TECHNICAL SPECIFICATION

Type designation: AMG 0180BB04
Application: Diesel/Gas Engine Industrial Application Series
Site criteria: Land use

NOTES

CONTENTS

SECTION:

1 PERFORMANCE DATA (Calculated values) 2
2 PERFORMANCE CURVES 3
3 CONFIGURATION AND SCOPE OF SUPPLY 8
4 ACCESSORIES 11
5 DIMENSIONS 12

*Type definition:

AMG0180BB04 DBSI

IC/IP combination
Bearing type
Excitation type
Industrial generators

Bearing type: A-Double bearing, B-Single bearing
Excitation type: S-Shunt, A-Auxiliary winding
1 PERFORMANCE DATA (Calculated values)

TYPE

Type designation: AMG 0180BB04

PERFORMANCE DATA

<table>
<thead>
<tr>
<th>Main standard</th>
<th>IEC 60034</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated power factor</td>
<td>0.8</td>
</tr>
<tr>
<td>Insulation class</td>
<td>H</td>
</tr>
<tr>
<td>Temperature rise</td>
<td>H</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>40 °C</td>
</tr>
<tr>
<td>Altitude over sea level</td>
<td>≤ 1000 m</td>
</tr>
<tr>
<td>Cooling/Protection</td>
<td>ICUA1/IP23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mounting arrangement</th>
<th>IM 2105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>120 kg</td>
</tr>
<tr>
<td>Inertia</td>
<td>0.21 kgm²</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>CW (Facing drive end)</td>
</tr>
<tr>
<td>Maximum overspeed</td>
<td>2250 rpm</td>
</tr>
<tr>
<td>Winding pitch</td>
<td>Two thirds [2/3]</td>
</tr>
<tr>
<td>Stator winding resistance</td>
<td>0.473Ω per phase at 20°C, series star connection</td>
</tr>
<tr>
<td>Rotor winding resistance</td>
<td>0.669Ω at 20°C</td>
</tr>
<tr>
<td>Ex. Stator winding resistance</td>
<td>12.86Ω at 20°C</td>
</tr>
<tr>
<td>Ex. Rotor winding resistance</td>
<td>0.162Ω at 20°C</td>
</tr>
</tbody>
</table>

Total Harmonic Distortion

- At no load: <1.5%, at rated
- Linear balanced load: <3.5%

Voltage regulation

±1%

Telephone Interference

- THF < 2%
- TIF < 50%

Frequency

- 50 Hz
- 60 Hz

Speed

- 1500 rpm
- 1800 rpm

Cooling Air

- 0.05 m³/sec
- 0.06 m³/sec

Voltage series star 3ph.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>380/220</th>
<th>400/231</th>
<th>415/240</th>
<th>440/254</th>
<th>415/240</th>
<th>440/254</th>
<th>460/266</th>
<th>480/277</th>
</tr>
</thead>
</table>
| Voltage parallel star 3ph.
| 190/110 | 200/115 | 208/120 | 220/127 | 208/120 | 220/127 | 230/133 | 240/138 |
| Voltage series delta 3ph.
| 220 | 230 | 240 | 254 | 240 | 254 | 266 | 277 |
| Voltage parallel delta 3ph.
| 110 | 115 | 120 | 127 | 120 | 127 | 133 | 138 |

Rated continuous output

- 20 kVA
- 20 kVA
- 20 kVA
- 19 kVA
- 22 kVA
- 23 kVA
- 24 kVA
- 25 kVA

SCR (short circuit ratio), Ir0/Xd (u)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>0.49</th>
<th>0.54</th>
<th>0.61</th>
<th>0.79</th>
<th>0.79</th>
<th>0.61</th>
<th>0.54</th>
<th>0.49</th>
</tr>
</thead>
</table>

CE-Marking

Generator fulfills the requirements of Low Voltage Directive (2006/95/EC)

Generator supplied to EEA-area will be CE-marked
2 PERFORMANCE CURVES

THREE PHASE EFFICIENCY CURVES, 50 Hz/380–440 V
THREE PHASE EFFICIENCY CURVES, 60 Hz/415–480 V

415 V / 60Hz / 22kVA

440 V / 60Hz / 23kVA

460 V / 60Hz / 24VA

480 V / 60Hz / 25kVA
TRANSPORT VOLTAGE REGULATION CURVES

Load application (Shunt excitation):

Load application (Auxiliary winding excitation):

Load rejection (Shunt excitation):
TRANSIENT VOLTAGE REGULATION CURVES

Load rejection (Auxiliary winding excitation):

Locked Rotor Motor Starting Curve (Shunt excitation):

Locked Rotor Motor Starting Curve (Auxiliary winding excitation):

Note1

\[S \text{ [P.U]} = \frac{S}{S_{\text{Rated}}} \]

S stands for the actual operation capacity, \(S_{\text{Rated}} \) stands for the generator rated output capacity.
THREE PHASE SHORT-CIRCUIT CURVES (At no-load and rated speed, base on star connection)

Note 2
Curves are for star connection. For other connection, please use following multiplication factors:
Series delta: Current values x 1.732
Parallel star: Current values x 2

Curves are for 3-phase short-circuit. For other types of short-circuit, please use following multiplication factors:

<table>
<thead>
<tr>
<th>Type</th>
<th>Instantaneous</th>
<th>Continuous</th>
<th>Maximum duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-phase</td>
<td>1</td>
<td>1</td>
<td>10 sec.</td>
</tr>
<tr>
<td>2-phase L/L</td>
<td>0.87</td>
<td>1.5</td>
<td>5 sec.</td>
</tr>
<tr>
<td>1-phase L/N</td>
<td>1.3</td>
<td>2.2</td>
<td>2 sec.</td>
</tr>
</tbody>
</table>
3 CONFIGURATION AND SCOPE OF SUPPLY

GENERAL
The generator is designed to operate together with a diesel or gas engine.

CONSTRUCTION
The stator frame is a rigid welded steel structure construction. The stator core is built of thin electric sheet steel laminations which are insulated on both sides with heat-resistant inorganic resin.

The rotor consists of a shaft and a star shape rotor core. The shaft is machined of rolled steel. Special heat treatment is used if shaft operates under heavy conditions. The poles are manufactured of 0.5 mm sheet steel. The pole laminations are pressed and welded together with steel bars. These bars are then welded to the end plates. Rotor balancing is done acc. to ISO 1940/1. The standard balancing quality grade is G2.5.

All windings are completely vacuum pressure impregnated with high quality resin. The windings are provided with very strong bracing which withstands all expected mechanical and electrical shocks and vibrations as well as chemicals.

End shields are made of casted steel, The stator frame and stator core are welded together, and bolted with end shields

MAIN TERMINAL SPACE
Protection class IP44, Integrated into the top module of the generator.

Supply cable entries: Closed terminal box. Cable inlet to the main terminal box to be done by the customer.

Twelve (12) leads T1 – T12 brought into the terminal box to enable internal series star, parallel star, series delta and parallel delta connection, Main terminals U, V, W and neutral point N in the main terminal box for external connection

Terminal marking acc. to IEC.

Designed for continuous current load.

FOUNDATION
The machine can be mounted using shimming, machined blocks, chock fast or on grouted sole plates or bed plate. Before using other mountings, contact us.

CONTROL SYSTEMS
General
Brushless excitation.

Automatic Voltage Regulator System
Mounted inside the main terminal box.

Analog type AVR.

Functions:
 a) 1-channel AVR.
 b) Excitation power can be from phase voltage of main terminal or auxiliary winding.
 c) Voltage set-point adjustment (local).
 d) U/f limiter.
 e) Parallel operation.
Static voltage regulation accuracy +/- 1.0 %.
Voltage recovery time after transient<1.5 s, +/- 3.0 % (acc. to IEC 60034).
Nominal Um, range: < 90 VDC at 110 VAC input, 170 VDC at 220 VAC input.
Nominal Im, range: continuous 5 ADC.

BEARINGS
Non Drive-end: Rolling, sealed, free. Drive-end: Rolling, sealed, locked.(Double bearing)
Maximum bearing temperature 90 °C at ambient 40°C.

TESTING
Testing is according to IEC and ABB internal requirements. The test may be observed by the customer without extra charges. The test procedures are described in the following documents which are available on request:
- Routine tests: MDD 8006327 (for all machines).
- Type tests: MDD 8006328 (optional, to be agreed separately).
- Special tests: MDD 8006329 (optional, to be agreed separately).

PERFORMANCE CHARACTERISTICS AND OPERATIONAL LIMITS
Rating for continuous running duty:
Duty type S1.
Rating for short-time duty:
10 % overload at nominal power factor for one hour at twelve hour intervals.
Overcurrent withstand capability:
1.5 times nominal current for 2 minutes.
Sustained short-circuit current:
More than 3 times nominal current for 10 seconds.
Generator shall be suitable for supplying circuits which, when supplied by a system of balanced and sinusoidal voltages:
Result in currents not exceeding a harmonic current factor of 0.05 and
Result in a system of currents where neither the negative-sequence component nor the zero-sequence component exceed 5% of the positive-sequence component
Maximum voltage unbalance is 0.5 %.
Maximum I^2/IN value for continuous operation is 8 %.
Maximum (I^2/IN)^2 x t in seconds for operation under fault conditions is 20
Maximum continuous voltage variation with rated output is ±5 %.
Maximum continuous frequency variation with rated output is ±2 %.
Maximum combined voltage and frequency variation and maximum short-time limits are acc. To IEC 60034-1:2004, Section 7.3.
Electromagnetic Compatibility (EMC)
Radiated and conducted emissions comply with the requirements of CISPR 11, Class B, Group 1, Table B.1. (IEC 60034-1, Annex B).
TOLERANCES

<table>
<thead>
<tr>
<th>Efficiency η</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machines up to and including 150 kW (or kVA)</td>
</tr>
<tr>
<td>Machines above 150 kW (or kVA)</td>
</tr>
<tr>
<td>Total losses (applicable to machines with ratings >150 kW or kVA)</td>
</tr>
<tr>
<td>Peak value of short-circuit current under specified conditions</td>
</tr>
<tr>
<td>Steady short-circuit current at specified excitation</td>
</tr>
<tr>
<td>Moment of inertia</td>
</tr>
</tbody>
</table>

SURFACE TREATMENT

Grade: C2, Standard color

Surface treatment C2 according to the ISO 12944 standard, for standard industrial environment.
ACCESSORIES

OPTIONAL ACCESSORIES

<table>
<thead>
<tr>
<th>No</th>
<th>pc/pcs</th>
<th>Item</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Anti-condensation heater</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Current transformer</td>
<td>For parallel operation with other generators</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>PT100 for stator winding</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>PTC sensor (triple)</td>
<td></td>
</tr>
</tbody>
</table>
5 DIMENSIONS

MAIN DIMENSIONS

Single bearing

Double bearing

Flange dimensions (mm)

<table>
<thead>
<tr>
<th>S.A.E</th>
<th>AK</th>
<th>AJ</th>
<th>BD</th>
<th>BF</th>
<th>n</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>409.58</td>
<td>428.60</td>
<td>450</td>
<td>11</td>
<td>12</td>
<td>15˚</td>
</tr>
<tr>
<td>4</td>
<td>361.95</td>
<td>381.00</td>
<td>405</td>
<td>11</td>
<td>12</td>
<td>15˚</td>
</tr>
<tr>
<td>5</td>
<td>314.32</td>
<td>333.38</td>
<td>355</td>
<td>11</td>
<td>8</td>
<td>22.5˚</td>
</tr>
</tbody>
</table>

Flex disc dimensions (mm)

<table>
<thead>
<tr>
<th>S.A.E</th>
<th>BX</th>
<th>P</th>
<th>AH</th>
<th>Y</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 1/2</td>
<td>352.43</td>
<td>333.38</td>
<td>39.6</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>7 1/2</td>
<td>241.30</td>
<td>222.25</td>
<td>30.2</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6 1/2</td>
<td>215.90</td>
<td>200.02</td>
<td>30.2</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Single bearing

<table>
<thead>
<tr>
<th>Fan</th>
<th>Shaft</th>
<th>Rotor center</th>
<th>Exciter</th>
<th>Total Rotor</th>
<th>Torsional stiffness</th>
<th>Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg</td>
<td>Kg.m2</td>
<td>Kg.m2</td>
<td>B</td>
<td>L</td>
<td>L2</td>
<td>Kg</td>
</tr>
<tr>
<td>7.5</td>
<td>241.3</td>
<td>15</td>
<td>1.04</td>
<td>0.009</td>
<td>2.53</td>
<td>0.021</td>
</tr>
<tr>
<td>11.5</td>
<td>352.43</td>
<td>5.6</td>
<td>2.26</td>
<td>0.035</td>
<td>2.53</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Double bearing

<table>
<thead>
<tr>
<th>Fan</th>
<th>Shaft</th>
<th>Rotor center</th>
<th>Exciter</th>
<th>Total Rotor</th>
<th>Torsional stiffness</th>
<th>Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kg</td>
<td>Kg.m2</td>
<td>Kg.m2</td>
<td>B</td>
<td>L</td>
<td>L2</td>
<td>Kg</td>
</tr>
<tr>
<td>2.53</td>
<td>0.021</td>
<td>309.2</td>
<td>598</td>
<td>126.5</td>
<td>10.6</td>
<td>0.004</td>
</tr>
</tbody>
</table>