Basic configuration overview

Displays and controls

Recorder Faceplate

Sideways Scroll

Down Scroll

Raise and Lower

Function Key

Pen Lift

Note. All programming is carried out using the faceplate keys and displays.

Note. Refer to the relevant page of the Programming Guide for further information.

C1900 recorder
Quick reference guide

Operating Guide

Alarms
Acknowledge 10
LED status 10
Chart ... 4
Configuration level 3, 26
Displays & controls 5, 6
Fault-finding 13
Input error messages 3
Power-up error codes 2
Pen ... 4
Process variable 9
Password .. 12
Security Access
Configuration level 12
Self-test 2
Time/date 9
Totalizer .. 11

Programming Guide

Alarms ... 10
Analog outputs 19
Chart set up 9
Configuration outputs 3, 26
Digital outputs 17
Function keys 27
Inputs (PV, RSP, P-FB) 4
Logic equations 28
Logic inputs 28
Logic inputs 28
Password .. 2, 22
Pen ... 8
Process variable 15
Relays ... 15
Retransmission outputs – see Analog outputs
Scale adjust (span/offset) 23
Spot calibration – see Scale adjust

ABB Limited
Measurement & Analytics
Howard Road, St. Neots
Cambridgeshire, PE19 8EU, UK
Tel: +44 (0)870 600 6122
Fax: +44 (0)1480 217948
Email: enquiries.mp.uk@gb.abb.com

www.abb.com/measurement

© ABB 2019
Specifications subject to change without notice.
Setting analog input links

Warning. Ensure that the unit is isolated from all power supplies before removing I/O boards.

Fig. 1 Input Links – Channel 1

Fig. 2 Input Links – Channels 2 to 4 (If fitted)

Configuring analog inputs

Information. The alphabet used to display page and parameter titles is as follows:

A – R
B – b
C – c or C
D – d
E – E
F – F
G – G
H – H or h
I – I
J – J
K – K
L – L
M – N
N or n
P – P
Q – Q
R – r
S – S
T – t
U – U
V – V
Y – y

Select Channel – Choose the input channel to be configured

Input type = _A_P (mA), _V LT (V), _UL T (mV), _ECPL (Thermocouple), _r td (RTD) and _LO _OH (< 750 Ohms) _HI _OH (> 750 Ohms).

Linearizer: If using a thermocouple set to J, K, B, N, E, T, S, A. Other options are 5/2, 3/2, SQrt, rtd or NONE.

Range High: For a 4 to 20mA current input, set this to 20.00, or for 0 to 5V, set to 0.0. The frame does not appear if _t CPL or _r td are used.

Range Low: Set the low end of the electrical input range, e.g. 00.4, for 4 to 20mA, or 0.0 for 0 to 5V.

Units: Select NONE if the input is not temperature, otherwise select dEG F or dEG C.

Engineering Range High: Select the highest engineering value that will be displayed when the input is at its maximum value – e.g. for an engineering range of 0 to 300.0 °F set to 3000.

Decimal Point: Select the decimal point position for the process variable, e.g. 300.0.

Engineering Range Low: Select the lowest engineering value that will be displayed when the input is at its minimum value – e.g. for an engineering range of 0 to 300.0 °F set to 0.0.

Broken Sensor Drive: Determine pen action when the input signal fails: NONE – pen follows failed input; UP – pen driven to full scale; dN – pen driven to zero scale.

Fault Detection Drive: Determine maximum input travel outside engineering range before an error is detected. E.g. for a 0 to 300°F range, a 10% fault level will trigger at 330°F.

Input Filter: Adjust the instrument response time from 0 to 60 seconds in one second increments to reduce pen jump & dampen out noisy signals.
C1900
Circular chart recorder and recorder/controller

Measurement made easy

For more information
Further publications are available for free download from:
www.abb.com/recorders

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
<th>Operating Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet C1900</td>
<td>DS/C1900R-EN</td>
</tr>
<tr>
<td>Circular chart recorder</td>
<td></td>
</tr>
<tr>
<td>Data Sheet C1900</td>
<td>DS/C1900RC-EN</td>
</tr>
<tr>
<td>Circular chart recorder/controller</td>
<td></td>
</tr>
<tr>
<td>Quick Reference Guide</td>
<td>IM/C1900-QR</td>
</tr>
<tr>
<td>C1900 recorders</td>
<td></td>
</tr>
<tr>
<td>Quick Reference Guide</td>
<td>IM/C1900-QC</td>
</tr>
<tr>
<td>C1900 recorder and recorder/controller</td>
<td></td>
</tr>
<tr>
<td>Programming Guide</td>
<td>IM/C1900-PGR</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Programming Guide</td>
<td>IM/C1900-PGC</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
</tbody>
</table>

C1900 circular chart recorder and recorder/controller
Electrical safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use'. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

- **Warning** – refer to the manual for instructions
- **Caution** – risk of electric shock
- Protective earth (ground) terminal
- Earth (ground) terminal
- Direct current supply only
- Alternating current supply only
- Both direct and alternating current supply
- The equipment is protected through double insulation

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

The documentation for the C1900 series of circular chart recorders is shown in Fig. 1.1. The Standard Manuals, including the data sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.

This manual includes an Installation Record which should be completed as a log of the electrical installation. The record is useful when carrying out initial instrument programming and can be retained for future reference.

Fig. 1.1 C1900 Documentation
2 PREPARATION

2.1 Accessories – Fig. 2.1

- **Pen Capsule**
 1 to 4 (depending on no. of channels)

- **Charts**
 (Pack of 3)

- **Keys**
 (door lock versions only)

 A – Standard Accessories

- **Pipe-mounting Kit**
 C1900/1713

- **Wall-mounting Kit**
 C1900/1712
 (kit contains 4 sets of items shown)

- **Case-to-Panel Gasket**
 C1900/0149
 (see Note below)

 B – Optional Accessories

Note. If panel-mounting to NEMA 4X standard is required, a continuous bead of suitable silicon sealant **must** be applied between the case flange and the panel. **Do not** use the optional gasket.

Fig. 2.1 Accessories

2.2 Checking the Code Number – Fig. 2.2

2.2.1 Non-upgradeable Version

Note. The 1901J is a basic, non-upgradeable single pen recorder. This version is not fitted with an analog output, relay, transmitter power supply unit or digital inputs and no additional modules can be fitted. The full identification code is shown below.

- **1901J A 0 0 1 1 00000 STD**

 C1900
 single pen recorder
 Electrical code – standard
 Option module – none
 Options – none
 Door lock – not fitted
 Power supply – 115V AC
 Modules fitted in module positions 2 to 6 – none
 Special Settings – company standard

Fig. 2.2 Checking the Code Number

1. Push to release handle
2. Pull handle to release door...
3. ...and open door
4. Loosen captive screw
5. Swing chart plate forward
6. Check code number against the Data Sheet – SS/C1900R or SS/C1900RC

Note. If panel-mounting to NEMA 4X standard is required, a continuous bead of suitable silicon sealant **must** be applied between the case flange and the panel. **Do not** use the optional gasket.
3 MECHANICAL INSTALLATION

3.1 Siting – Figs 3.1 and 3.2

A – Close to Sensor

B – At Eye-level Location

C – Avoid Vibration

Fig. 3.1 General Requirements

A – Within Temperature Limits

B – Within Humidity Limits

Caution. Select a location away from strong electrical and magnetic fields. If this is not possible, particularly in applications where mobile communications equipment is expected to be used, screened cables within earthed (grounded) metal conduit must be used.

C – Use Screened Cables

Fig. 3.2 Environmental Requirements

3.2 Mounting – Figs. 3.3 to 3.5

Dimensions in inches (mm)

Fig. 3.3 Overall Dimensions
3.2.1 Wall-/Pipe-Mounting – Fig. 3.4

A – Wall-mounting (Optional)

1. Secure mounting brackets (4) to case

2. Position mounting brackets to suit horizontal pipe-mounting or vertical pipe-mounting as required

3. Secure mounting brackets to case using bolts and washers

4. Secure instrument to wall using suitable fixings

B – Pipe-Mounting (Optional)

1. Mark fixing centers on wall (4)

2. Drill suitable holes (4)

3. Fit "U" bolts into brackets

4. Secure using two nuts and washers

2 3/8 in. (60mm) OD horizontal or vertical pipe

Fig. 3.4 Wall-/Pipe Mounting
3.2.2 Panel Mounting – Fig. 3.5

Dimensions in inches (mm)

1. Cut hole in panel (see Note 1 below)

2. Mark four mounting holes

3. Drill four suitable holes

4. Secure in panel using four bolts, washers and nuts

5. Locate instrument in cut-out

Optional gasket (see Note 2 below)

Minimum Cut-out Dimensions

Maximum Cut-out Dimensions

Notes.

1. The instrument can be inserted into a panel cut-out of any size between the minimum and maximum dimensions illustrated, provided the cut-out is positioned centrally relative to the fixing holes. If the panel cut-out is larger than the maximum, a locally manufactured adaptor plate will be required.

2. If panel-mounting to NEMA 4X hosedown standard is required, a continuous bead of suitable silicon sealant must be applied between the case flange and the panel. Do not use the optional gasket.
4 ELECTRICAL INSTALLATION

Warnings.
- To comply with Underwriter Laboratories (UL) and Canadian Standards Association (CSA) certification, route signal leads and power cables in earthed (grounded), flexible metal conduit. Use the Position 1 protective ground stud to ground the flexible metal conduit.
- Instruments not fitted with the optional internal on/off switch and fuse must have a disconnecting device such as a switch or circuit breaker conforming to local safety standards fitted to the final installation. It must be fitted in close proximity to the instrument within easy reach of the operator and must be marked clearly as the disconnection device for the instrument.
- Remove all power from supply, relay and any powered control circuits and high common mode voltages before accessing or making any connections.
- Use cable appropriate for the load currents. The terminals accept cables up to 14AWG (2.5mm²).
- The instrument and all inputs and outputs conform to Mains Power Input Insulation Category II.
- All connections to secondary circuits must have basic insulation.
- After installation, there must be no access to live parts e.g. terminals.
- Terminals for external circuits are for use only with equipment with no accessible live parts.
- If the instrument is used in a manner not specified by the Company, the protection provided by the equipment may be impaired.
- All equipment connected to the instrument's terminals must comply with local safety standards (IEC 60950, EN601010-1).

Notes.
- Always route signal leads and power cables separately.
- Use screened cable for signal inputs and relay connections. Connect the screen to the earth (ground) stud – see Fig. 4.10.
- The terminal blocks can be removed from the main PCB when making connections – see Fig. 4.1. Before removing a module, note its position.
- If wall- or pipe-mounting to NEMA 4X hosedown standard is required, suitable cable glands must be used to prevent water ingress.

![Fig. 4.1 Removing Terminal Block Assembly](image-url)
4.1 Identifying the Input/Output Modules – Fig. 4.2
To gain access to the modules, open the door and chassis – see Fig. 2.2. There are six module positions as shown in Fig. 4.2.

4.2 Channel Connections
Channel 1 connections are made directly to the terminal block mounted on the motherboard.

Other Channel connections are made to standard I/O modules, fitted in positions 2, 3 or 4 – see Fig. 4.2.

⚠️ Warning. The maximum channel to channel voltage (between any 2 channels) must not exceed 500V DC.

Notes.
- Module positions can also be used for additional I/O modules (module types 1 and 2) for use with math functions.
- The module type is marked on the component side of the PCB.

Fig. 4.2 Module Positions and Functions
4.2.1 Selecting the Analog Input Type(s) – Figs. 4.3 and 4.4

Plug-in links are used to select the input type:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Input Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>PL1 & PL8 on the main p.c.b. (Fig. 4.3)</td>
</tr>
<tr>
<td>Channels 2 to 4</td>
<td>PL1 & PL3 on the module (Fig. 4.4)</td>
</tr>
</tbody>
</table>

Compensating Cable

<table>
<thead>
<tr>
<th>Type of Thermocouple</th>
<th>BS1843</th>
<th>ANSI MC 96.1</th>
<th>DIN 43714</th>
<th>BS4937 Part No.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Cr/Ni-Al (K)</td>
<td>Brown</td>
<td>Yellow</td>
<td>Red</td>
<td>Green</td>
</tr>
<tr>
<td>Ni-Cr/Cu-Ni (E)</td>
<td></td>
<td></td>
<td></td>
<td>Violet</td>
</tr>
<tr>
<td>Nicr/CuNi (N)</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
<td>Orange</td>
</tr>
<tr>
<td>Pt/Pt-Rh (R and S)</td>
<td>White</td>
<td>Black</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>PtRh/PtRh (B)</td>
<td></td>
<td></td>
<td></td>
<td>Grey</td>
</tr>
<tr>
<td>Cu/Cu-Ni (T)</td>
<td>White</td>
<td>Blue</td>
<td>Blue</td>
<td>Brown</td>
</tr>
<tr>
<td>Fe/Con (J)</td>
<td>Yellow</td>
<td>White</td>
<td>Red</td>
<td>Blue</td>
</tr>
<tr>
<td>Fe/Con (DIN 43710)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Case Blue for Intrinsically Safe Circuits

Table 4.1 Thermocouple Compensating Cable
4.2.2 Voltage and Current – Fig. 4.5

Input impedances:
- Low voltage (mV) >10MΩ
- Voltage >10MΩ
- Current (mA) 100Ω

4.2.3 2-wire Transmitter Input – Fig. 4.5

Power for the transmitter is supplied by terminal 6.

Note. The voltage across terminals 4 and 6 is 20V (nominal). This is due to internal voltage drops across a shunt resistor and measurement circuitry.

4.2.4 Thermocouple – Fig. 4.5

Use correct compensating cable between the thermocouple and the terminals – see Table 4.1 (previous page).

Automatic cold junction (ACJC) is incorporated but an independent cold (reference) junction may be used.

4.2.5 Resistance Thermometer (RTD) – Fig. 4.5

If long leads are necessary it is preferable to use a 3-lead resistance thermometer.

If 2-lead resistance thermometers are used each input must be calibrated to take account of the lead resistance.

4.2.6 Logic Inputs – Fig. 4.5

The two logic inputs accept either volt-free (switch) or TTL (5V) input types and can be used for remote switching of many recorder functions, e.g. chart stop/go, alarm acknowledgment, totalizer reset etc. Refer to the Programming Guide, IM/C1900–PGR or IM/C1900–PGC.

4.2.7 Analog Output – Fig. 4.5

4.2.8 Relay Output – Fig. 4.5

Relay specification:
- Type: single pole changeover
- Voltage: 250V AC 250V DC
- Current: 5A AC 5A DC
- Loading (non inductive): 1250VA 50W
- Isolation, contacts to earth: 2kV RMS

Fig. 4.5 Channel Connections
4.2.9 Motorized Valve – Fig. 4.6
A motorized valve with or without feedback requires 2 relays (common and normally open terminals) to drive the valve in either direction. Any two relays can be allocated for this function. Fig. 4.6 A shows two possible combinations.

Note. For valves with position feedback using low voltage (mV), voltage (V) or current (C), refer to Fig. 4.5 B, C and F for connections.

A – Standard Feedback Slidewire Configuration

B – Alternative Feedback Slidewire Configuration

Notes.
1 Type 1 and type 2 modules have one relay output, therefore two modules are required.
2 Link must be connected at valve drive end, not at the controller terminals.

Fig 4.6 Motorized Valve Connections (using feedback slidewire)
4.3 Module Connections

4.3.1 Standard I/O or Analog + Relay (Module Types 1, 2 and 7) – Fig. 4.5
The connections are the same as Channel connections to the main board. Refer to Section 4.2.

4.3.2 Four Relay Module (Module Type 3) – Fig. 4.7

1 2 3 4 5 6 7 8 9 10 11 12
Normally Closed Normally Open Normally Open Normally Open Normally Open Normally Open Normally Open Normally Open
Common Common Common Common Common Common Common

Fig. 4.7 Four Relay Module Connections (Module Type 3)

4.3.3 Eight Digital Inputs or Outputs (Module Types 4 and 5 respectively) – Figs. 4.8 and 4.9
A plug-in link is used to select the board’s function; digital inputs or digital outputs – see Fig. 4.8. The maximum current drain from each TTL output must not exceed 5mA.

Fig. 4.8 Selecting the Digital Module Function (Module Types 4 and 5)

1 2 3 4
5 6 7 8
9 10 11 12
Common Input 1 Common Input 2 Common Input 3 Common Input 4 Common Input 5 Common Input 6 Common Input 7 Common Input 8

Input Connections or Output Connections

Fig. 4.9 Eight Digital Inputs or Outputs Connections (Module Types 4 and 5)
4.4 Power Supply Connections – Fig. 4.10

Warning. If the optional internal power switch and fuse are not fitted, an external disconnection device and fuse must be fitted – see also Warnings on page 6.

Before making any electrical connections, see Warnings on page 6

Notes.
1. Fuse rating:
 500mA (20 X 5mm) Type T
2. Ensure that the Earth (Ground) lead is longer than the Line and Neutral leads.

Fig. 4.10 Power Supply Connections

Note. Recorders manufactured before June 2005 are fitted with a Mainboard that is not equipped with a universal power supply. Ensure the supply voltage selector switch is set correctly and the appropriate fuse is fitted – see Fig 4.11.

Note. Fuse ratings:
115V Supply 1A (20 x 5mm) Type T
230V Supply 1/2A (20 x 5mm) Type T
24V Supply 4A (20 x 5mm) Type T

Fig. 4.11 Power Supply Selection
(Recorders Manufactured Before June 2005 Only)
Position 1

Module Type 1

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>1 +</th>
<th>2 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input</td>
<td>3</td>
<td>Link Positions (Tick Boxes)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Logic Inputs</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 L1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 L2</td>
<td></td>
</tr>
<tr>
<td>Relay Output</td>
<td>10 NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 NC</td>
<td></td>
</tr>
</tbody>
</table>

* Not applicable on Module Type 2

Position 2

Module Type (Tick Box) 1 2

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>1 +</th>
<th>2 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input</td>
<td>3</td>
<td>Link Positions (Tick Boxes)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Logic Inputs</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 L1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 L2</td>
<td></td>
</tr>
<tr>
<td>Relay Output</td>
<td>10 NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 NC</td>
<td></td>
</tr>
</tbody>
</table>

* Not applicable on Module Type 2

Position 3

Module Type (Tick Box) 1 2

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>1 +</th>
<th>2 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input</td>
<td>3</td>
<td>Link Positions (Tick Boxes)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Logic Inputs</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 L1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 L2</td>
<td></td>
</tr>
<tr>
<td>Relay Output</td>
<td>10 NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 NC</td>
<td></td>
</tr>
</tbody>
</table>

* Not applicable on Module Type 2

Position 4

Module Type (Tick Box) 1 2 6 7 3

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>1 +</th>
<th>2 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input</td>
<td>3</td>
<td>Link Positions (Tick Boxes)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Logic Inputs</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 L1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 L2</td>
<td></td>
</tr>
<tr>
<td>Relay Output</td>
<td>10 NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 NC</td>
<td></td>
</tr>
</tbody>
</table>

* Not available on Module Type 2
Position 5

Module Type (Tick Box) 2

<table>
<thead>
<tr>
<th>Position</th>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Link Positions (Tick Boxes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>L2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not available on Module Type 2

Position 6

Module Type (Tick Box) 2

<table>
<thead>
<tr>
<th>Position</th>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Link Positions (Tick Boxes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position</th>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>L1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>L2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not available on Module Type 2
C1900 Circular chart recorder

Measurement made easy

For more information
Further publications are available for free download from:
www.abb.com/recorders

or by scanning this code:

<table>
<thead>
<tr>
<th>Publication</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet C1900</td>
<td>DS/C1900R-EN</td>
</tr>
<tr>
<td>Quick Reference Guide C1900</td>
<td>IM/C1900-QR</td>
</tr>
<tr>
<td>Installation Guide C1900</td>
<td>IM/C1900-INS</td>
</tr>
<tr>
<td>Programming Guide C1900</td>
<td>IM/C1900-PGR</td>
</tr>
<tr>
<td>Operating Instructions C1900</td>
<td>IM/C1900-MOD</td>
</tr>
<tr>
<td>User Guide C1900</td>
<td>IM/C1900-ADV</td>
</tr>
</tbody>
</table>
Use of instructions

- **Warning** – an instruction that draws attention to the risk of injury or death.
- **Caution** – an instruction that draws attention to the risk of damage to the product, process or surroundings.
- **Note** – clarification of an instruction or additional information.
- **Information** – further reference for more detailed information or technical details.

It must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all Warning and Caution notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

The documentation for the C1900 series of circular chart recorders is shown in Fig. 1.1. The Standard Manuals, including the data sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.

Fig. 1.1 C1900 Documentation
2.1 Instrument Power-up – Fig. 2.1 and 2.2

Caution. Ensure that all connections, especially to the earth stud, are made correctly.

a) Check that the input sensors are installed correctly.

b) Check that the pen(s) are installed correctly – see Fig. 2.1.

c) Switch on the supply to the instrument, any power-operated control circuits and the input signals. Wait for the pens to settle.

Note. On power-up, the pens are moved to an off-chart position for automatic referencing. Pen chatter may occur on those pens nearest the reference position. **This is a normal function of the instrument.**

d) The start-up sequence shown in Fig. 2.2 is displayed on faceplate 1 when the supply is first switched on.

Note. If the true time line event option is fitted, the violet event pen records on the same time line as the red pen, but on the outer edge of the chart.

Fig. 2.1 Checking the Pen(s) Installation

Fig. 2.2 Instrument Displays at Start-up
2.1.1 Power-up Error Codes
If any of the power-up tests fail (see Fig. 2.2), error codes are displayed to identify the fault. Refer to Fig. 2.3 for error code interpretations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>No error</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Main board</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Module in position 2</td>
<td>Power down and then up again. If fault remains, contact the local Service Organisation.</td>
</tr>
<tr>
<td>3</td>
<td>Module in position 3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module in position 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Module in position 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Module in position 6</td>
<td></td>
</tr>
</tbody>
</table>

Configuration and battery-backed RAM errors
Calibration errors

Analog input and/or analog output calibration is corrupt

Acknowledging Error Codes

* Refer to the Advanced Software Manual

Note. Acknowledging the Error Code clears the error state but does not rectify the fault. After acknowledging the error, carry out the relevant action detailed in the above tables.
2.2 Fitting the Chart – Fig. 2.4

1. Raise pens
2. Lift the chart clamp and remove the chart
3. Fit new chart ensuring that it is beneath the pen lifter bars
4. Locate chart under guides
5. Rotate chart to align the timeline with the red pen (see also Fig. 2.1)
6. Lower the chart clamp

Fig. 2.4 Fitting the Chart

2.3 Fitting the Pen Capsule(s) – Fig. 2.5

1. Raise pens
2. Gently pull the arm off the bracket – see Note
3. Remove spent capsule
4. Fit new pen capsule ensuring that the arm locates in the pen capsule slot
5. Remove cap
6. Slide pen assembly onto the appropriate bracket until it clips into place – see Note
7. Ensure that the arm is positioned above its lifter bar

Note. Take care not to bend the arms during removal and refitting, as pen clashing may result.
The displays, LED indicators and operation/programming controls are located on the faceplate on the front panel of the instrument – see Fig 3.1.

3.1 Displays and LED Indicators – Fig. 3.1
The displays comprise 2 rows of 6 characters.
At the top of each programming page (the page header) both displays are used to describe the particular page selected.
When parameters within the selected page are viewed the upper display shows the parameter and the lower display shows the value or setting for that parameter.
Alarm and Channel states are indicated by separate LEDs on the faceplate of the front panel of the instrument – see Sections 4.1, 4.2 and 4.3.

Table 3.1 Character Set

<table>
<thead>
<tr>
<th>Display</th>
<th>LED Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL1 – Channel 1</td>
<td>AL2 – Channel 2</td>
</tr>
<tr>
<td>AL3 – Channel 3</td>
<td>AL4 – Channel 4</td>
</tr>
</tbody>
</table>

Information.

| CH1 – Channel 1 | CH2 – Channel 2 |
| CH3 – Channel 3 | CH4 – Channel 4 |

Fig. 3.1 Location of Displays, Controls and LED Indicators

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C or c</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H or h</td>
<td>I</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>N or n</td>
<td>O or o</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>T</td>
<td>U</td>
</tr>
</tbody>
</table>

Table 3.1 Character Set
3.2 Use of Controls – Fig. 3.2(a) to (f)

Fig. 3.2(a) Advancing to Next Page

- Page 1
 - Frame 1
 - Frame 2
 - Frame 3
 - Frame 4
- Page 2
 - Frame 1
 - Frame 2
 - Frame 3

Fig. 3.2(b) Moving Between Parameters

- Page X
 - Frame 1
 - Frame 2
 - Frame 3
 - Frame 4

Fig. 3.2(c) Adjusting a Parameter Value

- Parameter Value
 - \(\uparrow\)
 - \(\downarrow\)
 - Adjust

Note. Continued pressure on the \(\uparrow\) and \(\downarrow\) keys causes the rate of change of the displayed value to increase. To make small adjustments operate the keys momentarily.

Fig. 3.2(d) Selecting a Parameter Choice

- Parameter X
 - Y
 - Z
 - \(\uparrow\)
 - \(\downarrow\)

Note. Continued pressure on the \(\uparrow\) and \(\downarrow\) keys causes the rate of change of the displayed value to increase. To make small adjustments operate the keys momentarily.

Fig. 3.2(e) Lifting/Lowering the Pens

- Lift/Lower pen on alternate operations

Notes.
- The \(\downarrow\) key can be enabled or disabled in the Set Up Chart Page, BASIC CONFIGURATION LEVEL.
- If 'Auto Pen Lift Drop' has been selected in the Set Up Chart Page, the pens return automatically to their operating positions after a five minute delay.

Fig. 3.2(f) Selecting Programmable Functions

- \(\text{Op. Page}\)
 - Parameter 1
 - Parameter 2
- \(\text{Page X}\)
 - Parameter 1
 - Parameter 2
 - Parameter 1
 - Parameter 2

Note. The \(\text{Op. Page}\) key returns the instrument display to the start of the operating page only when the display is at the top of any page.
If Totalizer option is not fitted or Totalizers 3 & 4 are off

Faceplate 1 Pages

See Note

Faceplate 2 Pages

If Totalizer option is not fitted or Totalizers 1 & 2 are off

Faceplate 1 Pages

Alarm Acknowledge Page Section 4.3 Page 10

Total Page Section 4.4 Page 11

Security Code Page Section 4.5 Page 12

PV1 & Units PV2 & Units

PV3 & Units PV4 & Units

PV1 & PV2

Faceplate 2 Pages

Alarm Acknowledge Page Section 4.3 Page 10

Total Page Section 4.4 Page 11

Security Code Page Section 4.5 Page 12

Note. The Alarm Acknowledge pages are displayed only if an alarm is active.
The instrument has dedicated Operating Pages in the OPERATOR LEVEL – see Sections 4.1 to 4.4. These pages are used for general monitoring of the process measurements and are not affected by the security system which inhibits access to the PROGRAMMING LEVELS only – see Section 4.5 on page 12.

4.1 Input Error Messages – Fig. 4.2

<table>
<thead>
<tr>
<th>Message</th>
<th>Reason</th>
<th>Action</th>
</tr>
</thead>
</table>
| Ad.FAIL | Internal analog to digital converter system hardware has failed | • Check that the input/output board is located correctly in its socket.
• Power down and up |
| F–INPt | Input is above or below fault detection level.
or
Input exceeds the limits for the linearizer selected | • Check input source for possible broken sensor
• Check input connections
• Check input link position
• Check input configuration in Set Up Input Page |

Examples

![Input Error Messages Displayed in the Operating Page](image)

Note. Error messages are cleared automatically when the fault condition no longer exists.
4.2 Operating Page Displays

Faceplate 1 for channels 1 and 2

Process Variable 1 (PV1)

Temperature Units for PV1
as set in the BASIC CONFIGURATION LEVEL.
Display is blank if 'NONE' is selected.

Process Variable 2 (PV2)*

*Not displayed on single pen recorder.

Process Variable 3 (PV3)

Temperature Units for PV3
as set in the BASIC CONFIGURATION LEVEL.
Display is blank if 'NONE' is selected.

Process Variable 4 (PV4)*

* Not displayed on three pen recorders.

Current Time*

*Displayed only when timer option is fitted.

Current Date*

*Displayed only when timer option is fitted.

Current Time*

*Displayed only when timer option is fitted.

Current Date*

*Displayed only when timer option is fitted.
4.3 Alarm Acknowledge Page

4.3.1 Alarm Indications – Fig. 4.3
The definitions for alarm states (on, off or flashing) are detailed in Fig. 4.3.

4.3.2 Acknowledging Alarms

Note. Channel 1 and 2 alarms can be acknowledged only from faceplate 1. Channel 3 and 4 alarms (if applicable) can be acknowledged only from faceplate 2.

Unacknowledged alarms can be acknowledged from the faceplate controls on the front panel in two ways:

In the OPERATING LEVEL – by pressing the key at any frame (providing the key is programmed for this function – see Section 4.1 in the Programming Manual).

In the Alarm Acknowledge Page – by pressing the key – see Section 4.3.3 following.

Fig. 4.3 Alarm LED Indications

4.3.3 Using the Alarm Acknowledge Page

No Alarm Active
No LED indicators illuminated.

Alarm Activated
AL2 LED indicator flashing, indicating active alarm on channel 2.

Use key to go to top of Alarm Acknowledge Page.

Alarm Identity
Upper display: shows the alarm identity and type.
Lower Display: shows the trip level of the alarm identified in the upper display.

Acknowledge Alarm
Use key to acknowledge the alarm (see). When the alarm is acknowledged, ‘ACKNGd’ is displayed and a constant LED indicates the acknowledged alarm.

If there are more active alarms on channel 2 the LED continues to flash until all alarms for that channel have been acknowledged.

Note. The key or a digital input can also be used to acknowledge alarm, if programmed.
4.4 Totals Page Displays
This page is omitted from both faceplates if the Totalizer Option is not fitted. The page is also omitted from faceplate 1 if both Totals 1 and 2 are set to OFF and from faceplate 2 if both Totals 3 and 4 are set to OFF – refer to the Set Up Totals Page in the Advanced Software Options Manual.

Front Panel (Batch) Flow Total 1 (3)
The batch flow total is calculated from process variable 1 (3). The flow total can be reset if Reset Enable in Set Up Totals Page is set to ‘ENbL – Y’.

The flashing channel LED indicates the flow total displayed.

For example, a flashing channel 1 LED indicates Flow Total 1 parameters displayed.

Counter Reset
The Front (Batch) Flow Total can be reset to the Preset Value in Set Up Totals Page if required.

Select ‘l I yES’ to reset the counter (‘l I’ indicates Flow Total 1).

Note. If the Counter Reset is disabled in Set Up Totals Page, the counter reset frame is omitted.

Counter Stop/Go
Select ‘GO’ to start the counter or ‘StOP’ to stop it.

Note. If the Counter Stop/Go is disabled in Set Up Totals Page, the frame can be viewed but not altered. If a digital signal is assigned to the Totalizer Stop/Go, an active digital signal sets the counter to GO and the Counter cannot be stopped from the front panel.

Front Panel (Batch) Flow Total 2 (4)
Repeat the above procedure for Flow Total 2 (4).

Note. The number of totalizers is dependent on the number of pens fitted to the instrument e.g. a 3 pen instrument has 3 totalizers.
4.5 Access to Configuration Levels
A security system is used to prevent tampering with the programmed parameters by utilizing a password giving access to all programming pages – refer to the Programming Manual.

Security Code Page
Set the security code to the correct password using the \(\text{[up]} \) and \(\text{[down]} \) keys and use the \(\text{[enter]} \) key to advance to other programming levels (OPERATOR, BASIC CONFIGURATION and ADVANCED CONFIGURATION).

The password is programmed in the Access Page in the BASIC CONFIGURATION LEVEL.

Pen Position Adjustment (Pens 1 to 4)
The position of any trend pen can be adjusted against a reference standard (without changing the displayed value). Each pen can be adjusted in steps upwards (towards the edge of the chart) or downwards (towards the center of the chart).

When this feature is enabled, a password must be entered before adjustments can be made.

Note if pen adjustment is disabled or if the password is incorrect, the four Pen Adjustment frames are not displayed.

For each trend pen, the lower part of the frame shows the pen position adjustment.

- \(\text{[up]} \) adjusts the pen position upwards (towards outer edge of chart)
- \(\text{[down]} \) adjusts the pen position downwards (towards center of chart)

The pen adjustment frame for any given pen only appears if the pen is a Trend pen.
5 SIMPLE FAULT FINDING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not power up</td>
<td>a) Internal fuse (if fitted) is blown</td>
<td>a) Check wiring, rectify fault and replace fuse</td>
</tr>
<tr>
<td></td>
<td>b) Internal power switch (if fitted) is OFF</td>
<td>b) Turn power switch ON</td>
</tr>
<tr>
<td></td>
<td>c) Power supply connections are incorrect</td>
<td>c) Check connections</td>
</tr>
<tr>
<td>Chart does not appear to move</td>
<td>a) Very slow chart speed selected</td>
<td>a) Select required chart speed in Set Up Chart Page</td>
</tr>
<tr>
<td></td>
<td>b) Chart stop function enabled</td>
<td>b) De-activate source being used to stop chart – see Set Up Chart Page</td>
</tr>
<tr>
<td>Pens in recording position but do not drop</td>
<td>Chart stop function enabled</td>
<td>De-activate source used to stop chart – see Set Up Chart Page</td>
</tr>
<tr>
<td>onto paper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red pen does not move beyond 94% position</td>
<td>When real time event pen is fitted the red pen cannot go beyond 94% to prevent</td>
<td>Use chart range which prevents the need to go beyond 94% of maximum on chart</td>
</tr>
<tr>
<td>on chart</td>
<td>pens clashing</td>
<td></td>
</tr>
<tr>
<td>Pen lift switch on front panel does not</td>
<td>Pen lift switch is disabled</td>
<td>Enable pen-lift switch in Set Up Chart Page</td>
</tr>
<tr>
<td>work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pens do not remain lifted when pen lift key</td>
<td>Auto pen drop feature is enabled</td>
<td>Disable auto pen drop in Set Up Chart Page if this is not required</td>
</tr>
<tr>
<td>is used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog inputs are slow to respond</td>
<td>A large filter time has is set</td>
<td>Set digital filter value to give required response in Set Up Inputs</td>
</tr>
<tr>
<td>Time or date incorrect</td>
<td>Not set for correct local time</td>
<td>Set correct time and date in Set Up Clock Page – refer to Advanced Software Manual</td>
</tr>
<tr>
<td>Totalizers cannot be set to STOP or GO</td>
<td>Operator STOP/GO selection is not enabled in the OPERATOR LEVEL</td>
<td>Enable counter STOP/GO in the Set Up Totals Page</td>
</tr>
<tr>
<td>Totalizer cannot be set to STOP</td>
<td>Digital signal assigned to the total STOP/GO function is active</td>
<td>De-activate digital signal assigned to total STOP/GO function</td>
</tr>
<tr>
<td>External relays connected to relays in</td>
<td>Arc suppression capacitors are provided across the relay contacts and capacitor</td>
<td>Remove the arc suppression components – IC4 and IC5 on mainboard IC6 and IC7 on standard I/O and analog relay IC3 to IC10 on 4 relay module</td>
</tr>
<tr>
<td>instrument fail to de-energize</td>
<td>leakage current may be sufficient to prevent an external relay from de-energizing</td>
<td></td>
</tr>
</tbody>
</table>
6 SPARES LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen Capsules (pack of 3)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>C1900/0119</td>
</tr>
<tr>
<td>Blue</td>
<td>C1900/0120</td>
</tr>
<tr>
<td>Red</td>
<td>C1900/0121</td>
</tr>
<tr>
<td>Green</td>
<td>C1900/0122</td>
</tr>
<tr>
<td>Violet*</td>
<td>C1900/0123</td>
</tr>
</tbody>
</table>

Pen Arm Assemblies
- ER/C Type Chart (J or R in Code Number) – Standard Pen: C1900/0076
- ER/C Type Chart (J or R in Code Number) – Event Pen: C1900/0078
- PX105 and PXR105 Type Chart (K or S in Code Number) – Standard Pen: C1900/0075
- PX105 and PXR105 Type Chart (K or S in Code Number) – Event Pen: C1900/0077

Fuses
- 24V: B11071 (4A)
- 115V: B11070 (1A)
- 230V: B11069 (500mA)

*True time line event option only.
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

© ABB 2018
C1900
Circular chart recorder

Measurement made easy

For more information
Further publications are available for free download from:
www.abb.com/recorders

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
<th>Data Sheet</th>
<th>Quick Reference Guide</th>
<th>Installation Guide</th>
<th>Operating Guide</th>
<th>Operating Instructions</th>
<th>User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1900 Circular chart recorder</td>
<td>C1900 Circular chart recorder</td>
<td>C1900 Circular chart recorder and recorder / controller</td>
<td>C1900 Circular chart recorder</td>
<td>C1900 Circular chart recorder and recorder/controller</td>
<td>C1900 Circular chart recorder and recorder/controller</td>
</tr>
</tbody>
</table>
Use of instructions

Warning – an instruction that draws attention to the risk of injury or death.

Caution – an instruction that draws attention to the risk of damage to the product, process or surroundings.

Note – clarification of an instruction or additional information.

Information – further reference for more detailed information or technical details.

It must be understood that operation of damaged equipment could, under certain operational conditions, result in degraded process system performance leading to personal injury or death. Therefore, comply fully with all Warning and Caution notices.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
INTRODUCTION

The documentation for the C1900 series of circular chart recorders is shown in Fig. 1.1. The Standard Manuals, including the data sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.

Fig. 1.1 C1900 Documentation
2 GENERAL PROGRAMMING

The programming procedures are used to make changes to the operating parameter values and for scale adjustment.

The programming of all channels is performed using faceplate 1 – see Fig. 2.1.

When changing the input type it may be necessary to reposition the input selector links accordingly – see Section 5, CONNECTIONS & LINKS.

2.1 Preparation for Changes to the Parameters
Isolate all external alarm/control circuits to prevent inadvertent operation during programming.

Changes to the operating parameters are implemented using the \[\text{\textup{+}}\] or \[\text{\textup{-}}\] keys – see Section 3 of the Operating Guide.

Note. The recorder responds instantly to parameter changes which are saved automatically when leaving the current frame.

2.2 Security System
A security system is used to prevent tampering with the programmed parameters by restricting access to programming levels, other than the OPERATOR LEVEL; all users have access to this level.

A security password is used to give access to the programming pages. The password can be set to any value from 0 to 9999. The recorder is despatched with the password set to ‘0’ – see Section 4.5 of Operating Guide.

![Faceplate 1](image-url)
Fig. 3.1 Basic Configuration Level Overview
3.1 Set Up Input (Process Variable)

Information.
- **Universal inputs** – mV, mA, V, THC, RTD and resistance.
- **Internal cold junction compensation**.
- **Linearization** – of temperature sensors to allow use of non-linearizing transmitters or any electrical input.
- **Programmable fault levels and actions**.
- **Digital filter** – to reduce the effect of noise on inputs.

Example A – setting up:
- a current input of 4 to 20mA
- displaying a range of 0 to 200psi
- a fault detection level 10% above 200psi (engineering/display range) and 10% below 0psi (engineering/display range)
- in the event of a fault being detected and/or the fault detection level being exceeded the process variable is driven downscale.

Example B – setting up:
- a Type K thermocouple
- displaying temperature in °F
- displaying a range of 0 to 2000°F
- a fault detection level 10% above 2000°F (engineering/display range) and 10% below 0°F (engineering/display range)
- in the event of a fault being detected and/or the fault detection level being exceeded the process variable is driven upscale.
...3.1 Set Up Input (Process Variable)

Page Header – Set Up Input (Process Variable)

To advance to Set Up Pen Range Page press the key.

Select Channel
Select the channel to be programmed:
- PV–1 – Channel 1
- PV–2 – Channel 2
- PV–3 – Channel 3
- PV–4 – Channel 4

Note. In the remaining frames press the key to view the channel selected.

Input Type (Process Variable)

Caution. Ensure the correct input link positions are selected and the input is wired correctly – see Section 5, CONNECTIONS & LINKS.

Select the input type required:
- rtd – Resistance thermometer
- tCPL – Thermocouple
- VOLt – Voltage
- LO OHM – Low resistance (≤750Ω)
- HI OHM – High resistance (>750Ω)
- MAMP – Current
- MU.Lt – Millivolt (≤150mV)
- NONE – None

Linearizer Type
Select the linearizer type required:
- 5/2 – x^2
- 3/2 – x^{3/2}
- SQrt – Square Root
- rtd – Resistance thermometer
- tC–b – Type B thermocouple
- tC–N – Type N thermocouple
- tC–E – Type E thermocouple
- tC–J – Type J thermocouple
- tC–T – Type T thermocouple
- tC–S – Type S thermocouple
- tC–R – Type R thermocouple
- tC–K – Type K thermocouple
- NONE – No linearizer

Continued on next page.
...3 BASIC CONFIGURATION LEVEL

...3.1 Set Up Input (Process Variable)

Input Range High
Set the maximum electrical input value required (in electrical units).

Note. The value set must be within the limits detailed in the table below.

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Range Low Min.</th>
<th>Range High Max.</th>
<th>Min. Range (Low to High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millivolts</td>
<td>0</td>
<td>150</td>
<td>5.0</td>
</tr>
<tr>
<td>Volts</td>
<td>0</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Milliamps</td>
<td>0</td>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>Resistance Low</td>
<td>0</td>
<td>750</td>
<td>20</td>
</tr>
<tr>
<td>Resistance High</td>
<td>0</td>
<td>9999</td>
<td>400</td>
</tr>
</tbody>
</table>

Input Range Low
Set the minimum electrical input value required (in electrical units).

Note. The value set must be within the limits detailed in the above table.

Temperature Units
Select units required.

Engineering Range High
Set the maximum engineering (display) value required.

Note. The value set must be within the limits detailed in the tables below.

<table>
<thead>
<tr>
<th>Linearizer Type</th>
<th>Degrees Fahrenheit</th>
<th>Degrees Celsius</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Type B</td>
<td>0</td>
<td>3272</td>
</tr>
<tr>
<td>Type E</td>
<td>−148</td>
<td>1652</td>
</tr>
<tr>
<td>Type J</td>
<td>−148</td>
<td>1652</td>
</tr>
<tr>
<td>Type K</td>
<td>−148</td>
<td>2372</td>
</tr>
<tr>
<td>Type N</td>
<td>−328</td>
<td>2372</td>
</tr>
<tr>
<td>Type R & S</td>
<td>0</td>
<td>3092</td>
</tr>
<tr>
<td>Type T</td>
<td>−418</td>
<td>572</td>
</tr>
<tr>
<td>RTD</td>
<td>−328</td>
<td>1112</td>
</tr>
</tbody>
</table>

Performance accuracy is not guaranteed below 725°F/400°C for types B, R and S thermocouples.
Minimum span below zero Type T 126°F/70°C
Minimum span below zero Type N 189°F/105°C
THC standard DIN 4730 IEC 584
RTD standard DIN 43760 IEC 751

<table>
<thead>
<tr>
<th>Linearizer Type</th>
<th>Engineering Range High and Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>5/2</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td></td>
</tr>
<tr>
<td>Square Root</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
3.1 Set Up Input (Process Variable)

Decimal Point
Set the decimal point position required for both the engineering range high and engineering range low values.

Engineering Range Low
Set the minimum engineering (display) value required,

Note. The value set must be within the limits detailed in **Engineering Range High** tables opposite.

Broken Sensor Protection Drive
In the event of a fault being detected on the input and/or if the **Fault Detection Level Percentage** is exceeded (see next frame), the process variable is driven in the direction of the drive selected.

Select the broken sensor drive required:
- **NONE** – No drive
- **UP** – Upscale drive
- **dN** – Downscale drive.

Fault Detection Level Percentage
A fault level percentage can be set to detect a deviation above or below the display limits.

For example, if **FdLP** is set at 10.0%, a fault is detected if an input goes more than 10% above **Engineering Range High** or more than 10% below **Engineering Range Low**.

On some ranges the input circuitry may saturate before the fault level set is reached. In this case an error is detected below the level set.

Set the level required, between 0.0 and 100.0% of engineering span (range low to high) in 0.1% increments.

Note. If an input exceeds the minimum or maximum value for the linearizer selected an error is detected regardless of any fault level.

Programmable Filter
Filters the process variable input, i.e. if the input is stepped it smooths the transition between steps and may also be used for some degree of cleaning of noisy inputs. The filter time represents the time a step in the input takes to change the displayed process variable from 10 to 90% of the step.

Set the value required, between 0 and 60 in 1 second increments.

Return to **Select Channel** frame.
3.2 Set Up Pen Range/Event Source

Information.
- Trend pens – have an independent chart range allowing a selected part of the engineering (display) range to be used for extra resolution on the chart.
- Three position event pen function – can be driven by digital inputs, alarms, logic equation results and real time events (when timer option is fitted).

Select Pen Range (in engineering units)

<table>
<thead>
<tr>
<th>Pen Range High</th>
<th>Pen Range Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 (Eng. Range High)</td>
<td>0 (Eng. Range Low)</td>
</tr>
<tr>
<td>700 (Pen Range High)</td>
<td>400 (Pen Range Low)</td>
</tr>
</tbody>
</table>

Select 'In' Source

- Source on
- Source off

In source takes priority if both sources enabled

Select 'Out' Source

- Source on
- Source off

Event Pen Chart Position

- Pen 4 at 80%
- Pen 3 at 60%
- Pen 2 at 40%
- Pen 1 at 20%

*With Real Time Event Pen option fitted, Pen 4 is above 100%

Page Header – Set Up Pen Range

To advance to Set Up Chart Page press the [F] key.

Select Pen

Select the pen to be programmed

Note.
- In the remaining frames press the [F] key to view the pen selected.
- Record (trend) or event pen function is set in the ADVANCED CONFIGURATION LEVEL (if True Time Event Pen option is selected, the fourth pen is fitted with a special pen arm and is set automatically for event pen function) – see Section 4.3, Set Up Pen Functions.

Pen Range High

Set the maximum value required on the chart, in engineering units (the value must be within the engineering range set in Set Up Input Page – see Section 3.1).

Pen Range Low

Set the minimum value required on the chart, in engineering units (the value must be within the engineering range set in Set Up Input Page).

In Source

Select a source to move the pen inwards on the chart.

For a description of sources – see Table 3.1 on page 16.

Out Source

Select a source to move the pen outwards on the chart.

For a description of sources – see Table 3.1 on page 16.

Return to Select Pen frame.
3.3 Set Up Chart

Information.
- **Programmable chart duration** – between 1 and 167 hours or 7 and 32 days.
- **Chart stop function** – the chart can be stopped by an alarm, digital input, logic equation result or a real time event (if timer option is fitted).
- **Auto pen drop** – automatically drops the pen(s) onto the chart after a 5 minute delay to ensure recording is not left disabled inadvertently.

To advance to Set Up Alarms Page press the key.

Chart Duration
Select the chart duration required per revolution of the chart; between 1 and 167 hours or 7 and 32 days.

Stop Chart Source
Select the source required for stopping the chart.

For a description of sources – see Table 3.1 on page 16.

Auto Pen Drop
Select ‘YES’ to enable or ‘NO’ to disable.

If ‘YES’ selected, pen(s) drop automatically onto the chart 5 minutes after they are lifted.

If ‘NO’ selected, the pen(s) remain lifted until they are manually dropped by the operator.

Pen Lift Enable/Disable
The key can be disabled if required. Select ‘YES’ to enable or ‘NO’ to disable.

Pen Lift/Pen Status
To raise pen(s) press key. The following status displays are shown:
- rECOd – pen records on chart
- LIFT – pen lifts off chart
- PRK – pen moves to park position
- REF – pen at reference position

To lower pen(s) press key. The following status displays are shown:
- REF – pen returns to record position
- dOP – drops (lowers) onto chart
- rECOd – pen records on chart

Return to top of Set Up Chart Page.
3.4 Set Up Alarms

Information.
- **Four alarms per channel** – identified A1 to D1 (for channel 1) up to A4 to D4 (for channel 4).
- **Three operator acknowledge options.**
- **Global alarm acknowledgment** – by digital input, alarm, logic equation result or real time event (if option fitted).
- **High/low process alarms.**
- **Delayed high/low process alarms.**
- **Fast/slow rate of change** – of process variable alarms.
- **Adjustable hysteresis value** – to prevent oscillation of alarm state.
- **Time hysteresis** – to allow delayed triggering of alarms.

![Fig. 3.2 High and Low Process Alarm with Hysteresis](image)

![Fig. 3.3 Time Hysteresis Alarm](image)
3.4 Set Up Alarms

The operation of a delayed high/low process alarm is identical to that of the standard high/low process alarm but the alarm can be enabled/disabled by use of a digital signal.

The alarm state is held off whilst the enable signal is off and continues to be held off for a pre-configured period of time after the enable signal is switched ON (irrespective of the process variable value). Once the pre-configured alarm delay time has expired then the alarm operates in the same manner as a standard high/low process alarm.

1. Process variable goes above trip point but alarm is not activated because enable signal is low (Alarm Disable).
2. Alarm Enable signal is switched On. Alarm delay timer started.
3. Process variable goes above trip point but alarm is not activated because alarm delay time has not expired.
4. Alarm delay timer expires, alarm is now enabled. Alarm is activated because process variable is above trip point.
5. Process variable goes below trip (hysteresis) point therefore alarm is de-activated.
6. Process variable goes above trip point, alarm is activated (alarm is enabled and delay time has expired).
7. Alarm Enable signal is switched Off. Alarm is disabled immediately. Alarm de-activates.

Fig. 3.4 Delayed High Process Alarm
The maximum time it takes to detect an alarm condition is present (T), in seconds, is calculated as follows:

\[T = 10.81 + \left(\frac{1800}{\text{Trip Value}} \right) \times 2 \]

The time it takes for the alarm state to be cleared once the alarm condition has been removed is also equal to T.

Examples shown are for a trip value of 10%/hour on a PV engineering range of 0.0 to 100.0

\[T = 10.81 + \left(\frac{1800}{10} \right) \times 2 \quad T = 382 \text{ seconds} \]

Fig. 3.5 Slow Rate Alarms with Hysteresis

The maximum time it takes to detect an alarm condition is present (T), in seconds, is calculated as follows:

\[T = 10.81 + \left(\frac{1800}{\text{Trip Value}} \right) \times 2 \]

The time it takes for the alarm state to be cleared once the alarm condition has been removed is also equal to T.

Examples shown are for a trip value of 10%/hour on a PV engineering range of 0.0 to 100.0

\[T = 10.81 + \left(\frac{1800}{10} \right) \times 2 \quad T = 382 \text{ seconds} \]

Fig. 3.6 Fast Rate Alarms with Hysteresis
3.4 Set Up Alarms

Page Header – Set Up Alarms

To advance to Set Up Relay Output page press the key.

Alarm Acknowledge Type
Alarms may be acknowledged while they are displayed.
Select the alarm acknowledge type:

- **NONE** – no acknowledge facility. If the cause of the alarm no longer exists, the alarm state and display are cleared automatically.

<table>
<thead>
<tr>
<th>Alarm cause</th>
<th>LED</th>
<th>Alarm State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>Flashing</td>
<td>Active</td>
</tr>
<tr>
<td>Not Present</td>
<td>Off</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

- **NORMAL** and **LATCH** – if the cause of the alarm no longer exists, the alarm display remains until it has been acknowledged.

<table>
<thead>
<tr>
<th>Alarm cause</th>
<th>Acknowledge</th>
<th>LED</th>
<th>Alarm State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present</td>
<td>No</td>
<td>Flashing</td>
<td>Active</td>
</tr>
<tr>
<td>Present</td>
<td>Yes</td>
<td>Steady</td>
<td>Active</td>
</tr>
<tr>
<td>Not Present</td>
<td>Previously acknowledged</td>
<td>Off</td>
<td>Inactive</td>
</tr>
<tr>
<td>Present</td>
<td>No</td>
<td>Flashing</td>
<td>Active</td>
</tr>
<tr>
<td>Not Present</td>
<td>No</td>
<td>Flashing</td>
<td>Active/Inactive*</td>
</tr>
<tr>
<td>Not Present</td>
<td>Yes</td>
<td>Off</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

*Alarm state is active if LATCH is selected or inactive if NORMAL is selected.

Global Alarm Acknowledge Source
Select the alarm acknowledgment source required.

For a description of sources – see Table 3.1 on page 16.

Select Alarm
Select the alarm to be programmed.

Note. In the remaining frames press the key to view the alarm selected.

Continued on next page.
BASIC CONFIGURATION LEVEL

3.4 Set Up Alarms

Alarm Type
Select the alarm type required for the alarm selected.

- **dLY-LO** – delayed low process
- **dLY-HI** – delayed high process
- **HI-PrC** – high process
- **LO-PrC** – low process
- **F-rAEE** – fast rate (rate of change of process variable)
- **S-rAEE** – slow rate (rate of change of process variable)
- **OFF** – alarm off

Trip Level
Set the trip value required for the alarm selected.

The following are displayed in engineering units:

- **HPrC**, **LPrC**.

The following are displayed as a percentage of the engineering span (engineering range high – engineering range low) per hour between ±0.5 and ±500%:

- **F-rAEE** and **S-rAEE**.

Hysteresis
Hysteresis is operational when the alarm is active.

Set the hysteresis value required for high/low process, in engineering units (within the engineering range) or in 0.1% increments for rate alarms. The alarm is activated at the trip level but is only turned off after the alarm variable has moved into the safe region by an amount equal to the hysteresis value. For rate alarms this setting is a percentage of the trip rate – see ‘**F-rAEE**’ and ‘**S-rAEE**’ in previous frame.

Time Hysteresis
Set the time hysteresis value required between 0 and 9999 seconds.

Note. The alarm condition must be present continually for the time set, before the alarm becomes active. If a hysteresis level is also set, the alarm condition remains active until the process variable moves outside the hysteresis band. When the alarm condition no longer exists the alarm becomes inactive, i.e. time hysteresis does not affect turning off of alarm states.

Alarm Delay
After a transition of the enable signal from disabled to enabled, the alarm remains disabled for this period of time.

Set 0 to 250 minutes.

Enable Source
Any digital signal can be assigned as the signal to enable/disable the alarm.

Return to Select Alarm frame.
3.5 Set Up Relay Output

Information.
- **Relay Output** – not applicable to 1901J (non-upgradeable version).
- **Relays** – can be energized by alarms, logic equation results, digital inputs, real time events (timer option) and totalizer wrap signal (totalizer option).
- **External Totalizer count function** – external counter can only be driven by module type 3 (4 relays module) fitted in module positions 4, 5 and 6.
- **Polarity** – to allow failsafe settings.

<table>
<thead>
<tr>
<th>Select Relay Output</th>
<th>Relay Source</th>
<th>Polarity Selection</th>
<th>Relay Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay 5.1</td>
<td>Alarm Acknowledge</td>
<td>Positive Energized</td>
<td>NC, C, NO, NC, C, NO</td>
</tr>
<tr>
<td>Relay 5.2</td>
<td>Logic Equation 1</td>
<td>Negative De-energized</td>
<td>NC, C, NO, NC, C, NO</td>
</tr>
<tr>
<td>Relay 5.3</td>
<td>Logic Equation 8</td>
<td>Positive De-energized</td>
<td>NC, C, NO, NC, C, NO</td>
</tr>
<tr>
<td>Relay 5.4</td>
<td>Digital Input 1</td>
<td>Negative Energized</td>
<td>NC, C, NO, NC, C, NO</td>
</tr>
<tr>
<td>Alarm A1</td>
<td>Digital Input 2</td>
<td>Positive Energized</td>
<td>NC, C, NO, NC, C, NO</td>
</tr>
<tr>
<td>Alarm D4</td>
<td>None</td>
<td></td>
<td>NC, C, NO, NC, C, NO</td>
</tr>
</tbody>
</table>

- **Source State**: Alarm A1 Active or Inactive
- **Polarity Selection**: Positive or Negative
- **Relay State**: Energized or De-energized

Page Header – Set Up Relays

To advance to **Set Up Digital Output** Page press the **[]** key.

Select Relay Output

Select the output to be programmed. The selections in this frame relate to the number of fitted modules with relays and their relative module positions.

Example – for a type 3 (four relays) module fitted in position five the following selections are also programmable:
- *RELAY 5.1* (position 5, relay 1)
- *RELAY 5.2* (position 5, relay 2)
- *RELAY 5.3* (position 5, relay 3)
- *RELAY 5.4* (position 5, relay 4)

Note. In the remaining frames press the **[]** key to view the relay selected.

Relay Source

Select the source required to activate the selected relay.

For a description of sources – see Table 3.1 on page 16.

Note. To drive an external counter **COUNT** must be selected.

Continued on next page
...3.5 Set Up Relay Output

Polarity

The polarity selection is used to invert the effect of the digital source state on the relay state as shown in the following table:

<table>
<thead>
<tr>
<th>Source State</th>
<th>Polarity</th>
<th>Relay State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Non-active</td>
<td>Positive</td>
<td>De-energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Energized</td>
</tr>
</tbody>
</table>

Select the polarity required

Caution. Check connections before operating – see Section 5, **CONNECTIONS & LINKS**.

Return to Select Relay Output frame.

Table 3.1 Description of Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL _R1</td>
<td>Alarm Acknowledge – Unacknowledged process alarm anywhere in the unit</td>
</tr>
<tr>
<td>EI _E2</td>
<td>Real time event 2</td>
</tr>
<tr>
<td>EI _E1</td>
<td>Real time event 1</td>
</tr>
<tr>
<td>EEO-4</td>
<td>Programmable logic equation 4</td>
</tr>
<tr>
<td>EEO-3</td>
<td>Programmable logic equation 3</td>
</tr>
<tr>
<td>EEO-2</td>
<td>Programmable logic equation 2</td>
</tr>
<tr>
<td>EEO-1</td>
<td>Programmable logic equation 1</td>
</tr>
<tr>
<td>* COUN 4</td>
<td>Wrap around on total 4</td>
</tr>
<tr>
<td>* COUN 1</td>
<td>Total 4 external counter drive</td>
</tr>
<tr>
<td>d IG-6</td>
<td>Digital Input 6.8</td>
</tr>
<tr>
<td>d IG-1</td>
<td>Digital input 1.1</td>
</tr>
<tr>
<td>RL-d4</td>
<td>Alarm D (if applicable)</td>
</tr>
<tr>
<td>RL-C4</td>
<td>Alarm C (if applicable)</td>
</tr>
<tr>
<td>RL-b4</td>
<td>Alarm B (if applicable)</td>
</tr>
<tr>
<td>RL-R4</td>
<td>Alarm A (if applicable)</td>
</tr>
<tr>
<td>RL-d3</td>
<td>Channel 3 Alarms (if applicable)</td>
</tr>
<tr>
<td>RL-C3</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-b3</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-R3</td>
<td>Alarm A</td>
</tr>
<tr>
<td>RL-d2</td>
<td>Alarm D</td>
</tr>
<tr>
<td>RL-C2</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-b2</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-R2</td>
<td>Alarm A</td>
</tr>
<tr>
<td>RL-d1</td>
<td>Channel 2 Alarms (if applicable)</td>
</tr>
<tr>
<td>RL-C1</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-b1</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-R1</td>
<td>Alarm A</td>
</tr>
<tr>
<td>NONE</td>
<td>No source required</td>
</tr>
</tbody>
</table>

* Available only on 4-relay and 8-digital output modules (types 3 and 5), fitted in module positions 4, 5 and 6.
3.6 Set Up Digital Output

Information:
- This page is displayed only if digital outputs are fitted.
- Up to 24 digital outputs are available – depending on the module types fitted.
- Digital outputs – can be energized by alarms, logic equations results, digital inputs, real time events (timer option) and totalizer wrap signal (totalizer option).
- External Totalizer count function – external counter can only be driven by module type 5 (8 digital outputs module) fitted in module positions 4, 5 and 6.
- Polarity – inverts the effect of the selected source on the output state.

<table>
<thead>
<tr>
<th>Select Digital Output</th>
<th>Digital Source</th>
<th>Polarity Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarm Acknowledge</td>
<td>Digital Input 1</td>
</tr>
<tr>
<td></td>
<td>Logic Equation 1</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Logic Equation 4</td>
<td>Negative</td>
</tr>
<tr>
<td>Digital input 1</td>
<td>Digital input 2</td>
<td>Alarm A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alarm D4</td>
</tr>
</tbody>
</table>
...3.6 Set Up Digital Output

Page Header – Set Up Digital Outputs

to advance to Set Up Analog Output page press the [F] key.

Select Digital Output
Select the output to be programmed – the selections in this frame relate to the number of fitted digital output modules and their relative module positions.

Example – for a type 5 (eight digital outputs) module fitted in position five the following selections are also programmable:

- Out 5.1 (position 5, output 1)
- Out 5.2 (position 5, output 2)
- Out 5.3 (position 5, output 3)
- Out 5.4 (position 5, output 4)
- Out 5.5 (position 5, output 5)
- Out 5.6 (position 5, output 6)
- Out 5.7 (position 5, output 7)
- Out 5.8 (position 5, output 8)

Note. In the remaining frames press the [F] key to view the output selected.

Output Source
Select the source required to activate the selected digital output.

For a description of sources – see Table 3.1 on page 16.

Note. To drive an external counter COUNT.x must be selected.

Polarity
The polarity selection is used to invert the effect of the source state on the output as shown in the following table:

<table>
<thead>
<tr>
<th>Source State</th>
<th>Polarity</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Non-active</td>
<td>Positive</td>
<td>De-energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Energized</td>
</tr>
</tbody>
</table>

Select the polarity required.

Caution. Check connections before operating – see Section 5, CONNECTIONS & LINKS.

Return to Select Digital Output frame.
3.7 Set Up Analog Output

Information.
• Analog Output – not applicable to 1901J (non-upgradeable version).
• Fitted analog outputs – assignable to retransmit any process variable.
• Selectable retransmission range – allows maximum resolution on range of interest.
• Adjustable output range – for non-standard and reversed outputs.

Note. The example below shows analog output 1 set to retransmit part of process variable 1’s engineering range (250 to 750°C) as a 4.0 to 20.0mA current output.
...3.7 Set Up Analog Output

Page Header – Set Up Analog Output

To advance to Digital Inputs Page press the key.

Select Analog Output
Select the analog output position to be programmed. The selections in this frame relate to the number of fitted modules with analog output.

Example – Output 1 is the analog output in position 1 (fitted on the main board), output 3 is the analog output fitted in module position 3.

Note. In the remaining frames press the key to view the analog output selected.

Output Source
Select output source required. The selections in this frame correspond to the channels on the recorder (as available) – PV1 (channel 1), PV2 (channel 2) etc.

Retransmission Range High
Set the engineering range value (in engineering units) at which maximum output is required.

Retransmission Range Low
Set the engineering range value (in engineering units) at which minimum output is required.

Output Range High
Set the maximum current output required for the Retransmission Range programmed between 2.0 and 20.0mA.

Output Range Low
Set the minimum current output required for the Retransmission Range programmed between 2.0 and 20.0mA.

Return to Select Analog Output frame.
3.8 Digital Inputs

Information:
- **Digital Input** – not applicable to 1901J (non-upgradeable version).
- **Up to 30 digital inputs are available** – depending on the module types fitted.
- **Volt-free contacts or TTL levels.**
- **Polarity** – sets the logic state (unchanged or inverted) for the module position(s).

Select Digital Input

Position 1
Position 2
Position 3
Position 4
Position 5
Position 6

Page Header – Digital Inputs

To advance to Access Page press the () key.

Select Digital Input
Select digital module position to be programmed.

Note. In the remaining frames press the () key to view the module selected.

Polarity
Select the polarity required for the module position selected above:
- **POSTIVE** – logic input state unchanged
- **NEGATIVE** – logic input state inverted

Return to Select Digital Input frame.
3.9 Access Page

Information.
- Configurable password protection – of PROGRAMMING LEVELS.
- Internal security link – enable/disable password protection.

Page Header – Access Page.
To advance to Scale Adjust Page press the (2) key.

Configuration Password
Prevents access to the Programming Pages.

Pen Adjust Enable
Enables / Disables the pen adjustment feature.
This allows the position of any trend to be adjusted for checking against a reference standard. The displayed value is not changed.

Pen Adjust Password
Prevents access to the pen adjustment.
Set the required password, between 0 and 9999.

Return to top of Access Page.

Fig. 3.7 Use of Security Code in Operator Level
Fig. 3.8 Location of Security Link
3.10 Scale Adjust

Information:
- **Analog Inputs** – do not require re-calibrating when the input type or range is changed.
- **Process variable adjust reset** – removes any previously programmed offset or scale adjustment settings.
- **System offsets errors** – can be removed using process variable scale offset adjustment.
- **System scale errors** – can be removed using process variable span adjustment.
- **Process variable offset/span adjustment** – can be used to perform spot calibration.
- **Pen(s)** – can be independently calibrated and checked across the full range of the chart.
- **Mains filter** – selectable for maximum noise rejection.
- **Pen Linearity Check** – automatically draws a pen linearity test pattern.

Note. As a general rule:
- use Offset adjustment for spot calibration at <50% of engineering range span.
- use Span adjustment for spot calibration at >50% of engineering range span.
...3 BASIC CONFIGURATION LEVEL

...3.10 Scale Adjust

Page Header – Scale Adjust

To advance to BASIC CONFIGURATION LEVEL frame use the key.

Select Process Variable/Pen

Select linearity check, process variable or pen required:

- **LINCHK** – the pens automatically draw a test pattern to check pen linearity. **DONE** is displayed on completion
- **FILTER** – mains frequency filter
- **PEN x** – pens 1 to 4
- **PV-4** – process variable on channel 4
- **PV-3** – process variable on channel 3
- **PV-2** – process variable on channel 2
- **PV-1** – process variable on channel 1
- **NONE** – None

Note. In the remaining frames press the key to view the process variable or pen selected.

Process Variable Scale Adjustment Reset

Set **YES** to reset the process variable offset and span values to their nominal values (values are reset when frame is exited).

Process Variable Offset Adjustment

Electrical and resistance thermometer inputs: apply the correct input for the spot calibration required.

RTD inputs: use resistance values obtained from standard tables.

Thermocouple Inputs: measure the ambient temperature at the output terminals of the signal source (calibrator). From thermocouple tables obtain the millivolt equivalent of this temperature (a) and that for the spot calibration temperature (b). Subtract (a) from (b) and set the signal source to the resultant value. (The voltage is negative if the spot calibration temperature is below the measured ambient temperature).

Note. The displayed units are engineering units.

Set the value required. The decimal point position is set automatically.

Example – If the display range is 50.0 to 250.0 and a spot calibration is required at 100 and 225, inject a signal equivalent to 100 and set the display to 100.0 using the and keys.

Span Adjust

Proceed as for **Offset Adjustment** above and apply the correct input for the spot calibration required. The displayed units are engineering units. Set the value required. The decimal point is set automatically.

For the example above, inject a signal equivalent to 225 and set the display to 225.0.

Continued on next page.
3.10 Scale Adjust

- **Calibrate Pen At 100%**
 Drives the pen automatically to the full scale position on the chart.

 Use the ▲ and ▼ keys to set pen to 100% on the chart.

- **Calibrate Pen At 0%**
 Drives the pen automatically to the zero position on the chart.

 Use the ▲ and ▼ keys to set pen to 0% on the chart.

- **Check Pen Calibration**
 The pen calibration can be checked at any point on the chart.

 Use the ▲ and ▼ keys to move the selected pen from the zero point up to the 100% position on the chart.

 Note. If the true time event option is fitted the red pen does not move beyond the 94% position on the chart.

- **Select Filter**
 Select the mains frequency of the supply used to ensure maximum noise rejection on analog inputs.

 Return to Select Process Variable/Pen frame.
Set Up Functions Keys
Section 4.1 Page 27
Set Up Logic
Section 4.2 Page 28
Set Up Pen Functions
Section 4.3 Page 31

Fig. 4.1 Advanced Configuration Level Overview
4.1 Set Up Function Keys

Information:
- Programmable function key – on each faceplate
- Home function – returns the instrument display to the start of the operating page when at the top of any page.
- Global alarm acknowledge function – acknowledges any unacknowledged alarms on all channels.

Page Header – Set Up Function Keys
To advance to the Set Up Logic press the key.

Function Key 1
Select function required.
- \texttt{HO.E} – Home (return to Operating Page in OPERATING LEVEL)
- \texttt{AL.ACK} – Acknowledge alarm

Function Key 2
Select function required (if applicable).

Return to Set Up Function Keys frame.
4.2 Set Up Logic

Information.
- 4 logic equations
- 7 elements per equation
- OR/AND operators
- Can combine internal and external digital signals – i.e. alarms, digital inputs, other logic equation results and real time events (timer option).

For each equation, the logic elements 1 to 7 are arranged sequentially, as shown below. Odd numbered elements are used for logic inputs and even numbered elements for logic gates.

Logic inputs must be set to one of the digital sources listed in Table 3.1 on page 16.

Logic gates must be set to AND, OR or END. Setting an element to END terminates the equation.

Note. Elements on each equation are calculated sequentially, i.e. elements 1, 2 and 3 are evaluated first and this result is then combined with elements 4 and 5. Similarly, this resultant is then combined with elements 6 and 7 to give the logic equation result.
4.2 Set Up Logic

Example – Reservoir level monitoring using:
- process variable 1 with an engineering range 0 to 100 feet
- logic equation 1 result assigned to relay 1.1 which is used to operate the control valve.

![Control Valve Diagram](image)

Flow Conditions

- Close reservoir control valve if:
 - Reservoir level >50 feet AND rate of change >10 ft/hr
 - Reservoir level >80 ft
 - Manual override switch operated

Input Elements

- **Alarm A1** – set to high process trip at 50 ft
- **Alarm B1** – set to high process trip at 80 ft
- **Alarm C1** – set to fast rate trip at 10% of range per hour (10 ft/hr)

Manual override switch:
- Connected to digital input 1.1
- Module number
- Negative polarity
- Volt-free switching

<table>
<thead>
<tr>
<th>Entering the Logic Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{EQN} \ 1.1 \Rightarrow RL-A \ 1$</td>
</tr>
<tr>
<td>$\text{EQN} \ 1.2 \Rightarrow \text{And}$</td>
</tr>
<tr>
<td>$\text{EQN} \ 1.3 \Rightarrow RL-C \ 1$</td>
</tr>
<tr>
<td>$\text{EQN} \ 1.4 \Rightarrow 0-$</td>
</tr>
<tr>
<td>$\text{EQN} \ 1.5 \Rightarrow RL-B \ 1$</td>
</tr>
<tr>
<td>$\text{EQN} \ 1.6 \Rightarrow 0-$</td>
</tr>
<tr>
<td>$\text{EQN} \ 1.7 \Rightarrow d \ Ig-1.1$</td>
</tr>
</tbody>
</table>
...4 ADVANCED CONFIGURATION LEVEL

...4.2 Set Up Logic

Page Header – Set Up Logic

To advance to Set Up Pen Functions Page press the [Esc] key.

Select Equation

Select equation to be constructed.

In the remaining frames press the [Esc] key to view the equation selected.

Equation n/Element 1

Select the source required for element 1.

For a description of sources – see Table 3.1 on page 16.

Equation n/Element 2

Select the operator required to combine elements 1 and 3:

- Or
- And
- End – Ends equation

Equation n/Element 3

Repeat previous two steps for elements 3 to 7.

Odd numbered elements = sources
Even numbered elements = operators

Return to Select Equation frame.
4.3 Set Up Pen Functions

Information. Any fitted pen can be assigned to a trend or an event function.

Page Header – Pen Functions

To advance to Advanced Configuration frame press the [] key.

Pen 1
Select pen function required:
 trEnd – Trend pen
 EVENT – Event pen

Note. The event pen and true time line event pen are separate functions and only the event pen can be selected in this page. The true time line event pen option allows event marking on the same time line as the red pen and requires a special pen arm and motor assembly. Refer to the order code in the Specification Sheet.

Pen 2 to 4
Repeat as for Pen 1 (if applicable).

Return to top of Set Up Pen Functions Page.
* Recommended diode: Diode forward voltage > 0.8 V @ 20 mA or use 2 x 1N4001 general purpose diodes in series.
C1900 series
Circular chart recorder
Measurement made easy
A rugged, reliable recorder with the full capability to meet your needs

1 to 4 pen recording
• full application flexibility

NEMA 4X/IP66 construction
• hose-down protection

Analog, relay outputs, digital inputs and transmitter power supply as standard
• range of inputs and outputs built-in

Multiple indicator panels
• continuous display of all signal values

0.1% measurement accuracy
• precise process information

High noise immunity
• robust, dependable operation

RS485 Modbus serial communications
• open system compatibility

Totalizers and math functions built-in
• fully integrated solutions
C1900

The C1900 is a fully programmable circular chart recorder for up to four process signals. The C1900’s straightforward operator controls and robust construction make it suitable for a variety of industrial environments. Excellent standard facilities are complemented by a powerful range of options to give the flexibility to match your application.

Comprehensive Process Information

The C1900 lets you see the status of your process at a glance: high visibility 6-digit displays provide a clear indication of up to four process values simultaneously and active alarms are signalled by flashing LEDs below the main display.

Simple Operation

The clearly-labelled tactile keypad gives direct access for operator adjustments and configuration programming, without the need to open the recorder’s door. Clear text prompts on the digital displays guide the user around the various menus. A password-protected security system prevents unauthorized access to configuration adjustment menus.

The chart is easily set up to show the information you need in the way you want. Pen ranges are individually set to give the best resolution for each signal; the time per revolution can be selected between 1 hour and 32 days. Additionally a true time event pen facility enables one pen to be set up as a 3-position event marker on the same time line as Pen 1.
Flexibility to Solve Problems

The C1900 offers seamless integration of loop functionality to solve process problems, eliminating the need for auxiliary devices.

Totalizers, Math And Logic

Integrating fluid flow to calculate total volume is performed by the built-in totalizers available for each channel. Relays can be assigned to increment or reset external counters to match the recorder’s totalizer values. User configurable math functions, mass flow calculations and RH tables are all fully supported. Logic capability allows interlocking and integration of discrete and continuous functions to solve a wide range of process problems.

Timers and Clock

The C1900 offers two event timers driven by the recorder’s real-time clock. The timers can be configured to operate relays, start/stop the chart or trigger other actions within the recorder.

Modbus RS485 Communications

Communications with PCs or PLCs are achieved via the RS485 serial communications link, enabling the C1900 to serve as the front end of plant-wide data acquisition systems. Using Modbus RTU protocol all process inputs and other variables can be continuously read by a host PC running any of a wide variety of standard SCADA packages.
Built to Meet Your Needs

The C1900’s modular architecture gives rise to a high level of hardware choice: up to five I/O modules can be added to the basic instrument.

The standard input/output module supplied with every pen comes complete with a fully isolated analog input, a relay output, transmitter power supply, isolated analog retransmission and two digital inputs.

Further input and output capability is provided by a range of plug-in modules:

- Analog input and relay – for use with math functions
- Four relays – channel alarm outputs
- Eight digital inputs – linked using logic equations
- Eight digital outputs – TTL level alarm outputs
- Modbus RS485 communications – interfaces with PCs

Expandable for the Future

The C1900 may be quickly upgraded to meet your changing process requirements. Additional recording channels, math capability or input and output functions can be retrofitted on-site using plug-in cards and easily fitted pen arms. Input calibration data is stored on each card, allowing quick changes to input cards without the need for recalibration. Changes to input sensors or recording procedures are accommodated by reconfiguration using the main keypad.

Designed to Survive

NEMA 4X protection ensures the C1900 can survive in the harshest environments and makes the recorder ideal for use in panels which are regularly hosed down. The tough, acid-resistant case and secure cable-entry glands maintain the NEMA 4X rating for wall-mounted or pipe-mounted instruments.

Noise Immunity

Recording accuracy is maintained in noisy industrial environments due to the advanced EMC shielding within the recorder. The power supply has been designed to give excellent protection from power spikes and brownouts and all configuration and status information is held in nonvolatile memory to ensure rapid recovery after a power failure.

Minimal Maintenance

Excellent long-term stability keeps recalibration to a minimum, cutting the costs of ownership. User-selectable chart speeds and long-life pens combine to limit usage of consumables.

Built-in Quality

The C1900 is designed, manufactured and tested to the highest quality standards, including ISO 9001.

Easy to Install

A choice of mounting options enables simple installation of the recorder in a panel, on a wall or on a pipe. Detachable terminal blocks allow for trouble-free connection of input and output wiring, with mains isolation provided by a power switch within the instrument.
Summary

1, 2, 3 or 4 pens

10 in. chart size

Standard I/O with each pen includes:
- Analog input, analog output, transmitter power supply, relay output and 2 digital inputs.

Specification

General

Construction

Size: 15.23 in. (h) × 15.04 in. (w) × 5.57 in. (d)
(386.8 × 382.0 × 141.5mm)

Weight: 18lb (8.2kg)

Case material: Glassfiber-filled reinforced polyester

Window material: Polycarbonate

Door latch: High-compression with optional lock

Environmental

Operational temperature range: 0° to 55°C (32° to 130°F)
Operational humidity range: 5 to 95%RH (non-condensing)
Case sealing: NEMA 4X (IP66)
Fast transients: IEC 801-4 Level 3

Installation

Mounting options: Panel, wall or pipe
Terminal type: Screw
Wire size (max.): 14 AWG (I/O), 12 AWG (power)

Operation and Configuration

Programming method: Via front panel keys
Security: Password-protected menus

Safety

General safety: IEC348
Dielectric: 500V DC (channel/channel)
2kV DC (channel/ground)
Memory protection: Nonvolatile EEPROM
Approvals: CSA
UL
CSA/FM Class 1 Div. 2
CE

Power Supply

Voltage: 100 to 240V AC ±10%
(90V min. to 264V max. AC), 50/60 Hz
Consumption: <30VA (typical for full spec. unit)
Line interruption: Up to 60ms
Process Inputs And Outputs

General
- Noise rejection: Common mode >120 dB at 50/60 Hz, Normal (series) mode >60 dB at 50/60 Hz
- CJC rejection ratio: <0.05 °C/°C
- Sensor break protection: Upscale or downscale drive
- Out of range detection: 0 to 100% of engineering span
- Temperature stability: <0.02% of reading/°C or 1 µV/°C
- Long-term drift: <0.01% of reading 10 µV annually
- Input impedance: >10 MΩ (mV and V inputs), 39Ω (mA inputs)

Analog Inputs
- Signal types: mV, V, mA, Ω
- Thermocouple types: B, E, J, K, N, R, S, T
- Resistance Thermometer: Pt100
- Other linearizations: x¹/², x³/², x⁵/², linear
- Sample interval: 250ms per channel
- Dielectric: 500V DC channel/channel
- Digital filter: 0 to 60s programmable

2-Wire Transmitter Power Supply
- Number: 1 per channel
- Voltage: 24V DC nominal
- Drive: Up to 25 mA
- Isolation: 500V DC channel/channel

Analog Outputs
- Type: 4 to 20mA
- Accuracy: ± 0.1%
- Maximum load: 750W
- Dielectric: 500V DC

Relay Outputs
- Type: SPDT
- Rating: (with non-inductive load) 5A at 115/230V AC

Analog input performance

<table>
<thead>
<tr>
<th>Type</th>
<th>Range Lo</th>
<th>Range Hi</th>
<th>Min. Span</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>mV</td>
<td>0</td>
<td>150</td>
<td>5</td>
<td>±0.1% reading or 10µV</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>5</td>
<td>0.1</td>
<td>±0.1% reading or 20mV</td>
</tr>
<tr>
<td>mA</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>±0.2% reading or 0.2mA</td>
</tr>
<tr>
<td>Ohms (high)</td>
<td>0</td>
<td>750</td>
<td>20</td>
<td>±0.2% reading or 0.1W</td>
</tr>
<tr>
<td>Ohms (low)</td>
<td>0</td>
<td>10k</td>
<td>400</td>
<td>±0.5% reading or 10W</td>
</tr>
</tbody>
</table>

Temperature conversions

<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800</td>
<td>3270</td>
</tr>
<tr>
<td>900</td>
<td>1650</td>
</tr>
<tr>
<td>1300</td>
<td>2350</td>
</tr>
<tr>
<td>1300</td>
<td>2350</td>
</tr>
<tr>
<td>1700</td>
<td>3000</td>
</tr>
<tr>
<td>1700</td>
<td>3000</td>
</tr>
<tr>
<td>300</td>
<td>550</td>
</tr>
<tr>
<td>600</td>
<td>1100</td>
</tr>
</tbody>
</table>
Specification

Recording System

<table>
<thead>
<tr>
<th>Pens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1, 2, 3, or 4 (red, blue, green, black)</td>
</tr>
<tr>
<td>Response</td>
<td>7 seconds (full scale)</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.1% steps</td>
</tr>
<tr>
<td>Pen lift</td>
<td>Motor-driven, with optional auto-drop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event Pens</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>3-position event recording on any channel</td>
</tr>
<tr>
<td>Real time</td>
<td>3-position event recording on the same time line as Pen 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chart</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chart size</td>
<td>10 in. or 105 mm</td>
</tr>
<tr>
<td>Chart speed</td>
<td>1 to 167 hours or 7 to 32 days per revolution</td>
</tr>
<tr>
<td>Rotation accuracy</td>
<td><0.5% of rotation time</td>
</tr>
</tbody>
</table>

Display and Operator Panels

<table>
<thead>
<tr>
<th>Displays</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>2 (1 or 2 pens) or 4 (3 or 4 pens)</td>
</tr>
<tr>
<td>Type</td>
<td>6-digit red LED, 0.56 in. (14mm) high</td>
</tr>
<tr>
<td>Status indicators</td>
<td>Indicate channel number on display</td>
</tr>
<tr>
<td>Alarm indicators</td>
<td>Indicate channels with active alarms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel keys</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Programming access, increment/decrement, pen lift and user-defined function key</td>
</tr>
</tbody>
</table>

Alarms and Logic

<table>
<thead>
<tr>
<th>Alarms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 per channel</td>
</tr>
<tr>
<td>Type</td>
<td>High/Low process, fast/slow rate of change, time delay</td>
</tr>
<tr>
<td>Adjustments</td>
<td>Hysteresis, time delay</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Logic Equations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4</td>
</tr>
<tr>
<td>Function</td>
<td>OR, AND</td>
</tr>
<tr>
<td>Inputs</td>
<td>Alarm states, digital inputs, totalizers, logic</td>
</tr>
<tr>
<td>Outputs</td>
<td>Relays, digital outputs, chart stop, alarm acknowledge</td>
</tr>
</tbody>
</table>

Advanced Software Functions

<table>
<thead>
<tr>
<th>Totalizers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1 per pen</td>
</tr>
<tr>
<td>Size</td>
<td>99,999,999 max.</td>
</tr>
<tr>
<td>Output</td>
<td>External counter driver, ‘wrap’ pulse signal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Math</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of equations</td>
<td>4</td>
</tr>
<tr>
<td>Type</td>
<td>+, −, ×, ÷, low & high select, max., min., average, mass flow, RH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Type</td>
<td>Real-time clock driven event, adjustable duration</td>
</tr>
<tr>
<td>Output</td>
<td>Relay, digital output, logic equation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option Module*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>5 plus 1 x standard input/output module</td>
</tr>
<tr>
<td>Connection</td>
<td>Plug-in cards with detachable connection blocks</td>
</tr>
</tbody>
</table>

EMC

<table>
<thead>
<tr>
<th>Design & Manufacturing standards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA General Safety</td>
<td>Approved</td>
</tr>
<tr>
<td>UL General Safety</td>
<td>Approved</td>
</tr>
<tr>
<td>CSA/FM Class 1 Div. 2</td>
<td>Approved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emissions and Immunity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets requirements of:</td>
<td></td>
</tr>
<tr>
<td>• EN 50081-2</td>
<td></td>
</tr>
<tr>
<td>• EN 50082-2</td>
<td></td>
</tr>
<tr>
<td>• IEC 61326 for an Industrial Environment</td>
<td></td>
</tr>
<tr>
<td>• CE Mark</td>
<td></td>
</tr>
</tbody>
</table>
Option Module Types

<table>
<thead>
<tr>
<th>Option module types</th>
<th>I/O per module</th>
<th>Max. no. per instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard i/O</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Analog I/P + relay</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4 relays</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8 digital I/P</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>8 digital O/P</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>RS485 communications</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1901J (non-upgradeable)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Ordering Information

PART 1

<table>
<thead>
<tr>
<th>C1900 recorder</th>
<th>19XX</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>XXX</th>
<th>OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorders *</td>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One Pen (Red)</td>
<td></td>
</tr>
<tr>
<td>Two Pens (Red & Green)</td>
<td></td>
</tr>
<tr>
<td>Three Pens (Red, Green, Blue)</td>
<td></td>
</tr>
<tr>
<td>Four Pens (Red, Green, Blue, Black)</td>
<td></td>
</tr>
<tr>
<td>Chart Type</td>
<td></td>
</tr>
<tr>
<td>Standard (Recorder/Controller)</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>KPC 105 PX and PXR type charts</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Chessell Brand charts</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Electrical Code</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CSA approval</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>UL approval</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>CSA/FM Class 1 Div. 2</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Option Module</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Additional Modules – Complete PART 2</td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Math & Timer</td>
<td></td>
</tr>
<tr>
<td>Totalizer</td>
<td></td>
</tr>
<tr>
<td>Totalizer, Math & Timer</td>
<td></td>
</tr>
<tr>
<td>Door Lock</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Fitted</td>
<td></td>
</tr>
<tr>
<td>Fitted</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115 V AC</td>
<td></td>
</tr>
<tr>
<td>230 V AC</td>
<td></td>
</tr>
<tr>
<td>115 V AC with On/Off Switch</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>230 V AC with On/Off Switch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

PART 2 – Additional Modules

<table>
<thead>
<tr>
<th>Module Position 2 / Channel 2 Input*</th>
<th>Module Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2</td>
<td></td>
</tr>
<tr>
<td>Module Position 3 / Channel 3 Input*</td>
<td>Module Type</td>
</tr>
<tr>
<td>0 1 2</td>
<td></td>
</tr>
<tr>
<td>Module Position 4 / Channel 4 Input*</td>
<td>Module Type</td>
</tr>
<tr>
<td>0 1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>Module Position 5</td>
<td>Module Type</td>
</tr>
<tr>
<td>0 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>Module Position 6</td>
<td>Module Type</td>
</tr>
<tr>
<td>0 2 4 5 8</td>
<td></td>
</tr>
</tbody>
</table>

Special Settings

Company Standard	Custom configuration (customer to complete and supply C1900R custom configuration sheet – [INF08/032])	STD
Special	Engineered configuration (customer to supply configuration details required)	CUS
		SXX
		ENG

Calibration certificate **

* Each pen fitted has an associated standard input/output module comprising Analog Input, Analog Output, Relay, Transmitter Power Supply and Two Digital Inputs.
Additional Input/Output modules may be fitted in the unused module positions as required. These additional modules should be specified in PART 2 of the ordering information.

** When a calibration certificate is ordered it is performed according to the specified configuration type:
CUS/ENG – Inputs and outputs calibrated according to the customer supplied configuration details and ranges.
STD – Inputs and outputs calibrated according to the instrument factory standard configuration and ranges.
Accessories

Case-to-panel gasket | C1900/0149
Wall-mount kit | C1900/1712
Pipe-mount kit | C1900/0713
Pack of red pens | C1900/0121
Pack of green pens | C1900/0122
Pack of blue pens | C1900/0120
Pack of black pens | C1900/0119
Pack of purple pens | C1900/0123
After-sales engineered configuration service | ENG/REC

Key to module types

0 No module fitted / Pen input channel *
1 Standard Input/Output
2 Analog input (Math input) + Relay
3 Four Relays
4 Eight Digital Inputs
5 Eight Digital Outputs
6 True Time Event Pen (Violet)
8 Modbus RS485 Communications

* On 2, 3 or 4 pen instruments a standard I/O module is always fitted in the corresponding module position (enter '0' in the corresponding order code field).

Example. 1 9 1 3 J A A 0 1 1 0 3 0 8 STD
3 pens
4 relays
Modbus RS485 Communications
Electrical Connections

Summary of Connections

- **b** – Voltage
- **c** – Current (non 2-wire Transmitters)
- **d** – 2-wire Transmitter
- **e** – Thermocouple
- **f** – 3-wire RTD
- **g** – Low Voltage (mV)
- **h** – 2-wire RTD and Resistance

Standard Input/Output Modules

- **1** – Normally Closed
- **2** – Normally Closed
- **3** – Normal Open
- **4** – Normal Open
- **5** – Normal Open
- **6** – Common
- **7** – Common
- **8** – Common
- **9** – Normally Open
- **10** – Normally Open
- **11** – Common
- **12** – Common

Four-Relay Output Module

Digital input/output module

Power Supply Connections

- **Earth (Ground) Stud**
- **Fuse (Optional)**
- **Power Switch (Optional)**
Overall dimensions

Dimensions in mm (in.)

- **Overall dimensions:**
 - Length: 382 (15.04)
 - Height: 320.8 (12.63)
 - Width: 183.4 (7.22)
 - Depth: 355.6 (14.00)

- **Cut-out size:**
 - Width: 323 (12.72)
 - Height: 285.75 (11.25)
 - Depth: 43.2 (1.70)

- **Typical Space Between Adjacent Knockout Centers:**
 - 36.6 (1.44)
Notes