This webinar brought to you by the Relion[®] product family

Relion. Thinking beyond the box.

Designed to seamlessly consolidate functions, Relion relays are smarter, more flexible and more adaptable. Easy to integrate and with an extensive function library, the Relion family of protection and control delivers advanced functionality and improved performance.

ABB Protective Relay School Webinar Series Disclaimer

ABB is pleased to provide you with technical information regarding protective relays. The material included is not intended to be a complete presentation of all potential problems and solutions related to this topic. The content is generic and may not be applicable for circumstances or equipment at any specific facility. By participating in ABB's web-based Protective Relay School, you agree that ABB is providing this information to you on an informational basis only and makes no warranties, representations or guarantees as to the efficacy or commercial utility of the information for any specific application or purpose, and ABB is not responsible for any action taken in reliance on the information contained herein. ABB consultants and service representatives are available to study specific operations and make recommendations on improving safety, efficiency and profitability. Contact an ABB sales representative for further information.

ABB Protective Relay School Webinar Series

Volt-VAR Optimization Stephen Trachian and Aroldo Couto November 4, 2014

Presenter

- Stephen graduated from the University of Tennessee at Chattanooga with a Bachelor of Science in Engineering in 2001.
- He began his career in the electric utility industry as a Design Engineer with the Tennessee Valley Authority.
- While at the TVA, Stephen worked in the Protection and Control, Substation Communications, and Communications Planning and Architecture groups.
- Stephen is currently a System Architect for the ABB Smart Grid Center of Excellence in Raleigh, North Carolina

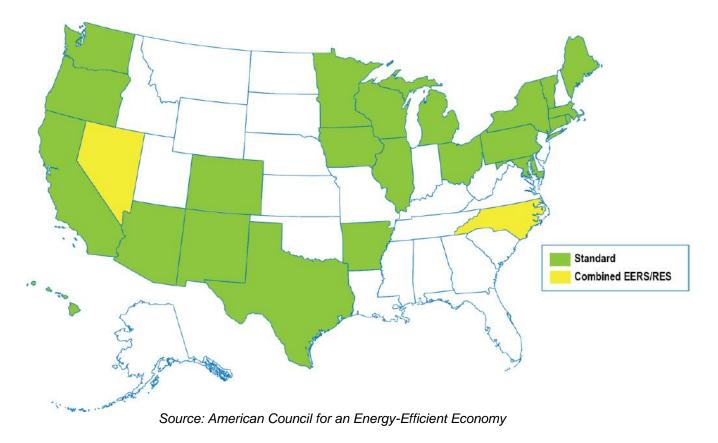
Presenter

- Aroldo Couto has spent over 15 years as an applications engineer delivering automation and control systems solutions for both manufacturing and electrical industry.
- During his career, he has worked on a variety of automation and controls projects including transmission and distribution substation automation, machine vision and control systems providing feedback for product development and process improvements.
- He holds a Master in Electrical and Computer Engineering from Auburn University and Bachelors in Electrical and Computer Engineering from UFG Brazil.
- Aroldo is currently a "System Verification Engineer" for "Smart Grid Distribution Automation" in ABB for the North America Region.

Learning objectives

- Overview : Business Case
- Overview : Volt-VAR Optimization
 - Power Factor Correction
 - Conservation Voltage Reduction
- Implementation Concepts
 - Project Phases and Technical Considerations
 - Simple VVO Example
- System Integration /Architecture
- Measurement & Verification
- Q&A

Key acronyms


- VVC Volt-VAR Control
- PFC Power Factor Correction
- CVR Conservation Voltage Reduction
- CVRf CVR Factor
- VVO Volt-VAR Optimization
- M&V Measurement & Verification
- SCADA Supervisory Control and Data Acquisition
- DMS Distribution Management System
- IED Intelligent Electronic Device
- RTU Remote Terminal Unit
- EOL End Of Line (Voltage Monitoring Point)

Business Case Potential Benefits

- Loss reduction
- Demand reduction
- Wear and Tear reduction
- CO2 reduction
- Cost effective due to leverage existing equipment
- Leverage benefits without any customer interface
- 25 US states with Energy Efficiency Resource Standards

Energy Efficiency Resource Standards (EERS) Policy approaches by state (as of April 2014)

Business Case Power Factor Correction ONLY

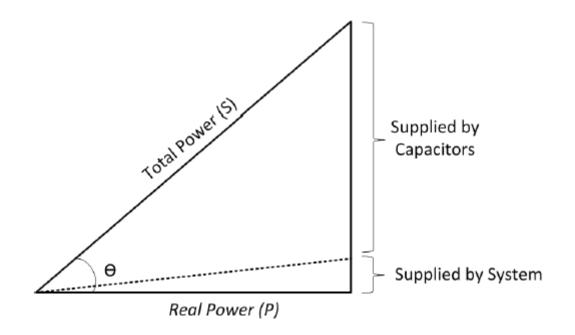
12/16/20MVA Transformer - Average Load 8.5MWh	
Variable	Utility
Number of Substations	1
Number of Feeder Circuits	4
Annual Load [MWh]	74,555
Starting Power Factor	0.980
Ending Power Factor	0.998
Percentage Reduction [%] in System Load due to Power Factor Improvement	1.8%

Calculations		Volt/VAR
Total Annual Load Savings (MWh)	[Percentage Reduction * Annual Load]	1,342
Average rate [\$/kwh]		\$0.098
Value of Annual Load Savings [\$]	[Average rate * Total Annual Load Savings]	131,515

First Year - Implementation Cost	125,000
Annual Savings (Starting in Year 2)	131.515
Simple Payback [years]	2.08

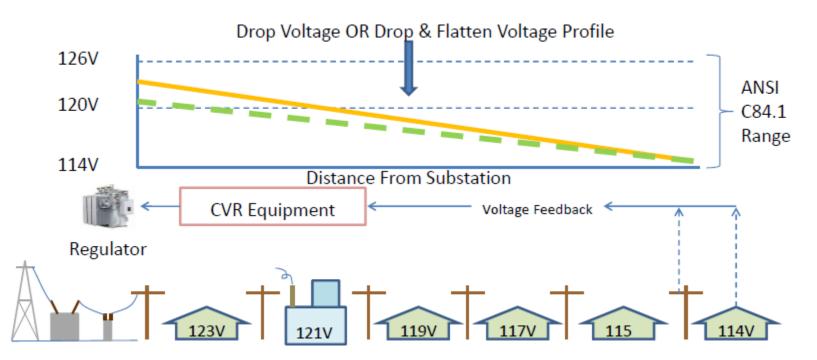
Business Case Power Factor Correction ONLY

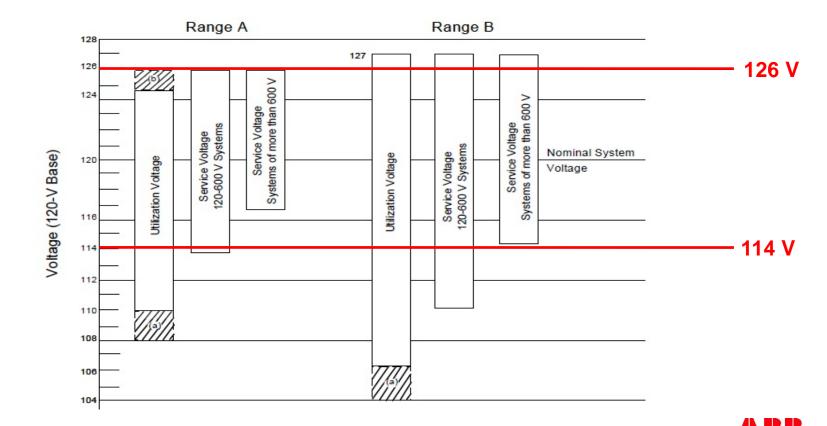
12/16/20MVA Transformer - Average Load 8.5MWh


Variable	Utility
Number of Substations	1
Number of Feeder Circuits	4
Annual Load [MWh]	74,555
Starting Power Factor	0.970
Ending Power Factor	0.998
Percentage Reduction [%] in System Load due to Power Factor Improvement	2.8%

Calculations		Volt/VAR
Total Annual Load Savings (MWh)	[Percentage Reduction * Annual Load]	2,088
Average rate [\$/kwh]		\$0.098
Value of Annual Load Savings [\$]	[Average rate * Total Annual Load Savings]	204,579

First Year - Implementation Cost	125,000
Annual Savings (Starting in Year 2)	204,579
Simple Payback [years]	1.70


Power Factor Correction Brief Overview


Conservation Voltage Reduction Brief Overview

 $CVR \ Factor = rac{\% \ demand \ reduction}{\% \ voltage \ reduction}$

Conservation Voltage Reduction ANSI C84.1 Voltage Limits

Implementation Concepts **Automation & Control Systems Strategies**

Rule-Based Volt/VAR Control

- Based on Local measurements
- No coordination at system level
- Minimal visibility into performance

Regional **One-Way** Communication **Control System**

- Rule-based
- Considers only few or several points often just capacitor banks, not regulators
- Thermal and voltage constraints not modeled

- Provided asset status
- Measured values at devices now visible

 Reduced ownership costs through shared Infrastructure with

Model-Based Volt/VAR Optimization

- SCADA, OMS, DMS Applications
- Maximizes CVR and Loss Reduction through mathematical optimization
- Uses present "as operated" network model
- Accounts for change feeder configurations
- Model loads and their voltage sensitivity

Implementation Concepts Technical Considerations

Traditional power factor correction solutions are able to solve simple power factor problems at local levels

How do you know the capacitor bank is online and functioning properly?

How do you know the overall power factor is being optimally corrected?

Traditional CVR correction techniques involve lowering LTC/regulator tap positions at feeder/bus heads to implement demand response

How do you know the utilization/service voltages are within acceptable ANSI C84.1 limits?

How do you know the voltage level has been optimized without closed loop voltage monitoring on the system?

Centralized VVO automation applications can help solve all of these challenges, while providing better optimization at a system wide level.

Implementation Concepts VVO Control Objectives

- The control objectives of VVO are :
 - MW loss reduction via feeder power and/or substation PFC
 - Demand reduction via CVR
 - Voltage violation correction

Implementation Concepts VVO Control Problem

- The control problem of VVO is to determine :
 - if a capacitor's switching status should be changed
 - If the tap setting of a voltage regulator should be raised or lowered
 - If the reactive power of controllable Distributed Generation should be changed and by how much

Implementation Concepts VVO Technical Challenges

- A few properties of the VVO make it a technically difficult problem :

The discrete nature of the controls

Limitation on switching operations

Implementation Concepts System Components

- Automation application
 - Software (eg ABB MicroSCADA Pro)
 - Hardware : hardened computer or a traditional server
- Distribution circuit components
 - Equipment (cap banks, reg banks, LTCs, reclosers, EOL sensors, etc.)
 - Intelligent electronic devices (IEDs)
- Telecommunications equipment
 - Typically wireless radios for telemetry to distribution circuit devices
 - Fiber can also be integrated where feasible, such as station backhaul

Implementation Concepts Project Steps

Planning

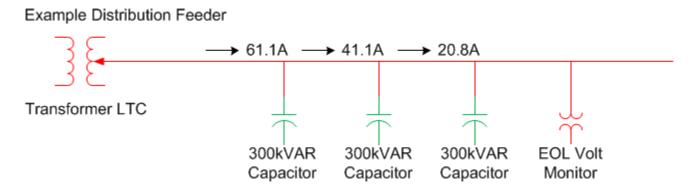
Model circuits to determine optimum equipment layout and investment requirements based upon project budget Identify EOL monitoring locations to ensure ANSI C84.1 compliance Telecommunications site survey for any wireless infrastructure

Engineering/Procurement

Circuit engineering for new equipment (no different than "traditional" engineering)

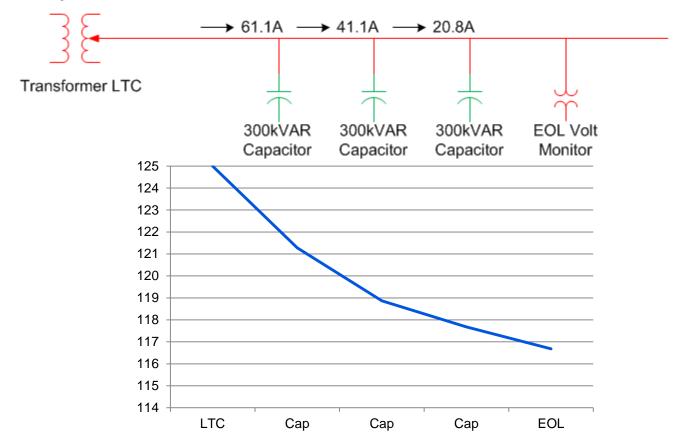
System engineering for automation application (VVO)

Telecommunications engineering for wired/wireless infrastructure

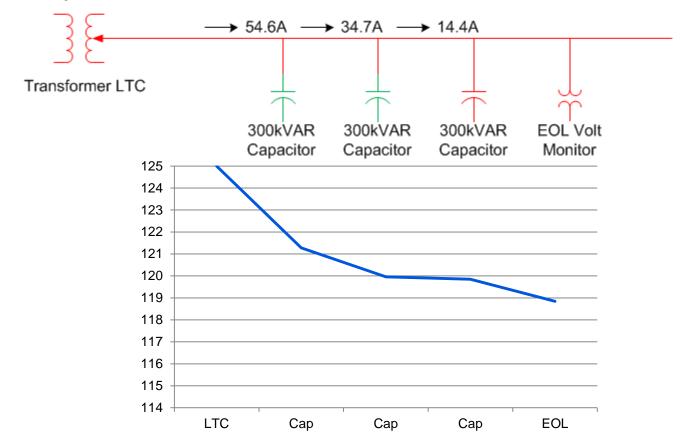

Integration (may be associated with factory acceptance testing)

Ensure all distribution/telecommunications/automation applications function together as one congenial system!

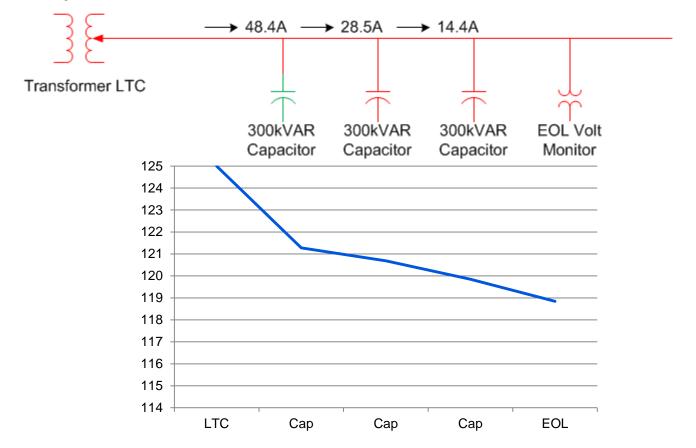
Testing/Commissioning (typically associated with site acceptance testing)


Implementation Concepts Example Feeder Scenario - Base Case

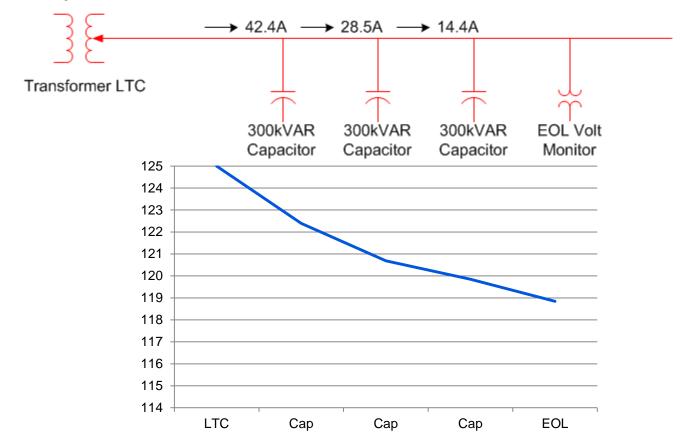
- 12.47kV feeder w/ LTC on transformer regulating to 125V secondary at feeder head (120V base)
- Base power factor of .7 with no power factor correction implemented
- Line impedance of .4 + j.6 ohms per mile, each line section is 5 miles
 - .4 ohms is the "real" resistance, j.6 ohms is the "imaginary" reactance
- CVRf = 1.0 (1% drop in demand for each 1% drop in voltage)

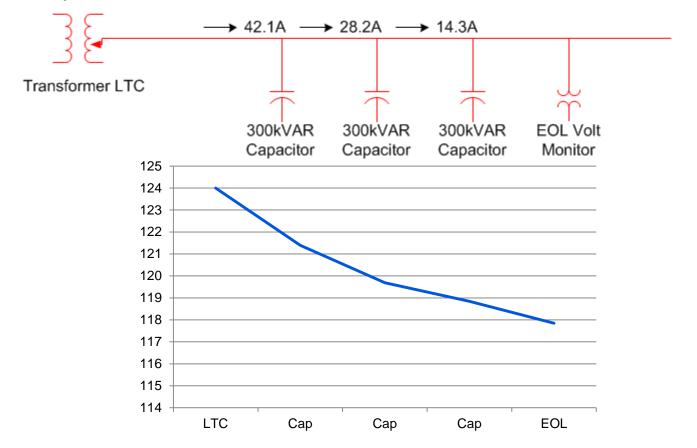

Implementation Concepts Example Feeder Scenario - Base Case

Example Distribution Feeder

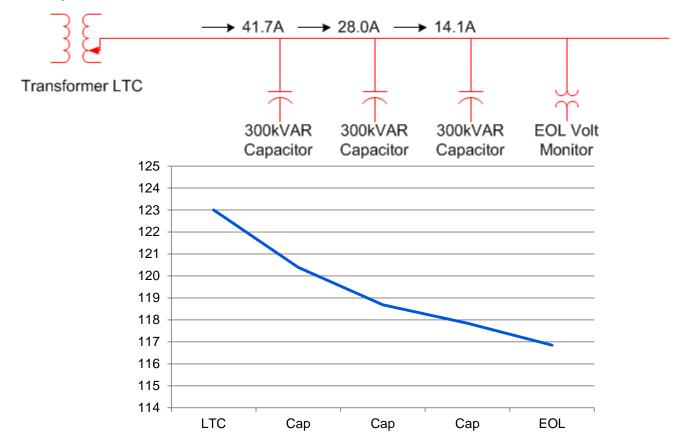


©ABB November 4, 2014 | Slide 23

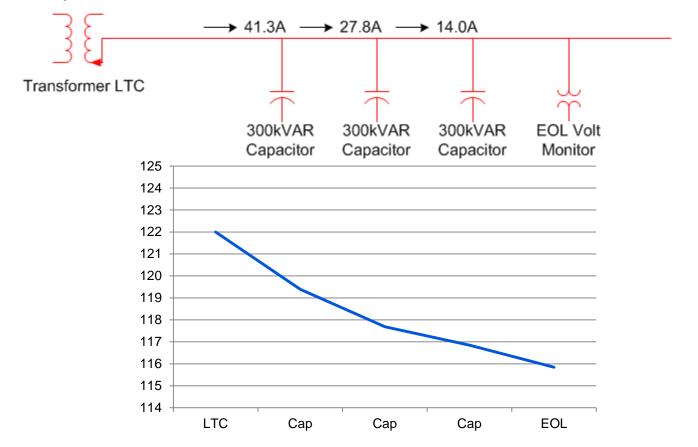

Implementation Concepts Example Feeder Scenario – First Cap Switched


Implementation Concepts Example Feeder Scenario – Second Cap Switched

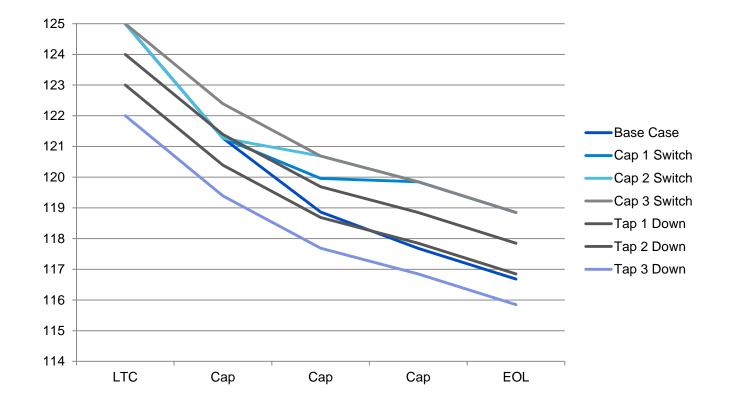
Implementation Concepts Example Feeder Scenario – Third Cap Switched



Implementation Concepts Example Feeder Scenario – First LTC Tap Down


Implementation Concepts Example Feeder Scenario – Second LTC Tap Down

Example Distribution Feeder



©ABB November 4, 2014 | Slide 28

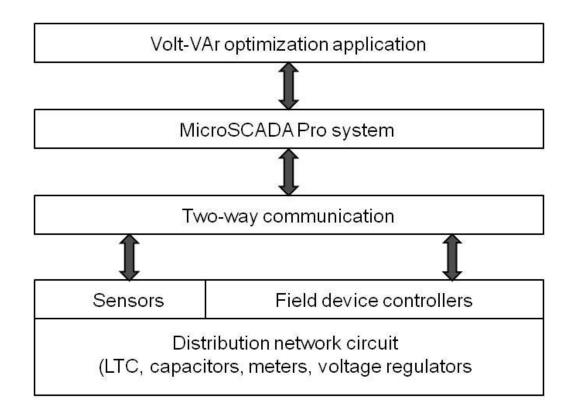
Implementation Concepts Example Feeder Scenario – Third LTC Tap Down

Implementation Concepts Example Feeder Scenario – Stage Comparison

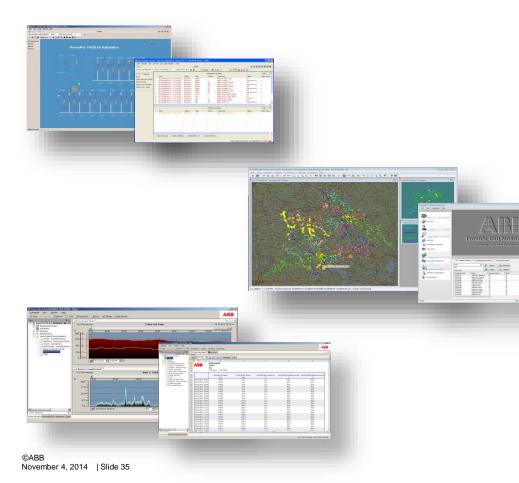
Implementation Concepts Example Results

- Feeder power factor corrected from .7 to near unity
- Feeder current reduced from 61A/phase to 43A/phase
- Feeder load reduced from 1.3MVA to .9MVA (33%)
 - 2.5 % demand reduction from CVR (assume CVRf of 1%)
- Savings due to reduction in reactive power requirements provided by utilizing shunt capacitors for power factor correction
- Loss reduction also evident through reduced line currents

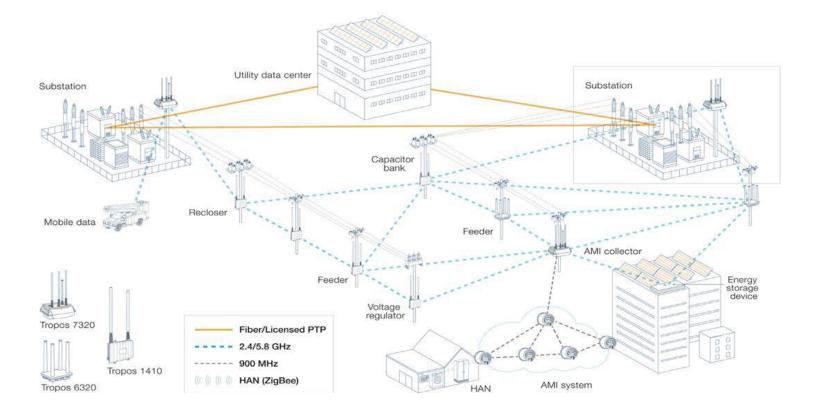
Implementation Concepts Example Takeaways


- Power Factor Correction provides the most "bang for your buck"
- Leverage existing equipment
- Ancillary benefit of VVO : integrating telecommunications network with IEDs facilitates distribution SCADA system operational efficiency
- Capacitor banks help to flatten the load profile, allowing true voltage optimization
- CVR benefits seem small in comparison to power factor correction; however, when combine across multiple feeders/stations the benefits are rather large

System Integration /Architecture VVO System Field Devices



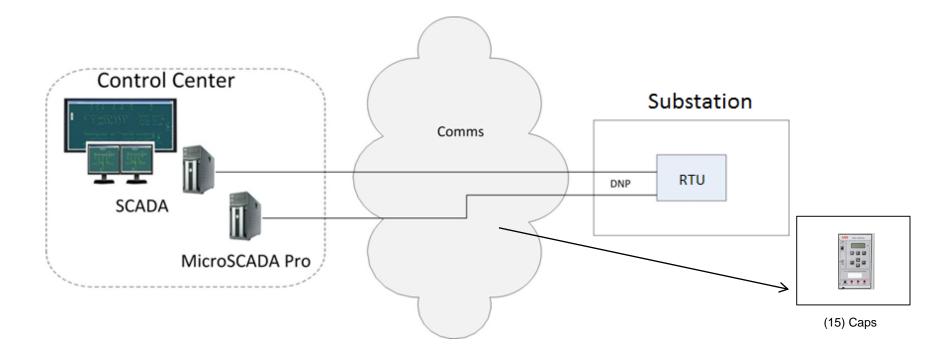
System Integration /Architecture VVO System Architecture Overview



System Integration /Architecture MicroSCADA Pro Family

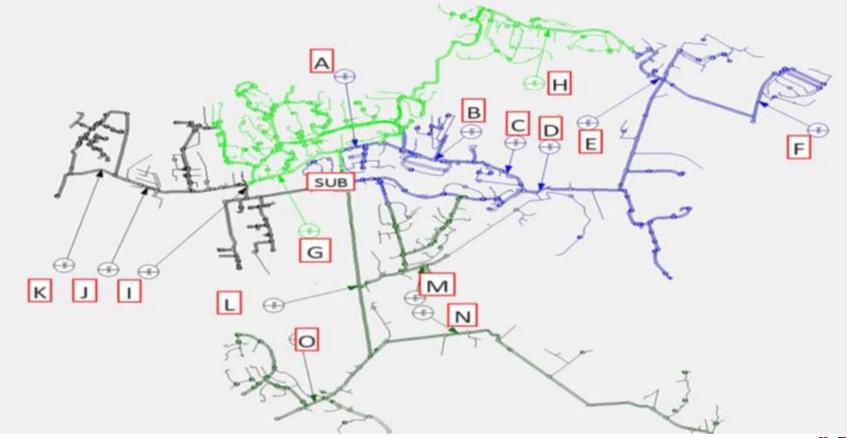
- SYS 600 SCADA functionality
 - Collection and Storage of Real time data
 - Control
 - HMI
 - Communication
 - Trends & Measurement Reports
- DMS 600 Distribution Management System
 - Network model
 - Background maps
 - Outage Management
 - Fault Detection, Isolation & Restoration
 - Auto-Restoration
 - Network Analysis
 - Field Crew Management
 - Trouble Call Management
 - Volt/VAR Optimization
- Historian Advanced Data Analysis & Reporting
 - High capacity data logging
 - Flexible reporting and trending
 - Flexible architecture

System Integration /Architecture Network Architecture

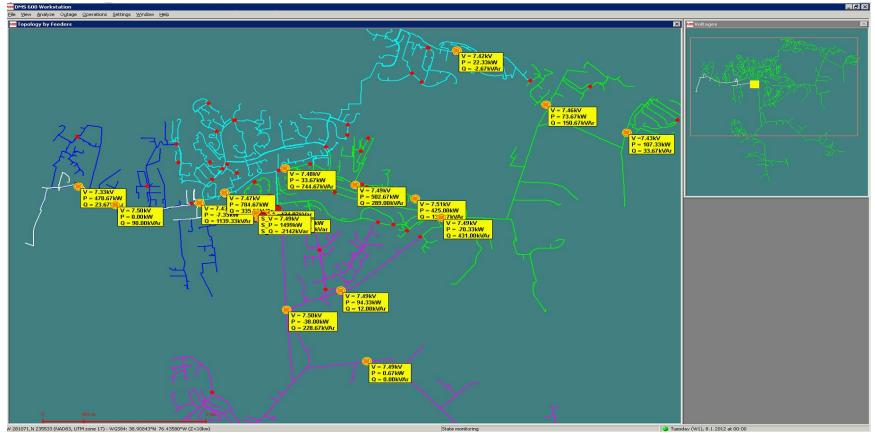


Power Factor Correction System Objectives

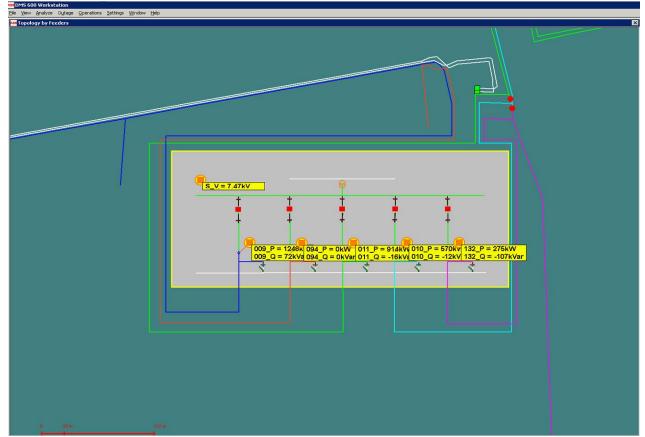
- Real-time monitoring and control of distribution capacitors through integration with their corresponding controllers.
- Real-time monitoring of substation feeder metrology through integration with SCADA system.
- Advanced analytic and control software that directs the switching of distribution line capacitors to achieve the desired levels of regulation.
- Real time status displays of the entire feeder network from the substation down to end of the feeder lines.



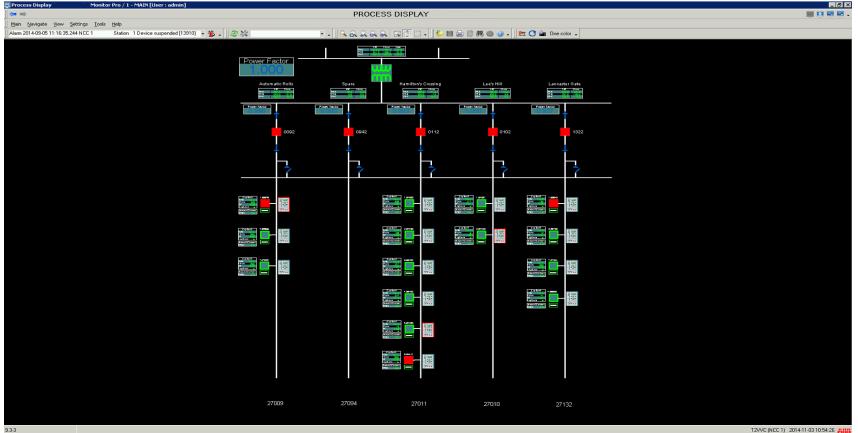
Power Factor Correction System Architecture



Power Factor Correction Field Device Locations


Power Factor Correction Geographic Representation

©ABB November 4, 2014 | Slide 40



Power Factor Correction Station Layout

Power Factor Correction One Line Representation

T2VVC (NCC 1) 2014-11-03 10:54:26

Power Factor Correction Volt/VAR Parameters

VVC mode	Loss reduction	
Power factor correction	Feeder head PF corr.	_
VPU up limit factor	.995	
VPU low limit factor	.967	
VPU up limit factor CVR	0.995	
VPU low limit factor CVR	0.97	
VUp relax factor	1	
VLow relax factor	1	
Capacitor turn off threshold factor	0.58	
Capacitor turn on threshold factor	0.52	
Sensitivity value threshold	0	
Number of historical measures	10	

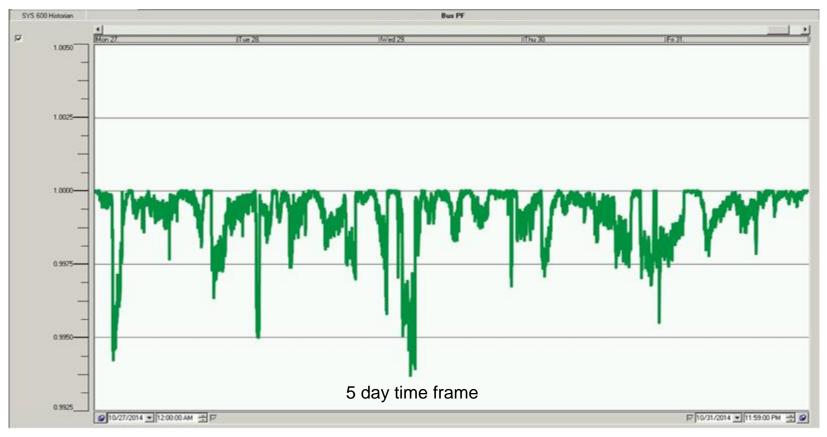
Simulation	
Simulation duration (h)	2
Simulation speedup factor	6
Number of VVC cycles per hour	6
Reconfiguration interval (h)	1
Operation limit for a Capacitor	200
Min time between Capacitor oper. (min)	5
Operation limit for a Tap Changer	200
Min time between Tap Chg. oper. (min)	1
Confirm operations	Г
Confirm timeout	0
Measurement threshold (default 0.25)	0.12
ОК	Cancel

Power Factor Correction Notices and Events

otices Events Syst	em events Outage events User events Vo - Filter name	olt Var Control E	vents		
Time	Operation	Device	Feeder	Node code	
2013-09-30 17:16:55	dbgVoltage violation: Trying Capacitor.	B.47420	FAB	221577060668Q1	
2013-09-30 17:16:55	dbgLP Solve: No resolution found!				
2013-09-30 17:16:55	dbgVoltage violation: No Capacitors in s			221581022564S1	
2013-09-30 17:16:55	dbgVoltage correct for station.			221581022564S1	
2013-09-30 17:16:55	Turn Capacitor ON.	A.16545	FAA	605130519093Q1	
2013-09-30 17:16:55	Turn Capacitor ON.	B.47420	FAB	221577060668Q1	
2013-09-30 17:16:55	Turn Capacitor ON.	C.74480	FAC	221579420859Q1	10
2013-09-30 17:16:55	Turn Capacitor ON.	D.49088	FAD	221579099719Q1	
2013-09-30 17:16:55	Tap RefV = 122.3 (7.3).	FA_A_VRB	FAA	220581990054P1	
2013-09-30 17:16:55	Tap RefV = 122.3 (7.3).	FA_B_VRB		605130605149P1	
2013-09-30 17:16:55	Tap RefV = 122.3 (7.3).	FA_C_VRB	FAC	221580150982P1	
2013-09-30 17:16:55	Tap RefV = 120.8 (7.2).	FA_D_VRB		221580164971P1	
2013-09-30 17:17:50	dbgVoltage violation: Trying Capacitor.	A.69133	FAA	604130846043Q1	
2013-09-30 17:17:50	dbgLP Solve: No resolution found!				
2013-09-30 17:17:50	dbgVoltage violation: Trying Capacitor.	A.16545	FAA	60513051909301	

Power Factor Correction Volt/VAR Scheduler

Group name	C CVR		Weekend C CVR	CVR	
C CVR	C Loss Red Start time		C Loss Reduction Start time End time		
C Loss Reduction	00:00	00:00		:00	
Add Delet	e Weekend		Tu We Th Fr Sa ▼ □ □ □ □ □	a Su	
and the second	Weekday mode	Weekday sta	art time 🛛 Weekday e	nd time	
Default Loss CVR_A Time C	VR	08:00	08:30	L	
LDA The L	oss Reduction	08:30	09:00	L	
LR_A Time L					
LR_A Time L					
LR_A Time L	m			,	

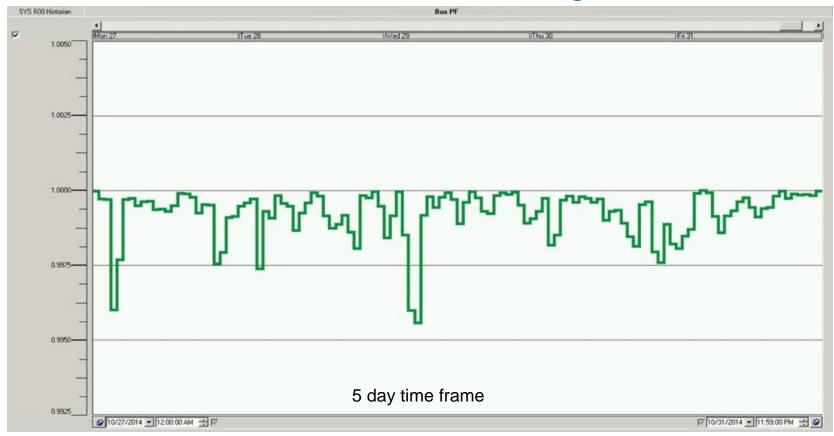


Power Factor Correction Full SCADA Control

Cap Bank Control	×
Object identification:	ð »
FA A CB1 (LN=FAACB1	1)
Main	
Object status	
Switch state: Open	*
	-
Open Cap Bank	Close Cap Bank
E	xit


Kessages Device Reservation Alarms Operation
Phase B Messages from object: Dbject is selected on another monitor

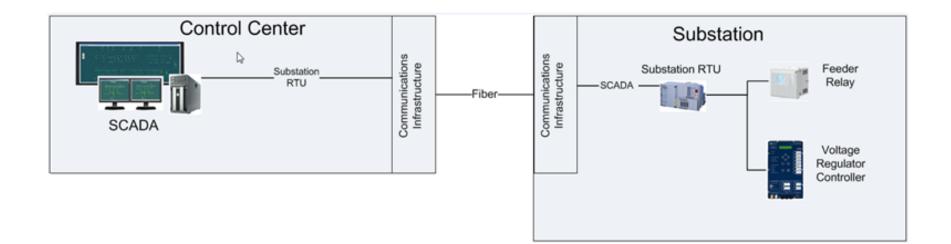
Power Factor Correction Station Power Factor



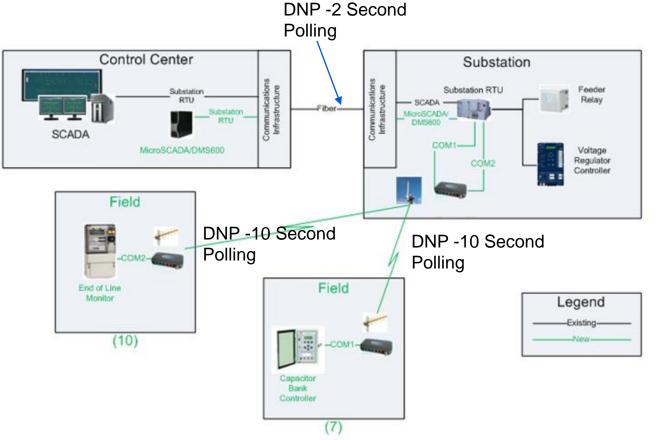
Power Factor Correction Station Power Factor – 5 Minute Average

Power Factor Correction Station Power Factor – 1 Hour Average

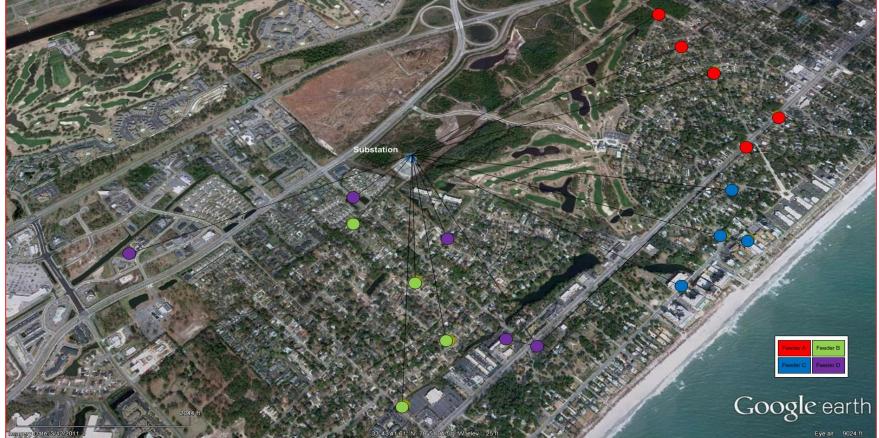
Power Factor Correction Station Power Factor – Export Data


SYS 60	x∎	E 5. 0.	÷		Book1 - Exc	el		? 📧	- 0	×	Bus PF
~	F	ILE HOM INSER	PAGE FC	DR DATA	REVIE VIE	W DEVE	ACRO PD	F-X 🛕 Step	hen T 🔻	0	IThu 30. IFri 31.
	Pas V	board 🕞	E Alignment N	Jumber	Conditional Format as T Cell Styles - Styl	able -	g • E	Editing		*	
	A1	· · · ·	$\times \checkmark$	f_x						•	·]
	1	A	B 120	С	D	E	F	G	Н		Copy Data to Clipboard
	2		120								Averages
	3	10/27/2014 12:00:	CurrentHis	story							
		10/31/2014 11:59:		-	00:00 AM						C Values with sample count 119
	-		S001_PF:2	7							Raw data with max, count 500
	6	10/27/2014 0:00								_	Statistics
	7 8	10/27/2014 1:00 10/27/2014 2:00								-	Show status with HTML format
	8 9	10/27/2014 2:00								-	
	9 10	10/27/2014 3:00								-	Use display format of variable
	11	10/27/2014 5:00									Copy Close
	12	10/27/2014 6:00									1 · · · · · · · · · · · · · · · · · · ·
	13	10/27/2014 7:00	0.999488								1 1 1
	14	10/27/2014 8:00	0.999613								
	15	10/27/2014 9:00	0.999628								
	16	10/27/2014 10:00									
	17	10/27/2014 11:00									
		10/27/2014 12:00									
		10/27/2014 13:00									
		10/27/2014 14·00		+)		: •	4				
		DY 🔚	(
		920			E		<u> </u>		+ 100'	%	
			/2014 💌 12:1	00:00 AM 📑	지						☑ 10/31/2014 🔽 11:59:00 PM 📑

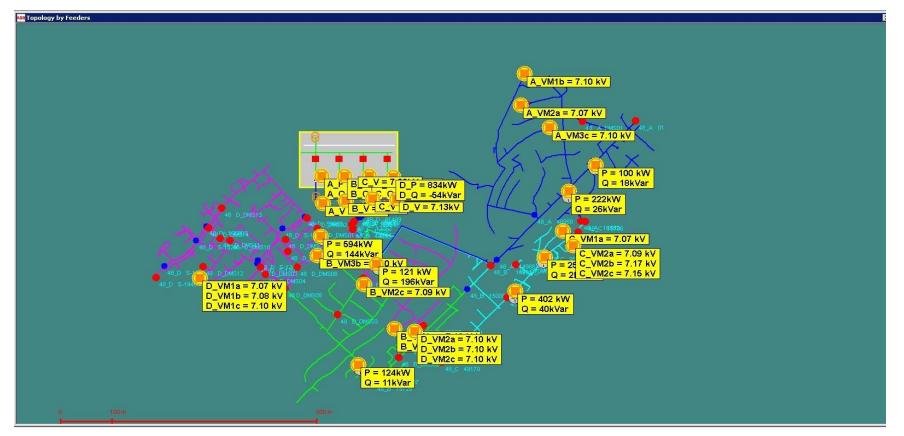
Volt-VAR Optimization System Objectives


- Real-time monitoring of feeder voltages through strategically positioned end of line sensors
- Real-time monitoring and control of distribution capacitors and voltage regulators through integration with their corresponding controllers.
- Real-time monitoring of substation feeder metrology through integration with SCADA system.
- Advanced analytic and control software that directs the switching of distribution line capacitors and distribution voltage regulators to achieve the desired levels of regulation.
- Real time status displays of the entire feeder network from the substation down to end of the feeder lines.

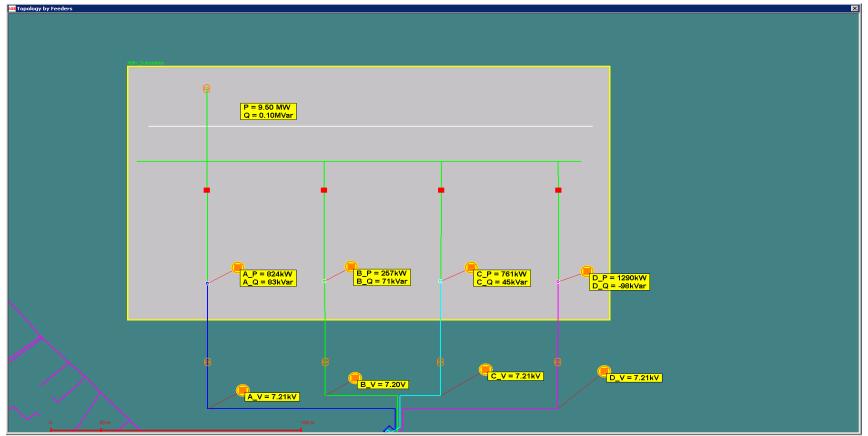
Volt-VAR Optimization System Architecture - Existing



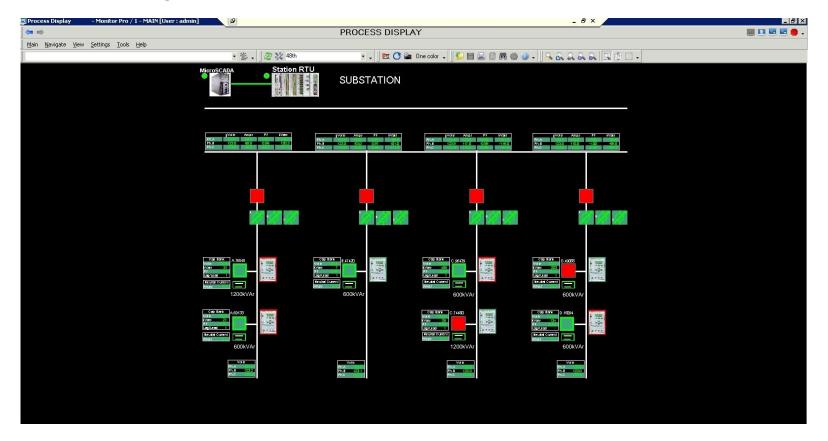
Volt-VAR Optimization System Architecture - Expanded



Volt-VAR Optimization Field Device Locations



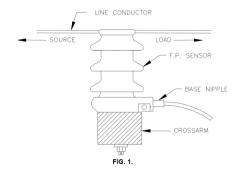
Volt-VAR Optimization Geographic Representation

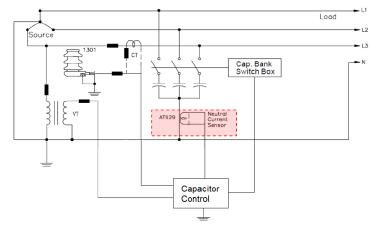


Volt-VAR Optimization Station Layout

Volt-VAR Optimization One Line Representation

Volt-VAR Optimization System Hardware – Capacitor Banks





Installation and Sensor Location

Volt-VAR Optimization DNP Data – Capacitor Banks

BINARY/CONTROL OUTPUTS POINT DESCRIPTION

	_					
Ca	pВ	an	k	cl	ose	<u>,</u>

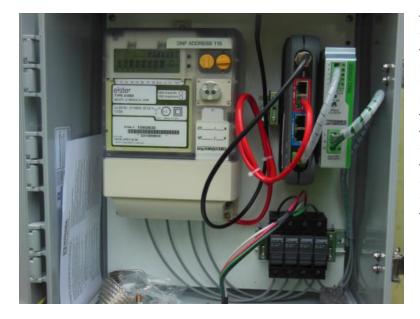
SCADA override activate

BINARY INPUTS POINT DESCRIPTION

Capacitor bank closed
Capacitor bank open
Auto/Manual control mode
Remote control mode enabled
SCADA override active (unit is in remote mode)
Any Alarm status set
Switch fuse blown
Reclose block in effect
Switch 1 feedback error
Switch 2 feedback error
Switch 3 feedback error

ANALOG INPUT POINT DESCRIPTION

V Secondary	I
I Primary	
kvar	
kW	
Power factor	
	Т


Volt-VAR Optimization System Hardware - Metering

Volt-VAR Optimization DNP Data - Metering

BINARY INPUTS POINT DESCRIPTION

Self Check Error

Measurement Error

Low Battery

Loss of Potential

ANALOG INPUT POINT DESCRIPTION

Line 1-N Volts

Line 2-N Volts

Line 3-N Volts

Volt-VAR Optimization System Hardware - Regulators

Volt-VAR Optimization DNP Data - Regulators

	Description
RB1 - RAISESV/LOWERSV	Raise command (SELOGIC equation) [VLT_D]
RB2 - INHIBSV	Inhibit conditions (SELOGIC equation)
RB3 - AUTOSV/MANUALSV	Place control in AUTO or MANUAL mode (SELOGIC equation) [AM_D]
	BINARY INPUTS POINT DESCRIPTION
	Description
ENABLED	Indicate supply voltage absent, reset dead-man timeout, control disabled, firmware download, and self-test failure
ALARM	ON indicates a user-programmable alarm is asserted
INHIBSV	Inhibit conditions (SELOGIC equation)
REMOTE	Control configuration—Remote position [LR]
AUTO	Control Configuration—Auto Position [AM]
TAP_OFF	Tap is off count (count is even when it should be odd; count is odd when it should be even) [TAPK]
BLOCKSV	Block tap operations (SELOGIC equation)
	ANALOG OUTPUTS POINT DESCRIPTION
	Description
F_CNBND	Forward center band
	ANALOG INPUT POINT DESCRIPTION
	Description
L	Line Current, Magnitude, Primary [AMP]
VSSEC	S terminal Voltage, Magnitude, Secondary
VLSEC	L terminal Voltage, Magnitude, Secondary [VLT]
PL	Real Power
FL	
QL	Reactive Power
	Reactive Power Power Factor
QL	

BINARY/CONTROL OUTPUTS POINT DESCRIPTION

Volt-VAR Optimization System Hardware - RTU

Volt-VAR Optimization DNP Data - RTU

Misc. Analogs

Bus 1 MW

Bus1 Mvars

Misc. Indications

Feeder-A Breaker Position Feeder-B Breaker Position Feeder-C Breaker Position Feeder-D Breaker Position

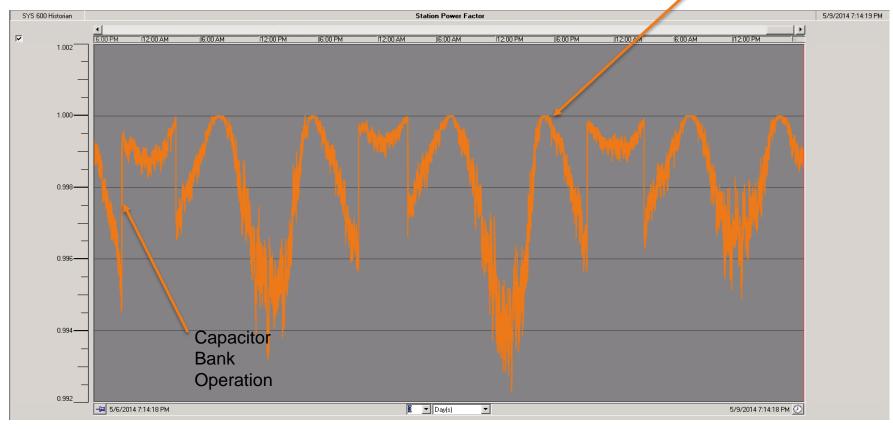
Volt-VAR Optimization Field Device Locations – Pad Mount 3-Phase Meter

Volt-VAR Optimization Field Device Locations – Pole Mount 1-Phase Meter

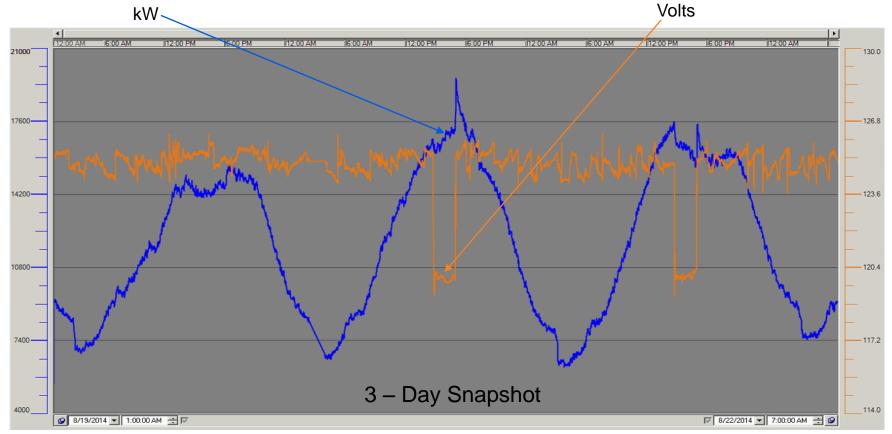
ABB

©ABB November 4, 2014 | Slide 67

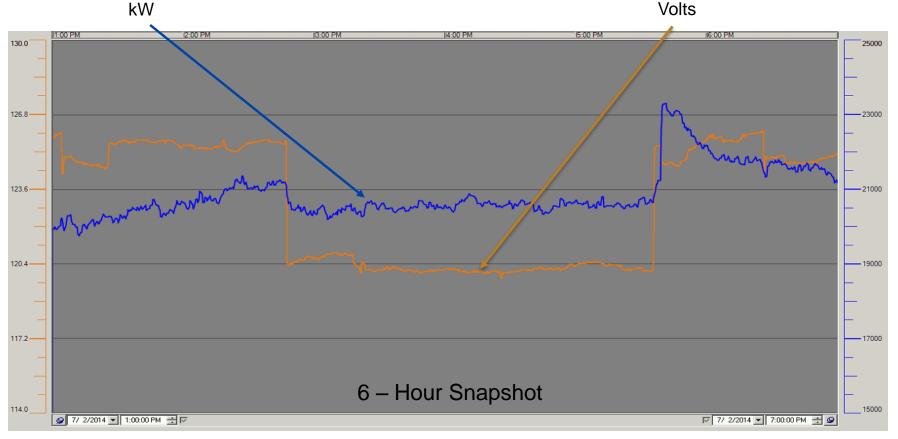
Volt-VAR Optimization Field Device Locations – Capacitor Bank & Radio Repeater



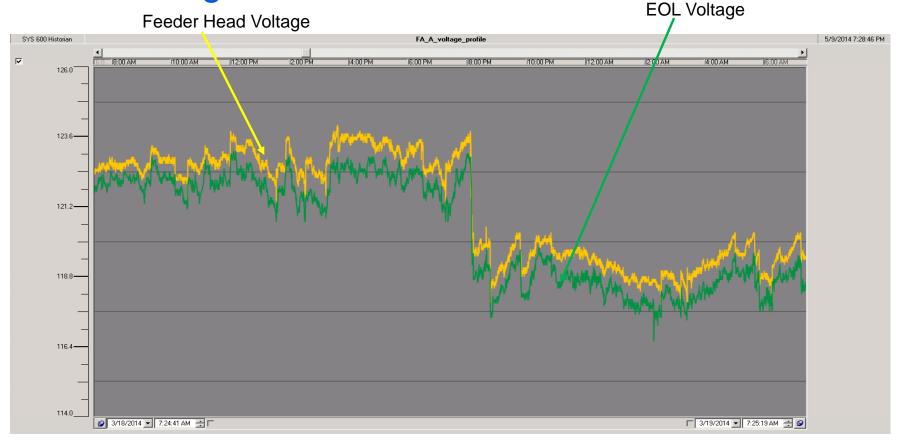
Volt-VAR Optimization Loss Reduction - Station Power Factor


Power Factor

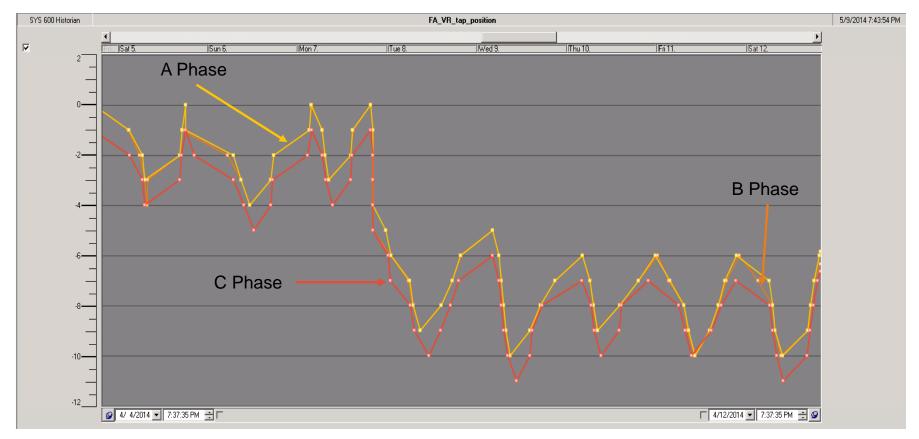
3 day time frame



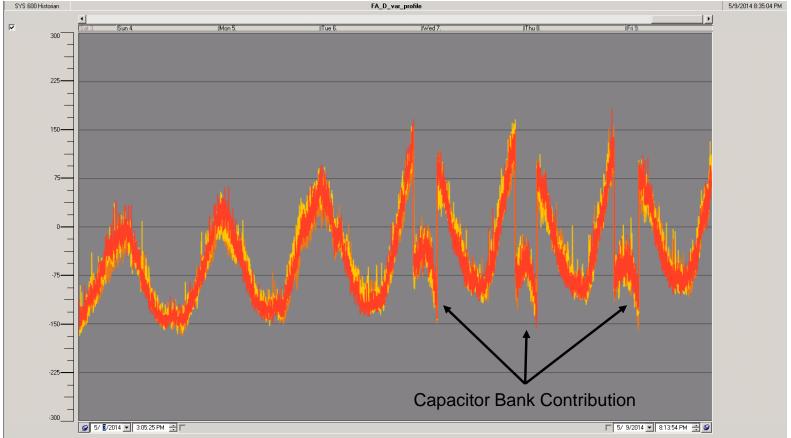
Volt-VAR Optimization Demand Reduction - CVR



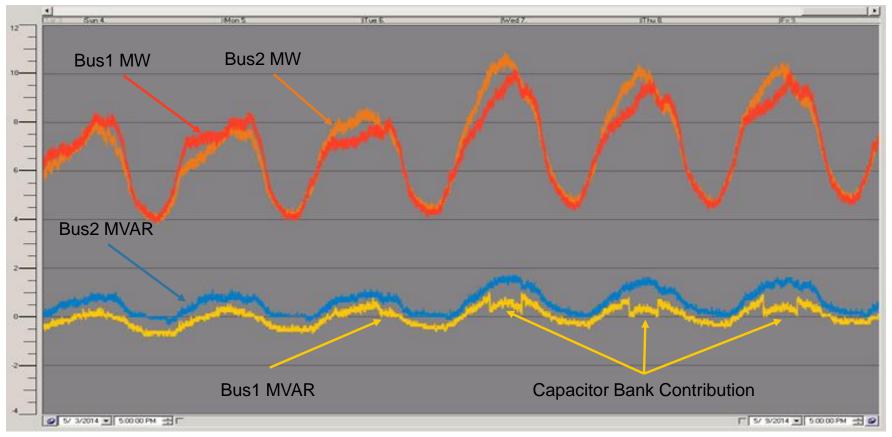
Volt-VAR Optimization Demand Reduction - CVR



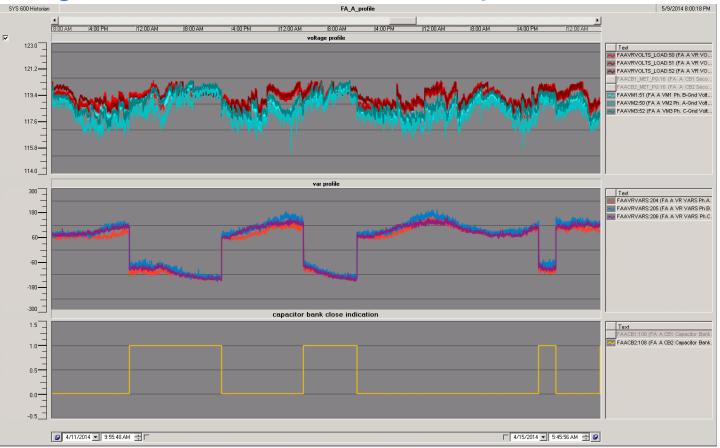
Volt-VAR Optimization Feeder Voltage Profile



Volt-VAR Optimization Wear and Tear Reduction - Voltage Regulator Tap Changes

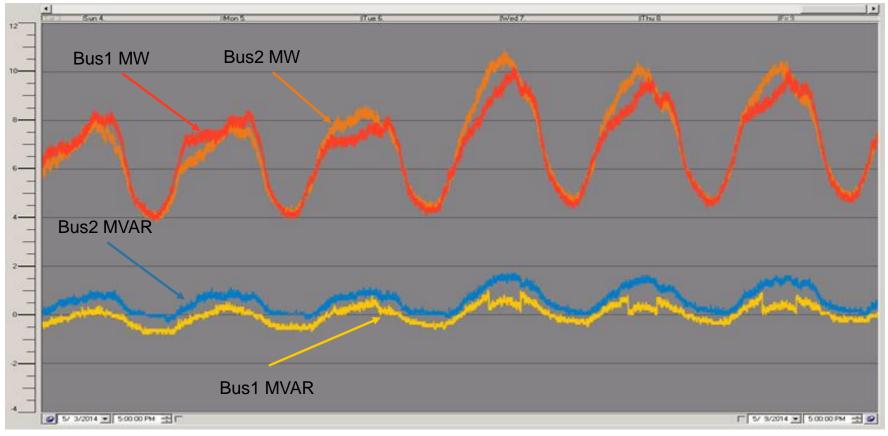


Volt-VAR Optimization Feeder kVAR



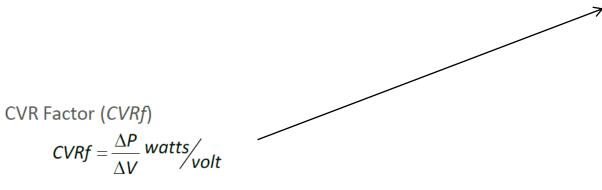
Volt-VAR Optimization Bus MW and MVAR

Volt-VAR Optimization Bus Voltage, Feeder kVAR, and Capacitor Bank Status


Volt-VAR Optimization Measurement and Verification

Most used methods for measurement and verification:

- Day on Day Off
- Bus to Bus Comparison
 - One Bus always on PF correction
 - Alternate Buses from PF to CVR and compare
 - Compare for 9, 15 and 24 hours


Measurement & Verification Bus MW and MVAR

Measurement & Verification Results for 24hr comparison

			24Hr Run Av	erage <mark>(</mark> 9am	n to 9am)				
Run	Time/Date	BUS1 (MW)	BUS2 (MW)	Diff	Bus-1 Volt	Temp	PF 1	PF.2	CVR Factor
CVR-ON	Average	9.52	10.21	0.69	118.84	83.26	0.998	0.998	
CVR-OFF	Average	9.86	10.23	0.37	123.00	83.81	0.998	0.998	
Difference	Average	0.34	0.02	0.32	4.16	0.55	0.001	0.000	0.93

An Average reduction of 300kwH per 10MVA Load

Measurement & Verification Results for 9 and 15hr comparison

			15Hr Run Av	erage (9am					
Run	Time/Date	BUS1 (MW)	BUS2 (MW)	Diff	Bus-1 Volt	Temp	PF 1	PF.2	CVR Factor
CVR-ON	Average	11.03	11.87	0.84	118.95	86.12	0.999	0.999	
CVR-OFF	Average	11.46	11.92	0.46	122.99	86.96	0.999	0.999	
Difference	Average	0.43	0.05	0.39	4.04	0.84	0.000	0.000	0.98

			9Hr Run Ave	rage (Midn	ite to 9am)				
Run	Time/Date	BUS1 (MW)	BUS2 (MW)	Diff	Bus-1 Volt	Temp	PF 1	PF.2	CVR Factor
CVR-ON	Average	7.01	7.42	0.41	118.66	78.67	0.991	0.994	
CVR-OFF	Average	7.62	7.87	0.25	123.00	79.87	0.994	0.996	
Difference	Average	0.61	0.46	0.16	4.34	1.21	0.002	0.003	0.56

Measurement & Verification Cumulative Results

Data	MANA/I- (A struct)	MANA Course d (ECT)		Feeder band Melteres	Della MAMA	Mary MAM Damaged
Date	wwwn(Actual)	MWh Saved(EST)	CVR Days	Feeder head Voltage	Daily MW Avg	Max MW Demand
June 2013***	7065	90	30	119.00	9.79	14.4
July 2013	7660	260	31	118.72	10.30	15.2
August 2013	7112	242	31	118.86	9.49	14.2
September 2013	5863	129	30	119.17	8.14	13
October 2013	4733	104	31	119.36	6.36	10.9
November 2013	4994	110	30	118.77	6.94	13.6
December 2013	5379	118	31	119.92	7.23	14
January 2014	7441	147	31	121.34	10.00	19.1
February 2014	5774	127	28	121.39	8.59	21.1
March 2014	4787	105	31	120.64	7.98	13.40
April 2014	2639	58	18	120.52	6.11	8.90
					¢	
Total	63446	1490	322		_	

Volt-VAR Optimization Final Takeways

VVO systems have been proven to provide positive NPV investments

Traditional demand response programs can take advantage of VVO to reduce peak demands on the system.

Centralized automation systems provide system synergies, including:

Distribution ("outside the fence") SCADA

Distribution Management Systems (DMS)

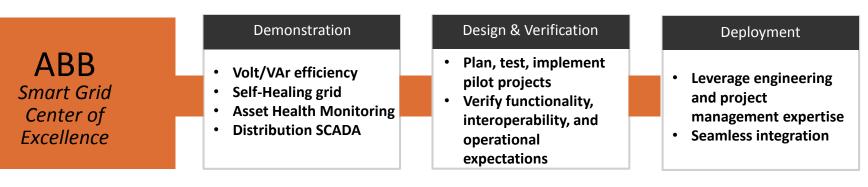
Outage Management Systems (OMS)

Automatic Reconfiguration (FDIR, FLISR, etc.)

Remote access to distribution devices through wireless infrastructure

VVO is one of the only (if not the only) way to improve energy efficiency without direct customer interface.

Distribution Automation in Action VVO brochure available on the ABB website



Volt-VAr management solutions For smart grid distribution automation applications

©ABB November 4, 2014 | Slide 83

Distribution Automation in Action ABB Smart Grid Center of Excellence (CoE)

This webinar brought to you by: ABB Power Systems Automation and Communication

- Relion Series Relays Advanced flexible platform for protection and control
- **RTU 500 Series** Proven, powerful and open architecture
- MicroSCADA Advanced control and applications
- **Tropos** Secure, robust, high speed wireless solutions

We combine innovative, flexible and open products with engineering and project services to help our customers address their challenges.

Thank you for your participation

Shortly, you will receive a link to an archive of this presentation. To view a schedule of remaining webinars in this series, or for more information on ABB's protection and control solutions, visit:

www.abb.com/relion

Power and productivity for a better world[™]

