

ABB PA OGP A&ES & Politecnico di Milano DEI – November 28th, 2012 mcT 2012 - Tecnologie per il petrolchimico Safety, Performance & Innovation in Oil&Gas Rotating Machines

Market Analysis Compressors and Pumps

- About 2000 new compressor and 5000 new pumps installed every year for Oil, Gas & Petrolchemical market (from 2010 data)
- 30% of the market are motor & VSD driven
- New LNG plants & new pipelines (Asia, Brazil, Russia and North America)

- Compressing and pumping are expensive processes
- Main source of inefficiency:
 - Old machinery
 - Sub-optimal control schemes
 - Bad tuning & maintenance

The Power of Integration Process and Power Automation together

The Power of Integration Process and Power Automation together

The Power of Integration Process and Power Automation together

Integrated Process and Power Automation

Traditional control solution for rotating equipments A fragmented architecture

Lesson Learnt From Traditional Solution....

Lesson Learnt ...to an Integrated Solution

DEIC Drive & driven equipment integrated control system

- The integrated solution providing all the functionalities required for the driving and driven rotating machine
- Features
 - Complete libraries of control and protection funtions
 - Supervision & monitoring on the assets
 - Open & modular structure
 - Easy integration with other ABB or third party systems
 - Small footprint
 - Reliable and safe hardware certified by TÜV Rheinland
 - Software designed according to IEC61131 standard

DEIC Drive & driven equipment integrated control system

- The integrated solution providing all the functionalities required for the driving and driven rotating machine
- Features
 - Complete libraries of control and protection funtions
 - Supervision & monitoring on the assets
 - Open & modular structure
 - Easy integration with other ABB or third party systems
 - Small footprint
 - Reliable and safe hardware certified by TÜV Rheinland
 - Software designed according to IEC61131 standard

DEIC Drive & driven equipment integrated control system

granting best performance

and high safety level

Designed to respond to highest and strictest safety requirements, up to SIL3 level

© ABB Group December 4, 2012 | Slide 11

functional, no PC required

ENI Norge Goliat FPSO

- Reservoir: Oil & Gas
- Start production: late 2013
- Production: more than 100 000 oil-drums per day, 3.9 million cubic meter gas per day and store 950 000 oil drums
- Client / Country: ENI Norge
- Duration: 2010 2014
- Scope of Work: Feed, Electrification, Instrumentation, Control, Advanced Solution, Telecommunication
- ENI Norge requirement:
 - Minimize the number of interfaces for Electrical, Instrumentation, Control and Telecommunication systems
 - Support during FEED
 - Service Support

GOLIAT Automation Architecture

© ABB Group December 4, 2012 | Slide 13

GOLIAT Automation Architecture

Not just Integration The other areas of Innovation

Main areas of innovation:

- Anti-Surge & Drive-assisted Anti-Surge Control
- Advanced Load Sharing
- Performance Monitoring System

Compressor instabilities Surge

- Gas compressors are unstable
 in certain operating conditions
- Unstable operation can be easily depicted in
- "Surge" is the most dangerous instability, related to low flow, high discharge and/or low suction pressures
- Surge's pressure and flow oscillations cause high compressor's blades thermal and mechanical stress
- The stress can be intense and cause blades breaking
- Maximum efficiency stands very close to surge limit

Compressor instabilities Anti Surge Control

Antisurge control

🚵 AS_AntiSurgeType1 : AntiSurge					_ 🗆 🗙
AS_AntiSurgeType1					
Status	Settings	Flow S	Suction D	ischarge	Mode
		Out	MV	SP	
0	Flow	53.3	4257.9	4257.4	m3/h
\bigcirc	Suction pressure	52.3	5.0	0.0	barg
\bigcirc	Discharge pressure	52.3	35.0	40.0	barg
\bigcirc	Low flow	0.0			
\bigcirc	I/O check	0.0			
0	Minimum opening	0.0	0.0	0.0	
		 	•	•	Ŗ

Includes all "standard" anti-surge control functionality:

- Control-line control
- Surge protection by ensuring 100% valve signal before reaching the surge line
- Suction/discharge pressure control
- Gain-scheduling and valve linearization functionality
- Fast control cycle time (10ms)

Provides a fully open and integrated antisurge control system:

- Reduces installation, commissioning, training, and maintenance costs
- Providing the operators with the same look and feel of the other control blocks

Anti surge control The contribute of VSD

- Variable Speed Drives (VSD) as driver of compressors and pumps is the new growing trend
- This solution enhances availability and energy efficiency of the system
- The only solution for subsea applications

- VSD have a response time of few milliseconds to a step speed reference change
- Gas turbines have a response time of several seconds
- This rapidity can pave the way to new surge protection schemes

Anti surge control The contribute of VSD

- Standard Anti-Surge Control suffers the "slow" speed of the anti-surge valve
- Surge can take few fractions of seconds to appear.
- VSD are significantly faster than the ASV and can help the compressor to stay safe while the ASV opens.
- Coordinated control between VSD and ASV is a challenge in compressor protection systems

Advanced Load Sharing What is Load Sharing Optimization

Advanced Load Sharing What is Load Sharing Optimization

Advanced Load Sharing A new approach

Currently the load balance between parallel compressors is computed by:

- Same flow
- Same distance from surge

Advanced load sharing is based on optimization of machines performance taking into account:

- Performance maps
- Compressors aging
- Field information

The optimization parameters are adapted as the system changes by using learning algorithms.

Advanced Load Sharing Pilot project

TOTAL TURBOCOMPRESSOR SHAFT POWER [MW]

- The advanced load sharing is being tested in a pilot site in a gas pumping station of the TransMed pipeline network
- The commissioning of the system has started in October 2012
- After the commissioning of the system, the fuel gas consumption of the compression station has reduced by 3%
- The estimated fuel gas saving is of 1,5 million cubic meters per year
- ...and the best has yet to come !!!

Performance monitoring

- The Performance Monitoring System provides continuous monitoring of the status of rotating equipment (Compressors, Pumps, Turbines, ..)
- The actual status, measured from the field and the expected status, defined by a model of the rotating machine
- A vibration analyzer (Analyst) monitors the status of the bearings and of the shaft supported by
- This tool provides a powerful help for:
 - Machine online status monitoring
 - Predictive maintenance
 - Fault diagnosis

Power and productivity

