.7.3 Terms, definitions and abbreviations

	2 Index

	System Technology of the CANopen Couplers
	Contents
	1 The CANopen coupler
	1.1 Brief overview
	1.1.1 Fundamental properties and fields of application
	1.1.2 Communication mechanisms
	1.1.3 Network Management
	1.1.4 Emergency messages
	1.1.5 Node guarding and heartbeat
	1.1.6 Object directory
	1.1.7 Identifiers
	1.1.8 PDO mapping
	1.1.9 EDS files
	1.1.10 Features

	1.2 Technical data
	1.2.1 Technical data of the coupler
	1.2.2 Technical data of the interface

	1.3 Connection and data transfer media
	1.3.1 Attachment plug for the bus cable
	1.3.2 Bus terminating resistors
	1.3.3 Bus cables

	1.4 Possibilities for networking
	1.5 CANopen implementation
	1.5.1 Configuration
	1.5.2 Running operation
	1.5.3 Error diagnosis
	1.5.4 Function blocks

	1.6 Diagnosis
	1.6.1 Status LEDs
	1.6.2 CANopen error messages
	1.6.3 Function blocks

	1.7 Further information
	1.7.1 Standardization
	1.7.2 Important address
	1.7.3 Terms, definitions and abbreviations

	Index

	System Technology of the DeviceNet Couplers
	Contents
	1 The DeviceNet Coupler
	1.1 Brief overview
	1.1.1 Fundamental properties and fields of application
	1.1.2 Communication model
	1.1.3 Connection types
	1.1.4 Object model
	1.1.5 EDS files

	1.2 Technical data
	1.2.1 Technical data of the coupler
	1.2.2 Technical data of the interface

	1.3 Connection and data transfer media
	1.3.1 Attachment plug for the bus cable
	1.3.2 Bus terminating resistors
	1.3.3 Bus cables
	1.3.4 Maximum line lengths

	1.4 Possibilities for networking
	1.4.1 Single master system
	1.4.2 Multi master system

	1.5 DeviceNet implementation
	1.5.1 Configuration
	1.5.2 Running operation
	1.5.3 Error diagnosis
	1.5.4 Function blocks

	1.6 Diagnosis
	1.6.1 Status LEDs
	1.6.2 DeviceNet error messages
	1.6.3 Function blocks

	1.7 Further information
	1.7.1 Standardization
	1.7.2 Important addresses
	1.7.3 Terms, definitions and abbreviations

	2 Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

