The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company’s products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The UKAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company and is indicative of our dedication to quality and accuracy.

Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 ‘Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use’. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Warning – Refer to the manual for instructions</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution – Risk of electric shock</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Protective earth (ground) terminal</td>
</tr>
<tr>
<td>⚠️ ⚠️</td>
<td>Earth (ground) terminal</td>
</tr>
<tr>
<td>−−−−</td>
<td>Direct current supply only</td>
</tr>
<tr>
<td>−−−−</td>
<td>Alternating current supply only</td>
</tr>
<tr>
<td>−−−−</td>
<td>Both direct and alternating current supply</td>
</tr>
<tr>
<td>−−−−</td>
<td>The equipment is protected through double insulation</td>
</tr>
</tbody>
</table>

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
CONTENTS

1 INTRODUCTION ... 1
 1.1 Documentation ... 1
 1.2 System Hardware ... 2
 1.3 Principle of Operation ... 2

2 PREPARATION ... 3
 2.1 Checking the Instrument Type 3
 2.1.1 Wall-mounted Instruments 3
 2.1.2 Panel-mounted Instruments 3

3 MECHANICAL INSTALLATION 3
 3.1 Siting Requirements .. 3
 3.2 Mounting .. 4
 3.2.1 Wall/Pipe-mounted Instruments 4
 3.2.2 Panel-mounted Instruments 5

4 ELECTRICAL CONNECTIONS 6
 4.1 Connections – General 6
 4.1.1 Cable and Gland Specifications 6
 4.1.2 Relay Contact Protection and Interference Suppression 7
 4.2 Wall-mounted Instrument Connections 8
 4.3 Panel-mounted Instrument Connections 10
 4.4 Selecting the Mains Voltage 12
 4.4.1 Wall/Pipe-mounted Instruments 12
 4.4.2 Panel-mounted Instruments 12

5 CONTROLS AND DISPLAYS 13
 5.1 Displays .. 13
 5.2 Switch Familiarization .. 13

6 OPERATION .. 14
 6.1 Instrument Start-up... 14
 6.2 Operating Page .. 14
 6.2.1 Operating Page Error Messages 14

7 PROGRAMMING .. 15
 7.1 Access to Secure Parameters 15
 7.2 Language Page .. 15
 7.3 Set Up Outputs Page .. 16

1.1 Documentation

Documentation for the EXFG Oxygen Analyzer System is shown in Fig. 1.1.

![Fig. 1.1 System Documentation](image-url)
1.2 System Hardware – Fig. 1.2
The 4680 and 4685 transmitters are part of the EXFG Oxygen Analyzer System which measures oxygen content and temperature within a gas flue. The 4680/500 model is a wall-mounted instrument and the 4685/500 model is a panel-mounted, DIN-sized instrument. Signals from either transmitter can also be retransmitted to remote monitoring equipment.

Both models have a single programmable input channel and a single temperature input channel. Instrument operation and programming is via four tactile membrane switches located on the front panel. Programmed functions are protected from unauthorized alteration by a five-digit security code.

1.3 Principle of Operation – Fig. 1.2
The transmitter unit processes a 4 to 20mA (25% to 0.25% \(O_2\)) signal generated at the Interface Electronics Unit and displays the oxygen value in \(O_2\) with selectable ranges (log or linear). All ranges can be retransmitted.

In addition, the transmitter processes any alarm signals generated from the Interface Electronics Unit – see the EXFG Probe Guide and EXFG Interface Electronics Unit Guide for additional system operating information.

Fig. 1.2 System Schematic
2 PREPARATION

2.1 Checking the Instrument Type

2.1.1 Wall-mounted Instruments – Fig. 2.1

Caution.
- Mount in a location free from excessive vibration.
- Mount away from harmful vapors and/or dripping fluids.

Information. It is preferable to mount the instrument at eye level, allowing an unrestricted view of the front panel displays and controls.

2.1.2 Panel-mounted Instruments – Fig. 2.2

3 MECHANICAL INSTALLATION

3.1 Siting Requirements – Fig. 3.1

A – Maximum Distance Between Instrument and Interface Unit

B – Within Temperature Limits

C – Within Environmental Limits
3.2 Mounting

3.2.1 Wall/Pipe-mounted Instruments – Figs. 3.2 and 3.3

A – Wall-mounting

1. Mark fixing centres (see Fig. 3.2)
2. Drill suitable holes
3. Secure instrument to wall using suitable fixings

B – Pipe-mounting

1. Position ‘U’ bolts on pipe
2. Position plates over ‘U’ bolts
3. Secure plates
4. Secure transmitter to mounting plate

Dimensions in mm (in)

Fig. 3.2 Overall Dimensions

Fig. 3.3 Mounting
...3.2 Mounting

3.2.2 Panel-mounted Instruments – Figs. 3.4 and 3.5

Cut a hole in the panel (see Fig. 3.4 for dimensions). Instruments may be close stacked to DIN 43835.

1. Cut a hole in the panel (see Fig. 3.4 for dimensions). Instruments may be close stacked to DIN 43835.

2. Loosen the retaining screw on each panel clamp.

3. Remove the panel clamp and anchors from the instrument case.

4. Insert the instrument into the panel cut-out.

5. Refit the panel clamps to the case, ensuring that the panel clamp anchors are located correctly in their slot.

6. Secure the instrument by tightening the panel clamp retaining screws. See Caution.

Caution. The clamp must fit flat on the instrument casing. If the clamp is bowed, the securing screw is overtight and sealing problems may occur.
4 ELECTRICAL CONNECTIONS

4.1 Connections – General

Warning.
• Mains power – before making any connections, ensure that the power supply, any high voltage-operated control circuits and high common mode voltages are switched off.

Information.
• Earthing (grounding) – stud terminal(s) is fitted to the transmitter case for bus-bar earth (ground) connection – see Fig. 4.2 or 4.5.
• Cable routing – always route signal output cable leads and mains-carrying/relay cables separately, ideally in earthed metal conduit. Twist the signal output leads together or use screened cable with the screen connected to the case earth stud. Ensure that the cables enter the transmitter through the glands nearest the appropriate screw terminals and are short and direct. Do not tuck excess cable into the terminal compartment.
• Cable glands & conduit fittings – ensure a moisture-tight fit when using cable glands, conduit fittings and blanking plugs/bungs (M20 holes).
• Relays – the relay contacts are voltage-free and must be appropriately connected in series with the power supply and the alarm/control device which they are to actuate. Ensure that the contact rating is not exceeded. Refer also to Section 4.1.2 for relay contact protection details when the relays are to be used for switching loads.
• Retransmission output – Do not exceed the maximum load specification for the selected current retransmission range (see the associated Specification sheet). Because the retransmission output is isolated the –ve terminal must be connected to earth (ground) if connecting to the isolated input of another device.

4.1.1 Cable and Gland Specifications

Caution.
• Cabling – connections between the Transmitter and the Interface Electronics Unit must be suitable for use with type ‘d’ Protection Flameproof Enclosures.
• Glands – EEx d glands used on the Interface Electronics Unit must be of the certified flameproof ‘Barrier Gland’ type because the enclosure is over 2 liters volume, has a source of ignition within and is designed for use in Zone 1 areas.

Information.
• The M20 glands ready-fitted to wall-mounted instruments accept cable of between 4 and 7mm diameter.
• A spare set of grommets is supplied for cable sizes between 8 and 12mm diameter.

<table>
<thead>
<tr>
<th>Gland Specification</th>
<th>Cable Specifications</th>
<th>Gland Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>M20 flameproof certified EEx d barrier gland (not supplied)</td>
<td>Signal cable (not supplied)</td>
<td>4680 M20 Uncertified (fitted)</td>
</tr>
<tr>
<td></td>
<td>16/0.2, 4-core copper, overall screened, flameproof (two pairs) Max. loop resistance 750Ω</td>
<td>4685 No gland required</td>
</tr>
<tr>
<td>M20 flameproof certified EEx d barrier gland (not supplied)</td>
<td>Mains power cable (not supplied)</td>
<td>4680 M20 Uncertified (fitted)</td>
</tr>
<tr>
<td></td>
<td>3-core, 0.5mm² copper (min.)</td>
<td>4685 No gland required</td>
</tr>
</tbody>
</table>

Table 4.1 Cable and Gland Specifications (electrical requirements only)
4.1.2 Relay Contact Protection and Interference Suppression – Fig. 4.1

If the relays are used to switch loads on and off, the relay contacts can become eroded due to arcing. Arcing also generates radio frequency interference (RFI) which can result in instrument malfunctions and incorrect readings. To minimize the effects of RFI, arc suppression components are required; resistor/capacitor networks for a.c. applications or diodes for d.c. applications. These components can be connected either across the load or directly across the relay contacts. On 4600 Series instruments the RFI components must be fitted to the relay terminal block along with the supply and load wires – see Fig 4.1

For **a.c. applications** the value of the resistor/capacitor network depends on the load current and inductance that is switched. Initially, fit a 100R/0.022μF RC suppressor unit (part no. B9303) as shown in Fig. 4.1A. If the instrument malfunctions (incorrect readings) or resets (display shows 88888) the value of the RC network is too low for suppression an alternative value must be used. If the correct value cannot be obtained, contact the manufacturer of the switched device for details on the RC unit required.

For **d.c. applications** fit a diode as shown in Fig. 4.1B. For general applications use a 1N5406 type (600V peak inverse voltage at 3A – part no. B7363).

Note. For reliable switching the minimum voltage must be greater than 12V and the minimum current greater than 100mA.
Caution. Slacken terminal screws fully before making connections.

Fig. 4.2 Access to Terminals – Wall-mounted Instruments
Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of radio frequency interference (RFI) and correct operation of the power supply interference filter.

Fig. 4.3 Wall-mounted Instrument Connections
4.3 Panel-mounted Instrument Connections – Figs. 4.4 and 4.5

Caution. Slacken terminal screws fully before making connections.

Fig. 4.4 Access to Terminals – Panel-mounted Instruments
Warning. The power supply earth (ground) must be connected to ensure safety to personnel, reduction of the effects of radio frequency interference (RFI) and correct operation of the power supply interference filter. Connect the earth lead directly to the case earth stud and not to the ‘E’ terminal.

Fig. 4.5 Panel-mounted Instrument Connections
4.4 Selecting the Mains Voltage

4.4.1 Wall/Pipe-mounted Instruments – Fig. 4.6

Remove cover (see Fig. 4.1)

Slacken captive screws and remove protection cover

Remove front panel screws

Remove front panel

Remove cap and screw

Information. Use a small, flat-bladed screwdriver to remove the screw cap from the case.

Select the mains voltage required

230V

115V

Fig. 4.6 Selecting the Mains Voltage – Wall/Pipe-mounted Instruments

4.4.2 Panel-mounted Instruments – Fig. 4.7

Remove plug (if fitted)

Undo captive screw

Slide instrument out of case

Select the mains voltage required

115V

230V

Fig. 4.7 Selecting the Mains Voltage – Panel-mounted Instruments
5 CONTROLS AND DISPLAYS

5.1 Displays – Fig. 5.1
The display comprises a 5-digit, 7-segment digital upper display line and a 16-character dot-matrix lower display line. The upper display line shows actual values of oxygen, alarm set points or programmable parameters. The lower display line shows the associated units or programming information.

Fig. 5.1 Location of Controls and Displays

5.2 Switch Familiarization

A – Advancing to Next Page

B – Moving Between Parameters

C – Adjusting and Storing a Parameter Value

D – Selecting and Storing a Parameter Choice

Fig. 5.2 Membrane Switch Functions
6 OPERATION

6.1 Instrument Start-up
Ensure all electrical connections have been made correctly and switch on.

6.2 Operating Page
The Operating Page is a general use page in which parameters are viewed only and cannot be altered. To alter or program a parameter refer to the programming pages in Section 7.

% Oxygen
The upper display indicates the measured oxygen value. If over or under temperature is monitored, the upper display shows ‘– – – – –’ and an error message is displayed on the lower dot matrix display – see Table 6.1.

Alarm Set Point
The upper display indicates the alarm set point, displayed as % oxygen. The set point value and the relay/l.e.d. action can be programmed in the Set Up Outputs Page – see Section 7.2.

Advance to Access to Secure Parameters page.

6.2.1 Operating Page Error Messages
The following error messages only appear in the Operating Page (when an error has been detected), in place of the % oxygen frame.

Note. Relay 2 is assigned as a malfunction alarm and de-energizes when an error condition is present. The LED assigned to this relay is illuminated when in an error condition.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Possible Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>NV MEMORY ERROR</td>
<td>The contents of the non-volatile memory have not been read correctly during power up. To rectify the fault,</td>
</tr>
<tr>
<td></td>
<td>switch off, wait 10 seconds and switch on again. If the fault persists contact the Manufacturer.</td>
</tr>
<tr>
<td>CELL UNDER TEMP.</td>
<td>The temperature at the probe sensor has not reached a sufficient temperature to obtain suitable readings (less</td>
</tr>
<tr>
<td>OVER TEMP. TRIP</td>
<td>than 690°C at the control thermocouple).</td>
</tr>
<tr>
<td>OUT OF LIMITS</td>
<td>The measured % oxygen value is outside the limits of the instrument. (The upper display will flash if outside the</td>
</tr>
<tr>
<td></td>
<td>limits of 0.25% to 25%).</td>
</tr>
</tbody>
</table>

Table 6.1 Error Messages
7 PROGRAMMING

Fig. 7.1 Overall Programming Chart

7.1 Access to Secure Parameters

Security Code
Enter the required code number, between 00000 and 19999, to gain access to the secure parameters. If an incorrect value is entered, subsequent programming pages cannot be accessed.

Advance to Language page.

7.2 Language Page

Language Page
Select the language to be displayed on all subsequent pages.

Advance to Set Up Outputs page.
7.3 Set Up Outputs Page

Set Up Outputs
Page header

Alarm Action
Set the required alarm action from the following table.

<table>
<thead>
<tr>
<th>Alarm Action</th>
<th>LED Action for input Above Set Point</th>
<th>LED Action for input Below Set Point</th>
<th>LED Action for input Above Set Point</th>
<th>LED Action for input Above Set Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>EA</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
</tbody>
</table>

The set point band is defined as the actual value of the set point plus or minus the hysteresis value. The hysteresis value is fixed at 0.1% oxygen. Alarm action occurs if the input value is above or below the set point band. If the input moves within the set point band the last alarm action is maintained.

Alarm Set Point
The alarm set point can be set to any value within the oxygen range of 0.3% to 25.0%.

Retransmission Type
The retransmission output is assigned to the oxygen range. Select the retransmission output current range required (4 to 20mA, 0 to 20mA or 0 to 10mA).

LOG Output
The retransmission can be assigned to give a logarithmic or linear output. Select YES for Logarithmic, NO for Linear.

Retransmission Span
Select the required retransmission span value, in % oxygen units, from 5.25% to 25.00%.

Retransmission Zero
Select the required retransmission zero value, in % oxygen units, from 0.25% to 20.00%.

Test Retransmission
The instrument automatically transmits a test signal of 0, 25, 50, 75 and 100% of the retransmission range selected above. The % test signal selected is shown on the upper display.

Example: for a selected range of 0 to 20mA and 50% retransmission test signal, 10mA is transmitted.

Alter Security Code
Set the security code to a value between 00000 and 199999.

Advance to **Electrical Calibration** page.

Note. Electrical calibration is carried out prior to despatch and should not be altered. However, if inaccurate or inconsistent readings are obtained, refer to the **Electrical Calibration Supplement** for full calibration procedures.
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC Motors to 1kV
- Drive Systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart and Strip Chart Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Flowmeters
- Mass Flowmeters
- Turbine Flowmeters
- Wedge Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, Conductivity and Dissolved Oxygen Transmitters and Sensors
- Ammonia, Nitrate, Phosphate, Silica, Sodium, Chloride, Fluoride, Dissolved Oxygen and Hydrazine Analyzers
- Zirconia Oxygen Analyzers, Katharometers, Hydrogen Purity and Purge-gas Monitors, Thermal Conductivity

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 829671

United States of America
ABB Inc.
Tel: +1 215 674 6000
Fax: +1 215 674 7183

Client Warranty
Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification.

Periodic checks must be made on the equipment’s condition. In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.