Basic configuration overview

Displays and controls

Recorder Faceplate

Controller Faceplate

Bar Graph (Indicates deviation of measured value from set point)

Currently Displayed Channel

Process Variable Alarm Status

Alarm Status Remote Set Point in Use

Sideways Scroll

Advance to next page

Page 1

Page 2

Down Scroll

Advance to next frame

Frame 1

Frame 2

Raise and Lower

Select

Adjust

Parameter Value

Parameter X

Y

Z

Function Key

Alarm acknowledge; Auto-tune; Pen lift/ lower; Profile Control; Local/Remote or ‘Home’ – See Programming Guide, ‘Advanced Configuration’

Pen Lift

(Recorder Only) Raises and lowers the chart pen.

Auto/Manual

(Controller Only) Switches between automatic and manual control modes.

Note. All programming is carried out using the faceplate keys and displays.

ABB Limited Measurement & Analytics
Howard Road, St. Neots, Cambridgeshire, PE19 8EU, UK
Tel: +44 (0)870 600 6122 | Fax: +44 (0)1480 217948
Email: enquiries.mp.uk@gb.abb.com

www.abb.com/measurement

© ABB 2019 | Specifications subject to change without notice.

ABB MEASUREMENT & ANALYTICS | IM/C1900-QC

C1900 recorder and recorder/controller

Quick reference guide

Operating Guide

Alarms

Acknowledge 16, 36
LED status 16, 36
Auto-tune 21
Enable/disable 23
Setup 23
Status 23
Auto/manual select 12
Chart 4
Control 37
Cascade 12
Heat/cool 11, 12
On/off 26, 30
Output adjust 13
Standard 10, 26
Displays & controls 5, 6, 34, 35
Fault-finding 29
Auto-tune diagnostics 24
Input error messages 9
Power up error codes 2
Manual tuning 38
Pen 8, 9
Pen – fitting 4
Process variable 13
Profile control 12
Program select 19
Reset 19
Skip segment 19
Status 15
Security Access

Configuration level 18
Password 18
Tune level – access 18
Self-test 2
Setpoint

Bias 14
Ratio 14
Type selection 14
Time/date 15
Totalizer 17, 37

Programming Guide

Alarms .. 10
Analog outputs 21
Auto/manual select enable 45
Bargraph increment 45
Chart set up 9
Configuration 37
Control 39
Control 48
Cascade 12
Heat/cool 11, 12
On/off 26, 30
Digital outputs 19
Function keys 49
Inputs (PV, RSP, P-FB) 4
Assign 53
Logic equations 50
Logic inputs 23, 46, 47
Passwd 24
Pen .. 8, 9
Manual tuning 28
Functions 52
Pen – fitting 4
Scale adjust 26, 27
Position feedback – see Inputs
Process variable – see Inputs
Profile control 12
Program select 19
Reset 19
Skip segment 19
Status 15
Security Access

Configuration level 18
Password 18
Tune level – access 18
Self-test 2
Setpoint

Bias 14
Ratio 14
Type selection 14
Time/date 15
Totalizer 17, 37

Installation Guide

Accessories 2
Electrical Installation 6
Siting 3
Mounting/Dimensions 4
Power Supplies 12
Inputs/Outputs 7

Note. Refer to the relevant page of the Programming Guide for further information.

ABB Measurement & Analytics

C1900 recorder/controller

Credits

ABB Measurement & Analytics

IM/C1900-QC Rev E 03.2019

Specifications subject to change without notice.

ABB Measurement & Analytics

C1900 recorder and recorder/controller

Quick reference guide

Operating Guide

Alarms

Acknowledge 16, 36
LED status 16, 36
Auto-tune 21
Enable/disable 23
Setup 23
Status 23
Auto/manual select 12
Chart 4
Control 37
Cascade 12
Heat/cool 11, 12
On/off 26, 30
Output adjust 13
Standard 10, 26
Displays & controls 5, 6, 34, 35
Fault-finding 29
Auto-tune diagnostics 24
Input error messages 9
Power up error codes 2
Manual tuning 38
Pen 8, 9
Pen – fitting 4
Process variable 13
Profile control 12
Program select 19
Reset 19
Skip segment 19
Status 15
Security Access

Configuration level 18
Password 18
Tune level – access 18
Self-test 2
Setpoint

Bias 14
Ratio 14
Type selection 14
Time/date 15
Totalizer 17, 37

Programming Guide

Alarms .. 10
Analog outputs 21
Auto/manual select enable 45
Bargraph increment 45
Chart set up 9
Configuration 37
Control 39
Control 48
Cascade 12
Heat/cool 11, 12
On/off 26, 30
Digital outputs 19
Function keys 49
Inputs (PV, RSP, P-FB) 4
Assign 53
Logic equations 50
Logic inputs 23, 46, 47
Passwd 24
Pen .. 8, 9
Manual tuning 28
Functions 52
Pen – fitting 4
Scale adjust 26, 27
Position feedback – see Inputs
Process variable – see Inputs
Profile control 12
Program select 19
Reset 19
Skip segment 19
Status 15
Security Access

Configuration level 18
Password 18
Tune level – access 18
Self-test 2
Setpoint

Bias 14
Ratio 14
Type selection 14
Time/date 15
Totalizer 17, 37

Installation Guide

Accessories 2
Electrical Installation 6
Siting 3
Mounting/Dimensions 4
Power Supplies 12
Inputs/Outputs 7
Setting analog input links

Warning. Ensure that the unit is isolated from all power supplies before removing I/O boards.

Fig. 1 Input Links – Channel 1

Fig. 2 Input Links – Channels 2 to 4 (If fitted)

Configuring analog inputs

- **Select Channel** – Choose the input channel to be configured.
- **Input type** – _A_P (mA), _VOL_t (V), _mV_t (mV), _TC_P (Thermocouple), _RTD_P (RTD) and LO OH (< 750 Ohms) HI OH (> 750 Ohms).
- **Linearizer:** If using a thermocouple set to J, K, B, N, E, T, S, A. Other options are 5/2, 3/2, SQRT, RTD or NONE.
- **Range High:** For a 4 to 20mA current input, set this to 20.00, or for 0 to 5V set to 5.0. The frame does not appear if TC_P or RTD_P are used.
- **Range Low:** Set the low end of the electrical input range, e.g. 4.00 for 4 to 20mA, or 0.0 for 0 to 5V.
- **Units:** Select NONE if the input is not temperature, otherwise select dEG F or dEG C.
- **Engineering Range High:** Select the highest engineering value that will be displayed when the input is at its maximum value – e.g. for an engineering range of 0 to 300.0 °F set to 3000.
- **Engineering Range Low:** Select the lowest engineering value that will be displayed when the input is at its minimum value – e.g. for an engineering range of 0 to 300.0 °F set to 0.0.
- **Broken Sensor Drive:** Determine pen action when the input signal fails: NONE – pen follows failed input; UP – pen driven to full scale; a_t – pen driven to zero scale.
- **Fault Detection Drive:** Determine maximum input travel outside engineering range before an error is detected. E.g. for a 0 to 300°F range, a 10% fault level will trigger at 330°F.
- **Input Filter:** Adjust the instrument response time from 0 to 60 seconds in one second increments to reduce pen jump & dampen out noisy signals.

Information. The alphabet used to display page and parameter titles is as follows:

- A – R
- B – b
- C – c
- D – d
- E – e
- F – f
- G – g
- H – h
- I – i
- J – j
- K – k
- L – l
- M – M
- N – n
- O – o
- P – p
- Q – q
- R – r
- S – s
- T – t
- U – u
- V – v
- Y – y

DEC-Pt: Select the decimal point position for the process variable, e.g. 300.0.

ENG-HI: Select the highest engineering value that will be displayed when the input is at its maximum value – e.g. for an engineering range of 0 to 300.0 °F set to 3000.

ENG-LO: Select the lowest engineering value that will be displayed when the input is at its minimum value – e.g. for an engineering range of 0 to 300.0°F set to 0.0.

Broken Sensor Drive: Determine pen action when the input signal fails: **NONE** – pen follows failed input; **UP** – pen driven to full scale; **a_t** – pen driven to zero scale.

Fault Detection Drive: Determine maximum input travel outside engineering range before an error is detected. E.g. for a 0 to 300°F range, a 10% fault level will trigger at 330°F.

Input Filter: Adjust the instrument response time from 0 to 60 seconds in one second increments to reduce pen jump & dampen out noisy signals.
C1900
Circular chart recorder and recorder/controller

Measurement made easy

For more information
Further publications are available for free download from:

www.abb.com/recorders

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet C1900 Circular chart recorder</td>
<td>DS/C1900R-EN</td>
</tr>
<tr>
<td>Data Sheet C1900 Circular chart recorder/controller</td>
<td>DS/C1900RC-EN</td>
</tr>
<tr>
<td>Quick Reference Guide C1900 recorders</td>
<td>IM/C1900-QR</td>
</tr>
<tr>
<td>Quick Reference Guide C1900 recorder and recorder/controller</td>
<td>IM/C1900-QC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Search for or click on</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Guide C1900 Circular chart recorders</td>
<td>IM/C1900-OGC</td>
</tr>
<tr>
<td>Programming Guide C1900 Circular chart recorders</td>
<td>IM/C1900-PGC</td>
</tr>
<tr>
<td>Operating Guide C1900 Circular chart recorder/controllers</td>
<td>IM/C1900-OGC</td>
</tr>
<tr>
<td>Programming Guide C1900 Circular chart recorder/controllers</td>
<td>IM/C1900-PGC</td>
</tr>
</tbody>
</table>
Electrical safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use'. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

- **Warning** – refer to the manual for instructions
- **Caution** – risk of electric shock
- **Protective earth (ground) terminal**
- **Earth (ground) terminal**
- **Direct current supply only**
- **Alternating current supply only**
- **Both direct and alternating current supply**
- **The equipment is protected through double insulation**

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

The documentation for the C1900 series of circular chart recorders is shown in Fig. 1.1. The Standard Manuals, including the data sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.

This manual includes an Installation Record which should be completed as a log of the electrical installation. The record is useful when carrying out initial instrument programming and can be retained for future reference.

Fig. 1.1 C1900 Documentation
2.1 Accessories – Fig. 2.1

- Pen Capsule: 1 to 4 (depending on no. of channels)
- Charts: (Pack of 3)
- Keys: (door lock versions only)

A – Standard Accessories

- Pipe-mounting Kit: C1900/1713
- Wall-mounting Kit: C1900/1712 (kit contains 4 sets of items shown)
- Case-to-Panel Gasket: C1900/0149 (see Note below)

B – Optional Accessories

Note. If panel-mounting to NEMA 4X standard is required, a continuous bead of suitable silicon sealant must be applied between the case flange and the panel. Do not use the optional gasket.

Fig. 2.1 Accessories

2.2 Checking the Code Number – Fig. 2.2

2.2.1 Non-upgradeable Version

Note. The 1901J is a basic, non-upgradeable single pen recorder. This version is not fitted with an analog output, relay, transmitter power supply unit or digital inputs and no additional modules can be fitted. The full identification code is shown below.

<table>
<thead>
<tr>
<th>C1900 single pen recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical code – standard</td>
</tr>
<tr>
<td>Option module – none</td>
</tr>
<tr>
<td>Options – none</td>
</tr>
<tr>
<td>Door lock – not fitted</td>
</tr>
<tr>
<td>Power supply – 115V AC</td>
</tr>
<tr>
<td>Modules fitted in module positions 2 to 6 – none</td>
</tr>
<tr>
<td>Special Settings – company standard</td>
</tr>
</tbody>
</table>

Fig. 2.2 Checking the Code Number
3 MECHANICAL INSTALLATION

3.1 Siting – Figs 3.1 and 3.2

- **A – Close to Sensor**
- **B – At Eye-level Location**
- **C – Avoid Vibration**

Fig. 3.1 General Requirements

Caution

Select a location away from strong electrical and magnetic fields. If this is not possible, particularly in applications where mobile communications equipment is expected to be used, screened cables within earthed (grounded) metal conduit must be used.

3.2 Mounting – Figs. 3.3 to 3.5

Dimensions in inches (mm)

Fig. 3.3 Overall Dimensions

A – Within Temperature Limits
- 0°C (32°F) Min.
- 55°C (131°F) Max.

B – Within Humidity Limits
- 0 to 80% RH
- 0 to 95% RH

C – Use Screened Cables

Fig. 3.2 Environmental Requirements
3.2.1 Wall-/Pipe-Mounting – Fig. 3.4

A – Wall-mounting (Optional)

1. Position mounting brackets to suit horizontal pipe-mounting or vertical pipe-mounting as required
2. Secure mounting brackets to case using bolts and washers
3. Drill suitable holes (4)
4. Mark fixing centers on wall (4)
5. Secure instrument to wall using suitable fixings

B – Pipe-Mounting (Optional)

1. Secure mounting brackets (4) to case
2. Secure using two nuts and washers
3. Fit "U" bolts into brackets
4. 2 ¼ in. (60mm) OD horizontal or vertical pipe

Fig. 3.4 Wall-/Pipe Mounting
3.2.2 Panel Mounting – Fig. 3.5

Dimensions in inches (mm)

1. **Mark four mounting holes**
 - Cut hole in panel (see Note 1 below)
 - 14.00 (355.6)
 - 14.19 (360.4)
 - 1.70 (43.2)
 - 0.64 (16.25)

2. **Drill four suitable holes**
 - 4 holes 0.281 dia. or tap for 1/4 in. thread

3. **Locate instrument in cut-out**
 - Optional gasket (see Note 2 below)

4. **Secure in panel using four bolts, washers and nuts**

5. **Cut hole in panel (see Note 1 below)**

Minimum Cut-out Dimensions

- 0.20 (5.0)
- 13.7 (348.0) maximum
- 14.6 (371.0) maximum
- 0.15 (3.8) minimum

Maximum Cut-out Dimensions

- 0.15 (3.8) minimum

Notes.

1. The instrument can be inserted into a panel cut-out of any size between the minimum and maximum dimensions illustrated, provided the cut-out is positioned centrally relative to the fixing holes. If the panel cut-out is larger than the maximum, a locally manufactured adaptor plate will be required.

2. If panel-mounting to NEMA 4X hosedown standard is required, a continuous bead of suitable silicon sealant **must** be applied between the case flange and the panel. **Do not** use the optional gasket.

Fig. 3.5 Panel Mounting
4 ELECTRICAL INSTALLATION

Warnings.
- To comply with Underwriter Laboratories (UL) and Canadian Standards Association (CSA) certification, route signal leads and power cables in earthed (grounded), flexible metal conduit. Use the Position 1 protective ground stud (NOT the terminal module ground stud) to ground the flexible metal conduit.
- Instruments not fitted with the optional internal on/off switch and fuse must have a disconnecting device such as a switch or circuit breaker conforming to local safety standards fitted to the final installation. It must be fitted in close proximity to the instrument within easy reach of the operator and must be marked clearly as the disconnection device for the instrument.
- Remove all power from supply, relay and any powered control circuits and high common mode voltages before accessing or making any connections.
- Use cable appropriate for the load currents. The terminals accept cables up to 14AWG (2.5mm²).
- The instrument and all inputs and outputs conform to Mains Power Input Insulation Category II.
- All connections to secondary circuits must have basic insulation.
- After installation, there must be no access to live parts e.g. terminals.
- Terminals for external circuits are for use only with equipment with no accessible live parts.
- If the instrument is used in a manner not specified by the Company, the protection provided by the equipment may be impaired.
- All equipment connected to the instrument’s terminals must comply with local safety standards (IEC 60950, EN601010-1).

Notes.
- Always route signal leads and power cables separately.
- Use screened cable for signal inputs and relay connections. Connect the screen to the earth (ground) stud – see Fig. 4.10.
- The terminal blocks can be removed from the main PCB when making connections – see Fig. 4.1. Before removing a module, note its position.
- If wall- or pipe-mounting to NEMA 4X hosedown standard is required, suitable cable glands must be used to prevent water ingress.

Fig. 4.1 Removing Terminal Block Assembly

1. Push to release handle
2. Pull handle to release door...
3. ...and open door
4. Loosen captive screw
5. Swing chart plate forward
6. Unplug Module
7. Release Clip
8. Remove Terminal Block Assembly
4.1 Identifying the Input/Output Modules – Fig. 4.2
To gain access to the modules, open the door and chassis – see Fig. 2.2. There are six module positions as shown in Fig. 4.2.

4.2 Channel Connections
Channel 1 connections are made directly to the terminal block mounted on the motherboard.

Other Channel connections are made to standard I/O modules, fitted in positions 2, 3 or 4 – see Fig. 4.2.

⚠️ Warning. The maximum channel to channel voltage (between any 2 channels) must not exceed 500V DC.

Notes.
• Module positions can also be used for additional I/O modules (module types 1 and 2) for use with math functions.
• The module type is marked on the component side of the PCB.

Fig. 4.2 Module Positions and Functions
4.2.1 Selecting the Analog Input Type(s) – Figs. 4.3 and 4.4
Plug-in links are used to select the input type:
Channel 1
PL1 & PL8 on the main p.c.b. (Fig. 4.3)
Channels 2 to 4
PL1 & PL3 on the module (Fig. 4.4)

Table 4.1 Thermocouple Compensating Cable

<table>
<thead>
<tr>
<th>Type of Thermocouple</th>
<th>BS1843</th>
<th>ANSI MC 96.1</th>
<th>DIN 43714</th>
<th>BS4937 Part No.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni-Cr/Ni-Al (K)</td>
<td>Brown</td>
<td>Blue</td>
<td>Red</td>
<td>Red Green Green</td>
</tr>
<tr>
<td>Ni-Cr/Cu-Ni (E)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Violet White Violet*</td>
</tr>
<tr>
<td>Nichrome/Nisil (N)</td>
<td>Orange</td>
<td>Blue</td>
<td>Orange</td>
<td>Pink White Pink</td>
</tr>
<tr>
<td>Pt/Pt-Rh (R and S)</td>
<td>White</td>
<td>Blue</td>
<td>Green</td>
<td>Orange White Orange*</td>
</tr>
<tr>
<td>Pt-Rh/Pt-Rh (B)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Grey White Grey*</td>
</tr>
<tr>
<td>Cu/Cu-Ni (T)</td>
<td>White</td>
<td>Blue</td>
<td>Blue</td>
<td>Brown White Brown*</td>
</tr>
<tr>
<td>Fe/Con (J)</td>
<td>Yellow</td>
<td>Blue</td>
<td>Black</td>
<td>Red Blue Blue</td>
</tr>
<tr>
<td>Fe/Con (DIN 43710)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Blue/Red Blue Blue</td>
</tr>
</tbody>
</table>

* Case Blue for intrinsically safe circuits

Fig. 4.3 Selecting the Input Type (Main Board)

Fig. 4.4 Selecting the Input Type (I/O Modules)
4.2.2 Voltage and Current – Fig. 4.5
Input impedances:
- Low voltage (mV) >10MΩ
- Voltage >10MΩ
- Current (mA) 100Ω

4.2.3 2-wire Transmitter Input – Fig. 4.5
Power for the transmitter is supplied by terminal 6.

Note. The voltage across terminals 4 and 6 is 20V (nominal). This is due to internal voltage drops across a shunt resistor and measurement circuitry.

4.2.4 Thermocouple – Fig. 4.5
Use correct compensating cable between the thermocouple and the terminals – see Table 4.1 (previous page).

Automatic cold junction (ACJC) is incorporated but an independent cold (reference) junction may be used.

4.2.5 Resistance Thermometer (RTD) – Fig. 4.5
If long leads are necessary it is preferable to use a 3-lead resistance thermometer.

If 2-lead resistance thermometers are used each input must be calibrated to take account of the lead resistance.

4.2.6 Logic Inputs – Fig. 4.5
The two logic inputs accept either volt-free (switch) or TTL (5V) input types and can be used for remote switching of many recorder functions, e.g. chart stop/go, alarm acknowledgment, totalizer reset etc. Refer to the Programming Guide, IM/C1900–PGR or IM/C1900–PGC.

4.2.7 Analog Output – Fig. 4.5

4.2.8 Relay Output – Fig. 4.5

Relay specification:
- Type: single pole changeover
- Voltage: 250V AC 250V DC
- Current: 5A AC 5A DC
- Loading (non inductive): 1250VA 50W
- Isolation, contacts to earth: 2kV RMS

Fig. 4.5 Channel Connections

Note. Not applicable on Type 2 Modules.

Recommended diode:
Diode forward voltage > 0.8 V @ 20 mA or use 2 x 1N4001 general purpose diodes in series

Fig. 4.5 Channel Connections
4.2.9 Motorized Valve – Fig. 4.6
A motorized valve with or without feedback requires 2 relays (common and normally open terminals) to drive the valve in either direction. Any two relays can be allocated for this function. Fig. 4.6 A shows two possible combinations.

Note. For valves with position feedback using low voltage (mV), voltage (V) or current (C), refer to Fig. 4.5 B, C and F for connections.

A – Standard Feedback Slidewire Configuration

B – Alternative Feedback Slidewire Configuration

Notes.
1. Type 1 and type 2 modules have one relay output, therefore two modules are required.
2. Link must be connected at valve drive end, not at the controller terminals.

Fig 4.6 Motorized Valve Connections (using feedback slidewire)
4.3 Module Connections

4.3.1 Standard I/O or Analog + Relay (Module Types 1, 2 and 7) – Fig. 4.5
The connections are the same as Channel connections to the main board. Refer to Section 4.2.

4.3.2 Four Relay Module (Module Type 3) – Fig. 4.7

1
2
3
4
5
6
7
8
9
10
11
12

Normally Closed
Normally Open
Common

Relay 1
Relay 2
Relay 3
Relay 4

Fig. 4.7 Four Relay Module Connections (Module Type 3)

4.3.3 Eight Digital Inputs or Outputs (Module Types 4 and 5 respectively) – Figs. 4.8 and 4.9
A plug-in link is used to select the board’s function; digital inputs or digital outputs – see Fig. 4.8. The maximum current drain from each TTL output must not exceed 5mA.

Fig. 4.8 Selecting the Digital Module Function (Module Types 4 and 5)

Fig. 4.9 Eight Digital Inputs or Outputs Connections (Module Types 4 and 5)
4.4 Power Supply Connections – Fig. 4.10

Note. Recorders manufactured before June 2005 are fitted with a Mainboard that is not equipped with a universal power supply. Ensure the supply voltage selector switch is set correctly and the appropriate fuse is fitted – see Fig 4.11.

Warning. If the optional internal power switch and fuse are not fitted, an external disconnection device and fuse must be fitted – see also **Warnings** on page 6.

Before making any electrical connections, see Warnings on page 6

Notes.
1. Fuse rating:
 - 500mA (20 x 5mm) Type T
2. Ensure that the Earth (Ground) lead is longer than the Line and Neutral leads.

Fig. 4.10 Power Supply Connections
Position 1
Module Type 1

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>3</td>
<td>7 C, 8 L1, 9 L2, 10 NO, 12 NC</td>
<td>12 NC</td>
</tr>
<tr>
<td>2 –</td>
<td>4, 5, 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not available on Module Type 2

Position 2
Module Type (Tick Box) 1 **2**

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>3, 4, 5, 6</td>
<td>7 C, 8 L1, 9 L2, 10 NO, 12 NC</td>
<td>12 NC</td>
</tr>
<tr>
<td>2 –</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not applicable on Module Type 2

Position 3
Module Type (Tick Box) 1 **2**

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>3, 4, 5, 6</td>
<td>7 C, 8 L1, 9 L2, 10 NO, 12 NC</td>
<td>12 NC</td>
</tr>
<tr>
<td>2 –</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not applicable on Module Type 2

Position 4
Module Type (Tick Box) 1 **2** 6 **7**

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Analog Input</th>
<th>Logic Inputs</th>
<th>Relay Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 +</td>
<td>3, 4, 5, 6</td>
<td>7 C, 8 L1, 9 L2, 10 NO, 12 NC</td>
<td>12 NC</td>
</tr>
<tr>
<td>2 –</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not available on Module Type 2
...NOTES
C1900
Circular chart recorder/controller

Measurement made easy

For more information
Further publications are available for free download from:
www.abb.com/recorders

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
<th>Data Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1900</td>
</tr>
<tr>
<td></td>
<td>Circular chart recorder/controller</td>
</tr>
<tr>
<td></td>
<td>DS/C1900RC-EN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Quick Reference Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1900</td>
<td>Circular chart recorder/controller</td>
</tr>
<tr>
<td></td>
<td>IM/C1900-QC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Installation Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1900</td>
<td>Circular chart recorder and recorder/controller</td>
</tr>
<tr>
<td></td>
<td>IM/C1900-INS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Programming Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1900</td>
<td>Circular chart recorder/controller</td>
</tr>
<tr>
<td></td>
<td>IM/C1900-PGC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Operating Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1900</td>
<td>Circular chart recorder and recorder/controller</td>
</tr>
<tr>
<td></td>
<td>IM/C1900-MOD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>User Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1900</td>
<td>Circular chart recorder and recorder/controller</td>
</tr>
<tr>
<td></td>
<td>IM/C1900-ADV</td>
</tr>
</tbody>
</table>
Electrical safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use'. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

- **Warning** – refer to the manual for instructions
- **Caution** – risk of electric shock
- Protective earth (ground) terminal
- Earth (ground) terminal
- Direct current supply only
- Alternating current supply only
- Both direct and alternating current supply
- The equipment is protected through double insulation

Health and safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.
1 INTRODUCTION

The documentation for the C1900 series of circular chart recorders is shown in Fig. 1.1. The Standard Manuals, including the specification sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.
2 SETTING UP

2.1 Instrument Power-up – Fig. 2.1 and 2.2

Caution. Ensure that all connections, especially to the earth stud, are made correctly.

a) Check that the input sensors are installed correctly.
b) Check that the pen(s) are installed correctly – see Fig. 2.1.
c) Switch on the supply to the instrument, any power-operated control circuits and the input signals. Wait for the pens to settle.

Note. On power-up, the pens are moved to an off-chart position for automatic referencing. Pen chatter may occur on those pens nearest the reference position. This is a normal function of the instrument.

d) The start-up sequence shown in Fig. 2.2 is displayed on faceplate 1 when the supply is first switched on.

Note. If the true time line event option is fitted, the violet event pen records on the same time line as the red pen, but on the outer edge of the chart.

Fig. 2.1 Checking the Pen(s) Installation

Fig. 2.2 Instrument Displays at Start-up
2.1.1 Power-up Error Codes
If any of the power-up tests fail (see Fig. 2.2), error codes are displayed to identify the fault. Refer to Fig. 2.3 for error code interpretations.

Configuration and battery-backed RAM errors

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>No error</td>
<td>None</td>
</tr>
<tr>
<td>R</td>
<td>Main program data stored in non-volatile memory on main board is corrupt</td>
<td>Check and correct program data</td>
</tr>
<tr>
<td>b</td>
<td>Control Date stored in non-volatile memory on main board is corrupt</td>
<td>Check and correct control program data</td>
</tr>
<tr>
<td>c</td>
<td>Timer set up stored in battery-backed RAM is corrupt</td>
<td>Check and correct data in Set Up Timer Page*</td>
</tr>
<tr>
<td>d</td>
<td>Maths set up stored in battery-backed RAM is corrupt</td>
<td>Check and correct data in Set Up Maths Page*</td>
</tr>
<tr>
<td>E</td>
<td>Ramp/soak profile set up stored in battery-backed RAM is corrupt</td>
<td>Check and correct data in Profile Control and Profile Program Pages</td>
</tr>
<tr>
<td>F</td>
<td>Totalizer set up in battery-backed RAM has been corrupt</td>
<td>Check and correct data in Set Up Totals Page*</td>
</tr>
</tbody>
</table>

* Refer to the Advanced Software Options Manual

Calibration errors

<table>
<thead>
<tr>
<th>Code</th>
<th>Error</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>_</td>
<td>No error</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Main board</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>Module in position 2</td>
<td>Power down and then up again. If fault remains, contact the local Service Organisation.</td>
</tr>
<tr>
<td>3</td>
<td>Module in position 3</td>
<td>Analog input and/or analog output calibration is corrupt</td>
</tr>
<tr>
<td>4</td>
<td>Module in position 4</td>
<td>Power down and then up again. If fault remains, contact the local Service Organisation.</td>
</tr>
<tr>
<td>5</td>
<td>Module in position 5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Module in position 6</td>
<td></td>
</tr>
</tbody>
</table>

Note. Acknowledging the Error Code clears the error state but does not rectify the fault. After acknowledging the error, carry out the relevant action detailed in the above tables.

Fig. 2.3 Power-up Error Codes
2.2 Fitting the Chart – Fig. 2.4

1. Raise pens

2. Lift the chart clamp and remove the chart

3. Fit new chart ensuring that it is beneath the pen lifter bars

4. Locate chart under guides

5. Rotate chart to align the timeline with the red pen (see also Fig. 2.1)

6. Lower the chart clamp

Fig. 2.4 Fitting the Chart

2.3 Fitting the Pen Capsule(s) – Fig. 2.5

1. Raise pens

2. Gently pull the arm off the bracket – see Note

3. Remove spent capsule

4. Fit new pen capsule ensuring that the arm locates in the pen capsule slot

5. Remove cap

6. Ensure that the arm is positioned above its lifter bar

7. Slide pen assembly onto the appropriate bracket until it clips into place – see Note

Note. Take care not to bend the arms during removal and refitting, as pen clashing may result.

Fig. 2.5 Fitting the Pen Capsules
The displays, LED indicators and operation/programming controls are located on the faceplates on the front panel of the instrument – see Fig 3.1.

3.1 Displays and LED Indicators – Fig. 3.1
The displays comprise 2 rows of 6 characters.

At the top of each programming page (the page header) both displays are used to describe the particular page selected.

When parameters within the selected page are viewed, the upper display shows the parameter and the lower display shows the value or setting for that parameter.

Alarm and Channel states are indicated by separate LEDs on the front panel faceplate(s) – see Fig. 3.1.

Table 3.1 Character Set

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | Y |
| R | b | C or c | d | E | F | G | H | I | J | K | L | M | N or n | O or o | P | Q | R | S | t | U | V | Y |

Control Faceplate

Record Faceplate

Information.
An 11 segment **Bar Graph Display** indicates deviation of the measured value from the set point.

- **AL** – States of alarms on controller channel
- **RMT** – On if the Remote set point in use
- **AT** – On if the instrument is in Automatic tuning
- **MAN** – On if the instrument is in Manual control mode

Information.

<table>
<thead>
<tr>
<th>AL1</th>
<th>AL2</th>
<th>AL3</th>
<th>AL4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel 1</td>
<td>Channel 2</td>
<td>Channel 3</td>
<td>Channel 4</td>
</tr>
</tbody>
</table>

- **Status of process variable alarms**
- **CH1** – Channel 1
- **CH2** – Channel 2
- **CH3** – Channel 3
- **CH4** – Channel 4

Current channel displayed

Fig. 3.1 Location of Displays, Controls and LED Indicators
Used to program all Channels

Instrument Identification

Fig. 3.2 Faceplate Combinations and Product Codes
3.2 Use of Controls – Fig. 3.3(a) to (g)

Frame 1
- Return from any frame

Frame 2
- Frame 1
- Frame 2
- Frame 3
- Frame 4

Frame 3
- Page 1
 - Frame 1
 - Frame 2
 - Frame 3

Frame 4
- Page 2
 - Frame 1

Fig. 3.3(a) Advancing to Next Page

Fig. 3.3(b) Moving Between Parameters

Fig. 3.3(c) Adjusting a Parameter Value

Fig. 3.3(d) Selecting a Parameter Choice

Fig. 3.3(e) Lifting/Lowering the Pens

Fig. 3.3(f) Selecting Programmable Functions

Fig. 3.3(g) Auto/Manual Key Functions

Lift/Lower pen on alternate operations

Note. If ‘Auto Pen Drop’ is selected in the Set Up Chart Page, BASIC CONFIGURATION LEVEL, the pens return automatically to their operating positions after a five minute delay.

Information. The ⬆️ key is programmed in the Set Up Function Keys Page, ADVANCED CONFIGURATION LEVEL.

- Acknowledge any alarm
- Auto-tune
- Pen lift/lower
- Profile ramp soak
- Local/Remote

or

Return operator to top of Operating Page.

Note. The ⬆️ key returns the instrument display to the start of the operating page only when the display is at the top of any page.

Auto/Manual key – used for selecting Automatic or Manual mode on alternate operations.

When manual mode is selected the displays revert automatically to the process variable values and control output or valve position (if position-proportioning or boundless motorized valve control is selected at Control Type in the Set Up Control Page).

Note. Continued pressure on the ↑️ and ↓️ keys causes the rate of change of the displayed value to increase. To make small adjustments operate the keys momentarily.

Note. Continued pressure on the ↑️ and ↓️ keys causes the rate of change of the displayed value to increase. To make small adjustments operate the keys momentarily.
Note. The Alarm Acknowledge pages are displayed only if an alarm is active.

Fig. 4.1 Summary of Operating Levels for Different Faceplate Types
The instrument has dedicated Operating Pages – see Fig. 4.1. These pages are used for general monitoring of the process measurements and are not affected by the security system which inhibits access to the programming and control pages only – see Section 5.5 on page 18.

4.1 Input Error Messages – Fig. 4.2

<table>
<thead>
<tr>
<th>Message</th>
<th>Reason</th>
<th>Action</th>
</tr>
</thead>
</table>
| AdFAIL | Internal analog to digital converter system hardware has failed. | Check the input/output board is located correctly in its socket.
• Power down and up.
If the ‘AdFAIL’ message is still present, contact the local Service Organisation. |
| F–INPt | Process variable input is above or below fault detection level. Process variable input exceeds the limits for the linearizer selected. | Check input source for possible broken sensor.
• Check input connections.
• Check input link position.
• Check input configuration in Set Up Input Page. |
| F–rSpPt | Remote set point input is above or below fault detection level. Remote set point input exceeds the limits for the linearizer selected. | |
| F–PFb | Position feedback input is above or below fault detection level. | |

Note. Error messages are cleared automatically when the fault condition no longer exists.

Fig. 4.2 Input Error Messages Displayed in the Operating Page
Note. The Alarm Acknowledge pages are displayed only if an alarm is active.
Note. The Alarm Acknowledge pages are displayed only if an alarm is active.

Fig. 5.2 Summary of Operating Level Frames (Heat/Cool Control)
5.1 Operating Page Introduction

5.1.1 Set Point Tracking
With set point tracking enabled (Set Points Page, CONTROL CONFIGURATION LEVEL) the local set point value tracks the process variable when the controller is in Manual control mode. In this mode of operation the set point limits do not apply. If the set point value is outside its limits when Automatic control mode is selected, the local set point remains outside its limits and can only be adjusted in one direction, towards its limits. Once inside the limits they apply as normal.

With remote set point tracking enabled, the local set point tracks the remote set point value when in the remote set point mode. In this mode of operation the local set point limits do not apply. If the set point value is outside its limits when the local set point value is selected, the local set point remains outside its limits and can only be adjusted in one direction, towards its limits. Once inside the limits they apply as normal.

5.1.2 Auto/Manual Transfer
All auto-to-manual transfers are bumpless. If the local set point is used and set point tracking is enabled, all manual-to-auto transfers are bumpless, since the set point is always at the same value as the process variable. Without set point tracking enabled, the response following a manual-to-auto transfer depends on the control settings. With an integral action setting the output is ramped up or down to remove any process variable offset from the set point (providing the process variable is within the proportional band). If the integral action is off, the output may step to a new value when the controller is transferred back to automatic control mode.

With remote set point tracking enabled, the control set point switches automatically from remote to local when manual mode is selected.

5.1.3 Profile Control – Fig. 5.3

![Fig. 5.3 Overall Profile Example](image)

5.1.4 Cascade Control
The master in a cascade set-up is always channel 1 and the slave is always channel 2. If the slave is switched to manual control with cascade set point selected, the slave’s set point reverts automatically to local set point.

Ratio and bias are applied to the master output value so that the slave’s cascade set point value = Ratio x Master Output + Bias.

With Output Tracking enabled – if the slave is switched to manual mode or local set point, the master is switched automatically to manual. The manual output of the master tracks the local set point value of the slave. The value fed back to the master takes into account any ratio and bias settings.

With Output Tracking disabled – switching the slave to manual mode or local set point does not affect the operation of the master.

To return to full cascade control carry out the following procedure:

a) Switch the Slave controller into automatic control mode.
b) Switch the Slave Controller set point to 'Cascade'.
c) Switch the Master controller to automatic control mode (if currently in Manual)

5.1.5 Heat/Cool Control – Fig. 5.4
When in automatic control mode both the heat and cool outputs are turned off when in the Output Off Hysteresis Band. In manual control mode the Output Off Hysteresis Band has no effect. If the PID output is within the Off Hysteresis Band when the controller is returned to auto control mode, the Off Hysteresis Band has no effect until either the PID output goes outside the band or becomes equal to the Crossover Value.
5.2 Operating Page Displays

Process Variable

Control Set Point
The set point in use is displayed (Local, Remote, Dual or Cascade). If the Local or Dual set point is displayed it can be adjusted using the ▲ and ▼ keys, providing adjustment is enabled in the Set Up Operating Page, CONTROL CONFIGURATION LEVEL – refer to the Programming Guide.

Process Variable

Control Output Value (%)
To adjust the output value manually: select Manual control mode using the MAN key ('MAN' LED is illuminated) and then use the ▲ and ▼ keys to set the required value (between 0 and 100%).

Process Variable

Manual Reset
Use the ▲ and ▼ keys to set a value which eliminates any offset from the set point (between 0 and 100%). Manual reset only appears if enabled in the Set Up Operating Page, CONTROL CONFIGURATION LEVEL and the Integral Action Time in the OPERATOR LEVEL is ‘OFF’.

Continued on next page.

Process Variable

Valve Status and Valve Position (%)
- W – valve stopped
- O – valve opening
- C – valve closing

The valve position is displayed as a percentage of its full travel position (not displayed on boundless controllers). To adjust the valve position manually: select Manual control mode using the MAN key ('MAN' LED is illuminated), then use the ▲ and ▼ keys to set the required valve position (▲ key opens the valve and ▼ key closes the valve). With neither key pressed the valve is stopped.

PID Output (%)
To adjust the output value manually: select Manual control mode using the MAN key ('MAN' LED is illuminated), then use the ▲ and ▼ keys to set the value required (between 0 and 100%).

Heat Output (%)
This frame is not displayed if the PID output is below the Crossover Value. The output can be adjusted using the ▲ and ▼ keys when in the Manual control mode.

Cool Output (%)
This frame is not displayed if the PID output is above the Crossover Value. The output can be adjusted using the ▲ and ▼ keys when in the Manual control mode.
...5 CONTROL OPERATION

5.2 Operating Page Displays

Process Variable

Temperature Units
The units are set in the BASIC CONFIGURATION LEVEL. Display is blank if ‘NONE’ is selected.

Set Point Type Selection
The Balance displays show the difference between the Local and Second set point values (remote, dual or cascade) when switching from local to second set point, i.e.

\[
\text{Balance} = \text{Second set point} - \text{Local set point}
\]

If the difference is too great, press the \(\text{ } \) key to return to the Control Set Point frame and adjust the Local set point to obtain an acceptable difference.

If remote set point tracking is enabled (Set Points Page, CONTROL CONFIGURATION LEVEL), the local set point tracks the remote set point when the remote set point is selected.

The \(\text{ } \) key (if programmed in the ADVANCED CONFIGURATION LEVEL) can also be used for Local/Second set point selection, but transfer takes place without display of the Balance value, i.e.

Remote (or Cascade) Set Point Ratio
The remote (or cascade) set point input (in engineering units) is multiplied by the ratio to obtain the control set point value, i.e.

\[
\text{Remote (or Cascade) Set Point Value} = \text{Input} \times \text{Ratio} + \text{Bias}
\]

Use the \(\text{ } \) and \(\text{ } \) keys to set the ratio required, between 0.010 and 9.999 in 0.001 increments.

Remote (or Cascade) Set Point Bias
The bias value is added to the remote (cascade) set point value (see previous frame).

Use the \(\text{ } \) and \(\text{ } \) keys to set the bias required.

The bias can be set to either a positive or negative value (in engineering units).

Continued on next page.
5 CONTROL OPERATION...

...5.2 Operating Page Displays

Profile Program Selected

Profile Status:
- STOP – waiting for run command, profile is inactive
- r-A-P – program is running and ramping
- SOAK – program is running and soaking
- HOLD – program is running and soaking
- H-HOLD – holdback hold in hold, due to guaranteed ramp/soak hysteresis values being exceeded
- r-HOLD – retort function has placed controller in hold
- r-r-A-P – retort function is ramping set point back to soak value
- END – current program is completed but digital input signal is in 'Run' state.

Current Profile Segment

Time Remaining
Time remaining until the end of the current segment (in minutes or hours), depending on the Ramp/Soak Time Units set in the Profile Control Page, Advanced Software Options Manual. 'h' is displayed if hours are selected.

Use the ▲ or ▼ keys to add or subtract the extended time from the soak time. Refer to the Profile Control Page. If the extended soak value is set to '0' the Time Remaining feature is disabled.

Repeat Count
Remaining number of times the current profile is to be repeated.

Current Time
Time (displayed using 24hr clock)

Current Date
Day and Month
5.3 Alarm Acknowledge Page

5.3.1 Alarm Indications – Fig. 5.5
The definitions for alarm states (on, off or flashing) are detailed in Fig. 5.5.

5.3.2 Acknowledging Alarms
Unacknowledged alarms can be acknowledged from the faceplates on the front of the instrument in two ways:

In the Operating Level – by pressing the [] key at any frame (providing the key is programmed for this function – see Section 5.1 in the Programming Manual). The [] key acknowledges all alarms from either faceplate.

In the Alarm Acknowledge Page – by pressing the [] key – see Section 5.3.3 following.

Note. In the Alarm Acknowledge Page Channel 1 alarms can be acknowledged only from faceplate 1. Channel 2 alarms (if applicable) can be acknowledged only from faceplate 2.

Control Faceplate

No LED illuminated indicates no alarms active and the Alarm Acknowledge Page is not displayed in the Operator Level.

A flashing LED indicates that an unacknowledged alarm is active.

A constant LED indicates that all active alarms have been acknowledged.

Fig. 5.5 Alarm LED Indications

5.3.3 Using the Alarm Acknowledge Page

No Alarm Active
No LED indicators illuminated.

Alarm Active
AL LED indicator flashing, indicating an active alarm on this channel.

Use the [] key to return to top of Alarm Acknowledge Page.

Alarm Acknowledge Page
Use the [] key to advance to next frame.

Alarm Identity
Upper display: shows the alarm identity and type.

Lower Display: shows the trip level of the alarm identified in the upper display.

Acknowledge Alarm
Use the [] key to acknowledge the alarm. When the alarm is acknowledged, ‘ACKNGd’ is displayed and a constant LED indicates the acknowledged alarm.

If there are more active alarms on the selected channel the LED continues to flash until all alarms for this channel have been acknowledged.
5.4 Totals Page Displays
This page is omitted from both faceplates if the Totalizer Option is not fitted. The page is also omitted from faceplate 1 if Total 1 is set to OFF and from faceplate 2 if Total 2 is set to OFF – refer to the Set Up Totals Page in the Advanced Software Options Manual.

Page Header – Totals Page.

Front Panel (Batch) Flow Total 1 (2)
The batch flow total is calculated from process variable 1 (2).

The flow total can be reset in the next frame if Reset Enable in Set Up Totals Page is set to 'ENbL – Y'.

Counter Reset
The Front (Batch) Flow Total can be reset to the Preset Value in Set Up Totals Page if required.

Select ‘ t1 YES ‘ to reset the counter (‘ t1 ‘ indicates Flow Total 1).

Note. If the Counter Reset is disabled in Set Up Totals Page, the counter reset frame is omitted.

Counter Stop/Go
Select ‘ GO ‘ to start the counter or ‘ STOP ‘ to stop it.

Note. If the Counter Stop/Go is disabled in Set Up Totals Page, the frame can be viewed but not altered. If a digital signal is assigned to Totalizer Stop/Go, an active digital signal sets the counter to GO and the Counter cannot be stopped from the front panel.
5.5 Access to Configuration Levels
A security system is used to prevent tampering with the program parameters by utilizing a Tune password and a configuration password. A Tune password can be assigned to controller faceplates giving access to that faceplates controller settings.

A Configuration password gives access to all controller settings and programming pages – refer to the Programming Manual.

5.5.1 Security Code Page
Set the security code to the correct Tune or Configuration password using the and keys and use the key to advance to the controller settings or other programming levels (OPERATOR, BASIC CONFIGURATION, CONTROL CONFIGURATION and ADVANCED CONFIGURATION).

The passwords are programmed in the Access Page in the BASIC CONFIGURATION LEVEL.
5.6 Profile States Page

Page Header – Profile States

The key can be programmed to jump to this frame (Set Up Function Keys Page, ADVANCED CONFIGURATION LEVEL). If the key is used, the display reverts automatically to the first frame of the Operating Page when leaving this page.

Program Select
Select the program to be run (1 to 10).

Profile Status (Ramp Soak)

- **rS-OFF/ON** (Ramp Soak Run/Off) select **rUN** to start selected program. Press the key to activate.
- **rS-run/hold** (Ramp Soak Run/Hold) select **HOLd** to stop selected program at current level. Press the key to activate.
- **rS-Hld** (Ramp Soak Hold) program is in the hold state, either as a result of an operator hold, the controller is in manual or the holdback facility (guaranteed ramp/soak). Select run to continue running the profile if operator has stopped program. Press the key to activate.
- **rS-Hld/end** (Run/Hold End) the profile is completed, and the digital input assigned to the profile function is still in the 'Run' state. This frame is only displayed if a digital input is used to run and hold the profile.

Note. If a digital input is assigned to the run/hold function, the user is prevented from overriding the digital signal.

Profile Reset
If the profile is running and YES is selected, the profile returns to the beginning of the program and continues to run.

Note. To end a program, select **HOLd** at the Profile Status frame (see above) and then select **YES** at this frame. The local set point value takes the value of the first level of the selected program.

Skip Segment
The segment number (or End) is shown in the upper display.

- **SK.IP-F** (skip forward) – abandon current segment and start next segment.
- **SK.IP-N** (do not skip) – maintain control using current segment.
- **SK.IP-b** (skip back) – return to beginning of current segment.

For multiple skip operations, the last selection (For b) is displayed for 3 seconds before reverting to **SK.IP-N**.
5.7 Auto-tuning Introduction

Information.
- On demand user-activated tuning.
- Two types of auto-tuning – initial 'Start-up' and when close to Set Point.
- Tuning for P, PI or PID control can be selected.
- Tuning for 1/4 wave damped or minimum overshoot can be selected.
- Automatic entry of calculated control terms – unless an auto-tune error occurs.
- Error and Caution messages – indicate reason for tuning problems.

Information. The noise level of the process is monitored and then a step is applied to the control output value. The response of the process is recorded and these results are used to calculate the control terms.

Fig. 5.6 ‘Start-up’ Auto-tuning

Information. ‘At Set Point’ auto-tuning automatically calculates the PID terms based on the process reaction during an auto-tuning cycle. The controller output is manipulated to give six process oscillations which are used to determine the tuning parameters.

Fig. 5.7 ‘At Set Point’ Auto-tuning
5.7.1 Auto-tuning Page

Information on Initial Conditions.
- **'Start-up' Tuning** – the controller is placed in the Manual control mode with the control output value set to give a stable process variable at least 10% of the engineering range below the control set point.
- **'At Set Point' Tuning** – may be initialized in the automatic mode but the process variable must be close to the required set point and stable. The control output must also be stable. However, for best results the Manual control mode can be used to stabilize the output and the process value. The output must be adjusted slowly to allow process response to the change, to bring the process variable to the required control set point. The closer the process is to the set point, the more effective the auto-tuning cycle.

Page Header – Auto-tune.

The key can be programmed to jump to this frame (Set Up Function Keys Page, ADVANCED CONFIGURATION LEVEL). If the key is used, the display reverts to the first frame of the Operating Page on leaving this Page.

Auto-tune Type
The two tuning facilities ('Start-up' and 'At Set point') are used to calculate automatically the Proportional, Integral and Derivative terms required.

'Start-up' tuning is used from initial start-up or when there is a large change in set point value.

'At Set point' tuning is used when the process is close to the required set point.

Select the auto-tune type required.

Output Step Size
The output step size is a percentage of the control output.

'Start-up' Tuning – the larger the step size used the quicker the auto-tuning process is performed, but the greater the overshoot (above the calculated trip point). If too small a step size is used the response may be too slow for the auto-tuning to operate correctly. In practice, use as large a step size as can be tolerated.

'At Set Point' Tuning – the controller output changes by plus and minus the output step size from its initial starting value when auto-tuning is executed. If the output step size is too large to allow this its value is reduced.

Example – If the controller output value = 30% and the selected step size = 50%. The step size is reduced to 30%.

The Step size should be large enough so that the amplitude of the process variable excursions are at least four times larger than the hysteresis parameter to allow the best possible response data. The output step size must be small enough to avoid crossing either of the auto-tune limits (see following frames).

Set the step size required.

Continued on next page.
5 CONTROL OPERATION

5.7.1 Auto-tuning Page

Hysteresis Value
The hysteresis value is entered in engineering units and is used to determine when to change the controller output value.

‘At Set Point’ Tuning only – when the process variable crosses the hysteresis band (plus and minus the hysteresis value), the controller output changes by plus and minus the **step** value from its initial starting value. The hysteresis value should be set as small as possible but larger than the noise in the process variable signal, to allow the best possible response data.

Set the hysteresis value required (in engineering units).

Auto-tune High Limit
The process variable must be between the high and low limits when auto-tuning is activated. If the process value exceeds one of these, the auto-tuning cycle is shut off automatically by reverting to the manual control mode and returning the controller output to the value set when the auto-tuning was activated. The high and low values are the limits for cancelling auto-tune execution.

Set the value required (in engineering units), the decimal point is set automatically.

Auto-tune Low Limit
Set the value required.

Three Term Control Parameters
Select the Proportional, Integral and Derivative terms required.

Control Type
Select:
- ‘R’ for quickest response with 1/4 wave damping.
- or
- ‘B’ for quickest response with minimum overshoot.

Type A – 1/4 Wave Damping

Type B – Minimum Overshoot

Continued on next page.
5.7.1 Auto-tuning Page

Auto-tune Status/Enable
Select T_{OFF} to enable auto-tune cycle. The 'AT' (auto-tune) LED is illuminated. The time taken for completion of auto-tuning is dependent on the speed of response of the controlled process.

Note. If Auto-tune is selected it is not possible to exit the Auto-tuning Page until the auto-tune cycle is complete or ended by the operator.

Process Variable (upper display)
Control Set Point Value (lower display)
The set point is displayed for monitoring only and cannot be changed at this frame.

Process Variable (upper display)
Control Output (lower display)
The output value is displayed for monitoring only and cannot be changed at this frame.

Auto-tune Status and Enable/Disable

T_{ON} – (Auto-tune On) auto-tuning can be switched off by pressing the T_{OFF} key to select T_{OP} and then pressing the T_{END} key.

T_{UPd} – (Auto-tune Update) the auto-tune cycle is complete and the calculated terms are being written to memory.

T_{END} – (Auto-tune End) the auto-tune cycle is complete. If no failures occur during the cycle, the calculated values are loaded into memory as new control terms and the instrument returns automatically to the Operating Page. If failures or cautions occur during auto-tuning, error messages are displayed in the next frame.

Auto-tune Error Messages
If a Failure occurs the controller reverts to the manual control mode, the old control terms are retained and the auto-tune LED flashes.

If a Caution occurs the calculated control terms are loaded into memory and control continues in the automatic mode. Any errors are acknowledged when exiting this frame and the auto-tune LED flashes.

For an explanation of error messages – refer to Table 5.1 overleaf.
5.8 Auto-tune Diagnostic Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB–INT</td>
<td>The auto-tune process has selected a proportional band or integral action time above the high limits of these parameters so the high value has been used.</td>
<td>Because of the process characteristics, re-trying the auto-tuning process is unlikely to improve the calculated control parameters.</td>
</tr>
<tr>
<td>HI–LMt</td>
<td>With 'Start-up' tuning, although the control set point was >10% of the display range above the process variable, it may still be too close to allow the auto-tune facility to determine the process characteristics accurately.</td>
<td>If desired, allow the process variable to move further below the control set point (by changing the control output in the manual control mode) before re-trying 'Start-up' auto-tuning. Alternatively, use the 'At Set Point' auto-tune facility.</td>
</tr>
<tr>
<td>SP too</td>
<td>With 'At Set Point' tuning, the ratio of process oscillation to hysteresis value is too small for best results.</td>
<td>Restart auto-tune with a larger output step size or a smaller hysteresis value. Hysteresis must be at least equal to and preferably greater than process noise.</td>
</tr>
<tr>
<td>CLOSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INC-SE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAUTION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message</th>
<th>Explanation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLO</td>
<td>The process is too slow for the auto tuning to work correctly.</td>
<td>If possible, use a larger output step value.</td>
</tr>
<tr>
<td>PRCcss</td>
<td>The process variable signal is excessively noisy.</td>
<td>Check input wiring to try and find the source of the problem. If the process is changing rapidly then allow it to settle before re-trying the auto-tuning process.</td>
</tr>
<tr>
<td>NOISY</td>
<td>With 'Start-up' tuning, the process variable is <10% of the display range, below the control set point.</td>
<td>Allow the process variable to move further below the control set point before re-trying 'Start-up' auto-tuning. Alternatively, use the 'At Set Point' auto-tune facility.</td>
</tr>
<tr>
<td>PRCcss</td>
<td></td>
<td>Check input wiring to find the cause of the failure or restart auto-tuning with a smaller output step size.</td>
</tr>
<tr>
<td>SP too</td>
<td>The input failure level has been exceeded, possibly due to a broken sensors or the process has exceeded one of the auto-tune limits.</td>
<td>None.</td>
</tr>
<tr>
<td>CLOSE</td>
<td>Operator has stopped auto-tune process.</td>
<td></td>
</tr>
<tr>
<td>INPUT</td>
<td>Non-volatile memory failure while updating control parameters.</td>
<td>Re-try auto-tune, if error persists contact local Service Organization.</td>
</tr>
<tr>
<td>LIIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aborr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPdAtE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t L E</td>
<td>The auto-tune process is too slow.</td>
<td>If possible, use a larger output step value. Otherwise, for 'Start-up' auto-tuning, move the process closer to the set point, or, for 'At Set Point' auto-tuning, reduce the hysteresis value.</td>
</tr>
<tr>
<td>OUt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1 Auto-tuning Error and Diagnostic Messages
5.9 Introduction to Standard Control

Information. Proportional control gives an output that is proportional to the deviation of the process variable from the set point. The range over which the output is adjusted from 0 to 100% is called the proportional band and this is expressed as a percentage of the engineering range span.

Fig. 5.8 Proportional Control

Information. With Proportional Control (P only or P and D) the controller may stabilize the process at a value which is offset from the set point. This offset can be removed using the manual reset adjustment which effectively shifts the Proportional Band.

Fig. 5.9 Manual Reset

Information. Reverse Acting – the output decreases as the process variable increases. Direct Acting – the output increases as the process variable increases.

Fig. 5.10 Control Action
5.9 Introduction to Standard Control

Information. The integral action time is the time in which the output signal due to the integral action increases by an amount equal to the part of the output signal due to the proportional action when a constant deviation is present.

![Fig. 5.11 Integral Action Time](image)

Information. The approach band can be used to introduce the derivative term before the proportional band is reached, i.e. using settings above 1.0. This has the effect of slowing down the rate of rise. However, if the rate of rise is very slow, the introduction of the derivative term can be delayed, i.e. using settings below 1.0.

![Fig. 5.13 Approach Band](image)

Information. With the process variable changing at a constant rate, the derivative action produces a change in output proportional to this rate of change. The derivative time constant, is the time interval in which the part of the output signal due to proportional action increases by an amount (y%) equal to the part of the output signal due to derivative action (x%). The derivative acting on the process variable instead of the deviation (process variable-set point) prevents unwanted derivative action when the set point is changed.

![Fig. 5.12 Derivative Action](image)

Information. Hysteresis is used with on/off control to give acceptable control without causing the output to switch too rapidly.

![Fig. 5.14 On/Off Hysteresis](image)

5.9 Introduction to Standard Control

Information. A control offset of 0% allows early control of the output and reduces the overshoot on initial start-up. Control offset is set in the **Control Page** in the **CONTROL CONFIGURATION LEVEL** Programming Guide.

Fig. 5.15 Offset

Example shows a Cycle Time of 20 seconds

Fig. 5.16 Cycle Time

Initial Settings
- Proportional Band = 100%
- Integral Action Time = OFF
- Derivative Action Time = OFF

- Adjust the set point a small amount
- Hold the set point at the new value until the process begins to move
- Reset the set point to the original value

Observe response of process

Decrease Proportional Band

Increase Proportional Band

Note Proportional Band value (PBc)
Measure the critical cycle time (tc)

Calculate Terms

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>P</th>
<th>P+I</th>
<th>P+D</th>
<th>P+I+D</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>2 x PBc</td>
<td>2.2 x PBc</td>
<td>1.6 x PBc</td>
<td>1.6 x PBc</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>—</td>
<td>tc/1.2</td>
<td>tc/2</td>
<td>tc/2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>—</td>
<td>—</td>
<td>tc/12</td>
<td>tc/8</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5.17 Manual Tuning
5.9 Introduction to Standard Control

<table>
<thead>
<tr>
<th>Response</th>
<th>Contributions</th>
<th>Effect Of Response Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>On/Off Hysteresis</td>
<td>Helps to prevent rapid switching of output</td>
<td>Output switches too rapidly</td>
</tr>
<tr>
<td></td>
<td>Process swings too far above and below set point</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis too high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hysteresis too Low</td>
</tr>
<tr>
<td>Proportional Band</td>
<td>Stable control with the minimum offset and minimum period of oscillation</td>
<td>Stability decreases</td>
</tr>
<tr>
<td></td>
<td>consistent with stability.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• More stable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Longer period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Larger offset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Prop. Band</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/4 Decay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Prop. Band</td>
</tr>
<tr>
<td>Integral</td>
<td>Eliminates offset between Process and Set Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time for variable to return to set point increases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stability decreases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Period of oscillation increases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integral Action too High</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correct Integral Action Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integral Action Time too Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Derivative Action Time too Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum contribution not realized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Derivative Action Time Correct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Derivative Action Time too High</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2 Effect of Control Responses on Processes
5.9.1 Control Page (Standard Control)

Page Header – Control Page

- **Cycle Time** (applicable only for control using relay output)
 This setting can be ignored for analog control outputs.
 Set the required cycle time for time proportioning control, from 1.0 to 300.0 in 0.1 second increments (300 seconds = 5 minutes) – see Fig. 5.16 on page 27.

- **Hysteresis** (applicable only for control using relay output)
 This setting can be ignored for analogue control outputs.
 The hysteresis is operational above or below (depending on the control action, direct or reverse) the set point and is only applicable for ON/OFF control – see Fig. 5.14 on page 26.
 Set the hysteresis value required for on/off control in engineering units (between 0 and 10% of engineering range span).

- **Proportional Band**
 Set the proportional band value required, between 0.1 and 999.9% in 0.1% increments.

- **Integral Action Time**
 Set the required time between 1 and 7200 in 1 second increments (7200 seconds = 120 minutes). ‘OFF’ is selected above 7200 or below 1.

- **Manual Reset**
 Set the required proportional band offset on the lower display, between 0.0 and 100.0% of the engineering range span in 0.1% increments.

- **Derivative Action Time**
 Set the required time between 0.1 and 999.9 in 0.1 second increments (999.9 seconds = 16.67 minutes). ‘OFF’ is selected below 0.1.

- **Approach Band**
 Set the required value between 0.1 and 3.0 in 0.1 increments. (Set 1.0 initially).
5.10 Introduction to Heat/Cool Control

Note. Refer to Sections 5.10.2 and 5.10.3 for Crossover Value and Transition Bandwidth Value examples.

Information.
- **PID Output** – is the output value calculated by the controller. The output is divided into two different control elements one for raising the product temperature (heat output) and one for lowering the product temperature (cool output).
- **Transition Bandwidth** – used to transfer smoothly from one set of control terms to the other.
- **Crossover Value** – defines the changeover point between heat output active and cool output active. The crossover value is also the centre of the transition and off hysteresis bands.
- **Output Off Hysteresis Band** – for the majority of applications Outputs 1 and 2 have opposing control actions i.e. one is direct acting and the other is reverse. In this configuration both outputs are at 0% within the off hysteresis band. The band setting is used to prevent oscillation of control changes.
- **Heat/Cool Outputs** – refer to **PID Output**, above.

Fig. 5.18 Heat/Cool Control – Principle of Operation
Page Header – Control Page

5.10.1 Control Page (Heat/Cool Control)

Cycle Time (heat output)
This setting can be ignored for analog control outputs.
Set the required cycle time for time proportioning control, from 1.0 to 300.0 in 0.1 second increments (300 seconds = 5 minutes).

Proportional Band (heat output)
Set the proportional band value required, between 0.1 and 999.9% in 0.1% increments.

Integral Action Time (heat output)
Set the required time between 1 and 7200 in 1 second increments (7200 seconds = 120 minutes). 'OFF' is selected below 1 and above 7200.

Manual Reset (heat output)
Set the required proportional band offset on the lower display, between 0.0 and 100.0% of the engineering range span in 0.1% increments.

Cycle Time (cool output)
This setting can be ignored for analog control outputs.
Set the required cycle time for time proportioning control, from 1.0 to 300.0 in 0.1 second increments (300 seconds = 5 minutes).

Proportional Band (cool output)
Set the proportional band value required, between 0.1 and 999.9% in 0.1% increments.

Integral Action Time (cool output)
Set the required time between 1 and 7200 in 1 second increments (7200 seconds = 120 minutes). 'OFF' is selected below 1 and above 7200.

Continued on next page.
5.10.1 Control Page (Heat/Cool Control)

Manual Reset (cool output)
Set the required proportional band offset, between 0.0 and 100.0% of the engineering range span in 0.1% increments.

Derivative Action Time
Set the required time between 0.1 and 999.9 in 0.1 second increments (999.9 seconds = 16.67 minutes). ‘OFF’ is selected below 0.1.

Approach Band
Set the required value between 0.1 and 3.0 in 0.1 increments. (Set 1.0 initially).

Crossover Output Value
Set the required value between 0.0 and 100.0% of the PID output, in 0.1% increments – see Section 5.10.2.

Transition Bandwidth
Set the required value between 0.0 and 100.0% of the PID output, in 0.1% increments – see Section 5.10.3.

Output Off Hysteresis Band
Set the required value which prevents oscillation of control changes, between 0.0 and 25.0% of the PID output, in 0.1% increments.

5.10.2 Calculating the Crossover Value – Fig. 5.18

The crossover value is calculated from the expression:

\[
\text{Crossover Value} = \frac{100}{\text{Gh/Gc} + 1}
\]

Where Gh/Gc is the ratio of the two output driver gains.

The most common method for determining the Gh/Gc term is by using ‘nameplate’ values from the heat/cool device(s).

If a heat/cool application can produce a maximum of 1.5kW and absorb 0.75kW:

\[
\text{Output Gain Ratio} = \frac{1.5}{0.75} = 2
\]

\[
\text{Crossover Value} = \frac{100}{2 + 1} = 33.3\%
\]

5.10.3 Calculating the Transition Bandwidth Value – Fig 5.18

The Transition Bandwidth is the percentage difference of the proportional band settings.

Example – if the proportional band settings for the heat output is 20% and for the cool output is 25%:

\[
\text{Transition Bandwidth} (\%) = \frac{25 - 20}{25} \times 100
\]

Transition Bandwidth = 20%

If the proportional band settings for both outputs are equal, the bandwidth is 0%. As a general rule, the Transition Bandwidth should not exceed 30%.
Note. The Alarm Acknowledge pages are displayed only if an alarm is active.

Fig. 6.1 Summary of Operating Level Frames (Record Faceplates 2 and 3)
6.1 Operating Page Displays

Process Variable 2 (PV2)

Process Variable 3 (PV3)*

*Not displayed on two pen instruments.

Temperature Units for PV2 as set in the Set Up Inputs Page, BASIC CONFIGURATION LEVEL. Display is blank if 'NONE' is selected.

Process Variable 3 (PV3)

Temperature Units for PV3 as set in the Set Up Inputs Page.

Display is blank if 'NONE' is selected.

Current Time*

Time* (displayed using 24hr clock)

*Displayed only when timer option is fitted.

Current Date*

Day and Month*

*Displayed only when timer option is fitted.

Process Variable 4 (PV4)*

*Not displayed on three pen recorders.

Temperature Units for PV4 as set in the Set Up Inputs Page.

Display is blank if 'NONE' is selected.

Current Time*

Time* (displayed using 24hr clock)

*Displayed only when timer option is fitted.

Current Date*

Day and Month*

*Displayed only when timer option is fitted.
6.2 Alarm Acknowledge Page

6.2.1 Alarm Indications – Fig. 6.2
The definitions for alarm states (on, off or flashing) are detailed in Fig. 6.2.

6.2.2 Acknowledging Alarms
Unacknowledged alarms can be acknowledged from the faceplate controls on the front panel in two ways:

In the Operating Level – by pressing the key at any frame (providing the key is programmed for this function – see Section 5.1 in the Programming Manual). The key acknowledges all alarms from either faceplate.

In the Alarm Acknowledge Page – by pressing the key – see Section 6.2.3 following.

Note. In the Alarm Acknowledge Page Channel 2 and 3 alarms can be acknowledged only from faceplate 2. Channel 3 and 4 alarms (if applicable) can be acknowledged only from faceplate 3.

Record Faceplate

No LED illuminated indicates no alarms active and the Alarm Acknowledge Page is not displayed in the OPERATOR LEVEL.

A flashing LED indicates that an unacknowledged alarm is active on that channel. For example, a flashing AL2 LED indicates an active alarm on channel 2.

A constant LED indicates that all active alarms have been acknowledged on that channel.

Fig. 6.2 Alarm LED Indication

6.2.3 Using the Alarm Acknowledge Page

No Alarm Active
No LED indicators illuminated.

Alarm Active
AL3 LED indicator flashing, indicating an active alarm on channel 3.

Use key to return to top of Alarm Acknowledge Page.

Alarm Acknowledge Page
Use the key to advance to next frame.

Alarm Identity
Upper display: shows the alarm identity and type.

Lower Display: shows the trip level of the alarm identified in the upper display.

Acknowledge Alarm
Use the key to acknowledge the alarm. When the alarm is acknowledged, 'ACKNGd' is displayed and a constant LED indicates the acknowledged alarm.

If there are more active alarms on channel 3 the LED continues to flash until all alarms for that channel have been acknowledged.
6.3 Totals Page Displays

This page is omitted from both faceplates if the Totalizer Option is not fitted. The page is also omitted from faceplate 2 if both Totals 2 and 3 are set to OFF and from faceplate 3 if both Totals 3 and 4 are set to OFF – refer to the Set Up Totals Page in the Advanced Software Options Manual.

Front Panel (Batch) Flow Total 2 (3)
The batch flow total is calculated from process variable 2 (3).

The flashing channel LED indicates the flow total displayed.

Example – a flashing channel 2 LED indicates Flow Total 2 parameters displayed.

Counter Reset
The Front (Batch) Flow Total can be reset to the Preset Value in Set Up Totals Page if Reset Enable in Set Up Totals Page is set to ‘ENbLY’.

Select ‘t 2 YES’ to reset the counter (‘t 2’ indicates Flow Total 2).

Note. If the Counter Reset is disabled in Set Up Totals Page, the counter reset frame is omitted.

Counter Stop/Go
Select ‘GO’ to start the counter or ‘STOP’ to stop it.

Note. If the Counter Stop/Go is disabled in Set Up Totals Page, the frame can be viewed but not altered. If a digital signal is assigned to the Totalizer Stop/Go source, an active digital signal sets the counter to GO and the Counter cannot be stopped from the front panel.

Front Panel (Batch) Flow Total 3 (4)
Repeat the above procedure for Flow Total 3 (4).

Note. The number of totalizers is dependent on the number of pens fitted to the instrument e.g. a 3 pen instrument has 3 totalizers.
Symptom Possible Cause Action

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
</table>
| Does not power up | a) Internal fuse (if fitted) is blown
 b) Internal power switch (if fitted) is OFF
 c) Power supply connections are incorrect | a) Check wiring, rectify fault and replace fuse
 b) Turn power switch ON
 c) Check connections |
| Chart does not appear to move | a) Very slow chart speed selected
 b) Chart stop function enabled | a) Select required chart speed in Set Up Chart Page
 b) De-activate source being used to stop chart – see Set Up Chart Page |
| Pens in recording position but do not drop onto paper | Chart stop function enabled | De-activate source used to stop chart – see Set Up Chart Page |
| Red pen does not move beyond 94% position on chart | When real time event pen is fitted the red pen cannot go beyond 94% to prevent pens clashing | Use chart range which prevents the need to go beyond 94% of maximum on chart |
| Pen lift switch on front panel does not work | Pen lift switch is disabled | Enable pen-lift switch in Set Up Chart Page |
| Pens do not remain lifted when pen lift key is used | Auto pen drop feature is enabled | Disable auto pen drop in Set Up Chart Page if this is not required |
| Analog inputs are slow to respond | A large filter time has is set | Set digital filter value to give required response in Set Up Inputs |
| Time or date incorrect | Not set for correct local time | Set correct time and date in Set Up Clock Page – refer to Advanced Software Manual |
| Totalizers cannot be set to STOP or GO | Operator STOP/GO selection is not enabled in the OPERATOR LEVEL | Enable counter STOP/GO in the Set Up Totals Page |
| Totalizer cannot be set to STOP | Digital signal assigned to the total STOP/GO function is active | De-activate digital signal assigned to total STOP/GO function |
| External relays connected to relays in instrument fail to de-energize | Arc suppression capacitors are provided across the relay contacts and capacitor leakage current may be sufficient to prevent an external relay from de-energizing | Remove the arc suppression components – IC4 and IC5 on mainboard
 IC6 and IC7 on standard I/O and analog relay
 IC3 to IC10 on 4 relay module |
| Pens return to a different position after a pen-lift or power down | Pens are interfering with one another due to incorrect setting of pens | Each pen requires the force of 1 gram to lift it off the paper. Carefully bend arm (up or down) close to the plastic moulding to give correct setting |
8 SPARES LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pen Capsules (pack of 3)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>C1900/0119</td>
</tr>
<tr>
<td>Blue</td>
<td>C1900/0120</td>
</tr>
<tr>
<td>Red</td>
<td>C1900/0121</td>
</tr>
<tr>
<td>Green</td>
<td>C1900/0122</td>
</tr>
<tr>
<td>Violet*</td>
<td>C1900/0123</td>
</tr>
</tbody>
</table>

Pen Arm Assemblies	
ER/C Type Chart (J or R in Code Number) – Standard Pen	C1900/0076
ER/C Type Chart (J or R in Code Number) – Event Pen	C1900/0078
PX105 and PXR105 Type Chart (K or S in Code Number) – Standard Pen	C1900/0075
PX105 and PXR105 Type Chart (K or S in Code Number) – Event Pen	C1900/0077

Fuses	
24V	B11071 (4A)
115V	B11070 (1A)
230V	B11069 (500mA)

*True time line event option only.
C1900
Circular chart recorder/controller

Measurement made easy

For more information
Further publications are available for free download from:
www.abb.com/recorders

or by scanning this code:

<table>
<thead>
<tr>
<th>Search for or click on</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Sheet</td>
<td>DS/C1900RC-EN</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Circular chart recorder/controller</td>
<td></td>
</tr>
<tr>
<td>Quick Reference Guide</td>
<td>IM/C1900-QC</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Circular chart recorder/controller</td>
<td></td>
</tr>
<tr>
<td>Installation Guide</td>
<td>IM/C1900-INS</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Circular chart recorder and recorder/controller</td>
<td></td>
</tr>
<tr>
<td>Operating Guide</td>
<td>IM/C1900-OGC</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Circular chart recorder/controller</td>
<td></td>
</tr>
<tr>
<td>Operating Instructions</td>
<td>IM/C1900-MOD</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Circular chart recorder and recorder/controller</td>
<td></td>
</tr>
<tr>
<td>User Guide</td>
<td>IM/C1900-ADV</td>
</tr>
<tr>
<td>C1900</td>
<td></td>
</tr>
<tr>
<td>Circular chart recorder and recorder/controller</td>
<td></td>
</tr>
</tbody>
</table>
Electrical safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use'. If the equipment is used in a manner NOT specified by the Company, the protection provided by the equipment may be impaired.

Symbols

One or more of the following symbols may appear on the equipment labelling:

- **Warning** – refer to the manual for instructions
- **Caution** – risk of electric shock
- **Protective earth (ground) terminal**
- **Earth (ground) terminal**
- **Direct current supply only**
- **Alternating current supply only**
- **Both direct and alternating current supply**
- **The equipment is protected through double insulation**

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and safety

To ensure that our products are safe and without risk to health, the following points must be noted:

- The relevant sections of these instructions must be read carefully before proceeding.
- Warning labels on containers and packages must be observed.
- Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
- Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
- Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
- When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
1 INTRODUCTION

The documentation for the C1900 series of circular chart recorders is shown in Fig. 1.1. The Standard Manuals, including the data sheet, are supplied with all instruments. The Supplementary Manuals supplied depend on the specification of the instrument.
2 GENERAL PROGRAMMING

The programming procedures are used to make changes to the operating parameter values and for scale adjustment.

The programming of all channels is performed using faceplate 1 – see Fig. 2.1

When changing the input type it may be necessary to reposition the input selector links accordingly – see Section 6, CONNECTIONS & LINKS.

2.1 Preparation for Changes to the Parameters

Ensure that the external alarm/control circuits are isolated if inadvertent operation during programming is undesirable.

Any change to the operating parameters are implemented using the or keys – see Section 3 of the Operating Guide.

Note. The recorder responds instantly to parameter changes which are saved automatically when leaving the current frame.

2.2 Security System

A security system is used to prevent tampering with the programmed parameters by utilizing a Tune password and a Configuration password.

A Tune password can be assigned to controller faceplates giving access to that faceplate’s controller settings. A configuration password gives access to all controller settings and programming pages. The passwords can be set to any value from 0 to 9999. The instrument is despatched with the passwords set to ‘0’ – see Section 5.5 of the Operating Guide.

Fig. 2.1 Location of Faceplate 1
Fig. 3.1 Basic Configuration Level
3.1 Set Up Input (Process Variable, Remote Set Point and Position Feedback)

Information.
- Universal inputs – mV, mA, V, THC, RTD and resistance.
- Internal cold junction compensation.
- Linearization – of temperature sensors to allow use of non-linearizing transmitters or any electrical input.
- Programmable fault levels and actions.
- Digital filter – reduces the effect of noise on inputs.

Example A – setting up:
- a current input of 4 to 20mA
- displaying a range of 0 to 200psi
- a fault detection level 10% above 200psi (engineering/display range) and 10% below 0psi (engineering/display range)
- in the event of a fault being detected and/or the fault detection level being exceeded the process variable is driven downscale.

Example B – setting up:
- a Type K thermocouple
- displaying temperature in °F
- displaying a range of 0 to 2000°F
- a fault detection level 10% above 2000°F (engineering/display range) and 10% below 0°F (engineering/display range)
- in the event of a fault being detected and/or the fault detection level being exceeded the process variable is driven upscale.
Page Header – Set Up Input (Process Variable)

To advance to Set Up Pen Range Page press the [] key.

Select Channel
Select the channel to be programmed:
- **PV–4** – process variable on channel 4
- **PV–3** – process variable on channel 3
- **PFb–2** – valve position feedback on controller 2
- **rSP–2** – remote set point on controller 2
- **PV–2** – process variable on channel 2
- **PFb–1** – valve position feedback on controller 1
- **rSP–1** – remote set point on controller 1
- **PV–1** – process variable on channel 1
- **NONE** – None

Note. In the remaining frames press the [] key to view the channel selected.

Input Type (Process Variable)

Caution. Ensure the correct input link positions are selected and the input is wired correctly – see Section 6, CONNECTIONS & LINKS.

Select the input type required:
- **rtd** – Resistance thermometer (Not available on position feedback input)
- **tCPL** – Thermocouple
- **VOLt** – Voltage
- **LO OHM** – Low resistance (≤ 750Ω)
- **HI OHM** – High resistance (> 750Ω)
- **A.P.** – Current
- **ULt** – Millivolt (≤ 150mV)
- **NONE** – None

Linearizer Type
Select the linearizer type required:
- **5/2** – \(\times \frac{5}{2} \) Open channel flow applications
- **3/2** – \(\times \frac{3}{2} \)
- **SQrt** – Square Root
- **rtd** – Resistance thermometer
- **tC–b** – Type B thermocouple
- **tC–N** – Type N thermocouple
- **tC–E** – Type E thermocouple
- **tC–J** – Type J thermocouple
- **tC–t** – Type T thermocouple
- **tC–S** – Type S thermocouple
- **tC–r** – Type R thermocouple
- **tC–K** – Type K thermocouple
- **NONE** – No linearizer

Continued on next page.
3.1 Set Up Input

Input Range High
Set the maximum electrical input value required (in electrical units).

Note. The value set must be within the limits detailed in the table below.

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Range Low Min.</th>
<th>Range High Max.</th>
<th>Min. Range (Low to High)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millivolts</td>
<td>0</td>
<td>150</td>
<td>5.0</td>
</tr>
<tr>
<td>Volts</td>
<td>0</td>
<td>5</td>
<td>0.1</td>
</tr>
<tr>
<td>Milliams</td>
<td>0</td>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>Resistance Low</td>
<td>0</td>
<td>750</td>
<td>20</td>
</tr>
<tr>
<td>Resistance High</td>
<td>0</td>
<td>9999</td>
<td>400</td>
</tr>
</tbody>
</table>

Input Range Low
Set the minimum electrical input value required (in electrical units).

Note. The value set must be within the limits detailed in the above table.

Temperature Units
Select units required.

Engineering Range High
Set the maximum engineering (display) value required.

Note. The value set must be within the limits detailed in the tables below.

<table>
<thead>
<tr>
<th>Linearizer Type</th>
<th>Degrees Fahrenheit</th>
<th>Degrees Celsius</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>Type B</td>
<td>0</td>
<td>3272</td>
</tr>
<tr>
<td>Type E</td>
<td>−148</td>
<td>1652</td>
</tr>
<tr>
<td>Type J</td>
<td>−148</td>
<td>1652</td>
</tr>
<tr>
<td>Type K</td>
<td>−148</td>
<td>2372</td>
</tr>
<tr>
<td>Type N</td>
<td>−328</td>
<td>2372</td>
</tr>
<tr>
<td>Type R & S</td>
<td>0</td>
<td>3092</td>
</tr>
<tr>
<td>Type T</td>
<td>−418</td>
<td>572</td>
</tr>
</tbody>
</table>

RTD

<table>
<thead>
<tr>
<th>Type</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD</td>
<td>−328</td>
<td>1112</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

Performance accuracy is not guaranteed below 725°F/400°C for types B, R and S thermocouples
Minimum span below zero Type T 126°F/70°C
Minimum span below zero type N 189°F/105°C
THC standard DIN 4730 IEC 584
RTD standard DIN 43760 IEC 751

<table>
<thead>
<tr>
<th>Linearizer Type</th>
<th>Engineering Range High and Low</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>5/2</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td></td>
</tr>
<tr>
<td>Square Root</td>
<td>−9999</td>
</tr>
<tr>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
3.1 Set Up Input

Decimal Point
Set the decimal point position required for both the engineering range high and engineering range low values.

Engineering Range Low
Set the minimum engineering (display) value required.

Note. The value set must be within the limits detailed in Engineering Range High tables opposite.

Broken Sensor Protection Drive
In the event of a fault being detected on the input and/or if the Fault Detection Level Percentage is exceeded (see next frame), the process variable is driven in the direction of the drive selected.

Select the broken sensor drive required:
- **NONE** – No drive
- **UP** – Upscale drive
- **dN** – Downscale drive.

Fault Detection Level Percentage
A fault level percentage can be set to detect a deviation above or below the display limits.

For example, if $FdLP$ is set at 10.0%, a fault is detected if an input goes more than 10% above Engineering Range High or more than 10% below Engineering Range Low.

On some ranges the input circuitry may saturate before the fault level set is reached. In this case an error is detected below the level set.

Set the level required, between 0.0 and 100.0% of engineering span (range low to high) in 0.1% increments.

Note. If an input exceeds the minimum or maximum value for the linearizer selected an error is detected regardless of any fault level.

Programmable Filter
Filters the process variable input, i.e. if the input is stepped it smooths the transition between steps and may also be used for some degree of cleaning of noisy inputs. The filter time represents the time a step in the input takes to change the displayed process variable from 10 to 90% of the step.

Set the value required, between 0 and 60 in 1 second increments.

Return to Select Channel frame.
3.2 Set Up Pen Range/Event Source

Information.
- Trend pens – have an independent chart range allowing a selected part of the engineering (display) range to be used for extra resolution on the chart.
- Three position event pen function – can be driven by digital inputs, alarms, logic equation results, real time events (timer option), control modes, set points, ramp/soak profile segments or programs (profile option).

Select Pen Range (in engineering units)

<table>
<thead>
<tr>
<th>Pen Range</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng. Range Low</td>
<td>0</td>
</tr>
<tr>
<td>Pen Range Low</td>
<td>400</td>
</tr>
<tr>
<td>Pen Range High</td>
<td>700</td>
</tr>
<tr>
<td>Eng. Range High</td>
<td>1000</td>
</tr>
</tbody>
</table>

Select ‘In’ Source

Source on Source off

In source takes priority if both sources enabled

Select ‘Out’ Source

Source on Source off

Event Pen Chart Position

With Real Time Event Pen option fitted, Pen 4 is above 100%

Pen Range High
Set the maximum value required on the chart, in engineering units (the value must be within the engineering range set in Set Up Input Page – see Section 3.1).

Pen Range Low
Set the minimum value required on the chart, in engineering units (the value must be within the engineering range set in Set Up Input Page).

In Source
Select a source to move the pen inwards on the chart.
For a description of sources – see Table 3.1 on page 18.

Out Source
Select a source to move the pen outwards on the chart.
For a description of sources – see Table 3.1 on page 18.

Return to Select Pen frame.

Page Header – Set Up Pen Range
To advance to Set Up Chart Page press the key.

Select Pen
Select the pen to be programmed

Note.
- In the remaining frames press the key to view the pen selected.
- Record (trend) or event pen function is set in the ADVANCED CONFIGURATION LEVEL (if True Time Event Pen option is selected, the fourth pen is fitted with a special pen arm and is set automatically for event pen function) – see Section 4.3, Set Up Pen Functions.
3.3 Set Up Chart

Information:
- **Programmable chart duration** – between 1 and 167 hours or 7 and 32 days.
- **Chart stop function** – the chart can be stopped by an alarm, digital input, logic equation result or a real time event (if timer option is fitted).
- **Auto pen drop** – automatically drops the pen(s) onto the chart after a 5 minute delay to ensure recording is not left disabled inadvertently.

To advance to **Set Up Alarms Page** press the key.

Chart Duration
Select the chart duration required per revolution of the chart; between 1 and 167 hours or 7 and 32 days.

Stop Chart Source
Select the source required for stopping the chart.

For description of sources, refer to Table 3.1 on page 18.

Auto Pen Drop
Select ‘YES’ to enable or ‘NO’ to disable.

If ‘YES’ selected, pen(s) drop automatically onto the chart 5 minutes after they are lifted.
If ‘NO’ selected, the pen(s) remain lifted until they are manually dropped by the operator.

Pen Lift Enable/Disable
The key (record faceplate only) or key (control faceplate – if programmed for pen lift) can be disabled if required. Select ‘YES’ to enable or ‘NO’ to disable.

Pen Lift/Pen Status
To raise pen(s) press or key. The following status displays are shown:
- **rECOrd** – pen records on chart
- **LIFT** – pen lifts off chart
- **PRKe** – pen moves to park position
- **REt rEF** – pen at reference position

To lower pen(s) press or key. The following status displays are shown:
- **rEtUrN** – pen returns to record position
- **drOP** – drops (lowers) onto chart
- **rECOrd** – pen records on chart

Return to top of **Set Up Chart Page**.
3.4 Set Up Alarms

Information:
- Four alarms per channel – identified A1 to D1 (for channel 1) up to A4 to D4 (for channel 4).
- Three operator acknowledge options.
- Global alarm acknowledgment – by digital input, alarm, logic equation result or real time event (if option fitted).
- High/low process alarms.
- Delayed high/low process alarms.
- High/low output alarms.
- High/low deviation alarms.
- Fast/slow rate of change – of process variable alarms.
- Adjustable hysteresis value – to prevent oscillation of alarm state.
- Time hysteresis – to allow delayed triggering of alarms.

Fig. 3.2 High and Low Process with Hysteresis

Fig. 3.3 High and Low Output with Hysteresis
3.4 Set Up Alarms

Fig. 3.4 High and Low Deviation with Hysteresis
...3 BASIC CONFIGURATION LEVEL

...3.4 Set Up Alarms

The operation of a delayed high/low process alarm is identical to that of the standard high/low process alarm but the alarm can be enabled/disabled by use of a digital signal.

The alarm state is held off whilst the enable signal is off and continues to be held off for a pre-configured period of time after the enable signal is switched ON (irrespective of the process variable value). Once the pre-configured alarm delay time has expired then the alarm operates in the same manner as a standard high/low process alarm.

1. Process variable goes above trip point but alarm is not activated because enable signal is low (Alarm Disable).
2. Alarm Enable signal is switched On. Alarm delay timer started.
3. Process variable goes above trip point but alarm is not activated because alarm delay time has not expired.
4. Alarm delay timer expires, alarm is now enabled. Alarm is activated because process variable is above trip point.
5. Process variable goes below trip (hysteresis) point therefore alarm is de-activated.
6. Process variable goes above trip point, alarm is activated (alarm is enabled and delay time has expired).
7. Alarm Enable signal is switched Off. Alarm is disabled immediately. Alarm de-activates.

Fig. 3.5 Delayed High Process Alarm

Fig. 3.6 Time Hysteresis Alarm
3.4 Set Up Alarms

The maximum time it takes to detect an alarm condition is present (T), in seconds, is calculated as follows:

\[T = 10.81 + \frac{1800}{\text{Trip Value}} \times 2 \]

The time it takes for the alarm state to be cleared once the alarm condition has been removed is also equal to T.

Examples shown are for a trip value of 10%/hour on a PV engineering range of 0.0 to 100.0

\[T = \left(10.81 + \frac{1800}{10}\right) \times 2 \quad T = 382 \text{ seconds} \]

Fig. 3.7 Slow Rate Alarms with Hysteresis

The maximum time it takes to detect an alarm condition is present (T), in seconds, is calculated as follows:

\[T = 10.81 + \frac{1800}{\text{Trip Value}} \times 2 \]

The time it takes for the alarm state to be cleared once the alarm condition has been removed is also equal to T.

Examples shown are for a trip value of 10%/hour on a PV engineering range of 0.0 to 100.0

\[T = \left(10.81 + \frac{1800}{10}\right) \times 2 \quad T = 382 \text{ seconds} \]

Fig. 3.8 Fast Rate Alarms with Hysteresis
Page Header – **Set Up Alarms**

To advance to Set Up Relay Output Page press the ◐ key.

Alarm Acknowledge Type

Alarms may be acknowledged while they are displayed.

Select the alarm acknowledge type:

- **NONE** – no acknowledge facility. If the cause of the alarm no longer exists, the alarm state and display are cleared automatically.

Global Alarm Acknowledge Source

Select the alarm acknowledgment source required.

For a description of sources – see Table 3.1 on page 18.

Select Alarm

Select the alarm to be programmed.

Note. In the remaining frames press the ◐ key to view the alarm selected.
3 BASIC CONFIGURATION LEVEL...

...3.4 Set Up Alarms

Alarm Type
Select the alarm type required for the alarm selected.

- **dLY-L0** – delayed low process
- **dLY-HI** – delayed high process
- **S-rtE** – slow rate (rate of change of process variable)
- **F-rtE** – fast rate (rate of change of process variable)
- **LO-dEu** – low deviation
- **HI-dEu** – high deviation
- **LO-OUT** – low output
- **HI-OUT** – high output
- **LO-PrC** – low process
- **HI-PrC** – high process
- **OFF** – alarm off

Displayed only on Controller faceplate

Trip Level
Set the trip value required for the alarm selected.

The following are displayed in engineering units:
- **HPrC**, **LPrC**, **HI-dEv** and **LO-dEv**.

The following are displayed as percentage (0.0 to 100.0%):
- **HI-OUT** and **LO-OUT**.

The following are displayed as a percentage of the engineering span (engineering range high – engineering range low) per hour between ±0.5 and ±500%:
- **Fr-tE** and **Sr-tE**.

Hysteresis
Hysteresis is operational when the alarm is active.

Set the hysteresis value required for high/low process or high/low deviation in engineering units (within the engineering range) or in 0.1% increments for fast/slow rate and high/low output alarms. The alarm is activated at the trip level but is only turned off after the alarm variable has moved into the safe region by an amount equal to the hysteresis value. For rate alarms this setting is a percentage of the trip rate – see **Fr-tE** and **Sr-tE** in previous frame.

Time Hysteresis
Set the time hysteresis value required between 0 and 9999 seconds.

Note. The alarm condition must be present continually for the time set, before the alarm becomes active. If a hysteresis level is also set, the alarm condition remains active until the process variable moves outside the hysteresis band. When the alarm condition no longer exists the alarm becomes inactive, i.e. time hysteresis does not affect turning off of alarm states.

Alarm Delay
After a transition of the enable signal from disabled to enabled, the alarm remains disabled for this period of time.

Set 0 to 250 minutes.

Enable Source
Any digital signal can be assigned as the signal to enable/disable the alarm.

Return to Select Alarm frame.
3.5 Set Up Relay Output

Information.
- **Relays** – can be energized by alarms, logic equation results, digital inputs, control and set point modes, real time events, (timer option), totalizer wrap signal (totaliser option) and ramp/soak programs/segments (profile option).
- **External Totalizer count function** – external counter can only be driven by relays fitted on module type 3 (4 relay module) in module positions 3, 4 and 5.
- **Polarity** – to allow failsafe settings.
- **Control outputs** – time proportioning (on type 1 and 2 modules or the first 2 relays only on type 3 module), valve open/close or on/off control.

<table>
<thead>
<tr>
<th>Select Relay Output</th>
<th>Relay Source</th>
<th>Polarity Selection</th>
<th>Relay Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Acknowledge</td>
<td>Alarm A1 Active</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td>Profile Segment 0</td>
<td>Alarm A1 Active</td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Profile Segment 99</td>
<td>Alarm A1 Inactive</td>
<td>Positive</td>
<td>De-energized</td>
</tr>
<tr>
<td>Valve Control</td>
<td>Alarm A1 Inactive</td>
<td>Negative</td>
<td>Energized</td>
</tr>
<tr>
<td>Control Output</td>
<td>Control States</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td>Control States</td>
<td>Control Mode</td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Local Set Point</td>
<td>2nd Set Point</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td>Timer</td>
<td>Logic Equation 1</td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Logic Equation 8</td>
<td>Digital Input 1</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td>Digital Input 2</td>
<td>Digital Input 2</td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Alarm A1</td>
<td>Alarm D4</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
...3.5 Set Up Relay Output

Page Header – Set Up Relays

To advance to Set Up Digital Output Page press the [] key.

Select Relay Output
Select the output to be programmed. The selections in this frame relate to the number of fitted modules with relays and their relative module positions.

Example – for a type 3 (four relays) module fitted in position five the following selections are also programmable:
- \text{rELAY 5.1} (position 5, relay 1)
- \text{rELAY 5.2} (position 5, relay 2)
- \text{rELAY 5.3} (position 5, relay 3)
- \text{rELAY 5.4} (position 5, relay 4)

Note. In the remaining frames press the [] key to view the relay selected.

Relay Source
Select the source required to activate the selected relay.

For description of sources, refer to Table 3.1 on page 18.

Notes.
- Time proportioning control can be allocated only to the first two relays on a type 3 (4 relay) module or the relay on types 1 and 2 modules (standard I/O and analog + relay).
- To drive an external counter \text{COUN}T.x must be selected.

Polarity
The polarity selection is used to invert the effect of the digital source state on the relay state as shown in the following table:

<table>
<thead>
<tr>
<th>Source State</th>
<th>Polarity</th>
<th>Relay State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Positive</td>
<td>De-energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Energized</td>
</tr>
<tr>
<td>Non-active</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>De-energized</td>
</tr>
</tbody>
</table>

Select the polarity required.

Caution. Check connections before operating – see Section 6, CONNECTIONS & LINKS.

Return to Select Relay Output frame.
Table 3.1 Description of Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>Alarm Acknowledge – Unacknowledged process alarm anywhere in the unit</td>
</tr>
<tr>
<td>SEG</td>
<td>Profile segment 99</td>
</tr>
<tr>
<td>SEG</td>
<td>Profile segment 0</td>
</tr>
<tr>
<td>PG</td>
<td>Profile program 10, Controller 2</td>
</tr>
<tr>
<td>PG</td>
<td>Profile program 1, Controller 1</td>
</tr>
<tr>
<td>HOLD</td>
<td>Profile 1 or 2 in Hold mode</td>
</tr>
<tr>
<td>PFAIL</td>
<td>Power failure</td>
</tr>
<tr>
<td>OPEN</td>
<td>Motorized valve 1 or 2 open</td>
</tr>
<tr>
<td>CLSE</td>
<td>Motorized valve 1 or 2 closed</td>
</tr>
<tr>
<td>OP</td>
<td>Control output 1 or 2 on/off</td>
</tr>
<tr>
<td>OP</td>
<td>Control output 1 or 2 (time proportioning)</td>
</tr>
<tr>
<td>OP</td>
<td>Control output cool 1 or 2 (time proportioning)</td>
</tr>
<tr>
<td>OP</td>
<td>Control output heat 1 or 2 (time proportioning)</td>
</tr>
<tr>
<td>2Nd</td>
<td>Second set point</td>
</tr>
<tr>
<td>LOC</td>
<td>Local set point</td>
</tr>
<tr>
<td>MAN</td>
<td>Manual control</td>
</tr>
<tr>
<td>AUT</td>
<td>Automatic control</td>
</tr>
<tr>
<td>tIEr 2</td>
<td>Real time event 2</td>
</tr>
<tr>
<td>tIEr 1</td>
<td>Real time event 1</td>
</tr>
<tr>
<td>EQN</td>
<td>Programmable logic equation 8</td>
</tr>
<tr>
<td>EQN</td>
<td>Programmable logic equation 1</td>
</tr>
<tr>
<td>rRP</td>
<td>Wrap around on total 4</td>
</tr>
<tr>
<td>rRP</td>
<td>Wrap around on total 1</td>
</tr>
<tr>
<td>COUN</td>
<td>Total 4 external counter drive</td>
</tr>
<tr>
<td>COUN</td>
<td>Total 1 external counter drive</td>
</tr>
<tr>
<td>DIG</td>
<td>Digital Input 6.8</td>
</tr>
<tr>
<td>DIG</td>
<td>Digital input 1.1</td>
</tr>
<tr>
<td>RL-D4</td>
<td>Alarm D</td>
</tr>
<tr>
<td>RL-D4</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-D4</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-D4</td>
<td>Alarm A</td>
</tr>
<tr>
<td>RL-D3</td>
<td>Alarm D</td>
</tr>
<tr>
<td>RL-D3</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-D3</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-D3</td>
<td>Alarm A</td>
</tr>
<tr>
<td>RL-D2</td>
<td>Alarm D</td>
</tr>
<tr>
<td>RL-D2</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-D2</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-D2</td>
<td>Alarm A</td>
</tr>
<tr>
<td>RL-D1</td>
<td>Alarm D</td>
</tr>
<tr>
<td>RL-D1</td>
<td>Alarm C</td>
</tr>
<tr>
<td>RL-D1</td>
<td>Alarm B</td>
</tr>
<tr>
<td>RL-D1</td>
<td>Alarm A</td>
</tr>
<tr>
<td>NONE</td>
<td>No source required</td>
</tr>
</tbody>
</table>

* Available only on 4-relay and 8-digital output modules (types 3 and 5), fitted in module positions 4, 5 and 6.

** Available only for relay assignment.
3.6 Set Up Digital Output

Information:
- This page is not displayed if there are no digital outputs fitted.
- Up to 24 digital outputs are available – depending on the module types fitted.
- Digital outputs – can be energized by alarms, logic equations results, digital inputs, real time events (if timer option is fitted), control modes, set points, ramp/soak profile segments or programs (if fitted) and totalizer wrap signal (if fitted).
- Control outputs – time proportioning (on first two digital outputs of any module), valve open/close and on/off control.
- External Totalizer count function – external counter can only be driven by a type 5 module (8 digital outputs) fitted in module positions 4, 5 or 6.
- Polarity – inverts the effect of the selected source on the output state.
...3 BASIC CONFIGURATION LEVEL

...3.6 Set Up Digital Output

Page Header – Set Up Digital Outputs

To advance to Set Up Analog Output Page press the \(\text{[A]} \) key.

Select Digital Output

Select the output to be programmed – the selections in this frame relate to the number of fitted digital output modules and their relative module positions.

Example – for a type 5 (eight digital outputs) module fitted in position five the following selections are also programmable:

- \(\text{OUt} \ 5.1 \) (position 5, output 1)
- \(\text{OUt} \ 5.2 \) (position 5, output 2)
- \(\text{OUt} \ 5.3 \) (position 5, output 3)
- \(\text{OUt} \ 5.4 \) (position 5, output 4)
- \(\text{OUt} \ 5.5 \) (position 5, output 5)
- \(\text{OUt} \ 5.6 \) (position 5, output 6)
- \(\text{OUt} \ 5.7 \) (position 5, output 7)
- \(\text{OUt} \ 5.8 \) (position 5, output 8)

Note. In the remaining frames press the \(\text{[B]} \) key to view the output selected.

Output Source

Select the source required to activate the selected digital output.

For description of sources, refer to Table 3.1 on page 18.

Note. To drive an external counter \(\text{COUNt},.x \) must be selected.

Polarity

The polarity selection is used to invert the effect of the source state on the output as shown in the following table:

<table>
<thead>
<tr>
<th>Source State</th>
<th>Polarity</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Positive</td>
<td>Energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>De-energized</td>
</tr>
<tr>
<td>Non-active</td>
<td>Positive</td>
<td>De-energized</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>Energized</td>
</tr>
</tbody>
</table>

Select the polarity required.

Caution. Check connections before operating – see Section 6, CONNECTIONS & LINKS.

Return to Select Digital Output frame.
3.7 Set Up Analog Output

Information:
- **Fitted analog outputs** – assignable to retransmit any input (process variable, remote set point or position feedback) or provide the control output.
- **Selectable retransmission range** – allows maximum resolution on range of interest.
- **Adjustable output range** – for non-standard and reversed outputs.

Note. The example below shows analog output 1 set to retransmit part of process variable 1’s engineering range (250 to 750°C) as a 4.0 to 20.0mA current output.

<table>
<thead>
<tr>
<th>Select Analog Output</th>
<th>Select Output Source</th>
<th>Setting Output Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 1</td>
<td>PV1 — Process Variable, Controller 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP-1 — Control Set Point, Controller 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PFB-1 — Position Feedback, Controller 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PV2 — Process Variable, Controller 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP-2 — Control Set Point, Controller 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PFB-2 — Position Feedback, Controller 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PV3 — Process Variable, Controller 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PV4 — Process Variable, Controller 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oh-1 — Control Output (heat), Controller 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oc-1 — Control Output (cool), Controller 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oh-2 — Control Output (heat), Controller 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oc-2 — Control Output (cool), Controller 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-1 — Control Output, Controller 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-2 — Control Output, Controller 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engineering Range High</th>
<th>Retransmission Range High</th>
<th>Output Range Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000°C</td>
<td>750°C</td>
<td>20.0mA</td>
</tr>
<tr>
<td>250°C</td>
<td>0°C</td>
<td>4.0mA</td>
</tr>
</tbody>
</table>
...3 BASIC CONFIGURATION LEVEL

...3.7 Set Up Analog Output

Page Header – Set Up Analog Output

To advance to Digital Inputs Page press the key.

Select Analog Output
Select the analog output position to be programmed. The selections in this frame relate to the number of fitted modules with analog output.

Example – Output 1 is the analog output in position 1 (fitted on the main board), output 3 is the analog output fitted in module position 3.

Note. In the remaining frames press the key to view the analog output selected.

Output Source
Select output source required. The selections in this frame correspond to the inputs (Process Variable, Set Point and Position Feedback) and controller outputs available.

Retransmission Range High
Set the engineering range value (in engineering units) at which maximum output is required.

Retransmission Range Low
Set the engineering range value (in engineering units) at which minimum output is required.

Output Range High
Set the maximum current output required for the Retransmission Range programmed between 2.0 and 20.0mA.

Output Range Low
Set the minimum current output required for the Retransmission Range programmed between 2.0 and 20.0mA.

Return to Select Analog Output frame.
3.8 Digital Inputs

Information:
- Up to 30 digital inputs are available – depending on the module types fitted.
- Volt-free contacts or TTL levels.
- Polarity – sets the logic state (unchanged or inverted) for the module position(s).

Page Header – Digital Inputs

To advance to Access Page press the key.

Select Digital Input
Select digital module position to be programmed.

Note. In the remaining frames press the key to view the module position selected.

Polarity
Select the polarity required for the module position selected above:
- **POSITIVE** – logic input state unchanged
- **NEGATIVE** – logic input state inverted

Return to Select Digital Input frame.
3.9 Access Page

Information.
- Configurable password protection – of programming levels.
- Internal security link – enable/disable password protection.

Page Header – Access Page.

To advance to Scale Adjust Page press the [Z] key.

Tune Password 1 (Controller 1)
A tune password can be assigned to controller 1 to prevent access to its control settings.

Set the required password, between 0 and 9999.

Not available if channel 1 is not a controller.

Tune Password 2 (Controller 2)
A tune password can be assigned to controller 2 to prevent access to its control settings.

Set the required password, between 0 and 9999.

Not available if channel 2 is not a controller.

Configuration Password
Prevents access to the programming pages.

Set the required password, between 0 and 9999.

Pen Adjust Enable
Enables / Disables the pen adjustment feature.

This allows the position of any trend to be adjusted for checking against a reference standard. The displayed value is not changed.

Pen Adjust Password
Prevents access to the pen adjustment.

Set the required password, between 0 and 9999.

Return to top of Access Page.
...3.9 Access Page

Correct Password, Tune or Configuration (programmed in Access Page)

Security Code Incorrect

Tune Password Used

Corrected Password, Tune or Configuration (programmed in Access Page)

Configuration Password Used

Basic Level

Control Level

Advanced Level

Enable Security position, allows access to configuration levels with correct security code.

Disable Security position, allows unprotected access to configuration level.

Fig. 3.9 Use of Security Code in Operator Level

Fig. 3.10 Location of Security Link
3.10 Scale Adjust

Information:
- Analog Inputs – do not require re-calibrating when the input type or range is changed.
- Span and offset adjust reset – removes any previously programmed Offset or Scale Adjustment settings.
- System offsets errors – can be removed from Process Variables, Remote Set Points and Position Feedback inputs using Scale Offset Adjustment.
- System scale errors – can be removed from Process Variables, Remote Set Points and Position Feedback inputs using span adjustment.
- Offset/span adjustment – can be used to perform spot calibration.
- Pen(s) – can be independently calibrated and checked across the full range of the chart.
- Mains filter – selectable for maximum noise rejection.
- Pen Linearity Check – automatically draws a pen linearity test pattern.

Scale Adjustment

Offset Adjustment

Span Adjustment

Note. As a general rule:
- Use Offset adjustment for spot calibration at <50% of engineering range span.
- Use Span adjustment for spot calibration at >50% of engineering range span.
...3.10 Scale Adjust

Page Header – Scale Adjust

To advance to BASIC CONFIGURATION LEVEL frame use the key.

Select Process Variable/Pen
Select process variable or pen required:

- **LI NCHK** – the pens automatically draw a test pattern to check pen linearity. *DONE* is displayed on completion
- **FILtEr** – mains frequency filter
- **PEN x** – pens 1 to 4
- **PV–4** – process variable on channel 4 displayed only if selected in the Input Assignment Page
- **PV–3** – process variable on channel 3 Input Assignment Page
- **PFb–2** – valve position feedback on controller 2 Input Assignment Page
- **rSP–2** – remote set point on controller 2
- **PV–2** – process variable on channel 2
- **PFb–1** – valve position feedback on controller 1
- **rSP–1** – remote set point on controller 1
- **PV–1** – process variable on channel 1
- **NONE** – None

Note. In the remaining frames press the key to view the input or pen selected. Only pens assigned to trend functions are displayed in this frame.

Scale Adjustment Reset
Set *YES* to reset the offset and span values to their nominal values (values are reset on advancing to the next frame).

Offset Adjustment
Electrical and resistance inputs: apply the correct input for the spot calibration required.

RTD inputs: use resistance values obtained from standard tables.

Thermocouple Inputs: measure the ambient temperature at the output terminals of the signal source (calibrator). From thermocouple tables obtain the millivolt equivalent of this temperature \((a)\) and that for the spot calibration temperature \((b)\). Subtract \((a)\) from \((b)\) and set the signal source to the resultant value. (The voltage is negative if the spot calibration temperature is below the measured ambient temperature).

Note. The displayed units are engineering units.

Set the value required. The decimal point position is set automatically.

Example – If the display range is 50.0 to 250.0 and a spot calibration is required at 100 and 225, inject a signal equivalent to 100 and set the display to 100.0 using the and keys.

Span Adjust
Proceed as for Offset Adjustment above and apply the correct input for the spot calibration required. The displayed units are engineering units. Set the value required. The decimal point is set automatically.

For the example above, inject a signal equivalent to 225 and then set the display to 225.0.
...3 BASIC CONFIGURATION LEVEL

...3.10 Scale Adjust

Calibrate Pen At 100%
Drives the pen automatically to the full scale position on the chart.
Use the ▲ and ▼ keys to set pen to 100% on the chart.

Calibrate Pen At 0%
Drives the pen automatically to the zero position on the chart.
Use the ▲ and ▼ keys to set pen to 0% on the chart.

Check Pen Calibration
The pen calibration can be checked at any point on the chart.
Use the ▲ and ▼ keys to move the selected pen from the zero point up to the 100% position on the chart.

Note. If the true time event option is fitted the red pen does not move beyond the 94% position on the chart.

Select Filter
Select the mains frequency of the supply used to ensure maximum noise rejection on analog inputs.

Return to Select Process Variable/Pen frame.
4.1 Set Points

Information:
- Two local set points – Local and Dual.
- Remote set point facility – with Ratio and Bias.
- Remote set point tracking options – for bumpless Remote-to-Local set point transfers.
- Cascade control on second controller with optional output tracking.
- Adjustable high and low limits for all set point types.
- Set point tracking for bumpless Manual-to-Auto transfers.

Digitally Selectable Set Points

Programmable Set Point Types

Controller 2 only

Ratio Setting
(0.010 to 9.999)

Bias Setting
(within Eng. range)

Limits
(within Eng. range)

* Set Point cannot be adjusted outside the limits set

Fig. 4.2 Set Point Types
4 CONTROL CONFIGURATION LEVEL...

...4.1 Set Points

Information.
- **Cascade control** – comprises two series-connected controllers (master and slave), each containing a complete measuring and controlling system operating on a single regulating device. Cascade control is only available when two control front panels are fitted (channel 1 and channel 2) and channel 2 has no Remote set point facility. Channel 1 is the ‘Master’ controller and channel 2 is the ‘Slave’ controller.
- **Cascade control with output tracking** – ensures bumpless transfer when switching between auto/manual modes, i.e. when the slave is switched to Manual it switches the Master to Manual, automatically.
- **Cascade control with set point tracking** – ensures bumpless transfer when switching between local/cascade set points modes.

4.1.1 Cascade Control (without output tracking)

Full Automatic Cascade Control Mode
A ratio and bias can be applied to the cascade set point (derived from the master output) to give the required slave set point.

To switch to **Manual Mode**, press the key to select manual mode on the slave.

To switch to **Local Set Point Mode**, select local set point in **Operating Page** of the slave.

Manual Mode
If the slave is switched from automatic control to manual control, with cascade set point selected, the set point type automatically reverts to local, irrespective of the output tracking setting.

Local Set Point Mode
If local set point is selected on the slave when in **Full Automatic Cascade Mode**, operation of the master is not affected.

To return to **Full Automatic Cascade Mode**:
Press the key to select automatic mode on the slave and select cascade set point in **Operating Page** of the slave.
4.1.2 Cascade Control (with output tracking)

Full Automatic Cascade Control Mode
A ratio and bias can be applied to the cascade set point (derived from the master output) to give the required slave set point.

To switch to Manual Mode, press the key to select manual mode on the slave.
To switch to Local Set Point Mode, select local set point in Operating Page of the slave.

Manual Mode
If the slave is switched from automatic control to manual control, with cascade set point selected, the set point type automatically reverts to local, irrespective of the output tracking setting. The master is automatically switched to manual control.

Local Set Point Mode
If local set point is selected on the slave when in Full Automatic Cascade Mode, the master is automatically switched to manual mode.

To return to Full Automatic Cascade Mode: press the key to select automatic mode on the slave, select cascade set point in Operating Page of the slave and press the key to select automatic mode on the master.
4.1.3 Set Points Page

Page Header – Set Points.

To advance to Valve Page press the \[E\] key.

Select Controller
Select the controller to be programmed (1 or 2).

Note. In the remaining frames press the \(\) key to view the controller selected.

Local Set Point High Limit
The high limit is the maximum value to which the local set point can be adjusted.
Set the value required. The decimal point position is set automatically.

Set Point Low Limit
The low limit is the minimum value to which the local set point can be adjusted.
Set the value required. The decimal point position is set automatically.

Local Set Point Value
Set the value required, within the limits set above. The decimal point position is set automatically to that of the engineering range (Set Up Input Page, BASIC CONFIGURATION LEVEL).

Set Point Tracking Enable
If Set Point Tracking is enabled and the controller is in Manual mode the local set point tracks the process variable. When the controller is in Set Point Tracking mode the local set point limits can be exceeded. If the local set point is outside of its limits when automatic control mode is selected, the local set point value can only be adjusted towards its limits. Once within the limits they apply as normal. Select \(ON\) to enable or \(OFF\) to disable.

Second Set Point Type:
enables the setting up of a second set point in addition to the local set point.
Select the second set point type, \(NONE\) (no second set point), \(dUAL\) (a second local set point), \(rEMOtE\) (remote set point), or \(CASCdE\) (only available on controller 2).

Note. The \(r\ E\ .\ d\ E\) selection is displayed only if enabled in the Input Assignment Page, ADVANCED CONFIGURATION LEVEL.

Dual Set Point High Limit
The high limit is the maximum value to which the dual set point can be adjusted.
Select the value required. The decimal point position is set automatically.

Dual Set Point Low Limit
The low limit is the minimum value to which the dual set point can be adjusted.
Select the value required. The decimal point position is set automatically.

Dual Set Point Value
Set the value required, within the limits set above. The decimal point position is set automatically to that of the engineering range (Set Up Input Page, BASIC CONFIGURATION LEVEL).

Continued on next page.
Output Tracking Enable
With Output Tracking enabled, if the slave controller is changed to local set point, the Master output tracks the local set point value of the slave.

Remote (Cascade) Set Point Tracking Enable
If Remote (Cascade) Set Point Tracking is enabled and the controller is in Remote (Cascade) mode the local set point tracks the remote set point. When the controller is in Remote (Cascade) Set Point Tracking mode the local set point limits can be exceeded. If the local set point is outside of its limits when selected, the set point can only be adjusted towards its limits. Once within the limits they apply as normal. With remote set point tracking enabled; if the controller is put into manual mode, the set point reverts from remote to local. Select ON to enable or OFF to disable.

Remote (Cascade) Set Point High Limit
The high limit is the maximum value to which the remote (cascade) set point can be adjusted.
Select the value required. The decimal point position is set automatically.

Remote (Cascade) Set Point Low Limit
The low limit is the minimum value to which the remote (cascade) set point can be adjusted.
Select the value required. The decimal point position is set automatically.

Remote (Cascade) Set Point Ratio
The ratio is a scaling factor, i.e. multiplies the remote (or cascade) set point input by the ratio value set – see Fig. 4.2. Set the required ratio, between 0.010 and 9.999 in 0.001 increments.

Remote (Cascade) Set Point Bias
The bias is an offset which is added to the remote (cascade) set point value – see Fig. 4.2. Set the required bias, in engineering units.

Set Point Type Selection
The balance (\textit{Balance}) display shows the difference between the local and second (remote, dual or cascade) values, i.e.
\[\text{Balance} = \text{Second set point} - \text{Local set point} \]
If the difference is too great, press the \textbf{[F]} or \textbf{[F]} key to exit this frame, select the local set point frame (\textit{Local}) in this page or the \textit{Operating Page} and adjust to an acceptable balance.

Second Set Point Type

\[\begin{array}{c}
\text{DUAL} \\
\text{RELATIVE} \\
\text{CASCADE} \\
\text{BALANCE} \\
\text{LOCAL} \\
\end{array} \]

Return to Select Controller frame.
4.2 Motorized Valve Control

Information.
- This page is not displayed if position proportioning or boundless control is not enabled on either controller.
- Motorized valve control with or without feedback – position-proportioning (with feedback) or boundless (without feedback).
- Ratio and bias settings – can be applied to adjust the range of valve travel (position-proportioning only).
- Deadband setting – adjustable to minimize hunting of the motorized valve.

4.2.1 Motorized Valve with Feedback (Position-Proportioning) – Fig. 4.3

<table>
<thead>
<tr>
<th>PID Output</th>
<th>Ratio</th>
<th>Bias</th>
<th>Desired Valve Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0.50</td>
<td>0</td>
<td>-25%</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4.3 Position-Proportioning Schematic Diagram

4.2.2 Motorized Valve Control without Feedback (Boundless) – Fig. 4.4

A ‘boundless’ process controller provides an output that is effectively the time derivative of the required regulator position, i.e. the controller signals the regulator, not where to go to (position derivative), but in which direction to travel and how far to move, by a series of integral action pulses. Thus, the controller does not need to know the absolute regulator position and is unaffected when the regulator reaches the upper or lower limit, as determined by the regulator’s limit switches (giving rise to the term ‘boundless’).

In this system, the final regulator must act as an integrator, integrating both the raise and lower pulses in direction and duration so that the final position of the regulator reproduces the required 2 or 3 term control function, and must remain stationary indefinitely in the absence of raise or lower commands.

When a deviation from set point is introduced the regulator is driven, for a length of time equivalent to the proportional step. The regulator is then driven by integral action pulses until the deviation is within the deadband setting.

Fig. 4.4 Boundless Control Action
4.2.3 Valve Page

Page Header – Valve Page.

To advance to Set Up Control Page press the key.

Select Controller
Select the controller to be programmed (1 or 2).

Note. In the remaining frames press the key to view the controller selected.

Ratio
The Ratio is a scaling factor, i.e. multiplies the position feedback input by the value set here.

Set the required feedback ratio, between 0.01 and 10.00 in 0.01 increments.

Bias
The Bias is an offset set as a percentage of the display full scale.

Set the required feedback bias, between –100.0 and +100.0% in 0.1% increments.

Dead Band
Deadband is set as a percentage of the position feedback span, between 0.0 and 10.0%, to produce a deadband around the valve control value. This gives minimum “hunting” of the motorized valve.

Example – if the valve is to be driven to 50% open position and the deadband is set to 4.0%, the motor stops driving when the position feedback is 48%. The deadband is between 48% and 52%.

Return to Select Controller frame.

Regulator Travel Time
This is the time set for the regulator to travel from the fully open to the fully closed position or from the fully closed to the fully open position.

Set the value required in seconds, between 1 and 5000 seconds.

Dead Band
Deadband is set as a percentage of the engineering range. Set a value which gives minimum hunting of the regulator, between 0.0 and 10.0 in 0.1% increments.

Return to Select Controller frame.

4.2.4 Calculation for Control Pulses, Steps and Deviation (Boundless Control only)

Minimum ‘ON’ time of integral action pulses (for a fixed control deviation)

\[\text{Minimum 'ON' time} = \frac{\text{Travel Time} \times \text{Deadband \%}}{\% \text{PB}} \text{ (in seconds)} \]

Minimum (approximate) time between integral action pulses (for a fixed control deviation)

\[\text{Minimum time} = \frac{\text{Integral Action Time} \times \text{Deadband \%}}{2 \times \text{Control Deviation}} \text{ (in seconds)} \]

Duration of the proportional step

\[\text{Duration of the proportional step} = 2 \times \left(\frac{\% \text{ Control Deviation}}{\% \text{ Proportional Band}} \right) \times \text{Travel Time (in seconds)} \]

% Control Deviation

\[\% \text{ Control Deviation} = \frac{\text{Set Point} – \text{Process Variable}}{\text{Span}} \times 100\% \]
4.3 Set Up Control

Information:
- **Control types** – Current Proportioning, Time Proportioning (and On/Off), Position-proportioning (motorized valve control with feedback), Boundless and Heat/Cool.
- **Programmable power-up control modes and outputs**.
- **Reverse and direct control actions**.
- **High and low output limits**.
- **Programmable fault actions** – enable fault actions on any of the inputs (process variable, remote set point and position feedback) to be controlled.

4.3.1 Set Up Control Page (control type)

Select Controller
Select the controller to be programmed (1 or 2).

Note. In the remaining frames press the key to view the controller selected.

Control Type
Select the control type required:
- **bNdLSS** – (Boundless) for motorized valve control, without position feedback
- **P-PrOP** – (Position-Proportioning) motorized valve control, with position feedback
- **Ht-CL** – (Heat/Cool) dual output control
- **Std** – (Standard) current proportioning, time proportioning and on/off

Continued on page 39.

Fig. 4.5 Standard Control Schematic Diagram
Fig. 4.6 Heat/Cool Control Schematic Diagram

Fig. 4.7 Proportional Control Schematic Diagram

Fig. 4.8 Boundless Control Schematic Diagram
4.3.2 Set Up Control Page (power-fail mode)

Information:
- Programmable power-up mode.
- Programmable output (or valve position) values.

Power Failure Mode
Select the default power fail mode required following a power interruption or failure:

- **LAST** – restart in the same mode existing prior to power failure.
- **MANUAL** – restart in Manual mode.
- **AUTO** – restart in Auto mode.

Manual-to-Manual Power Fail Output:
is the control output value required when power-down state is Manual and power-up state is Manual.

Set the control output value (or valve position) required following a power failure, between 0 and 100% in increments of 1%, or **LAST**. If **LAST** is selected the percentage control output present prior to the power failure is retained.

Auto-to-Auto Power Fail Output:
is the control output value required when power-down state is Auto and power-up state is Auto.

On power-up the controller presets the Integral component to give bumpless operation on power-up, at the selected output value, using the current process variable and set point values. If **AUTO** is selected the Integral component is not preset.

Set the control output value (or valve position) required following a power failure, between 0 and 100% in increments of 1%, or **LAST**.

Continued on page 41.

Continued on next page.

Continued on next page.

<table>
<thead>
<tr>
<th>Power Fail Mode</th>
<th>Mode on Power Down</th>
<th>Mode on Power Up</th>
<th>Control Output (Valve Position) on Power Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Auto</td>
<td>Auto</td>
<td>Integral component of the control output is preset to give bumpless operation at power-up at the value set in the Auto-to-Auto frame.</td>
</tr>
<tr>
<td>Last</td>
<td>Auto</td>
<td>Auto</td>
<td>Integral component of the control output is preset to give bumpless operation at power-up at the value set in the Auto-to-Auto frame (or LAST)</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
<td>Manual</td>
<td>Value set in Manual-to-Manual Output frame or output value prior to power-down (if LAST selected)</td>
</tr>
</tbody>
</table>

Table 4.1 Power-up and Power-down Control Modes
...4 CONTROL CONFIGURATION LEVEL

...4.3.2 Set Up Control Page (power-fail mode)

Manual-to-Manual Power Fail Output:
is the control output value required when power-down state is Manual and power-up state is Manual.

Set the control output value (or valve position) required following a power failure, between 0 and 100% in increments of 1%, or last. If last is selected the percentage control output present prior to the power failure is retained.

Auto-Manual Power Fail Output:
is the control output value required when power-down state is Auto and power-up state is Manual.

Set the control output value (or valve position) required following a power failure, between 0 and 100% in increments of 1%.

Continued on next page.

Auto-to-Auto Power Fail Output:
is the control output value required when power-down state is Auto and power-up state is Auto.

On power-up the controller presets the Integral component to give bumpless operation on power-up, at the selected output value, using the current process variable and set point values. If Auto is selected the Integral component is not preset.

Set the control output value (or valve position) required following a power failure, between 0 and 100% in increments of 1%, or Auto.

Manual-to-Auto Power Fail Output:
is the control output value required when power-down state is Manual and power-up state is Auto.

On power-up the controller presets the Integral component to give bumpless operation on power-up, at the selected output value (or output prior to power-down, if last is selected), using the current process variable and set point values. If last is selected the Integral component is not preset.

Set the control output value (or valve position) required following a power failure, between 0 and 100% in increments of 1%, or Auto.

Continued on next page.
4.3.3 Set Up Control Page (control actions and limits – non heat/cool)

Information.
- Two control offsets.
- Programmable control actions for all outputs.
- High/low output (or valve position) limits, when in auto control mode.

Control Offset
Select the offset required, 0 or 50%.

Control Action
Select the action for the PID control output.
- \(d \)Ir – direct acting
- \(r \)EU – reverse acting

Output High Limit:
limits the high level of the control output value (or valve position) when in automatic mode. If the control output is above this limit when automatic mode is selected, the output is allowed to stay at its current level but is not allowed to go any higher. Once the control output returns to, or below, this limit the limit then applies. When the controller is in manual mode the output limits do not apply.

Select the output high limit value (or valve position) required, between 0.0 and 100.0 in 0.1 increments.

Output Low Limit:
limits the low level of the control output value (or valve position) when in automatic mode. If the control output is below this limit when automatic mode is selected, the output is allowed to stay at its current level but is not allowed to go any lower. Once the control output returns to, or above, this limit the limit then applies. When the controller is in manual mode the output limits do not apply.

Select the output low limit value (or valve position) required, between 0.0 and 100.0 in 0.1 increments.

Continued on page 44.
4.3.4 Set Up Control Page (control actions and limits – heat/cool)

Information.
- Independently programmable control actions for heat and cool outputs – direct or reverse.
- Output limits for heat and cool outputs.

Control Action (Heat)
Select the action for the heat and PID control outputs:
- h dl – direct acting
- r EU – reverse acting.

Heat Output High Limit:
limits the high level of the heat control output value when in automatic mode. If the control output is above this limit when automatic mode is selected, the output is allowed to stay at its current level but is not allowed to go any higher. Once the control output returns to, or below, this limit the limit then applies. When the controller is in manual mode the output limits do not apply. Select the heat output high limit value required, between 0.0 and 100.0 in 0.1 increments.

Control Action (Cool)
Select the action for the cool control output (see also Control Action (Heat), above):
- C dl – direct acting
- r EU – reverse acting.

Cool Output High/Low Limit:
limits the high or low level of the cool control output when in automatic mode, depending on the Control Action (Cool) setting (r EU is the low and dl is the high setting). If the control output exceeds this limit when automatic mode is selected, the output remains at its current level but is not allowed to go any further away from the limit. Once the control output returns to, or within, this limit, the limit then applies. When the controller is in manual mode the output limits do not apply. Select the cool output high (low) limit required, between 0.0 and 100.0 in 0.1 increments.

Continued on next page.
4.3.5 Set Up Control Page (default control actions)

Information. Programmable default control action if input exceeds fault levels – independently programmable for all inputs (process variable, remote set point and position feedback).

Examples show fault detection levels of 10%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>None</td>
<td>Unchanged</td>
<td>Min. or Max. O/p Level*</td>
</tr>
<tr>
<td></td>
<td>Hold</td>
<td>Manual</td>
<td>Held at present value</td>
</tr>
<tr>
<td></td>
<td>Default Output</td>
<td>Manual</td>
<td>Default Output value</td>
</tr>
</tbody>
</table>

* Controller output is driven to either the maximum or minimum output limit, depending on the Broken Sensor Protection Drive setting – see Set Up Inputs Page, BASIC CONFIGURATION LEVEL.

<table>
<thead>
<tr>
<th>Remote Set Point & Fault Detection Levels</th>
<th>Remote Set Point Default Action</th>
<th>Set Point Type</th>
<th>Set Point Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSP</td>
<td>None</td>
<td>Remote</td>
<td>Equal to high or low remote set point limit</td>
</tr>
<tr>
<td></td>
<td>Local</td>
<td>Local</td>
<td>Previous valid remote set point value</td>
</tr>
<tr>
<td></td>
<td>Default Set Point</td>
<td>Local</td>
<td>Default set point value</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position Feedback & Fault Detection Levels</th>
<th>Position Feedback Default Action</th>
<th>Control Mode</th>
<th>Valve Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFB</td>
<td>None</td>
<td>Unchanged</td>
<td>Fully open or fully closed**</td>
</tr>
<tr>
<td></td>
<td>Hold</td>
<td>Manual</td>
<td>Held at present value</td>
</tr>
</tbody>
</table>

** Valves is driven to either fully open or fully closed, depending on the Broken Sensor Protection Drive setting – see Set Up Inputs Page, BASIC CONFIGURATION LEVEL.

Fig. 4.10 Default Control Actions for Input Fault Detection Levels
4.3.5 Set Up Control Page (default control actions)

Default Action (Process Variable)
Select the default control action required if the process variable exceeds its fault detection level (set in the **Set Up Input Page, BASIC CONFIGURATION LEVEL**):
- **DEF-OP** – revert to manual control mode and change the control output to the **Default Output** value (see next frame).
- **HOLD** – revert to manual control mode and hold the output at its current value.
- **NONE** – no action.

Default Output
Set the default control output value used if the process variable exceeds the fault detection level (between 0 and 100% in 1% increments).

Note. For boundless motorized valve control, the default output setting can be only 0 or 100%.

Default Action (Set Point)
Select the default control action required if the remote set point exceeds its fault detection level (set in the **Set Up Input Page, BASIC CONFIGURATION LEVEL**):
- **DEF-SP** – revert to local set point and use the **Default Set Point** value (see next frame).
- **LOCAL** – revert to local set point.
- **NONE** – no action.

Default Set Point
Set the default control set point value used if the remote set point exceeds the fault detection level (in engineering units).

Default Action (Position Feedback)
Select the default control action required if the position feedback exceeds its fault detection level (set in the **Set Up Input Page, BASIC CONFIGURATION LEVEL**):
- **HOLD** – revert to manual control mode and hold the valve at its current position.
- **NONE** – no action.

Return to **Select Controller** frame.
4.4 Set Up Operating Page

Information.
- Customized display of parameters in the Operating Page.
- Power-fail indication – if enabled, **LINE FAILED** is displayed to indicate that a power failure has occurred.
- Auto/Manual key ☐ – enable or disable.

Page header – **Set Up Operating Page**.

To advance to **Set Up Digital Page** press the ☑ key.

Select Controller
Select the controller to be programmed (1 or 2).

Note. In the remaining frames press the ☑ key to view the controller selected.

Bargraph Increment
The deviation from set point is shown on the bargraph on the faceplate.
Set the percentage deviation represented by each bar, between 1 and 10% in 1% increments.

Power Fail Indication Enable
Enable or disable power failure indication:
- YES – enable
- NO – disable

Auto/Manual Select Enable
Enable or disable the ☐ key on the faceplate:
- ENBL-Y – enable
- ENBL-N – disable

Manual Reset Adjustment Enable
Enable or disable display and adjustment of the **Manual Reset** frame in the **Operating Page**:
- YES – enable
- NO – disable

Set Point Select Enable
Enable or disable adjustment of the **Set Point Type Selection** frame in the **Operating Page**:
- YES – enable
- NO – disable

Set Point Adjust Enable
Enable or disable adjustment of the **Control Set Point** value in the **Operating Page**:
- YES – enable
- NO – disable

Remote (or Cascade) Set Point Ratio Adjust Enable
Enable or disable display and adjustment of the **Remote (or Cascade) Set Point Ratio** in the **Operating Page**:
- YES – enable
- NO – disable

Remote (or Cascade) Set Point Bias Adjust Enable
Enable or disable display and adjustment of the **Remote (or Cascade) Set Point Bias** in the **Operating Page**:
- YES – enable
- NO – disable

Return to **Select Controller** frame.
4.5 Set Up Digital Page

Information.
- Digitally selectable control modes and set point types.
- Up to 3 digitally selectable local set points.
- Digital signal sources – can be from external digital inputs, internal alarms, logic equations, control modes, ramp/soak events or totalizer signals.

Note.
- The complete list of digital sources is shown in Table 3.1 on page 18.
- Digital sources can be either leading edge triggered or level triggered, depending on the parameter function (single or dual).

Single function parameters, e.g. set point 1 selection, are leading edge triggered, i.e. the active logic state can be removed after the function is selected.

Dual function parameters, e.g. auto/manual control mode selection, are level triggered, i.e. the active logic state must be maintained to select the alternative function.

Page header – Set Up Digital.

To advance to Control Configuration Level frame press the key.

Select Controller
Select the controller to be programmed (1 or 2).

Note. In the remaining frames press the key to view the controller selected.

Auto/Manual Control Mode Source
Select a source to switch between Auto and Manual control modes. When Manual control mode is selected, the output reverts automatically to the value set in the Configured Output frame (see below).

Manual Control Mode Source
Select a source to switch to Manual control mode. When Manual control mode is selected, the output reverts automatically to the value set in the Configured Output frame (see below).

Configured Output
Set the control output value required when Manual control mode is selected.

Auto Control Mode Source
Select a source to switch to Auto control mode.

Continued on next page.
4.6 Set Up Digital Inputs

Local/Remote (or Dual) Set Point Source
Select a source to switch between Local and Remote set points.

<table>
<thead>
<tr>
<th>Local/Remote</th>
<th>Set Point Source</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Remote/Dual</td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Local Set Point Source
Select a source to switch to the Local set point.

<table>
<thead>
<tr>
<th>Local Set Point Source</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote/Dual Set Point Source
Select a source to switch to the Remote set point.

<table>
<thead>
<tr>
<th>Remote/Dual Set Point Source</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Remote</td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set Point 1 Source
Select a source to make the Local set point value equal to Set Point 1.

<table>
<thead>
<tr>
<th>Set Point 1 Source</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Set Point 1</td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set Point 1 Value
Set the Set Point 1 value.

Set Point 2 Source
Select a source to make the Local set point value equal to Set Point 2.

<table>
<thead>
<tr>
<th>Set Point 2 Source</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Set Point 2</td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set Point 2 Value
Set the Set Point 2 value.

Set Point 3 Source
Select a source to make the Local set point value equal to Set Point 3.

<table>
<thead>
<tr>
<th>Set Point 3 Source</th>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>Set Point 3</td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set Point 3 Value
Set the Set Point 3 value.

Return to Select Controller frame.
Section 5.1, Page 49
Set Up Functions Keys

Function Keys
- Function Key 1
- Function Key 2
- Function Key 3

Section 5.2, Page 50
Set Up Logic

Select Equation
- Configure Logic

Section 5.3, Page 52
Set Up Pen Functions

Pen Functions
- Pen 1 Function
- Pen 4 Function

Section 5.4, Page 53
Input Assignment

Input Assignment
- Select Input 1
- Select Input 2
- Select Input 3
- Select Input 4

Fig. 5.1 Advanced Configuration Level
5.1 Set Up Function Keys

Information.
- Programmable function key – on each faceplate.
- Home function – returns the instrument display to the start of the Operating Page when at the top of any page.
- Global alarm acknowledge function – acknowledges any unacknowledged alarms on all channels.
- Penlift function – raises and lowers pens (for use on controller faceplates which do not have a dedicated penlift key).
- Local/Remote set point selection.
- Quick access to auto-tuning – reverts to the top of the Auto-tuning Page.
- Quick access to profile operator controls – reverts to the top of the Profile Control Page.

Page Header – Set Up Function Keys

To advance to the BASIC CONFIGURATION LEVEL frame press the [] key.

Function Key 1
Select function required.
- HO. E – home (return to Operating Page in the OPERATOR LEVEL)
- ProFLE – revert to top of Profile States Page
- LOC. E – local/remote set point selection
- A-TUNE – auto tune (reverts to top of Auto Tune Page in the OPERATOR LEVEL)
- PENLFT – pen lift/drop (lifts and lowers pens)
- ALMACK – acknowledge alarm

Function Key 2
Select function required (if applicable).

Function Key 3
Select function required (if applicable).

Return to Set Up Function Keys frame.
5.2 Set Up Logic

Information.
- 8 logic equations.
- 7 elements per equation.
- OR/AND operators.
- Can combine internal and external digital signals – i.e. alarms, digital inputs, other logic equation results, real time events (if timer option is fitted), control modes set point modes and profile segments and programs (if option is fitted).

For each equation, the logic elements 1 to 7 are arranged sequentially, as shown. Odd numbered elements are used for logic inputs and even numbered elements for logic gates.

Logic inputs must be set to one of the digital sources listed in Table 3.1 on page 18.

Logic gates must be set to AND, OR or END. Setting an element to END terminates the equation.

Example – Reservoir level monitoring using:
- process variable 1 with an engineering range 0 to 100 feet
- logic equation 1 result assigned to relay 1.1 which is used to operate the control valve.

Flow Conditions
Close reservoir control valve if:
- Reservoir level >50 feet AND rate of change >10 ft/hr
OR
- Reservoir level >80 ft OR
- Manual override switch operated

Input Elements
- Alarm A1 – set to high process trip at 50 ft
- Alarm B1 – set to high process trip at 80 ft
- Alarm C1 – set to fast rate trip at 10% of range per hour (10 ft/hr)
- Manual override switch:
 Connected to digital input 1.1
 Digital input number Module number
 Negative polarity Volt-free switching

Entering the Logic Equation
5 ADVANCED CONFIGURATION LEVEL...

...5.2 Set Up Logic

Page Header – Set Up Logic

To advance to Set Up Pen Functions Page press the key.

Select Equation
Select equation to be constructed.

Note. In the remaining frames press the key to view the equation selected.

Equation n/Element 1
Select the source required for element 1.

For description of sources, refer to Table 3.1 on page 18.

Equation n/Element 2
Select the operator required to combine elements 1 and 3:
- Or
- And
- Ends equation

Equation n/Element 3
Repeat previous two steps for elements 3 to 7.

Odd numbered elements = sources
Even numbered elements = operators

Return to Select Equation frame.
5.3 Set Up Pen Functions

Information. Any fitted pen can be assigned to a trend or an event function.

Page Header – Pen Functions

To advance to Advanced Configuration frame press the key.

Pen 1
Select pen function required:
 \textit{trend} – Trend pen
 \textit{event} – Event pen

\textbf{Note}. The event pen and true time line event pen are separate functions and only the event pen can be selected in this page. The true time line event pen option allows marking on the same time line as the red pen and requires a special pen arm and motor assembly. Refer to the order code in the Specification Sheet.

Pens 2 to 4
Repeat as for Pen 1, if applicable.

\textbf{Return to Pen Function frame.}
5.4 Input Assignment

Information. Assignment Process Variables, Remote Set Points and Position Feedbacks – can all be assigned to any analog input or math block result (if fitted).

Page Header – Input Assign

Note. Entry and access to and from this page can only be implemented from the page header.

To advance to ADVANCED CONFIGURATION LEVEL frame press the key.

Process Variable 1
Select analog input or math block result for Process Variable 1.

<table>
<thead>
<tr>
<th>Input Assignment</th>
<th>Process Variable 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Pen Instrument</td>
<td>IP-1 to IP-6</td>
</tr>
<tr>
<td>2, 3 and 4 Pen Instrument</td>
<td>bLK-1 to bLK-4</td>
</tr>
</tbody>
</table>

Process Variable 2
Select analog input or math block result for Process Variable 2 – see PU-1 for description of inputs and math blocks.

Process Variable 3
Select analog input or math block result for Process Variable 3 – see PU-1 for description of inputs and math blocks.

Process Variable 4
Select analog input or math block result for Process Variable 4 – see PU-1 for description of inputs and math blocks.

Remote Set Point (Controller 1)
Select analog input or math block result for remote set point for Controller 1 – see PU-1 for description of inputs and math blocks.

Position Feedback (Controller 1)
Select analog input or math block result for position feedback for Controller 1 – see PU-1 for description of inputs and math blocks.

Remote Set Point (Controller 2)
Select analog input or math block result for remote set point for Controller 2 – see PU-1 for description of inputs and math blocks.

Position Feedback (Controller 2)
Select analog input or math block result for position feedback for Controller 2 – see PU-1 for description of inputs and math blocks.

Update Active/Done
The ACTIVE frame is displayed momentarily as any changes are stored in the non-volatile memory. DONE is displayed on completion.

Return to Input Assign frame.
C1900 series
Circular chart recorder/controller
Measurement made easy
C1900 – dependable recording and full PID control united in a rugged, functional instrument

1 to 4 pen recording
- full application flexibility

1 or 2 controllers
- integrated control and recording

Analog, relay outputs, digital inputs and transmitter power supply as standard
- range of inputs and outputs built-in

PID autotune on demand
- optimum loop control

20 programmable ramp/soak profiles
- multiple recipe capability

NEMA 4X/IP66 construction
- hose-down protection

0.1 % measurement accuracy
- precise process information

RS485 Modbus serial communications
- open system compatibility
C1900
The C1900 is a fully programmable circular chart recorder/controller combining two PID control loops with 4-pen recording. The C1900’s straightforward operator controls and robust construction make it suitable for a variety of industrial environments. Excellent standard facilities are complemented by a powerful range of options to give the flexibility to match your application.

Comprehensive process information
The C1900 lets you see the status of your process at a glance: high visibility 6-digit LED displays provide a clear indication of all process signals. Dedicated operator stations for each controller give continuous displays of set points, measured values and high-visibility deviation bargraphs. Active alarms are signalled by flashing LEDs below the main displays.

4-pen recording
The chart is easily set up to show the information you need in the way you want. Pen ranges are individually set to give the best resolution for each signal; additionally, a true-time event pen facility enables one pen to be set up as a 3-position event marker on the same time line as Pen 1.

Straightforward operation
The clearly-labelled tactile keypads permit operator adjustments and configuration programming without the need to open the recorder’s door. Separate operator panels for each controller provide a direct route for accessing individual control loops. Clear text prompts on the digital displays guide the user around the various menus. A password-protected security system prevents unauthorized access to configuration adjustment menus.

Flexibility to solve problems
The C1900 offers seamless integration of loop functionality to solve process problems, eliminating the need for auxiliary devices.

Totalizers, math, logic and timers
Integrating fluid flow to calculate total volume is performed by the built-in totalizers, available for each channel. Relays can be assigned to increment or reset external counters to match the recorder’s totalizer values.

Modbus RS485 communications
Communications with PCs or PLCs are achieved via the RS485 serial communications link. Using MODBUS RTU protocol, all process inputs and other variables can be continuously read by a host PC running any of a wide variety of standard SCADA packages.
Versatile process control

The C1900 provides full PID control of one or two process loops in addition to its powerful recording facilities. The control loops can operate independently or be soft-linked together to implement Cascade or Master/Slave control strategies. Each loop has a dedicated ¼ DIN-style operator panel for ease of operation and clarity of display.

Analog, relay or valve positioning output

The control output is selectable to fit any application with a choice of analog, time proportioning or valve positioning relays; use of a feedback potentiometer to ensure precise valve control is fully supported. Heat/cool operation is available on both loops.

Autotune

Operation of the autotune function on either loop instigates a tuning routine which allows the C1900 to calculate the optimum PID parameters for that particular loop. Following the completion of autotune, the PID values are automatically updated.

Auto/Manual and local/remote

Dedicated membrane keys on each operator panel enable one-touch operation for selection between manual and automatic loop control and for switching from local to remote set point.

Extensive ramp/soak programming

Full control of temperature profiles is provided by 10 program recipes for each controller. A total of 99 ramp/soak segments are available for allocation to these programs. Segment events can be incorporated into the recipes to perform specific functions (e.g. operate relays) at predefined points within the program.

Remote program selection

External panel switches can be connected to the C1900’s digital inputs to allow remote selection of stored profiles and to initiate ramp/soak programs.
Built to meet your needs
The C1900’s modular architecture gives a high level of hardware choice: up to five I/O modules can be added to the basic instrument.

The standard input/output module supplied with every pen comes complete with a fully isolated analog input, a relay output, transmitter power supply, isolated analog output and two digital inputs. Further input and output capability is provided by a range of plug-in modules:

- **Analog input and relay** – remote set point
- **Four relays** – channel alarm outputs
- **Eight digital inputs** – linked using logic equations
- **Eight digital outputs** – TTL level alarm outputs
- **MODBUS RS485 communications** – interfaces with PCs

Expandable for the future
The C1900 may be quickly upgraded to meet your changing process requirements.

Additional recording channels, math capability or input and output functions can be retrofitted on-site using plug-in cards and easily fitted pen arms. Input calibration data is stored on each card, allowing quick changes to input cards without the need for recalibration.

Changes to input sensors or recording procedures are accommodated by reconfiguration using the main keypad.

Designed to survive
NEMA 4X protection ensures the C1900 can survive in the harshest environments and makes the recorder ideal for use in panels which are regularly hosed down. The tough, acid-resistant case and secure cable-entry glands maintain the NEMA 4X rating for wall-mounted or pipe-mounted instruments.

Noise immunity
Recording accuracy is maintained in noisy industrial environments due to the advanced EMC shielding within the recorder. The power supply has been designed to give excellent protection from power spikes and brownouts and all configuration and status information is held in nonvolatile memory to ensure rapid recovery after a power failure.

Easy to install
A choice of mounting options enables simple installation of the recorder in a panel, on a wall or on a pipe. Detachable terminal blocks allow for trouble-free connection of input and output wiring, with mains isolation provided by an optional power switch within the instrument.

Minimal maintenance
Excellent long-term stability keeps recalibration to a minimum, cutting the costs of ownership. User-selectable chart speeds and long-life pens combine to limit usage of consumables.

Built-in quality
The C1900 is designed, manufactured and tested to the highest quality standards, including ISO 9001, and is guaranteed by a 2 year parts and labour warranty.
Specification

Summary
- 1, 2, 3 or 4 pens
- 1 or 2 PID control loops
- 10 in. chart size
- Standard I/O with each pen includes:
 - Analog input, analog output, transmitter power supply, relay output and 2 digital inputs.

Construction

- **Size (h x w x d)**

 386.8 x 382.0 x 141.5 mm (15.23 x 15.04 x 5.57 in.)

- **Weight**

 8.2 kg (18 lb)

- **Case material**

 Glassfiber-filled reinforced polyester

- **Window material**

 Polycarbonate

- **Door latch**

 High-compression with optional lock

Environmental

- **Operational temperature range**

 0 to 55 °C (32 to 130 °F)

- **Operational humidity range**

 5 to 95 %RH (non-condensing)

 5 to 80 %RH (chart only)

- **Case sealing**

 NEMA 4X (IP66)

- **Fast transients**

 IEC 801-4 Level 3

Installation

- **Mounting options**

 Panel, wall or pipe

- **Terminal type**

 Screw

- **Wire size (max.)**

 14 AWG (I/O), 12 AWG (power)

Operation and configuration

- **Programming method**

 Via front panel keys

- **Security**

 Password-protected menus

Safety

- **General safety**

 IEC348

- **Isolation**

 - 500 V DC (channel/channel)

 - 2 kV DC (channel/ground)

- **Memory protection**

 Nonvolatile EEPROM

- **Approvals**

 - CSA

 - UL

 - CSA/FM Class 1 Div. 2

 - CE

Power supply

- **Voltage**

 100 to 240 V AC ±10 % (90 V min. to 264 V max. AC), 50/60Hz

- **Consumption**

 <30 VA (typical for full spec. unit)

- **Line interruption**

 Up to 60ms

Analog input performance

<table>
<thead>
<tr>
<th>Type</th>
<th>Range Lo</th>
<th>Range Hi</th>
<th>Min. Span</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>mV</td>
<td>0</td>
<td>150</td>
<td>5</td>
<td>±0.1 % reading or 10 µV</td>
</tr>
<tr>
<td>V</td>
<td>0</td>
<td>5</td>
<td>0.1</td>
<td>±0.1 % reading or 20 mV</td>
</tr>
<tr>
<td>mA</td>
<td>0</td>
<td>50</td>
<td>1</td>
<td>±0.2 % reading or 0.2 µA</td>
</tr>
<tr>
<td>Ω (high)</td>
<td>0</td>
<td>10 k</td>
<td>400</td>
<td>±0.2 % reading or 0.1 Ω</td>
</tr>
<tr>
<td>Ω (low)</td>
<td>0</td>
<td>10 k</td>
<td>400</td>
<td>±0.5 % reading or 10 Ω</td>
</tr>
</tbody>
</table>
...Analog input performance

<table>
<thead>
<tr>
<th>Type</th>
<th>°C Range Lo</th>
<th>Range Hi</th>
<th>Min. span</th>
<th>°F Range Lo</th>
<th>Range Hi</th>
<th>Min. span</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>–18</td>
<td>1800</td>
<td>1278</td>
<td>0</td>
<td>3270</td>
<td>710</td>
</tr>
<tr>
<td>E</td>
<td>–100</td>
<td>900</td>
<td>81</td>
<td>–140</td>
<td>1650</td>
<td>45</td>
</tr>
<tr>
<td>J</td>
<td>–100</td>
<td>900</td>
<td>90</td>
<td>–140</td>
<td>1650</td>
<td>50</td>
</tr>
<tr>
<td>K</td>
<td>–100</td>
<td>1300</td>
<td>117</td>
<td>–140</td>
<td>2350</td>
<td>65</td>
</tr>
<tr>
<td>N</td>
<td>–200</td>
<td>1300</td>
<td>162</td>
<td>–325</td>
<td>2350</td>
<td>90</td>
</tr>
<tr>
<td>R</td>
<td>–18</td>
<td>1700</td>
<td>576</td>
<td>0</td>
<td>3000</td>
<td>320</td>
</tr>
<tr>
<td>S</td>
<td>–18</td>
<td>1700</td>
<td>576</td>
<td>0</td>
<td>3000</td>
<td>320</td>
</tr>
<tr>
<td>T</td>
<td>–250</td>
<td>300</td>
<td>108</td>
<td>–400</td>
<td>550</td>
<td>60</td>
</tr>
<tr>
<td>PT100</td>
<td>–200</td>
<td>600</td>
<td>45</td>
<td>–325</td>
<td>1100</td>
<td>25</td>
</tr>
</tbody>
</table>

Accuracy (excl. CJC):

- ±2 °C (above 200 °C) (3.6 °F above 434 °F)
- ±0.5 °C (±0.9 °F)

Process inputs and outputs – general

2-wire transmitter power supply

- Number: 1 per channel
- Voltage: 24 V DC nominal
- Drive: Up to 25 mA
- Isolation: 500 V DC channel/channel

Analog outputs

- Type: 4 to 20 mA
- Accuracy: ±0.1 %
- Maximum load: 750 Ω
- Dielectric: 500 V DC

Relay outputs

- Type: SPDT
- Rating (with non-inductive load): 5 A at 115/230 V AC

Digital inputs

- Type: TTL or volt-free
- Minimum pulse: 250 ms
- Dielectric: 50 V DC between modules, no isolation within module

Noise rejection

- Common mode >120 dB at 50/60Hz
- Normal (series) mode >60 dB at 50/60Hz:

CJC rejection ratio

- <0.05°C/°C

Sensor break protection

- Upscale or downscale drive

Out of range detection

- 0 to 100 % of engineering span

Temperature stability

- <0.02 % of reading/°C or 1 µV/°C

Long-term drift

- <0.01 % of reading 10 µV annually

Input impedance

- >10 MΩ (mV and V inputs)
- 39 Ω (mA inputs)

Analog inputs

Signal types

- mV, V, mA, Ω

Thermocouple types

- B, E, J, K, N, R, S, T

Resistance thermometer

- Pt100

Other linearizations

- $x^{1/2}$, $x^{3/2}$, $x^{5/2}$, linear

Sample interval

- 250 ms per channel

Isolation

- 500 V DC channel/channel

Digital filter

- 0 to 60s programmable
… Specification

Digital outputs

- **Type**
 - 5 V TTL
- **Rating**
 - 5 mA per output
- **Isolation**
 - 500 V DC between modules, no isolation within module

Serial communications

- **Connections**
 - RS485, 4-wire
- **Protocol**
 - Modbus RTU

Recording system

- **Pens**
 - Number
 - 1, 2, 3, or 4 (red, blue, green, black)
 - **Response**
 - 7 seconds (full scale)
 - **Resolution**
 - 0.1 % steps
- **Pen lift**
 - Motor-driven, with optional auto-drop
- **Event pens**
 - **Standard**
 - 3-position event recording on any channel
 - **Real time**
 - 3-position event recording on the same time line as Pen 1
- **Chart**
 - **Chart size**
 - Approx. 254 mm (10 in.) diameter
 - **Chart speed**
 - 1 to 167 hours or 7 to 32 days per revolution
 - **Rotation accuracy**
 - <0.5 % of rotation time

Display and operator panels

- **Displays**
 - **Number**
 - Dual display for process value and set point for each controller, plus individual display for each record-only channel
 - **Type**
 - 6-digit red LED, 14 mm (0.56 in.) high
- **Status indicators**
 - Indicate channel number on display (on record-only channel)
 - Indicate remote set point, autotune or manual operation
- **Alarm indicators**
 - Indicate channels with active alarms

Panel keys

- **Function**
 - Programming access, increment/decrement, pen lift and user-defined function key.

Alarms and logic

- **Alarms**
 - **Number**
 - 4 per channel
 - **Type**
 - High/Low process, fast/slow rate of change, deviation high/low, output high/low, high/low process time delay
- **Adjustments**
 - Hysteresis, time delay
- **Logic equations**
 - **Number**
 - 8
 - **Function**
 - OR, AND
- **Inputs**
 - Alarm states, digital inputs, totalizers, logic
- **Outputs**
 - Relays, digital outputs, chart stop, alarm acknowledge

EMC

Design & Manufacturing Standards

- CSA General Safety: Approved
- UL General Safety: Approved
- CSA/FM Class 1 Div. 2: Approved

Emissions and Immunity

- Meets requirements of:
 - EN 50081-2
 - EN 50082-2
 - IEC 61326 for an Industrial Environment
 - CE Mark
Advanced software functions

Totalizers
Number
1 per pen
Size
99,999,999 max.
Output
 External counter driver, ‘wrap’ pulse signal
Math
Number of equations
4
Type
+, –, x, ÷, low & high select, max., min., average, mass flow, RH
Timers
Number
2
Type
Real-time clock driven event, adjustable duration
Output
 Relay, digital output, logic equation

PID control
No. of loops
1 or 2
Control outputs
 Relay, logic or DC analog
Control types
 Time-proportioning, analog
Control action
 On demand, at start-up or at set point
Autotune
 On demand, at start-up or at set point
Option modules
Number
5 plus 1 x standard input/output module
Connection
 Plug-in cards with detachable connection blocks
General
 All modules isolated from each other 500 V DC
Module specific
 • Analog O/P isolated from all other I/Ps and O/Ps
 • Common of digital I/Ps not isolated from –ve of PV I/P

Option module types

<table>
<thead>
<tr>
<th>Option module types</th>
<th>I/O per module</th>
<th>Max. no. per instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analog I/P</td>
<td>Analog O/P</td>
</tr>
<tr>
<td>Standard I/O</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analog I/P + relay</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4 relays</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8 digital I/P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 digital O/P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS485 communications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option module types</th>
<th>I/O per module</th>
<th>Max. no. per instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analog I/P</td>
<td>Analog O/P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overall dimensions

Dimensions in mm (in.)

- Overall dimensions: 382 (15.04) mm
- Dimensions: 320.8 (12.63) mm
- Cut-out size: 355.6 (14.00) mm
- 4 holes: 323 (12.72) mm, with 4 holes 7.14 (0.281) dia.
- or tap for 1/4 in. thread
- 33 (1.30), 66 (2.60), 35 (1.38) mm
- 36.6 (1.44) mm – typical space between adjacent knockout centers
- 22.35 (0.88) mm

Cut-out size
Electrical connections

1. Analog output
2. Analog input – see b to h
3. Logic 1
4. Logic 2
5. Normally open
6. Common
7. Normally closed

Summary of connections

b – Voltage
c – Current (non 2-wire transmitters)
d – 2-wire transmitter
e – Thermocouple
f – 3-wire RTD
g – Low voltage (mV)
h – 2-wire RTD and resistance

Standard input/output modules

1. Normally closed
2. Normally open
3. Common
4. Normally closed
5. Common
6. Normally open
7. Common
8. Normally closed
9. Common
10. Normally closed
11. Common
12. Normally open

Relay 1
Relay 2
Relay 3
Relay 4

4-relay output module

1. Common
2. Input 1
3. Output 1
4. Input 2
5. Output 2
6. Input 3
7. Output 3
8. Input 4
9. Output 4
10. Common
11. Input 5
12. Output 5

Digital input / output module

Earth (ground) stud

Power supply connections

Power switch (optional)
Fuse (optional)
Ordering information

Part 1

<table>
<thead>
<tr>
<th>C1900 Recorder/Controller</th>
<th>19XX</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>XXX</th>
<th>OPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorder/Controllers *</td>
<td></td>
</tr>
<tr>
<td>One control unit, one pen (red)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>One control unit, two pens (red, green)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>One control unit, three pens (red, green, blue)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>One control unit, four pens (red, green, blue, black)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Two control units, two pens (red, green)</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Two control units, three pens (red, green, blue)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Two control units, four pens (red, green, blue, black)</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chart type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor ER/C charts</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>KPC 105 PX and PKR type charts</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Chessell Brand charts</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CSA approved</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>UL approved</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>CSA/FM Class 1 Div. 2 approval</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option module</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Additional modules – complete Part 2</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Totalizer</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ramp/Soak profile</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Math and timer</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Totalizer, math and timer</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Totalizer, ramp/soak profile, math and timer</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Door lock</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not fitted</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fitted</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power supply</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>115 V AC</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>230 V AC</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>115 V AC with on/off switch</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>230 V AC with on/off switch</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 2 additional modules</th>
<th>Module type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Module position 2/channel 2 input*</td>
<td>0 1 2</td>
<td></td>
</tr>
<tr>
<td>Module position 3/channel 3 input*</td>
<td>0 1 2</td>
<td></td>
</tr>
<tr>
<td>Module position 4/channel 4 input*</td>
<td>0 1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>Module position 5</td>
<td>0 2 3 4 5 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Special settings</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company standard</td>
<td>STD</td>
<td></td>
</tr>
<tr>
<td>Custom configuration (customer to complete and supply C1900RC custom configuration sheet – INF08/032)</td>
<td>CUS</td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td>SXX</td>
<td></td>
</tr>
<tr>
<td>Engineered configuration (customer to supply configuration details required)</td>
<td>ENG</td>
<td></td>
</tr>
<tr>
<td>Calibration certificate **</td>
<td>C1</td>
<td></td>
</tr>
</tbody>
</table>

* Each pen fitted has an associated standard input/output module comprising analog input, analog output, relay, transmitter power supply and two digital inputs. Additional input/output modules may be fitted in the unused module positions as required. These additional modules should be specified in Part 2 of the ordering information.

** When a calibration certificate is ordered it is performed according to the specified configuration type:
- CUS/ENG – Inputs and outputs calibrated according to the customer supplied configuration details and ranges.
- STD – Inputs and outputs calibrated according to the instrument factory standard configuration and ranges.
Accessories

- Case-to-panel gasket C1900/0149
- Wall-mount kit C1900/1712
- Pipe-mount kit C1900/0713
- Pack of red pens C1900/0121
- Pack of green pens C1900/0122
- Pack of blue pens C1900/0120
- Pack of black pens C1900/0119
- Pack of purple pens C1900/0123
- After-sales engineered configuration service ENG/REC

Key to module types

- 0 No module fitted/pen input channel *
- 1 Standard input/output
- 2 Analog input (math input) + relay
- 3 Four relays
- 4 Eight digital inputs
- 5 Eight digital outputs
- 6 True time event pen (violet)
- 8 Modbus RS485 communications

* On 2, 3 or 4 pen instruments a standard I/O module is always fitted in the corresponding module position (enter ‘0’ in the corresponding order code field).

Example.

```
2 control, 2 pen
Remote set point + relay
4 relays
```

Acknowledgements and trademarks

Modbus™ is a trademark of Modicon, Inc.
Notes