REC 501 Remote Monitoring and Control Unit

Technical Reference Manual

Issued 97-08-04 Version A Checked HM Approved OV

REC 501 Remote Monitoring and Control Unit

Data subject to change without notice

Table of contents	General	3
	Safety instruction	3
	Introduction	3
	Applications	4
	Communication and protocols	7
	Order information	7
	Design	
	Design and case	
	Connection diagram	
	Terminals and earthing	
	Auxiliary supply voltage	
	Power supply	
	Battery charger	
	Batteries	
	Configuration tools	
	Functions	
	Control operations	
	SGF switchgroups	
	Switchgroup SGF 1	
	Switchgroup SGF 2	
	Switchgroup SGF 3	
	Switchgroup SGF 4	
	Switchgroup SGF 5	
	Switchgroup SGF 6	
	Analogue measurements	
	Heating	
	Pulse counters	
	Self-supervision	
	Condition monitoring	
	Communication application	
	RS 232 serial cable	
	Communication using optional plug-in modem	
	Communication using optional plug-in adapter	
	Technical data	
	Commissioning	
	Mounting of the case	
	Auxiliary voltage, digital inputs and output relay voltages	
	Wiring	. 28
	Configuration of the unit	. 28
	Testing after installation	
	Example configuration	
	Maintenance and testing	
	Trouble-shooting	
	General	
	Fault codes	
	Modem	

	Communication parameters Enforced programming parameters Remote communication parameters Modem communication parameters SPA communication Input events Output events Output events General events Input parameters Output parameters	32 32 32 33 33 33 34 34 34 34 34 35 35
	Setting parameters Command and recorded values Control parameters Configuration example	
General Safety Instructions	 Dangerous voltages can occur on the connectors, even though the auxiliary voltage is disconnected. National and local electrical safety regulations must always be followed. 	 The frame of the Remote Monitoring and Control unit has to be solidly earthed. Only a competent electrician is allowed to maintain and repair the electrical installation.
Introduction	The REC 501 Remote Monitoring and Con- trol unit is part of the PYRAMID [®] Substation Automation system. It is used in the Distribu- tion Automation application segment of the Panorama concept. The PYRAMID [®] Substa- tion Automation system includes a complete range of protective relays, feeder terminals, con-	trol units, annunciator units, Substation Moni- toring Systems (SMS) and Substation Control Systems (SCS). The modern technology applied in the unit adds to the flexibility of the system. This manual includes instructions for mount- ing and use of the remote monitoring and con- trol unit REC 501.

The REC 501 monitoring and control unit for medium voltage networks is used for condition monitoring, supervision and automation of Ring Main Units (RMUs), disconnectors and other secondary substation equipment.

Depending on the needs of the customer and the area of application, the REC 501 unit is used as a control unit in many types of applications. Some typical applications are illustrated below.

In the application illustrated in Fig. 1 the REC 501 unit is used for controlling and monitoring an RMU. The REC unit is located in the enclosure together with the basic components. The enclosure is fitted directly to the RMU. This assembly includes an enclosure, a REC 501 unit (1) with an optional modem (2), a radio telephone (3), two 12 V sealed lead acid batteries (4), local control push-buttons (5), a local / remote switch (5), miniature circuit-breakers (5), contactor logic (5) and the RMU (6). The optional modem allows communication via radios, leased lines or a public telephone line. Other means of communication are explained in the chapter "Communication and protocols".

The contactor logic (5) is required when the current exceeds the values specified for the output relays. The circuitry consists of control pushbuttons and miniature circuit-breakers. It connects the REC 501 unit with the motor operating device or the control solenoid.

Two of the five inputs can be used for pulse counting purposes. Due to that the energy or power values measured by the electromechanical meters (7) can be transferred via the REC 501 unit to the network control system.

The auxiliary voltage for the REC 501 unit is supplied from an auxiliary voltage transformer or from the low voltage side of the distribution transformer.

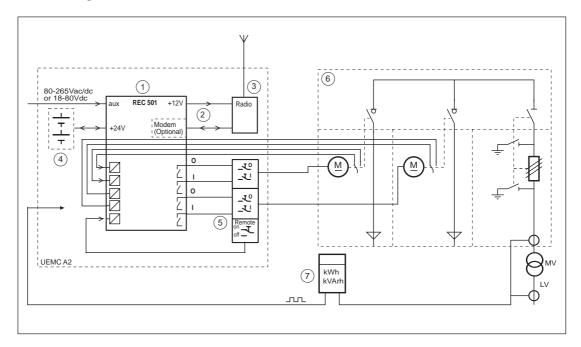


Fig. 1. A REC 501 unit used for remote control of a Ring Main Unit.

Figure 2 shows an application in which the REC 501 unit controls and monitors a disconnector remotely. The disconnector has an integrated motor operating device. The enclosure can be mounted on a wall or in a pole. Local regulations should always be followed. The same components as in the previous example are used. In addition, a heating element (7) and a distribu-

tion transformer or an auxiliary voltage transformer (8) are used. One of the output relays can be used for controlling the heating element. Refer to chapter "Heating" for more information. The REC 501 unit is supplied from the MV network via the MV / LV auxiliary voltage transformer.

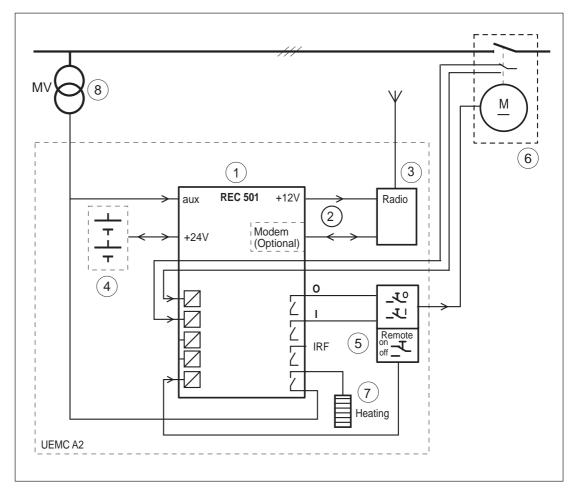


Fig. 2. A REC 501 unit used for remote control of a disconnector. The motor operating device is fitted to the disconnector.

In the application illustrated in Fig. 3 the REC 501 unit controls and monitors a disconnector remotely. The enclosure contains the motor operating device for the disconnector, as well as the REC 501 unit. The enclosure can be moun-

ted, for instance, on a wall or in a pole. Local regulations and the instructions of the manufacturer of the disconnector and the motor operating device should always be followed.

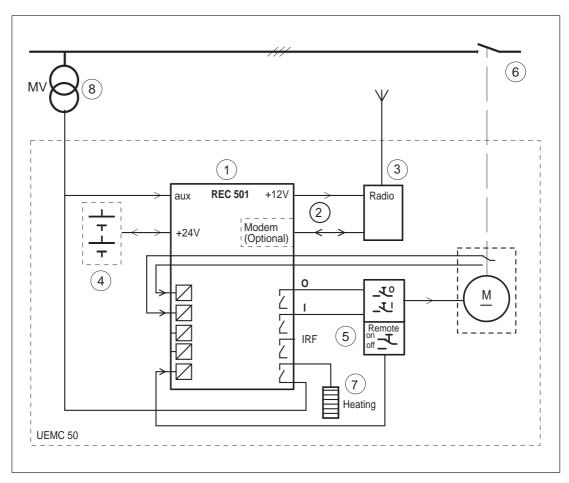


Fig. 3. A REC 501 unit used for the remote control of a disconnector. The motor operating device is placed in the same enclosure as the other equipment.

Figure 4 shows a complete Distribution Terminal Unit DTU 111. The enclosure UEMC-A2 contains a REC 501 unit and all the components needed for the automation of RMUs, disconnectors and switches.

Fig. 4. A DTU 111 including a REC 501 unit mounted in a UEMC-A2 enclosure.

Communication and protocols	 The REC 501 unit offers the following means of communication between a secondary substation or substation and a network control system: Leased lines or public telephone lines Fixed lines Conventional radio telephones Portable NMT telephones with adapter RS232 serial cable Other RS 232 compatible communication devices, e.g.: radio modems external modems DLC modem portable GSM telephones with adapter For more information on communication and applications refer to chapter "Communication application". 	 wards a network control system as SPIDER MicroSCADA or equivalent SCADA systems are: SPA LON with LON adapter ANSI X3.28 HD RP 570 IEC 870-5-101 MODBUS DNP 3.0 Other protocols can be developed on request The REC 501 unit always includes a SPA protocol. In addition, one of the other protocols mentioned above can be integrated into the unit. The required network control protocol has to be specified in the order. The development of
Order information	Two separate order numbers are used for order- ing the REC 501 unit. The order number for the hardware specifies the auxiliary supply volt- age of the unit and the order number for the	used for the communication with a network control system. Possible optional parts and ac-
	REC 501, 1MRS090021-AA, REC 501, 1MRS090020-CA, REC 501, 1MRS090021-CA, Software order numbers: 1MRS118006 1MRS118007 1MRS118008 1MRS118009	$U_{aux} = 80 \dots 265 \text{ V ac } / \text{ dc, surface mounting}$ $U_{aux} = 80 \dots 265 \text{ V ac } / \text{ dc, flush mounting}$ $U_{aux} = 18 \dots 80 \text{ V dc, surface mounting}$ $U_{aux} = 18 \dots 80 \text{ V dc, flush mounting}$ Protocols: ANSI X3.28 HD RP570 IEC 870-5-101 MODBUS DNP 3.0
	Optional parts and accessories: Programming cable RS232 cable, 15 m Plug-in modem module Plug-in adapter module with RS 485 and plastic fibre cable interfaces Plug-in adapter module with RS 485 and glass fibre cable interfaces LON/SPA adapter Cable for LON/SPA adapter	1MRS120500 1MRS120507 1MRS119000 *) 1MRS050248 1MRS050249 SPA-ZC 100-BB/MM 1MRS120502
	 *) Note ! The country of destination should Example: Description 1. Quantity, type designation and auxiliary voltage 	be specified in the order of the modem board. Order 15 REC 501 units, U _{aux} = 110 Vdc 1MRS090020-AA 1MRS118007, RP570 15 Modem modules 1MRS119000 5 Programming cables 1MRS120500

Design and case

A basic REC 501 unit consists of a processor power supply / charger board (PSC), a mother board and an optional plug-in modem or an optional adapter board. The PSC board includes a processor, switch mode power supply with a temperature-compensated battery charger, five inputs, four outputs and an RS232 serial interface. The inputs and outputs are galvanically isolated from the internal electronics. The wide range of I/O operating voltages make the REC 501 unit suitable for many different applications. The mother board located inside the case connects the signals and supply voltages from the PSC board to the optional plug-in modem or the optional adapter board.

The REC 501 remote monitoring and control unit is fitted into a closed box of the common ABB look. The box is 145 mm wide, 265 mm (6U) high and 250 mm deep and it includes two card places for E2 size printed circuit boards.

The degree of protection of the REC 501 unit, including terminals and front cover, is IP 20. To increase the degree of protection, the REC 501 unit can be placed in the same enclosure as the batteries, contactor logic and communication devices.

Connection diagram

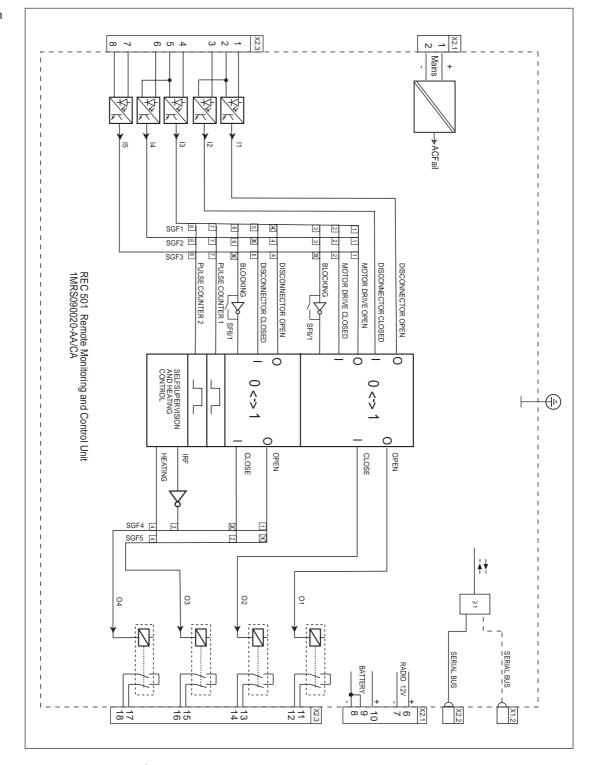


Fig. 5. Connection diagram.

Abbreviations of signal names:				
I1, I2, I3, I4 and I5	Inputs			
SGF	Switchgroups for selection of functions			
O1, O2, O3 and O4	Outputs			
IRF	Internal relay fault			
Heating	Control of heating			
Radio 12V	12 Vdc supply for external communication device			
Battery	Supply from batteries and battery charger			

The settings and functions of the SGF switches are explained in the chapter "Functions".

Terminals and earthing The screw terminals and the 9-pole D-connector are located on the front / rear (surface / flush mounting) of the unit.

The terminals are identified by a number, e.g. X2.1. See Fig. 6 "Connectors on the front plate of the REC 501". The numbering starts from the top.

As the terminal connectors are detachable, wiring can be made in advance. One wire of $0.2 - 2.5 \text{ mm}^2$ or two wires of $0.2 - 1.0 \text{ mm}^2$ can be connected to each screw terminal.

The REC 501 unit has to be solidly earthed by connecting the shortest possible 2.5 mm² copper wire to the separate earth screw terminal.

The communication cable is to be connected to the 9-pole D-connector, the RJ12 telephone connector (X1.1), or screw terminals (X1.3), when the optional modem module is used. The RS485 communication cable is connected to the 9-pole D-connector (X1.1) or the optical cables to the connectors (X1.2 and X1.3) using the optional adapter module. The communication cable is connected to connector X2.2 on the PSC board using an external telephone modem or DLC modem Two serial interfaces are available for the communication with the REC 501 unit. The RS232 interface (X2.2) located at the front edge of the PSC board is normally used for changing the settings of the unit and for the communication with a network control system, a radio modem, an external modem or a portable GSM. The programming tool is used for changing the parameters.

When the optional plug-in modem is used, an RS232 interface (X1.2) will be available at the edge of the modem module. This port is normally used for altering the settings of the modem. More information, including applications of the optional plug-in modem module, is given in the chapter "Communication applications" and in the user manual of the modem board (1MRS750577-MUM).

When the optional plug-in adapter is used an RS485 interface (X1.2) or two fibre-optic connectors (X1.2 and X1.3) will be available at the edge of the adapter module. These interfaces are normally used for the communication over RS485 or fibre-optic cables inside substation.

Terminal group	Contact interval	Function
X2.1	1-2	Auxiliary supply voltage. The positive lead (+) of the dc supply is connected to contact 1.
X2.1	3, 4, 5	Not connected.
X2.1	6-7	12 Vdc supply to an external radio or another device.
		The positive lead (+) of the dc supply is connected to contact 6.
X2.1	8, 9	- 24 Vdc, battery charger and supply.
X2.1	10	+ 24 Vdc, battery charger and supply.
X2.2	1	FREEZE. To be connected to ground during configuration. 9-pole D-
		connector. The pin order is illustrated in "Serial communication"
X2.2	2	RXD
X2.2	3	TXD
X2.2	2 3 4 5	Not connected.
X2.2	5	GND
X2.2	6	Not connected.
X2.2	7	RTS
X2.2	8	CTS
X2.2	9	+5 V, 280 mA, supply for the external communication adapter.

Terminals on the PSC 3 and PSC 4 boards:

Terminal group	Contact interval	Function
X2.3	1	Input I1, 18265 Vdc or 80265 Vac.
X2.3	2	Common contact for input 1 and input 2.
X2.3	3	Input I2, 18265 Vdc or 80265 Vac.
X2.3	4	Input I3 or pulse counter input, 18265 Vdc or 80265 Vac.
X2.3	5	Common contact for input 3 and input 4.
X2.3	6	Input I4 or pulse counter input, 18265 Vdc or 80265 Vac.
X2.3	7-8	Input I5 or pulse counter input, 18265 Vdc or 80265 Vac.
X2.3	9, 10	Not connected.
X2.3	11-12	Output O1 for opening object 1
X2.3	13-14	Output O2 for closing object 1
X2.3	15-16	Output O3 for opening object 2 or for controlling a heater element
X2.3	17-18	Output O4 for closing object 2, IRF, or for controlling a heater element

Terminals on the optional plug-in adapter module:

Terminal group	Contact interval	Function
X1.1	1	DATA A
X1.1	2	DATA B
X1.1	3	RTS A
X1.1	4	RTS B
X1.1	5	Not connected.
X1.1	6	Not connected.
X1.1	7	GND
X1.1	8	+5 V, 280 mA, supply for the external communication adapter.
X1.1	9	Not connected.
X1.2		Tx to fibre-optic cable.
X1.3		Rx to fibre-optic cable.

The pin order on the front side of the female option connectors X1.1, X1.2 and X2.2 is shown in Fig. user m 6. Information about the other connectors of the

optional modem board is found in the modem's user manual 1MRS750577-MUM.

\bigcirc	on th	nector X1.2 e optional em module	on th	nector X1.1 e optional ter module		nector X2.2 le PSC3 / PSC4 ule
05	Pin	Signal	Pin	Signal	Pin	Signal
	1 2 3 4	DCD RXD TXD DTR	1 2 3 4	DATA A DATA B RTS A RTS B	1 2 3 4	FREEZE RXD TXD
	5 6 7 8 9	GND DSR RTS CTS RI	5 6 7 8 9	GND +5V	5 6 7 8 9	GND RTS CTS +5V

Fig. 6. D-connectors.

Connecting pin 1 of connector X2.2 (FREEZE) to earth brings the REC 501 unit into to the programming mode. The optional cable 1MRS 120500 is used for programming. In the programming mode, the REC 501 unit is forced

to use the SPA communication protocol and certain special communication parameters described in "Enforced communication parameters". In this way, the unit is easily parameterized.

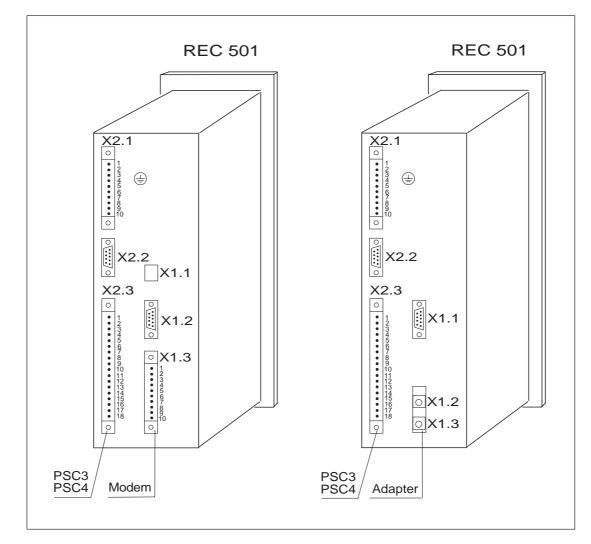


Fig. 7. Connectors of the REC 501.

Wiring has to be done according to the block diagram presented in the chapter "Wiring". For safety reasons all the screw terminals, connectors for serial communication and modem connectors are protected by a cover, which can be opened and removed for wiring.

Auxiliary supply voltage	The auxiliary voltage for the REC 501 unit has to be in the range 1880 Vdc or 80265 Vac/dc. The required auxiliary voltage range has to be mentioned in the order, see "Ordering infor- mation". When possible, the unit should be supplied by an auxiliary supply voltage of the substation. Otherwise, in secondary substation applications, a small MV auxiliary voltage trans-	former is recommended to be used for the sup- ply of the unit. National and local electrical safety regulations must always be followed, when the unit is connected to the electrical network. The auxiliary supply input is protected by a 2 A fuse F1. The location of the fuse is shown in the chapter "Trouble-shooting".
Power supply	The switch mode dc/dc power supply of the REC 501 unit includes a temperature-compen- sated battery charger. The power supply pro- vides voltages for the internal electronics and an external communication device, e.g. a radio telephone. The temperature-compensated bat- tery charger monitors the input voltage and measures temperature and battery voltage. Fur-	thermore, the charger incorporates functions for battery load test and deep discharge protection. The 12 Vdc output voltage is used to supply, for instance, a radio telephone. The maximum peak output current is 7 A. This is sufficient for most of a conventional radio telephones or ra- dio links.
Battery charger	Power backup for the station can be arranged by connecting $24 \text{ V} (2 \text{ x } 12 \text{ V})$ sealed lead acid batteries to the REC 501 unit. The batteries supply the REC 501 unit and the communica- tion device during a mains failure. The batter- ies are charged by the REC 501 unit. Thus the communication between the unit and the net- work control centre is operating in any situa- tion.	The charger secures an appropriate charging voltage in different environmental conditions. The batteries are protected against too high or too low charging voltages. The rated charging voltage is 27.6 Vdc at @ 20°C. The tempera- ture range for compensation is -40+60°C. The charger regulates the charging voltage for the batteries according to the temperature as illus- trated in Fig. 8. "Charging voltage versus tem- perature".

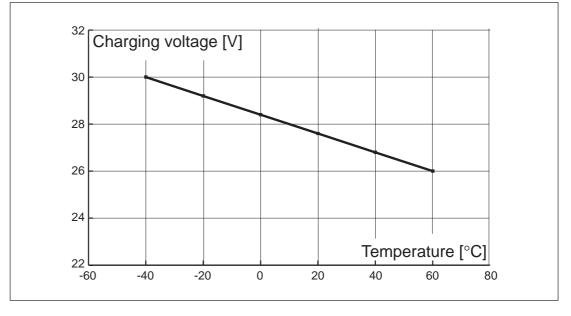


Fig. 8. Charging voltage versus temperature.

The charger protects the batteries against deepdischarge during long periods of outages. It switches the power supply to stand-by mode as soon as the battery voltage drops below 19 V (2 x 9.5 V). The power supply is switched on again, when the auxiliary voltage returns. The voltage of the batteries may vary in the range of 19...32 V.

The output of the battery charger is protected by a 6 A fuse F2. The location of the fuse is illustrated in chapter "Trouble-shooting". Batteries

Two 12 V external maintenance-free sealed leadacid batteries secure the operation of the REC 501 unit during a mains failure. To achieve the required voltage level of +24 V the batteries are connected in series.

Depending on the application and the maximum operate time required, batteries of 15 Ah or 38 Ah are normally used. Tests performed show an operation time of about 36 hours for a 15 Ah battery and 72 hours for a 38 Ah battery at an ambient temperature of +20 °C. The average consumption of the communication device during the test was 200 mA. A low temperature reduces the capacity and the operate time of the batteries. The approximate maximum operate time can be estimated as shown in Fig. 9 below.

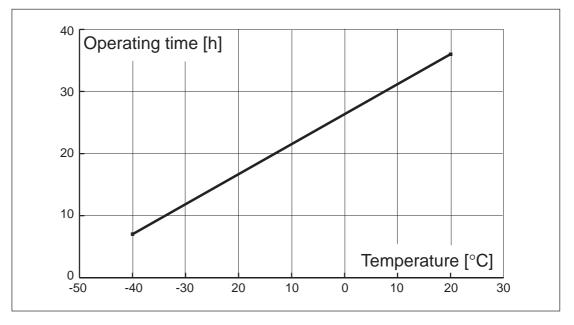


Fig. 9. Operating time versus temperature with 15 Ah batteries.

Sealed lead-acid batteries, e.g. Yuasa's NP 15-12, NP 38-12 or equivalent are recommended to be used.

Battery type	voltage	capacity	weight	dimensions
YUA NP 15-12	12 V	15 Ah	5.0 kg	181 x 76 x 167 mm
YUA NP 38-12	12 V	38 Ah	13.8 kg	197 x 165 x 170 mm

A current limiter should be used when the capacity of the battery is less than 7 Ah. The current limiter is to be connected between the charger output (connector X2.1, pin 10) and the + pole of the battery. This ensures that the charging current does not exceed the specified maximum limit of about 0.6 A if the batteries have a capacity of 2 Ah. The circuit diagram of the current limiter, with component values, is shown in Fig. 10.

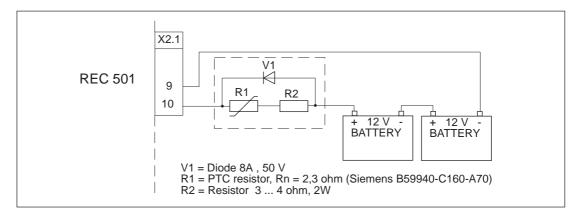


Fig. 10. Circuit diagram current limiter.

Configuration tools	the setting CAP 5xx of terminal of remotely, v be set off- a commun	501 unit is easily configured using g emulator software, SMS 010 tool, configuration and programming tool, emulators with SPA parameters and, via MicroSCADA. The parameters can line on the tool and downloaded over nication port. The menu structure of umming tools is similar to the menu	01 unit. Mor ng tools is obta rameters and g the REC 5 s given in "Fu ommunicatior	settings to 01 unit in nction de-	
Functions Control operations	objects, e., and handl jects. Alter tus inform circuit bre case, the c the positio circuit bre	501 unit is capable of controlling two g. circuit breakers and disconnectors, ing the status information of the ob- natively, one object with separate sta- nation from the motor drive and the eaker itself, can be operated. In this ontrol logic automatically recognizes on of the motor drive and that of the aker. If an attempt is made to operate osed or open position, while the sta-	tus information is in co a close-before-open o quence. Should the status inforr or the circuit breaker s tion, the close-before-o close sequences will no close or open comman	r open-beford mation of the n show an under open or the op ot be performe	e-close se- notor drive ined posi- en-before-
SGF switchgroups	The software switchgroups SGF1SGF6 are used for selecting the functions required for dif- ferent applications. The switchgroups SGF1 SGF3 connect digital inputs to input signals, while the switchgroups SGF4SGF5 connect output signals to output relays. Note! Several input signals can be connected one digital input, provided the functions of th input signals can be combined. The tables b low show the default settings of the switch and the checksums of the corresponding parare eters. See also the block diagram in chapter "Te minal and block diagram".			ions of the tables be- e switches ng param-	
Switchgroup SGF1	Switchgro	up SGF1 is used for connecting digita	l input I3 to the process		
	Switch	Function		Checksum	Default

Switch	Function	Checksum value	Default
SGF1/1	I3 connected to actuator* open signal	1	0
SGF1/2	I3 connected to actuator* closed signal	2	0
SGF1/3	I3 connected for blocking of object 1	4	0
SGF1/4	I3 connected to object 2 open signal	8	1
SGF1/5		16	0
SGF1/6	13 connected for blocking object 2	32	0
SGF1/7	I3 connected to pulse counter 1	64	0
SGF1/8	I3 connected to pulse counter 2	128	0
	SGF1 default checksum, parameter S4		8

* The actuator may be a motor operating device or a solenoid

Switchgroup SGF2

Switchgroup SGF2 is used for connecting digital input I4 to the process signals

Switch	Function	Checksum value	Default
SGF2/1 SGF2/2 SGF2/3 SGF2/4 SGF2/4 SGF2/5 SGF2/6 SGF2/7 SGF2/8	I4 connected to actuator* open signal I4 connected to actuator* closed signal I4 connected for blocking object 1 I4 connected to object 2 open signal I4 connected to object 2 close signal I4 connected for blocking object 2 I4 connected to pulse counter 1 I4 connected to pulse counter 2	$ \begin{array}{r} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \\ 128 \\ \end{array} $	0 0 0 1 0 0 0
	SGF2 default checksum, parameter S5		16

* The actuator may be a motor operating device or a solenoid

Switchgroup SGF3

Switchgroup SGF3 is used for connecting digital input I5 to the process signals

Switch	Function	Checksum value	Default
SGF3/1 SGF3/2 SGF3/3 SGF3/4 SGF3/5 SGF3/6 SGF3/7 SGF3/8	I5 connected to actuator* open signal I5 connected to actuator* closed signal I5 connected for blocking object 1 I5 connected to object 2 open signal I5 connected to object 2 close signal I5 connected for blocking object 2 I5 connected to pulse counter 1 I5 connected to pulse counter 2	$ \begin{array}{r} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \\ 128 \\ \end{array} $	0 0 1 0 0 1 0 0
			36

* The actuator may be a motor operating device or a solenoid.

Switchgroup SGF4

F4 Switchgroup SGF4 is used for connecting output relay O4 to the process signals

Switch	Function	Checksum value	Default
SGF4/1 SGF4/2 SGF4/3 SGF4/4 SGF4/4 SGF4/5 SGF4/6 SGF4/7 SGF4/8	O4 connected to open output signal of object 2 O4 connected to close output signal of object 2 O4 connected to IRF signal * O4 connected to heating output Reserved for future use Reserved for future use Reserved for future use Reserved for future use	$ \begin{array}{c} 1\\ 2\\ 4\\ 8\\ 16\\ 32\\ 64\\ 128\\ \end{array} $	0 1 0 0 0 0 0 0 0
	SGF4 default checksum, parameter S7	1	2

* The function of the Internal Relay Fault IRF is described in the chapter "Self-supervision".

Switchgroup SGF5

Switchgroup SGF5 is used for connecting output relay O3 to the process signals

Switch	Function	Checksum value	Default
SGF5/1 SGF5/2 SGF5/3 SGF5/4 SGF5/4 SGF5/5 SGF5/6 SGF5/7 SGF5/8	O3 connected to open output signal of object 2 O3 connected to close output signal of object 2 Reserved for future use O3 connected to heating output Reserved for future use Reserved for future use Reserved for future use Reserved for future use	$ \begin{array}{c} 1 \\ 2 \\ 4 \\ 8 \\ 16 \\ 32 \\ 64 \\ 128 \end{array} $	1 0 0 0 0 0 0 0 0
SGF5 default checksum, parameter S8			1

Switchgroup SGF6

Switch	Function	Checksum value	Default
SGF6/1	Select logical level for the blocking inputs When SGF6/1=1, the operation of the object controls is blocked by a logical 0 on the blocking inputs When SGF6/1=0, the operation of the object controls is	1	0
	blocked by a logical 1 on the blocking inputs	1	0
SGF6/2	Reserved for future use	2	0
SGF6/3	Reserved for future use	4	0
SGF6/4	Reserved for future use	8	0
SGF6/5	Reserved for future use	16	0
SGF6/6	Reserved for future use	32	0
SGF6/7	Reserved for future use	64	0
SGF6/8	Reserved for future use	128	0
	SGF6 default checksum, parameter S9		0

Analogue measurements	The REC 501 unit measures the battery volt- age and the ambient temperature. The tempera- ture measurement is calibrated to measure the ambient temperature of the REC 501 unit mounted in an enclosure. The value measured is read via the serial bus. Furthermore, the tem- perature measurement is used to compensate the charging voltage of the batteries and for acti- vating/deactivating heating in cold environ- ments.	The battery voltage measured is received as two values: the minimum battery voltage and the battery charging voltage. The values are read from the network control centre over the serial bus. The minimum battery voltage indicates the lowest voltage measured during a battery test or during the operation of an object. The bat- tery charging voltage indicates the present volt- age on the pole of the batteries. The minimum battery voltage can be reset via the serial bus.
Heating	The outputs O3 or O4 are intended for the control of external heating resistors. The heating control is based on the environmental temperature. Heating is needed if the REC 501 unit is installed in a separate enclosure outdoors, where the ambient temperature may be below -100°C. Heating is also required when the environment is very damp and dehumidifying is needing.	The output to be used is selected with the switches SGF5/4 or SGF4/4. Parameter S3 is used for selecting the temperature for the heater in the range -25+15°C. The hysteresis of heating is stable within 4 °C. The heating will be switched on when the temperature falls below the heating limit programmed. When the temperature reaches the heating point added with the hysteresis, heating is switched off.
Pulse counters	Two pulse counters are available for power or energy measurement. The inputs count the number of pulses from the output of the elec- tromechanical meter during a specified time period. The maximum pulse frequency is 25 Hz. The pulse ratio at maximum input frequency must be 50 / 50. Any of the inputs 13, 14 or 15 may be used for pulse counting. The inputs are selected with the switchgroup SGF1SGF3. Counting is triggered at the positive edge of the input signal. The output values are the inter- mediate counter readings and the period coun- ter readings. The counters are synchronized with the internal clock of the REC 501 unit. The counting periods end at midnight and count- ing starts immediately after power-up. The intermediate counting time, for example, is set to 60 minutes. After power-up, the clock is set to 22.32. Then the first intermediate counting time will be 4 minutes, until event E17	until midnight with an even amount of inter- mediate counting periods of 6 minutes. The first counting time period, on the other hand, will be 28 minutes. Event E19 or E20 is generated and the counter value together with the time stamp is read from parameters V20 and V21. The next counting time will be 60 minutes. When new period counter values are received, the previous values are transferred to new pa- rameters. The latest values are always stored in the parameters V20 and V21. Both the intermediate counting and the period pulse counting can be selected as cumulative or wrap around counter readings. Readings will be increased once a counting period elapses, whereas a wrap around reading will be reset af- ter a counting period has ended. A counter read- ing from a period is always valid until the next period has elapsed.

or E18 is given. The value can be read with pa-

rameter V11. The counting sequence proceeds

The accurary of the pulse counter is ± 1 pulse. The accurary of the counting periods depends on amount of the clock synchronizing pulses.

Self supervision

The REC 501 unit is provided with an internal self-supervision system including a normal microprosessor watchdog function, checksum verification of the memory contents and hard-ware supervision. A permanent fault detected inside the unit, will be indicated by a blinking green LED indicator. At the same time as a fault is detected the unit delivers a fault signal to the self-supervision output relay of the control unit. If the communication is operating after an internal fault has been detected, a fault indication message is transferred to the Network Control System via the selected protocol. Otherwise parameter V169 can be used for reading the fault code.

The LED indicator has three different functions: 1. Steady light (ON state)

- the LED is lit when the unit is OK
- the CPU is in normal service, no internal faults, etc.
- auxiliary voltage is available to the unit
- 2. Blinking light (frequency of 2 Hz)
 - an internal relay fault (IRF) has been detected
- 3. Dark LED (OFF state)
 - there is no auxiliary voltage supply to the unit
 - if the auxiliary voltage supply is ON the LED still being dark, a fault in the internal electronics may be the reason

The condition of the batteries is secured by a periodic condition monitoring test. The test is based on ten second load tests and is performed twice an hour and always after power-up of the unit. During the battery load test, the voltage Regular reinitialization is used for monitoring the condition of the optional plug-in modem and the external modem. The REC 501 unit reinitializes the modem even though there has been no successful communication within a cer-

tain period of time.

The number of operations of the disconnectors, circuit breakers and other devices to be controlled are recorded by two operation counters. The values of the operation counters are read locally from the unit or over the remote control system using parameter V5. The operation counters facilitate condition monitoring of equipment and indicate the need for maintenance.

Monitoring of the pressure of SF6 gas-insulated primary equipment is arranged by wiring the pressure sensor contact to one input of the unit. This information can be obtained from the network control system.

Condition monitoring

unit. During the battery load test, the voltage of the power supply charger is reduced to 20 V. This causes the electronics and communication to load the batteries. The automatic functions of the unit measure the battery voltage continuously also during the condition monitoring test. The minimum value of the voltage will be recorded in the memory. The condition and lifetime of the batteries can be estimated on the basis of the minimum val-

be estimated on the basis of the minimum values recorded. If the battery voltage drops to 22 V during testing, the unit generates an event. This indicates that the lifetime of the batteries is ending or that an internal fault has occured in the battery. In both cases the battery must be changed.

Communication applications

RS 232 serial cable

The RS232 serial cable is used for the communication with the Network Control system at distances shorter than 15 m. The cable is connected from the connector X2.2 of the REC 501 unit to the RS232 interface of the Network Control System. The pin connection is illustrated in Fig. 10. "Pin connection of the RS 232 cable" The type designation of the cable is 1MRS120507.

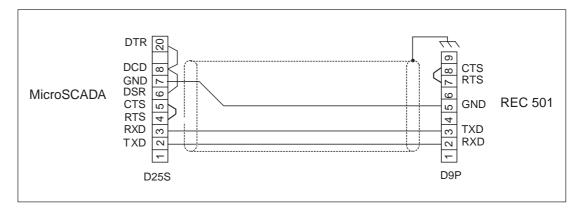


Fig. 10. Pin connection of the RS 232 cable.

Communication using the optional plug-in modem

The optional plug-in modem board 1MRS 119000 can be placed inside the REC 501 unit. It is designed for severe environmental conditions, as is the situation of most non-heated secondary substations. The modem can be used in a wide temperature range.

The modem allows many different means of communication:

- public telephone line with pulse or tone dialling
- leased lines with 2 or 4 wires
- fixed line with 2 or 4 wires
- radio telephone with radio keying

The data transfer rate of this modem may be as high as 14400 bps (V.32bis). If a radio link is used, the maximum data rate depends on the type of radio.

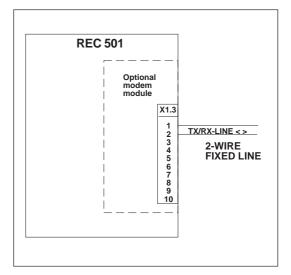
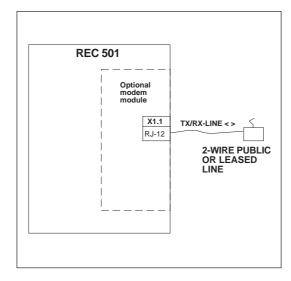



Fig. 11. Two-wire connection to fixed line

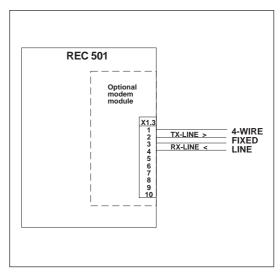


Fig. 12. Two-wire connection to public or leased Filme.

Fig. 13. Four-wire connection to fixed line

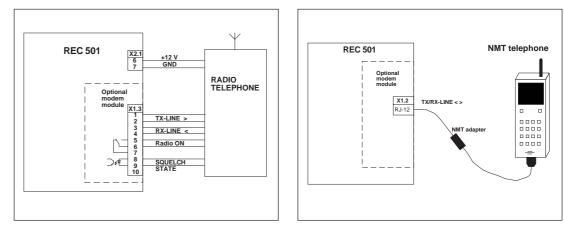


Fig. 14. Radio telephone connection

Fig. 15. NMT connection

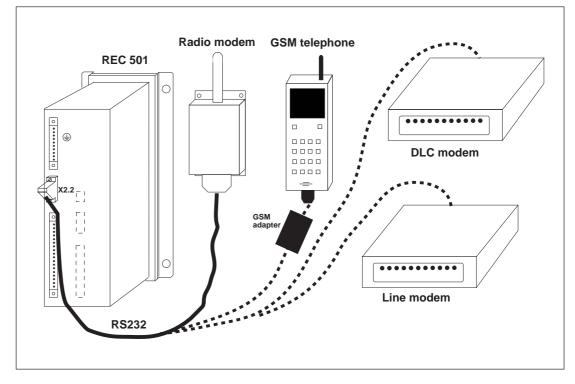


Fig. 16. External communication devices

More information about the optional plug-in modem is found in the modem's user manual 1MRS750577-MUM.

The 12 Vdc voltage supply to the external communication devices can be obtained from the connector X1.3, pins 6-7, of the REC 501 unit. See Fig. 6 or the table in chapter "Terminals and earthing". Communication using the optional plug-in adapter The optional plug-in adapter module 1MRS 050248 or 1MRS050249 can be placed inside the REC 501 unit. The plug-in adapter consists of an RS485 interface and an interface for fibre-optic cables. This module is normally used inside the substation for the communication between the REC 501 unit and the master unit or the network control system over the RS485 interface or plastic / glass fibre-optic cables.

The plug-in adapter modules types are:

- module with RS 485 and plastic fibre cable interfaces: 1MRS050248
- module with RS 485 and glass fibre cable interfaces: 1MRS050249.

The pin connections of the connectors of the plug-in module are described in the chapter "Terminals and earthing".

Setting of the DIP switches on the adapter board:

Switch S1	Function	Setting
1	Data line terminal resistance	0 = not connected 1 = connected
2, 3	Data line pull-up and pull-down resistances	0 = not connected 1 = connected
4	RTS line terminal resistance	0 = not connected 1 = connected
5,6	RTS line pull-up and pull-down resistances	0 = not connected 1 = connected
7	Control of RTS line	0 = adapter acts as a slave 1 = adapter acts as a master
8	Function of optical interface	0 = echo off 1 = echo on

Switch S1	Function	Setting
1, 2	Communication protocol with RS 485 connection. (Must be selected because of handshaking signals) SPA communication speed	01 = SPA 10 = Other e.g. ANSI, RP570 0 = 9600 bps 1 = 4800 bps

S2 switches 4...8 are reserved for the future use.

Technical data	Mechanical dimensions	width 145 mm, height 265 mm, depth	250 mm
	Power Supply	1MRS09002x-AA	U _n = 110/120/220/ 240 Vac U _n = 110/125/220 Vdc Operating range 80265 Vac/dc
		1MRS09002x-CA	U _n = 24/36/48/60 Vdc Operating range 1880 Vdc
		Temperature-compensated battery char	ger
		- rated voltage	27,6 Vdc, @ 20°C
		- output power	15 W
		- temperature compensation Supply for radios	-0,04 V/°C
		- with batteries	12 Vdc, 7 A peak
		- without batteries	12 Vdc, 1 A peak
		Nominal power consumption	20 W
		- with optional plug-in modem	22 W
		- with optional plug-in adapter Burden of auxiliary supply under	21 W
		different operating conditions	~10 / ~100W
		Ripple in dc auxiliary voltage	Max. 12% of the DC value
		Interruption in auxiliary dc voltage	50 mg @ 110V and 100mg @ 200V
		- without reseting Internal over temperature indication	≥50 ms @ 110V and ≥100ms @ 200V 78°C (7583°C)
	Binary Inputs	5 binary inputs	
		Operating range	18265 Vdc (24/48/60/110/220 Vdc) 80265 Vac (110/120/220/240 Vac)
		Current drain	~ 225 mA
		Power consumption	< 0.8 W
		Pulse counter inputs	
		- 3 of the 5 inputs can be programmed as pulse inputs	
		- max. frequency of counters at	
		pulse ratio 50/50	025 Hz
		- counting range	09999999 pulses
	Binary Outputs	4 outputs	
	, I	Rated voltage	250 V ac/dc
		- continuous carry	5 A
		- make and carry for 0.5 s	30 A
		make and carry for 3 sbreaking capacity for dc, when	15 A
		the control circuit time-constant	
		L/R <40 ms, at 48/110/220 Vdc	
		- control circuit voltage	5A/3A/1A
		- contact material	AgCdO ₂
	Rated Frequency	fn = 50/60 Hz	
	Degree of	Surface-mounted, flush mounted	
	protection of	and rack mounted unit	IP 20
	the relay	Unit fitted in an eclosure of	
		a Distribution Terminal Unit	ID 55
		DTU 111 or DTU 115	IP 55

Environmental tests	Specified service temperature range - with external heating Transport and storage temperature range Degree of protection, IEC 529	+10+55°C -40+55°C -40+70°C IP 20 (IP 55)
	Dry heat test, According to the IEC 68 Dry cold test, According to the IEC 68 Damp heat test, cyclic, According to the Storage temperature tests, Accordance	8-2-1 (BS 2011 : Part 2.1 A) 2 IEC 68-2-30 (BS 2011 : Part 2.1 Db)
Electromagnetic Compatibility tests	IEC 1000-x IEC 255-22-14 EN 50082-2 EN 55011 EN 50081-2	
	EMC immunity test level requirements the generic standard EN 50082-2 and	
	1 Mhz burst disturbance test - according to the standard IEC 255-22-1, Class III - common mode - differential mode	2.5 kV 1.0 kV
	Electrostatic discharge test - according to the standard IEC 1000-4-2, Class III	6 kV for contact discharge 8 kV for air discharge.
	Radio frequency electromagnetic field disturbance test - according to the standards IEC 255-22-3 and IEC 1000-4-3	f = 80 1000 MHz E = 10 V/m (rms)
	Radio frequency disturbance test - according to the standard IEC 1000-4-6	10 V, f = 150 kHz 80 Mhz
	Fast transient disturbance test - according to the standards IEC 255-22-4 and IEC 1000-4-4 - AC/DC-ports - contacts	test voltage = 4 kV test voltage = 2 kV
	Surge immunity test - according to the standard IEC 1000- - AC/DC-ports	test voltage = 4 kV (common mode)
	- I/O ports	test voltage = 2 kV (diff. mode) test voltage = 2 kV (common mode) test voltage = 1 kV (diff. mode)
	- battery charger and radio supply	test voltage = 0,5 kV (common mode) test voltage = 0,5 kV (diff. mode)
	Electromagnetic emission tests - test is performed according to standa - emission level is specified in standard	
	Mains terminal disturbance voltage (C - emission level allowed in the standard	
	Electromagnetic radiation disturbance - emission level allowed in the standard	1 EN 50081-2 is for REC501.

CE-approval	Comply with EMC Directive 89/336/EEC and with LV Directive 73/23/EEC
Insulation tests	 Dielectric tests the insulation tests is performed in accordance with the IEC 60-2 (BS 932: Part 2) and IEC 255-5 (BS 5992 : Part 3). test data: test voltage 2 kV, 50 Hz, 1 min. Impulse voltage test an impulse voltage test according IEC 255-5, with 5 kV unipolar impulses, wave form 1,2/50 ms, source energy 0.5 Joule. Insulation resistance measurements the insulation resistance is measured according to the IEC standard 255-5. isolation resistance ≥100 MΩ 500 Vdc.
Mechanical Tests	Mechanical tests acc. to IEC-standards: Vibration tests (sinusoidal), acc. IEC 255-21-1 class I Shock and bump test, acc. IEC 255-21-2 class I Seismic tests, acc IEC 255-21-3 class I
Data	Interface, connector X2.2 - RS-232 connection - SPA or other communication protocol bus, selectable - data transfer rate for the SPA bus is 4800/9600 bps - data transfer rate for the other communication protocol is 300/600/1200/4800/9600/14400 bps - serial communication cable, 1MRS120500 - serial communication parameters: - SPA protocol in use - number of data bits, 7 - number of stop bits, 1 - parity, even - baudrate, 9.6 kilobauds as a default Connectors with optional plug-in modem module: Interface connector X1.1 - RJ-12 connector for public telephone line Interface connector X1.2 - RS-232 connector - configuration with PC and any terminal software by using AT-Hayes commands Interface connector X1.3 - screw terminal connector for radio and leased lines - radio's transmitter keying - supply voltages to the radio device Connectors with optional plug-in communication adapter module: Interface connector X1.1 - RS-485 connection Interface connector X1.2 and X1.3 - fiber optic interface - for plastic fibre cable, 1MRS050248 - for glass fibre cable, 1MRS050249

Configuration and Paramatri- zation tools	SMS 010 tool CAP 5xx, Configuration and Programming tool Any termial emulator with SPA parameters		
Event recording	All events are registered: Reason, Time, Date 30 lates events are recorded		
Control functions	12 pcs disconnectors or equivalent objects Heating resistor		
Condition monitoring	Batteries Modem unit Disconnector(s) Pressure of SF6 gas		
Measurements	Temperature of the enclosure Battery voltage	-40+60°C, ±3°C 1535 Vdc, ±3%	
Communication protocols	SPA bus protocolANSI X3.28 HD, Refer to Protocol Description 1MRS750750-MUM ENRP570,Refer to Protocol Description 1MRS750751-MUM ENIEC 870-5-101,Refer to Protocol Description 1MRS750779-MUM ENMODBUS,Refer to Protocol Description 1MRS750780-MUM ENDNP 3.0,Refer to Protocol Description 1MRS750781-MUM EN		
Self supervision	Automatic test sequences - RAMs - ROMs - EEPROMs - I/Os - Output relay coils		
Additional general data	Weight of the unit 3,1 kg - 3,3 kg with optional plug-in communication adapter - 3,5 kg with optional plug-in modem		
Applicable manuals	Technical Reference Manual Optional plug-in modem: - operator's Manual - engineering manual Protocol Descriptions: - ANSI X3.28 HD - RP570 - IEC 870-5-101 - MODBUS - DNP 3.0	1MRS750568-MUM EN 1MRS750577-MUM EN 1MRS750720-MUM EN 1MRS750750-MUM EN 1MRS750751-MUM EN 1MRS750779-MUM EN 1MRS750780-MUM EN 1MRS750781-MUM EN	

Commissioning

The REC 501 unit can be surface-mounted or flush-mounted. Figures 17 and 18 show the di-

mensions of the cases and the space needed for surface mounting and flush mounting.

Mounting of the case

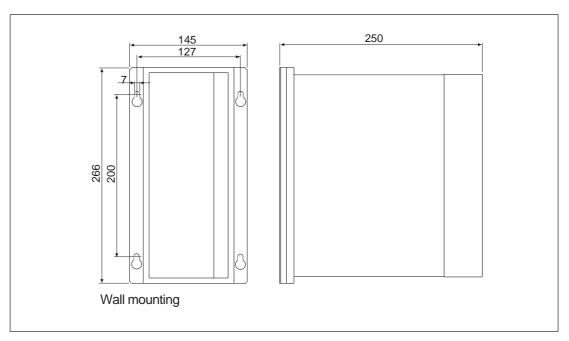


Fig. 17. Surface mounting case.

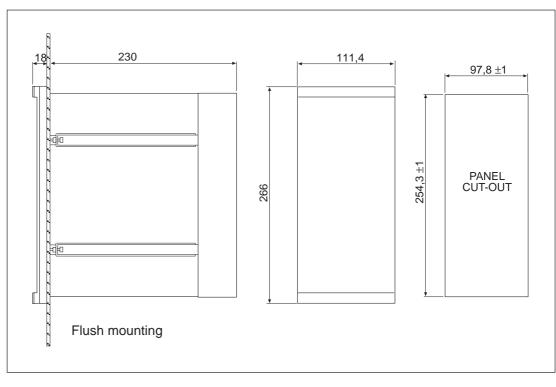


Fig. 18. Flush mounting case.

Auxiliary supply, digital inputs and output relay voltages	Before connecting the auxiliary voltage and in- put / output voltages, it should be checked that the operative voltage is in the range specified in technical data. The auxiliary voltage range is	marked on the unit. The input voltage range is invariably 1880 Vdc or 80265 Vac/dc. The maximum voltage to be used on the outputs is 250 Vac/dc.
Wiring	The wiring has to be made in accordance with the requirements for the specific application, and by connecting the unit as described in the	chapters "Connection diagram" and "Terminals and earthing". National and local safety regula- tions must always be followed.
Configuration of the unit	The connection of the application must be checked before configuring and programming the REC 501 unit. The input and output con- figuration and the settings for different appli- cations are explained in chapter "Function de- scription". The address for the REC 501 unit can be a SPA address and a station address. The SPA address is needed when the unit is used as a SPA slave together with other SPA devices, e.g. for the control of switches in the station. In this case it	is not necessary to program the station address. The SPA address can be programmed locally or remotely using parameter V200. The station address is required when the REC 501 unit is used for the remote control of a sec- ondary substation using one of the network control protocols. Then the SPA address re- quired for local or remote programming of the unit must be programmed as well. The param- eter V210 can be used for programming.
Testing after installation	After installation the unit should be tested with the settings used in normal service. If necessary, a more comprehensive test can be done.	The tests are usually performed as secondary tests. Then the REC 501 unit is disconnected from the primary equipment. The input and output circuits are recommended to be checked separately.
Configuration example	Various configurations of the REC 501 appli- cation with different kinds of protocols are de-	scribed at the end of chapters where the proto- col used is explained.
Maintenance and testing	 When used under the conditions mentioned in the section "Technical data", the REC 501 unit is practically maintenance-free because it includes no parts or components subjected to abnormal physical or electrical wear. When the environmental conditions differ from those specified, as to temperature and humidity, or when the atmosphere around the unit contains chemically active gases or dust, the unit should be visually inspected in association with the functional testing of the I/Os. The visual inspection should focus on the following things: Signs of mechanical damage to the case and terminals of the unit Dust inside the case; remove carefully with compressed air Signs of corrosion on terminals, case or inside the unit 	In the event of malfunction or, if the operating values considerably differ from those specified, the REC 501 unit should be given a proper overhaul. Minor measures can be taken by the customer but any major repair involving the electronics has to be made by the manufacturer. Please contact the manufacturer or his nearest representative for further information about checking, overhaul and testing of the unit. Note! The remote monitoring and control unit REC 501 is a measuring instrument and should be handled with care and protected against moisture and mechanical stress, especially during transport.

Trouble-shooting

General

In the event of malfunction of the REC 501 unit, the items listed in the table below should be checked:

Disturbances	Possible reasons	Corrective actions
The control signal does not reach the object to be controlled	Internal SGF software switches are incorrectly programmed.	Check the SGF settings of the unit by using the programming tool.
	The possible remote/local control switch is in the local position and blocks remote control.	Turn the switch into remote position.
	The m.c.b. of the actuator has tripped.	Switch the m.c.b. to ON position and check that there is no short circuit.
	The disconnector/switch is externally locked or there are some other problems with these.	Check the situation in the station and, remove the locking, if possible.
	Problems with the contactor logic of the controlled object.	Check the contactor logic circuits.
No connection to the REC 501 of a secondary substation	Station supply voltage is missing, m.c.b. of the batteries has tripped or is in OFF position.	Switch the m.c.b. to ON position and check that there is no short circuits.
	Incorrect settings of REC 501.	Check and change the setting, e.g. communication speed, parity, addresses, other communication parameters, and check the trouble-shooting instructions in the modem manual.
	Failure in communication device or electronics.	Check the communication device and the connection.
Station to be controlled without auxiliary supply	Interruption in electricity supply.	Wait until electricity returns.
without auxiliary supply	M.c.b. of the unit supply is tripped or in OFF position.	Switch the m.c.b. to ON position and check that there is no short circuits.
	The fuse F1 on the PSC board is defect.	Switch off the auxiliary supply of the REC 501. Remove the connector terminal. Check the personal ESD protection, open the front plate of the unit and remove the PSC board. Check the position of fuse F1 in Fig. 19. Exchange the fuse. Always use the recommended fuse size and type. Replace all the parts in their original places and switch on the supply. Note ! Local electrical safety regulations must always be followed !
No connection after a control operation.	Batteries are too empty or the lifetime is ending.	Wait until the internal charger has charged the batteries or exchange them.

Disturbances	Possible reasons	Corrective actions
Battery failure information to Network control system.	Fuse F2 (8 A) on the PSC board is defect.	Switch off the auxiliary supply of the REC 501. Remove the connector terminal. Check the personal ESD protection, open the front plate of the unit and remove the PSC board. Check the position of the fuse F2 in Fig. 19. Exchange the fuse. Always use the recommended fuse size. Replace all parts in their original places and switch on the supply. Note ! Local electrical safety regulations must always be followed !
	Batteries are discharged or the lifetime of the battery is ended.	Wait until the internal charger charges the batteries or exchange the batteries.
No connection to the REC 501 and the green indication LED on the front is blinking at 2 Hz frequency.	The self-supervision of the unit has indicated an internal software or hardware fault.	Switch OFF and ON the auxiliary supply. Check if the fault disappears. If not, read the internal fault code para- meter V169 using the pro- gramming tool. Contact the local ABB Service for repair. Always state the fault code.
No connection to the REC 501 and the green indication LED on the front is dark.	No power supply from auxiliary voltage or batteries.	Check the supplies and the m.c.b. Check the position of the fuses F1 and F2 in Fig. 19
	If the supplies are OK and there are still problems with the communication of the unit.	Switch OFF and ON the auxiliary supply. If the fault persists, contact the local ABB Service for repair. Always state the fault code.

In most fault situations it is recommended to visit the substation to check the situation.

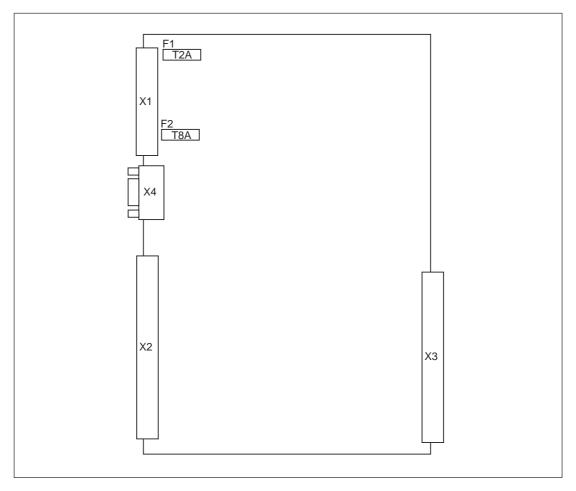


Fig. 19. Fuses F1 and F2 on the PSC board.

Fault codes

The REC 501 unit is provided with auto-diagnostics which continuously supervises the function of the microprosessor, its program execution and the electronics. When the self-supervision system has detected a permanent fault in the unit, the green IRF LED on the front panel starts blinking. All controls of the outputs of the unit are automatically disabled and the unit generates a fault code that indicates the nature of the fault.

Fault code	Fault description
4	Faulty output relay.
20	Unknown software reset performed.
22	Tasking error.
30	Faulty program memory (ROM).
50	Faulty program memory (RAM).
51	EEPROM CRC error.
52	Counter write error.

Modem

Regular initialization is made to check the condition of the optional plug-in modem and the external modem. The REC 501 unit reinitializes the modem even though there is no successful communication within a certain programmed period.

If the internal or external modem does not start operating or it stops, check that the initialization string parameter V221 to the modem is correct. The reinitialization parameter is described in chapter "Communication parameters". Should the initialization string be correct, read the trouble-shooting instructions in the concerned modem manual. For the optional plug-in modem use manual 1MRS750577-MUM.

Communication parameters

Enforced programming parameters The programming cable forces the REC 501 unit into the programming mode by earthing the freeze pin of connector X2.2. This action does not change the parameters visibly, it only

changes them internally. After removing the programming cable all the parameters entered will be valid. This operation facilitates the parameterization of the unit.

Data	Parameter	Enforced values
Unit's SPA address	V200	1
Data transfer rate	V201	9.6 kBd
Parity	V230	even
Data bits	V231	7 data bits

Remote Communication Parameters

Data	Channel	Parameter	Data direction	Values	Default
Selection of active protocol (not valid at parameterization)	0	V202	R,W	0 = SPA protocol 1 = remote protocol	0
Station address Data transfer rate of the remote protocol*	0 0	V210 V211	R,W R,W	0255 0.3; 0.6; 1.2; 4.8; 9.6 or 14.4 kBd	255 1.2
CTS delay RTS keep up delay	0 0	V213 V214	R, W R, W	0255 = 02550 ms 0255 = 02550 ms	3 1

* Note!

Selection of the data transfer rate for the SPA communication is described in chapter "Control parameters".

Data Channel Parameter Data Values Default direction 0 = 2/4-wire leased line 0 Connection mode 0 V220 R,W 1 = switched line Initialization string V221 R,W 40 ASCII characters 0 empty for the modem Dialling string for V222 R,W 20 ASCII characters 0 empty the modem Hang-up string for 20 ASCII characters 0 V223 R,W empty the modem Modem diagnostic V224 R,W 0 - 255 min 0 min 0 interval

Note!

Communication parameters based on certain protocols are explained at the end of the protocol description in question.

Modem Communication Parameters

SPA communication

Input events

Code	Channel	Event	Number representing the event	Default mask value
E1	0	Input I1 activated	1	0
E2	0	Input I1 deactivated	2	0
E3	0	Input I2 activated	4	0
E4	0	Input I2 deactivated	8	0
E5	0	Input I3 activated	16	0
E6	0	Input I3 deactivated	32	0
E7	0	Input I4 activated	64	0
E8	0	Input I4 deactivated	128	0
		Event mask V155 for inputs		0

Code	Channel	Event	Number representing the event	Default mask value
E9	0	Input I5 activated	1	1
E10	0	Input I5 deactivated	2	1
E11	0	Battery voltage low	4	1
E12	0	Battery voltage normal	8	1
E13	0	Power supply overheated	16	1
E14	0	Power supply temperature normal	32	1
E15	0	Auxiliary supply disconnected	64	1
E16	0	Auxiliary supply reconnected	128	1
	•	Event mask V156 for inputs		255

Code	Channel	Event	Number representing the event	Default mask value
E17 E18 E19 E20	0 0 0	Intermediate counter 1, value received Intermediate counter 2, value received Period counter 1, value received Period counter 2, value received	1 2 4 8	0 0 0
E20	0	Event mask V157 for counters	0	0

Output events

Code	Channel	Event	Number representing the event	Default mask value
E30	0	Output O1 activated	1	0
E31	0	Output O1 deactivated	2	0
E32	0	Output O2 activated	4	0
E33	0	Output O2 deactivated	8	0
E34	0	Output O3 activated	16	0
E35	0	Output O3 deactivated	32	0
E36	0	Output O4 activated	64	0
E37	0	Output O4 deactivated	128	0
		Event mask V158 for outputs	L	0

Open/close events

Code	Channel	Event	Number representing the event	Default mask value	
E40	12	Change in status: $xx \rightarrow 10$ (open)	1	1	
E41	12	Change in status: $xx \rightarrow 01$ (close)	2	1	
E42	12	Change in status: $xx \rightarrow 11$ (undefined)	4	1	
E43	12	Change in status: $xx \rightarrow 00$ (undefined)	8	1	
E44	12	Open command executed	16	1	
E45	12	Close command executed	32	1	
	Event mask V159 for open/close events 63				

General events

Code	Channel	Event	Number representing the event	Default mask value
E50 E51	0 0	Restart of microcontroller Overflow of event buffer	*	-

Explanations:

- 0 not included in event reporting
- 1 included in event reporting
- * no code number
- cannot be programmed

The REC 501 unit has an event fuffer. The size of the buffer is 30 latest event.

The overflow of event buffer E51 is caused during too long communication breaks. This E51 and other general events has to be acquit by reseting the status of the unit, as described in the document "SPA-BUS COMMUNICA-TION PROTOCOL", 34 SPACOM 2 EN.

Input parameters

Data	Channel	Parameter	Data direction	Values
Temperature inside enclosure	0	I1	R	-40+60 °C
Battery charging voltage	0	I2	R	24.030.0 V dc
Object status	12	I3	R	0 = undefined (inputs 00)
				1 = closed
				2 = open
				3 = undefined (inputs 11)
Input X2 (1/2)	0	I4	R	0 = not active
		T-	D	1 = active
Input X2 (3/2)	0	I5	R	0 = not active
$\mathbf{I} = \mathbf{N} 2 \left(\frac{1}{2} \right)$	0	IC	л	1 = active
Input X2 (4/5)	0	I6	R	0 = not active 1 = active
$I_{\text{point}} V2 (6/5)$	0	17	R	1 = active 0 = not active
Input X2 (6/5)	0	1/	K	1 = active
Input X2 (7/8)	0	I8	R	0 = not active
	0	10	IX .	1 = active
Power supply temperature	0	I9	R	0 = normal
	Ŭ			1 = overheated
Auxiliary supply	0	I10	R	0 = connected
				1 = disconnected
Battery voltage at testing	0	I11	R	0 = normal
				1 = low
Heating	0	I12	R	0 = not active
				1 = active
Closed status of an object	12	I13	R	0 = not closed
		T = (1 = closed
Open status of an object	12	I14	R	0 = not open
				1 = open

Output parameters

Data	Channel	Parameter	Data direction	Values
Output1	0	O1	R	0 = not active
Output2	0	O2	R	1 = active 0 = not active 1 = active
Output3	0	O3	R	0 = not active 1 = active
Output4	0	O4	R	0 = not active
Output1	0	O11	R,W	1 = active 0 = not active
Output2	0	O12	R,W	1 = active 0 = not active
Output3	0	O13	R,W	1 = active 0 = not active
Output4	0	O14	R,W	1 = active 0 = not active
Enable output relay test	0	O21	R,W	1 = active 0 = not enabled 1 = enabled

Setting parameters

Data	Channel	Parameter	Data direction	Values	Default
Open pulse length	12	S1	R,W	0.05100.0 s	0.50 s
Close pulse length	12	S2	R,W	0.05100.0 s	0.50 s
Heating limit	0	S3	R,W	-25+15°	+10°
Switchgroup SGF1	0	S4	R,W	0255	8
Switchgroup SGF2	0	S5	R,W	0255	16
Switchgroup SGF3	0	S6	R,W	0255	36
Switchgroup SGF4	0	S7	R,W	0,1,2,4,8	2
Switchgroup SGF5	0	S8	R,W	0,1,2,4,8	1
Switchgroup SGF6	0	S9	R,W	0255	0
Intermediate pulse counting	12	S10	R,W	160 min	10
time (generates events E17 and E18)					
Period pulse counting time	12	S11	R,W	3060 min	60
(generates events E19 and E20)					
Čumulative or wrap-around					
pulse counting	12	S12	R,W	0 = wrap-	
				around after	
				the specified	
				time	
				1 = cumulative	0

Commands and recorded value

Data	Channel	Parameter	Data direction	Values	Default
Open select (secured operation)	12	V1	R,W	0 = not selected 1 = selected	0
Close select (secured operation)	12	V2	R,W	0 = not selected 1 = selected	0
Execute selected open/close operation	12	V3	W	1 = execute	-
Cancel selected open/close operation	12	V4	W	1 = cancel	-
C/O-operation counter (Stored every 3 hours)	12	V5	R,W	010000	0
Minimum battery voltage	0	V6	R	0.028.0	28.0
Reset minimum battery voltage	0	V7	W	1 = reset	-
Activate battery test	0	V8	W	1 = Battery testing	-
Reset pulse counter values	12	V9	W	$1 = \text{reset}^{O}$	-
Intermediate counter value	12	V11	R	0999 999	-
Period counter values	12	V20 V22 V24 : V138	R	0999 999	-
Time stamps for the storage of registers V20, V22, V24 V138	12	V21 V23 V25 : V139	R	DD HH.MM	-

Control parameters

Data	Channel	Parameter	Data direction	Values	Default
Event mask for inputs (1 enable 0 disable)	0	V155	R,W	0255	0
Event mask for inputs	0	V156	R,W	0255	255
Event mask for counters	0	V157	R,W	015	0
Event mask for outputs	0	V158	R,W	0255	0
Event mask for open/close	12	V159	R,W	063	63
Activate self-supervision	0	V165	R,W	1 = self- supervision output activated 0 = normal	
Format EEPROM	0	V167	W	2 = format	-
Internal fault code	0	V169	R	1255	-
Unit's SPA address code	0	V200	R,W	1255	1
SPA data transfer rate	0	V201	R,W	4.8 or 9.6 kBd	9.6 kBd
Program version of the PSC3/PSC4 unit	0	V205	R	1MRS1180xxx	-
Program version of the MOD module	0	V206	R	XXXXXXX	-
Type designation of the unit	0	F	R	REC 501	
Reading of event register	0	L	R	Time, channel number and event code	
Re-reading of event register	0	В	R	Time, channel number and event code	
Reading of unit status information	0	С	R	0 = normal state 1 = unit been subject to automatic reset 2 = overflow of event register 3 = events 1 and 2 together	
Resetting of unit status	0	С	W	0 = reset	
Time	0	T	R,W	0.00059.999 s	
Date and time	0	D	R,W	YY-MM-DD HH.MM;SS.mss	

Configuration example

This chapter gives an example of how to set different parameters when:

- the unit communicates using the SPA protocol
- one input is used for a pulse counter by counting periods of 1 hour
- one object is controlled
- local remote switch is used
- heating control is used
- IRF output is used

At least the following parameters have to be set:

- Functional parameters
 - S5= 64 Input 4 is programmed for pulse counter 1
 - S8= 8 Output 3 is programmed for heating control
 - S7= 4 Output 4 is programmed for IRF output
 - 1S11= 60 Counting time set to 60 minutes
- Event mask
- V157= 4 Event masks programmed to correspond to the need of counter 1.

2V159= 0 Event masks programmed to correspond to the need of counter 1.

All others parameters settings can be left as defaults.

ABB Oy Substation Automation P.O.Box 699 FIN-65101 VAASA Finland Tel. +358 (0)10 22 11 Fax.+358 (0)10 22 41094 www.abb.com/substationautomation