Reference manual

Grounding and cabling of drive systems
Table of contents

1. Introduction to the manual

<table>
<thead>
<tr>
<th>Contents of this chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicability</td>
<td>7</td>
</tr>
<tr>
<td>Target audience</td>
<td>7</td>
</tr>
<tr>
<td>Purpose of this manual</td>
<td>7</td>
</tr>
<tr>
<td>Contents of the manual</td>
<td>8</td>
</tr>
<tr>
<td>Related documents</td>
<td>8</td>
</tr>
<tr>
<td>Literature references on EMC</td>
<td>8</td>
</tr>
<tr>
<td>Literature and standards on bearing currents</td>
<td>8</td>
</tr>
<tr>
<td>Standard references on cabling</td>
<td>9</td>
</tr>
<tr>
<td>Terms and abbreviations</td>
<td>9</td>
</tr>
</tbody>
</table>

2. Basics

<table>
<thead>
<tr>
<th>Contents of this chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives of grounding</td>
<td>11</td>
</tr>
<tr>
<td>Attenuating motor shaft and frame voltages</td>
<td>12</td>
</tr>
<tr>
<td>Bearing currents</td>
<td>12</td>
</tr>
<tr>
<td>Grounding structure</td>
<td>13</td>
</tr>
<tr>
<td>Buildings without ground planes</td>
<td>13</td>
</tr>
<tr>
<td>PE (protective ground) versus FE (functional ground)</td>
<td>14</td>
</tr>
</tbody>
</table>

3. Cabling of drive systems

<table>
<thead>
<tr>
<th>Contents of this chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>15</td>
</tr>
<tr>
<td>Connecting the drive to the supply power network</td>
<td>15</td>
</tr>
<tr>
<td>Transformer</td>
<td>15</td>
</tr>
<tr>
<td>Grounded secondary (TN and TN-S systems)</td>
<td>15</td>
</tr>
<tr>
<td>Ungrounded secondary (IT systems)</td>
<td>16</td>
</tr>
<tr>
<td>Recommended input power cable types</td>
<td>16</td>
</tr>
<tr>
<td>Connection diagram of a shielded cable</td>
<td>17</td>
</tr>
<tr>
<td>Input connection in high-power supply systems</td>
<td>17</td>
</tr>
<tr>
<td>Busbar system</td>
<td>17</td>
</tr>
<tr>
<td>Cable bus system (parallel single-core cables)</td>
<td>18</td>
</tr>
<tr>
<td>Connecting the drive to the motor</td>
<td>19</td>
</tr>
<tr>
<td>Decreasing bearing current risk</td>
<td>19</td>
</tr>
<tr>
<td>General instructions</td>
<td>19</td>
</tr>
<tr>
<td>Recommended motor cable types</td>
<td>19</td>
</tr>
<tr>
<td>Sufficient conductivity of the protective conductor</td>
<td>20</td>
</tr>
<tr>
<td>Calculating the cross-sectional area</td>
<td>20</td>
</tr>
<tr>
<td>Sufficient shield conductivity to suppress emissions</td>
<td>21</td>
</tr>
<tr>
<td>Motor cable types for limited use</td>
<td>21</td>
</tr>
<tr>
<td>Not allowed motor cable types</td>
<td>21</td>
</tr>
<tr>
<td>Diagrams of recommended connections</td>
<td>22</td>
</tr>
<tr>
<td>Grounding the motor cable shield at the motor end</td>
<td>23</td>
</tr>
<tr>
<td>Motor cabling of high-power drives</td>
<td>24</td>
</tr>
<tr>
<td>Potential equalization between the motor and driven equipment</td>
<td>24</td>
</tr>
</tbody>
</table>
Connection diagram

25

- Potential equalization of the motor frame and the terminal box
- Example drive system cabling with potential equalization
- Motor cable connections to be avoided
- Asymmetrical four-core cables
- Connection diagrams
- DC drives

Selecting and connecting control cables

31

- When to use shielded cables
- Connecting the cable shield
- Description
- Instructions

Analog and digital signals in separate cables

32

- Signals allowed to be run in the same cable

Serial communication (eg, fieldbus)

32

- Relay cable type
- Cabling and insulation of pulse encoders
- Galvanic isolation
- Common mode inductors
- Routing the cables
- Grounding diagram of an AC drive system
- Grounding diagram of a DC drive system

Interference coupling

37

- Contents of this chapter
- Common impedance coupling
 - How to decrease coupling via a ground loop
- Capacitive coupling
 - How to decrease capacitive coupling
 - How to decrease stray capacitance
- Inductive coupling
 - How to decrease inductive coupling between circuits
 - How to decrease mutual inductance
 - How to get extra disturbance suppression
- Electromagnetic coupling
 - How to protect against electromagnetic waves

Further information

43

- Product and service inquiries
- Product training
- Providing feedback on ABB Drives manuals
- Document library on the Internet
Introduction to the manual

Contents of this chapter
This chapter gives a description of the manual.

Applicability
This manual is applicable for low voltage AC and DC drive systems. The drive system in this manual consists of the supply transformer, input power cable of the drive, the variable speed drive (frequency converter), motor cable and motor.

Target audience
This manual is intended for people who are involved in variable speed drive system installations and assembly.

Purpose of this manual
The purpose of this manual is tell you the grounding and cabling principles of variable speed drive systems. The guidelines help you to fulfill the personnel safety, electromagnetic compatibility (EMC) and reliability requirements of the installation.

Note: The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not obeyed, the drive may experience problems that the warranty does not cover.
Contents of the manual

The manual tells about the grounding and cabling principles of variable speed drive systems, and gives examples for correct cabling and grounding practices. It also includes a short description of interference phenomena.

The chapters of this manual are briefly introduced below.

Basics tells about grounding structures that are needed for interference-free operation of variable speed drive systems and basics of protecting motor bearings.

Cabling of drive systems gives examples of correct cabling and grounding of variable speed drive systems.

Interference coupling tells principally about different ways of interference coupling. It also gives guidelines on how to decrease the coupling.

Related documents

See the drive hardware manuals for specific instructions of each drive type. For other products, see their manuals.

- **Literature references on EMC**

 Technical guide No. 3. *EMC compliant installation and configuration for a power drive system* (3AFE61348280 [English])

- **Literature and standards on bearing currents**

 High Frequency Bearing Currents in Low Voltage Asynchronous Motors 3GZF500930-8.

 IEC 60034-17:2002 *Rotating electrical machines, Cage induction motors when fed from converters – Application guide*

Technical guide No. 5. Bearing currents in modern AC drive systems (3AFE64230247 [English])

- **Standard references on cabling**

IEC 60364-4-44:2007. Low-voltage electrical installations – Part 4-44: Protection for safety – Protection against voltage disturbances and electromagnetic disturbances

Terms and abbreviations

<table>
<thead>
<tr>
<th>Term/Abbreviation</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>FE</td>
<td>Functional earthing (grounding). Earthing a point or points in a system, installation or equipment, for purposes other than electrical safety. IEC 60050-195 (195-01-13):1998.</td>
</tr>
<tr>
<td>PE</td>
<td>Protective earthing (grounding). Earthing a point or points in a system, installation or equipment for purposes of electrical safety. IEC 60050-195 (195-01-11):1998.</td>
</tr>
<tr>
<td>Shield</td>
<td>Part of an electromagnetic barrier that separates the shielded circuits from the external sources of EMI or confines the EMI effects to the shielded volume. An electromagnetic barrier is a closed surface of shields and other elements made up to prevent electromagnetic waves from propagating in space or along conductors or to confine the propagating. The barrier can be made of • metal • conductively coated equipment cases • interconnecting cable shields • filters or surge arresters on conductors that go through the shield or mesh • waveguides working below the cutoff frequency at ventilation openings. In a protected system, the barrier is everywhere so impervious that guided and space waves of EMI sources outside the barrier do not degrade the performance of the protected system.</td>
</tr>
<tr>
<td>TE</td>
<td>Technical earth (ground). This term has been replaced with FE.</td>
</tr>
</tbody>
</table>
Introduction to the manual
Basics

Contents of this chapter
This chapter tells about grounding structures that are needed for interference-free operation of variable speed drive systems and basics of protecting motor bearings.

Objectives of grounding
Traditional grounding is based on electrical safety. It ensures personnel safety in all circumstances and limits material damages due to electrical faults. For interference-free operation and reliability of the drive system, more profound methods are needed: high-frequency grounding and equipotential ground planes on building floor, equipment enclosure and circuit board levels.
Attenuating motor shaft and frame voltages

Proper cabling and grounding strongly attenuates motor shaft and frame voltages that can cause high-frequency bearing currents and lead to premature bearing replacements.

Bearing currents

This drawing shows schematically two types of bearing currents: high-frequency circulating current (5) and shaft grounding current (7).
Grounding structure

A well structured grounding begins with ground electrodes which are connected to each other reliably to form a network. In addition, interference-free operation of electronics requires equipotential areas (ground planes or a mesh) on all structural levels where building floors, equipment enclosures and circuit boards are connected. The conductors that connect the electrical equipment to the network need to be short to minimize the grounding impedance.

This diagram shows the configuration of ground electrodes and the grounding network that ABB recommends.

- **Buildings without ground planes**

In many old buildings, well structured ground planes are missing. In these systems, connect the drive cabinet PE busbar to the factory ground only at one point as shown below.
PE (protective ground) versus FE (functional ground)

Today’s ABB policy is to use uniform, equipotential PE grounding in drive systems. The principle is extended to all structural levels of installations in large buildings which contain electrical equipment. Example levels are floor, equipment cubicle and circuit board levels.

It is not possible to keep all levels of a large system at the same high-frequency potential, but uniform PE grounding at each level ensures electromagnetic compatibility.

In previous ABB products and electronic equipment of other manufacturers and in end user installations, other installation philosophies, for example, systems with PE and FE (former TE) are also used.

The FE system of co-operating equipment can be either general or partial (only part of the equipment uses FE ground). If the PE and FE grounds are connected together at one point only, the PE/FE structure resembles a one-ground-level uniform PE system and may need an effective local high-frequency ground.

The diagrams below show an PE and FE system and an uniform PE system. C denotes control electronics.
Cabling of drive systems

Contents of this chapter
This chapter gives examples of correct cabling and grounding principles of variable speed drive systems.

General
Obey the instructions of this chapter when you select drive system cables with a local vendor and ground the drive system.

Select the cables case-by-case in accordance with the local regulations concerning short-circuit protection, operating voltage, permissible touch voltage appearing under fault conditions and current-carrying capacity of the cable. In addition, choose a cable type which supports the EMC protection and reliability of the drive system.

We have not drawn switches or input cable protection fuses to the drawings in this chapter. The drawings only show how to connect the cables.

Connecting the drive to the supply power network
This section gives recommendations for the drive supply transformer and input cabling.

Transformer
We recommend a transformer which is dedicated to variable-speed drives and has a static screening between the primary and secondary.

Grounded secondary (TN and TN-S systems)
ABB drives can be equipped with EMC filters which reduce disturbances.
Ungrounded secondary (IT systems)

All drive EMC filters are not applicable for use in IT (ungrounded) systems. Disconnect these filters before you connect the drive to the supply network. For instructions, see the drive hardware manual.

WARNING! If a drive with a not applicable EMC filter is installed on an IT system (an ungrounded power system or a high resistance-grounded [over 30 ohm] power system), the system will be connected to earth potential through the filter capacitors. This may cause danger, or damage the drive.

Recommended input power cable types

We recommend shielded symmetrical multicore cables for the input cabling. However, the other cable types listed below can also be used.

PE	Symmetrical shielded cables. See section Recommended motor cable types on page 19 for more information. The same cable types can be used for the input and motor cabling. The reactance of a multicore cable is low which enables the longest supply cabling. With parallel multicore cables, also high currents are possible.
PE	A four-conductor system (three phase conductors and a protective conductor on a cable tray). WARNING! Do not use unshielded single core cables for drives with IGBT supply unit on IT (ungrounded) networks. A dangerous voltage can become present on the non conductive outer sheath of the cable. This can cause injury or death.
PE	A four-conductor system (three phase conductors and a PE conductor in a PVC conduit) is allowed for input cabling with phase conductor cross-section less than 10 mm² (8 AWG) or motors ≤ 30 kW (40 hp). Not allowed in USA.
Connection diagram of a shielded cable
Connect the shield to PE at both ends as shown below.

Input connection in high-power supply systems
High-current (> 300 A) variable speed drives can be supplied through a busbar or cable bus system.

Busbar system
Connect the metal conduit (shield) of the busbar system to the PE busbar at either one or both ends.
Cable bus system (parallel single-core cables)

A cable bus system consists of parallel single-core cables for phase conductors. Compared to a corresponding busbar system, the cable bus system has:
- better cooling due to separate conductors -> less conductor material is needed
- lower reactance -> longer distances are allowed.

Arrange the cables as shown below to get an as equal current distribution as possible.

![Cable Arrangement Diagram]

Connect single-core cables without concentric protective shield (armor) as shown below.

![Cable Connection Diagram]

WARNING! Do not use unshielded single core cables for drives with IGBT supply unit on IT (ungrounded) networks. A dangerous voltage can become present on the non conductive outer sheath of the cable. This can cause injury or death.

In single-core cables which have a concentric protective shield (armor, A below), the phase current induces voltage to the cable shield. If the shields are connected to each other at both ends of the cable, current will flow in the cable shield. It is necessary to prevent this current for personnel safety. Therefore, connect the cable shield to the PE busbar at the transformer side only and insulate the shield at the drive side.

![Cable Shield Connection Diagram]
Connecting the drive to the motor

- **Decreasing bearing current risk**

The bearing current risk depends on voltages which have an effect across the motor bearings. Three basic types of voltages can be measured in AC drive applications: shaft end-to-end voltage, shaft voltage to ground or motor frame voltage to ground.

Incorrect motor cabling strongly increases these voltages in medium and high power motors. As a result, the lifetime of the motor, gearbox and driven machine bearings decreases. On the other hand, correct cabling and 360° grounding of the cable shield at both ends effectively decrease these voltages. Symmetrical, shielded cables decrease the motor frame voltage. The effect is more significant at high motor currents.

- **General instructions**

Keep the length of the unshielded part of the motor cable as short as possible on the drive side and at the motor junction box. For special instructions, refer to the drive and motor product manuals.

Bond cable trays well electrically to each other and to the grounding electrodes. Aluminium tray systems improve local equalization of potential.

- **Recommended motor cable types**

To fulfill with the personnel safety, EMC and reliability requirements, and for the longest possible lifetime for the drive system, we recommend these motor cable types.

![Symmetrical shielded cable]	Symmetrical shielded cable with three phase conductors and a concentric PE conductor as shield. The shield must agree with the requirements of IEC 61439-1, see below. Check with local / state / country electrical codes for allowance.
![Symmetrical shielded cable]	Symmetrical shielded cable with three phase conductors and symmetrically constructed PE conductor, and a shield. The PE conductor must agree with the requirements of IEC 61439-1, see section *Sufficient conductivity of the protective conductor.*
![Symmetrical shielded cable]	Symmetrical shielded cable with three phase conductors and a concentric PE conductor as shield. A separate PE conductor is required if the shield does not agree with the requirements of IEC 61439-1, see below.
Sufficient conductivity of the protective conductor

The protective conductor must always have an adequate conductivity.

The cross-sectional area of the protective conductor must agree with the conditions that require automatic disconnection of the supply required in 411.3.2. of IEC 60364-4-41:2005 and be capable of withstanding the prospective fault current during the disconnection time of the protective device.

The cross-sectional area of the protective conductor can either be selected from the table below or calculated as described in section Calculating the cross-sectional area below.

This table shows the minimum cross-sectional area related to the phase conductor size according to IEC 61439-1 when the phase conductor and the protective conductor are made of the same metal.

<table>
<thead>
<tr>
<th>Cross-sectional area of the phase conductors S (mm²)</th>
<th>Minimum cross-sectional area of the corresponding protective conductor S_p (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S ≤ 16</td>
<td>S</td>
</tr>
<tr>
<td>16 < S ≤ 35</td>
<td>16</td>
</tr>
<tr>
<td>35 < S ≤ 400</td>
<td>S/2</td>
</tr>
<tr>
<td>400 < S ≤ 800</td>
<td>200</td>
</tr>
<tr>
<td>800 < S</td>
<td>S/4</td>
</tr>
</tbody>
</table>

Calculating the cross-sectional area

According to IEC 60364-5-54, the equation below determines the minimum allowed cross-sectional area of the protective conductor for disconnection times that are not more than 5 seconds:

$$ S = \sqrt{\frac{l^2 t}{k}} $$

where

- S \quad \text{Cross-sectional area of the protective conductor (mm²)}
- l \quad \text{R.m.s value of the prospective fault current which can flow through the protective device in a fault of negligible impedance (A)}
- t \quad \text{Operating time of the protective device for automatic disconnection (s)}
- k \quad \text{Factor which depends on the material of the protective conductor}

Factor k

This table shows the values of factor k for insulated protective conductors not incorporated in cables and not with other cables.

<table>
<thead>
<tr>
<th>Conductor insulation</th>
<th>Material of conductor</th>
<th>Values for k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Copper</td>
<td>Aluminium</td>
</tr>
<tr>
<td>70°C PVC</td>
<td>143</td>
<td>95</td>
</tr>
<tr>
<td>90°C XLPE</td>
<td>176</td>
<td>116</td>
</tr>
<tr>
<td>85°C rubber</td>
<td>166</td>
<td>110</td>
</tr>
</tbody>
</table>

Note: The initial temperature of conductor is assumed to be 30 °C.
Sufficient shield conductivity to suppress emissions

To effectively suppress radiated and conducted radio-frequency emissions, the cable shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the motor cable shield of the drive is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape or copper wire. The better and tighter the shield, the lower the emission level and bearing currents.

Motor cable types for limited use

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insulation jacket</td>
</tr>
<tr>
<td>2</td>
<td>Copper wire screen</td>
</tr>
<tr>
<td>3</td>
<td>Helix of copper tape or copper wire</td>
</tr>
<tr>
<td>4</td>
<td>Inner insulation</td>
</tr>
<tr>
<td>5</td>
<td>Cable core</td>
</tr>
</tbody>
</table>

A four-conductor system (three phase conductors and a PE conductor in a PVC conduit) is allowed with phase conductor cross-section less than 10 mm² (8 AWG) or motors ≤ 30 kW (40 hp). Not allowed in USA.

Note: Shielded cable is always recommended. Foil shield is common in this power range. Using a non-shielded cable even in this motor power range may cause interference of other equipment.

Corrugated cable with three phase conductors and a protective conductor or cable in EMT conduit is allowed for motor cabling with phase conductor cross section less than 10 mm² (8 AWG) or motors ≤ 30 kW (40 hp).

A well-shielded (Al/Cu shield) four-conductor system (three phase conductors and a PE conductor or four conductors) can be used for up to 100 kW motor power rating with potential equalization as shown in section Potential equalization between the motor and driven equipment on page 24.

Not allowed motor cable types

Single-core cables are not suitable for motor cables!

Symmetrical shielded cable with individual shields for each phase conductor is not allowed on any cable size for input and motor cabling.
Diagrams of recommended connections

- Concentric Cu shield
- Concentric Al/Cu shield
- Fe armor
Grounding the motor cable shield at the motor end

Always ground the motor cable shield at the motor end. For minimum radio frequency interference, ground the motor cable shield 360 degrees at the lead-through of the motor terminal box, or ground the flattened twisted shield (width ≥ 1/5 · length).
Motor cabling of high-power drives

Always connect the cables to high-power drive systems symmetrically as shown below.

Potential equalization between the motor and driven equipment

With motors from 100 kW upwards, a potential equalization connection between the motor frame and the machinery is sometimes needed due to the grounding conditions of the driven machinery. Potential equalization is typically needed in applications such as pumps (grounded by water) and gearboxes with central lubrication (grounded by oil pipes). As low inductance is the objective, a copper plate or strip with a cross-section of at least 70 mm × 0.75 mm is required between the motor frame and the gearbox/pump frame. Alternatively, at least two separate 50 mm² cables can be used. The distance between the cables must be at least 150 mm.

Potential equalization has no electrical safety function. The purpose of it is purely to equalize the potentials. When the motor and the gearbox are mounted on a common steel fundament, no potential equalization is needed.

Install the potential equalization through the shortest possible route. If protection from dirt is needed, use a plastic tube, not a metal conduit.
1. Flat braid. Diameter of hole for cable lug 13 mm.
2. Busbar. Connection hole diameter 13 mm.
3. Cables. Diameter of hole for cable lug 13 mm.

Use M12 screws with washer.

Connection diagram
Potential equalization of the motor frame and the terminal box

The motor manufacturer connects the motor terminal box the PE terminal of the motor frame with a copper cable if the potential equalization between the terminal box and the motor frame is needed. Typically, this is done in ATEX approved AC motors.
Example drive system cabling with potential equalization

- **A** Electrically conducting shaft
- **B** Bonding for pump and fan motors with $100 \text{ kW} \leq P_N < 350 \text{ kW}$ or IEC 315 $< \text{frame size} < \text{IEC 400}$ and for other motors with $P_N \geq 350 \text{ kW}$ or frame size $> \text{IEC 400}$. The shaft can go from the motor to the gear box, pump, supporting intermediate bearing or to the fixed machine frame.
- **C** Optional bonding
- **D** Bonding for motors bigger than 1500 kW
- **E** Bonding for motors bigger than 1500 kW
- **1** Fixed machine frame, pump or gear box
- **2** Machine frame
- **3** 360-degree grounding
- **4** Incoming cubicle of the drive
- **5** Inverter module cubicle of the drive
- **6** Main grounding bus
- **7** Earth electrode
- **8** Pulse encoder

* Both ends and the middle of the PE busbar of the drive should be connected to the main grounding bus in the electrical equipment room.

Instructions for bondings B, C, D and E
- Make short direct (metal-to-metal) connections.
- Use only non-metallic electrical tube.
- Protect the wiring junctions against corrosion with durable paint or protective compound.

See section *Potential equalization of the motor frame and the terminal box* on page 26.

Potential equalization is not needed when
- motor shaft is non-conductive or there is an insulating coupling
- motor and gear box are mounted on a common steel plate
- motor is flange mounted directly on the machine frame.
Motor cable connections to be avoided

If other than the recommended cable types are used, the following rules are mostly useful. Complying with them does, however, not exclude effects of improper cabling and can void warranty.

Asymmetrical four-core cables

If you have a cable where the phase conductors are not at an equal distance from the ground conductor,

- do not use the ground conductor as the protective conductor
- connect the ground conductor to the PE terminal only in the drive and isolate it at the motor end. However, if the cable has a fine-pitch interlaced steel plate armor the conductivity of which is at least 10% of the conductivity of the phase conductor, connect the armor to the PE terminal at the drive and motor ends.
- use a separate protective conductor with a cross-sectional area of at least the value given in section Sufficient conductivity of the protective conductor on page 20.
- put the power cable and the protective conductor at least 300 mm apart (not on the same cable tray) in order to prevent inductive disturbance currents in the protective conductor. Note: This lay-out can violate the regulations of some countries. In this case, use other cable types.
- make the potential equalization connection between the motor frame and the machinery as described under Potential equalization between the motor and driven equipment on page 24.

Connection diagrams

<table>
<thead>
<tr>
<th>Separate protective grounding conductor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
</tr>
<tr>
<td>L1</td>
</tr>
<tr>
<td>L2</td>
</tr>
<tr>
<td>L3</td>
</tr>
<tr>
<td>TO BE AVOIDED</td>
</tr>
</tbody>
</table>

Separate protective grounding conductor
Separate protective grounding conductor, tape Fe armor (armor conductivity < 10% of the phase conductor conductivity)

Separate protective grounding conductor, tape Fe armor (armor conductivity ≥ 10% of the phase conductor conductivity)

TO BE AVOIDED
DC drives

Obey the same basic cabling guidelines what we give for AC drive systems. The most economical power cable for DC systems has an even number of conductors. You can also use a shielded three-core cable. Use the 2+1 / 1+2 principle (see the figure below) when you install three-core cables in large drive systems, where several power cables are needed. This way the power is shared evenly between the cables.

The excitation cable is a heavy source of interference because of the abrupt commutation. Therefore, always use shielded excitation cables.

Do not use single-core cables for DC drives.

Motors with stator serial winding must have a grounding brush on the shaft to avoid bearing problems.
Selecting and connecting control cables

It is very important to use correct cable types to get the EMC compatibility. A wrong cable type can cause severe interference problems. Shielded control cables decrease disturbances.

Note: Keep any signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire decreases disturbances caused by inductive coupling.

- **When to use shielded cables**

 Use a double-shielded twisted pair cable for analog signals. We recommend this cable type for the pulse encoder signals also. Use one individually shielded pair for each signal. Do not use common return for different analog signals.

 A double-shielded cable (figure a below) is the best alternative for low-voltage digital signals but single-shielded (b) twisted pair cable is also acceptable.

 ![Diagram](image)

 Always use a shielded cable for safety low-voltage (SELV) control signals.

 A shielded cable with correct voltage rating is the best alternative for 115/230 V AC digital signals but you can also use an unshielded multi-core cable.

- **Connecting the cable shield**

 Description

 A signal cable shield left unconnected (ungrounded) at both ends does not suppress disturbances. Grounding a signal cable shield at one end only suppresses the electromagnetic field and inductive disturbances enough in most cases.

 Grounding a signal cable shield at both ends improves disturbance suppression above a certain frequency, but forms also a loop where low-frequency current flows if the ends of the cable shield are at different potentials. Therefore, if high-frequency grounding is needed, the other end of the shield should be grounded via a capacitor. In some equipment the capacitor is incorporated.

 ![Diagram](image)
Instructions

Ground the outer shields of all control cables 360 degrees at a grounding clamp at the drive cable lead-through. Also, connect the pair cable shields and grounding wires to a grounding terminal at the drive side. The grounding terminal can be a special clamp, screw or terminal block marked with PE, FE, GND or one of the following symbols:

![Grounding Terminal Symbols]

Leave the other ends of the control cable shields unconnected or ground them indirectly via a high-frequency capacitor with a few nanofarads, for example, 3.3 nF / 630 V. You can also ground the shield directly at both ends if the ends are in the same ground plane with no significant voltage drop between the ends.

- Analog and digital signals in separate cables

Use separate shielded cables for analog and digital signals. Never mix 24 V DC and 115/230 V AC signals in the same cable.

- Signals allowed to be run in the same cable

Relay-controlled signals, the voltage of which does not exceed 48 V, can be run in the same cables as digital input signals. Run the relay-controlled signals as twisted pairs.

- Relay cable type

The cable type with braided metallic screen (for example ÖLFLEX by LAPPKABEL, Germany) has been tested and approved by ABB.

- Serial communication (eg, fieldbus)

See the fieldbus adapter module user’s manuals.

Cabling and insulation of pulse encoders

Always use a double-shielded cable for the pulse encoder signals.

Ground the cable shields only at the pulse encoder interface module if the pulse encoder is not isolated from the motor and earth. However, if the encoder is isolated from the motor and earth, connect the cable shields to the encoder housing also.

For more information, see the user’s manual of the pulse encoder interface module and the pulse encoder manual.

Galvanic isolation

We recommend galvanic isolation of control signals especially at long distances. Galvanic isolation improves the interference immunity. It prevents interference caused by common impedance coupling (ground loop) and suppresses inductive coupling interference. Isolate and amplify weak signals at the source end only. Otherwise, the signals can also be isolated at the receiving end.
Common mode inductors

In applications of high emission level such as trains, trams and moving machines, common mode inductors can be used in signal cables to avoid interfacing problems between different systems.

Wrap the signal conductors through the common mode inductor ferrite core as shown in the figure below. The ferrite core increases inductance of conductors and their mutual inductance so that common mode disturbance signals above a certain frequency are suppressed. An ideal common mode inductor does not suppress differential mode signals.

Routing the cables

Route the motor cable away from other cable routes. Motor cables of several drives can be run in parallel installed next to each other. The motor cable, input power cable and control cables should be installed on separate trays. Avoid long parallel runs of motor cables with other cables in order to decrease electromagnetic interference caused by the rapid changes in the drive output voltage.

Where control cables must cross power cables, arrange them at an angle as near to 90 degrees as possible. Do not run extra cables through the drive.

The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential.

A diagram of the cable routing is shown below.
Grounding diagram of an AC drive system

This drawing shows an example of the typical grounding of an AC drive system.
Grounding diagram of a DC drive system

This drawing shows an example of the typical grounding of a DC drive system.
Cabling of drive systems
Interference coupling

Contents of this chapter
This chapter tells principally about different ways of interference coupling. It also gives guidelines on how to decrease the coupling.
Common impedance coupling

Common impedance coupling is possible if interference source circuits have a common current path (see the figure below), for example, in the grounding or power supply circuit. Current changes in the interfering circuit cause potential changes across the common impedance:

\[u = R \cdot i - L \frac{di}{dt} \]

where \(u \) denotes the voltage and \(i \) the current. The voltage across an inductor is equal to the product of its inductance and the time rate of change of the current through it.

How to decrease coupling via a ground loop

- Use one-point grounding to prevent low-frequency coupling.
- Keep the inductance as low as possible to decrease high-frequency coupling. To get lowest impedance, the relation between the length and width of a grounding conductor (twisted shield) should be less than five. In practice, this is possible only with multi-point grounding.
Capacitive coupling

Capacitive disturbance is coupled by a changing electric field. The coupling is possible in circuits which have stray capacitance with each other.

Interference voltage \(U_n \) is proportional to frequency \(f \), voltage level of the interfering conductor \(U_1 \) and stray capacitance between the conductors \(C_{12} \):

\[
U_n = j2\pi f \cdot U_1 \cdot C_{12} \cdot R.
\]

- **How to decrease capacitive coupling**
 - Decrease stray capacitances between circuits.
 - Decrease the impedance level of the victim circuit.
 - Limit the frequency level of the interfering circuit.
 - Limit the voltage level of the interfering circuit.

- **How to decrease stray capacitance**
 - Use metal casings for devices.
 - Use shielded conductors.
 - Increase the distance between conductors.
 - Use a ground plane between conductors.
Inductive coupling

Inductive disturbance is coupled through magnetic field. Current in the interfering circuit generates a magnetic flux around its conductor. When a changing magnetic flux goes through a closed loop, a changing voltage is induced to the victim circuit and, as a result, an interference current flow in the closed loop.

Interference voltage \((U_n) \) is proportional to the frequency \((f)\) and current \((I_1)\) of the interfering conductor and to the mutual inductance of the circuits \((M_{12})\). Mutual inductance is proportional to the area of the loop perpendicular to the magnetic field lines \((A \cos \theta)\) divided by the distance between the conductors \((r)\):

\[
U_n = j2\pi f \cdot M_{12} \cdot I_1
\]

\[
M_{12} = \mu \frac{A \cos \theta}{2\pi r}
\]

- **How to decrease inductive coupling between circuits**
 - Decrease mutual inductance between the circuits.
 - Filter the high-frequency content of the interfering circuit.
 - Decrease the current of the interfering circuit.

- **How to decrease mutual inductance**
 - Use twisted pairs as signal cables.
 - Increase the distance between conductors.
 - Decrease the loop area by galvanic isolation.
 - Avoid parallel conductors and coils.

- **How to get extra disturbance suppression**
 - Shield the victim conductor with a material that has high permeability. High-permeability material "short-circuits" magnetic circuits, so that most of the flux flows through this material.
 - Use a metal enclosure or shield to decrease high-frequency disturbance.
 - Use high-conductive metal shield materials such as aluminium and copper.
Electromagnetic coupling

Electromagnetic energy can propagate in free space as waves. Every conductor which carries a changing current is a potential transmitter antenna of electromagnetic waves. All conductors can also operate as receiver antennas. In addition, every conductor, whether it is a part of an active circuit or not, shapes the electromagnetic fields and potentially amplifies the antenna operation. Sometimes, a solid insulator can behave in the same way. The efficiency of the antenna increases at high frequencies (above 10 MHz) when the antenna dimensions exceed about 1/100 of the wave length. The dimensions and operation frequencies of normal digital electronics fall into this range.

Also, a part of the climatic interference, for example, lightning at a long distance, lies at frequencies from 10 to 100 MHz. A stroke of lightning close to an electronic equipment easily stops the normal function of the equipment and can damage it. The coupling decreases as the distance increases.

- **How to protect against electromagnetic waves**
 - Use ground planes or mesh structures as local ground.
 - Use shielded cables.
 - Use metal enclosures for equipment. Leaky doors are problematic.
 - Make only small openings in enclosures.
 - Prevent unintentional antenna structures.
 - Ground systematically at short (< 1/10 wavelength) intervals.
 - Leave the other ends of the control cable shields unconnected or ground them indirectly via a high-frequency capacitor with a few nanofarads, eg, 3.3 nF / 630 V.

These procedures decrease the electromagnetic coupling at both the source and the victim side.
Interference coupling
Further information

Product and service inquiries
Address any inquiries about the product to your local ABB representative, quoting the type designation and serial number of the unit in question. A listing of ABB sales, support and service contacts can be found by navigating to www.abb.com/drives and selecting Sales, Support and Service network.

Product training
For information on ABB product training, navigate to www.abb.com/drives and select Training courses.

Providing feedback on ABB Drives manuals
Your comments on our manuals are welcome. Go to www.abb.com/drives and select Document Library – Manuals feedback form (LV AC drives).

Document library on the Internet
You can find manuals and other product documents in PDF format on the Internet. Go to www.abb.com/drives and select Document Library. You can browse the library or enter selection criteria, for example a document code, in the search field.
Contact us

www.abb.com/drives
www.abb.com/drivespartners

3AFY61201998 Rev C (EN) 2013-03-25