e ———

== |i=
Compact Control Builder AC 800M

Binary and Analog Handling

Version 5.1.1

Compact Control Builder AC 800M

Binary and Analog Handling

Version 5.1.1

NOTICE

This document contains information about one or more ABB products and may include a
description of or a reference to one or more standards that may be generally relevant to
the ABB products. The presence of any such description of a standard or reference to a
standard is not a representation that all of the ABB products referenced in this document
support all of the features of the described or referenced standard. In order to determine
the specific features supported by a particular ABB product, the reader should consult the
product specifications for the particular ABB product.

ABB may have one or more patents or pending patent applications protecting the intel-
lectual property in the ABB products described in this document.

The information in this document is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this document.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential
damages of any nature or kind arising from the use of this document, nor shall ABB be
liable for incidental or consequential damages arising from use of any software or hard-
ware described in this document.

This document and parts thereof must not be reproduced or copied without written per-
mission from ABB, and the contents thereof must not be imparted to a third party nor used
for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and
may be used, copied, or disclosed only in accordance with the terms of such license. This
product meets the requirements specified in EMC Directive 2004/108/EC and in Low Volt-
age Directive 2006/95/EC.

TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respec-
tive owners.

Copyright © 2003-2013 by ABB.
All rights reserved.

Release: April 2013
Document number: 3BSE041488-511

Table of Contents

About This User Manual

(€15 1 1<) 1 PSPPSRSOt 13
User Manual CONVENTIONSceeverriierierieeniienieeritesteesieesieesieesssesseesseessessseesesesnsesssnens 14

Warning, Caution, Information, and Tip Iconsccocceevenieiiniinniniec e 14
TOIININOLOZY ..vevveeiieeiieeiie ettt sttt ettt ettt st et e st e e bt e sabeebeesebeebeenstesnseenseesabaenseesasean 14

Section 1 - Introduction
Extended Control SOFtWATEccoveiiiiiiiiiiieeeeieeee et e et eeen 17
Libraries and TYPES ...ccueeeerueeieneeieie ettt ettt ettt st st sbeetesbeeeeeaeans 18

Section 2 - Libraries

INEFOAUCHION ...ttt 19
Libraries and TYPES ...c..coceoieieririieneeieeeeete ettt 20
Advantages of Using Libraries and TYPES........cecerervieririeneniieninieneeeeneetenie e 25
TYPE SOIULIONS ...ttt st 25
LADIATIES oottt e e e 26
Building Complex Solutions With TYPeSccccecerieriririiniiienieieiieeeceeee e 27
Library Managementccc.eeeevuerueeieriienienieeieniteiesieetesteetestee e steesae st enaesbeenbesbeensesieens 31
Tips and Recommendationscccoevuererienienieiineene e 32
ReESEIVEd NAMESc.veviiiiiitiicicctcecee ettt s s 35
Parameter KeyWOrdsc.cocveiiiiiiiiiiiiiiiniciieecieee e 35
Library Command SUMMATYccccevirierierierieniteientenenitete st sreeniesiee st sbeetesbeeeesieens 36

Section 3 - Standard Libraries
INFOAUCHION ... 39
Ready-Made Objects, Templates and Building Stones.........cccceeeveceeerenenennene 39

3BSE041488-511 5

Table of Contents

Standard Library TYPEeSc.ceceeeererierieiieeiesie ettt ettt ettt eae 41
Where to Find Information About Standard Library Types.......ccccceeeveereervennenne 41
COMMON PrOPEITIESeeivieiiiiieiirtieie ettt st 42
LIDTATY OVEIVIEW ...eeiiiiniieiiieiiieeiteeie st ete et e st e e st e sbeesttesabe e beesaeesabeesseesateenbaesasesasens 44
SUPPOTLLID ...ttt sttt et 44
TCOMN LADTATY .eovviiniieiiie ettt ettt sttt sttt e st e e e saneenns 44
BasicGraphiCLLibccueiieiiiiiieiieiee e e 44
Basic LADTarYcoociiiiiiiieeieeeee ettt e 44
Alarm and Event LiDraryccccooieiiiiriiniieeeee e 45
SIZNAI LIDTATIES .e.uveeeiieiieiie ettt ettt ettt ettt sttt sebe et e sate st e sanesaseenes 45
Process Object LIDIariesceveeieiirienieeeieieecee sttt 47
Synchronized Control LADTarycccoceevvieriiienieniieeiee ettt 47
CONLLOL LIDIATIESceuveiieiiitieieeieee ettt s seeas 48
SUPETVISION LIDTATY ...ooviviiiiiiiiiiiieie ettt st st 49
Communication LADIariesccceeceeieiineereieeieneee e 50
BatCh LIDTATY ...ceeieeiieiieciiec ettt ettt ettt ettt st 51
Hardware OVEIVIEWc.coeeruiiieieeierieeiieie ettt ettt et et sttt ebe st e sbesbeebeeneeteeae 52
Basic HardWarecocueoieiiniiiiiniiiineeiene sttt ettt 52
PROFIBUS ...ttt ettt ettt et nae e 52
PROFIBUS DEVICES ...c..eetieuiiiiriieniieienieeitenieetenie ettt eieesteeaee e eveenae e e ennens 52
PROFINET TO ...ttt et 53
PROFINET IO DEVICES....cueertiruieiiriiniirienienienieeirenieetenteeieenreeee e eneenseene e ennens 53
MaSter Bus 300ooiiiiiiiiieiiieieeeet ettt 53
INSUM ettt sttt ettt sttt st e sae s saeenaesaneas 54
DIIVEBUS ittt sttt sttt 54
MODBUS TCP ..ottt sttt ettt sttt saesaeens 54
TEC 01850 ..ttt ettt et ettt et sae et b et bt 54
AF 100 ettt ettt st 54
MO S ettt e a ettt et aeeaean 54
EtherNet/IP and DeviCeNEt..........cccerirviiniriirinieneeieneeeseereieere et 55
S200 I/O SYSLEIM ..ttt ettt st e 55
Satt Rack I/O SYSEM ...uviiiiiiiiiiiieie ettt et e sr e 55

6 3BSE041488-511

Table of Contents

S800 I/O SYSLEIM ...ttt et st 55
Serial COMMUNICALION.cerieriiriierieeteertte ettt e steeieeseteeteebeesbeesbeesereeseesaeens 56
Self-defined UDP ComMMUNICALIONcccveereeeeiieriienieeiieseesereeieeseeesneeveessnesenens 56
Self-defined TCP CoOmMMUNICAIONeerurerueeriierieeiieniteeieerieesieesieeseesereesaeesaeees 57
Printer and MOAEIM.........ccoiiiiiiiieciecie ettt re e eeeaeesae e s beesaeeenas 57
FOUNDATION Fieldbus Hl.......coocuiiiiiiiieiieeiieeieeitecieeeete et 57
TERIMPIALES ..ttt ettt ettt et sttt et e be e b st e s e st en 58
Execution of Copied COmMPIeX TYPES....ccuerrrierieriieriieniieitenitesreeiee e eree e 64

Section 4 - Analog Process Control

INETOAUCTION ...ttt s s esre e 71
COMECRPE 1.ttt ettt ettt ettt et b et bttt s bt e b s et et e b e bt e at e bt eatesbe et e sbeenbesbeennenbeens 72
Control Libraries OVEIVIEW.........ccccoueeieriirieniieeeiieienieetese e eee e enesneens 72
Functions and Other Libraries Used for Analog Control..........cccecevevveneenienenne 75
CONtrOICONNECTIONcouviiieiiriieieeiicie ettt s e 75
CONLLOIIET TYPES ..vtentiiieniieiteteeitete sttt ettt st st st sbeens 84
Basic Controller PrinCiplescccoiiieririeninieieneeiieecie e 87
Controller AIZOTIthmScc.ceiiiiiiiiriiiereeeeee et 89
Hysteresis v Dead ZOMe............coouereeriinieiienieieniieieeeete ettt 95
FUZZY CONLIOL..c...oiiiiiiiiiiiiieeee ettt et s 99
Controller MOAESccoovuieieriiiieieiceeee ettt 106
DIBSIZI .ttt ettt et bbbt et bbb e e beenee 107
General Design ISSUEScc.ovieiiriinienieieneeeeeetesie et 107
CONLLOL STEALEZICS ...ttt ettt ettt st et st sb et see et e sae e e 110
Remarks on the Design of Control LOOPS.......ceevveeriirriieniieniiiiieeieeiienveeieene 112
CONLTOIIET TYPES ..ttt ettt et 113
Industrial Controller TYPES.......cecveeruierieriieeriierie ettt ettt ebe e 120
Signal Handling........ceoveiueeieiiiiieiieee ettt et 123
Getting Started with ControlCONNECHIONcueevierriieriieiieiie ettt eiee st eeeesiresre e 123
What is ControlCONNECtION?cc.eeriieiereeierieeterteeitenteeiee e esee st see e naeeeeens 123
Dealing with Data FIOW Dir€CtionsS.........ceeveerierniienieniienienieenieesieeieesee e 124
Open the Gates to ControlCONNECHIONocueeveriieiereeierieeiere et 128
Creating a Control Module with ControlConnection (CC template)................. 130

3BSE041488-511 7

Table of Contents

WHAL NEXE? .ttt ettt sttt e sae e es 144
AdVanced FUNCHONScovirtirieiiieneeteneet ettt ettt s see e 152
Anti-Integrator Wind-Up FUnctioncccocevoieiieiinineni e 153
Bumpless Transferc.eevieeiierieeiieie ettt st 154
Deviation AJAITScoouiiuieiiiieie ettt e 159
Feedforwardocooiiiiniiiiirieecceeeeeec et 161
AULOUNIIIZ <.ttt ettt e e st eat e bt st et e s bt et e sbe et e sbeestenbeeneeseeens 162
AdaPtive CONIOL....ccuiiiiiieeiierieeeerte ettt sttt beesaesbeesieesareens 169
Gain SChEAUIINGeteeiieiieee ettt 173
Gain Scheduling versus Adaptation...........cecueereerieesieenieerieeniesieesee e eeeeeeen 175
Additional Control FUNCIONSceeuieiirieiiiieieseeee et 177
Input and Output Signal Handlingc.cceecveerieriinniienienieeiiesieeeeneeeee e 184
SUPETVISION ..ttt sttt ettt ettt ettt eae et be s st b neeneen 195
CalCUIATION ...ttt sttt ettt 198
Signal Handlingccooeerieriiniiiieeeceee ettt 200
THIME AVETAZE ...vveeuvieiieeiieite ettt ettt et ettt et e st e bt e s et e e bt e sabesnbeesbaesaseenseas 203
Branch ODBJECtS........cueiiiririniinieieicieteeetete ettt 209
SEIECtOr ODBJECLS c.uvvieiiieiiieieeitieeteette sttt ettt et e sttt te st e ebeesebeeseeaee s 213
Limiter ODJECES ...veviriireienieteieteteteeee ettt sttt ettt 219
CONVETSION ..cntiiiiiintiiieie ettt ettt ettt ettt ettt et e et estesbe e e e sbeeanenbeennesbeenee 222
Miscellaneous ODJECLSceveruerrieriieieitieie ettt ettt et ee st et sbeeee e eneenaens 225
COoNtrol LOOP SOIULONS ..cuvviiiiiiieeiieiiesiie ettt ettt sttt sttt et s be e b e seteensaenaees 226
INEEOAUCTION ...ttt ettt et et e e 226
COMNCEPL ceeieiiieieeette ettt ettt et e sttt et te e be e bt esabeebeesateesbaesabesbeesanesaseens 226
DESIZN ettt b ettt eae et ae 226
EXAMPIE oottt sttt st st e b 228
Basic Control Loop EXamPpIescceeoieiiiiiiiiiieiieeeeeee e 234
Signal Selection EXaAmPIececveevuiiiiiiniieniieieenieeieete ettt s 235
Common Range EXamplecoooieiiiiiiiniiiieeeeeeeeeeee e 238
Split Range EXamMPIESccccevviiriiiiiiiiieieniteeeseeeee sttt 238
Level Detection EXample.........ccccooieiiiieiiniieiiieiesc e 241
APPLication EXAMPIEScecviiiiirieiiieiieeieeitesie ettt et st e e 243

8 3BSE041488-511

Table of Contents

Simple Loop EXAMPIESoooviriiiiiiieierieeesee e 246
Cascade Loop EXAMPIEScceeviiiriiiniiiiieieciteecete ettt 248
Fuzzy Control Loop EXamples.........coccoerieriiiiiiiniiniiiiieneneeeeeeeieeseeeeene 251

Section 5 - Binary Process Control

INEFOAUCTION ..ottt sttt et ettt ettt e st 253
COMECEPL ...ttt ettt ettt et a et s e e b e s bt e sttt e aeeeneneennesaeennes 254
Process Object Libraries OVEIVIEWcccuevuerieriirieneiiienieeienieetesieeeiesie e 255
Process Object Template Concept (Core ObJects)cceevveruerveeneneecreneeceennenn 262
Core Object Functions and Parameters (UniCore and BiCore)c..ccueuee.e. 266
Control Module ICOMScoveriiiiiiiiiiiieieeeete ettt 283
Interaction WIndOWsScoceriiienerieniinieieetesteetese ettt 284
Interaction Parameters.cevveerieeiieenienieeieieetete ettt 285
DIBSIEI ettt ettt et et h e et sh et b e b ene 286
Choose the COorrect TYPEcccuevvieieriieiiiieiieiete e 287
Use Standard Library TYPeS.....cccoceereriererienienieieneerte ettt 288
Use Standard Library Types to Create Self-defined Typesccccecevercvenenee. 289
Group Start INterface........coceveeieiiiniiieieeec e 289
Voting INTETTACEcc.viviiiiiiieiiieece e e 290
Alarm Handling......c..coovevieviiniiiiniiieieieeeeeetese e 291
Generic Uni- and Bi-Directional CONtrol..........cocccevvvervieenieniieinieniienieenieeeeene 293
Motor and Valve COontrol.........cocoieerierierienenienienieneete ettt 296
EXAMPIES ..ottt st st 304
Create a Library and Insert a Copy of @ TYPE ..ccveeveviiieneiieieeeeeeeeceee 304
Add Functions to Self-defined TYPes........ccocevvirriiniiiiiienienieeieeee e 309
Connect to a Control Panel in Panel Modecccocveviieiienieeieeceeciieeie e 313
AdVanced FUNCHONSooiiiiiiiieiinieiiieeecetscete ettt ettt 317
Level Detection, Commands and Alarm TEeXES......coevveeeieieieeeieieeeeeeeeeeeeeeeeeeenes 317
ABB Drives CONtIOL......cocoouiriiniiiiniiieneetesieetesteete et seente st seeenresaeereas 320
INSUM CONIOL....ciiiiiieeiiieeiee ettt et sate et e e st e e s aaeeeseseeenes 340

Section 6 - Synchronized Control
INEFOAUCTION ..envieiiieiie ettt ettt e et se e eae et e e s abeesaeesseesnbeenseesnbeessnennseenses 359

3BSE041488-511 9

Table of Contents

GIoup Start LIDTATY ...c..ccceoviiiiriiriinieieieieiere ettt ettt eae 359
Group Start CONCEPL ..eeveeeieeiieriieeiierite et et e ste et esieesbeesieesateesbeesasesbeesaeesaseens 359
Group Start ConfigUurationcceceeeererienereeie ettt 360
Example for Template Configurationc.cceeeeereiriieenieniieenienie e 360
Group Start ODJECLSeeueeiieeieieeieeie ettt ettt ettt ettt be e sbe e e e 363

Section 7 - Surveillance

INEFOAUCHION ...ttt eb e s 367
Signal and Vote Loop CONCEPL.......cceceuiriiriiriiiniieieiieieeeteieerete e 367
OVETVIEW .ttt sttt ettt s s 367
EXAMPIE oo 373
Standard Object Types that Support Voting LogiC.......ccoceeverieiiineenieneenieneenee. 375
Vote Control Module TYPESc..covevvirieciinieiirieereeeeseeeereee e 381
Vote Structure Control Module TYPESsccceevuerieriirieriiniiieneeieneeieneeeeiene 382
SDLevelM Control Module TYPes.........cceecuerierieniereneeneneeieneeeeeieereseeee e 382
SDLEVEIOTA ...ttt st 388
SDLEVEIANAA.......coiiiiiiiiieieeteeeee ettt et 388
SDLeVEIBranchdccocooiviiiiiiiiiiiiieieienecceeeeeeeee e e 389
Latching input object quality informationccceceeceeverienenicninienenecnenne 390

Appendix A - Customized Online Help

Online Help Files for User-defined Libraries and Applicationsc..ccccceceecveneenenne. 393

Online Help Files for User-defined Libraries with Hardware and Non-standard hardware
394

Access Customized Online Help from Control Builder...........cccccoceviiiiininiininnnncns 394

Context-Sensitive LINKINGcoiiviiriiiiniiieeieeeeetee et 397

Appendix B - Library Objects Overview

SYSLEIM 1.t eititeiieette ettt et et e et et e s bt e steeeabe e s bt e e st e eabaesabeentteseteenseesabeenbeesabesnbeesnbeenbeenanas 399
BaSiC LIDIAIY ..ottt et ettt ee e 417
CommUNICAION LADTATIESc.iiiiiiiieiieiiieieeeiie ettt ettt s 430
MMSCOMIMLID......cciiitieiiitieiecieeeeete ettt a e aeste v reeveeveearens 430
ModemMCOMMLID.......ccoiiiiiieiiieieeieete sttt st e e eas 434

10

3BSE041488-511

Table of Contents

COMLICOMMLID ...ttt sttt ene e eee e 436
ModBUusSCommLIDb......cc.coceeriiriiiiiiiienieeeeeee ettt 437
MTMCOMMLID.....couiitiitieiteiieet ettt ettt etesaesee s 437
MB300COMMLID «....cuiiiiiiiiiieriet ettt 438
ModBUSTCPCOMMLIDcoeiiiiieiiieietieeeeeeee et 439
S3964RCOMMLID ..ottt e 440
SattBUSCOMMLIDcc.eiiiiieiiiieieee et 440
SerialCommIADco..ooiiiiiiiiie e e 442
INSUMCOMMLID ...ttt sttt 443
UDPCOMMLID ...coeiiiiiiiiiiieeiiiieecteteete ettt ettt 444
TCPCOMMLIDouiitiitieiieit ettt ettt et ene e e eeas 445
Alarm and EVent LiDTarycocceoviiiiiieiieiiietecieeteee ettt 448
(0703113 (o) B 5 L) 1 o (<3O TSRS 453
ControlBasiCLIDc..oviiiiieiiiiiiientcieeeeecet ettt 453
ControlSIMPIEeLib.......c.coouiiiiiieee e 456
ControlStandardLib.......c..coceoiiiiniiiiiinieec e 459
(01031 13(e] (0071111 5 1 1O USSR 471
ControlSOIUHONLIDc..oociiriiiiiiiiineieetee et 475
Control EXtendedLibcociiiiiiiieieiieie e 4717
ControlAdvancedLib..........cccoiriereiiiiiiniiicee e 481
COoNtrolFUZZYLDc.eiiiii ettt 482
BatCh LIDIATY ..eeeiiiiiieieeie ettt et ettt st st esbaesaaeents 487
Process Object LADIATIeSccueiueririeiieieeieeeteee sttt s 488
ProcessObjBaSiCLIDcovuiiiiiiieiiieieie ettt 488
ProcessObJEXtendedLibcc.ccueiririniineneniiieieectetecse e 493
ProcessSODbIDIIVELIDooviiiiiiiieeieeieeite ettt sttt 498
ProcessObjINSUMLIDccooiuiiiiiiieeee e 500
SIZNAI LIDTATIES .uvveeuvieeiiieiieiitieieesiie et sttt ettt te et e st e e e et e sabeesaeeseteesbaesaneenses 504
SIGNALLAD .t 504
SigNAIBASICLIDveeiiieiiieiiiecie ettt 508
SUPEIVISION LIDTATY ..c.vcviiiiieiiiiiiieieiieitenre ettt st 509
SupervisionBasiCLibc.coiiiiiiiniiiiieieee e 509

3BSE041488-511 11

Table of Contents

Synchronized Control Library
GroupStartLib

INDEX

12

3BSE041488-511

About This User Manual

General

This manual describes how to create re-usable automation solutions using the ABB
standard libraries that are supplied with Compact Control Builder. It is a
continuation of the two manuals Compact 800 Engineering Compact Control
Builder AC 800M Configuration (3BSE041488%*), and Compact 800 Engineering
Compact Control Builder AC 800M Planning (3BSE044222%*) , which describes
basic configuration and programming functions that are accessed through the
Project Explorer interface.

The libraries described in this manual conform to the IEC 61131-3 Programming
Languages standard, except for control modules and diagrams, which are an
extension to this standard.

This manual is organized in the following sections:
. Section 1, Introduction, a short introduction to the contents of the manual.

. Section 2, Libraries, which describes the concepts of using libraries when
developing automation solutions.

. Section 3, Standard Libraries, which contains a general description, usage, and
common properties of the libraries delivered with the system.

* Section 4, Analog Process Control, which describes creating control loops and
other analog control functions using the Control libraries.

* Section 5, Binary Process Control, which describes creating binary control
solutions using the Process Object and Signal Object libraries.

. Section 6, Synchronized Control, which describes how creating start and stop
sequences for different automation solutions using the Group Start Library .

* Section 7, Surveillance, which describes the Signal and Vote Loop Concept.

3BSE041488-511 13

User Manual Conventions About This User Manual

User Manual Conventions

Microsoft Windows conventions are normally used for the standard presentation of

material when entering text, key sequences, prompts, messages, menu items, screen
elements, etc.

Warning, Caution, Information, and Tip Icons

This User Manual includes Warning, Caution, and Information where appropriate to
point out safety related or other important information. It also includes Tip to point

out useful hints to the reader. The corresponding symbols should be interpreted as
follows:

Electrical warning icon indicates the presence of a hazard that could result in
electrical shock.

injury.

Caution icon indicates important information or warning related to the concept
discussed in the text. It might indicate the presence of a hazard that could result
in corruption of software or damage to equipment/property.

Information icon alerts the reader to pertinent facts and conditions.

f Warning icon indicates the presence of a hazard that could result in personal

Tip icon indicates advice on, for example, how to design your project or how to
use a certain function

Although Warning hazards are related to personal injury, and Caution hazards are
associated with equipment or property damage, it should be understood that
operation of damaged equipment could, under certain operational conditions, result
in degraded process performance leading to personal injury or death. Therefore,
fully comply with all Warning and Caution notices.

Terminology

The following is a list of terms associated with Compact Control Builder. You
should be familiar with these terms before reading this manual. The list contains

14 3BSE041488-511

About This User Manual

Terminology

terms and abbreviations that are unique to ABB, or have a usage or definition that is
different from standard industry usage.

Term/Acronym Description

(M) (M) is used to refer to function block type and a control
module type with similar functionality, for example,
MotorBi(M).

Application Applications contain program code to be compiled and

downloaded for execution in a controller. Applications
are displayed in Project Explorer.

Control Builder

A programming tool with a compiler for control software.
Control Builder is accessed through the Project Explorer
interface.

Control Module (Type)

A program unit that supports object-oriented data flow
programming. Control modules offer free-layout
graphical programming, code sorting and static
parameter connections. Control module instances are
created from control module types.

Industrial'T

ABB’s vision for enterprise automation.

Interaction Window

A graphical interface used by the programmer to interact
with an object. Available for many library types.

MMS Manufacturing Message Specification, a standard for
messages used in industrial communication.
OPC/DA An application programming interface defined by the

standardization group OPC Foundation. The standard
defines how to access large amounts of real-time data
between applications. The OPC standard interface is
used between automation/control applications, field
systems/devices and business/office application.

Process Object

A process concept/equipment e.g. valve, motor,
conveyor or tank.

3BSE041488-511

15

Terminology

About This User Manual

Term/Acronym

Description

Project Explorer

The Control Builder interface. Used to create, navigate
and configure libraries, applications and hardware.

Type

A type solution that is defined in a library or locally, in an
application. A type is used to create instances, which
inherit the properties of the type.

16

3BSE041488-511

Section 1 Introduction

Extended Control Software

This manual describes Extended Control Software. The term ‘extended’ comes from
the fact that standard libraries that are not integrated with or based on AC 800M
firmware can be seen as extensions to Compact Control Builder, and to AC 800M
control software, see Figure 1.

Basic (closely ' Extended (not
-¢—— integrated with dependent on —_—
firmware firmware)

IEC 61131-3
code

Batch Control Group Process Signal Protection AC 800M
Start Object Library Library firmware

Comm.

A&E

Basic

System

Figure 1. Basic and extended control software - standard libraries (some support
libraries are not included)

3BSE041488-511 17

Libraries and Types Section 1 Introduction

Functions and types belonging to the Basic part of the system are described in the
manual Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%*).

This manual contains the following sections and supporting appendixes.

* Section 2, Libraries discusses the considerations when to create own library
structure, and using the standard libraries that are installed with Compact
Control Builder.

. Section 3, Standard Libraries, contains an overview of the AC 800M standard
libraries. It also explains the use of templates.

* Section 4, Analog Process Control, describes the types of the Control libraries
and the methods to build control loops using these types.

* Section 5, Binary Process Control, describes the types of the Process Object
libraries and the methods to build process object control solutions using these

types.

* Section 6, Synchronized Control, gives a short introduction to the Group Start
library.

* Section 7, Surveillance, describes the Signal and Vote Loop Concept.

* Appendix A, Customized Online Help, describes the requirements for creating
help for the libraries and applications.

* Appendix B, Library Objects Overview, provides an overview of all library
objects.

Libraries and Types

A library is a collection of type solutions, which can be connected to applications
and other libraries, so that they can create instances from those types. However, the
Library>Hardware folder, in Project Explorer, contains libraries with hardware
types, which can be connected to controllers only. Libraries and types are discussed
in detail in Section 2, Libraries.

Throughout this manual, there are two library categories:

Standard libraries are installed with Compact Control Builder. User-defined
libraries are created to store own type solutions, so that they can be re-used.

18

3BSE041488-511

Section 2 Libraries

Introduction

This section describes the library concept, as implemented in the Compact Control
Builder. This section contains:

* An introduction (this subsection), which introduces some important concepts
like type and library, different kinds of types and their intended use, and the
appropriate use of type solutions and libraries.

* Advantages of Using Libraries and Types on page 25, which contains a
summary of the advantages of using types and libraries as a basis for all
automation system development.

* Building Complex Solutions With Types on page 27, which describes the three
different basic ways of building automation solutions using types from the
standard libraries. This topic covers important concepts such as templates.

* Library Management on page 31, which describes planning the library
structure and maintaining the libraries over a longer period of time, including
version handling. It also describes some risks and potential problems that the
user must be aware of.

e Library Command Summary on page 36, which lists useful actions and
commands when working with libraries.

3BSE041488-511 19

Libraries and Types Section 2 Libraries

Libraries and Types

A library is a collection of types, which can be connected to applications and other
libraries, so that they can create instances from those types. However, a library in
the Hardware folder contains hardware type(s), which can be connected to
controller(s) only. In such a case, only the controller(s) can create instances of
hardware types.

For a detailed discussion of types and objects, refer to the Compact 800
@ Engineering Compact Control Builder AC 800M Configuration (3BSE041488%)
manual.

Types Defined in Applications and Libraries

A type is a solution to a small or big automation problem. A type can be a simple
counter or a complete control loop. It is defined in an application, or in a library.

ﬂ Types contain instances of other types. These instances are often referred as
formal instances. Types from another library can be used when building types, as
long as this library is connected to the application and the library.

A type is used to create instances in an object oriented manner. Each instance points
to the type on which it is based. When an instance is executed, the code stored in the
type is executed every time. The variables and other data are instance-specific.

Since the same code is executed in all instances and the instances inherit the
properties from their type:

* Re-use is made possible and this makes the automation solution flexible, since
the behavior of many instances can be changed by changing the type.

@ The changes made to a type affect all instances.

20 3BSE041488-511

Section 2 Libraries Libraries and Types

* The memory consumption for each instance is smaller, compared to the
memory needed to execute the type itself. For example, a MotorUni function
block type consumes about 65 kB, while each additional instance only needs
another 12 kB.

If types are created on a very high level and there is a need to change something for
a particular object, this change affects other objects of the same type.

This can partly be solved by including copies of certain types (as some types in
these libraries are templates, that is, they can be copied to the libraries and
applications and the code can be modified to suit a particular process). These copies
can then be changed without affecting the corresponding part of other types.
However, these copies result in increased memory consumption, as well as create
problems when upgrading types and libraries.

Hardware Types

Hardware types represent the physical hardware units and communication protocols
that can be added to AC 800M. It can be a CPU unit, a communication interface or
an I/O unit (see Hardware Overview on page 52). Hardware types can be defined in
libraries only.

The following are the advantages when hardware types are organized in libraries:
* Easy to upgrade to newer system versions

* Allows a new version of a hardware type to coexist with an older version (but
in different versions of the library).

* Allows new library versions to be delivered and inserted to the system.

* Ensures that only used hardware types in controller configuration(s) allocate
the memory in the system.

A hardware type contains a hardware definition file, which is the source code of the
hardware unit. Changing and replacing a type in a library affects all instances of the
hardware unit. For example, changing a hardware type of an I/O unit that is used in
more than one positions in a controller, affects all positions where the I/O unit is
used in the hardware tree (I/O connections and parameters may be incorrect).

@ The changes made to a hardware type affect all instances.

3BSE041488-511 21

Libraries and Types Section 2 Libraries

Libraries

A library is a collection of objects. Libraries are presented as objects in Project
Explorer (Figure 2)

G @

E Eﬁ] Systemn

! BasicLib16-8

(! IconLib1.3-3

it [l MedBusCommLib 1.3-3

EI ----- " Hardware

- [0 BasicHwLib 5.1-0

i [0} CI853SerialComHwLib 1.0-0
- [CI854PROFIBUSHwLib 2.0-10
- [5800C1301CIB54HwLib 1.1-5
- [5800C1340CIB54HwLib 1.1-5
- Eﬁ] 5800IoMeodulebusHwLib 1.1-10
..... [SerialHwlib11-0

= @ Applications

I, Connected Libraries

. [BasicLib16-8

! ModBusCommlLib1.3-3

= &, Programs

E Pregraml - (Contreller_1.Fast)
E Pregram2 - (Contreller_1.Nermal)
----- E Pregram3 - (Contreller_1.5low)

Figure 2. Libraries in Project Explorer

For a library to appear in Project Explorer, it must be added to the Libraries folder of
the project (see Figure 2). Right-click the Libraries/Hardware folder and select
Insert Library.

@ For a summary of useful library commands, see Library Management on page 31.

22 3BSE041488-511

Section 2 Libraries

Libraries and Types

A library in the Libraries folder in Project Explorer may contain the following (see
Figure 3):

Data types
Diagram Types

* Function block types

* Control module types

* Project constants (not shown in Figure 3).

Figure 3. Contents of a library in the Libraries folder

S W Libraries

..... Eﬁ]S}rstem

2 [AlarmEventlib 1.6-0

|_:_| I, Connected Libraries
- [Basiclib17-3

- [Iconlib 1.4-0
= & Data Types

b 4 EventQueueltem
|_:_| @ Function Block Types
....... -aﬂ: AlarmCond

....... -aﬂ: AlarmCondBasic

....... £|: Print&larms
....... £|: PrintEvents
....... % ProcessObjectAE

....... Jaf SignalAE

- &) Control Module Types

. ﬁ- AlarmCondM

....... £|: AttachSystemAlarm
....... £|: DataToSimpleEvent

....... daf SimpleEventDetector
....... % SystemAlarmCond

- ﬁ- AlarmCondBasicM

3BSE041488-511

23

Libraries and Types

Section 2 Libraries

A library in the Hardware folder contains (see Figure 4):

* Hardware types (*.hwd files)

* Device capability description files (for example*.gsd files)

EI W Hardware

- [} BasicHwLib 5.1-0

1] Hardware types
e] AC BOOM
CF Card
- == CF Reader
- = Com
. = Com
- o CPUPA
. == Ethernet
- Ethernet
- T IAC MMS
- [P
= ModuleBus
= hoduleBus
= hoduleBus
= hoduleBus
il PMESL / TPRE20
PMESE / TRE30
PMBEB0 / TRE30
PME61 / TPE30
PIE64 / TPE30
PMB65 PAS TPE30
PME66 / TPE30
e [3]] PMETL
e S§= PPP
e S PPP
. SO Card

. = S0 Reader
- _u Soft Controller

Figure 4. Contents of a library in the Hardware folder

24

3BSE041488-511

Section 2 Libraries Advantages of Using Libraries and Types

If a type from a library is used, it has to be connected to the application, library or
controller (libraries with hardware types) in which the type is used.

Right-click the Connected Libraries folder for the application, library or controller
in question, and select Connect Library. If the library does not show up in the list,
it must be added to the Libraries folder of the project.

Advantages of Using Libraries and Types

The advantage of using type solutions in the automation system is enhanced if the
types are organized in libraries. This is true if the organization is big and develops
automation solutions for a number of plants and processes. The following two
subsections provide a summary of the advantages of using types and libraries.

Type Solutions

Use type solutions whenever an automation solution contains a large number of
similar objects that perform similar functions, but in different locations or contexts.

Before programming the automation solution, identify the types needed, by
considering the following:

* The parts of the plant that are likely to change. Typically, something might be
added to a production line, or another production line might be added.

* The objects that can be variations on a theme (instances of a certain type
solution). Typically, this would be objects such as motors, tanks, valves.

* The objects that correspond to the types already contained in the standard
libraries that are installed with Compact Control Builder. If such objects are
identified, configure them for use in the particular environment.

* The situations where one object changes, while all other similar objects remain
the same.

* The standard libraries as well as the self-defined libraries might be upgraded,
which causes problems in running applications.

3BSE041488-511 25

Libraries Section 2 Libraries

The benefits of using type solutions are:
* Re-usable solutions save development time, as well as memory.

* Well-tested type solutions increase the reliability of the automation system. It is
also easier to test a system that is based on type solutions.

* Itis possible to change the type in one place and this affects all instances,
instead of having to make the same change for many identical objects.

Libraries
Well-defined libraries provide the following advantages:

e All automation engineers within the organization have access to the same type
solutions. This saves the development time and results in consistent automation
systems.

* The knowledge of experienced programmers and specialists can be packaged
and distributed to all automation engineers through libraries.

* A common standard can be implemented via the libraries (for example, a name
standard).

* Complex solutions can be built with a high degree of control by using library
hierarchies.

* A large number of applications can be updated by updating a library.

* Version control of standard libraries makes it possible to upgrade some
applications, without affecting other applications. This applies if the major
version number is changed between the both library versions. This is made
only in cases when the compatibility is broken and the library guids are
different.

26 3BSE041488-511

Section 2 Libraries Building Complex Solutions With Types

Building Complex Solutions With Types

As mentioned in the introduction to this section, there are two basic ways to build
automation solutions from the types in the standard libraries:

* Use ready-made types that only have to be configured and connected to the
environment.

* Use template types that are modified to fit the process requirements. Using a
template also requires adding functions by using other objects from the
standard libraries, or by writing code. See Templates on page 58.

When you cannot find a ready-made type or a template that fits your needs, then you
must build your own solution. A complex type or application-specific solution can

be built using a number of types from the standard libraries, together with your own
types. In some cases, the best option is to use a template and then add functions to it.

An example of a Complex solution, where types from the standard libraries are used
as building blocks, is a cascade control loop.

The cascade loop in Figure 5 is an example of a complex solution. A similar cascade
loop can be found in the Control Solution library.

fMaster

—— Slave cc
Al | i
cC AQ

>

[n]
Ix]

Figure 5. Cascade loop built from control modules

3BSE041488-511 27

Building Complex Solutions With Types Section 2 Libraries

The cascade loop contains two control modules of type PidCC, one used as master,
and the other used as slave (Figure 5). The input consists of two AnalogInCC
control modules and one Level6CC control module. The output consists of an
AnalogOutCC control module.

= E Cascadeloop - (TankController. Mormal 2)
----- I Connected Libraries
----- & Data Types
----- # Function Block Types
= 2 Control Module Types
= P8 Cascadeloop
- J& ControllerOutput ContrelStandardLib.AnalogOutCC
1_# MasterController ControlStandardLib.PidCC
1_# ProcessValueMaster ControlStandardLib, AnalogInCC
18} ProcessValueSlave ControlStandardlib. AnalogInCC
& SlaveController ControlStandardLib,PidCC
“ i@ Supervision ControlStandardLib.levelsCC
- @& Control Modules
& &) Programs

Figure 6. Cascade loop in Compact Control Builder

The heart of all automation solutions is the actual control of the process and the

equipment. These types can be found in the Control, the Process Object and
Supervision libraries.

However, there are a number of supporting libraries, which can be used to create

specific solutions for part of the system, or to add functions by using other function
blocks or control modules:

* Signal Handling
Signal handling types are not only found in the Basic and Signal libraries, but
also inside the Control and Process object libraries. It might, for example, be
necessary to add a selector if there are several input signals to choose from.
Other examples of signal handling objects that might be added are limiters and

filters, if the input signals are outside the desired range or contain undesired
components.

28

3BSE041488-511

Section 2 Libraries

Building Complex Solutions With Types

Alarm and Event Handling

The Alarm and Event library contains a number of types that can be added for
alarm and event handling. These types can interact with existing alarms, or can
be added as a separate alarm function.

Communication

Objects from the Communication libraries can be added to establish
communication with other applications or even to other controllers.
Communication variables may be used to establish communication between
applications in the same controller where the communication variable is
created, and also between applications in other controllers even if that
controller is outside the actual configuration. Communcation variables may be
used in top level Diagrams, Programs and top level Single Control Modules.

In addition to the types in the standard libraries, you can also define your own types,
both on a higher level and low-level objects.

Most low-level objects are already available as types in the Basic library and via
@ system firmware functions. Before designing new types, ensure that there is no
similar type or function that fulfills the needs.

An application can be based on a mix of types from standard libraries, self-defined
types from your own libraries, and locally defined types. See Figure 7 for an
example.

3BSE041488-511

29

Building Complex Solutions With Types Section 2 Libraries

Library A User Library X
L Type A1
—— Type A3 —— Type X2

X21 (based on B1
() T Library B
X22(based on B2) —

X23 (based on C2)
\Librar
y C

Application Y (connected to Library A and User Library X)

I Type Y1 (locally defined in application)

—— YObject1 (instance) (based on Type A3)

Library A
—— YObject2 (instance) (based on Type A3)
—— YObject3 (instance) (based on Type Y1)
—— YObject4 (instance) (based on Type X2) User Library X

Figure 7. Building complex solutions based on standard libraries, self-defined
libraries, and locally defined types

30 3BSE041488-511

Section 2 Libraries Library Management

Library Management

When working with libraries, it is important to consider the following:

i
¢

Version handling
Connection

Change to a certain library

It is not possible to change library version of a library in the Libraries folder.
However, library versions of libraries in the Hardware folder can be changed.

See also the manual Library Objects Style Guide, Introduction and Design,
(3BSE042835%*).

The following important rules apply:

Libraries may exist in different versions in the same project (only if the
libraries have different GUID's). Different versions of libraries with hardware
types may coexist in a controller, but it is not possible to connect libraries with
different versions to the same application.

If you try to connect multiple versions of a library to an application, a warning
dialog is displayed, showing the library and the versions that cause the problem.
Multiple versions might occur through dependencies.

Libraries in the Libraries folder may depend on each other in a number of
layers.

Do not interconnect libraries unless it is absolutely necessary. There is always a
risk of upgrade problems if there are many dependencies between libraries.

Circular dependencies of libraries in that are used in applications are not
allowed. Compact Control Builder checks and will warn you if you try to
connect a library that create circular dependencies.

Standard libraries cannot be changed by the user. This applies to both the
library itself and the types inside.

Self-defined libraries have three possible development states:
— Open,
— Closed,

3BSE041488-511

31

Tips and Recommendations Section 2 Libraries

— Released.

It is not possible to change a library with status Released. Make sure that a
spare copy of the self-defined library is saved on local disc before changing to
status Release.

If a self-defined library has the status Open, it can be changed to Closed or
Released.

If a self-defined library has the status Closed, it can be changed to Open or
Released.

Tips and Recommendations

The following list contains tips and recommendations intended to help you build an
effective library structure and make good use of the standard libraries:

All new libraries should have the suffix ‘Lib’, for example, “TankLib’.

Libraries with hardware types should contain the suffix ‘HwLib’, for example,
‘S800ModulebusHwLib’.

Libraries belonging to the same family should have a common prefix to their
name, for example, ‘TankBasicLib’, ‘TankExtendedLib’.

You can password protect your libraries, see Library Command Summary on
page 36.

All type names should follow the Control Builder naming standard and the
IEC61131-3 standard.

For detailed information on naming conventions, see the manual AC 800M
Planning.

Short names are important for function block types since there is less space to
show names in the Function Block Diagram (FBD) editor.

Short names are important for function block types, control module types and
diagram types since the names are displayed in the graphical code block of
Diagram editor.

When naming parameters, do not use very long names. This might have
undesired effects in graphical displays.

Use easy-to-understand and descriptive names.

32

3BSE041488-511

Section 2 Libraries Tips and Recommendations

Avoid reserved names, such as IF, THEN, ELSE. See also Reserved Names on
page 35.

Make sure that descriptions for parameters provide the user with enough
information. Also, see Parameter Keywords on page 35.

Hide or protect objects that you do not want the user of your libraries to modify
(or even see).

For detailed information on hiding and protecting types, see the manual
Compact 800 Engineering Compact Control Builder AC 800M Configuration
(3BSE041488%*).

When creating data types, separate between two cases:

— If adata type is closely connected to a certain type, store it in the same
library as the type.

3BSE041488-511

33

Tips and Recommendations Section 2 Libraries

— If a data type is used in many different types, and these types are stored in
several libraries, there are two alternatives:

a. Data types that are only used internally should be hidden and stored in a
separate support library containing hidden types only. The name of the
library should then include the word ‘Support’, for example,
‘TankSupportLib’.

b. Data types that are used for parameters that are connected to other types
and to the surrounding code should be stored in a common library
containing visible types. The name of this library should then include the
word ‘Basic’, for example, ‘“TankBasicLib’.

* Simple function block types, control module types, and diagram types that are
used as formal instances' in several complex types, in several libraries, should
be placed in a separate support library (this library then has to be connected to
all libraries where these types are used).

* Document your libraries. Use the Project Documentation function, see Where
to Find Information About Standard Library Types on page 41.

1. Formal instances are objects (instances of another type) that are located inside a type. Formal instances are
executed when the objects based on the type are executed in applications.

34 3BSE041488-511

Section 2 Libraries Reserved Names

Reserved Names

In addition to names reserved for use in code (IF, etc. see online help or Compact
Control Builder, AC 800M Planning (3BSE044222%*) Manual, the use of the
following names is also reserved!, and should be avoided for other purposes.

Table 1. Reserved names

Name Description

Template Use for templates only.

Core Use for Core objects only.

HSI Use for graphics calculation objects only.
Icon Use for icons only.

Info Use for interaction windows only.

Parameter Keywords

All parameters in control module types and diagram types, and all IN_OUT
parameters in function block types, are recommended to contain an indication of its
use in the corresponding Description field. The use is indicated by keywords, see
Table 2. They must contain at least one of the first four keywords. The keyword
should be placed before the following descriptive text, see Figure 8.

Table 2. Keywords for parameters

Keyword Description (start parameter description with keyword)
IN The parameter is only read.

ouT The parameter is only written.

IN(OUT) The parameter is both read and written, but mostly read.
OUT(IN) The parameter is both read and written, but mostly written.

1. These names are intended for use in instance names, for example, an UniCore instance would be called Core.

3BSE041488-511 35

Library Command Summary

Section 2 Libraries

Table 2. Keywords for parameters (Continued)

Keyword Description (start parameter description with keyword)

NONSIL NONSIL is used in objects on output parameters where the
output value originates from any internal restricted object.

NODE Used when the parameter has a graphical connection node
(control modules only).

EDIT The value of the parameter is used the first scan after transition

from Edit to Run mode without initialization. Online changes
will not influence the executing code until a warm-start is
performed.

Library Command Summary

2 |AckRule dint 1 IN EDIT Acknowledge rule. 1=Mormal ack. 2=Mo ack. , 3=Ack. reset
3 |FilterTime time 0= IM Paositive pulses on Signal shorter than this is not noted. Range 0-2
4 |[EnDetection bool true IM If true, the Signal is currently being checked

5 |AckCond boal false IN{OUT) Acknowledge alarm condition on positive edge

6 |DizCond bool falze IN{OUT) Disable alarm condition on positive edge

7 |EnCond boal false IN{OUT] Enable alarm condition an positive edge

8 |CondState dint Default QUT Alarrm condition state [0-8)

_.:.; ;ul'f'_érameters I — — S N -i-|< >

Figure 8. Keywords used in editor Description field

The following table is intended as a quick guide to library management. For detailed
information on how to work with libraries, see the Control Builder online help and

36

3BSE041488-511

Section 2 Libraries

Library Command Summary

to the manual Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%*).

Table 3. Library command summary

Action

Command/Procedure

Comment

Connect library to
project

In Project Explorer, right-click the
Libraries/Hardware folder and select
Insert Library

Connect library to
application, library or
controller

In Project Explorer, right-click intended
Connected Libraries folder and select
Connect Library

The library must have been
inserted to the project.

Make spare copy of
self-defined library
(in Libraries folder)

In Project Explorer, right-click the library
and select Make Spare Copy.

It is only possible to have one
spare copy of each self-defined
library.

Save copy of self-
defined library (in
Libraries folder)

In Project Explorer, right-click the library
and select Save Copy As...

The self-defined library is saved
in a file with a new name and a
new directory with its source
contents.

Change library state

In Project Explorer, right-click the library
and select Properties > State, then set
the new state

If the state is Released, it is only
possible changing to state Open.
In this case the index revision
number is increased with one.

Make sure that a spare copy of
the self-defined library (in
Libraries folder) is saved on local
disc before changing to status
Release.

Set protection for
library

In Project Explorer, right-click the library
and select Properties > Protection,
then enter a password

If the library already is password
protected, you must enter the old
password before changing it.

Disconnect library
from library,
application or
controller

In Project Explorer, go to the Connected
Libraries folder, select the library and
press Delete

If there are objects that use types
from this library, a warning dialog
is shown

3BSE041488-511

37

Library Command Summary

Section 2 Libraries

Table 3. Library command summary (Continued)

Action

Command/Procedure

Comment

Remove library

In Project Explorer, go to the Libraries
folder, select the library and press
Delete

If there are applications or
libraries that depend on this
library, a warning dialog is shown

Library Usage

In Project Explorer, right-click the library
and select Library Usage

The function shows if and where
the library is connected to an
application, library, or controller.

38

3BSE041488-511

Section 3 Standard Libraries

Introduction

This section describes the standard AC 800M libraries, that is, the AC 800M
libraries that are installed with Compact Control Builder.

V

This part of the section, the Introduction, describes the different types in the
standard libraries, including ready-made types, templates, and types intended
to be used as building-stones in complex solutions.

Library Overview on page 44 gives an overview of all standard libraries, with a
short description of each.

Hardware Overview on page 52 gives an overview of all libraries with
hardware types.

Templates on page 58 describes the template concept, and how to use template
objects and libraries to create re-usable and flexible solutions.

The library concept and how to build and manage a library structure for your
organization is described in Section 2, Libraries.

Ready-Made Objects, Templates and Building Stones
Standard AC 800M libraries contain:

Ready-made objects that simply have to be connected to your environment to
work. Typical examples are the simple control loops in the Control libraries,
and some of the motor and valve objects in the Process Object libraries. See
Standard Library Types on page 41.

3BSE041488-511

39

Ready-Made Objects, Templates and Building Stones

Section 3 Standard Libraries

Objects that should be seen as templates. These template types are not
protected and they can therefore be copied to your application, or to your own,
self-defined library. They can then be modified to fit your specific
requirements.

In a template type, there are core functions that are protected. These core
functions cannot be changed (with the exception of parameter connections), but
you can add other functions, both by using other types from the standard
libraries, and by adding code.

Typical template objects are the objects in Control loop solution library. Other
objects are Uni and Bi process objects in the Process Object Extended library,
which can be used to build process control objects for any uni- or bi-directional
object. See Group Start Library on page 47 and Control Libraries on page 48.

Low-level objects that can be seen as building stones to be used for building
more high-level, complex solutions. These objects can be used to add functions
to an existing template, or to build a complex solution from scratch.

Typical building stones are types for signal handling, which can be added to the
output and input of, for example, control loops. See Building Complex
Solutions With Types on page 27.

If the standard libraries do not contain any type that fits one of your specific
requirements, you have two options:

You can build your own type, based on objects from the standard libraries. If
the type is application-specific, you can define it directly in the application.
However, if it is likely that you in the future want to use it in other applications
as well, then you should create a library and store your type solution in this
library. Then, all you have to do to use the type in another application is
connect the library to that particular application.

Say that you discover that you want to use a type in another application, but you
have defined it in an application only. Then you should simply create a library
and copy the type to this library (you can, of course, also copy it to one of your
existing libraries). Then you can connect the library to all applications where you
want to use the type and make sure that all instances refer to the library type. You
can then delete the original type definition from your application.

40

3BSE041488-511

Section 3 Standard Libraries Standard Library Types

You can build your own type from scratch. This is not recommended, but might
be necessary if you have a process with very specific requirements. In this case,
it is strongly recommended that you store your types in a self-defined library.

Standard Library Types

When using ready-made types from the standard libraries, there are a number of
things that you should know:

When connecting parameters, the minimum requirement is that you connect the
parameters that do not have default values.

For control modules and diagram types, the information on individual
parameters is given in the description field of the connection editor.

For the in/out declared parameters in function blocks, the information on
individual parameters is given in the description field of the connection editor.

For more complex types, there is often additional parameter information in the
corresponding online help file. Select the type and press F1 to display online
help for a certain type.

There is information for most ready-made types, both in manuals and in online
help, see below.

Where to Find Information About Standard Library Types

For details on concepts, design and configuration for a specific type, there are
several sources:

How to use types from the Alarm and Event library and the Communication
libraries is described in the manual Compact 800 Engineering Compact
Control Builder AC 800M Configuration (3BSE041488%).

The Basic library and system firmware functions are also described in Compact
800 Engineering Compact Control Builder AC 800M Configuration
(3BSE041488%*)..

3BSE041488-511

41

Common Properties Section 3 Standard Libraries

. The other standard libraries are all described in this manual:

— For information on the Control libraries and the Signal library, see Section
4, Analog Process Control.

— For information on the Process Object libraries, see Section 5, Binary
Process Control.

— For information on the Group Start Library, see Section 6, Synchronized
Control.

— For information on the Signal and Vote Loop Concept, see Section 7,
Surveillance

* All libraries have a corresponding help file. Each object has context-sensitive
help, which is accessed by selecting a type and pressing F1.

» Itis also possible to generate project documentation for a library. In project
Explorer, select the library and select File > Documentation. This will provide
you with an MS Word file, containing short descriptions of all objects in the
library, including a list of all parameter descriptions.

For more information on how to generate project documentation, see online help
@ and the manual Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%).

Common Properties

InteractionPar

Most function block types and control module types having an interaction window
also have a parameter, called InteractionPar. This parameter is a structured data type
with components where some of them have the attribute coldretain.

Things that can be done in interaction windows can also be done via the
InteractionPar parameter from the surrounding application code. However, if no
such code is implemented you should not connect the InteractionPar parameter (in
the connection editor), just leave the connection field empty while using control
modules. While using function blocks, you need to connect the InteractionPar
parameter to a variable.

42 3BSE041488-511

Section 3 Standard Libraries Common Properties

Consider InteractionPar as an option for connecting a local variable that can, from
the application code, reach any of the components inside the InteractionPar
parameter. But remember, connecting the InteractionPar to your code, means that
you also take over the responsibility of handling coldretain values etc.

The main purpose of InteractionPar parameter is to manipulate values from graphics
(interaction windows) only, thus not from code. Calling the InteractionPar (in code)
will override any inputs given by the operator. The InteractionPar should be
controlled by graphics, and only in exceptional cases from code.

Writing to components in InteractionPar must be done with care. If a user code

@ continuously writes to it, the corresponding faceplate or interaction window
entrance will be locked. Such writing need to be made only on an event to prevent
the described unwanted behavior.

ParError

ParError parameter performs diagnostic tests inside an object in run-time mode. You
recognize if an object contains ParError, by the output parameter ParError.

The parameter returns a Boolean output value if the object parameters are out of
range'. The principle of the test on each such parameter is noted in the
corresponding parameter description. For example, severity and class for alarms are
wrong, or a high level input value is lower than the low level value in a level monitor
module, etc. These are two common examples but basically it could test all kinds of
input values.

The general idea of ParError is to provide you with a possibility to anticipate certain
actions and handle them from your code. For instance one can call the Error handler
function and perform a controller shut-down.

However, ParError requires some CPU load each time the diagnostics are executed.
For that reason, all objects that contain ParError also may have an input parameter
EnableParError which is set to false by default.

3BSE041488-511 43

Library Overview Section 3 Standard Libraries

Library Overview

This part describes each standard library briefly. For a list of all types in a library
and a short description of each type, see the Appendix B, Library Objects Overview.

In addition to the standard libraries, there are also firmware functions that can be
@ used in your applications. You find these in the System folder in Project Explorer.
For a complete list of the system functions, refer to Control Builder online help.

SupportLib

SupportLib is present in the Compact Control Builder to support the compatibility
with the Control Builder, while transferring projects that have SupportLib as the
connected library in the Control Builder.

Icon Library

The Icon Library (IconLib) contains icons that are used in interaction windows and
CMD graphics in most other libraries.

The Icon library is automatically added to all control projects, via the control project
template.

BasicGraphicLib

BasicGraphicLib contains Control Builder sub graphics that are mainly used in
ControlObjectLib.

Basic Library

The Basic library (BasicLib) contains basic objects such as converters, counters,
timers, pulse generators and edge detectors. This library is described in more detail
in the manual Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%).

The Basic library is automatically added to all control projects, via the control
project template.

44 3BSE041488-511

Section 3 Standard Libraries Alarm and Event Library

Alarm and Event Library

The Alarm and Event library (AlarmEventLib) contains function block and control
module types for setting up alarm and event handling for objects that do not have
built-in handling of alarms and events. This library is described in detail in the
manual Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%).

Signal Libraries

SignalLib

The Signal library (SignalLib) contains types for adding supervision, alarm
handling and error handling to I/O signals. SignalLib also contains types to define
different rules that make it possible to control the process to predetermined states
(vote objects). Types from this library can be used together with both binary and
analog control applications.

SignalBasicLib

The SignalBasicLib library contains function block types suitable for safety
applications. All objects in this library are without alarm and event handling. These
simple function block types are used for overview and forcing of boolean and real
signals. The easy design makes these function block types perform fast with low
memory consumption.

3BSE041488-511 45

Signal Libraries

Section 3 Standard Libraries

SignalSupportLib

SignalSupportLib contains sub control builder objects, for example SignalBasicLib
and SupervisionBasicLib. The function blocks are protected. They are used by, for
example, SupervisionBasicLib objects to simplify code in these (parent) objects.

Graphics for objects in Signal Libraries

The indication of abnormal situations in an object is displayed in the interaction
window indicator row on the object mode position. In case of abnormal situations,
the ordinary icon appears with the warning color (yellow) as its background color.

An abnormal situation for an object occurs if:
* Any value in the object is simulated from the external environment.

* Any value from an input I/O or any value to an output I/O uses the
predetermined value (ISP/OSP).

e The IO-channel is of redundant type and the inactive channel fails.

* The object is not a specialized I/O object and the signal is forced from the
external environment.
If the object is specialized, the force indication uses the force icon with a
transparent background to indicate this situation, which is normal indication.

The information specific to the signal concerning the above abnormal situations is
also displayed in the interaction window together with the signal value. The
information appears as an yellow text string if the used value is of good quality. If
the used value is of not of good quality, the information about the abnormal
situations appears as a red text string.

46

3BSE041488-511

Section 3 Standard Libraries Process Object Libraries

Process Object Libraries

The Process Object libraries contain function block types and control module types
for controlling motors, valves, ABB Drives and Insum Devices. Some types in these
libraries are templates, that is, you can copy them to your own libraries and
applications and modify the code to fit your particular process (see Templates on
page 58). Only Core objects are protected.

There are a number of Process Object libraries:

Process Object Basic Library (ProcessObjBasicLib)

The Process Object Basic library contains the basic Core types that form a basis for
valve and motor control objects in other Process Object libraries. It also contains
two simple types with reduced functionality and lower memory consumption.

Process Object Extended Library (ProcessObjExtLib)

The Process Object Extended library contains a number of function block and
control module types for general-purpose uni- and bi-directional control, and a
number of types for valve and motor control. Most types in this library can be
copied to your own libraries and be used as templates.

Process Object Drive Library (ProcessObjDriveLib)

The Process Object Drive library contains types for building ABB Drives control
and supervision.

Process Object INSUM Library (ProcessObjinsumLib)

The Process Object INSUM library contains types for building INSUM control and
supervision.

Synchronized Control Library

Group Start Library

The Group Start Library (GroupStartLib) contains control module types used to
control and supervise the sequential startup of process objects.

3BSE041488-511 47

Control Libraries Section 3 Standard Libraries

The contains Function blocks and Control modules to control a configured and
loaded SFC function inside the controller AC 800M.

Control Libraries

The Control libraries contain types and ready-made solutions for analog control.
See Section 4, Analog Process Control. There are a number of Control libraries:

Control Simple Library (ControlSimpleLib)

The Control Simple library contains a number of types that are intended to be used
for building simple control loops.

Control Basic Library (ControlBasicLib)

The Control Basic library contains function block types that are customized PID
loops. These function blocks shall be connected to the I/O variables.

Control Standard Library (ControlStandardLib)

The Control Standard library contains control module types for building control
loops, both stand-alone loops and cascade loops using master and slave
configurations. They can be used together with types from other Control libraries, as
well as together with objects from other libraries.

Control Extended Library (ControlExtendedLib)

The Control Extended library contains a number of control modules for arithmetics
and signal handling. These types are intended to be used for building advanced
control loops, together with objects from other Control libraries.

Control Advanced Library (ControlAdvancedLib)

The Control Advanced library contains control module types intended to be used to
build control loops with advanced PID functions and decouple filter functions. The
types from this library supports adaptive control and can be used to build dead-time
control loops.

48

3BSE041488-511

Section 3 Standard Libraries Supervision Library

Control Object Library (ControlObjectLib)

The ControlObjectLib provides function blocks and control modules to define
templates for using the control connection data type.

This library also contains template objects with control connection where user
defined transfer function can be developed. It also contains voting input to alter the
user defined functionality.

Control Solution Library (ControlSolutionLib)

The Control Solution library contains a number of ready-to-use control templates
(for example handling cascade, feed-forward, mid-range, etc.). These templates are
intended to be used directly in an application, as they are, but may also be copied to
a self-defined library and modified, to comply an intended usage.

Control Fuzzy Library (ControlFuzzyL.ib)

The Control Fuzzy library contains types intended to be used for building fuzzy
control solutions. It also contains a number of fuzzy control templates that you can
copy to your own libraries, modify and use.

Control Support Library (ControlSupportLib)

The Control Support library is an internal library that stores the types used by other
Control libraries. When the Control Support library is needed, it is automatically
connected.

For a description of how to build analog control solutions from the types in these
@ libraries (and from other types), see Section 4, Analog Process Control.

Supervision Library

Supervision Basic Library

Supervision Basic Library contains the function blocks intended for safety
(shutdown) logic, which have one normal condition and one safe condition. The
boolean activation signal is set, when an input object detects an abnormal condition.
This signal is connected, through the shutdown logic, to the activation order input
on an output object. When this is set, the output object is set to the defined safe

3BSE041488-511 49

Communication Libraries Section 3 Standard Libraries

condition. The central functionality is placed in the core function blocks in
SignalSupportLib and AlarmEventLib.

The following blocks are not protected: SDBool, SDInBool, SDInReal, SDOutBool,
SDReal and SDValve. This means that it is possible to make project specific copies.

Communication Libraries

The communication libraries contain function block types and control module types
for reading and writing variables from one system to another. Typical
communication function block types are named using the protocol name and
function, for example, COMLIRead or INSUMConnect.

Communication is described in more detail in the manual Compact 800
Engineering Compact Control Builder AC 800M Configuration (3BSE041488%*)..

All supported protocols are described in the manual AC 800M Communication
Protocols (3BSE035982%).

There are a number of Communication libraries:

* COMLI Communication Library (COMLICommLib).

* Foundation FIELDBUS H1 Communication Library (FFH1CommLib).
e INSUM Communication Library (INSUMCommLib).

* MB300 Communication Library (MB300CommLib).

* MMS Communication Library (MMSCommLib).

* ModBus Communication Library (ModBusCommLib).

* Modbus TCP Library (ModBusTCPCommL.ib).

e MODS5-to-MODS Communication Library (MTMCommLib).
* Modem Communication Library (ModemCommLib).

* Siemens S3964 Communication Library (S3964CommLib).

* SattBus Communication Library (SattBusCommLib).

* Serial Communication Library (SerialCommLib).

e Self-defined UDP Communication Library (UDPCommLib).

50

3BSE041488-511

Section 3 Standard Libraries Batch Library

* Self-defined TCP Communication Library (TCPCommLib).

Batch Library

The Batch library (BatchLib) contains control module types for batch control and
for control of other discontinuous processes. It can be used together with any batch
system which communicates via OPC Data Access and which supports the S88 state
model for procedural elements.

The control module types in the Batch library are used for the interaction between
the control application for an Equipment Procedure Element (for example, a phase
or an operation) and the Batch Manager.

This library is described in more detail in Control Builder online help (select the
library in Project Explorer and press F1).

The BatchLib also contains functionality for Batch Handling using batch advanced
control modules. Templates for these control module types are provided in this
library.

3BSE041488-511 51

Hardware Overview Section 3 Standard Libraries

Hardware Overview

This part describes each standard hardware library briefly. For a list of all hardware
types in a library and a description of each type, see Control Builder online help.

Basic Hardware

The Basic Hardware Library (BasicHWLIib) contains basic hardware types such as
controller hardware (for example, AC 800M), CPU units, Ethernet communication
links, Com ports, ModuleBus, and so on.

The BasicHwLib is automatically inserted to all control projects and automatically
connected to the controller, if the control project template AC 800M or
SoftController is used.

PROFIBUS

The PROFIBUS hardware libraries contain PROFIBUS DP communication
interfaces for the AC 800M.

* The CI854 PROFIBUS hardware library (CI854PROFIBUSHwLIib) contains
the communication interface for PROFIBUS DP, with redundant PROFIBUS
lines and DP-V1 communication.

PROFIBUS Devices

The PROFIBUS device libraries contain hardware types that can be used to
configure ABB Drive hardware and ABB Process Panels.

e The ABB Drive FPBA CI854 hardware library (ABBDrvFpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive FPBA-01,
using PROFIBUS DP (CI854).

* The ABB Drive NPBA CI854 hardware library (ABBDrvNpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive NPBA-12,
using PROFIBUS DP (CI854).

52 3BSE041488-511

Section 3 Standard Libraries PROFINET 10

PROFINET IO

The ABB Drive RPBA CI854 hardware library (ABBDrvRpbaCI854HwLib)
contains hardware types to be used when configuring ABB Drive RPBA-01,
using PROFIBUS DP (CI854).

The ABB Process Panel CI854 hardware library (ABBProcPnlCI854HwLib)
contains hardware types to be used when configuring ABB Process Panel,
using PROFIBUS DP (CI854).

The ABB Panel 800 CI854 hardware library (ABBPnI800CI854HwLib)
contains hardware types to be used when configuring ABB Panel 800, using
PROFIBUS DP (CI854).

The CI871 PROFINET IO hardware library, CI§71PROFINETHwLib contains the
communication interface for PROFINET IO. It also contains other hardwares that
are used for configuring PROFINET.

PROFINET IO Devices

The PROFINET IO device libraries contain hardware types that can be used to
configure ABB Drive hardware and ABB PROFINET IO device.

Master Bus 300

The ABB Drive RETA-02 CI871 hardware library (ABBDrvRetaCI871HwLib)
contains hardware types to be used when configuring ABB Drive RETA-02,
using PROFINET IO (CI871).

The ABB MNS iS CI871 hardware library (ABBMNSiSCI871HwLib)
contains hardware types to be used when configuring ABB MNS iS, using
PROFINET IO (CI871).

The ABB Drive FENA-11 CI871 hardware library
(ABBDrvFenaCI871HwLib) contains hardware types to be used when
configuring ABB Drive FENA-11, using PROFINET IO (CI871).

The CI855 Master Bus 300 hardware library (CI855MB300HwLib) contains the
communication interface (CI855) for and other hardware types to be used when
configuring Master Bus 300.

3BSE041488-511

53

INSUM Section 3 Standard Libraries

INSUM

The CI857 INSUM hardware library (CI857InsumHwLib) contains the
communication interface (CI857) and other hardware types to be used when
configuring INSUM.

DriveBus

The CI858 DriveBus hardware library (CI858DriveBusHwLib) contains the
communication interface (CI858) and other hardware types to be used when
configuring DriveBus.

MODBUS TCP

The CI867 MODBUS TCP hardware library (CI867ModbusTcpHwLib) contains
the communication interface (CI867 with two Ethernet ports) and other hardware
types to be used when configuring MODBUS TCP.

IEC 61850

The CI868 IEC 61850 hardware library (CIS68IEC61850HwLib) contains the
communication interface (CI868 with two Ethernet ports) and other hardware types
to be used when configuring IEC 61850.

CI868 interface is used for the horizontal communication between the
AC 800M controller and different substation IEDs.

AF 100

The CI869 AF 100 hardware library (CIS69AF100HwLib) contains the
communication interface (CI869) and other hardware types to be used when
configuring the Advant Fieldbus 100 bus.

MODS5

The CI872 hardware library (CI872MTMHWwLIib) contains the communication
interface (CI872 with three optical ports) and the Remote MODS controller under
each port.

54 3BSE041488-511

Section 3 Standard Libraries EtherNet/IP and DeviceNet

EtherNet/IP and DeviceNet

The CI873 EtherNet/IP-DeviceNet hardware Library, CI873EthernetlPHWLib,
integrated with AC 800M consists of the communication interface (CI873 with two
Ethernet ports) and other hardware types to be used when configuring EtherNet/IP
and DeviceNet.

LD 800DN is the linking device between EtherNet/IP and DeviceNet.

$100 I/O System

The CI856 S100 hardware library (CI856S100HwLib) contains the S100
communication interface (CI856), S100 Rack and S100 I/O units.

$200 I/O System
The S200 I/0 libraries contain S200 adapter and S200 I/O units.

e S200 CI851 hardware library (S200CI851HwLib) contains S200 slave and I/O
units for PROFIBUS DP-VO0 (CI851).

* S200 CI854 hardware library (S200CI854HwLib) contains S200 slave and I/O
units for PROFIBUS DP (CI854).

Satt Rack I/O System

* CI865 Satt ControlNet hardware library (CI865SattlOHwLib) contain the
communication interface (CI865), S200 adapters, S200 units for
Satt ControlNet, Satt Rack 10 and 200RACN.

S800 I/O System

The S800 1I/0 libraries contain S800 adapters and S800 I/O units.

* The S800 I/O Modulebus hardware library (S800ModulebusHwLib) contains
the S800 I/O units for ModuleBus.

e The S800 CI830 CI854 hardware library (S800CI830CI854HwLib) contains
the adapter (CI830) and S800 I/O units for PROFIBUS DP (CI854).

3BSE041488-511 55

Serial Communication Section 3 Standard Libraries

e The S800 CI840 CI854 hardware library (S800CI840CI854HwLib) contains
the adapter (CI840) and S800 I/O units for PROFIBUS DP (CI854).

* The S800 CI801 CI854 hardware library (S800CI801CI854HwLib) contains
the adapter (CI801) and S800 I/O units for PROFIBUS DP (CI854).

S900 I/O System

The S900 I/0 libraries contain field communication interfaces, adapters and S900
I/O units.

e The S900 CI854 hardware library (S900CI854HwLib) contains PROFIBUS
DP fieldbus communication interface, adapter and S900 I/O units for
PROFIBUS DP (CI854).

Serial Communication

The Serial Communication libraries contain hardware types for serial
communication.

e The CI853 Serial Communication hardware library (CI853Serial ComHWLib)
contains the communication interface for RS-232C serial.

* The Serial hardware library (Serial HWLIib) contain the serial communication
protocol for SerialLib.

e The COMLI hardware library (COMLIHWLIib) contain the serial
communication protocol for COMLI.

* The ModBus hardware library (ModBusHWLib) contain the serial
communication protocol for ModBus.

* The S3964 hardware library (S3964HWLib) contain the serial communication
protocol for Siemens 3964R.

Self-defined UDP Communication

The UDP hardware library (UDPHwLIib) contains the UDPProtocol hardware type
that is used for self-defined UDP communication.

56 3BSE041488-511

Section 3 Standard Libraries Self-defined TCP Communication

Self-defined TCP Communication

The TCP hardware library (TCPHwLIb) contains the TCPProtocol hardware type
that is used for self-defined TCP communication.

Printer and Modem

The Printer hardware library (PrinterHwLib) and Modem hardware library
(ModemHwLib) contain the printer and modem protocol respectively.

FOUNDATION Fieldbus H1

The CI852 FOUNDATION Fieldbus H1 hardware library (CI852FFh1HwLib)
contains the communication interface for the FOUNDATION Fieldbus H1 bus
(CI852) and FF Devices.

ﬂ The firmware available in Control Builder 5.1 does not support CI851. To run this
module, the corresponding firmware available in Control Builder 5.0.2 must be
downloaded to the connected PM8xx units.

3BSE041488-511 57

Templates

Section 3 Standard Libraries

Templates

®

A template is characterized by the fact that it is not protected. It is intended to be
copied to one of your own libraries, and modified inside that library. For an example
of how to copy a template object to one of your own libraries, see Create a Library
and Insert a Copy of a Type on page 304.

The moment you copy a type to your own library, the connection to the original
template type is lost. This means that your copy does not reflect updates to the
template.

However, a template type often consists of a number of objects from the standard
libraries. Some of those might be protected (or even hidden), while some of them
can be modified to suit the requirements of a particular organization, plant, or
process. This also means that sometimes standard libraries still have to be
connected to your library, due to the fact that they contain sub-types used inside
the template type you copied. See Figure 13 on page 63

For information on the execution of objects based on template types and copies of
template types, see Execution of Copied Complex Types on page 64.

To help you understand how this works, we will study a typical template type, the
Uni function block from the Process Object Extended library.

58

3BSE041488-511

Section 3 Standard Libraries Templates

5 [ProcessObjExtLib 2.4-6
+ WY Connected Libraries
+ ----- & Data Types
= # Function Block Types
4. Zaf Bi
------- %]:LevelDetection
+ ----- %]:MotorBi
+ ----- %]:MotorUni
+ :IZI: MotorValve
. Zaf OETextBi
.. 22 OETextUni
. {4 OETextValveBi
.. 24 OETextValveUni
. Zaf Uni
------- ECore ProcessObjBasicLib.UniCore Based on the type
.. ZaF DetectOverride DetectOverrideUni GroupStartObjectConn
+ ----- ﬁ Faceplate ProcessObjExtlib.FaceplatelniM In Basic library
<4 GSC_BasicLib GroupStartObjectConi >
------- ﬁlnfoﬂverride ProcessObjBasicLibInfoOverrideUni
+ ----- ﬁlnfopar ProcessObjBasicLibInfoParUniM
+ ----- ﬁlnfoparﬂroupStart InfoParUniGroupStart
- 25k ObjectAE ProcessObjectAE
------- ﬂOEText ProcessObjbxdLib. OETextUni
- -ﬁpres GroupStartlconUni

Figure 9. Uni function block type, with sub types and formal instances

The Uni function block type contains the following objects (formal instances):

e GSC (based on the type GroupStartObjectConn from the Basic library),

» Faceplate (based on the type FacePlateUni from the Process Object Extended
library),

e InfoPar (based on the type InfoParUni, from the Process Object Basic library),

* InfoParGroupStart (based on the type InfoParUniGroupStart, from the Process
Object Basic library),

* Pres (based on the type GroupStartlconUni),

* OEText (based on the type OETextUni from the Process Object Extended
library)

e Core (based on the UniCore type from the Process Object Basic library),

* ObjectAE (based on the type ProcessObjectAE).

3BSE041488-511 59

Templates

Section 3 Standard Libraries

This means that the Uni type depends on the Basic library, the Process Object Basic
library, and Process Object Extended library.

If we create our own library, TemplateLib, and copy the Uni function block type to
this library, with the intention of modifying the Uni template into a uni-directional
type that fits our process, it will look like Figure 10. The new function block type
has been named TemplateUni.

2 [} Templatelib 1.0-0
EI I Connected Libraries
- [P Basiclib 16-6
5 ® Function Block Types
E&:} Templatellni
------- E Core ProcessObjBasiclib.UniCore
------- E DetectOverride DetectOverrideUni
------- ﬁ Faceplate ProcessObjExtlib.Faceplatelnii
------- ‘ﬁ G5C Basiclib.GroupStartObjectConn
------- ﬁ InfoOverride ProcessObjBasiclib.InfoCverrideUni
------- ﬂ InfoPar ProcessObjBasiclibInfoParlnibd
------- ﬁ InfoParGroupStart InfoParUniGroupStart
....... B ObjectAE ProcessObjectAE
------- E OEText ProcessObjBxtLlib. OETextUni
....... ﬂl Pres GroupStartlconbUni

Figure 10. Uni, copied into a self-defined library TemplateLib. No connections to
other libraries (red triangles on a number of types)

The red error triangles on the type and sub types appear because the new library,
TemplateLib, is not connected to the libraries that contain some of the sub types.

If those libraries are connected to the new library, the red triangles disappear. After
creating a copy of Uni, it can be modified to fit the specific requirements. For an
example of how to add functions to a type, see Add Functions to Self-defined Types
on page 309.

Once we are done adding to and modifying our type, we can use it in an application,
see Figure 11. All we need to do to be able to use our new type in the application is
to connect TemplateLib to the application and create an instance (TestUni) from the
TemplateUni type.

60

3BSE041488-511

Section 3 Standard Libraries Templates

B [Applications
B Ei, Application_1 - (Controller_1.Marmal)

El I Connected Libraries

. [BasiclLib 1.6-6

b [Templatelib 1.0-0
El # Programs

E E Pregraml - (Controller_1.Fast)
E Programa2 - (Contreller_1.Mormal)
E| E Program3 - (Contreller_1.5low)
- E PowerFailurelnfos PowerFailurelnfos
E SystemDiagnostics SystemDiagnostics
P setTime SetDT
P setTimeZone SetTimeZonelnfo
E Applicationlnfo ApplicationInfo
E Testni Ternplateldni
- -ﬁ Core ProcessObjBasiclib.UniCore
ﬂ DetectOverride DetectOverridelni
[ﬁ Faceplate ProcessObjExtLib.FaceplateUnih
ﬁ GSC BasiclLib.GroupStartObjectConn
-ﬁ InfoOverride ProcessObjBasicLib InfoOverrideUni
[-ﬁ InfoPar ProcessObjBasiclibInfoParUniM
[-ﬁInfoF’arGroupStart InfoParlUniGroup5tart
- Z3F ObjectAE ProcessObjectAE
-'ﬂ OEText ProcessObjExtLib, OETextUni
-ﬁ Pres GroupStarticonUni

Figure 11. TemplateUni used in an application

Once we are done adding to and modifying our type, we can use it in a diagram
under the application, All we need to do to be able to use our new type in the
diagram is to connect TemplateLib to the application and create an instance

3BSE041488-511 61

Templates

Section 3 Standard Libraries

(TestUni) from the TemplateUni type in the diagram editor. Figure 12 shows the tree

strucure after the instance is inserted in the diagram editor.

3, Applications

£ WY Connected Libraries
. [V Basiclib1.7-3
¢ e [0 Templatelib 1.0-0
E ----- i Diagrams
Diagraml - (Controller_1.Fast)
@ Diagram? - (Controller_1.MNarmal)
= g‘, Diagram3 - (Controller_1.5low)
-'5; ApplicationInfo ApplicationInfo

E PowerFailurelnfos PowerFailurelnfos
{5 setTime SetDT

{5 setTimeZone SetTimeZonelnfo

E SysternDiagnostics SystemDiagnostics
E TestUni TemplateLib. Termplatelni

------- ﬂ Core ProcessObjBasicLib.UniCore
------- ﬂ DetectOverride DetectOverridelni

------- -ﬁ GSC BasicLib.GroupStartObjectConn
------- -ﬁ InfaOverride ProcessObjBasicLib InfoOverrideUni

....... Z5f ObjectAE ProcessObjectAE
------- ﬂ OEText ProcessObjExtlib.OETextUni
------- -ﬁ Pres GroupStartlconUni

Figure 12. TemplateUni used in a diagram under the application

Note that there is no need to connect the libraries that are connected to
TemplateLib (the reference from instances to types is there anyway). The only
time this would be necessary is when a library contains a type that is used for a
parameter connection to the surrounding code or to another object outside our

type

62

3BSE041488-511

Section 3 Standard Libraries Templates

Note that all sub types (the formal instances) retain a relation to their corresponding
types. For example, a change to the OETextUni type in the Process Object Basic
library will also affect the TemplateUni type, since this type contains an instance of

OETextUni.
Library A
I Type A1
— Type A2
—— Type A3
A31 (based on B1) \Library B
Copy A32(based on B2) —
A33 (based on C2)
. . T~ Library C
Type A3 is copied to
User Library X,
where it becomes
type X2
User Library X
Type X1
Type X2

X31 (based on B1
() — Library B
X32(based on B2) —

)
T~_Library C

X33 (based on C2

1.User Library X will still depend on Library B and Library C, since X31 and X32 are instances
of Bland B2, and X33 is an instance of C2.

2.User Library X will not depend upon Library A. Changes to A3 will not affect X2.

Figure 13. Overview of the template concept

3BSE041488-511 63

Execution of Copied Complex Types Section 3 Standard Libraries

Execution of Copied Complex Types

Code

It is important to understand what happens when you copy and modify a type that
contains instances of other types (formal instances). We start with a template type
from one of the standard libraries, as shown in Figure 14.

! Template type T1

| A ‘ ‘ B | | C ‘ <a— Formal instances
L - - - — I_ - I_ — 4
Y

‘ T1A‘ ‘T1B | | T1C‘ -q—— Types corresponding to the
formal instances

Figure 14. Template type with formal instances

Each formal instance has a corresponding type. These types are normally stored in
the same library as the template object, or in a connected library (of the Basic or

Support type).

64

3BSE041488-511

Section 3 Standard Libraries Execution of Copied Complex Types

! Template type T1

;— If Condition Then |
| a:=a+1 |
o |
| |
| |
]

Tl Ty yea ycal

[’T1A‘ ‘T1B | | T1C‘

call \
N

\;— __________ —; Instance InstT1
| |
| |
| |
| |
| |
Lo - - - . . |

Figure 15. Execution of an instance of a template type with formal instances

When an object (a formal instance) is created from this type and the formal instance
is executed, what happens is the following, see Figure 15:

1.
2.

The object (InstT1) calls the type (T1).

When the type T1 is called, the code executes and calls are made to all types
(T1A, T1B and T1C) corresponding to the formal instances (A, B and C).

Each type that is called (T1, T1A, T1B, T1C) executes, operating on data from
the corresponding object (T1) and formal instances (T1A, T1B, T1C).

3BSE041488-511

65

Execution of Copied Complex Types Section 3 Standard Libraries

This relation is affected if a copy of a Complex template type is created and the
copied type is modified by adding code or by replacing one of the formal instances.

First, we create a new type (MyT1) by copying the template type (T1), see

Figure 16.
Code @ -———— - — — -
\ If Condition Then | Template type T1

a:=a+1 |
| |
| |

| | A ‘ ‘ B | | C ‘ | <@—— Formalinstances
| |
Lo o _ L.

‘ T1A‘ ‘T1B | | T1C‘ -a—— Types corresponding to the
formal instances
Make a copy of T1 and name it MyT1
Code - — — — — — — — — — — -
\ If Condition Then | Template type MyT1
a:=a+1

Lo |
| |
| |

| | A ‘ ‘ B | | C ‘ | <@—— Formalinstances
| |
L _l - _I_ - l_ — 4

‘ T1A| ‘T1B ‘ | T1C‘ -a¢—— Types corresponding to the
formal instances

Figure 16. Copying a template type with formal instances

66 3BSE041488-511

Section 3 Standard Libraries Execution of Copied Complex Types

When an object based on MyT1 is executed, the call is to MyT1, and not to the type
T1. However, each formal instance retains its connection to their corresponding
type. The call to MyT1 will also generate calls to T1A, T1B and T1C, see Figure 17.

;_ It Condition Then —; Type MyTH1
| a:=a+1 |
o |
| |
| |
]]

Tl Ty yea g cal

[‘T1A‘ ‘T1B | | T1C‘

call \
AN

\;— __________ —; Instance InstMyT1
| |
| |
| |
| |
| |
Lo J

Figure 17. Execution of an object based on a template type copy

The purpose of copying a template type is to modify this type to fit your specific
requirements. Say, for example, that we need an object that works differently from
one of the formal instances. We might, for example, want to replace a valve with a
valve of a different type than the original one.

If T1B is the original valve type, replace it with the new valve type V2B, and
connect the new type to the MyT1 type, see Figure 18.

3BSE041488-511 67

Execution of Copied Complex Types Section 3 Standard Libraries

Code A
Type MyT1

|
|
|
|
| -¢—— Formal instances
|

-g—— Types corresponding to the
formal instances

Figure 18. Copy of template type with formal instances, modified by replacing one
of the formal instances (circled in the figure)

ﬂ It is of course also possible not only to replace formal instances, but also to
modify your copied type by adding or removing formal instances, and by adding
to the code or changing it.

When an object based on this type is executed, what happens is the following, see
Figure 19:

1. The object (InstMyT1) calls the type (MyT1).

2. When the type MyT1 is called, the code executes and calls are made to all types
(T1A, V2B and T1C) corresponding to the formal instances (A, B and C).

3. Each type that is called (T1, T1A, V2B, T1C) executes, operating on data from
the corresponding instance.

68 3BSE041488-511

Section 3 Standard Libraries Execution of Copied Complex Types

;_ It Condition Then —; Type MyT1
| a:=a+1 |
T |
| |
| |
A B 3]
’L __________ -
/ Call v vCaII v Call
[’T1A‘ ‘vzs | | T1C‘
call \
\
N
\;— __________ —; Instance InstMyT1
| |
| |
| |
| |
| |
Lo - - - . . |

Figure 19. Execution of an instance of a modified template type copy

The following are the features of a copied template type:

* When a copy is made of a template type, the connection to the original
template type is lost.

* However, all formal instances keep their connection to their corresponding
types.

* Modifications to a copy do not affect the original type.
* Modifications to the template type do not affect the copy.

* Modifications to formal instances (that is, to their corresponding types), always
affect both the original template types and its copies (as long as that particular
formal instance is still used in the copy).

3BSE041488-511 69

Execution of Copied Complex Types

Section 3 Standard Libraries

70

3BSE041488-511

Section 4 Analog Process Control

Introduction

This section describes how to use types from the Control libraries to create analog
control solutions for your automation system. The section contains:

A description of the concept behind the Control libraries, see
Concept on page 72.

Advice and instructions on how to implement analog control solutions using
the types in the Control libraries, see Design on page 107.

Examples on how to implement analog control solutions using the types in the
Control libraries, see Getting Started with ControlConnection on page 123.

Detailed information on individual library types for signal handling, see
Advanced Functions on page 152.A description and an example on how to use
control module type templates from the Control Solution library
(ControlSolutionLib), see Control Loop Solutions on page 226

For a discussion on the difference between function blocks and control modules,
and how to choose between the two, see the manual Compact 800 Engineering
Compact Control Builder AC 800M Configuration (3BSE041488%*) .

Throughout this section, the word “controller” refers to a type used in control
loops, for example, a PID controller.

3BSE041488-511

71

Concept

Section 4 Analog Process Control

Concept

The Control libraries contain a number of function blocks and control modules that
are designed to help you construct complex signal systems and control loops with
high functionality and flexibility. Some of them can be used as is, while some of
them have to be combined to suit a specific application.

The Control libraries contain the PID controllers and analog signal handling
functions. These functions are needed to handle analog signals and to construct
control loops, both simple control loops (including cascade control loops) and very
advanced ones.

This section describes the concept behind the Control libraries, split on the
following sub-sections.

* Control Libraries Overview on page 72 gives an overview of all Control
libraries.

* Functions and Other Libraries Used for Analog Control on page 75 is a
summary of AC 800M firmware functions and functions from other libraries
that can be used in connection with analog control. Here, you will find
references to other parts of the manual that describe individual function and
objects.

* ControlConnection on page 75 describes the ControlConnection structured
data type, which is used to simplify communication between different control
objects and their environment.

Control Libraries Overview

The Control libraries for AC 800M are standard libraries that are installed with the
Compact Control Builder. There are a number of Control libraries:

* Control Basic library,

* Control Simple library,

e Control Standard library,
* Control Extended library,
e Control Advanced library,
* Control Object library,

* Control Solution library,

* Control Fuzzy library.

72

3BSE041488-511

Section 4 Analog Process Control Control Libraries Overview

For a short description of each of these libraries, see the following sub-sections.

The Control libraries are also supported by a number of firmware functions that are
included in AC 800M firmware and in other libraries. For information on those, see
Functions and Other Libraries Used for Analog Control on page 75.

Control Basic Library

The Control Basic library contains function blocks for a number of ready-made
complete control loops, simple as well as cascade, to be connected directly to I/O.

Control Simple Library

The Control Simple library contains function block types that can be used to build
control loops using function blocks only. These have to be connected by the user, for
forward and backward signal directions.

Control Standard Library
The Control Standard library has control module types for:

e astandard PID controller

* 1/Osignals

* signal conversion

* manual control

* branches, as well as supervision of levels, selections, and limitations.

Control Extended Library

The Control Extended library has control modules types for arithmetics and signal
handling. Together with the Control Standard library control modules, it is possible
to construct control loops with more control functions, for example, PID loops.

3BSE041488-511 73

Control Libraries Overview Section 4 Analog Process Control

Control Advanced Library

The Control Advanced library has a control module type for an advanced PID
controller, containing all the functionality of the PID controllers in the other control
libraries and decouple filter functions. In addition, the controller may be configured
for continuous adaptation of controller parameters. It may also be configured as a
predictive PI, that is a PPI controller, and it has a gain scheduler. There is also a
control module for adding a stiction compensator function and decouple filter to an
output signal.

Control Object Library

The ControlObjectLib provides control modules to define templates for using the
control connection data type. The control modules will have function blocks as sub
objects. The library contains advanced multiple inputs/outputs with up to 4 inputs
and outputs created as control module templates. These templates also provide
manual override and bumpless transfer.

Control Solution Library

The Control Solution library (ControlSolutionLib) contains control module types
for a number of ready-made complete control loop solutions. A control module
solution provides a complete loop control solution with control, signal monitoring,
alarm handling, cascade, feed-forward, mid-range, trending, operator graphics and
also a possibility to add asset optimization functionality.

Control Fuzzy Library

The Control Fuzzy library contains control module types for definitions of fuzzy
logic rules for process control, and for constructing multi-variable fuzzy controllers
which are able to handle many inputs and outputs. The fuzzy controller also has the
additional functions of a PID controller.

74 3BSE041488-511

Section 4 Analog Process Control Functions and Other Libraries Used for Analog Control

Functions and Other Libraries Used for Analog Control

Functions that can be used in connection with types from the Control libraries can
be found in the Compact Control Builder (AC 800M firmware functions), as well as
in the Basic library (counters, timers, latches) and in the Signal library.

For more information on system functions and basic functions in other libraries,

@ see the Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%*) and online help. This manual also discusses how
to use types from the Alarm and Event library to set up additional alarm and
event handling, and how to set up control network communication using types
from the Communication libraries.

Functions and library types that are not included in the Control libraries, but can be
used for signal handling in connection with control loops, are described under
Advanced Functions on page 152.

ControlConnection

ControlConnection is a data structure which contains all signals that are sent
between the objects of a signal system or control loop. Some of the signals are sent
in the forward direction of the loop and some are sent backwards, such as value,
status and range. The complexity of the signal systems and control loops can then be
reduced considerably for the signals between the objects.

Introduction

Data is generated by a source, computed in one or several objects, and finally
forwarded to a consumer of data. This is the most common kind of data flow. If each
object is to operate independently, and be able to connect with the other objects, a
number of conditions must be fulfilled.

Learn how to build your own control module types with ControlConnection in
@ Getting Started with ControlConnection on page 123 and Creating a Control
Module with ControlConnection (CC template) on page 130.

Each object has to ask its succeeding object if it is ready to receive data and do
whatever it is that the object does. The succeeding object must issue an acceptance
when ready to receive data.

3BSE041488-511 75

ControlConnection Section 4 Analog Process Control

This means that the question must be computed, before it is possible to give the
answer. This is achieved by using code sorting. To interconnect objects of this type,
you have to use the type of parameters that simply carry data, irrespective of their
direction. These type of parameters cannot have values of their own.

This is the basis for connections between the control modules in the control
libraries, and the interconnecting data type called ControlConnection.

Source

—g—— P Handler |———®| Handler ————p|Consumer
< < -—

Figure 20. The principle of the data flow between control modules

Signal Flow between Control Modules

Simple and advanced control loops with various functions can be built from the
control modules in the control libraries. A typical constellation is described in
Figure 21. It consists of a number of input signal control modules, connected to
calculation and controller modules, which are connected to an output signal control
module.

There are two ways of sending information between control modules; via a
graphical connection and via a parameter connection. Graphical connection is
described in Graphical Connection of Control Loops on page 79.

SP

PID
Al \’ PID AO

Al

Figure 21. Example of graphical connections between control modules making a
control loop

76

3BSE041488-511

Section 4 Analog Process Control ControlConnection

When connected to each other, the control modules have the following

characteristics.

. Information is transferred between the modules, forward as well as backward
in the control loop, during the same cycle of execution. This is used, for
example, to achieve bumpless transfer upon a change from Manual to Auto
mode, and to prevent integrator wind-up in the entire control loop.

» Signal flow without delay, in both directions, is obtained through automatic
sorting of code blocks in the control modules.

* If asignal is not valid, for example < 4 mA, it is possible to consider this in
succeeding control modules. Examples of this are transfer to Manual mode or
setting a predetermined value on the output.

The chain of control modules in a control loop and/or during analog handling
must start with a control module handling input signals, and the chain going to
the right must end with a control module handling output signals.

©

A ControlConnection output from a control module must normally only be
@ connected to one input in another succeeding control module.
A ControlConnection output from a control module must not be connected as a
feedback to a previous control module in the chain, unless, in exceptional cases,
a State control module is connected in between. See Miscellaneous Objects on
page 225.

3BSE041488-511 77

ControlConnection Section 4 Analog Process Control

When using non-graphical connections of ControlConnection parameters you must
be careful not to connect one output to several inputs, except, for example, for a
presentation signal of Level6Connection type, which must be parameter-connected
from the Level6CC control module to several control modules. See section,
Miscellaneous Objects on page 225.

Al \ / Branch AO

Graphical connection

Al MAX AO

Figure 22. A chain of connected control modules for analog signal handling

In the chain of connected control modules, as seen in Figure 22, the main signal
flow is from left to right, as illustrated by the bold arrows in Figure 23. The main
signal flow may have divergent and convergent branches. Thin vertical arrows
represent operator interactions.

! }

—3 A ———3 B — C

—
b) E — F

Figure 23. The main signal flow between the control modules

Information propagates during one scan, without any delay in the main signal flow.
For example, the effect of an event in control module A is perceived in control
module F in the same scan.

78

3BSE041488-511

Section 4 Analog Process Control ControlConnection

The connected control modules are influenced by their surroundings, for example,
the operator interface or the surrounding application program. The effect of such an
influence propagates ,without delay in the main signal flow, to outside of the control
module in which the influence occurs.

The effect of such an influence also propagates, without delay, in the opposite
direction to the main signal flow, to outside of the control module in which the
influence occurs. This is called backtracking (see Backtracking on page 82). This
effect does not, however, influence the main signal flow until one scan later. For
example, the effect of an influence, shown by the thin arrow on block E, propagates
to F in the same scan. It also propagates to D, B and A in the same scan, but not to
C. In B, calculations are carried out on the effect before it is forwarded to A. In the
next scan, the effect is used in the calculation of the main flow.

Graphical Connection of Control Loops

To create a control loop the control modules are connected to form chains by means
of graphical connections from left to right, which is also the direction of the main
signal flow.

Backtracking calculations are performed in all control modules in the control loop,
when in Backtracking mode. The value may be transferred backward in the chain, if
the chain before the backtracking-initiating control module has a member with an
internal state able to collect the backtracked value. Information about the presence
of such an internal state is given in the ControlConnection.

A control module has an internal state when its output is determined not only by the
input signal, but also by its history.

In control modules with an internal state, the output signal might be limited, for
example, when a succeeding control module is in Backtracking mode or has reached
a maximum or minimum value. Information on this situation is passed backwards in
the control loop chain in the ControlConnection data structure. The preceding
control module with an internal state then stops further increase or decrease of the
signal value.

3BSE041488-511 79

ControlConnection

Section 4 Analog Process Control

Control module with
an internal state

Output

increase omitted

Control module in Backtracking mode
or output maximum value reached

-

L

Figure 24. Example of when a succeeding control module has reached a limit value;
the preceding control module stops further integration (anti-windup)

ControlConnection Data Type

The control-loop-specific ControlConnection data type handles both forward and
backward signal flow and contains information about, for example, the signal value,
status, and unit, as well as the measuring range of the signal to prevent the signal
from exceeding its limits (in any situation), see Figure 25.

A~
\J

Value & Status
el
Range & Unit

Value
Range & Unit

- -
Backtracking
information

-

Figure 25. A graphical connection of ControlConnection type with its main signal

flow forward and a flow backward

The Value component in the forward structure represents the main signal flow of the
loop. The Status component contains information about the quality of the loop.

80

3BSE041488-511

Section 4 Analog Process Control

ControlConnection

Ranges and Units

A control module limits its output signal to within the output range. When using
graphical connection between control modules, signal ranges and units are generally
calculated automatically, and sent forward, as well as backward, through the
ControlConnection structure data type. according to the following rules.

1. Ranges and units from inputs and outputs propagate forward and backward in
the control module chain until they reach a control module whose output range
and unit can not be automatically defined using the input range. Such control
modules may be a controller, an integrator, or a filter. More information may
then be supplied by manual setting of range and unit for this control module
output. If range and unit values are not entered, the default values 0—-100% are

used.

2. If a control module receives overlapping ranges and units from the input and
output directions, then the range and unit from the preceding control module
are used.

Al

=~

PID

The AI and AO control modules start to transmit their
ranges in the forward and the backward directions,
respectively.

Some control modules simply allow the ranges to pass
through. Other control modules calculate and suggest a
range. The range can also be set by the operator.

Control modules with an internal state receive the same
output as the signal sent backward from the succeeding
control module, unless a range and unit are entered
manually.

The output range is visible in some control modules, such
as PID controllers, and arithmetic modules etc., and may be
changed. The range can be changed in the interaction
window in Online or Test mode.

3BSE041488-511

81

ControlConnection Section 4 Analog Process Control

Backtracking

The behavior of a control module that has ControlConnection connections depends
on which mode the succeeding control module in the chain is in. A control module
in Backtracking mode when succeeding control modules indicate that they, for
example, are in Manual mode. This means that integrator wind-up of a controller is
prevented (see section, Anti-Integrator Wind-Up Function on page 153) and that
bumpless transfer, for example, between Manual and Auto, is achieved (see
Bumpless Transfer on page 154).

In Control Builder, control modules are dimmed if backtracking is active.

Enter Range Value and its Unit of Measure

In control modules where it is possible to enter an output range value and its unit of
measure in the interaction window, you can override the propagated or calculated
default values of the range value and its unit of measure. Select and enter maximum
and minimum values and their unit of measure of the output signal.

Fraction

In all interaction windows of control modules, which have a ControlConnection,
you can set the fraction, which is a local variable in each control module for setting
of the decimals shown in the interaction window(s).

When an I/O signal from, for example a PT100 transmitter, has a wider physical
range than desired you can enter a narrower range in the AnalogInCC control
module.

When signals go through a number of arithmetic calculation control modules the
ranges can easily take large positive or negative values. Also, units of measure may
become long compound words that are unabridged, for example in multiplications.
Therefore, it is important to set the range to acceptable values. Also, check that the
unit of measure is correct and simplify it by abridgement. This must be checked in
the last calculation control module before the signal goes to a control module that
does not send range value and its unit of measure backward, such as the controller,
derivative, integral or piecewise linear control module types.

82

3BSE041488-511

Section 4 Analog Process Control ControlConnection

If a constant value, unchangeable in Online mode, is required in the calculations,
use a RealToCC control module in which you set the maximum and minimum
values equal to the in value given for the constant, in Offline mode.

Limitation of Controller Output

It may be necessary to limit the controller output to a narrower interval in Auto
mode, for example, when you test new controller parameter settings. Limitation of
the controller output then ensures that the process is not upset if the controller is
poorly tuned.

Do this limitation from the parameter interaction window and the limits are only
active in Auto mode. When you deselect the limitation, the limits are returned to the
normal endpoints of the range. Bumpless transfer is ensured whenever the limits are
changed.

ControlConnection between Applications Using Control Modules

The MMSToCC control module along with the CCToMMS control module can be
used when transferring signals of ControlConnection between applications.

System "A" System "B"

Access variables

Actuator "alvel"
Reads opdlcaly e

¥ . e dain
Foward : Foward |
PID b o CCToMMS E MMSToCC f— B0
Bacdwad : Fadwad
cemparent ! comperenl
orC Wzs odlcly oTCC

ha\:lw.lz_l'd dak=
Access variable)

Figure 26. ControlConnection using control modules

3BSE041488-511 83

Controller Types Section 4 Analog Process Control

It is recommended to parameterize the control connection to fulfil the IAC needs
and to use IAC in prior of the MMS mechanism.

ControlConnection Using Communication Variables

The ControlConnection data type can be used for cyclic communication between
top level diagrams, programs, and top level single control modules that use
communication variables. The communication variables are declared in the top level
diagram editor, program editor or top level single control module editor.

If the data type of the communication variable is ControlConnection, the backward
component is marked with a reverse attribute, and a bidirectional communication is
acheived.

Controller Types

This section describes controller principles and main controller functions. Advanced
built-in functions and objects for signal handling are described under Advanced
Functions on page 152.

A process may be of many types. The process may be rapid or slow, have dead time,
involve non-linear process characteristics, have many different cases and/or
conditions of operation, or depend on valve characteristics. The process may also
involve viscous media, the process may be exothermic, or dependent on various
calculations, etc.

The process requirements may also be to achieve a certain production quality.
Manual intervention must be carried out in a smooth, so-called bumpless way. In
addition, there are information and communication demands on the operators and/or
other systems regarding momentary values, alarms, data history in short and long
perspectives, and the presentation of these in a clear way.

To fulfill all the process demands, many functions must be carried out by the
controller. The solution may involve anything from a single controller to several
controllers with internal relationships, for which the system has complete control
modules and function blocks.

The core of the PID controllers in the control libraries is based on PID algorithms.
The only exception is the fuzzy controller, which has a design of its own. Additional

84

3BSE041488-511

Section 4 Analog Process Control Controller Types

functions are added by setting parameters, or by combining a controller with other
control modules.

PID, PI, P, and PD Controllers

The basic, classical PID, PI, P, and PD controllers of ideal type are based on the
control algorithms described in the section Controller Algorithms on page 89. When
discussing these controllers as a group, the term PID controller is used.

Generally, with the aid of built-in functions, the system performs mode transfers and
other changes in a bumpless way, see Bumpless Transfer on page 154. An anti-
integrator (sometimes called reset) wind-up function is included, to prevent the
output signal from drifting away, see Anti-Integrator Wind-Up Function on page
153.

In addition to controller algorithms and built-in functions, the standard libraries
contain additional functions and types for creating almost any other controller type.

PPI Controller

If a process has long dead time in comparison with the process time constant, a
predictive PI controller configuration, PPI (based on a simplified Otto Smith
controller), can be used. The process dead-time delay is added, but the parameter
values for P and I correspond to the same values as in a PI controller.

Fuzzy Controller

The fuzzy controller can handle one input and one output, as well as many inputs
and many outputs. You may be able to use a fuzzy controller where PID control
fails, or does not work well.

A fuzzy controller has most of the functions of a PID controller, together with the
possibility of defining fuzzy logic rules for process control.

Functionality in PID Controllers

A survey of the following eight PID Controllers is presented in Table 4.
1. PidLoop (Function block)

2. PidLoop3P (Function block)

3BSE041488-511 85

Controller Types Section 4 Analog Process Control
3. PidCascadeLoop (Function block)
4. PidCascadelLoop3P (Function block)
5. PidCC (Control module)
6. PidAdvancedCC (Control module)
7. PidSimpleReal (Function block)
8. PidSimpleCC (Control module)

Table 4. Functionalities in the PID Controllers

Included Function 1 2 | 3 4 |5 | 6|7 |8
Belongs to ControlSimpleLib No |[No |[No |[No [No |No |Yes |Yes
Belongs to ControlBasicLib Yes |Yes |Yes |Yes |[No [No [No |No
Belongs to ControlStandardLib No |[No |[No |No |Yes |No |No |No
Belongs to ControlAdvancedLib No |[No |[No |No [No |Yes |No |No
PID algorithm Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Tunable Beta-factor No |[No |[No |No |Yes|Yes |No |No
Backtracking Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Setpoint Backtracking Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Integrator wind-up prevention Yes |Yes |Yes |Yes | Yes | Yes | Yes | Yes
Bumpless transfer Yes |Yes |Yes |Yes | Yes | Yes | Yes | Yes
Tracking Yes | Yes |Yes |Yes |Yes |Yes | Yes |Yes
Internal setpoint ramping No |[No |[No [No |Yes |Yes [No |No
Offset Adjustment No [No |[No |No |Yes |Yes [No |No
Deviation alarm limits Yes |Yes |Yes |Yes |Yes |Yes |[No |No
Pv alarm limits No |[No |[No |No |Yes|Yes |No |No
Limitation of output Yes | Yes |Yes |Yes |Yes |Yes INo [No
Feedforward Yes |Yes |Yes |Yes |Yes |Yes [No |No
P-start Yes |Yes |Yes |Yes |Yes |Yes [No |No

86

3BSE041488-511

Section 4 Analog Process Control

Basic Controller Principles

Table 4. Functionalities in the PID Controllers (Continued)

Included Function 1 2 3 4 | 5 6 7 8
Predictive PI control No [No |[No |[No [No |Yes [No |No
ERF No [No |No |[No |Yes |Yes INo |No
Disable PD at limited windup No [No |No [No |Yes |Yes [No |No
Enable out ramp in manual No |[No |[No |No |Yes|Yes [No |[No
Autotuner relay Yes |Yes |Yes |Yes |Yes | Yes |[No |No
Autotuner extension (step) No [No |[No [No [No |Yes [No |No
Autotuner structure and design No [No |[No |[No |Yes |Yes INo |No
selection

Oscillation detection No [No |[No |[No [No |Yes [No |No
Sluggish control detection No [No |[No |[No [No |Yes [No |No
Gain scheduler No [No |[No |[No [No |Yes [No |No
Adaptive control No |[No |[No |[No [No |Yes [No |[No
Compensation for redundant I/O Yes |Yes |Yes |Yes |[No |[No [No |No
deviation on process value

Basic Controller Principles

Basically, a controller has three signals, the setpoint signal (Sp), the process value
signal (Pv) and the output signal. The P controller, PI controller, and PID controller

3BSE041488-511

87

Basic Controller Principles Section 4 Analog Process Control

are different types of analog controllers. The basic controller configuration is the P
controller, where P stands for proportional.

Setpoint, S
p4p> PID OUtpUt

. controller

| Process

Process value, Pv

Figure 27. A control loop with the function block of a PID controller

The most simple P controller may be described as follows. The controller compares
the setpoint value with the process value and the difference is called the control
deviation, €. This is amplified by G (the amplification or gain factor) and an offset
signal is added to obtain a working point. See figure below. The result is the output

signal.
P controller
Setpoint
— v Adder
K‘{'\g G * € //F\ Output
\ {+ Z) >
\\\: _— /
/ +/
Process value A —
4>, J—
G = Gain factor
Offset

€= Setpoint — Process value
Output value = G * € + Offset

Figure 28. The basic P controller

88 3BSE041488-511

Section 4 Analog Process Control Controller Algorithms

In a PI controller, the offset is replaced by the Integral part (I part).

In a PID controller the Derivative part (D part), acting on the filtered process value,
is also added to the output.

Controller Algorithms

The PID controller algorithms used are of ideal type. The controller input from the
process Pv and the setpoint Sp are regularly read by the controller. A read is also
called a sample, and the time between two samples is called the sampling time. The
required output signal value is calculated, for each sample, by comparing samples of
the input and setpoint values. The sample time is equal to the task cycle time of the
current task. The process value may be filtered before it enters the derivative part of
a control algorithm, by a first-order, low-pass filter. See the algorithms below, and
Figure 29 and Figure 30.

1. The P controller has the following algorithm:

Out = G x(Sp—Pv)+ Offset

3BSE041488-511 89

Controller Algorithms Section 4 Analog Process Control

2. The PD controller has the following algorithm:

Out = Gx ((Sp—Pv) +T;x %(FilterOf(—Pv, T))) + Offset

3. The PI controller has the following algorithm:
Out = Gx ((BxSp—Pv)+1/T,x J’(Sp—Pv)dr)
4. The PID controller has the following algorithm:

Out = Gx((BxSp—Pv) +1/T,x J’(Sp — Pv)dt + T x %FilterOf(—Pv,)

5. The PPI controller has the following algorithm:

Out = Gx ((BxSp—Pv)+1/T,x j(sp—Pv)dt)— 1/T, I(Out(t)—Out(t—L))dt

Abbreviations in the Describtion
Algorithms P
Sp Setpoint
Pv Process value
G G is defined as:
G = Gain x (OutRange) / (PvRange)

90 3BSE041488-511

Section 4 Analog Process Control Controller Algorithms

Abbreviations in the Describtion

Algorithms P

Gain The gain you enter in the interaction window
or by code via the InteractionPar parameter.
Gain is normalized and dimensionless
according to the above definition.
Thus the gain can be influenced by the
settings of the ranges for the process and the
output values.

OutRange The range (maximum — minimum) of the Out
value

PvRange The range (maximum — minimum) of the Pv
process value

B Setpoint weight

T; Integral time of the controller

Ty Derivative time of the controller

T Filter time of the low-pass filter for the
derivative part

FilterOf (x,y) The expression x is sent through a low-pass
filter.
The filter time is equal to y.

Out Output from the controller

Out(t-L) Output value delayed by the dead time, L.

3BSE041488-511 91

Controller Algorithms Section 4 Analog Process Control

G x T, x L(FilterOf(—Pv, T,))
—Pv d dt s
T = Fiter | G Tyx %
_Out

P

*S — Pv G Sp—-P /
pxsp el G x (B> Sp-Pv) -z e

> G I/T[xfdt —T

G x 1/Ti><I(Sp—Pv)dt

Sp — Pv

Figure 29. The principle of an ideal PID controller

B*Sp —Pv Gx(BxSp-pPv)y . Out
> G P > X

G x I/TixI(Sp—Pv)dt— I/Tixj(Out(t)—Out(t—L))dt

Sp—P 7N
L\L\ilvi T >‘ 1/ T, x [dt
4 E - Out(t)
Out(t - L) Delay - Out(t)

Figure 30. The principle of a PPI controller

Parameter values can be set or changed via the interaction window, or in the
application. When the control deviation is within a dead zone, specified in the
parameter window, the output is constant.

92 3BSE041488-511

Section 4 Analog Process Control Controller Algorithms

Offset Adjustment

The P and PD controller types do not have an integrator, but they have an offset
instead. The offset is a tuning parameter of the controller and used to determine its
working point. It is normally constant, but may be automatically adjusted if the
offset adjustment function is enabled.

If offset adjustment is enabled the offset is automatically adjusted in some modes
and also when the controller parameters, for example the gain, is changed. The
adjustment of the offset is always done in such a way that the output of the
controller becomes continuous.

Details on how the offset is adjusted are discussed in the section Bumpless Transfer
on page 154.

The offset adjustment function must be used with care. When offset is adjusted,
the behavior of the controller changes. For example, the control deviation at a
certain working point may change. This is not acceptable in many cases.

Internal Setpoint Backtracking

Internal setpoint backtracking adjusts the setpoint automatically, while in internal
mode (provided that the function is enabled). The purpose is to make sure that the
output of the controller is continuous at mode changes. In some cases, process value
tracking is also achieved. See Bumpless Transfer when Enabling or Disabling the
Limitation of the Output on page 158.

The adjustment is done the same way as in external mode, when a control module
with backtracking capability is connected to the setpoint.

Reduced Effect of Setpoint Changes

For controllers with an integrator (PI, PID, PPI), the setpoint influence on the
proportional term is governed by a setpoint weight, the beta (J3) factor, to make the
output as smooth as possible. These controllers have two setpoint weight factors
which are used when the setpoint is considered continuous or discontinuous,
respectively. An abrupt, discontinuous change in the setpoint should not be allowed
to have full effect on the output. The setpoint is considered to be discontinuous, for
example, when the internal setpoint is selected and the operator enters a setpoint
value manually, or when a preceding control module is in Manual mode.

3BSE041488-511 93

Controller Algorithms Section 4 Analog Process Control

The switching between the two setpoint weight factors is automatic, depending on
whether the setpoint signal is continuous or discontinuous. The setpoint weight is in
the discontinuous case by default O (zero). Otherwise, at continuous setpoint signals,
the setpoint weight factor is by default 1 (one).

At normal usage, the controller provides the appropriate default value for the
setpoint weight factors. However, in PidCC and PidAdvancedCC, these two
parameters are editable. In some special cases, the user may tune the setpoint weight
factor by editing these parameters to real values between the 0 and 1 limits. An
example is when an externally calculated tuning is to be applied to the controller.

Internal Setpoint Ramping

Internal setpoint ramping smoothens setpoint changes for PidCC and
PidAdvancedCC. When activating this function, a target setpoint can be entered.
The ramping can be started and stopped, only if internal setpoint is selected. Once
the ramping is started the setpoint will change smoothly to the targeted setpoint. The
ramp increase and decrease rates can be set separately. The time to reach the target
setpoint is displayed. When the target is reached, the ramping is deactivated and
stopped.

The ordinary internal setpoint field can be disabled to prevent discontinuous
setpoint changes. The user can then only enter setpoints as target setpoints.

If, in the meantime, the setpoint is switched to external setpoint, the ramping is
stopped. The transfer to the external setpoint will be bumpless if the external
setpoint is able to receive a backtracking value. The target setpoint is left
unchanged. If the controller enters Backtracking mode, ramping is aborted, and
backtracking starts instead.

Limitation of Controller Output

Generally, maximum and minimum values for the controller output signal are
specified using the I/O connection editor. These values are the endpoints of the
vertical axis in bar graph and trend curve windows for the signal. In Auto mode, the
user can limit controller output to a narrower interval from the parameter window, as
long as the limiting functions are enabled. An example of when it may be necessary
to limit the output is when testing new controller settings.

94

3BSE041488-511

Section 4 Analog Process Control Hysteresis vs Dead Zone

The controller output may then be limited, to ensure that the process is not badly
disrupted if the controller is poorly tuned. The output range may also be changed in
the controller parameter window. This is usually done when there is no I/O
connection editor.

Hysteresis vs Dead Zone

The concepts hysteresis and dead zone are explained as follows.

Hysteresis

To avoid frequent activations at a level, a hysteresis value can be set in some control
modules, for example, when a signal is close to an alarm limit.

In Figure 31, activation is desired when a signal exceeds a high alarm level. The
activated and the deactivated conditions are separated by the hysteresis below the
high alarm level. Depending on the direction of the signal, the hysteresis is added to
either the activated or deactivated condition.

The alarm is first deactivated and the signal increases to the high alarm level. The
alarm is then activated. It remains activated until the signal falls below the hysteresis
and is then deactivated. The next time the signal exceeds the high alarm level, the
alarm is activated. For a low alarm level, the situation is the reverse with the
hysteresis above it.

Activated alarm Alarm activation

High alarm level ,,O//\
L \/

Hysteresis Signal

h 4
/ Alarm deactivation

Deactivated alarm The signal must fall
below the hysteresis

Figure 31. Activation is desired when a signal exceeds a high alarm level

3BSE041488-511 95

Hysteresis vs Dead Zone Section 4 Analog Process Control

Dead Zone

To allow a signal a certain noise level without causing activation, a dead zone can be
set around it in some control modules, for example, for a control deviation. A small
fluctuation in the signal is then allowed. The signal is not active when it is within the
dead zone. When the signal exceeds or falls below the dead zone limits the signal is
active. Figure 32 showing a dead zone on both sides of a desired signal value.

Activation when the signal IS
outside the dead zone

Dead zone I M \
Mo activation when the

signal is within the dead zone

Figure 32. A dead zone on both sides of a desired signal value

If PidCC or PidAdvancedCC is used, the calculation of the derivative part has
no dependecy to the selected dead zone. This means that the output signal may
change even if the difference between Sp and Pv is less than the dead zone value.
Small changes in Pv is filtered by a special low pass filter assigned for the
derivative part.

ERF

This input node of type ControlConnection can be found in the controllers PidCC
and PidAdvancedCC. It is used in rare cases instead of the IRF Internal Reset
feedback that is delivered in the backward direction of the Out node on the
controllers. This signal is used as the limiting signal related to max and min reached
situations and as a backtracking value when backtrackinf occurs.

Disable PD at limited windup

This is used in override control configurations, when known disturabances occurs
on the process values on any of the constraint controllers. An example on such a

96

3BSE041488-511

Section 4 Analog Process Control

Hysteresis vs Dead Zone

situation is when the pressure suddenly changes, then the deviation of the constraint
controller has moved this controller out of selection.

This setting is made either in the interaction windows or in the faceplate of the

controller.

Here we can find the time value, Tw, for
the anti windup function. The time factor,
Tw Factor, can be user defined. The
default value is 2.0. The time value is
calculated as
Tw=TiTwFactor

The ERF node input can be
enabled or disabled, This requires
that the node has a connaction to

and object that send a

ControlConnection structure.

If e.q. the pressure flickers under
normal circumstances the
influence from the proportional
and derivative part during windup
may be disabled to avoid
unexpected controller switches.

\a

& acsa =

wlf

e
T T
FEm O LD
ERT RN T T

Cw - [mm o [o

s mrarac
_CONT_5P [T

|8 HsCoNT_s |

v

3 ENADLE

Com

na
I~ s usen_Degwen_ Tw

3, TW_FACTON LW W
s o
I 3 DISABLE PD_AT_LINTED WINDUP
$_DEADZONE [

s Erm

= s

i

st | [|

Figure 33. The EDIT interaction window of a PidCC or PidAdvancedCC

Enable Out Ramp Manual

The setting for enabling ramping of the output signal of a controller is implemented
in PidCC and PidAdvancedCC objects. The intension is to limit the derivative of the
output in manual mode. The derivative is defined by the OutlncLim and the

OutDecLim InteractionPar components.

This setting is to be made by the user either in the interaction windows or in the

faceplate of the controller.

3BSE041488-511

97

Hysteresis vs Dead Zone Section 4 Analog Process Control

e ==

M ARG TR 55

AP TLTAC THOM

Here we find the derivative limiting soowx [e
values _SP_MN [om
A_SP_FLAMPING:
I 5 ouanLE_se,

T T

45 RATE_DEC [120

This setting enables the manual ,j,ﬂ.:mm', 7 :Ts
change ramping metodology I 5_SP_RAMP_OMLY

| s mTERRAL sP_BT

[$_CAFSET_ADJUSTMENT
S_UMIT_OUTPUT

j_CUIT_MAX. 10000

_CUIT_tan 0.00
| T
| 10000
\ w0
T_RATE . s

_ouT_paTEpec [1m0 1w
$_ENABLE_OUT_RAMP_MaM

|| s oevmon_auams
sposuom [e @)
[s_ENALE_POS §_POS DISABLED)
=]

Figure 34. The interaction window of a PidCC or PidAdvancedCC

98 3BSE041488-511

Section 4 Analog Process Control

Fuzzy Control

Fuzzy Control

A fuzzy controller is based on fuzzy logic which is a generalization of the common
Boolean logic.

@

EDiff

E

EHeq

EDiffMeq

EDiffZern

EDiffFar

EMeoq &HD EDiffHoq

EH:q AHD EDiFFZern

EH:q AHD EDiFFFar

EZeroAHDEDiFFHeq

EZero AHDEDiFFZern

EZero AHD EDiFFFor

EFor AHDEDFFMeq

EFor AHDEDNFF2ern

EF or ANMD EDiFFF ar

AN

Fiuli

Fiuli

E

Fiule

Fiuli

Hallararey

Tulfiey

DalZern

OulPan

CullararFan

Figure 35. The fuzzy controller window

A fuzzy controller consists of a linear part and a fuzzy logic part. The linear part has

many of the functions of the PID controller, for example:

Computation of the control deviation ¢ = Setpoint — Process value and its
derivative (even the second derivative).

Computation of the derivative of the process value.

A low-pass filter for derivative of the process value and the control deviation.

Internal and external setpoint.

3BSE041488-511

99

Fuzzy Control Section 4 Analog Process Control

* Handling of absolute and relative alarms.

* An integrator with anti-integrator wind-up function.
* Manual and automatic output.

* Tracking function for the output.

* A feedforward function.

The fuzzy logic part of the controller contains the functions that define the rules for
control of the process, for example:

* Computation of the degrees of membership of a number of signals to a number
of fuzzy sets.

* Computation of fuzzy conditions.
* Computation of fuzzy rules.

* Computation of output membership functions for a number of controller
outputs.

* Defuzzyfication of the output membership functions.
The fuzzy controller works as follows:

* One or more process values, and possibly also external setpoints, are entered
into the linear part of the controller. The process values may be low-pass
filtered. If no setpoint is used, the first derivative of each process value is
computed. The result is made available to the fuzzy logic part of the controller.

. If setpoints are used, the control deviations, € = Setpoint — Process Value, and
their two first derivatives are computed for each process value. These two
results are also made available to the fuzzy logic part of the controller.

100 3BSE041488-511

Section 4 Analog Process Control Fuzzy Control

* The fuzzy logic part of the controller receives one or more signals from the
linear part. It may receive the control deviation, the process value or their
derivatives from the linear part. Each of these signals is entered into a number
of input membership functions. The output from an input membership function
is a signal, which assumes values between 0 and 1. This value indicates the
degree of membership of the signal from the linear part to this particular
membership function.

* The outputs from the input membership functions are combined into fuzzy
conditions using the fuzzy operators NOT and AND. The fuzzy operator NOT
is defined as NOT X = 1 — X. The fuzzy operator AND is defined as X AND Y
= Min(X,Y). The result has a value between 0 and 1.

e The fuzzy conditions may then be combined into fuzzy rules using the fuzzy
operators NOT and OR. The fuzzy operator OR is defined as X OR Y =
Max(X,Y). The output from a fuzzy rule also has a value between 0 and 1 and
is called the degree of satisfaction of the rule.

IF ENeg AND EDiffPos
-OR EZero AND EDiffZero

OR EPos AND EDiffNeg
l-THEN OutZero

Figure 36. A fuzzy rule

* The degree of satisfaction of each fuzzy rule is then used to compute the
current output membership function for the rule.

* There may be a number of output membership functions associated with each
output from the controller. All output membership functions associated with
the same output from the controller are combined into one output membership
function. This is done by computing the envelope (the maximum value of all
the functions at every point) of all the membership functions.

3BSE041488-511 101

Fuzzy Control

Section 4 Analog Process Control

* The resulting output membership function for a certain controller output is
used to compute the value of the output. This is called defuzzyfication and is
done by computing the center of gravity of the output membership function.

* The defuzzyfied outputs from the fuzzy logic part of the controller are then
entered into the linear part of the controller.

* Each output may then be integrated and is limited by an anti-integrator wind-up
function.

There are also functions for feedforward, output tracking and Manual mode.

The fuzzy controller also has a simulation facility. The values of the control
deviation, the process value and their derivatives may be simulated. Simulation can
be used to evaluate the behavior of the fuzzy logic part of the controller.

Relation to Other Libraries and Modules

The fuzzy controller is designed to operate together with the control library modules
in the same way as the PID controller does. The fuzzy controller has, to a large
extent, the same parameter interface as the PID controller. It should be connected to
the other control modules in exactly the same way as the PID controller, i.e. using
ControlConnection data type connections.

FuzayController1CC
PIDAdvancedCC

Al CC
i 4
CC AD
Al
l
cC

Figure 37. Fuzzy control relations

Typical configuration where a fuzzy controller is used as part of the control loop. A
fuzzy controller operates as a master controller, the output of which is connected to
the setpoint of a PidAdvancedCC.

102

3BSE041488-511

Section 4 Analog Process Control Fuzzy Control

How to Use Fuzzy Controller Templates

Introduction

Your copy of a template can be modified in the following ways: the number of
inputs, outputs, membership functions, conditions and rules can be changed, and
these items can be grouped in different ways.

The fuzzy control modules have one input and one output, but they can be
configured for many inputs and many outputs.

Select the fuzzy control module which best suits your needs.
Step-by-Step Instructions for Using Templates

1. Copy a fuzzy controller template from the library. Select a template (for
example FuzzyControllerCC). For more information, refer to Templates on
page 58.

2. Paste the copied fuzzy controller in the Control Module Types in the
applications folder.

3. Rename it, for example, Own_FuzzyControllerl.

4. Create a new empty control module called, for example, SM1 and take
Own_FuzzyController] into use by the Create/Control Module command.

It is now possible to make changes to the fuzzy controller. You can change the
number of inputs, outputs, membership functions, conditions or rules. These items
can also be grouped in different ways.

ﬂ The steps presented above describe how the user is able to make a new control
module type in an application, but if the modified fuzzy controller is needed in
many projects it is recommended that the user creates a module type in a new
library which can then be included in many projects.

3BSE041488-511 103

Fuzzy Control Section 4 Analog Process Control

Internal Data Flow of Fuzzy Controllers

The sub-modules in the fuzzy controller templates are connected as shown in the
illustration below.

| InputMembership ‘ FuzzyRule Defuzzyficaton
F SpPy I o E
Fuzzy Condition |Outputr'-’lembersh|p | FuzzyOut
ar

—
S e 1
L i
O

|

/\ 4\ T4
%

L

/\
O
/\

©,

@\i@ | o |
/\ U | L |

@ = Submodule

FuzzyProgram connection
Control nurm ber

Figure 38. Sub-module connections in the fuzzy controller templates

1. The connection between FuzzySpPvIn and InputMembership: The
FuzzySpPvIn control module computes the control deviation EOut (Setpoint-
Process value) and its first and second derivatives. These signals are inputs to
the InputMembership control modules. If a setpoint is not desired for some of
the inputs FuzzyPvIn control modules are used instead of FuzzySpPvIn control
modules.

104

3BSE041488-511

Section 4 Analog Process Control Fuzzy Control

2. The connection between InputMembership and FuzzyCondition: The control
module defines an input membership function for the fuzzy logic part of the
controller. The output, DegreeOfMembership, should normally be connected to
all FuzzyCondition control modules. If the InputMembership control module is
not connected to a certain FuzzyCondition control module then the
membership function can, of course, not be used in the corresponding
condition.

3. The connection between FuzzyCondition and FuzzyRule: The output
parameter Condition of a number of FuzzyCondition control modules should
be connected to the condition parameters of a number of FuzzyRule control
modules. The fuzzy rules may then be defined from any of the connected fuzzy
conditions.

4. The connection between FuzzyRule and OutputMembership: The output
parameter DegreeOfSatisfaction should be connected to the corresponding
parameter of an OutputMembership control module.

5. The connection between chained OutputMembership functions: The
OutputMembership control modules are connected in a chain. The chain must
always end with a Defuzzyfication control module. The control modules of the
chain are connected via the parameters InputCurve and OutputCurve.

6. The connection between OutputMembership and Defuzzyfication: The
Defuzzyfication control module should appear as the last link in a chain of
OutputMembership control modules. The OutputMembership functions are
connected to the chain via the parameter InputCurve.

7. The connection between Defuzzyfication and FuzzyOut: The parameter Output
should be connected to the Input of the FuzzyOut control module.

8. The connection between FuzzyProgramControl and all the fuzzy logic part
control modules: The Program control parameter should be connected to the
corresponding parameter of all the InputMembership, FuzzyCondition,
FuzzyRule and OutputMembership control modules.

3BSE041488-511 105

Controller Modes

Section 4 Analog Process Control

Controller Modes

A controller has a number of different working modes. The controller may be
switched from one mode to another with a minimum of disturbance in the process.
The modes are listed in the table below with the lowest priority first.

Controller Mode

Priority

Function

Auto

Lowest

Auto is the normal automatic control mode.

Backtracking

The controller output is connected to a control
module chain in which at least one of the
succeeding controllers is in Manual mode.

Tracking

In Auto mode, the controller output tracks a signal
value from the application when the Track
parameter is True, except in Manual mode, which
has higher priority.

Upon changing from Auto mode to Tracking mode,
or vice versa, the output is changed bumplessly,
since it follows a ramp, limited by the maximum
increase and decrease output ramp speed
settings, until it reaches the track value.

Manual

The output signal can only be changed manually
by a user in an interaction window, or via an
application.

Tuning™

Highest

The Autotuner is started and active.

(1) Not available in PidSimpleCC and PidSimpleReal.

106

3BSE041488-511

Section 4 Analog Process Control Design

Design

Before using objects from the Control libraries, there are a number of choices that
have to be made regarding which type of object to use for a specific purpose. The
following information is designed to help you design reliable and effective analog
control solutions:

* General Design Issues on page 107 describes things to consider and choices to
be made before starting to create your analog control solutions.

For a more general discussion of design issues, see the Compact Control Builder,
@ AC 800M Planning (3BSE044222*) Manual.

* Control Strategies on page 110 discusses what control strategy (what type of
control loop, etc.) to use for different types of processes.

* Controller Types on page 113 contains an introduction to all controller types in
the Control libraries.

* Industrial Controller Types on page 120 discusses how to build common
industrial controller applications, such as cascade controllers, using types from
the Control libraries.

* Signal Handling on page 123 gives an overview of where to find signal
handling information.

General Design Issues

Analog signal handling and building of control loop applications using objects such
as system functions and function blocks will often result in high functionality and a
high degree of flexibility.

However, it requires a good deal of knowledge of control loop design and of the
function of the participating objects, to construct and maintain signal systems and
control loops.

Function Blocks or Control Modules?

An important choice is whether to use function blocks or control modules. For an
extensive discussion of this topic, see the manual in Compact 800 Engineering
Compact Control Builder AC 800M Configuration (3BSE041488%)..

3BSE041488-511 107

General Design Issues Section 4 Analog Process Control

More specifically, you have to consider the following questions:

1. What is your general programming environment?
What has already been done?
What skills are required for present and future demands?

2. What kind of applications are you going to make, now and in the future? Is it
a. signal handling
b. advanced or simple control loop applications

c. or a combination of these?

Table 5. Guide for choosing between function blocks and control modules.

Method for signal handling in control loop applications

Suitable for calculations and | Suitable for control loops when
when the signal information the signal information forward
forwards is sufficient. Low is sufficient. Low memory
memory consumption. consumption.

Function Blocks

Can be used when preceding | Functions best when signal
Control modules | and succeeding objects also |information forward and
are control modules. backward is required.

3. Which method is most suitable for designing a control loop?

Basically, there are four methods of designing a control loop by means of the
available libraries containing control functions, control function blocks, and
control modules:

— A ready-made control loop in function blocks,
— System functions and function blocks,
— Function blocks containing control modules,
— Control modules.

A good basic strategy would in many cases be:

* Start with system functions and function blocks.

108

3BSE041488-511

Section 4 Analog Process Control General Design Issues

* When you need more control functions in many small, isolated islands of
program code, you can create function blocks that contain control modules
solving the control functions. Such a local group of control modules is then
executed in the function block, according to its isolated terms, and blocks out
influences from other function blocks.

* If your control system grows, so that it has to be coordinated and the code must
be co-sorted, then programming with control modules is recommended, for
example, in the case of several distributed cascade controllers.

4. Whether to use diagrams and diagram types for designing a control loop?

If diagrams are used, it is possible to include the entire object-oriented design
in a single diagram as it allows mixing control modules, function blocks, and
functions, by means of graphical connections. The number of re-usable
elements can also be reduced to a minimum as all of them can be included in a
single re-usable diagram type, and used in many diagrams.

Diagrams and diagram types allow you to configure the control logic in the
project in a comprehensive graphical language called FD (Function Diagram).
They allow mixing of the functions, function blocks, control modules, and
other diagrams, in the same graphical editor. The diagrams also support cyclic
communication between different applications, using communication
variables.

The diagrams provide a graphical overview of the application. In addition to
the graphical code block that supports FD, the diagram and diagram type also
supports SFC and ST code blocks, which are invoked from the main code block
or sorted separately.

3BSE041488-511 109

Control Strategies Section 4 Analog Process Control

Control Modules and ControlConnection

In signal systems and control loops, a large amount of information is sent between
different objects, both in the forward direction and backward. The main signal flow
works well in normal operation. However, in exceptional situations ,there may be a
need to handle, for example, the following situations.

* Integrator wind-up.

* Bumpless transfer.

e Signal quality.

* Signal measure ranges.

The complexity of such signal systems and control loops can be reduced
considerably if the ControlConnection standard interface is used for signals between
the objects, which then will have to be control modules. See ControlConnection on
page 75.

By means of control modules it is possible, in addition to a high functionality and
flexibility, to achieve a simplicity of configuration, which makes the control loops
easy to configure and maintain. The risk of making mistakes when configuring
control loops is drastically reduced, which increases the reliability of the loop.

Control Strategies

When a process is to be controlled, one of the most important questions is to select a

controller strategy. Control strategies can be classified into the following main

groups:

* Processes with no or short dead time, see Processes with No or Short Dead
Time on page 111.

* Processes with long dead time, see Processes with Long Dead Time on page
111.

* Processes that do not fit the above two descriptions, see Special Processes on
page 112.

* Rules of Thumb and Limitations on page 112 gives advice when using several
controllers.

110

3BSE041488-511

Section 4 Analog Process Control Control Strategies

Processes with No or Short Dead Time

A process with no or short dead time can be of a number of types, for which the
strategy is slightly different:

Process with Constant Process Dynamics

For a process with constant process dynamics and short dead times, that can
have constant parameters in the whole working range, which is one of the most
common processes, the proper strategy is to select a PID controller. Simpler
variants P, PI or PD may also be sufficient.

The process engineer’s trimming tool for PID controllers is the Autotuner,
which suggests settings for the parameters of the controller.

Process with Changing but Predictable Process Dynamics

For a process with changing but predictable process dynamics and short dead
time that requires different parameters in different parts of the working range,
the proper strategy is to use a PID controller with gain scheduling.

The Autotuner is used to tune the parameters in each working range.
Process with Changing but Unpredictable Process Dynamics
For a process with changing but unpredictable process dynamics which vary

slowly the proper strategy is to use an adaptive PID controller with or without
gain scheduling.

The Autotuner is used to tune the initial parameters. See the section Adaptive
Control on page 169.

Processes with Long Dead Time

A process with long dead time can be of a number of types, for which the strategy is
slightly different:

Process with Constant Process Dynamics
For a process with constant process dynamics with long dead times you may
select a predictive PI controller, called a PPI controller.

The PPI is started when configuring the PID controller and by selecting a
maximum dead time. As a rule of thumb, a PPI controller is used when the
dead time is longer than the dominating time constant in the process.

When running a PPI controller it is still possible to run Autotuner and gain
scheduling.

3BSE041488-511

111

Remarks on the Design of Control Loops Section 4 Analog Process Control

e Process with Changing but Predictable Process Dynamics
For a process with changing but predictable process dynamics and long dead
time, which requires different parameters in different parts of the working
range, the proper strategy is to use a PPI controller with gain scheduling.

Special Processes

In special processes with several input and output signals which may not be possible
to control, or when the strategies above, have proved unsuccessful, you may try a
fuzzy controller.

The fuzzy controller is based on fuzzy logic which is a generalization of the
common Boolean logic by something between true and false. See the section Fuzzy
Controllers on page 119.

Rules of Thumb and Limitations

If you plan to use several controllers for a process, you should consider how the
number of controllers influences the choice of processor for the control system. The
following factors must be weighed against each other:

* The process time constant should not be less than 100 ms.

* When the time constant for a process is such that the controllers must execute
faster than every 100 ms you should give execution times some extra thought,
and ensure that the controller really has the time it requires, keeping in mind
the associated program code.

Remarks on the Design of Control Loops

Configuration of Control Loops

The recommended configuration strategy for creating a control loop is to connect
the control modules in chains from the left to the right, which is the direction of the
main signal flow. If sufficient space is not available in the Control Module Diagram
window, the control module icons may be turned in other directions. Their
interaction windows are not influenced.

Control modules are preferably connected by means of graphical connections. This
is done in Offline mode.

112

3BSE041488-511

Section 4 Analog Process Control

Controller Types

Connection to Tasks

The basic strategy for connections to tasks is to have all the control modules in a
control loop running in the same task. If there is a need for faster action, particularly
at the end of the control loop, these control modules can be connected to a quicker
task, for example, in three-position control or for the slave controller in a cascade
control loop.

Backtracking

In a control loop with several PID functions, where backtracking occurs, try to
locate control modules that have an internal state as late as possible in the control
loop chain. Otherwise when backtracking, a control module with internal state
influences any succeeding TapCC and TapRealCC control module in a faulty way.
The latter control modules would then tap off values and set levels based on the
backtracked value (which is collected by the control module with an internal state)
instead of a value from the preceding control module as expected.

Controller Types

Table 6 shows all controller types in the Control libraries

Table 6. Controller types in the Control libraries

Controller Library As Control Module Type |As Function Block Type
Simple Simple Control PidSimpleReal
Standard Control PidSimpleCC
Standard Basic Control PidLoop
PidLoop3P
PidCascadelLoop
PidCascadeLoop3P
Standard Control PidCC
Extended Control BiasCC
RatioCC
Advanced Advanced Control PidAdvancedCC

3BSE041488-511

113

Controller Types

Section 4 Analog Process Control

Table 6. Controller types in the Control libraries (Continued)

Controller

Library

As Control Module Type

As Function Block Type

Template(")

Control Solution

SingleLoop
Cascadeloop
OverrideLoop
FeedforwardLoop
MidrangelLoop

Template'

Control Object

Mimo22CC
Mimo41CC
Mimo44CC

Fuzzy

Fuzzy Control

FuzzyController1CC, etc.

(1) Control loop templates can be used directly in an application.

Getting Information on Individual Parameters

If you want to study individual parameters for a controller type, refer to online help
for the type in question. To display online help for a controller type, select it in
Project Explorer and press F1.

The corresponding online help topic will also contain an Editor button, which will
open the corresponding editor, where you can see short descriptions for each
parameter, as well as the corresponding data type.

It is also possible to generate project documentation for a library or part of it, by
using the built-in Project Documentation function.

The Project Documentation is accessed from Project Explorer. Select a library or
object and select File > Documentation. For more information on how to
generate project documentation, see online help and the manual Compact 800
Engineering Compact Control Builder AC 800M Configuration (3BSE041488%)..

114

3BSE041488-511

Section 4 Analog Process Control Controller Types

Simple Controllers

Simple controller objects work according to Basic Controller Principles on page 87.

Table 7. Simple controllers

Type Name Library Type Description
PidSimpleReal Simple Function PidSimpleReal is a simple PID controller that
Control Block supports backtracking, tracking and manual

control. All transitions from limiting, tracking, and
Manual mode are bumpless. Interaction graphics
are also available, to support set-up and
maintenance of the controller.

PidSimpleCC Standard | Control PidSimpleCC is a low-functionality PID controller,
Control module which is less time and memory consuming than
the full-functionality versions. Interaction graphics
are also available, to support set-up and
maintenance of the controller. The main inputs
and the output are of ControlConnection type,
which means that backtracking and limiting are
managed automatically.

3BSE041488-511 115

Controller Types Section 4 Analog Process Control

Standard Controllers

Standard controller types work according to Basic Controller Principles on page 87.

Table 8. Standard controllers

Type Name Library Type Description
PidCC Standard | Control PidCC is a full-function PID controller.

Control module
PidLoop Basic Function PidLoop, PidLoop3P, PidCascadeLoop, and
PidLoop3P Control block PidCascadelLoop3P are ready-made complete
PidCascadeLoop control loops that you can connect to I/O signals

of ReallO type.

The controllers in these control loops can be
configured as P, PI, PD, or PID controllers, with
the same functions as PidCC. However, these
function block types cannot be connected to other
function blocks or have any function block or
control module inserted into the control loop.

PidCascadelLoop3P

The PidCC control module type has the following main functions:

* Autotuner of relay type, see Autotuning on page 162.

e Feedforward, see Feedforward on page 161.

* Tracking, see Backtracking on page 82.

* Deviation alarm generation, see Deviation Alarms on page 159.

* Limitation of output, see Limitation of Controller Output on page 94.

* Anti-integrator wind-up, see Anti-Integrator Wind-Up Function on page 153.
* Bumpless transfer, Bumpless Transfer on page 154.

* Dead zone for the control deviation, Additional Control Functions on page 177.
* Setpoint ramping, see Internal Setpoint Ramping on page 94.

* Autotuner structure selection, see Autotuning on page 162.

* Automatic offset adjustment, see Offset Adjustment on page 93.

116 3BSE041488-511

Section 4 Analog Process Control Controller Types

* EREF, see ERF on page 96.

* Disable PD at limited windup, see Disable PD at limited windup on page 97.
* Enable Out Ramp Manual, see Enable Out Ramp Manual on page 97.

* Epsilon, see Gain Scheduling on page 173.

To supervise the control deviation, relative alarms can be given by two control
deviation alarm limits, one for positive and one for negative deviation. Information
is given for each level in two forms; as alarms and as Boolean parameters.

Code

Extended Functions
Input with Control Modules Controller Output

Figure 39. A control loop with all functions defined by control modules from the
control libraries

Controller Function Block

— pInput Output

Figure 40. A control loop defined by a function block

3BSE041488-511 117

Controller Types

Section 4 Analog Process Control

Advanced Controllers

PidAdvancedCC works according to Basic Controller Principles on page 87.

Table 9. Advanced controllers

Type Name Library Type Description
PidAdvancedCC |Advanced |Control PidAdvancedCC is the most advanced controller
Control module in the Control libraries, see list below.

118

3BSE041488-511

Section 4 Analog Process Control

Controller Types

®

In addition to the main functions of PidCC, PidAdvancedCC has the following,
more advanced functions:

* Configurable as a PPI (Predictive PI controller), see PPI Controller on page 85.

* Autotuning using relay and step response methods, see Autotuning on page

162.

* Gain scheduling, see Gain Scheduling on page 173.

* Adaptive control, Adaptive Control on page 169.

* Oscillation detection, see Additional Control Functions on page 177.

* Sluggish control detection, see Additional Control Functions on page 177.

PidAdvancedCC generates an event each time a parameter is changed. This
means that you must be careful so that you do not flood the alarm and event
servers by connecting a parameter to a variable that changes very often.

Fuzzy Controllers

A fuzzy controller may handle the case of one input and one output, as well as many
inputs and many outputs. It has most of the functions of a PID controller together
with the possibility of defining fuzzy logic rules for process control.

Table 10. Fuzzy controllers

Type Name Library Type Description
FuzzyControllerX | Fuzzy Control For additional information, see online help for the
CcC Control module Fuzzy Control library and Fuzzy Control on page

99.

A fuzzy controller should not be used in cases where PID control works well. In
these cases it is much easier to tune a PID controller.

However, in cases where PID control fails or works poorly, a fuzzy controller may
be successful. For example, the fuzzy controller may be successful:

3BSE041488-511

119

Industrial Controller Types Section 4 Analog Process Control

* When the process is truly multi-variable, with many coupled inputs and
outputs.

ﬂ This may also have a solution using two PID controllers combined with a
decoupling filter (PidCC and DecoupleFilterCC).

* When the process has non-linearities that are difficult to handle with PID
control and gain scheduling.

* When the process is difficult to describe analytically, and operators control it
manually, by experience.

@ For a short introduction to fuzzy control, see Fuzzy Control on page 99.

Industrial Controller Types

Controllers regarded as common in industry can easily be constructed by means of
the control modules in the Control libraries according to the typical examples below.
For more in formation, see Control Loop Solutions on page 226.

Cascade Controller

A cascade controller is constructed as a combination of control modules, using input
and output modules, and two controller modules. Two controllers are connected in
cascade; the output of one controller, called the master, is connected to the external
setpoint of the other controller, called the slave.

Sp2 Master OUt2=Sp1 Slave
p ut2=Sp
—»_outer [®| _ Inner | Outl

———® /controller Pvi controller
Inner loop

Outer loop

Pv1 Pv2

Process 1 Process 2 —

Figure 41. lllustration of two controller modules connected in cascade

120 3BSE041488-511

Section 4 Analog Process Control Industrial Controller Types

Two controllers connected in cascade must be tuned in the correct sequence. The
inner loop should be faster than the outer loop. Ready-made function blocks are
available for applications in which a fixed cascade loop is suitable.

Three-Position Controller

A three-position controller is constructed as a combination of control modules: a
controller module, an analog input module and a three-position output module,
which gives two digital output signals. Use a three-position controller when digital
output are required for an increasing, decreasing or no digital signal at all to be sent,
for example, to an electrical actuator. See the section Three-Position Output on page
177. For setting of ranges in a SplitRange or a MidRange object, see Split Range
Examples on page 238.

Pulse Controller

A pulse controller is constructed as a combination of control modules: a controller
module, an input module and an output module, which gives a digital output signal
with a pulse width proportional to the analog controller output.

Sp

s=—® \PID Output Pulse -
Pv L ! I Digital
——® controller width Output

Figure 42. Pulse control with the digital pulse width output proportional to the
analog output

Ratio Controller

A ratio controller can be constructed from a combination of control modules: input
and output modules, controller modules, arithmetic modules and tap modules. The
ratio between two different process values may be controlled by two or more
controller modules, according to Figure 43. A RatioCC control module is then used
for the ratio between the setpoints. Ratio controllers are often used for recipe
handling.

3BSE041488-511 121

Industrial Controller Types Section 4 Analog Process Control

Sp1
P . PID Output
Pv1 >
—> controller 1
— X Sp2
4>
PID Output
Ratio >

RatioCC controller 2
Pv2

Figure 43. Example of ratio controllers where the setpoint from the first controller is
multiplied by a factor to obtain the setpoint for the second controller

Split-Range Controller

A split-range controller is constructed as a combination of the following control
modules: input and output modules, a controller module and any of the branching
modules. The output from a controller is then divided into two ranges which can be
set independently, and may overlap each other. An example of the use of split-range
control is when two control valves are used. The valves may be of different sizes
working in the same direction. The lower range is connected to the smaller valve
and when it is fully open, the upper range opens the larger valve. The valves may
also work in opposite directions. For example, when a tank level is to be controlled.
At lower levels, one valve opens, and at higher levels, the other valve opens.

> Analog
s Output
P\ _PID Output | spiit-
Pv >
— P controller range
> Analog
Output

Figure 44. Example of split-range control where the output range from the
controller is divided into two branches with different ranges

122 3BSE041488-511

Section 4 Analog Process Control Signal Handling

Signal Handling

The Control libraries contain a number of function blocks and control modules for
signal handling. There are also types for signal handling in the Basic and Signal
libraries.

For a list and description of available signal handling objects, see Advanced
Functions on page 152.

Control Builder online help also contains additional information on specific
@ signal handling objects. Select the object in Project Explorer, and press F1 to
display online help for a type.

Getting Started with ControlConnection

This section describes how to create a control module template that can connect to
ControlConnection, thus talk to other objects with ControlConnection.

After reading this subsection you will learn:
* The relationship between code-blocks and data flow directions.
* The concept of ControlConnection Gate modules.

* Step-by-step for creating a ControlConnection template.

What is ControlConnection?

ControlConnection is a structured data type for handling signals between control
modules in both forward and backward directions. It is a very effective structured
data type from the outside, but difficult to connect inside an object.

The difficulties lie in the structure itself, which means that other control modules
must fulfil the relation and condition specification for (ControlConnection) signal
traffic. For that reason you are going to be introduced to the ControlConnection
Gate modules that will transform your local signals automatically to
ControlConnection.

At the end of this subsection you will also learn how to create a ControlConnection
template (CC template) from scratch. The template will help you overcome the most
common difficulties there is by having local code reading/writing signals to/from
ControlConnection.

3BSE041488-511 123

Dealing with Data Flow Directions Section 4 Analog Process Control

For a more theoretical presentation of ControlConnection, see ControlConnection
on page 75.

Dealing with Data Flow Directions

In order to process signals of ControlConnection your control module must be
designed to handle data in both forward and backward directions. The best way to
accomplish this is to assign one code block for each direction. Thus one code block
Forward and one code block Backward.

My created CC template

r— - - - - - - - — — al
| Forward |
| code block |
cc | I cc
- |
| |
| code block |
| Backward |
Lo—- - .

Figure 45. A control module prepared with two code blocks for handling forward
and backward directions

This guideline of having one code block for each direction, should apply to all
control modules that are processing signals of Control Connection. However, there
are some exceptions (as always), first object in the chain, the Source (Al object) and
the last object the Sink (AO object) only needs one code block. You will learn more
about this under Code Sorting Order Backwards on page 125.

124 3BSE041488-511

Section 4 Analog Process Control

Dealing with Data Flow Directions

Outer Objects

Code Sorting Order Forward

After establishing the need for two code-blocks (Forward and Backward) in the
control module, it is time to study how the code sorting order works for
ControlConnection. Remember, it is not just the two (Forward and Backward)
blocks alone that should be sorted, but all the outer code blocks as well. However,
the key is the ControlConnection's sort order mechanism which is very helpful.
Provided that we have made all the necessary in/out arrangements, it will always
execute forward directions before backward directions.

You will learn all about In/Out parameter connections later in Creating a Control
Module with ControlConnection (CC template) on page 130.

This means that ControlConnection will always start from left with the first forward
block in a chain of control modules (Figure 46). As long as the module is positioned
correctly in the control module chain, it will be automatically sorted.

My created CC template

Forward Forward

Forward code block Forward Forwar

1

3

2 4 5

| |

| |

| | L
| I -
Figure 46. ControlConnection will always start with forward block (1), and then
execute forward block (2), your forward block (3) and then (4), (5) etc.

Code Sorting Order Backwards

Next step is to learn which object that will change the data flow direction, or start
passing information backwards via the backward blocks. Just as before with the
forward block's code sorting order, the same principle applies for the backward
blocks, but now only backwards.

There are two (predictable) things that can stop further forward executions. It is
either a Sink object at the end of the chain (most common solution) or a code sorting
variable in the backward block.

3BSE041488-511 125

Dealing with Data Flow Directions

Section 4 Analog Process Control

Outer Object

Therefore, before building your ControlConnection module, consider if your control
module should have a generic solution (continue to passing forward information
through the chain) or if your module should be the end object.

Generic Solution with a Sink Object

A generic solution continues to passing the information to the next forward block,
which means that it relies on a Sink object (AO) at the end of the chain. A Sink
Object (AO) is the most common to use at the end of the chain in a generic solution.
It is the Sink that will change the data flow direction to go backwards (Figure 47).

My generic CC template

Sink

Forward

| Forward code block

1

|
| Forward
//I/' 2 \|\> 3

7

: v’

|
I ||
y— 6 T/ 5

I
Backward | Backward code block | Backward

Figure 47. My generic CC template object has a generic solution which simply
passes information forward to the next forward object

As you can see in Figure 47 the Sink object contains both forward code and
backward code in one code block. The backward direction sort order starts at the
end of the Sink’s common code block. The Sink is writing to the backward block, in
this case No (5) in Figure 47.

End Object Solution
To build an end object means basically two things;

1. Your forward block will be executed last among all outer forward blocks in the
chain of control modules.

2. Your backward block will be executed first among all outer backward blocks.

126

3BSE041488-511

Section 4 Analog Process Control Dealing with Data Flow Directions

Building an end object solution is done by start declaring a "dummy" variable (for
example CodeSortVar). Then you let the variable CodeSortVar read (in the
backward code block) a value that was previously written (for example OldValuel)
in the corresponding forward code block. See Figure 48.

My end CC template

| Forward code block |

% Forward Forward Forward | OldValuel (a written variable) 4 |
-_?:—')- 1 - 2 —p 3 //|V |
: | Al
§ 8 /7 1 6 ‘\:‘ CodeSortVar := OldValuel 5 :
Backward Backward Backward | Backward code block |

Figure 48. My end CC template object has an end solution. It stops passing
information forward and begins passing information backwards to the next
backward block

The end CC template object has created a dependency between the forward block
and the backward block. Since the backward block is reading the variable
(OldValuel) must the forward block be executed before the backward block. The
variable OldValuel was previously written in the forward block.

You will be able to study more of this in the subsection Creating a Control Module
with ControlConnection (CC template) on page 130.

Next, you will learn about the Gate modules and how they transform local signals to
ControlConnection.

3BSE041488-511 127

Open the Gates to ControlConnection

Section 4 Analog Process Control

Open the Gates to ControlConnection

Outer Object

The main difficulties of having own control modules talking ControlConnection is
to fulfil the specification for ControlConnection. However, by using Gate modules
you do not have to worry about that. As the name applies a Gate module check the
signals that come in and out from your control module and capsulated your execute
code safely between them.

An IN Gate module will for example read an In signal of ControlConnection and
pass it over to one of your local variables. An OUT Gate will transform the executed
code value to a ControlConnection signal.

In short, you use the Gate modules to fulfil the specification for Control Connection.

My CC template

Forward | Forward

| Forward | Sink

1

A2 [s

7

e W 5

Backward | Backward | Backward

Figure 49. My CC template object is protected by the Gate modules on both sides to
ensure a secure signal traffic with ControlConnection

There are no code-blocks illustrated in the Gate modules (see Figure 49) although
they contain both forward and backward blocks. They are merely there in the
background for syntax control reasons.

Ownership of the Gate Variables

When you are working with the Input Gate and the Output Gate you are going to
deal with two variables for each Gate. These two variables will have different
ownership, or write permission when reading and writing to your code blocks (see
Figure 50).

128

3BSE041488-511

Section 4 Analog Process Control Open the Gates to ControlConnection

CC template
r——— - - - - - - - - - - - - — — — 1
| |
| |
| InForward F OutForward |
| |
CClIn | | CC Out
€+—p <= In Gate Out Gate|=»
| |
| |
: InBackward B OutBackward :
| |
L _I

Figure 50. Gate Variables writing permission

These four local variables (InForward, InBackward, OutForward and OutBackward)
are local variables that are connected to the Gate parameters Forward and Backward
respectively. However, these local variables have different permissions.

From Figure 50:

* InForward which is connected to the In Gate’s Forward parameter, is own by
the Gate, thus writing is not allowed in the forward code block.

* InBackward which is connected to the In Gate’s Backward parameter, is own
by your control module (CC template), thus writing is allowed in backward
code block.

* OutForward which is connected to the Out Gate’s Forward parameter, is own
by your control module (CC template), thus writing is allowed in forward code
block.

* OutBackward which is connected to the Out Gate’s Backward parameter, is
own by the Gate, thus writing is not allowed in the backward code block.

3BSE041488-511 129

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

There are four Gates provided for you in the standard library BasicLib,
CCInputGate, CCOutputGate, CClnputGateExtended and CCOutputGateExtended.
You can learn the differences between the Gates in Control Builder online help.

Creating a Control Module with ControlConnection (CC template)

This step-by-step example builds a control module that calculates the average value
of the four latest forward values on a ControlConnection node. The
ControlConnection node always involves only the control module types, and not the
function block types.

Although you can choose a single control module, it is strongly recommended that
you create your CC template from a control module type. A control module type can
be re-used in many applications, but a single control module cannot be reused.

This example assumes that you have experience of (at least) basic Control Builder
skills, involving creating and connecting new objects based on types, etc.

The instructions in this example are merely providing you with an idea of a working
order. They do not always represent the exact order of events you will meet in
Control Builder (instructions handling context menus, buttons, Save before close
etc. have been intentionally neglected).

Create a new CC template object

From the Project Explorer:

1. Create a new Project with a AC 800M template and name it CCTemplate.
2. Create a New Library and name it CCTemplateLib.

3. Connect the BasicLib into your new CCTemplateLib.
4

Create a new control module type and name it CCTemplate.

130 3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

File Edit View Tools Window Help

A RER T @

- W Libraries
- [System

S~ W Cennected Libraries
b ﬁ]_]] Basiclib1.6-8
- & Contrel Medule Types

I 7] CCTemplate]

Declare parameters and variables
Open the declaration editor for the CCTemplate object.

1. Declare an In and Out parameter of data type ControlConnection.

.
@ Control module type - CCTemplatelib.CCTemplate™

Editor Edit View Insert Tools Window Help

‘RHZEy = 9L] ARR & D el
MName Data Type Direction [FD Port |Initial Value [Description

1 |In ControlConnection

2 |Out ControlConnection

3

« » % Parameters 4 Variables A External Variables A Function Blocks

3BSE041488-511 131

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

2. Next, declare your local variables according to Figure 51.

Marne Data Type Attributes Initial %alu|Description
InForeard CCLocInForward |retain Local IM forward data structure
InBackward CCLocInBackwa |retain Local IM backward data structure
CutForeard CCLocOutForwa |retain Local QUT forward data structure
OutBackward (CCLocOutBackw retain Local OUT backward data structure
Oldv'aluel real retain Old forward walue from previous scan
Dldvaluel real retain Old forward value two scans ago
Oldvalued real retain Old forward value three scans ago
FirstScan bool retain First scan indicator

s Parameters } Variables 4 Extemal Variahles Function Blocks 7 |

Figure 51. Declared variables in the CClemplate object

As you can see, the Gate variables InForward, InBackward, OutForward and
OutBackward are of structured data types. It is these four local variables that will
talk directly to the Gate modules. You will learn about their components when you
are programming the forward and backward code blocks. The other four variables
are used in the code blocks.

You can also learn the naming convention for parameters and variables in the
@ manual Library Objects Style Guide, Introduction and Design (3BSE042835%).

Connecting the Gate modules

Next, create instances of the Gate modules in the CCTemplate. The Gate modules
(CClInputGate and CCOutputGate) are located in the BasicLib.

1. Right-click CCTemplate and create an instance of CCInputGate. Name it
CClnputGate.

2. Connect the Input Gate module according to Figure 52.

132 3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

Mame Data Type Initial %'alu |Parameter
1 |In ControlConnectic In
2 |Forward CCLoclnFarward InForward
3 |Backward CCLocinBackwa InBackward
4 |EnableParError |bool false
5 |ParError bool default

£ | » % Parameters
Figure 52. CCInputGate connected to the CCTemplate module

3. Right-click CCTemplate and create an instance of CCOutputGate. Name it
CCOutputGate.

4. Connect the Output Gate module according to Figure 53.

MNarme Data Type Initial %alu |Pararneter
1 [Out ControlConnectic Ot
2 |Forward CCLocOutForea OutF oreard
3 |Backward CCLocOutBackw DutBackward
4 |EnableParError |bool falze
5 |ParError bool default

< | » 4 Parameters
Figure 53. CCOutputGate connected to the CCTemplate module

After connecting the two Gate modules to the CCTemplate, the result in Project
Explorer should look like Figure 54.

3BSE041488-511 133

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

Figure 54. The Gates to ControlConnection are connected to the CCTemplate

File Edit View Tools Window Help
Ar BER ST @
(= EB CCTemplate
5 W Libraries
[EWSystem
- [Basiclib 1.6-8
2 [l CCTemplatelib 1.0-0
9 I Connected Libraries
e [0 BasicLib16-8
9 2 Control Module Types
------- -ﬁCCInputGate BasicLib.CCInputGate
- -ﬁCCOutputGate BasicLib.CCOutputGate
- [0 leonLib13-3
-~ W Hardware
- @ Applications
[4] Controllers

module

Programming Forward and Backward Code

1.
2.
3.

Open the Programming Editor for CCTemplate.

Re-name the code block Code to Forward.

Right-click the Forward tag and select Insert from context menu. A dialog

will open.

Accept default Languages selection (ST) and name the new code block

Backward.

Select the Forward tag and write the following programming code.

Each variable of a structured data type (e.g. InForward) has a component menu
attached. Open the menu by typing a dot (InForward.) directly after the variable
in the code block and select the component.

(* Handling FirstScan - Initializing old values *)
IF FirstScan THEN

134

3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

Oldvaluel := InForward.Value;
Oldvalue2 := InForward.Value;
Oldvalue3 := InForward.Value;
FirstScan := false;

END_TIF;

(* Forward the information to the Output Gate *)
OutForward.BacktrackingPossible := InForward.BacktrackingPossible;
OutForward.Continuous := InForward.Continuous;
OutForward.Range := InForward.Range;

OutForward.Status := InForward.Status;

OutForward.Value := (InForward.Value + OldvValuel + Oldvalue2 +
Oldvalue3l3) /4.0;

(* Updates *)

Oldvalue3 := Oldvalue2;
Oldvalue2 := Oldvaluel;
Oldvaluel := InForward.Value;
|< [\ Parameters » Variables 4 External Variables »_Function Blocks 7 =

{# Handling FirstScan — Initializing OldValues *)
IF FirstScan THEHW

0ldValuel := InForward. Value;

01ldValus2 InForward . Values;

01dValuesl InForward. Values;

Fir=tScan false:
END_IF:

{(* Forward information to the Output Gate =)

OutForward BacktrackingPos=sible = InForward.BacktrackingPossible:
CutForwvard Continuous = InForward. Continuous:

CutForward Range = InForward.Range:

OutForward Status = InForwvard. Status;

OutForward . Value .= (InForward. Valus + (ldValuel + 0OldValuesz + 0ldValue=3)~4.0;

(* Updates #*)

0ldValueld = OldValue2;

0ldValu=s2 .= 0ldValuel;

Cldwvalusl = InForward. Value:
¢ | % Forward A Backward <

Figure 55. Programming code in the Forward code block

6. Select the Backward tag and write the following programming code.

3BSE041488-511 135

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

(* Backward information to the Input Gate *)
InBackward.Backtrack := OutBackward.Backtrack;
InBackward.BacktrackValue := OutBackward.BacktrackValue;
InBackward.LowerLimit := OutBackward.LowerLimit;
InBackward.LowerLimitActive := OutBackward.LowerLimitActive;
InBackward.Range := OutBackward.Range;

InBackward.UpperLimit := OutBackward.UpperLimit;
InBackward.UpperLimitActive := OutBackward.UpperLimitActive;

|< | » ' Parameters » Variables { Exernal variables j_Function Blocks 7

(* Baclkward information to the Input Gate =)

InBackward Backtrack := OutBackward.Backtracl:

InBackward BacktrackValue := QutBackward. BaclktrackValues;
InBackward LowerLimit := OutBackward. LowerLimit:

InBackward Lowerlimitictive := utBackward.LlowerlimitActive:
InBaclkward Eange := OutBaclkward.Range;

InBackward Upperlimit = OutBackward.Upperlimit:

InBackward Upperlimitictive = OutBackward. Upperlimitictive:

o= '\ Forward » Backward [/ <

Figure 56. Programming code in the Backward code block

If you need the End module functionality, then add the following to your code.
Declare the CodeSortVar variable as a real with no attribute (empty field) in the
declaration editor.

(# 0ldValuel written to in Forward block, and read here #*)
CodeSortWar = 0Old¥aluel:

Backward / £

Figure 57. Code added for End module functionality

¢ | % Forward

136 3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

Adding Graphical Nodes

ﬂ This topic is not applicable if only the diagram editor, and not the CMD editor,
is used for creating the control loop. See Create an Instance of CCTemplate in the
Diagram on page 140.

After you are done with this subsection your CC Template will contain a name area,
two connected graphical nodes in the CMD Editor (Figure 58).

&1 CCTer

__

‘\Graphical nodes /
Outward line in CMD Editor

Figure 58. CCTemplate in the CMD Editor

From Project Explorer with the programming editors closed.
1. Right-click CCTemplate module and select CMD Editor in the context menu.

2. Select icon for Rectangle (Figure 59) and mouse-click a rectangle over the
outward line (see the outward line in Figure 58).

3BSE041488-511 137

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

New Control Module — g

i e [

=

Text ——

A\l

FLEE HoFRepE w00

Rectangle———»

Graphical Node ———p»

o
h=3

Figure 59. Icon menu in the CMD Editor

3. Select icon for Text (Figure 59) and write CCTemplate (Figure 58).

Before you can add a graphical node, first declare the corresponding parameters. In
this case you have already declared your parameters (In and Out) in the CCTemplate
parameter editor.

Adding a graphical node is done with three (left) mouse-clicks. First click will add a
node, second click will start a rectangle field (move the cursor), and third mouse-
click will release the rectangle. After the third click, type in the parameter name.

138 3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

Select icon for Graphical Node (Figure 59) and add two nodes on both sides of
your Text area (see exact location in Figure 58). Type in parameter In and Out
in the rectangle.

Close the CMD Editor when done. The CMD Editor should look like
Figure 58.

Create an Instance of CCTemplate in the Application

Next, you will learn how to create an instance (control module) of your CCTemplate
control module type in the application.

1.
2.

Connect your CCTemplateLib to the application.

Declare two global variables (InCC and OutCC of ControlConnection) in the
Application according to Figure 60.

3 Application - Application_1*

Editor Edit View Inset Toocls Window Help

RHHZy &, 9¢ 4 0 aAaf & o

MName Data Type Attributes Initial Value
1 [nCC ControlConnection [retain
2 |OutCC ControlConnection [retain
3
« + % Global Variables 4 Variables /

Figure 60. Global variables for connecting the CCTemplate object in the

application

3. Open the CMD Editor in the Application and select the icon for New Control
Module (see Figure 59).

4. In the dialog select CCTemplateLib and then select CCTemplate as your
control module type. Name your Instance to CCTemplate.

5. Click OK.

6. Left mouse-click a box to a suitable size and release left mouse-click. A
connection window opens.

7. Connect In and Out with InCC and OutCC, respectively. Save and Close.

3BSE041488-511

139

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

@ n CCTemplate o« 0

Figure 61. Instance of CCTemplate in the CMD editor of application.

Create an Instance of CCTemplate in the Diagram

In this topic, you will learn how to create an instance (control module) of
CCTemplate control module type in a diagram under the application.

The default application, Application_1, contains three diagrams. Let us create an
instance of CCTemplate in Diagram?.

1. Connect CCTemplateLib to the application.
2. Right click Diagram?2 and select Editor.

140 3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

3. In the declaration pane of diagram editor, declare two variables (InCC and
OutCC of ControlConnection) according to Figure 62.

Diagram - Application_l.Diagram2

Editor Edit View Inset Teols Window Help

kil 2 & & [&0 4 Ad®R & =
MName Data Type Attributes Initial Value|l

1 |InCC ControlConnection |retain

2 [OutCC ControlConnection |retain

3

4

< + % Variables 4 Communication Variables _» _Function Blocks

J

Figure 62. Variables for connecting the CCTemplate object in the diagram
4. In the graphical code block Code, insert an instance of CCTemplate
control module type:
a. Right click in the grid area, and select New > Object.

b. In the New Object dialog box, select CCTemplate under the List tab.
In the Name field, enter the name of the instance as CCTemplate (see
Figure 63)

c. Click Insert. The CCTemplate control module is inserted as shown in
Figure 64.

3BSE041488-511 141

Creating a Control Module with ControlConnection (CC template)Section 4 Analog Process Control

»
s# New Object o | B |-ede

List |Tree I Recent I Fa\rorite5|

Only show names that contain:

Filter
Object Libre o
Only connected libraries
E CCInputGate Basi)
E CCInputGateExtended Basi [C] Functions
ECCOLﬂpLﬂGEﬂB Basi| [Function block types
= CCOutputGateExdended Basi
; | Control module ty
12 cCTemplate ccl . e
{=rcvackise Basi || Disgram types
E EmorHandleri Basi
E ForcedSignalsM Basi
E GroupStatCbjectConn Basi
] [T P

Properies
Object: CCTemplate Add to Favorites

Mame: CCTemplate
Description

[Inzert J[Close H Help

Figure 63. New Object dialog box

142 3BSE041488-511

Section 4 Analog Process ControlCreating a Control Module with ControlConnection (CC template)

Diagram - Application_1.Diagram2*

Editor Edit View Insert Tools Window Help

B2 = g : BRI NN
MName Data Type Attributes Initial %

1 (InCC ControlConnection |retain

2 |[OutCC ControlConnection |retain

3

4

« » % Variables £ Communication Variables _»_ Function Block:

CCTemplate:1
CCTemplate

In Out

Figure 64. CCTemplate inserted in the graphical code block

5. Connect the In and Out ports to the variables InCC and OutCC, respectively:

a. Right click In port, and select Connect. In the Connect dialog, type InCC.
Click OK.

b. Right click Out port, and select Connect. In the Connect dialog, type
OutCC. Click OK.

CCTemplate:1
CCTemplate
INCC ={|n Out = OutCC

Figure 65. CCTemplate object with variables connected

6. Save and Close the diagram editor.

3BSE041488-511 143

What next?

Section 4 Analog Process Control

What next?

After completing the CC template example, you learned how the Gate modules
work and how to adapt the CC template to your own solutions on
ControlConnection.

However, if you need more functionalities, the Control Object library contains three
additional ControlConnection templates (Mimo22CC, Mimo41CC, and
Mimo44CC) with more advanced functionalities. See Control Object Control
Modules on page 474 for more details on these templates.

Connecting a Mimo22CC Object to a New Application

This topic is not applicable if only the diagram editor, and not the CMD editor, is
used to connect the MimoXXCC object. See Connecting a Mimo22CC Object in
a Diagram under the Application on page 145.

As an example, follow the steps below to connect a Mimo22CC object to a new
application:

1. Create the new application in Control Builder.
2. Connect the application to the controller.

3. Connect the application to a task.
4

Connect BasicLib, ControlStandardLib and ControlObjectLib to the
application.

9

Instantiate the Mimo22CC object (in the ControlObjectLib).

6. Instantiate two AnalogInCCs and two AnalogOutCCs (in the
ControlStandardLib).

7. Create one variable for each AnalogInCC or AnalogOutCC of type "ReallO"
in the application, and connect these to the AnalogInCCs and AnalogOutCCs.

8. Connect the control modules correctly. Figure 66 shows the completed
connection for the Mimo22CC object.

144

3BSE041488-511

Section 4 Analog Process Control What next?

=] Application - HowToUse {Control Module Diagram) |:||§|P5__<|
File Edit Yiew ControlModule Create ‘Window Help

= 3 ¥ | IR
1 = r
&
A / E _____________________ e — ot S — .
oo i = =
5 @ Al : CC
\L {E‘\ /_:3 4 \L
Al & |
=®|| CC BN Wi AO
=% |
/[Al i / i _“\ CC
A L T 4 NP Foid
CC | RO

HowTolse Control module bype

|£

Figure 66. Connection of the Mimo22CC object

Connecting a Mimo22CC Object in a Diagram under the Application

As an example, follow the steps below to connect a Mimo22CC object in a new
diagram under the application:

1.

2
3.
4

Create a new diagram under the application.
Connect the application to the controller.
Connect the diagram to a task.

Connect BasicLib, ControlStandardLib and ControlObjectLib to the
application.

3BSE041488-511

145

What next?

Section 4 Analog Process Control

10.

11.

Right click the new diagram, and select Editor.

In the graphical code block of diagram editor, instantiate the Mimo22CC object
(from the ControlObjectLib).

Instantiate two AnalogInCCs and two AnalogOutCCs (from the
ControlStandardLib).

Create graphical connections (drag-and-drop) from the output ports of the two
AnalogInCCs to the two input ports of Mimo22CC.

Create graphical connections (drag-and-drop) from the input ports of the two
AnalogOutCCs to the two output ports of Mimo22CC.

Create one variable for each AnalogInCC or AnalogOutCC of type "ReallO" in
the diagram, and connect these to the AnalogInCCs and AnalogOutCCs.

Connect the control modules correctly. Figure 67 shows the completed
connection for the Mimo22CC object in the diagram editor.

146

3BSE041488-511

Section 4 Analog Process Control

What next?

Diagram - Application_l.Diagram4

fitor Edit View Inset Teols Window Help

i Zy @09l o] ARA & BE LA G

7 aLat: @ Q[

MName Data Type Attributes Initial Value|l/O Address |Access Variables |Description
| |lnput1 ReallO retain
! lInput2 Reall> retain
i |Outputt ReallO retain
b |Output2 Reall> retain
y |MimaControl string retain
1

"y % Variables £ Communication Variables _» Function Blocks _»_ Control Modules _»_Diagrams /

Inputl

Input?

Figure 67. Mimo22CC connected in diagram editor

AnalogOuiCC_1:4

AnalogOutCC
B Qutputl

3BSE041488-511

147

What next? Section 4 Analog Process Control

Creating a New MimoXXCC Object from Another MimoXXCC object

Follow the guidelines below to create a new MimoXXCC object from another
MimoXXCC object:

* Create appropriate variables, parameters, and data types to pack the data to
different channels to gain an easy overview of the control module structure.

e Create function blocks for CC-component calculation in both forward code
block and backward code block. Create additional function blocks in both
forward and backward direction when dealing with voted functionality.

The new code must be easy to understand and well structured, with the required
inputs and outputs.

Creating a new Mimo33CC object from a Mimo44CC object

Follow the steps below to create a new Mimo33CC object from a Mimo44CC
object:

1. Create datatypes
a. Create the Coeff3 datatype by deleting a variable from Coeff4.

Coenponent Dda type Aitributa Tilial value Descripiion

a ted coldretan nn Crait oningnat 1
h tedl coldetan n.n Craity o gt 2
c ted coldretan nn Graity oningnt 3
d redl coldretan 0o Gan on gt 4

—

Figure 68. Coeff4 before it is changed to become Coeff3

Delete this variable

b. Create the Mimo33CCPar data type by deleting variables from
Mimo44CCPar.

148 3BSE041488-511

Section 4 Analog Process Control

What next?

Namne Fhta Type Altributes Inihal Descriphon
value

Inl ChannelPar InChanre]Par Interac ionPar for the first
Tt

In2 ChannelPar InChannelPar Interac tionPar for the second
Inpnt

In3 ChannelPar InChanre]Par Interac tonPar for the thad
[t

Ind ChannelPar InChannelPar Interac tionPar for the fourth
Tt

Oul Cnutd] Charme]Par Interac ionPar for the first
Chtpnt

Owut? ChannelPar Crtel ClarmelPar Interac tionPar for the second
Chtpnt

Out¥ ChanmelPar \ Cnutd] Charne]Par Interac tonPar for the thad
Ot puat

Owutd ChannelPar V.\MlChim&]Par Interac tionPar for the fourth
Chtpnt

N

Delete these wariables from MimoddCCPar
and create Mimo33CCR ar

Figure 69. Creating Mimo33CCPar from Mimo44CCPar

3BSE041488-511

149

What next? Section 4 Analog Process Control

c. Create the Out31Channel data type by changing the Out41Channel data
type.

Equation Coeffd Active gains on each

~ -
N\

Replace this data type with the newly
constructed data type Coeffd.

Figure 70. Changing the Out41Channel to create Out31Channel

d. Create the Out31ChannelPar by changing the Out41ChannelPar.

Equation Caeffd Equation displayed
on the faceplate

N

Replace this data type with the newly
constructed data type Coeffs.

Figure 71. Changing Out41ChannelPar to Out3 1 ChannelPar

150 3BSE041488-511

Section 4 Analog Process Control What next?

Create the following necessary parameters:
- Inl

- In2

— In3

— Outl

— Out2

— Out3

Many other parameters, which are common for all MimoXXCC objects, must
be already present.

Create the following variables:
— InlChannel

— In2Channel

— In3Channel

— OutlChannel

— Out2Channel

— Out3Channel

Many other variables, which are common for all MimoXXCC objects, must be
already present.

Modify the following function blocks to reflect the changes from Mimo44CC
object to Mimo33CC object:

— AssignBTInputsX
— OutX1BackwardFunction
— OutX1Function

For example, change the Out41Function to Out31Function by following the
same principles for CC component calculation, but considering only three
inputs instead of four inputs.

3BSE041488-511

151

Advanced Functions Section 4 Analog Process Control

5. Modify the code to suit the 33CC object, by deleting or replacing the lines in
the existing code of 44CC object:

a. Modify the forward code.
b. Modify the backward code.
c. Modify the Set_Outputs code block.

Advanced Functions

This section describes a number of functions that are built into the types in the
Control libraries. It also describes of a number of functions and library types from
other standard libraries that can be used when building control loops. The
description is split on the following functional areas:

* Anti-Integrator Wind-Up Function on page 153 describes the anti-integrator
windup function that is built into the control types.

* Bumpless Transfer on page 154 describes the bumpless transfer function,
which is used to smoothen controller output.

* Deviation Alarms on page 159 describes the alarm and event functions that are
built into standard and advanced controller types.

* Feedforward on page 161 describes the feed-forward function, which is used to
accelerate controller response by adding to or subtracting from controller
output.

* Autotuning on page 162 describes how to use autotuning functions to improve
controller settings.

* Adaptive Control on page 169 describes how to achieve adaptive control, for
complex processes.

* Gain Scheduling on page 173 describes how to use gain scheduling to adapt
settings to predictable variations in your process.

* Gain Scheduling versus Adaptation on page 175 discusses when to use gain
scheduling, and when to use adaptation.

e Additional Control Functions on page 177 collects information on a number of
special functions that are offered by the Control library types, such as three-

152

3BSE041488-511

Section 4 Analog Process Control Anti-Integrator Wind-Up Function

position output, stiction compensation, oscillation detection, reduction of
friction influence, and detection of sluggish control.

Input and Output Signal Handling on page 184 describes objects used for input
and output signal handling.

Supervision on page 195 describes objects used for supervision, that is, level
detectors, supervision objects, and signal objects.

Calculation on page 198 describes objects used for calculations of medians,
mean, and majority, as well as other mathematical calculations. The Compact
Control Builder in itself also contains a number of basic mathematical
calculations, such as trigonometry, logarithms, exponentials, etc.

Signal Handling on page 200 describes objects used to detect changes in
signals, in order to be able to predict control actions, such as derivative objects,
integrating objects, flow calculators.

Branch Objects on page 209 describes objects used to split signals into several
components.

Selector Objects on page 213 describes objects used to select one out of several
signals.

Limiter Objects on page 219 describes objects used to limit signals.

Conversion on page 222 describes objects used to convert signals from one data
type to another.

Miscellaneous Objects on page 225 describes some additional functions that
might be useful in control loops, for example, an object that can be used to
break up control loops.

Anti-Integrator Wind-Up Function

The anti-integrator wind-up function is an internal function in the controller
modules that stops the integral part in certain situations. It is used, for example, in a
cascade (master/slave) configuration, when the slave is in Manual mode, to prevent
the master from integrating.

Problems with integrator wind-up may occur when a controller containing an
integrator is not able to bring the control deviation (Sp — Pv) to zero fast enough,
compared with the integral action of the controller. The controller output would

3BSE041488-511

153

Bumpless Transfer Section 4 Analog Process Control

probably reach one of its limits and remain there for a while, even after the control
deviation has changed sign once ,after the process value has passed the setpoint. The
result would be a large overshoot and therefore a slow response.

The reason for this unfavorable behavior is that the integrator winds up to a large
(positive or negative) value when the control deviation has the same sign for a long
time and the controller output reaches its limit.

When the control deviation changes its sign, it may take a long time for the
integrator to wind down enough for the controller output to leave its limit.

To prevent this, integrator wind-up is limited by the anti-integrator wind-up
function. A small wind-up is allowed to avoid the risk of small oscillations of the
controller output, close to its limit. The size of the allowed integrator wind-up is
determined by the size of the control deviation and the integration time of the
controller. This is to initially achieve a fast response from a maximum (or
minimum) value of the controller output.

When the anti-integrator windup is active, this is indicated in the interaction window
by means of an icon that also shows the direction of the windup.

External Reset Feedback for Handling Anti-Integrator Wind-up

In PidCC and PidAdvancedCC control modules, it is also possible to use an external
value, ERF (External Reset Feedback), instead of using the limiting value for
anti-integrator wind-up,

If ERF option is used, ensure that the gain of the feedback path is the inverse of the
signal path. The feedback path indicates backtracking because it is not an output
path.

Bumpless Transfer

Bumpless transfer means that the controller output is made as smooth as possible,
even when conditions within the controller change abruptly. Examples of such
changes are mode changes and parameter value changes.

Bumpless transfer may be achieved in different ways. First of all, the integrator, if
one exists, of the controller is adjusted so that the output becomes as smooth as
possible. For controllers without integrator, the same effect is achieved (if offset
adjustment is enabled) by adjusting the offset.

154

3BSE041488-511

Section 4 Analog Process Control Bumpless Transfer

If the controller has no integrator, but any of the control modules preceding the
controller has an integrator, this integrator is adjusted instead. If none of these
options are available, the output may be temporarily ramped to achieve smoothness.
In some cases, discontinuities in the output may be accepted.

The maximum increase and decrease ramping speed must be adapted to the
process. If they are too slow, it might take a very long time before the ramp
terminates. If they are too fast, the control actuator may be damaged.

Bumpless Transfer during Mode Changes

The result of changes from one mode to another is described in Table 11, where
Auto has the lowest priority, and Tuning the highest. The numbers refer to the
outcome described in the list below the table. Impossible changes are indicated with
an X.

There is, however, one exception. It is not possible to go to Tuning mode when
Backtracking is requested (that is, the object would have been in Backtracking
mode, were it not in Tracking or Manual mode).

3BSE041488-511 155

Bumpless Transfer

Section 4 Analog Process Control

Table 11. Bumpless transfer during mode changes

From/To Auto Backtracking | Tracking Manual Tuning
Auto - 4 1 2 5
Backtracking 3 - 1 2 X
Tracking 3 4 - 2 5
Manual 3 4 1 - 5
Tuning 6 4 6 6 -

1. The output is ramped, at the rate of change set by the parameters OutlncLim
and OutDecLim, until the output tracking value (TrackValue) is reached.

The manual value attains the value of the output upon the change to Manual

The mode change can behave in any of the following ways:

If the controller has an integrator (PI, PID, PPI) and the Pstart parameter
is disabled, or if offset adjustment is enabled for P and PD controllers, the
controller starts controlling from the value of the output, before the mode
change. In this case, Pv Tracking may occur. See Process Value Tracking
on page 157.

If the controller has an integrator (PI, PID, PPI) and the Pstart parameter
is enabled, then the case is the same as above, but with the Pstart function
added. At the instant of the mode change, Pstart internally adds a step (=
G(Sp — Pv)), to which the output is then ramped.

If the controller has no integrator (P, PD), and offset adjustment is
disabled, the following will occur:

If external setpoint is used and the connected control module can
backtrack, or if internal setpoint is used and internal setpoint backtracking
is enabled, then the setpoint will be adjusted so that the output becomes
continuous.

Otherwise the output may be discontinuous.

The output of the controller becomes equal to the backtracking value.

Tuning starts from the current value of the output.

2.
mode.
3.
a.
b.
C.
4.
5.
6.

The output returns to the value before tuning started.

156

3BSE041488-511

Section 4 Analog Process Control Bumpless Transfer

Process Value Tracking

Tracking of the process value, Pv Tracking, is an internal function in the controller
that copies the process value Pv to the value sent back to an external setpoint Sp, or
if enabled to the internal setpoint. Pv Tracking may occur for controllers with
integrator or with offset adjustment enabled. It occurs when the controller is in
Backtracking, Tracking or Manual mode.

Output Change Rate Parameters

Two controller InteractionPar components, OutincLim and OutDecLim, determine

the output change rate of the ramp used during the mode changes described above.
They are also used for the ramp, which prevents the output from changing abruptly,
when output limits are narrowed.

These parameters do not limit the velocity change rate of the output in general,
@ the change rate is only affected temporarily, in the cases described above.

In the PidCC and PidAdvancedCC controllers, the change rate in manual mode
may be limited by these two interaction parameters. This setting is found in
'Enable out ramp man(ual)'

Bumpless Transfer during Parameter Changes

If the value of a controller parameter changes, for example the gain, the output will
be continuous if the controller has an integrator, or if offset adjustment is enabled.
Otherwise the output may be discontinuous.

Bumpless Transfer during Internal and External Setpoint Changes

Bumpless transfer between internal and external setpoints is achieved in the
following ways. See first Reduced Effect of Setpoint Changes on page 93 and then
Internal Setpoint Ramping on page 94.
1. Upon transfer to internal setpoint:
The internal setpoint value is initially set equal to the current value of the
setpoint.
2. Upon transfer to external setpoint:
If the setpoint is connected to a preceding control module with an internal
state, it will be continuous. The internal state is adjusted so that the
setpoint becomes continuous.

3BSE041488-511 157

Bumpless Transfer Section 4 Analog Process Control

®

Otherwise the setpoint is in general not continuous.

Bumpless Transfer when Enabling or Disabling the Limitation of the Output

Bumpless transfer is obtained when the limitation of the controller output is enabled
or disabled in the following way. If you narrow the limits, and the controller output
is outside the new limits, the output follows a ramp until it reaches the new limit,
using the set change rate. See the section Output Change Rate Parameters on page
157. When you expand the limits, controller output is continuous for a controller
with an integrator. It may be discontinuous for a controller without an integrator.

Bumpless Transfer when Forcing the I/O Signal to the Process

When the output I/O enters Forced mode, it will request the controller to go into
Backtracking mode. The reaction of the controller depends on the priority of the
modes for the controller, as described above.

When the output I/O leaves Forced mode, it will no longer require the controller to
be in Backtracking mode.

If two PidLoop function blocks are used to build a cascade loop, the bumpless
transfer function does not work properly. Use the PidCascadeL.oop function
block instead.

Bumpless Transfer at Switchover to Redundant I/0

To get bumpless transfer of I/O signals of ReallO data type, at switchover from
active to redundant I/O, a RedundantIn function block can be used. It is used in the
standard control modules and function blocks using the Real/lO data type as an input
parameter. To achieve the bumpless transfer, RedundantIn ramps the ReallO signal
by using a real input value for the change rate of the signal.
All controller types that have an in signal of the type ReallO have a built-in
function block of this type. The only exception is MotorBi, MotorUni,
MotorBiM, and MotorUniM, where the Reall/O signal is used for surveillance
only.

158

3BSE041488-511

Section 4 Analog Process Control Deviation Alarms

Deviation Alarms

Deviation alarms are generated by the standard and the advanced controller objects,
but not by the simple ones. The control deviation is defined as the difference
between the process value and the setpoint value.

An alarm condition state and a Boolean alarm condition parameter are set when the
deviation is higher or lower than the positive or negative limits set. To prevent alarm
flicker, a suitable time filter and degree of hysteresis are used. Before going to Auto
mode, you can set a certain start delay time, to give the controller time to tune
before alarms are activated.

For information on the use of the inhibit and disable parameters for the alarm
@ functions, see alarm and event information in the Compact 800 Engineering
Compact Control Builder AC 800M Configuration (3BSE041488%*) manual.

3BSE041488-511 159

Deviation Alarms Section 4 Analog Process Control

+ Deviation Alarm
Deviation alarm
A positive

|_ Deviation limit
Hysteresis

| Deviation limit

- Deviation

A Positive deviation alarm

Start <

-«

delay time Delay time

A Negative deviation alarm

Start L
delay time

Figure 72. Overview of the controller deviation alarm limits

160 3BSE041488-511

Section 4 Analog Process Control Feedforward

Feedforward

The feedforward signal is used to compensate for measurable disturbances, to
achieve faster and smoother control of a process. Feedforward means that a signal is
either added to or subtracted from the output signal of the controller. The
feedforward signal may also be amplified or reduced.

The feedforward process accelerates the controller response by anticipating changes
and acting to neutralize any disturbance, before it occurs.

Feedforward can also be used to suppress changes in the input signal that must not
be allowed to influence the controller output.

Feedforward is selected as a positive (+) or a negative () value of FF,;, in the
algorithm.

OMIPID = Outfmm PID algorithm + FFGain “FF

PID controller

iFF = Feedforward

I:FGain
Sp —
- P PID * S
N Limitations | Outp|p Py
oo (X) and anti- Process
Py r algorithm ut wind-up
— from PID
algorithm

Figure 73. The feedforward principle in the controller

3BSE041488-511 161

Autotuning

Section 4 Analog Process Control

Autotuning

Introduction

Autotuning is a simple way to obtain suitable controller parameters. It is
recommended to use the Autotuner function, otherwise, a great deal of time can be
spent in manual tuning of many controllers in large process plants. Manual tuning
time can be increased even more when retuning becomes necessary, due to changes
in the process conditions.

Several autotuning iterations do not improve the information from one tuning to
the next iteration. However, it does increase the speed for next autotuning
iteration.

You are advised to repeat autotuning a couple of times to rule out possible
disturbances that might have affected the first autotuning iteration. Furthermore,
if a number of controllers affect the same process, it is necessary that all
controllers have been correctly autotuned and holds accepted process values
while autotuning a single controller.

When the process is in steady state, start the Autotuner. It then identifies the
dynamic parameters of the process automatically, and from these, the Autotuner
calculates and suggests appropriate PID parameters. When autotuning is complete,
the controller reverts to previous mode. It uses the old controller parameters, but
suggests the new autotuned parameters, and you have the choice to apply them.

The user may also select another controller structure and design than used for
calculating the controller parameters from the autotuning results. Some users want a
specific controller structure, for example, a PI controller, and that the result of an
autotuning should comply with this selection. Then, the autotuner recalculates the
controller parameters based on the autotuning results. This means that any new
tuning is not necessary as the already executed tuning has measured the dynamics of
the process. The autotuner uses these measured values while re-calculating the
changed controller algorithm.

Autotuning is based on a relay (ON/OFF) identification method, with feedback
measurements, as illustrated in Figure 74. To obtain extended autotuning, it is also
possible to complete process identification by means of an automatic subsequent
setpoint step. Choose between the following three autotuning methods.

162

3BSE041488-511

Section 4 Analog Process Control Autotuning

1. Relay only. This normally gives acceptable controller parameters, particularly
if the time needed for autotuning is critical.

2. Setpoint step only. After you have performed autotuning with the relay method,
you may, at a later time, perform setpoint step identification, when you want to
compensate for dead time in the process.

3. Relay and setpoint step. This is the complete autotuning alternative.

@ Perform autotuning when the process is in steady state only.

PID controller

Output
Setpoint q{ PID
S algorithm
—
\ Parameter | » Process
ZEJC:SS | > ? values ?
—p L
/ Autotuner

Figure 74. The principle of autotuning in a PID controller with the Autotuner
Jfunction

Autotuning with Relay Method

When the system is in steady state, and the Autotuner has been started, the PID
controller is temporarily disconnected.

First, the Autotuner measures the noise of the process value.

Secondly, the output is generated and changed by the relay, with a hysteresis
function, to implement a disturbance in the process, of a small amplitude, according
to the figure below. The effect of the relay function is an ON/OFF control which, by

3BSE041488-511 163

Autotuning Section 4 Analog Process Control

means of a square wave signal, generates a controlled and stable oscillation in the
process value. The response is observed, and the amplitude of the oscillation is
automatically controlled to a minimum value by adjustment of the relay amplitude.

From the period and amplitude of the process value oscillation, suitable P, I and D
parameters are calculated. The controller is then ready to operate and the PID
algorithm is reintroduced into the control loop.

Process
value Autotuning oscillation
| | VAN _
| Noise | \/ \/
| measurement |
Output | : Relay with hysteresis
| l
l I
! | -
| |
Start of -
. Exponential increase
autotuning

Figure 75. The process value oscillation

Extended Autotuning with the Setpoint Step Method

To improve the autotuning, a small setpoint step can be carried out automatically, or
at your request, with the relay autotuned PID controller. Static gain, dead time and
the time constant of the process are obtained from the setpoint step response, and
the PID parameters can be adjusted.

ﬂ The step tuning method is only available in the PidAdvancedCC controller as
stated in Table 4.

164 3BSE041488-511

Section 4 Analog Process Control Autotuning

Autotuning Process

Autotuning can be started with the controller in Manual or Auto mode. During the
autotuning process, the Autotuner controls the output. The following three
conditions must be checked before starting autotuning:

* The process must be in steady state. It is not possible to start the Autotuner
during a load disturbance or a setpoint change.

* Itis also important that no major load disturbance occurs during the autotuning
process.

* The control deviation (Sp — Pv) must be less than 5% of the actual Pv range.

The value of control deviation or error (Sp -Pv) with respect to the dead zone
@ value is also available as an output in PidCC and PidAdvancedCC control
modules.

When these conditions are fulfilled, you can start the Autotuner. If the process is not
in a steady state, autotuning may fail. Autotuning is interrupted by a load
disturbance.

ﬂ In PidCC and PidAdvancedCC control modules, there is also an output parameter
that indicates whether the autotuner is active or not.

During the first part of the autotuning process, the output signal is kept constant and
the noise level is measured, in order to calculate the necessary oscillation amplitude.
Note that it is important to choose a shorter sampling time (task cycle time) for fast
processes than for slow processes, otherwise, the period used for noise calculation
will be unnecessarily long, autotuning will be less accurate, and the resulting control
will be unnecessarily slow. If the process is not stationary, the Autotuner will
interrupt and give a warning that the noise level is higher than the true level.

When the noise level has been calculated, the Autotuner determines the relay
hysteresis, no larger than necessary, but sufficiently above the noise level.
Subsequently, the output from the relay is introduced into the loop, but no larger
than the maximum relay value set. This causes the process value to oscillate around
the setpoint, and the relay output amplitude is adjusted to give the desired amplitude
of the process value. It may be necessary to limit the amplitude of the first output
signal increase, for example, in processes with significant dead times.

3BSE041488-511 165

Autotuning

Section 4 Analog Process Control

The period and amplitude of the oscillation are determined for the process value.
Slow processes can have oscillation periods between minutes and hours, while fast
processes have oscillation periods of a few seconds. When the oscillation amplitude
is stable, the PID parameters are calculated. If the autotuning method selected is
relay only, autotuning is complete at this point. The new parameter values may be
applied. If tuning fails, the controller continues to use the old parameters.

After the relay method has been used, you may select setpoint step identification
only, or relay and setpoint step identification. After the user has started a setpoint
step, the process value will finally reach the new setpoint according to the figure
below. When steady state is reached, the output signal is restored to its previous
value. The process goes back to its initial state and autotuning is complete. The
process gain, time constant and dead-time are calculated from the setpoint step
response. With these process parameters identified, the Autotuner recalculates the
PID parameters obtained from the relay method. When autotuning is complete, the
new parameters are shown in the interaction window. If you want to accept the
suggested PID parameters, apply them before closing the interaction window.

Process A
value

Setpoint step Steady state

Pv

_+~ Steady state
s T

Output Output restored

Figure 76. Setpoint step identification and output restoration

166

3BSE041488-511

Section 4 Analog Process Control Autotuning

The Autotuner saves the values of the noise level and the relay amplitude from the
previously performed autotuning. Autotuning may then be repeated more quickly.
To start from the beginning, reset the Autotuner. Autotuning using the relay and/or
step method can be made individually in each part of a controller with gain
scheduling. This applies only for the PidAdvancedCC controller type.

Pl or PID Controller

During relay tuning, the Autotuner chooses a controller type, PID or PI,
automatically. The normal Autotuner choice is a PID controller. In some cases,
where processes contain integrators, for example, for level control, the Autotuner
may decide to use a PI controller.

PPI Controller

If Setpoint step only, or a complete relay and Setpoint step autotuning is performed,
the Autotuner compares the process dead time with the process time constant. If the
dead time dominates (about twice the time constant) the Autotuner may suggest the
PPI design. A PPI controller is never chosen if autotuning is configured for relay
only. The Autotuner detects the process dead-time during the setpoint step method
only. However, you may manually select the PPI type to handle processes with a
known dead-time, which then has to be specified.

Controller Response Speed

The choice of controller speed influences the behavior of the control loop. In certain
processes, high speed is necessary and overshoots are acceptable, whereas in other
cases, a slower control sequence can be accepted. In the Autotuner, it is possible to
select one of three controller response speeds: Slow, Normal, or Fast, and thus
determine the method of operation. Upon speed changes, the controller PID
parameters are updated immediately. Apply the new parameters to accept them.

3BSE041488-511 167

Autotuning

Section 4 Analog Process Control

Pre-settings
For successful autotuning, some pre-settings can be made as follows.

* The maximum limit of the relay amplitude, expressed in engineering units, is
initialized to 10% of the output range. The Autotuner automatically chooses a
suitable relay amplitude, so that the parameter for maximum relay amplitude
needs to be used only if too high output signal levels cause critical situations.

e The maximum limit of the setpoint step, expressed in engineering units, is
initialized to 10% of the process value range. The Autotuner automatically
chooses a suitable step amplitude, so that the parameter for maximum step
amplitude needs to be used only if too high setpoint values cause critical
situations.

* Warning time is selected, if you want a warning for excessive autotuning time.

Resetting

If you set the InteractionPar component Reset, the values of the noise level and the
relay amplitude saved by the Autotuner from the previous autotuning are rejected. A
new estimate of the noise level is then made. Reset is recommended when a
condition of the process, such as dynamics or noise properties, has changed. It
should also be used when earlier autotuning has failed.

Direct or Reverse Direction

The direction of the process gain is either direct or reverse. The default direction is
reverse. This means that when the process value increases, the controller output
decreases. If the direction you have set is not the same as that automatically detected
by the Autotuner, a warning text is displayed, indicating that the controller direction
may be wrong.

However, in cases where the process is of extreme “non-minimum phase” type, and
the process starts to respond in the wrong direction to an output step, the Autotuner
will also give a warning.

168

3BSE041488-511

Section 4 Analog Process Control Adaptive Control

Maximum Sampling Time

When you have autotuned a controller, the Autotuner calculates a maximum
sampling time and indicates it in the interaction window. This time is 1/8 of the
process oscillation time. If the current sampling time (task cycle time) is longer than
the calculated maximum sampling time, then you should decrease the current
sampling time.

If your sampling time is too long, the suggested maximum sampling time may be
shorter than the current sampling time. This means that the current sampling time is
too long in relation to the signal changes the Autotuner has detected.

A suitable strategy for decreasing the sampling time is to halve the current sampling
time, and autotune again, to see the new maximum sampling time given by the
Autotuner.

This method can be repeated until you reach the point where the current sampling
time is shorter than or equal to the maximum sampling time.

Adaptive Control

There are many kinds of processes. Some are very simple to control, and some are
far more complex, with changing dynamics. An example of a complex system is
maintaining a constant value of the pH in a tank. A combination of an adaptive
controller and gain scheduling gives good results in such applications.

An adaptive controller is used to continuously update controller parameters. The
variations in process dynamics must, however, be slow in comparison with the time
constant of the process. An adaptive controller adapts the PID and feedforward gain
parameters.

The adaptation function is enabled by the operator. The operator must first perform
an initial start-up autotuning. When the tuned parameters have been accepted,
adaptive supervision is started by continuously monitoring the input and output
signals to/from the process. Adaptation is then activated only when both signal
values exhibit large enough variations. The activated adaptation function then
calculates and implements new controller parameters.

3BSE041488-511 169

Adaptive Control

Section 4 Analog Process Control

Enabled, ongoing adaptation is deactivated on the following occasions.

1.
2.

N kW

The operator disables adaptation.

The Autotuner is activated.

When autotuning is complete, adaptation continues, either with the new initial
tuning values, if they have been accepted, or the old ones, if no choice of tuning
values was made by the operator.

Upon changes to Manual mode.
During backtracking.

Upon output tracking.

When the sampling time is too long.

For a feedback adaptive controller also:
— in the case of load disturbance,

— when there is no integrator (I) part,
— when a PPI controller is chosen.

170

3BSE041488-511

Section 4 Analog Process Control Adaptive Control

Feedback Adaptive Controller

Feedback adaptation modifies the PID parameters of the controller. The feedback
adaptive controller has the ability to continuously follow a specified point on a
Nyquist curve, as the process dynamics change. The principle of the feedback
adaptive controller is shown in the following figure.

Feedback adaptive PID controller

Specification

Sp
4>

Pv

Pv
Controller . M<d
- f
design ~— Estimator Outgpg .
Limitations Out Pv
and anti- Process
wind-up
PID
algorithm

Figure 77. The principle of the feedback adaptive PID controller
After initial autotuning, feedback adaptive supervision is achieved by monitoring
the band-pass-filtered PID controller Outgpg signal and the process value Pvgpg

The user specifies Slow, Normal, or Fast response. The adaptive controller then
gives the resulting PID or PI parameters.

Enabled, ongoing adaptation is deactivated when a load disturbance is detected in
the Pv signal.

The reason for this is that the process value (Pv) is not relevant in relation to the Out
signal from the PID controller, and would give incorrect values for PID parameters.

When the load disturbance has disappeared, adaptation supervision continues.

3BSE041488-511 171

Adaptive Control Section 4 Analog Process Control

Feedforward Adaptive Controller

If it is possible to measure load disturbances in the process, you can use standard
feedforward control. If the relation between the measured and the real load
disturbance varies, you can use a feedforward adaptive controller as shown in the
figure below, for example, when the flow characteristics of a pump are changed, due
to fouling in the pipe system. Feedforward adaptation then modifies the feedforward
gain, FFG,;,,, of the controller.

Feedforward adaptive PID controller

—>Estimator< DBP“ ¢
B -
s
Load
disturbance
FF
Outrr=FFgain"FF
Pv
> PID Limitations ~ |OUt oy
Igorith Out and anti- — Process
algorithm from PID wind-up

Figure 78. The principle of the feedforward adaptive PID controller

Feedforward adaptive supervision is carried out by monitoring the process value, Pv,
and the feedforward signal, FF, representing the load disturbance. This is done
through the high-band-filters, BP;. The parameter estimator is also influenced by the
PID controller Out,,, pip signal. Adaptation starts when both the filtered signals
are large enough.

The feedforward gain, FFg,;,, which can be positive or negative, is continuously
calculated as long as the feedforward adaptive function is active.

The signal, Outgg = FF,;,*FF, is added to the PID controller output signal
Outg,om pip to compensate for the load disturbance.

172 3BSE041488-511

Section 4 Analog Process Control Gain Scheduling

Gain Scheduling

Gain scheduling can be used when the process has predictable non-linear dynamics,
time variations, or demands on changes in operating conditions. To use the gain
scheduling technique, you first have to choose a reference signal that correlates well
with the changes in process dynamics. The reference signal can be:

* Pv—the process value signal

e Out - the output signal

* Sp - the setpoint signal

* Ext - an external signal

* Epsilon - control error (Sp - Pv)

The reference signal can be divided into up to five ranges, separated by adjustable
limits. The gain scheduling function is a table, containing one set of all the
parameters for the PID controller for each range. One set of parameters is active
when the reference signal is within the current range. When the reference signal
passes a value between two parameter set ranges, the next set of parameters takes
over.

Parameter Set Ranges

As soon as the gain scheduling is selected in the interaction window, two parameter
sets are available to start with. If more parameter sets are needed, insert a new one
above the one selected. The limit value is given between the ranges as half the
previous range. It is possible to change the limit manually. The selected parameter
sets can also be deleted in the same way. The range then includes the deleted range.

3BSE041488-511 173

Gain Scheduling

Section 4 Analog Process Control

Tuning the Parameter Sets

The Autotuner (see Autotuning on page 162) should be used to set controller
parameters in each parameter range set. A parameter set is active when the reference
signal is between its range limits. Autotuning can only be performed in an active
parameter set range. When the reference signal is close to a limit, autotuning may
give poor results. All tuning values, including adaptive controller values, are stored
in the gain scheduling table. You may also set the controller parameters manually.

A small hysteresis function is built in, to avoid frequent switching between two

parameter sets when a noisy reference signal passes a limit.

Example of Inserting and Tuning Parameter Sets

The following are the examples of inserting and tuning parameter sets.

1. Initially, we have a single parameter set (Set 1) that is Autotuned to T1. When
gain scheduling is activated, a second set (Set 2) is added above Set 1, with the
same Autotuned T1. You can then select Set 2 and Autotune this to T2. The
limit is by default set to half the height of the set that is divided. You can

change this before autotuning the new set.

100
Set 1
75
=
[
k=2
(%]
8 50 T1
C
o
ko)
[0]
o
25
0

Set 2 Set 2
T T2
Set 1 Set 1
T T1

Procedure steps

Figure 79. Example of the procedure for gain scheduling in two sets

174

3BSE041488-511

Section 4 Analog Process Control Gain Scheduling versus Adaptation

2. You can then split Set 2 in half. Set 3 is added above Set 2, with the same
autotuned T2. You can then select Set 3 and autotune this to T3. The limit is by
default set to half the height of the set that was divided. You can change this
before autotuning the new set.

10
Set 2 Set3 Set 3
T2 T3
75 T2
< Set 2 Set 2
2 T2 T2
§ 50
[Set 1 Set 1 Set 1
8
25 T1 T1 T
0

Procedure steps

Figure 80. Example of the procedure for gain scheduling in three sets

Gain Scheduling versus Adaptation

When configuring a controller, you can choose between constant controller
parameters, gain scheduling, adaptation, or a combination of those, depending on
the process dynamics, as follows, and according to Figure 81.

Process with Constant Process Dynamics

For a process with constant process dynamics, which is the most common, a
controller with constant parameters can be chosen. The correct strategy is then to
select a PID controller or a PPI controller if the dead time is long.

The process engineer’s trimming tool for PID and PPI controllers is the Autotuner,
which suggests settings for the parameters of the controller.

As arule of thumb, a PPI controller is used when the dead time is longer than the
dominant time constant in the process.

3BSE041488-511 175

Gain Scheduling versus Adaptation Section 4 Analog Process Control

Processes with Changing but Predictable Process Dynamics

For a process with changing but predictable process dynamics, which requires
different parameters in different parts of the working range, the proper strategy is to
use a PID controller or a PPI controller with gain scheduling. See the section Gain
Scheduling on page 173. Use the Autotuner to tune the parameters in each
parameter set range.

Processes with Changing and Unpredictable Process Dynamics

For a process with changing but unpredictable process dynamics, which vary slowly,
the proper strategy is to use an adaptive PID controller. See the section Adaptive
Control on page 169. The Autotuner is used to tune the initial parameters. A PPI
controller is able to run gain scheduling, but not adaptation.

Processes with Changing and Partly Predictable Process Dynamics

For a process with changing, unpredictable process dynamics, which vary slowly,
and partly predictable process dynamics, the proper strategy is to use a combination
of adaptation and gain scheduling.

176

3BSE041488-511

Section 4 Analog Process Control Ad(ditional Control Functions

Process dynamics

Varying Constant
Use a controller with Use a controller with
varying parameters constant parameters
Unpredictable Predictable
variations variations
Partly
Use an adaptive controller pre.dlc.ztable Use gain scheduling
variations

Use an adaptive controller
and gain scheduling

Figure 81. Procedure used to decide which controller to use, adaptive control
and/or gain scheduling

Additional Control Functions

Three-Position Output

Three-position action from a controller with increasing, or decreasing, or no signal
at all, for example, to an electrical motor actuator, is achieved by a function with
two digital output signals, which are never active at the same time.

This three-position output control module is an extension of a controller, when two
digital outputs are required. A comparison is made between the controller’s analog
output signal and an analog signal from the control device or actuator, which gives
the so-called position feedback signal.

3BSE041488-511 177

Additional Control Functions Section 4 Analog Process Control

When the difference is greater than a set dead zone, either of the two digital output
signals, Increase (increment output) or Decrease (decrement output) of BoollO
type, is activated in the following manner, see Table 12.

Table 12. Three-position output.

Comparison Increase Decrease
Output=Position feedback False False
Output>Position Feedback True False
Output<Position Feedback False True

A position feedback signal is not always available. It can, however, be estimated
internally by the module, to represent the current position of the control device by
the following calculation. The time during which the increasing or decreasing pulse
has been active is divided by the total action time between the actuator end positions
which you can declare, and then multiplied by the controller output range. The
minimum output signal pulse length that you can set is the sampling time.

The dead zone is the tolerated difference between the output signal from the
controller and the position feedback signal. A difference within the dead zone will
not affect any digital output.

The minimum time for switching between the two output signals can be set in
seconds, as short as the sampling time, or longer, depending on the actuator.

178 3BSE041488-511

Section 4 Analog Process Control Ad(ditional Control Functions

Three-position digital output

Active H
Not active

Increase

v

. PID

~ controller

- Decrease
* Active H ﬂ
Not active

Position feedback signal from control
device or internal estimate.

[
v

Figure 82. The principle of the three-position digital output function

Stiction Compensator

It is always important to know how a control loop will perform, because it
influences the process output. Performance checks may be carried out in many
ways. One method of detecting deficiencies in the process control is to detect
oscillations. Oscillations above a certain amplitude and within a certain frequency
range are probably caused by sticking control valves, due to too high static friction,
called stiction. This phenomenon usually increases gradually during operation with
fluids that are difficult to handle, for example, viscous fluids. Stiction then gives rise
to oscillations of a particular character in the process control loop.

There may also be other reasons for the oscillations, for example, badly tuned
control loops or oscillating load disturbances. However, in this section, only
methods of detecting and minimizing stiction problems will be dealt with. Methods
implemented in the PID controllers and as an add-in control module, are described
in the figure below and in the succeeding sections.

If the process handles products which cause friction problems in a pneumatic
control valve, an add-in function, called a stiction compensator, should be added to
the analog output signal used in the control loop.

This method of keeping pneumatic valves free from clogging and seizing involves
activating them regularly by adding short pulses, to “knock” the valve. The stiction

3BSE041488-511 179

Additional Control Functions Section 4 Analog Process Control

compensator function compensates for static friction and hysteresis which may
increase gradually with time.

Enable .
> Stiction
Advanced PID controller module - compensator
r
_ \
Setpoint \ PID ‘
— - algorithm
| AO
‘r Output 1 »@
| .
Process value |] Autpmgtlc -
oscillation

Output if oscillations
are detected

Enab.le detector — G)

Pneumatic
process valve at
risk of stiction

Figure 83. Principles for detecting and solving friction problems

Oscillation detection starts when the user has enabled the automatic oscillation
detector in the PID controller module. If an oscillation is detected an output is set
and a warning is given. If it is obvious that there is friction in the valve, the user
should enable the stiction compensator function to keep the valve moving until it
can be repaired or replaced.

ﬂ The StictionCompensater object is designed to be added to the AnalogOutCC
output control module.

Oscillation Detection

Automatic monitoring of control loop performance is built into the advanced PID
controller module. When activated, this oscillation detector function detects
oscillations in the process value around the setpoint, often caused by friction in a
control valve. Oscillation is detected when the process value oscillates a certain
number of times around the setpoint with an amplitude of about 1% or greater, and
with a period of about the length of the process time constant.

180 3BSE041488-511

Section 4 Analog Process Control Ad(ditional Control Functions

If you are uncertain about the cause of oscillation, you may undertake a diagnostic
procedure according to the flow chart in Figure 84, which helps you to find and
eliminate the source of oscillation.

Oscillation detection can be sent from the PID AdvancedCC object (parameter
VoteOut) to receiving Voting objects (parameter /nx). You then configure the value
of Inx parameter to be for example oscillation detection from the Vote object's
parameter InxLevelConfig. See also Signal and Vote Loop Concept on page 367.

Put controller in
manual mode

No Still ascillating?

Vesl

k. Search for the source

Check the valve

X

¢—Yes
N TRy
o Friction® P
disturbances
Mo
Check es
controller
l Reduce disturbances
by controller tuning

Undertake valve
maintenance

Figure 84. Flow chart for oscillation diagnosis

Perform the following steps to determine what kind of oscillation has been detected:

3BSE041488-511 181

Additional Control Functions Section 4 Analog Process Control

1. Activate the oscillation detector function in the loop assessment settings of the
advanced PID control module, to detect any oscillation in the process value
around the setpoint.

2. If an oscillation is detected, a warning text is shown in the More parameters
interaction window and an output signal from the PID control module is set to
true.

3. If you are uncertain of the reason for the oscillation you may undertake a
stiction diagnostic procedure according to the succeeding steps. These guide
you in finding and eliminating the oscillation.

4. Put the output signal to the pneumatic valve into forced mode.

5. If the oscillation stops, check the pneumatic valve for friction. If the valve is
sticking, perform the required maintenance to retrieve the problem, or replace
the valve.

6. Ifitis not suitable at the moment to carry out maintenance on the valve, wait
for a later occasion. Meanwhile, you are advised to activate the stiction
compensator to reduce the influence of static friction in a pneumatic valve.

7. If there is no friction, check the tuning of the controller. There may have been
accidental changes in the process parameters.

8. If the oscillation persists, the process value may be influenced by a disturbance.
Search for the source. It may be useful to use the feedforward function.

Reduction of the Influence of Friction

The stiction compensator function signal is superimposed on the analog output
signal to the process, according to the figure below. A short pulse sequence is added
to the controller output signal, inside the analog output control module. This signal
is of equal amplitude and duration in the direction of the output signal’s change rate.
Thus, when the signal increases, the pulse is directed upwards (and vice versa). See
Figure 85. In this way, it is possible to handle sticky valves. (Industrial tests show
that the procedure reduces the control deviation during stick-slip motion
significantly, compared with standard control without friction compensation.)

182 3BSE041488-511

Section 4 Analog Process Control Ad(ditional Control Functions

The stiction compensator function may be varied and the following parameters can
be set: pulse amplitude, pulse width, and the pulse period factor multiplied by the
pulse width, giving the pulse period time. A stiction compensator pulse is only given
when the output signal changes by an amount greater than a set hysteresis limit.

Pulse width
| |-

Pulse amplitude

J # Hysteresis

Pulse period

Output A
signal

Time
-

Figure 85. The stiction compensator signal is superimposed on the analog output
signal

Sluggish Control Detection

Sluggish control, which should be avoided, means that a controller responds too
slowly to load disturbances or setpoint changes, as in the figure below.

Desired optimal control

Sluggish control

Figure 86. lllustration of sluggish control

Sluggish control loops may occur with conservatively or poorly tuned controllers.
This may cause losses in production and quality. A sluggish response to load
changes or disturbances is therefore undesirable. Slow behavior with unnecessarily

3BSE041488-511 183

Input and Output Signal Handling Section 4 Analog Process Control

large and long deviations from the setpoint should be avoided. A well-tuned
controller gives a fast response to load disturbances. The loop assessment function,
which works according to the Idle index, can detect sluggish control. When you have
completed the commission of a control loop and you have tuned it, you can
supervise the loop for the detection of sluggish control. Sluggish control may occur
after a certain operating time.

Perform the following steps to detect sluggish control.

1. Activate the sluggish control detector function in the loop assessment settings
of the advanced PID control module, to detect any sluggish control in the
process.

2. If sluggish control is detected, a warning text is shown in the More parameters
interaction window and an output signal from the PID control module is set to
true.

Perform a new autotuning sequence and ensure that faster control is achieved.

Sluggish control can be sent from the PID AdvancedCC object (parameter VoteOut)
to receiving Voting objects (parameter /nx). You then configure the value of Inx
parameter to be for example sluggish control from the Vote object's parameter
InxLevelConfig. See also Signal and Vote Loop Concept on page 367.

Input and Output Signal Handling

Signals start and end in I/O units with I/O channels of the ReallO data type.
Between input and output I/O units, signals are handled in I/O function blocks of the
ReallO data type, or directly in various function blocks, or in control modules of the
ControlConnection data type.

In open loop control, information mainly goes forward, for example, formula
calculations, indications, comparisons, or presentations.

/0 Code or I /0
unit | [nput » presentation Output unit

Figure 87. Signal handling in open loop control

184

3BSE041488-511

Section 4 Analog Process Control Input and Output Signal Handling

In closed-loop control, applications that contain one or several controllers, it is
necessary for information to go both forward and backward. This places much
higher demands on the solution of such applications.

1/0
unit

PID control, code 1/0
L p|INput |— ’ - -
npu or presentation Output unit — Process

Figure 88. Control loop application in closed-loop control

When combining and connecting various objects, you should be able to predict the
resulting functions and behavior.

It is often necessary to measure values for later calculations in the application and
for presentation. Analog signals are then transferred from measurement transmitters
in a process, to I/O units. The signal interface objects for input and output signals
read values from, and write values to, the I/O systems, respectively. Further on in
the loop, the signal is directed to application code, or to a presentation. The signal
connected to an analog input interface which transforms it into a ControlConnection
type signal for further direction, for example, to a PID controller, application code,
or a presentation, see ControlConnection on page 75.

Over and under range measurement

Signal objects of real type and AnalogInCC in ControlStandardLib are equipped
with an option to increase the signal range with a fixed pre-selected factor of +-15%
of the specified range.

You can select individual Signal Objects connected to variables of data type ReallO
on the controller and set the input parameter EnableOverUnderRange to true.

The default value on EnableOverUnderRange depends on a global project
constant from BasicLib. The default value for this project constant is false and
Over and Under range feature is disabled.

3BSE041488-511 185

Input and Output Signal Handling Section 4 Analog Process Control

The Signal Object enabled with over and under range feature, displays the output
parameter OverUnderRangeEnabled as true to inform the surrounding code about
the extended range.

Input objects connected to I/O.

To enable signal range extensions on input signals, in Project Explorer, refer
Compact 800 Engineering Compact Control Builder AC 800M Configuration
(3BSE041488%) .

Connected PID controllers need to be re-tuned for optimized operation.

The default value of project constant for inputs is set to false.

The objects of SignalLib and ControlStandardLib supporting signal range extension
feature are:

* Functional blocks:
— SignallnReal
— SignalSimpleInReal

. Control modules
— SignallnRealM
— SignalSimplelnRealM

* AnalogInCC in ControlStandardLib

Output objects connected to 1/0.

To enable signal range extensions on output signals, in Project Explorer, refer
Compact 800 Engineering Compact Control Builder AC 800M Configuration
(3BSE041488%) .

The default value of project constant for outputs is set to false.

The extended range is also applicable in forced mode. The operator can set forced
values directly to the IO-unit from the operator interaction windows.

The objects of SignalLib and ControlStandardLib supporting signal range extension
feature are:

186

3BSE041488-511

Section 4 Analog Process Control Input and Output Signal Handling

* Functional blocks:
— SignalOutReal
— SignalSimpleOutReal

. Control modules:
— SignalOutRealM
— SignalSimpleOutRealM

* AnalogOutCC in ControlStandardLib

Input Signal Handling

Input objects receive a value from the I/O unit, which receives it from the process.
I/O input units are represented in the hardware configuration section in the Project
Explorer, where you can configure the measuring range and units of measurement.

Interface
objects T T Tt s
/0 ! Code or !
L | —
unit nput ' presentation

Figure 89. Handling of input signals

3BSE041488-511 187

Input and Output Signal Handling

Section 4 Analog Process Control

Table 13. Standard library types for input signal handling

Type Name Library Type Description
SignallnReal(M) SignalLib Function SignallnReal has an analog input, of
block and | ReallO data type, with several supervision
Control functions, such as alarm and event levels,
module(")) | and interaction windows. SignallnReal has
a first-order, low-pass filter built in. The
input is intended to be connected to an
analog input I/O variable. The signal
output is of real data type (Function
blocks) and ControlConnection (Control
modules).
SignalSimplelnReal(M) | SignalLib Function SignalSimplelnReal is a version of
block and | SignallnReal (SignalSimplelnRealM is a
Control version of SignallnRealM) that only
module(!) | handles one high and one low level. This

simple type consumes less memory than
SignallnReal.

188

3BSE041488-511

Section 4 Analog Process Control

Input and Output Signal Handling

Table 13. Standard library types for input signal handling (Continued)

Type Name

Library

Type

Description

SignalBasiclnReal

SignalBasicLib

Function
block

SignalBasicInReal is used for overview
and forcing of analog input signals of data
type ReallO.

The input signal value is filtered, i.e. rapid
changes are delayed according to the
FilterTime value in InteractionPar.

If a redundant switchover occurs, the
output value change is smoothened
according to the RedIincDecLim
parameter.

Error is set to true when input 1O status is
error marked.

AnalogInCC

ControlStandard
Lib

Control
module(!)

AnalogInCC receives the measured
analog input value from the I/O unit and
converts the input signal of ReallO data
type to the common ControlConnection
data type.

AnalogInCC has a built-in first-order, low-
pass filter. The analog input signal may be
supervised by a Level6CC control module
type with alarm levels, see Supervision on
page 195. The analog input signal may
also be supervised in bar graphs or
histograms and controlled manually.

In a control loop application, AnaloginCC
normally precedes a PidCC controller.

(1) The control module type has a voting parameter that can be connected to a vote control module type. See Vote Control Module

Types on page 381.

Output Signal Handling

The chain of objects in a control loop must end with one of the following objects
(excluding function blocks) for the output signals, see Table 14 and Table 15.

3BSE041488-511

189

Input and Output Signal Handling Section 4 Analog Process Control

Signals or values from the code can go directly to an I/O unit, or be handled in
control modules before the output signal goes further to an output interface and then
on to an I/O unit, and finally out to an actuator in the process.

Interface

bem e i oo objects
: I/0
Code —p»Output ——»| unit

Figure 90. Handling of output signals

Table 14. Standard library types for analog output

Type Name Library Type Description

SignalOutReal(M) SignalLib Functio | SignalOutReal has an analog input of real
n block |data type and SignalOutRealM has an input
and of ControlConnection data type. Both object

Control |types have outputs of ReallO data type and
module |are equipped with signal quality supervision
(1) with alarm functions and faceplates.

The signal output, of ReallO data type, is
intended to be connected to an analogoutput

I/O variable.
SignalSimpleOutRea | SignalLib Functio | SignalSimpleOutReal has analog output of
(M) n block |ReallO (Function blocks) and
and ControlConnection (Control modules)

Control | signalSimpleOutReal is a version of
;nodule SignalOutReal and SignalSimpleOutRealM
is a version of SignalOutRealM. This simple
type consumes less memory.

190 3BSE041488-511

Section 4 Analog Process Control Input and Output Signal Handling

Table 14. Standard library types for analog output (Continued)

Type Name Library Type Description

SignalBasicOutReal |SignalBasicLib Functio | The function block SignalBasicOutReal is
n block |used for overview and forcing of analog
output signals of data type ReallO.

The input value is transferred to the output
signal value and is limited within the range of
the output parameter. Error is set to true
when output 1O status is error marked.
Warning is set when the input is out of range
defined by the output parameter. ParError is
set to true when the range components of
the output parameter are erroneous like that
the maximum is less than the minimum.

AnalogOutCC ControlStandardLib | Control | AnalogOutCC writes, scales, or converts the
module |following, from the ControlConnection signal
type, to the ReallO signal type:

- analog output signals to actuators via
I/O units,

- variables to the local system or a
distributed system.

The analog output may be supervised with a
control module of the Level6CC, Level4CC,

or Level2CC type, see Supervision on page
195.

AnalogOutCC has an extension possibility
for stiction compensation, see Stiction
Compensator on page 179. The analog
output may also be supervised in bar graphs
or histograms and controlled manually in a
interaction window.

AnalogOutCC often succeeds a PID control
module.

(1) The control module type has a voting parameter that can be used for connections to a vote control module type. See Vote
Control Module Types on page 381.

3BSE041488-511 191

Input and Output Signal Handling Section 4 Analog Process Control

v

Backtracking function in analog output objects

A backtracking function can be activated in Local mode via the parameter
FeedbackPos. A local value from (for example) a level indicator can be sent (via an
analog input object) with ControlConnection back to the analog output object's
backtracking function.

This function will provide a bumpless transfer when the analog output object
switches back from local mode to auto mode.

This function is valid only for control modules SignalOutRealM,
SignalSimpleOutRealM and AnalogOutCC.

Converting Controller Output to a Digital Output Signal

Sometimes it might be desirable to convert controller output to a digital output
signal, see Table 15.

In some cases, PulseWidthCC or ThreePosCC can be used for signal handling.
ThreePosCC or PulseWidthCC usually follow upon a PID control module.

Table 15. Standard library types for digital output signals

Type Name Library Type Description
ThreePosCC Control Control ThreePosCC should be used as the end of a
StandardLib | module three-position control loop. (This is described in

more detail in section Additional Control Functions
on page 177. Digital signals are used to modify
the state of connected devices. The digital outputs
cannot be activated at the same time and when
there is no need to change the output, neither of
them is activated.

192

3BSE041488-511

Section 4 Analog Process Control

Input and Output Signal Handling

Table 15. Standard library types for digital output signals

PulseWidthCC Control Control PulseWidthCC converts the analog signal from
StandardLib |module the control loop into a digital output signal. The
digital signal is periodic with a selectable pulse
width proportional to the value of the analog
signal.
ThreePosReal Control Function ThreePosReal is a three-position converter from a
SimpleLib block real input to two Boolean outputs (increase/

decrease), similar to the ThreePosCC control
module. The function block can be used with or
without feedback from the actuator.

3BSE041488-511

193

Input and Output Signal Handling Section 4 Analog Process Control

Manual-Auto Control

The Manual AutoCC control module lets you view the status of a signal of
ControlConnection data type, at any location, but preferably before an output, and
then change its value in Manual mode.

Table 16. Standard library objects for Manual-Auto control

Type Name Library Type Description
ManualAutoCC | Control Control ManualAutoCC makes is possible to enter values
StandardLib | module manually into a control loop, for example, range,

units of measurement or limits, and to supervise
the control values graphically in bar graphs and
trim curves.

Normally, ManualAutoCC is configured in series
on the ControlConnection line between two other
control modules. If ManualAutoCC is located first
in a control loop, it can be in Manual mode only,
and when located last in a control loop, it can be in
Auto mode only.

After many different calculations, the unit of
measurement of a signal may require
simplification, which can be entered in a
ManualAutoCC control module. See

Table 41 on page 378.

194 3BSE041488-511

Section 4 Analog Process Control

Supervision

Supervision

A level detector is a trip switch (low or high) for supervision of an analog signal. A
low-level trip indicates when the input signal drops below any of several defined
low detect levels, and a high trip correspondingly indicates when the supervised
signal exceeds any of several defined high detect levels.

Table 17. Standard library types for supervision

Type Name Library |Type Description
LevelHigh and BasicLib |Function | LevelHigh and LevelLow are trip switches for the
LevelLow block supervision of an analog signal of real type at an
optional number of levels.
The input signal may be given a certain degree of
hysteresis, which prevents the level detector output
signal from repeatedly changing state when the
supervised input signal varies near the detection
level.
SignalReal SignalLib | Function | SignalReal has an analog input and an output, both
block of real data type, with several supervision functions,
such as alarm and event levels, and interaction
windows. The input and output are intended to be
connected to real variables in an application.
SignalRealCalcOutM(") | SignalLib | Control | SignalRealCalcOutM is a version of SignalReal that
Module |handles input connections from a vote control
module. Input/Output is ControlConnection.
SignalRealCalcInM’ SignalLib | Control |SignalRealCalcInM is a version of SignalReal that
Module |handles connections to a vote control module.

Input/Output is ControlConnection.

3BSE041488-511

195

Supervision

Section 4 Analog Process Control

Table 17. Standard library types for supervision (Continued)

Type Name

Library

Type

Description

LevelscC(")

Control
Standard
Lib

Control
module

Level6CC is a supervisor object for level detection
of a ControlConnection signal with six configurable
alarm and event detection levels:

H (High), HH, HHH, L (Low), LL, and LLL.
Supervision may be absolute or relative to a
reference signal. Level6CC also has hysteresis and
filter time for alarm and event levels.

The H and L levels are mainly used for logical
circuits. The HH and LL levels are intended to be
used as conditions for alarm generation. The HHH
and LLL levels are intended to stop processes, but
there are no limitations on their use.

All levels may generate alarms. The presentation
color of levels and graphs is defined by project
constants. Each level has a logical color, and for
each color, there is a color setting. See online help
for more information.

Three information types are given for each level:
alarm condition state,

a Boolean alarm condition parameter,

a presentation signal of Level6Connection type.

The latter, which is parameter connected only, may
be used in control objects, in analog and digital
interface control modules, and in ManualAutoCC, to
show alarm levels in graph windows.

Level6CC handles connections to vote control
module.

Level4cC) and
Levelocc()

Control
Standard
Lib

Control
module

Level4CC and Level2CC are simplified versions of
Level6CC, restricted to 4 and 2 levels, respectively.
These types consume less memory and should be
used when 4 or 2 level supervision is enough.

Level4CC and Level2CC handles connections to
vote control module.

196

3BSE041488-511

Section 4 Analog Process Control

Supervision

(1) See also Vote Control Module Types on page 381.

Signal Quality and Status

The supervision of signal quality and handling of signal errors from, for example, a
transmitter, or from the I/O interface system, is important in many processes.

Normally, the quality of a signal has its origin in the signal interface. The quality of
a signal is defined as either GOOD, UNCERTAIN or BAD. A signal underflow or
overflow gives an UNCERTAIN signal quality. A hardware error gives a BAD

signal quality.

Table 18. Standard library objects for signal quality supervision

Type Name Library Type Description
SignalSupervisionCC | Control Control SignalSupervisionCC supervises the
StandardLib | module ControlConnection signal quality and handles

signal errors with configurable alarm and event

settings. SignalSupervisionCC has three different

modes.
e Through mode lets the signal pass without
any action.

* Freeze mode may freeze the output. If the
input signal is not of GOOD quality, the
output is frozen and an alarm is given.

* Predetermined mode. If the input signal is not
of GOOD quality, the output is set to a preset

value and an alarm is given. The pre-
determined value is reached by ramping.

3BSE041488-511

197

Calculation

Section 4 Analog Process Control

Calculation

There are a large number of system functions and control modules for mathematical
calculations of signals as well as mean, median and majority calculations.

Table 19. Standard library objects for mathematical calculations

Type Name Library Type Description
MedianReal and |Basic Function MedianReal and MedianDint calculate the median
MedianDint block value of an optional number of input values of real
and dint types, respectively.
MajorityReal Basic Function MajorityReal calculates the mean value of a
block number of signals of the real type, within a
selectable deviation value.
MajorityReal can, for example, be used to exclude
a divergent value in a redundant calculation or to
measure a number of signals.
AddCC Control Control AddCC executes the addition Out = In1 + In2.
ExtendedLib | module
SubCC Control Control SubCC executes the subtraction Out = In1 - In2.
ExtendedLib | module
MultCC Control Control MultCC executes the multiplication Out = In1 * In2.
ExtendedLib | module
XRaisedToYCC |Control Control XRaisedToYCC executes the xy function
ExtendedLib | module Out = In1 raised to the power of In2.
SqrtCC Control Control SqrtCC executes the square root Out = Sqrt(In).
ExtendedLib | module
DivCC Control Control DivCC executes the division Out = In1 / In2.
ExtendedLib | module
198 3BSE041488-511

Section 4 Analog Process Control

Calculation

Table 19. Standard library objects for mathematical calculations (Continued)

Mean8Exclude
BadCC

Mean12Exclude
BadCC

Type Name Library Type Description
Mean4Exclude Control Control Bad values collected by several transmitters can
BadCC ExtendedLib | module be excluded by using MeanXExcludeBadCC

control modules to analyze the status and value of
a signal.

Which module type to use depends on the
number of input signals.

Bad signals are excluded, and the mean value is
calculated for the remaining signals.

If status is not GOOD or if a value is extreme, it is
omitted. The mean value of the remaining inputs
is then taken as the output value. When only one
valid input value exists, this value is used as the
output signal. If no input signal is accepted, the
output is a value with status BAD.

For example, this might be useful when a number
of temperature transmitters are placed at the
bottom of a boiler, and some have been covered
with dust, and therefore return significantly higher
or lower values than the others. If a transmitter is
broken, the corresponding valid information is
false and this value is omitted by this reason. If the
transmitter however transmits a valid signal but
the value has a significant difference from the
others, this value will also be omitted.

v

MeanXExcludeBadCC may also be used for processing values to controllers.

3BSE041488-511

199

Signal Handling Section 4 Analog Process Control

Signal Handling

Derivative Objects

Derivative objects are normally used to detect changes in a signal, to predict a
control activity. A derivative object may also act as a high-pass filter.

Table 20. Derivative standard library objects

Type Name Library Type Description
DerivativeReal Control Function DerivativeReal is a combined first-order, low-pass
SimpleLib block filter and a differentiator. The filter is used to

smoothen the derivative action. The output may
be forced to track an external signal. Transition
from tracking is bumpless. The transition to the
tracking value is dependent on the deviation from
the current output value when tracking is enabled.
DerivativeReal and DerivativeCC (below) have
similar functionality.

DerivativeCC Control Control DerivativeCC is a derivative control module with
ExtendedLib |module adjustable filter time. The input is filtered by a first-
order, low-pass filter which determines the time
during which the derivative action is to decline.
The sampling time must be considerably shorter
than the filter time, at least 3 to 10 times. The filter
output is then differentiated.

During feedforward control, when the signal
changes, there is a need for an amplification of
short duration. The DerivativeCC filter can be
used to smoothen the derivative action.

200 3BSE041488-511

Section 4 Analog Process Control Signal Handling

Integrator Objects

Integrators accumulate the input signals and present the sum as an output. For
instance, a flow may be integrated, in order to compute a volume. The input signal is
integrated as long as the integrator is enabled. See Figure 91.

Output
signal
Settoa

1 Set at preset Enable=
a level value FALSE

Time
|

Figure 91. The integrator function sums the input signal (In) value over time

Table 21. Integrator standard library objects

Type Name Library Type Description
IntegratorReal Control Function The IntegratorReal output can be limited, and may
SimpleLib | block be forced to track an external signal. Transitions

from tracking and limiting are bumpless. Further
increase or decrease of the output can be
inhibited. At reset, the integral part is set to zero.

IntegratorCC Control Control IntegratorCC offers the same functions as the
ExtendedLib | module IntegratorReal function block type.

It can also be reset to a selectable, predetermined
output value.

3BSE041488-511 201

Signal Handling

Section 4 Analog Process Control

Flow Calculation

Flow measurements can be made by meters giving an analog signal directly
proportional to the flow, or by differential pressure measurement across a measuring

flange.

Table 22. Standard library objects for flow calculation

Type Name Library Type Description
FlowCC Control Control FlowCC calculates the value directly proportional
ExtendedLib | module to the flow, or by differential pressure

measurement across a orifice plate.

FlowCC has compensation inputs for the
surrounding temperature and pressure. Given the
maximum flow, the flow can be calibrated for other
operational cases with real measurements.

FlowCC may be used as input to various
calculations, or as a process value in a controller.

202

3BSE041488-511

Section 4 Analog Process Control Time Average

Time Average

The time average value of the input over a specified number of samples can be
calculated.

Table 23. Standard library objects for time average calculation

Type Name Library Type Description

TimeAverageCC | Control Control | TimeAverageCC reads a parameter of

ExtendedLib | module | ControlConnection data type, and calculates the
moving average value over a specified number of
samples.

There is also a parameter in TimeAverageCC that
helps to configure the module to calculate the average
in three different ways:

e Continuous sampling based on the configured
number of samples

e Setting a sample time for calculation. This sample
time can be equal to or greater than the
modules’s execution scan time

¢ Sampling based on request.

3BSE041488-511 203

Time Average Section 4 Analog Process Control

Signal Reshaping

If a transmitter signal is non-linear, a piecewise linear signal object can be used to
reshape and linearize it. Linearization is performed before the signal is connected to
the controller or a calculator function. A piecewise linear signal object is also useful
in cases of non-linear relations between values in one or two dimensions, for
example, absolute and relative humidity, or pressure versus density for a liquid or
for steam.

Table 24. Standard library objects for flow signal reshaping

Type Name Library |Type Description
PiecewiselLinearReal Control Function | PiecewiseLinearReal has a number of
SimpleLib | block predefined input-output pairs. Values between

these pairs are calculated by linear interpolation.

PiecewiselLinearReal can be used to define a
non-linear function y=f(x). The maximum
number of data points is 21, and there is an
interaction window making data input easier.
Intervals between different break points do not
have to be equal.

X values must be increasing. Below the first
point, and above the last point, linear
extrapolation to infinity is used. The pseudo
inverse of the defined function can be calculated
for a given input.

PiecewiseLinear2DReal | Control Function | The PiecewiseLinear2DReal function block type
SimpleLib | block takes two inputs, which means that a non-linear
surface, z=f(x,y) can be specified. The restriction
on the x, and the y values is that they must be
increasing. A maximum of 21 x values and 11y
values can be specified, that is 231 data points.
An interaction window can be used to edit the
data.

The functionality of PiecewiseLinear2DReal is

the same as for the PiecewiseLinear2DCC
control module below.

204 3BSE041488-511

Section 4 Analog Process Control

Time Average

Table 24. Standard library objects for flow signal reshaping (Continued)

Type Name

Library

Type

Description

PiecewiseLinearCC Control

Extended
Lib

Control
module

PiecewiseLinearCC has the same functions as
the PiecewiseLinearReal (see above).

If a transmitter signal is non-linear,
PiecewiseLinearCC can be used to linearize it.
Linearization is performed before the signal is
connected to a controller. The controller can
then be tuned for optimized function,
independent of the non-linearity of the
transmitter. If, in the future, the transmitter is
replaced, the new one may have other
characteristics. The new function, given in the
transmitter manufacturer’s technical information
data sheet, may then be entered in this
PiecewiseLinearCC control module and the
control loop will work the same with the new
transmitter.

You can also connect PiecewiseLinearCC to a

controller output to linearize a non-linear valve
characteristic.

PiecewiseLinearExtension | Control

Extended
Lib

Control
module

PiecewiseLinearExtension modules are used as
add-ons to PiecewiselLinearCC, in order to add
multiples of 20 points, for large numbers of data.

PiecewiseLinear2DCC Control

Extended
Lib

Control
module

PiecewiseLinear2DCC has the same functions
as PiecewiseLinear2DReal (see above).

The above control modules are suitable for changing signals according to non-
linear static functions.

A setpoint curve may be generated by a PiecewiseLinearCC control module to a
succeeding controller by having a preceding IntegratorCC control module.

3BSE041488-511

205

Time Average Section 4 Analog Process Control

The inverse of the f(In) function can be calculated with the Inlnverse and Outlnverse
parameters:

e The relation is Outlnverse = f -l (Inlnverse). The inverse calculation is
performed on the specified data points, where Outlnverse is in the interval x1 -
xn, and xn is the last point used. All functions can of course not be inverted. In
such cases a pseudo inverse is calculated using the curve between the
maximum and minimum defined values of y.

* If the inverse is still not unique, the smallest value is chosen. This is illustrated
in Figure 92, which shows the inverse calculation for two different Inlnverse
values, y1 and y2. For y1 there are two possible inverse values. The rightmost
is chosen, since the inverse is calculated from the curve between the maximum
and minimum values. For y2, there are four possible inverse values, three of
which are inside the inverse range. The leftmost of these is chosen. If Inlnverse
is greater than the maximum defined value of y or less than the minimum
defined value of y, the inverse calculation is based on using the maximum or
minimum value respectively.

| |
| |
i o

.

-~

Ratge for inverse caloulation

fx)

Figure 92. Calculation of the inverse function f{(x)

206 3BSE041488-511

Section 4 Analog Process Control Time Average

Filters

First-order, low-pass filters can be used to, for example, reduce the amount of high-
frequency noise in analog signals created by an analog transmitter or the control
system environment. A filtering time can be set.

Table 25. Standard library objects for filtering

Type Name Library Type Description
FilterReal Control Function FilterReal is a single-pole low-pass filter. The
SimpleLib block transfer function is:

G(s) = 1/(1 + s*FiltT)
where FiltT is the filter time constant.

Filter2Real Control Function Filter2PReal is a low-pass filter with one zero and
SimpleLib block two complex poles. Their outputs can be forced to
track an external signal. The transition from
tracking is bumpless. The transfer function is
G(s) = (1+S*ZFiltT) /

(1+ s*2*Damping*PFiltT+s2*PFiltT2)

where ZFiltT is the time constant for the
derivation. Damping is the damping factor and
PFiltT is 1/the resonance angular frequency.

LeadlLagReal Control Function LeadLagReal is used as a lead or a lag function,
SimpleLib block that is, a derivative or an integration limiter,
respectively, determined by the relation between
two input time constants. LeadLagReal, of real
type, can be forced to track an external signal and
the transition from tracking is bumpless. The
transfer function is:

G(s) = (1+s*LeadT)/(1+s*LagT)
where LeadT is the time constant for the

derivative lead and LagT is the time constant for
the integration lag.

FilterCC Control Control FilterCC is a first-order, low-pass filter for
ExtendedLib | module ControlConnection signals. The transfer function
is the same as in FilterReal (see above).

3BSE041488-511 207

Time Average

Section 4 Analog Process Control

Table 25. Standard library objects for filtering (Continued)

Type Name Library Type Description
Filter2PCC Control Control Filter2PCC is a low-pass filter with one zero and
ExtendedLib | module two complex poles. The transfer function is the
same as in Filter2PReal (see above).
DecoupleFilterCC | Control Control The DecoupleFilterCC is used to dynamically
AdvancedLib | module decouple cross coupled systems with two input
signal. In a system with two inputs and two
outputs which are cross coupled i.e. that one input
affects both outputs, this leads to a difficult
controlling problem. By introducing a
DecoupleFilterCC, the interaction between these
inputs and outputs can be shaped so that only
one input affects one output. Thus by using
DecoupleFilterCC, one can transform a Two In -
Two Out system (TITO) into two Single In - Single
Out systems (SISO).
LeadLagCC Control Control LeadLagCC has the same functions and transfer
ExtendedLib | module function as LeadLagReal (see above).
Low-pass filter control modules may be used to flatten a signal step with a high
@ derivative component into a continuous signal, without steps. This filter function

is also included in the analog input control module described in Input and Output
Signal Handling on page 184.

208

3BSE041488-511

Section 4 Analog Process Control Branch Objects

Delays

Dead-time control and loop calculation are required in control systems with long
transport lags, such as conveyor feed systems.

Table 26. Standard library objects for signal delays

Type Name Library Type Description
DelayCC Control Control DelayCC, in combination with other control loop
ExtendedLib | module control modules, delays a ControlConnection

signal for a predetermined time. The delay time
may also be a calculated variable, or a controller
output.

Branch Objects

There are a number of branch objects that split signals into two or several branches
and manage different aspects of the splitting procedure.

Also, many processes work with large differences in product flows. It may then be
necessary to use two valves in parallel, one for small flows and one for large flows.
In other processes, there might be a need to split a signal into two branches, one
slow and one fast.

To ensure that two process valves working in parallel, together give the required
flow a signal range might need to be divided into two output signal ranges, each of
which is an output part of the input signal.

3BSE041488-511 209

Branch Objects

Section 4 Analog Process Control

The Control libraries contain a number of types for these purposes.

Table 27. Standard library signal branch objects

Type Name

Library

Type

Description

BranchCC
Branch4CC

Control
StandardLib

Control
module

BranchCC and Branch4CC split a signal of
ControlConnection type into two or four branches,
respectively, with output signals equal to the input
signal, with the same backtracking functions.

A signal of ControlConnection type can be
duplicated for calculation with several other signals
using these control modules.

A measured signal value can be duplicated for use

as an input signal to several controllers using these
control modules.

SplitRangeCC

Control
StandardLib

Control
module

SplitRangeCC splits the output signal to the valves
into two output signal ranges; one branch for each
valve. You can scale the output signal ranges
independently.

A SplitRangeCC split range control module can be
used in a controller output signal.

210

3BSE041488-511

Section 4 Analog Process Control

Branch Objects

Table 27. Standard library signal branch objects (Continued)

Type Name

Library

Type

Description

MidRangeCC

Control
StandardLib

Control
module

MidRangeCC splits a ControlConnection signal into
two branches, one slow and one fast branch.

For example, if two valves act in parallel on the
same flow, there is a need to split a signal into two
branches. One valve may be bigger and slower and
have a larger operating range. The other may be
small and fast and used to control small
perturbations in the flow.

The fast branch reacts faster to changes in the
signal and then works around an approximate
middle setpoint for its operating range. Meanwhile,
the slower branch takes control.

CommonRangeCC

Control
StandardLib

Control
module

CommonRangeCC splits a ControlConnection
signal into two branches which, when added
together, give the value of the input signal.

CommonRangeCC is used to ensure that two
valves in parallel, with a specified ratio between the
outputs, give the required flow, when added.

The input signal range is divided into two output
signal ranges, each of which is an output part of the
input signal, for example, in a 20/80% ratio.

If one output signal is in Manual mode and is
changed (for example, 20% is changed to 10%),
the other output signal overrides its default value
(80%) and sets its output to 90% in order to
maintain the total output (100%).

CommonRangeCC can also be used for quotient
control. In such applications the input for the first
output is connected to an output from a quotient
controller. The input is connected to an output from
a controller for the addition of the outputs.

3BSE041488-511

211

Branch Objects Section 4 Analog Process Control

Signal Tapping

There are functions for tapping off signals in the same signal range. One function
taps off signals of the ControlConnection type. Another can tap off signals of the
real type from a signal of the ControlConnection type. A signal tap is a kind of
listening control module on the main signal flow. The tapped signal is an exact copy
of the input signal. Modules connected to the tap output must not, under any
circumstances, influence the main signal flow.

Table 28. Standard library objects for signal tapping

Type Name Library Type Description
TapCC Control Control TapCC divides a ControlConnection signal into
StandardLib | module two branches, where one has backtracking

capability, and the other does not. The latter is
called the tapped signal.

Use this control module type with care.

TapRealCC Control Control TapRealCC extracts the value component, as an
StandardLib | module exact copy, from a ControlConnection signal to a
real value. Use this control module type with care.

Use TapRealCC to use extract the real value of a
signal in, for example, calculations.

212 3BSE041488-511

Section 4 Analog Process Control

Selector Objects

Selector Objects

In signal handling and in control loop applications it is often necessary to choose
between two or more signals. This subsection describes a number of functions,
function blocks and control modules for this purpose.

Table 29. Standard functions and library objects for signal selection

Type Name Library Type Description
sel (system Function | selselects one signal of two depending on whether a
mux function) given expression is evaluated as True or False.

mux works as a multiplexor, with several inputs and
one output, of most data types, but inputs have to be
of the same type. The user selects the input signal to
be forwarded to the output.

For signal handling, it is sufficient to use the sel or
mux system functions, for example, to select a signal
for indication.

When choosing between signals from, for example,
two controllers, consider that the non-selected signal
branch is open, and no information is sent
backwards. This may require some means to remedy
controller output signal drifting, such as backtracking.

3BSE041488-511

213

Selector Objects

Section 4 Analog Process Control

Table 29. Standard functions and library objects for signal selection (Continued)

Type Name

Library

Type

Description

SelectorCC
Selector4CC

Control
StandardLib

Control
module

The SelectorCC and Selector4CC selector control
modules select one of two or several inputs, of
ControlConnection type, for example, setpoints.

In SelectorCC you select which of two input signals is
allowed through, by means of a Boolean signal.

To select between four input signals a Selector4CC
selector control module with four inputs is used. For
more than four input signals, several Selector4CC
control modules can be connected in a chain.

The output of the first Selector4CC goes to the input
of the second, and so on. By means of an integer
signal going to and between the control modules it is
possible to select which of the input signals to allow
through.

For signal handling only it is possible to use the
SelectorCC and Selector4CC selector control
modules.

High demands on information in both directions are
fulfilled. For example, backtracking of the not-
selected inputs is supported automatically.

SelectGoodCC
SelectGood4CC

Control
StandardLib

Control
module

The SelectGoodCC and SelectGood4CC control
modules can be used for selection of the first GOOD
signal between either two or up to four inputs of
ControlConnection type. If no GOOD signal exists,
the output used is a copy of the first input.

For signal handling only, it is possible to use the
SelectorGoodCC and SelectorGood4CC selector
control modules.

High demands on information in both directions are
fulfilled. For example, backtracking of the not-
selected inputs is supported automatically.

An I/O signal is considered to be GOOD when there
is no overflow, no underflow and no missing interface.

214

3BSE041488-511

Section 4 Analog Process Control

Selector Objects

Table 29. Standard functions and library objects for signal selection (Continued)

Type Name Library Type Description
max (system Function | max and min select the signal with the maximum or
min function) the minimum value. max and min are extensible for
several input signals of many types, but the
compared signals have to be of the same type.
MaxReal BasicLib Function |MaxReal, MaxDint, MinReal, and MinDint select the
MaxDint block input signal with the maximum or the minimum value
. among an optional number of inputs. The selected
MinReal .] . .
input is written to the output signal.
MinDint

The MaxReal, MaxDint, MinReal, and MinDint
function blocks compare signals of real or dint type.
The function blocks also have a dead zone
functionality for the inputs and an output that
specifies the chosen input. Observe that the output
signal will be discontinuous if the dead zone differs
from zero (0).

For signal handling only it is sufficient to use the min
or max system functions or the MaxReal, MaxDint,
MinReal, or MinDint function blocks.

When the signal selection involves controllers in a
control loop, high demands on information through
the signals are required, for example, when using
function blocks to solve a selection of controller
outputs for override control of a heat pump.

3BSE041488-511

215

Selector Objects Section 4 Analog Process Control

Table 29. Standard functions and library objects for signal selection (Continued)

Type Name Library Type Description

MaxCC Control Control MaxCC, Max4CC, MinCC, and Min4CC calculate and

Max4CC StandardLib [module |select the maximum and minimum value of 2, 3, or 4

MIinCC input ControlConnection signals with a certain
tolerance. The selected input is written to the output

Min4CC

signal.

For MinCC and Min4CC, the value of inputs that are
not connected to the output is limited. If they deviate
more than their tolerance, their value is limited to the
output plus the tolerance. In this way, the output of
preceding modules is limited to the output plus the
tolerance.

As long as an input is within its tolerance, no value is
sent to preceding control modules.

The same thing applies for MaxCC and Max4CC, but
with the opposite functionality.

MaxCC, Max4CC, MinCC, and Min4CC can be used
for signal handling.

The MinCC and Min4CC selector control modules select the minimum value of two
and up to four connected input signals, respectively. MaxCC and Max4CC select the
maximum value of two and up to four connected input signals, respectively. At least
two inputs have to be connected but unconnected inputs are not considered in the
selection. The inputs may have different measuring ranges.

If the output is backtracked from succeeding control modules all connected inputs
are backtracked to the same value.

The user defines a tolerance for each input. An unselected input can deviate at most
by that tolerance from the output. When an input is limited by the tolerance, that
input value is sent to preceding control modules having an internal state. No value is
sent backward as long as the input is within its tolerance from the output.

Assume for a MinCC that input one is the minimum signal and is consequently sent
to the output.

216

3BSE041488-511

Section 4 Analog Process Control Selector Objects

To avoid input two drifting away it is limited by its tolerance from the output. If
input two exceeds the output plus the input two tolerance, input two is limited to that
value. This means that outputs of preceding control modules with internal states do
not exceed that limited input two value. Consequently, if the input two value is
within its tolerance of the output signal, no value is sent to preceding control
modules. The opposite is true if instead input two signal is the smallest.

The same is valid for MaxCC. It selects the maximum of two input signals and
sends it to the output. Accordingly, if the smaller input signal reaches its tolerance
limit, the smaller input is assigned the output signal value minus its tolerance value.
This means that outputs of preceding control modules with internal states do not fall
below that limited input two value.

In control modules with four inputs the discussion is exactly the same. The three
unselected inputs are treated in the same way as described above. These control
modules can be used if, for example, controllers are connected to the inputs. The
unselected controller output signal will stay close (differing by the tolerance at
most) to the selected controller output. It is then ready to be the active controller.
See the example for maximum and minimum selectors.

signals starts to oscillate or has a noise jamming overlay. If the tolerance
parameters are set too narrow and a controller starts to oscillate, with an
amplitude greater than the tolerance, problems may occur. The output signal from
MaxCC and Max4CC can start to "integrate” up to 100% (MinCC and Min4CC
lead to integration to 0).

@ Do not set the tolerance values too low. Problems may occur if any of the input

3BSE041488-511 217

Limiter Objects Section 4 Analog Process Control

Limiter Objects

In many cases it is necessary to limit a signal value, or to limit the rate of change of
a signal.

Table 30. Standard library objects for limiting a signal

Type Name Library Type Description
limit (system Function limit works as a delimiter between a set minimum
function) and a set maximum signal value of several data

types. If the input is smaller than or equal to the
minimum value, the output is assigned the
minimum value.

If the input is greater than or equal to the
maximum value, the output is assigned the
maximum value. An input value between the
minimum and a maximum values is not changed.

VelocityLimiter Control Function VelocityLimiterReal is a ramp function that is used
Real SimpleLib | block to limit the velocity of change for a signal of real
type. The output can be forced to track an external
signal and the transition from tracking is
bumpless.

218 3BSE041488-511

Section 4 Analog Process Control Limiter Objects

Table 30. Standard library objects for limiting a signal (Continued)

Type Name Library Type Description
AccelerationLim | Control Function AccelerationLimReal is a ramp function that is
Real SimpleLib | block used to limit the velocity and acceleration of

change for an input signal of real type.

The maximum acceleration is given as the time
allowed from steady state to maximum velocity of
the output signal.

It is also possible to configure
AccelerationLimReal so that overshoots are
minimized when the input is changed in discrete
steps. The output may also be tracked and held at
a certain value.

For signal handling only it is sufficient to use the
limit system functions or VelocityLimiterReal and
AccelerationLimReal.

When the limiter involves controllers in a control
loop, high demands are placed on information
through the signals.

3BSE041488-511 219

Limiter Objects

Section 4 Analog Process Control

Table 30. Standard library objects for limiting a signal (Continued)

Type Name

Library

Type

Description

LimiterCC
LimiterHighCC
LimiterLowCC

Control
StandardLib

Control
module

LimiterCC keeps the signal between a high limit
and a low limit. LimiterCC is, in the first place,
used to set high and low limits on the output from
controllers. The controller itself has changeable
limits on its output, but in a loop with one or more
control modules on the controller output, the
limitation is often required at the end of a chain of
control modules.

LimiterHighCC and LimiterLowCC maintain the
signal below a high limit and above a low limit,
respectively.

The Limiter types have no internal state and
cannot allow backtracking from the output, unless
a preceding control module has the feature. If a
high or low limit is reached, information is sent
backward to preceding control modules to prevent
the input from being increased. An output also
indicates that the limit has been reached. If a
succeeding control module orders this control
module into Backtracking mode, this order is also
transferred to preceding control modules.

VelocityLimiterCC

Control
StandardLib

Control
module

VelocityLimiterCC is used to limit the change rate
of an increasing or decreasing signal. This will
slow down changes in the output signal. The
maximum rate of change for increasing and
decreasing signals can be set independently. The
output follows the input signal but the rate of
change is limited. If the input signal changes
faster than the output is allowed to change, the
change rate of the output will be constant until the
output has reached the input value.

220

3BSE041488-511

Section 4 Analog Process Control

Conversion

Table 30. Standard library objects for limiting a signal (Continued)

Type Name

Library

Type

Description

Acceleration
LimCC

Control
StandardLib

Control
module

AccelerationLimCC is a ramp function that is used
to limit the velocity and acceleration of change for
an input signal of ControlConnection type. The
maximum acceleration is given as the time
allowed from steady state to maximum velocity of
the output signal.

It is also possible to configure AccelerationLimCC
so that overshoots are minimized when the input
is changed in discrete steps. The output may also
be tracked and held at a certain value.

Conversion

The conversion function blocks in the Basic library convert signals of various data
types to and from signals of other data types.

The conversion control modules in the Standard Control library convert data types
used in control loops to and from other data types for connections to application
programs. These control modules are like an adaptor interface between an ordinary
data type signal and a control loop signal of ControlConnection data type.

The following conversion functions are available. See also online help for detailed
information on individual objects (select the object in Project Explorer and press

F1).
Table 31. Conversion objects in standard libraries
Type Name Library Type Description
CCToReal Standard Control library | Control module | Convert a

ControlConnection signal to
a real signal.

CCTolnteger

Standard Control library | Controlmodule | Convert a

ControlConnection signal to
an integer signal.

3BSE041488-511

221

Conversion Section 4 Analog Process Control
Table 31. Conversion objects in standard libraries (Continued)
Type Name Library Type Description
RealToCC Standard Control library | Control module | Add a real signal to a

ControlConnection signal.

ReallOTolnteger

Standard Control library

Function block

Converts a scaled ReallO
value to an integer value in
the range 0-65535.

IntegerToReallO

Standard Control library

Function block

Converts an integer value
in the range 0-65535 to a
scaled ReallO value with a
measuring range, units and
decimals. Can be treated
as a physical ReallO value
in the application.

BcToDint

Standard Control library

Function block

Converts data from an
optional number of binary
coded Boolean inputs and
a sign input into a dint.

DintToBc

Standard Control library

Function block

Converts data from dint to
an optional number of
Boolean outputs, using
binary coded conversion,
and a sign output.

FirstOfNToDint

Standard Control library

Function block

Converts data from 1-of-N
format with an optional
number of Boolean inputs
and a sign input, into a dint.

DintToFirstOfN

Standard Control library

Function block

Converts data from dint to
an optional number of
Boolean outputs using 1-of-
N conversion, and a sign
output.

222

3BSE041488-511

Section 4 Analog Process Control

Conversion

Table 31. Conversion objects in standard libraries (Continued)

Type Name

Library

Type

Description

NBcdToDint

Standard Control library

Function block

Converts data from an
optional number of Boolean
inputs in groups of four,
coded as BCD, and a sign
input, into a dint.

DintToNBcd

Standard Control library

Function block

Converts from dint to an
optional number of Boolean
inputs in groups of four,
coded as BCD, and a sign
output.

GrayToDint

Standard Control library

Function block

Converts data from gray
code with an optional
number of Boolean inputs
and a sign input, into a dint.

There are more functions for similar conversions in the Basic library. See online
help for complete information.

3BSE041488-511

223

Miscellaneous Objects Section 4 Analog Process Control

Miscellaneous Objects

There are some additional types in the standard libraries that are useful when
building control loops.

Table 32. Standard library objects for demultiplexing

Type Name Library Type Description
StateCC Control Control StateCC is used to break up control loops and
ExtendedLib | module create one scan delay. (For simple data types this
problem is solved by means of variable:new and
variable:old.)

StateCC is needed since it is not possible to break
code loops in a controller loop consisting of
control modules only.

StateCC delays the forward and backward
components by one cycle scan. StateCC does not
influence either the forward or the backward
component of ControlConnection.

StateCC is normally not used, because the
system does not check that the code is executed
in the correct order. However, if you are forced to
break the automatic sorting of the input to output
order and you have to make a connection of
ControlConnection type backwards in the control
loop, it is possible to use it.

Do not use StateCC in any other case.

Threshold Basic Function Threshold can have an extensible number of
block inputs. Threshold determines when more than, or
equal to, a given number of Boolean input values
are True.

224 3BSE041488-511

Section 4 Analog Process Control Control Loop Solutions

Control Loop Solutions

Introduction

Concept

Design

This section describes how to use control module type templates from the Control
Solution library (ControlSolutionLib) to create control solutions for commonly
occurring customer processes. The section contains:

* A description of the Control Solution concept and the types in the Control
Solution library, see Concept on page 226.

e Instructions on how to implement control loop solutions using the types in the
Control Loop Solution library, see Design on page 226.

* An example on how to implement a control loop solution using the types in the
Control Loop Solution library and change it to fit an intended usage, see
Example on page 228.

All the control module types in Control Solution library (ControlSolutionLib)
provide a complete control solution, intended to be used directly in an application.
The user requires only to connect the control module to I/Os and in some cases set
some configuration parameters.

The control module types are ready-to-use solutions for frequently occurring control
processes found at customers. They consist of a control solution with basic control
module types and alarm handling.

The users may use the solutions directly, or create own types by making copies and
change these to fit an intended usage, which may be level control, flow control, etc.
These new types can then be populated with specific default values for controller
tuning, alarm limits etc.

A control solution template consists of several basic library types (sub control
modules) from the standard libraries.

3BSE041488-511 225

Design Section 4 Analog Process Control

= [P ControlSelutionLib 1.2-3
..... I Connected Libraries
----- & Data Types
9 ----- 2 Control Module Types
EI :E}CascadeLnop
------- ﬁlcnn (Single control module)
B ﬁObjectLaynut (Single contral module)
------- E Out Signallib.SignalOutReall
------- E OutVel ControlStandardLib.VelocityLimiterCC
------- E PidM ControlStandardLib.PidCC
------- E Pids ControlStandardLib. PidCC
------- -ﬁ PuM Signallib.SignallnReali
------- -ﬁ Pv5 Signallib.SignallnRealM
------- E SpMLirn ControlStandardLib.LimiterCC

Figure 93. Standard types in a control loop solution (CascadeLoop)

Parameters

The parameters of the sub control modules are connected to variables and given
appropriate default values. In a user specific object these variables, for example
parts of the alarm configuration, can be moved to the parameter list. The default
values of the variables/parameters, such as alarm limits, can also be changed, to fit
an intended usage.

The variables of a sub control module can be moved to the parameter list and vice
versa.

All control solution templates have a Name parameter with the length of 22
characters. The Name parameters of the sub objects will be a name that is a
concatenation between the name of the solution object and a suffix. The used suffix
is the instance name of the corresponding sub object.

226 3BSE041488-511

Section 4 Analog Process Control Example

Example

— Example

If the Name parameter of a CascadeLoop instance of Figure 93 is
FIC1234, the sub object PidM gets FIC1234PidM as Name parameter.

Alarm Handling
The solutions are configured with an appropriate set of level and deviation alarms.
The following sub control modules with alarms are used in the solutions:

* SignallnRealM
Alarm configured for Error: Alarm levels of HH, H, L, and LL parameters are
set to 95%, 90%, 10%, and 5% of the range, respectively. HHH and LLL
parameters are disabled.

* SignalOutRealM
Alarm configured for Error: All alarm levels are disabled.

 PidCC
Alarm configured for DevPos and DevNeg: The deviations are set to £10%.

Parameters of a control solution object are connected to the sub control module
ObjectLayout (a single control module). The main solution object is Alarm Owner
of all alarms from the solution, since Alarm Owner property of ObjectLayout is not
enabled. For further information about the Alarm Owner Concept, See AC 800M
Configuration manual (3BSE040935%).

The connection list of ObjectLayout must be updated when a parameter is renamed.
In the most cases the corresponding parameter of ObjectLayout also must be
changed, to reflect the change in the parameter interface of the solution object.
When a parameter of ObjectLayout is renamed, the corresponding connection needs
to be reconnected. The connections of the sub objects of ObjectLayout need to be
changed to the new parameter name.

This example shows how to customize a control solution template, by using types in
the Control Loop Solution library and how to change the new object to fit an

3BSE041488-511 227

Example Section 4 Analog Process Control

intended usage. It also illustrates some important control loop solution concepts and
relations.

* Adding Object gives an example of how to add a basic control object to a new
created control solution object.

Adding Object in Control Builder

In this example a new control solution object, based on the SingleL.oop template, is
created. The new control solution template is extended with a delay (SpDelay of
DelayCC type) after the setpoint limiter (SpLim) to delay the setpoint value.

SpDelay
(DelayCC) !

Figure 94. The result in of the new control solution in CMD editor
1. In Control Builder, create a new library (user-defined library).

2. Make a copy of the SingleLoopPar data type, from ControlSolutionLib and
paste it into the user-defined library (in this example MySolutionLib).

ﬂ By copying the InteractionPar (SingleLoop) data type before the main control
module type minimizes parameter connections.

3. Make a copy of the SingleLoop control module type, in ControlSolutionLib,
and paste it into MySolutionLib.

4. In MySolutionLib, rename SingleLoop control module type to DelayLoop and
rename SingleLoopPar data type to DelayLoopPar.

228 3BSE041488-511

Section 4 Analog Process Control Example

5. Connect libraries, that the solution template DelayLoop is dependent on, to
MySolutionLib.

(=0 "] My SolutionLib 1.0-0

=} W Connected Libraries

. [BasicLib16-8
B ControlExtendedLib 1.3-3
. [ControlStandardLib 1.4-6
o [TeonLib 13-3
o [P Signallib 16-7
o & Data Types SingleLoopPar data type

. A DelayLoopPar " renamed to DelayLoopPar.
- 2 Control Module Types

..... 7 DelayLoop SingleLoop control module
- type renamed to DelaylLoop

Libraries that the main
solution object DelayLoop
is dependent on.

Figure 95. Connected Libraries and renamed objects

6. Right-click the DelayLoop and select Editor.

7. Update description of the solution object to reflect the new added functionality.
In Message pane, select Description tab and add text about the delay
functionality.

< » 4 Start_Code A Code /

Thi= control module provides a complete =ingle loop
control solution for connection to I-0. The control
module provides PID control ik sis=0EER=Ts ==t fsl=hys) o
zignal supervision. welocity limiter., stiction
compensation, alarm handling, trending, and operator
graphics.

< | » Description A4 Check 4 Find in Editor /

Figure 96. New added text in Description tab of DelayLoop

8. Expand Data Types folder and double-click the DelayLooopPar to open editor.
Add SpDelay of data type DelayCCpar as a new component (interaction
parameters of the setpoint delay). Save and close the editor.

3BSE041488-511 229

Example Section 4 Analog Process Control

MName Data Type Attributes |Initial Value|ISP Value |Description
1 |Pv SignallnRealMPar Interaction parameters for the Py
2 |Out SignalOutRealMPar Interaction parameters for the Out
3 |Pid PidCCPar Interaction parameters for the PID
4 |SpLim LimiterCCPar Interaction parameters for the Sp limiter

D Par

E Interaction paramete
VelocityLimiterCCPar

Interaction parameters for the Out velocity lit

Figure 97. SpDelay added as new component for DelayLoopPar

9. Expand DelayLoop folder, right-click the ObjectLayout single control module
and select the CMD editor. Provide space for the DelayCC control module by
moving SpLim (LimiterCC) to the left.

10. Create an instance of DelayCC type (ControlExtendedLib) with instance name
SpDelay and add it between the SpLim and Pid control modules. Make sure
that the graphical connections are correct. See Figure 94.

In the next following steps the SpDelayName parameter is connected to
NameSpDelay parameter in ObjectLayout. NameSpDelay parameter is then
connected to the NameSpDelay variable of DelayLoop.

11. Connect parameters of SpDelay according to Figure 98 below. Save and close
the Connections editor.

Mame Data Type Initial “alu |Parameter Diirer
1 |MName string[30] Delay' SpDelayMame in_o
2 |n ControlCaonnectic Splim. Out in_ai
3 [Out CantrolConnectic Fid.Sp in_ol
4 |Delay ControlConnectic|Default in_ai
5 |InteractionPar |DelayCCPar Default InteractionPar. SpDelay in_ol

Figure 98. Connections of SpDelay parameters

12. Right-click the ObjectLayout and select Editor. Add SpDelayName of
string[30] data type as parameter. Save and close the editor.

230 3BSE041488-511

Section 4 Analog Process Control

Example

13. Right-click the DelayLoop and select Editor. Add NameSpDelay of string[30]
data type as variable.

14. Right-click ObjectLayout and select Connections. Connect NameSpDelay
variable to SpDelayName parameter.

[l b | L0 | PO —

Mame Data Type Initial *alu (Pararmeter
Pidrarme string[30] MNamePID
PulMarne string[30] MarnePy

CutMame string[30] MarmeOut

SpLimiterame

SpDelayMame (B

~ |

OutvelocityMam 0]

MNameQutvelocity

ctrinnl 1M1

lranblarma

lranhlama

Figure 99. Connection of NameSpDelay variable

Name

Figure 100. The result of DelayLoop parameter and variable connections

'

NamePID e
NameOQutVelocity e
NameSpLimiter ®
NamePv e
NameOut e

NameSpDelay o

DelayLoop

ObjectLayout

SpDelay

SpDelayName
Name

In the next following steps initial values for max. delay and delay (5.0 s) of the
setpoint value are set to 30.0 s and 5.0 s respectively. The initial values can then be
changed via the interaction parameters.

3BSE041488-511

231

Example

Section 4 Analog Process Control

15. Right-click the DelayLoop and select Editor. Add StringSpDelay of string[8]
data type with the initial value ‘SpDelay’ as variable.

Mame Data Type Attributes Initial %alu |De
11 [StringPy String[8] constant hidden [Py
12 [StringOutvelocit |String[8] constant hidden |'Out'/el’
13 Strin pLimiter |String[d constant hidden ['SpLi

14 String[8] constant hidden |'S

bioal

LU | [y

Figure 101. StringSpDelay added as data Zype with ‘SPDelay’ as Initial Value

16. In the code pane, add code for name assignment.

HAMEUTYELOZ1TY | = NAane;
AddSuffi=({ String := HameOutVelocity.
Suffix = StringtutVelocity)
HameSplimiter = Hame:;
AddSuffix{ String = NameSplimiter,
Suffix StringSplimiter)
= K

Iconlame = left(Hame .10);

Figure 102. Code for name assignment

17. At the bottom of the code pane, add code to set the initial value of delay time to
5.0 s and initial value of max. delay time to 30.0 s.

Splelay . DelayTime

InteractionFar ! 5.0;
InteractionPar.Sphelay . MagDelayTine = 30.0;

< | » " Start_Code A Code /

Figure 103. Assigning of initial values

Figure 104. Extended Faceplate of DelayLoop

232

3BSE041488-511

Section 4 Analog Process Control

Basic Control Loop Examples

Basic Control Loop Examples

This sub section contains a number of examples that have been included to show
how to implement analog process control using objects from the Control libraries,
and to illustrate some important concepts and relations:

* Basic Control Loop Examples show two basic cascade loops, and an input
selection function, all based on types from the Control libraries.

The following two examples show cascade loops built from basic components in the

Control libraries.

Cascade Loop with Functions and Function Blocks

Out

| E;" " oua
Max
Min F——
Out |~
Spin
o OutQ 17—
\Sp Out
Spa OutQ
Out PY
B &;m oua | pva Master
Max —1—1—— PV Max
Min PV Min
Out Max
Out Min
Track
TrackValue
IAhibitine

/nhibitDec

[

:

il

'Sp Out—{1n out [l[e]
— SpQ OutQ — InQ Max
PY Slave Min
— PVQ
r— PV Max
PV Min
L Out Max
—— Out Min
Backtracking
BacktrackingValue
OutMaxReached
QutMinReached

Figure 105. Example of a cascade control loop consisting of function blocks, with
signal ranges added

3BSE041488-511

233

Signal Selection Example Section 4 Analog Process Control

Cascade Loop with Control Modules

AI Master

Slave

Al AO

.]

Figure 106. Example of a cascade control loop consisting of control modules

Signal Selection Example

When signal selection involves controllers in a control loop, higher demands are
placed on the signal information. Use the MaxCC, Max4CC, MinCC, and Min4CC
control modules for selection. This example shows how to use the control module
Max4CC to select between the input from several control loops.

Information backward (backtracking), units of measurement and range, etc.,
transferred using structured signals of ControlConnection type, and in the control
modules for these purposes. Information on which signal is selected is also given. If
the output is backtracked from succeeding control modules, all connected inputs are
backtracked to the same value.

234 3BSE041488-511

Section 4 Analog Process Control Signal Selection Example

— Constant output value
PICr

= Out

E AN o

— i
> FID2 —

The output is limited
by Walde = Out -
tolerance for input 2

— p

FID3

-+
The outpt is limited
by Walue = Out -

tolerance for input 3

—] N

FIDd

-
The output is limited
by Value = Out -

tolerance for input 4

Figure 107. Example of a Max4CC control module with inputs from controller
outputs

In Figure 107, controller PID1 has no control deviation, its inputs are stable and the
PID1 output signal is constant. The other three controllers have a control deviation
causing the controller outputs to show a decreasing tendency. This situation will
force each of the non-selected PID2, PID3, and PID4 outputs to a value, assigned
for each input to Max4CC, close to the selected controller output determined by the
PID1 output minus the tolerance value. The controller output signals will then
remain close to the selected controller output, ready to be the selected one. For
example, if you use control modules to solve a selection of controller outputs for
override control of a heat pump, the solution with a minimum selector control
module may be as shown in Figure 108.

3BSE041488-511 235

Signal Selection Example Section 4 Analog Process Control

Al — Power
Master —
controllers Al
Al — Current
Minimum Al L
selector — < N\ Angle
Al — mperaturef AO
lav
Slave Al
controller
Al — \Pressure
Al —
Al

Figure 108. Example using control modules for override control in a heat pump
using a minimum selector control module

All the components of ControlConnection are transmitted unaffected between the
selected master controller and the slave controller. The backward component, of the
non-selected inputs to the minimum selector are computed from the forward
components of the selected input in such a way that integrator wind-up is managed,
even in noisy cases. The inputs to the minimum selector are computed from the
backward components of the slave controller output in order to handle bumpless
transfer when the slave controller goes from manual to automatic mode.

In the forward direction, the range of measurement of the minimum selector output
is computed as the union of the ranges of the minimum selector inputs. In the
backward direction, the range of measurement of the output is transmitted to all the
inputs.

236

3BSE041488-511

Section 4 Analog Process Control Common Range Example

Common Range Example

A CommonRangeCC control module is used to ensure that two valves in parallel
together give the required flow. The signal is divided into two output signals that
each transmit part of the input signal. The two output signals also work together in
the following way. If one is in Manual mode, the other output signal takes over and
compensates its output signal so that the sum of the output signals becomes equal to
the input signal. The ratio between the output signals may be selected from the
interaction window, or, from an input of ControlConnection type. This allows the
output signal's quotient to be controlled according to the example in the figure
below.

Sum
Sp A
C ::
Sum
Py
C R CiC
ommnonFange A0
M
Sum a1

Split Range Examples

Example 1

Figure 109 describes the conditions in a SplitRangeCC control module when the
input value giving the maximum output 1 is greater than the input value giving
minimum output 1, that is imax1 > iminl. The input value giving maximum output
2 is also greater than the input value giving minimum output 2, that is imax2 >
imin2.

3BSE041488-511 237

Split Range Examples Section 4 Analog Process Control

|n F 3

hzximum —-
mas2+ ———— —— = — — — — — — —— — ——— — — ——

imax'] s i e e AP e R R P o Sy S e B i S f i e B it
iminZ

imin .

hdinimum Ti me._:

Out1 4

Out Rangehdasx

Out1 Rangehin « Time:
Ll

Dut?

OLItERangeMax- —————————————— 7—
Out2Rangemin Ti me

Figure 109. Split range

Example 2

An example of a case in which the SplitRangeCC control module may be used is
heating or cooling of a material flow. In the setup illustrated below in Figure 110,
there are two valves, one for the cooling medium and one for the heating medium. If
both valves are closed, there is no need to change the temperature. A low-level input
signal means cooling and a high-level signal means heating.

In the temperature control case, iminl and imin2 may be equal so that heating takes
over when cooling stops.

238 3BSE041488-511

Section 4 Analog Process Control Split Range Examples

=

it Cooling medium
Material flow to
Out% be temperature
controlled
"=

Heating medium

Coaling medium return —

Heating mediurm return L

Heat exchanger

Figure 110.

In applications such as this, the input value giving the maximum value of output 1 is
smaller than the input value giving the minimum value of output 1, that is imax1 <
iminl. When the input value giving maximum output 2 is greater than the input
value giving minimum output 2, that is imax2 > imin2, the conditions are as shown
in Figure 111. However, iminl and imin2 are not equal, as suggested above. The
figure shows possible overlapping valve openings.

3BSE041488-511 239

Level Detection Example Section 4 Analog Process Control

I &

Maximum -
imax2 -

imin2 A

Cdmamxd e
Minitium =

Outl RangeMin -

Out? 4
Out2Rangemax -

Out2Rangedin

Figure 111.

Level Detection Example

A level detection example with a Level4CC control module type is described in the
following figure. The alarm conditions are shown at the various HH, H and L, LL
levels, with their common hysteresis, of the In minus (-) the Reference signal.
FilterTime is the common time-delay for the alarms. The two HHH and LLL levels
are not shown.

240 3BSE041488-511

Section 4 Analog Process Control Level Detection Example

In - Reference
&
Hysteresizs
HHLEVEI— __%_
HLeweal 4 : i x % g | e e e e e e AR S R S Time
=
LLewvel 4. .l._._l
LLLewel - S J_ R ek
| :
i : :
HHAlarmCondition I | i |
Lo !
Lo _ I Time
T . - T - h
: | | - I
I : | :
HAlarmCondtion I I I I
! | Flﬂfﬂme | | | ﬁlﬂeﬂme |
! | ! | I I | ! | Time
] - I P |] I - -_
| . !
LajsrmCondition| T |
F . . SO A0 RE .
Ly Firtgr_'l'ﬁ}rﬂ_el FittgyTime: | | Fittgr Time
T | 2 T ;
: | r-l B : | Time
| | i Hi | | : >
| |1 | |
LLA&larmCondition | (| | |
i g ks . .
I Fittdt Time Fittr Tirmk
' o e
i I I n Time
'

Figure 112. Level Detection example

3BSE041488-511 241

Application Examples Section 4 Analog Process Control

Application Examples

The examples in this section are installed with your Compact Control Builder. They
are located in the ControlExamples folder which is installed in the Examples folder.

For more information on how to open the examples, see the manual
Compact 800 Engineering Compact Control Builder AC 800M Configuration
(3BSE041488%) .

The control loop example applications all reside in the TankControl project, which
is created when the ControlExamples file is imported. Each application is
implemented in four ways, using:

e control modules

* function blocks

* control modules in a function block
* acontrol loop function block.

The variables of each application are connected to simulated processes, with I/O
units according to Figure 113.

...

Simulated process and I/O units

I/0

110
unit

B PID or Fuzzy
— ntroller

Output

interf. —p» Process

Input unit

interf.

Figure 113. The principle for control applications, the simulated processes and I/0
units

The first application example consists of basic, simple control loops. The second
example is based on the simple example but expanded to include a cascade
controller. The third application example has fuzzy controllers. See Figure 114.

The processes used in the examples are simulated process models, all designed by
means of control modules. The process object models, such as the tanks and valves,

242

3BSE041488-511

Section 4 Analog Process Control

Application Examples

have their own interaction windows. The advanced user may then alter these objects

and see the resulting behavior of the control loop.

Control modules

The simulated process object
models with I/O units designed
by means of control modules

A code block with control
~“modules in a function block

—_ A code block with a control

o @ Applications
----- H?,CascadeLonp
----- H,‘,FuzzyContrnanop
E ----- H?, SimpleLoop - (TankController.Narmal)
- W Connected Libraries
- = Control Module Types
= = Control Modules
: ﬁfmtoop SimpleLoop. Simpleloop P
Ve E ﬁ ControllerOutput CnntroIStandardUbAnalngOutCC ‘/
N ﬁ PidController ControlStandardLib.PidCC) S
ﬁ ProcessValve ControlStandardleAnaJegInCC
E FfrocModelForCMInFBLnop TankLib.CascadeTanks
/ - ﬁ ProchModelForCMLoop TankLib.CascadeTanks \\\\
. ﬁ ProcModelForFBLoop TankLib.CascadeTanks e -
48} ProcModelForFBRidLoop Tanklib.CascadeTanks
= & Programs I
E ----- E ControlLoops - (TankController.Mormal)
b J8F CMInFBLoopSimpletooplnFB—— — — -
E ControllerQutput ContrelStandardLib. AnalngOutCC ~
E PidController ControlStandardLib.PidCC ‘
'ﬁPmcess‘u'alve CoLolStandardleAnalaglnCE
<Efpi 7S|7mp|eRea| ControlSimplelib.F PidSimpleReal —~ <@ A code block with function blocks
::,ﬁfﬁPldLnop ContrelBasicLib. F'|I:ILD|:||:| 7:/
4 Controllers
_J, TankController (172.16.0.0)

loop function block

Figure 114. The four methods of designing an application and the simulated process

The purpose of these control loop examples is to show the functions of the function
blocks and control modules from the Control libraries, and their use. It is assumed
that the user has basic knowledge about the system, Project Explorer and application
graphics, as well as general knowledge about process control systems.

The purpose is also to show the user how to use controller interaction windows,

perform tuning and parameter settings, apply and view the result of disturbances,
etc. The examples will increase your understanding of the process dynamics. Run
the TankControl project and gradually find and explore the features on your own.

3BSE041488-511

243

Application Examples Section 4 Analog Process Control

If you want to construct a similar control system application yourself, start from
these control examples. You may, in offline mode, also insert any of the application
examples into your own project. Alternatively, you can copy some example objects,
with their connections, to your own application, from an inserted application
example.

What You Can Do?

Start the examples in offline mode, run them in test or online mode, and then
perform the following operations:

* Open the interaction windows for the controllers from the Project Explorer.
* Change their internal or external setpoints.

* Go to manual mode and control the process manually.

* Tune the controllers with the Autotuner, or manually.

* Change other controller parameters.

* Change the I/O range or force an I/O signal.

* Open the interaction windows for the process objects from the application
windows, and change their characteristics.

Start the Examples

This section describes the control examples in the Examples folder, which is
installed with the Compact Control Builder.

Carry out the following steps to startup the examples:

* Begin with the Simple Loop example, and then go to the Cascade Loop,
followed by the Fuzzy Control Loop.

» If you want to run the project in a controller, you have to select the
TankController controller and enter System Identity as the identity of the
controller. In this example, an AC 800M controller with a PM860/TP830 CPU
has been selected. You have to enter the same System Identity that you used for
the controller as the IP address for Ethernet. You should then save the
TankController controller.

244

3BSE041488-511

Section 4 Analog Process Control

Simple Loop Examples

Simple Loop Examples

These first Simple Loop examples contain a process model tank, as shown in the
figure below, connected to a level PID controller in the Project Explorer. They are

also the basis for the subsequent examples. The task is to keep the level in the upper
tank constant.

=

A
O o
p="
iNc)
B [
L=
2 [A]
A (@
of LI

Kl

Simple Loop

Process Model for
CMLoop

ol

Process Model for
FBLoop

Process Model for
CMInFBLoop

™
—h—

122
—i—

m

Process Model for
FBFidLoop

. U

il

4

Figure 115. The Simple Loop application in online mode with its four methods of
programming

3BSE041488-511

245

Simple Loop Examples Section 4 Analog Process Control

Tank Process

The example consists of two tanks. The upper tank has an inlet pipe. The flow in the
inlet pipe is controlled by a control valve. The outlet from the upper tank is a free
drain outlet to another lower tank, also with a free drain outlet.

The tank process is created, in each of the four methods, with control modules from
the TankLib library; one control module for each tank and one for the valve, which
can be seen in the Project Explorer. In the application interaction window, you have
a view of the process.

The input and output of the simulation model are of real data type. Because the
input and output control signals to and from the control loop are of ReallO type they
are connected via control modules from the TankLib to simulate the I/O system. You
can see these control module types, AnalogInlOSim and AnalogOutlOSim, in the
lower left hand corners of the application window. In offline mode, you can view
their connections. In test and online mode, you can view them in the interaction
windows.

Simple Loop with Control Modules

In Test or Online mode in the Project Explorer in the Applications > SimpleLoop >
Control Modules > CMLoop control module, open the interaction window of the
PIDController control module for exploration.

Simple Loop with Function Blocks

In Test or Online mode in the Project Explorer in Applications > SimpleLoop >
Programs > ControlLoops, open the interaction window of the PIDSimpleReal
function block for exploration.

Simple Loop with Control Modules in Function Blocks

In Test or Online mode in the Project Explorer in Applications > SimpleLoop >
Programs > ControlLoops, open the interaction window of the CMInFBLoop
function block. CMInFBLoop contains the CMLoopInFB control module which
contains similar control modules to CMLoop above. Open the interaction window
of the PIDController control module for exploration.

246

3BSE041488-511

Section 4 Analog Process Control

Simple Loop with a Function Block Loop

In Test or Online mode in the Project Explorer in Applications > SimpleLoop >
Programs > ControlLoops, open the interaction window of the FBPidLoop
function block, which is a ready-made complete control loop, for exploration.

Cascade Loop Examples

The Cascade Loop examples consist of two process model tanks, according to the
figure below, connected to two level PID controllers in cascade in the Project
Explorer. The examples are based on the Simple Loop example above. The task is to

keep the level in the lower tank constant.

2 L

A
O <
et
Al =
B &
=
& &l
M [
ofy ™

Kl

Cascade Loop

Process Model for
CMLoop

!

—l—

—h—

Process Model for
CMInFBLoop

d

Figure 116. The Cascade Loop application in online mode showing four methods of

programming

3BSE041488-511

Cascade Loop Examples

Cascade Loop Examples Section 4 Analog Process Control

Tuning of Controllers Connected in Cascade

A cascade controller consists of a combination of input and output signals and two
function blocks or control modules, connected in cascade. The output of one
controller, called the master, is connected to the external setpoint of the other
controller, called the slave.

Two controllers connected in cascade, according to the following figure, must be
tuned in the correct sequence.

Sp2 Master OUt2=Sp1 Slave
p ut2=Sp
— Outer [™ Inner _>OUH Process 1 i Process 2 P—>V2
PV2 gl controller Pvi controller
Inner loop
Outer loop
Figure 117. Illustration of two PID function blocks or controller modules connected
in cascade
The inner loop should be faster than the outer loop. It should also be possible to
have high gain in the inner loop. Starting from scratch, perform the tuning of two
controllers in cascade according to the following basic steps.
1. Put both controllers in Manual mode.
2. Begin with the inner controller and adjust the internal setpoint, Sp1, to the
inner process value, Pv1.
3. Start the Autotuner of the inner controller, and accept the tuned PID
parameters. See Autotuning on page 162.
4. Select the external setpoint for the inner controller and set it to Auto mode.
5. In the outer controller adjust the setpoint, Sp2, to the outer process value, Pv2.
6. Start the Autotuner of the outer controller and accept the tuned PID parameters.
See Autotuning on page 162.
7. Switch the outer controller to Auto mode.
248 3BSE041488-511

Section 4 Analog Process Control Cascade Loop Examples

Cascade Loop with Control Modules

In Test or Online mode in the Project Explorer in the Applications > CascadeLoop
> Control Modules > CMLoop control module, open the interaction windows of
the SlaveController and MasterController control modules for exploration.

Cascade Loop with Function Blocks

In Test or Online mode in the Project Explorer in Applications > CascadeLoop >
Programs > ControlLoops, open the interaction windows of the PIDSimpleMaster
and PIDSimpleSlave function blocks for exploration.

Cascade Loop with Control Modules in Function Blocks

In Test or Online mode in the Project Explorer in Applications > CascadeLoop >
Programs > ControlLoops, open the interaction window of the CMInFBLoop
function block. CMInFBLoop contains the CMLoopInFB control module, which
contains similar control modules to CMLoop above. Open the interaction windows
of the SlaveController and MasterController control modules for exploration.

Cascade Loop with a Function Block Loop

In Test or Online mode in the Project Explorer in Applications > CascadeLoop >
Programs > ControlLoops, open the interaction window of the
FBPidCascadeLoop function block, which is a ready-made complete control loop,
for exploration.

3BSE041488-511 249

Fuzzy Control Loop Examples Section 4 Analog Process Control

Fuzzy Control Loop Examples

The Fuzzy Control Loop examples contain a tank with a level controller. The task is
to keep the level in the upper tank constant by means of a fuzzy controller according
to the FuzzyControlLoop application, as follows. It is implemented in two ways:

. with control modules,
. with control modules in a function block.

These two examples are identical to the Simple Loop examples, except that the PID
controller in the control loop has been replaced by a fuzzy controller. It should,
however, be emphasized that the tank control loop is not a good example of a loop
where a fuzzy controller should be used. In this case, a PID controller works well
and should be used instead of a fuzzy controller.

Despite this, we will use the tank control application to demonstrate the fuzzy
controller. The reason is that the loop is simple to control and well known to most

control engineers. It also provides a means of to comparing the fuzzy controller to
the PID controller.

.3

n Process Model for Process Model for
A _I_| CMLoop _a_' CMInFBLoop

]
v
Al ®
E [
=Tl J
A
[
of T

O simulaticn 110 simulation

— 1 _'ILI
4

Figure 118. The Fuzzy Control Loop application in online mode showing two
methods of programming

250

3BSE041488-511

Section 4 Analog Process Control Fuzzy Control Loop Examples

Fuzzy Control Loop with Control Modules

In Test or Online mode in the Project Explorer in the Applications >
FuzzyControlLoop > Control Modules > CMLoop control module, open the
interaction window of the FuzzyController control module for exploration. Start by
putting the fuzzy controller in Auto mode and enter a setpoint value, for example,
setpoint = 4.

Fuzzy Control Loop with a Control Module in the Function Block

In Test or Online mode in the Project Explorer in Applications >
FuzzyControlLoop > Programs > ControlLoops, open the interaction window of
the CMInFBLoop function block. CMInFBLoop contains the CMLoopInFB control
module which contains similar control modules as CMLoop above. Open the
interaction window of the FuzzyController control module for exploration.

3BSE041488-511 251

Fuzzy Control Loop Examples Section 4 Analog Process Control

252 3BSE041488-511

Introduction

Section 5 Binary Process Control

This section describes how to use types from the Process Object libraries to create
binary control solutions for your automation system. The section contains:

A description of the Process Object concept that will help you understand the
thinking behind the library types in the Process Object libraries, see Concept
on page 254.

Advice and instructions on how to implement binary control solutions using
the types in the Process Object libraries, see Design on page 286.

Examples on how to implement binary control solutions using the types in the
Process Object libraries, see Examples on page 304.

Detailed information on how to implement ABB Drives and INSUM control,
see Advanced Functions on page 317.

All other Uni and Bi types that are based on the UniCore and BiCore types exist in a
function block and a control module version. Throughout this section, the notation
UniSimple(M) etc. is used when referring to both the function block type and the
control module type.

v

For a discussion on the difference between function blocks and control modules,
and how to choose between the two, see the Compact 800 Engineering Compact
Control Builder AC 800M Configuration (3BSE041488*) manual.

3BSE041488-511

253

Concept Section 5 Binary Process Control

Concept

A process object is a representation of a real physical object, which can be in
different states and can be controlled by commands. Throughout this section,
process objects are usually motor or valve objects, but they can also represent other
objects, such as a tank.

With process objects, there is a need for scalability, down to single process objects.
However, they must never be too specific or too complex, they must be so small and
fit so smoothly that they do not interfere with the programmer’s own valve or motor
parameters, but at the same time, they must be intelligent enough to work directly by
themselves, without any additional programming efforts.

In order to satisfy this need, the Process Object libraries contain a number of types
that are designed to be either:

* Used in the application as is, in which case you only have to connect it to the
application, to interaction windows, etc., see Process Object Libraries
Overview on page 255.

* Used as a template, when new valve object types or motor object types are to
be created in your libraries and applications, see Process Object Template
Concept (Core Objects) on page 262.

When using process objects, as is or as templates, you will also need to know:

* How to use the basic parameters of the core objects to configure the different
types in the Process Object library types, see Core Object Functions and
Parameters (UniCore and BiCore) on page 266.

* Which graphics and icons that are used to represent control modules, Control
Module Icons on page 283.

e How the interaction windows that can be used in Control Builder work, see
Interaction Windows on page 284.

* How communication with graphics and code works, see Interaction Parameters
on page 285.

254 3BSE041488-511

Section 5 Binary Process Control Process Object Libraries Overview

Process Object Libraries Overview

The Process Object libraries provide function blocks and control modules to define
valve and motor objects, as well as objects to control and supervise ABB Drives,
standard INSUM (Integrated system for user optimized motor management) MCUs
(Motor Control Units) and trip units for circuit breakers. The Process Object
libraries are standard AC 800M libraries that are installed with the Compact Control
Builder.

A schematic overview of the relations between a function block or control module
and the remote objects can be seen in Figure 120.

Some of the types in these libraries are not protected, which means that you can

copy any type to your library, and then modify the unprotected code in the type and
use it.

Function block or control module

Core function - Protected code

Unprotected code

Added function - Unprotected function block or
-« control module

Figure 119. The function blocks and the control modules in this library are
unprotected, they can be used and modified in your own library

3BSE041488-511 255

Process Object Libraries Overview Section 5 Binary Process Control

The controlled or
controlling objects

Control Builder

Interaction windows
for mainenance

|
|
|
|
I
|
3 |
|
v :
|
|
I
|
|

For FB's
lcon for control

maodules

Far control modules

Controller

Valve

Application

p— Process Object

function block or
control module |
170 system

. Control panel
Mode, control and - t

supervision logic |

Group Start \J::> I
logic ,I \—b Local panel

A

Figure 120. Relations between a function block or control module and the remote
objects

256 3BSE041488-511

Section 5 Binary Process Control

Process Object Libraries Overview

There are four different Process Object libraries:

Process Object Basic library,
Process Object Extended library,
Process Object Drive library,

Process Object INSUM library.

For a complete list of all objects in the Process Object libraries, see Process
Object Libraries on page 488. For information on parameters and detailed
instructions on how to configure individual types, see Process Object libraries
online help.

Process Object Basic Library

The Process Object Basic library contains template (core) objects for building your
own process objects. They are intended to be embedded in application-specific
types, see Process Object Template Concept (Core Objects) on page 262. It includes
additional function blocks for high-level graphical configuration, which are
integrated with both Control Builder Professional and faceplates in the Plant
Explorer. This library also contains function block types for control of ABB Drives,
objects for delaying commands in auto mode, and priority handling as following:

UniCore: Uni directional core object can be used to control a generic process
object through a number of predefined outputs and feedback signals (inputs).
UniCore means that the process object can be either activated or deactivated,
for example, a motor that can run in one direction (Unidirectional) or it can be
stopped.

BiCore: Bi directional core object can be used to control a generic process
object through a number of predefined outputs and feedback signals (inputs).
BiCore means that the process object can be in either of two activated positions
or it can be deactivated, for example, a motor that can run either forwards or
backwards (bidirectional) or be stopped.

UniSimple and UniSimpleM: Uni directional objects are suitable for HMI
control and supervision of a unidirectional (one activated and one deactivated
position) process object. UniSimple extensions to the basic UniCore type
comprises the graphics functionality for function block. UniSimpleM

3BSE041488-511

257

Process Object Libraries Overview Section 5 Binary Process Control

extensions to the basic UniCore type comprises control module graphics and
interaction windows.

BiSimple and BiSimpleM: Bi directional objects are suitable for graphical
control and supervision of a bidirectional (two activated and one deactivated
position) process object. BiSimple extensions to the basic BiCore type
comprises alarm and graphics functionality. BiSimpleM extensions to the basic
BiCore type comprise control module graphics and interaction windows.

DriveStatusReceive and DriveCommandSend: The Drive functionality is
divided into two function blocks, one to receive data from the drive and one to
send data to the drive. These can be used as a base for control of ABB Drive,
ACS800, ACS600 & ACS400 and their corresponding DC drives.

IED Command Send: IEDCommandSend functionality has two modes of
operation.

— Direct Mode - Is active when Mode is 1

In Direct mode, the function block reads the Open or Close command
input from IEC 61131-3 application logic and operates irrespective of
selection status feedback (SelStatus). The status of the feedback is
monitored and compared to the actual output commands. Mismatch is
generated as Boolean outputs (CloseFailed/OpenFailed) after the
configured time limit expires (PosTimeout).

— SBO Control Mode - Is active when Mode is 2

In SBO Control mode, the function block generates Select and Cancel or
Operate on Open or Close input command to confirm the selection of IED
device. On command input, the select output pulse is generated and the
status is monitored. Select timeout output is generated after a time delay
(SelTimeout) on failure of select status feedback, then the Cancel
command input generates the Cancel output pulse, else the Operate output
pulse is generated. On generation of Operate output, the corresponding
Open or Close output is generated based on Open/Close command input.
The status of the feedback is monitored and compared to the output
commands. Mismatch is generated as Boolean outputs
(CloseFailed/OpenFailed) after the configured time limit expires
(PosTimeout).

258

3BSE041488-511

Section 5 Binary Process Control Process Object Libraries Overview

» IED Status Receive: IEDStatusReceive function block receives status
information from IED logical node through I/O channel and delivers the actual
feedback status FBO and FB1 with respect to input status (PosStatus). The
quality status of the input (PosStatus) is copied into outputs FBO and FB1.

— Open feedback status (FBO) is set when PosStatus =1
— Close feedback status (FB1) is set when PosStatus =2

e UniDelayOfCmd: Delays the start and stop command in auto mode. This is a
kind of filter to avoid undesired start and stop of the object. This object also
contains a selection whether the command shall be edge or level detected.

* BiDelayOfCmd: Functions as an UniDelayOfCmd but extended with another
start signal. This object also contains a selection whether the command shall be
edge or level detected.

* PrioritySup: Indicates Priority mode, supervise the Priority command inputs
and takes care of automatic object stop when errors indications are present.

Process Object Extended Library

The Extended library is more comprehensive than the Basic library. It comprises
ready-to-use valve and motor objects, alarm handling functionality and templates
for user-designed valve and motor objects. It includes additional control modules
for high-level graphical configuration, which are integrated with Compact Control
Builder.

* Uni: The function block type are suitable for graphical control and supervision
of a unidirectional (one activated and one deactivated position) process object.
Extensions to the basic UniCore type is alarm and graphics functionality.

* Bi: The function block types is suitable for graphical control and supervision of
a bidirectional (two activated and one deactivated position) process object.
Extensions to the basic BiCore type is alarm and graphics functionality.

The types in this library also have a group start interface, which can be used to
connect them to a group start configuration.

All the control module types in Process Extended library has a vote parameter
(VoteOut and VotedCmd) that is used for connections to vote control module types
(see Vote Control Module Types on page 381).

3BSE041488-511 259

Process Object Libraries Overview Section 5 Binary Process Control

MotorUni: The function block type is suitable for graphical control and
supervision of a unidirectional (one activated and one deactivated position)
motor. It is based on UniCore and extended with alarm and interaction
windows.

MotorUniM: The control module type is suitable for graphical control and
supervision of a unidirectional (one activated and one deactivated position)
motor. It is based on UniCore and extended with alarm and interaction
windows.

MotorBi: The function block type MotorBi is suitable for graphical control and
supervision of a bidirectional (two activated and one deactivated position)
motor. It is based on BiCore and extended with alarm and interaction windows.

MotorBiM: The control module type is suitable for graphical control and
supervision of a bidirectional (two activated and one deactivated position)
motor. It is based on BiCore and extended with alarm and interaction windows.

ValveUni: The function block type is suitable for graphical control and
supervision of a unidirectional (one activated and one deactivated position)
valve. It is based on UniCore and extended with alarm and interaction
windows.

ValveUniM: The control module type is suitable for graphical control and
supervision of a unidirectional (one activated and one deactivated position)
valve. It is based on UniCore and extended with alarm and interaction
windows.

MotorValve: This function block type is suitable for graphical control and
supervision of a bidirectional (two activated position) motor valve. It is based
on BiCore and is extended with alarm and interaction windows.

MotorValveM: This control module type is suitable for graphical control and
supervision of a bidirectional (two activated position) motor valve. It is based
on BiCore and extended with alarm and interaction windows.

MotorValveCC: This control module type is suitable for graphical control and
supervision of a motor controlled valve of open/close type. It is based on
BiCore and is extended with alarm and interaction windows. The input
interface is of type control connection that can be connected to an output object
from a control loop

260

3BSE041488-511

Section 5 Binary Process Control Process Object Libraries Overview

Process Object Drive Library

The Process Object Drive library contains function block and control module types
for controlling and supervising ABB Drives via ModuleBus, DriveBus, or
PROFIBUS-DP. Drives process objects are based on UniCore. Communication is
based on the DriveStatusReceive and DriveCommandSend function blocks, which
are included in all Drives process objects.

All the control module types in Process Object Drive library has a vote parameter
(VoteOut and VotedCmd) that is used for connections to vote control module types
(see Vote Control Module Types on page 381).

* DriveStatusReceive and DriveCommandSend: The two function blocks gives
the user the opportunity to add user code with input from the
DriveStatusReceive block and with output to the DriveCommandSend block
without delays.

Process Object INSUM Library

The ProcessObjlnsumLib library contains Function Blocks and Control Modules to
control and supervise the standard INSUM (Integrated system for user optimized
motor management) devices MCU (Motor Control Units) and trip unit for Circuit
Breakers. INSUM process objects are based on BiCore. Communication is based on
the INSUMWrite and INSUMRead function blocks from InsumCommlLib, which
are included in all INSUM process objects.

All the control module types in Process Object INSUM library has a vote parameter
(VoteOut and VotedCmd) that is used for connections to vote control module types
(see Vote Control Module Types on page 381).

. McuBasic, based on the BiCore, INSUMWrite and INSUMRead.

e McuExtended, based on the same Function Blocks as McuBasic and also
extended with alarms.

e InsumBreaker, based on UniCore, INSUMWrite and INSUMRead Function
Blocks and extended with alarms for trips, warnings and other errors like
communication errors and feedback errors.

* McuBasicM, Control Module with the same functionality as the corresponding
Function Block, McuBasic.

3BSE041488-511 261

Process Object Template Concept (Core Objects) Section 5 Binary Process Control

* McuExtendedM, Control Module with the same functionality as the
corresponding Function Block, McuExtended.

* InsumBreakerM, Control Module with the same functionality as the
corresponding Function Block, InsumBreaker.

INSUM devices are connected via an INSUM Gateway and a CI857 hardware unit
to the AC 800M. All objects include interaction windows for Compact Control
Builder.

The Process Object INSUM library also contains a number of predefined data types,
used for communication to the interaction windows.

Process Object Template Concept (Core Objects)

When using types from the Process Object libraries, it is important to understand the
template concept. When working with process objects, there is a need for a general
function block base, a Core function that fits all valve and motor objects in all
industrial control applications. Since all valve and motor objects need at least uni- or
bi-directional control, objects with these properties make up the core of all types in
the Process Object libraries.

The smallest common denominator is:
* The UniCore function block type, for uni-directional process objects.
* The BiCore function block type, for bi-directional process objects.

The above core function blocks (BiCore and UniCore) are protected and form a
basis for all object types. The core is not copied when a process object type is
copied, instead it refers (points) to its type in the Process Object Basic library. This
means that then using types that have a core object embedded, this core object is
referenced.

262 3BSE041488-511

Section 5 Binary Process Control Process Object Template Concept (Core Objects)

Figure 121 shows how core objects form the basis of other, application-specific
objects.

[0 FrocessobjBasiclb 2,35 = E_‘ Mntcmnl 00
o B ComectedLivaris User created
- @ Data Types ‘ Data T'fpes lirary
- ﬁ- Function Block Types - Q- Funiction Black, Types
BiCore - = i Motorgil
* BDelayOrCmd =E-c BasicLib on
b B o B e roescoposib 8o
B DetectOverrideBi 4 B DelayOIAUGUTE ProcessObibasicLib il
B DetectOwverridelni & DetectOverride DetectOverrideBi
B DetectOverridevoteti + - 12) Faceplate ProcessObjExtLib.Faceplatepot:
£ DetectOverideyvoteUn 120 G5C1 BasicLib. GroupStarkObjectConn
I} DriveCommandSend 120 G52 Basiclib. GroupStarkObjectConn
I DriveStatusRecsive 120 Info0veriide ProcessObjBasicLib. Infotver
B g + - 12 InfoPar ProcessObJExtLib. InfoParMobdrBit
B Prioritysup + - 12 InfoParGroupStart InfoParBiGroupStat
B Unicore £ 0g g
¥ B UniDelayofCmd & LevelDetection ProcessObiExtLb LevelDet
2 & Unisimple & ObjectAE ProcessObjectaE
& Control Module Types £ CEText ProcessObiExtLib. CETextBi
B ProcessobiExtlib 2,36 12 pres GroupStarticontatorgi
- [Connected Libraries & Prioritysup ProcessObiBasicLib. PricrityBup
- ‘@ Data Types I
= B Function Block Types - B Abways include
- ﬂ- Bi + this
& LevelDetection + @ Data Types
= F& Motorki = ¥ Function Block Types
8 ChﬁJDe| B EiCore
- & sodnicns
+ - & DelayOFACEGCR racessOh]Basn:I.ih.BiDeIayOmed + - B Bisimple

Figure 121. The core functionality in ProcessObjExtLib and in a user’s self-defined
library

using self-defined types based on types from the Process Object libraries. This is
necessary since this library contains data types used that are used in the Process
Object Extended library. It is necessary even if parameters of those data types not
are explicitly used, due to their DEFAULT declaration.

@ The Process Object Basic library must always be connected to your project when

3BSE041488-511 263

Process Object Template Concept (Core Objects) Section 5 Binary Process Control

Core objects can only be updated when the standard libraries are upgraded. If core
objects are updated, the core functions of all types based on these core objects are
updated as well.

All types based on the core objects exist in two variations, as a function block
@ type and a control module type.

Core Object Properties

All core objects (sub-objects) have protected code. The user can neither see nor
access the code, modify it nor change it; instead the function blocks have parameters
for providing a means of interaction in the code.

The two basic function blocks, UniCore and BiCore, do not contain any Control
Builder graphics. However, they have parameters for interaction with the graphics
operator panel.

UniCore or BiCore are used in all process objects and may be combined with some
or several of the other above mentioned core objects. The process objects
UniSimple(M) and BiSimple(M) are open for the user and may be used as templates
and copied to a user library, where modifications may be performed in the code, the
Control Builder graphics or used as object types and instantiate in the user
application like other closed library objects. The code content of these objects is
mostly calls to core objects and the direct code is minimized.

Interaction with core objects uses a structured parameter named InteractionPar,
containing the information that is written from the graphics. As this parameter also
may be written from the user code, care have to be taken not to lock out the graphic
interaction possibilities.

264 3BSE041488-511

Section 5 Binary Process Control Process Object Template Concept (Core Objects)

V

Commands to UniCore and BiCore objects are reset inside the core, and process
objects shall only set them to activate operation. Examples on commands are switch
to auto mode or manual mode, but also the manual operation commands like
ManCmdx.

Types Based on UniCore and BiCore
There are a number of types that are based on UniCore and BiCore:

* The function block types Uni, Bi, ValveUni, MotorUni, MotorBi, and
MotorValve.

. The control module types UniM, BiM, ValveUniM, MotorUniM, MotorBiM,
MotorValveM and MotorValveCC.

The Process Object Basic library contains two additional function block types and
two control module types that are based on the core objects, but contain fewer
functions than the Uni and Bi types:

* UniSimple(M) is based on Uni(M), but does not have any alarm handling.
* BiSimple(M) is based on Bi(M), but does not have any alarm handling.

For information on how to configure simple objects, see Generic Uni- and Bi-
Directional Control on page 293 and Process Object library online help.

Some of the Objects also use Uni and BiCore, in Process Object INSUM Library
and Process Object Drive Library.

All these types can be used as is, or form the basis for your own types. Objects
based on these types will still reference the UniCore or BiCore function block type.
This means that they may be affected by upgrades to the Process Object standard
libraries.

To avoid upgrading problems, place a copy of the process object type in your own
library and then make the changes.

3BSE041488-511 265

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

Core Object Functions and Parameters (UniCore and BiCore)

In order to understand how to use the process objects in the Process Object libraries,
it is necessary to know how the different parameters interact and how they should be
used.

This text is based on the UniCore function block type, but most of the information
applies to BiCore as well. At the end, there is a short section which discusses the
most important differences between UniCore and BiCore, see Differences Between
UniCore and BiCore on page 278.

266 3BSE041488-511

Section 5 Binary Process Control

Core Object Functions and Parameters (UniCore and BiCore)

UniCore can be used to control a
generic process object via a number
of predefined outputs and feedback
signals (inputs). Uni means that the
process object can be either activated
or deactivated. For a valve (or a
motor) this would mean open
(running in one direction, uni-
directional) or being closed

(stopped).

UniCore has pulse output selection
and feedback configuration, to allow
configuration of the number of
feedbacks and inversions.

UniCore parameters are divided into
the following types:

e Operation
— Mode,

— Configuration of feedback
signals,

— Object test.
¢ Interlocking
— Tock,
— Priority commands,
— Inhibit.
¢ Feedback error
e Effective feedback
* Output IOLevel

miCore
—Enshle Interlock —
— Name Forced —
— SethutoP status —
Getduto —
— butoCwmdl IntoMode —
— LutoCudd
SetMan
— MarModeInit MarMode —
MariCmd 1
MariCwd0
— ParFExists
OpPanelMode —
— ParMode PanMode iot —
— PanCmdl
— PanCmdl
— LocMaode
Sethroupitart —
Groupitartibhject —
— GroupStartIlock GroupStartConmected —
— PriorityMode GroupitartMode —
— PriorityCmdl
— PriorityCmd0
— PriorityCudManl
— PriorityCudMani
Setlutlfiervice —
MitlOfserwviceMode —
FE1
FEO
— FEConfig EffectiveFBl |—
— Ilockl EffectiveFEO —
— Ilaockn ElapsedTine —
— Inhibit Statlcot —
— ObjectTest StatDeact [—
— Pulselut
futl
it
— Extitatus MmtlI0Lewel —
— AEConfig itl Lewel —
— Ll&tate fitl Indication —
— Enahlefuplut at0Indication —
(EDi zabled —
Aaruhisabled —
Erahl elbjErr —
— FETine BiErr —
— ExtErr biErrLoc [—
OhiMode —

UniCore function block

3BSE041488-511

267

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

Operation Parameters

The operation parameters of the UniCore object can be used to configure feedback
signals, set feedback error time, and disable error handling. The PulseOut parameter
governs whether outputs should be pulsed or level, depending on the hardware used
for the process object in question. UniCore also calculates information to be
presented in interaction windows.

Modes

An object is activated when the Enable parameter is set to true, signifying that
the function block will be executed. When the parameter Enable is false, Outl,
Out0, OutlLevel, StatAct, StatDeact, and ObjErr will be set to false, regardless
of the status of other signals. The object can be activated or deactivated in all
modes. After deactivation, the object is switched into Manual mode.

UniCore has seven different operation modes:
Manual, Auto, Panel, Priority, Group Start, Local and Out of Service Mode.

Manual mode and Auto mode are examples of output mode indication
parameters (ManMode and AutoMode).

Manual mode is set as the default start-up mode using the parameter
ManModelnit. The initial value is set to true, meaning that Manual will be the
default mode. The parameter ManModelnit is copied to the parameter
ManMode at every cold start.

The output parameter ObjMode also indicates the different modes:
ObjMode = 0 -> Local mode

ObjMode = 1 -> Priority mode

ObjMode = 2 -> Panel mode

ObjMode = 3 -> Manual mode

ObjMode = 4 -> Auto mode

ObjMode = 5 -> Group start mode

ObjMode = 6 -> Out of service mode

Figure 122 shows the different operation modes and their relationships. The
longer from the middle the higher the priority.

268

3BSE041488-511

Section 5 Binary Process Control ~ Core Object Functions and Parameters (UniCore and BiCore)

Out of service mode
ObjMode=6

Priority mode
ObjMode=1

et to Out of service mode.
Returns when command
disappears.

Any priority command. Returns
when command disappears.

Set to Auto mode

.b"et to Manual mode

Manual mode
ObjMode=3

Auto mode
ObjMode=4

GroupStart mode
ObjMode=5

Panel mode command. Returns
when command disappears.

Panel Mode
ObjMode=2

Local mode command, Returns
when command disappears,

Local mode
ObjMode=0

Figure 122. Core object modes and their relationship

3BSE041488-511 269

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

— Manual Mode - A user operates the object from a workstation

To change to Manual mode, trigger the SetMan parameter and the
ManMode parameter will automatically be set to true. Output signals
(Outl, Out0, OutlLevel) will retain their status from the previous mode.

In Manual mode, the status of the output signal is controlled by the
parameters ManCmdl and ManCmd0. These parameters have rising edge
detection.

All parameters mentioned above (SetMan, ManCmd0, ManCmd]l) are
normally connected to the interaction window via the application.

— Auto Mode - The program controls the object

Auto mode is set by means of the parameter SetAuto. The status of the
output signals (Outl, Out0, OutlLevel) in Auto mode is controlled by the
parameters AutoCmdl and AutoCmd0. AutoCmd0 has higher priority than
AutoCmd]l.

The AutoCmdl and AutoCmdO0 parameters are level detected, therefore
these parameters affect the output signal, as long as they are active. The
programmer is required to reset these parameters from the application
program outside the function block. These parameters act on OutlLevel
according to Figure 123.

-~ ’
AutoCmd1 ’—‘ H
AutoCmd0 _‘

Out1Level

* Reset after function block in application program. AutoCmd0 has priority.

Figure 123. Status relations for OutlLevel and the Auto commands

270 3BSE041488-511

Section 5 Binary Process Control ~ Core Object Functions and Parameters (UniCore and BiCore)

When returning to Auto mode from another mode, the status of the output
signals will be returned from the previous mode, but adjusted directly by
the signals AutoCmd1 or AutoCmd0, if one or both are set to true.

Panel Mode - The object is controlled locally from a control panel, via the
UniCore function block

The function block has a set of signals for maneuvering the object from a
control panel. Setting the PanMode parameter activates Panel mode. The
PanMode parameter is level detected.

This mode is active only as long as the PanMode parameter is true. If
PanMode is changed to false, the system exits Panel mode immediately,
and return to the previous mode.

For examples of Panel mode, see Connect to a Control Panel in Panel
Mode on page 313.

Priority Mode

The object is in Priority Mode when any of PriorityCmd0, PriorityCmdl,
PriorityCmdMan0 and PriorityCmdManl are active. This is described in
section Priority and Interlocking Parameters on page 274.

Group Start Mode

Changing mode to Group start mode is done via the structured parameter
GroupStartln of type GroupStartObject. In this mode the object is
controlled via this parameter. The parameter GroupStartllock prevents the
possibility to transfer to Group start mode. In this mode output parameter
GroupStartMode is active.

Local Mode - The object is controlled locally from a local control panel,
bypassing the UniCore function block

Local mode is used when the object is controlled locally from a local
control panel and the function block does not have any signals for
controlling the object from the local control panel. All signals from the
local control panel are physically connected directly to the object (motors,
valves, etc.), see Figure 124.

In this mode, the object statuses are updated using the feedback signals.
Objects return to the previous mode when local mode is disabled.

3BSE041488-511

271

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

Local Control Panel Process object

@ Switch

Q Start_

Q Stop _
|

LocMode

Figure 124. Control steps in Local mode

— Out Of Service Mode

Out of Service mode is only available when the object is stopped. The
operator controls the mode and the object cannot be maneuvered. It is
possible to transfer to other modes.

If the command signal SetOutOfService is true the mode sets. When this

command has been executed the function block resets the command. The
object must be in position O (stopped, closed) to enter the Out of Service
mode.

¢ Feedback Signals

The parameter FBConfig informs the function block of how feedback is
configured, by transferring the combination of feedback signals of the object to
the function block. Possible combinations of feedback signals are listed in

Table 33.
Table 33. Possible combinations of feedback signals
FBConfig Feedback from activated position | Feedback from deactivated position
0 FB1 FBO
1 FB1 (none)

272 3BSE041488-511

Section 5 Binary Process Control ~ Core Object Functions and Parameters (UniCore and BiCore)

®

Table 33. Possible combinations of feedback signals

FBConfig Feedback from activated position | Feedback from deactivated position
2 FB1 inverted (none)

3 FB1 inverted FBO inverted

4 (none) FBO

5 (none) FBO inverted

6 (none) (none)

The values of the feedback signals FBI and FBO are transferred to the StatAct
and StatDeact output parameters respectively, in condition with OutlLevel.

If an object has no, or only a single, feedback signal, StatAct and StatDeact will
still be set. The signals StatAct and StatDeact are set to zero if double feedback
is used and both are true at the same time.

Output Settings

The output signals include Outl, OutO and OutlLevel. Outl and Out0O can be
configured as pulsed command or level-detected command, by means of the
PulseOut parameter.

The pulse is sustained by the parameters Outl and Out0, until the
corresponding feedback is detected or the maximum feedback error time is
exceeded. OutlLevel is intended to indicate the output state when the Out/ and
Out0 parameters are pulsed. If there is no feedback from a position, the pulse
duration is set to the object error time. Only one pulse is generated upon each
status change.

Object Test

When the parameter Object Test is activated, the feedback error calculation is
disabled and the Outl and Our0 signals are set to false. The signals StatAct and
StatDeact are set according to the status of OutlLevel.

When Object Test is deactivated, the status of the object reverts to that in the
mode prior to Object Test and the Out0 signal is set to true.

3BSE041488-511

273

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

Priority and Interlocking Parameters

Priority and interlocking parameters can be used to control the behavior of process
objects in certain situations, for example, to stop an object from entering a certain
state or forcing it to a certain state. This might be needed to ensure accurate
operation with critical process values, such as high levels and temperatures, Motor
Control Center interface, safety devices, etc.

The main difference between interlocking and priority parameters lies in that
interlocking parameters stop the object from entering a certain state, while priority
parameters are used to force an object to a certain state.

Ilock - Prevents the object from entering a certain state

The Ilockl and IlockO signals block commands in all modes to switch the
object to the activated and deactivated state respectively. The Inhibit signal will
suppress interlock signals, when true.

Priority Command - Compels the object to enter a certain state

The PriorityCmdl and PriorityCmd0 signals force the output to the respective
status with priority over other signals, except when the Inhibit signal is set to
true. When these signals disappear, the status from Priority state is transferred
to the current mode.

Priority Manual Command - The commands PriorityCmdManl and
PriorityCmdMan0 have the same functionality as the Priority Commands with
the exception that the object switch into manual mode after the priority man
command is completed.

Inhibit - Suppress all llock and Priority(Man)Cmd signals

When the Inhibit signal is set to true, the program will ignore all Ilock and
PriorityCmd signals. This parameter can be used when there is an absolute
need for running the object, although all llock and PriorityCmd signals are
suppressed. When the Inhibit signal returns to false, the Ilock and PriorityCmd
are re-activated.

When Object Test is de-activated, the status of the object reverts to that in the
mode prior to Object Test and the Out0 signal is set to true.

274

3BSE041488-511

Section 5 Binary Process Control ~ Core Object Functions and Parameters (UniCore and BiCore)

Feedback and Output Parameters

The feedback error (ObjErr) is supervised in all modes except when the parameter
Enable is false and in Local mode, based on the values of the parameters OutlLevel,
FBI and FBO.

The parameter ExtErr provides the possibility of connecting other errors to the
object. This parameter does not affect the object status. If required, it must be
implemented outside the UniCore, for example, by connecting a variable to both
parameters ExtErr and PriorityCmd0.

The information required for the feedback error calculation is the feedback error
time and the number of feedbacks: these two parameters have to be configured by
the user (the parameters FBTime and FBConfig).

FBTime has an initial value of 5 seconds. In the Extended Library an interaction
parameter is connected to FBTime. This value can be altered online, in the
interaction windows (Compact Control Builder). The interaction parameter has a
cold retain attribute to retain the value following cold or warm restarts.

ParError is set to True when a parameter takes an illegal value (goes outside the
allowed range). This is also indicated by a red triangle in interaction windowsof the
parent objects.

EnableParError is set to false by default.

See also ParError on page 43.

The object internal status is updated from the feedback signals after a warm restart:
e Effective Feedback

The EffectiveFB1 and EffectiveFB0 parameters, of the in/out type, give the
calculated result from FBConfig and the values of FBI and FBO.

Effective feedback signals are connected to the interaction window and are
displayed under the Status tab in the parent objects.

3BSE041488-511 275

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

* Output IOLevel

The parameter OutlIOLevel, of the in/out type, is calculated from the actual
values of the binary I/O (Out110, Out0I0), in relation to the selected pulse
functionality.

Out1lO

outolo
Out1I0Level

Figure 125. OutputlOLevel state diagram

The output signals are connected to and displayed in the interaction window.
* Interlock

The parameter Interlock, of the in/out type, is the sum of parameters
PriorityCmd and Illock. The Interlock parameter provides information when
any type of interlocking is active (for example, PriorityCmd or llock).

The interlock signals are connected and displayed in the interaction window.
* Forced Actions

The parameter Forced, of the in/out type, indicates the forced status of the
OutOIO and OutllO signals at FBO or FBI. If one of these four I/O signals is
blocked/forced, the parameter Forced, of the in/out type, will be true.

276 3BSE041488-511

Section 5 Binary Process Control ~ Core Object Functions and Parameters (UniCore and BiCore)

Power Fail Recovery

After a power failure, the objects are always set in Manual mode. If the desired
behavior is different from this, the code to obtain the demanded state needs to be
added.

ﬂ The parameter ManModelnit placed on the UniCore or BiCore functions block
instance is only used at a cold start and is therefore not used during power fail
recovery. This is also indicated in the parameter description.

During the startup after a power fail, it is during the second scan that the objects are
updated to reflect the actual state of the connected feedback signals. This means that
the backtracking from output take place during the second scan after power up, and
not during the first scan.

For example, during the second scan after power up, a function block is updated to
the real state of the connected objects, which means that the feedbacks are read and
the internal states of the function block are set according to the read values. The
corresponding updates are executed when the quality of the connected 1/0 channels
becomes good from being non good. This is made to keep the states on the
connected objects that may have entered any OSP setting during the non good
quality period.

I/0 Quality Change

Independent of operation mode, the outputs from the objects are updated to reflect
the actual state of the connected feedback signals when the quality of the connected
I/O channels changes from bad to good.

If bad to good signal quality transfer is not detected, outputs from the objects are set
to deactivate/close. Bad I/O quality may not be seen if the I/O remains powered
when the CPU is switched off after a CPU power failure detection.

3BSE041488-511 277

Core Object Functions and Parameters (UniCore and BiCore)

Section 5 Binary Process Control

Differences Between UniCore and
BiCore

The only difference between UniCore
and BiCore is that BiCore is bi-
directional. UniCore is designed for
control of process objects with two
states (such as stopped and running),
while BiCore is designed for control
of process objects that have three
states (such as stop, start/forward and
start/back, which correspond to 0, 1,
and 2).

Examples of bi-directional
applications are two-speed motors and
forward/backward motors.

Compared to UniCore, Bi Core has the
following extra parameters (all
relating to the extra state, hence they
all carry the number 2):

e In Manual mode, there are
additional parameters ManCmad?2,
Out2 and Out2Level.

* In Auto mode, there are
additional parameters AutoCmd?2,
Out2 and Out2Level. The
influence of AutoCmd parameters
on OutLevel parameters can be
seen in Figure 126 on next page.

. In Panel mode, there is an
additional PanCmd?2 parameter.

EiCor=

— Ernable= FiDirect iocnal |—
H e Imcexlochk —
— SetcifmacoF Foxrc=d |—
Satua= |
=t 2ot
— Aap=oCradl Pz oBo de —
— &z oCrd £
— &axz oCrnd
e P
— Marffcd= In it Marflod= | —
2L o Crad 1
£ o Cond &
£ o Coned O

P anEs ist =

P ariic d=
FanCwndl
F an CondsE
P ar Coadid
L ockc d=

OpF ar=1Mc d=

FPolficds Bct

GroupStars ILock GroupStarcConmectad

Priori
Priori
Friori
Friori

FPricoricyCmdiManl
PrioritcyrCrndMan s
PrioricyrCradlan0

= nap B ark
FroupStart0b jectl
FroapStact0b e ot

o de
mACa AL
3t A
45 3ACan A0

EromapSs artiicde

Setluc0fSerrice —08
Dhpz 0 £5 = rwric =B A=

TE 1-

FE=

FEO
— FEComfig Effect iveIE1 |—
— Ilockl Effect iv=IEE [—
— Ilochks EffectiwveaITEOQ —
— Ilccka Elap==dTim=1 |—
— Irhib it Elap==dTim=2 |
— 0Obje T ests Statactl [—
— Pl saat Swataots [—
StatcDeact —

Oz L

Oz =

Qa0
— Et 5t atas Dz 1 I0L =w=l |—
— AEConmfig D=2 TOL esre=l —
— 2lStat=s Oz 1L amr=l |
— Erakbl=Suap Ot Oz ZLamral |—
O 1 End ic at iom —
Ot & Ind icat iom [—
Dt 0 Tred i s dce |—
OED i=akled|
AlarnDi=abl=d|—
Enabl = 0b5Ers —m8 ™ —
— FET ime Ob3Exxz [—
— Extc=Exx OEJExcclo<= —
— CharmugeOwecT imns OB de | —

BiCore function block

278

3BSE041488-511

Section 5 Binary Process Control

Core Object Functions and Parameters (UniCore and BiCore)

awocmar — L] L]

AutoCma2 I

AutoCmdo [I I

outtovat — L L]

ouLewe B L A

AutoCmd0 has priority.

Figure 126. Status relations of OutLevel parameters and Auto commands (BiCore)

* There are additional parameters for feedback configuration: FB2, EffectiveFB2
and StatAct2, see Table 34. If an object has no, or only one or two, feedback
signals, StatActl, StatAct2 and StatDeact are still set. The signals StatActl,
StatAct2, and StatDeact are set to false, if FBConfig =0, 1, 2 or 3, and more
than one feedback is True at the same time.

Table 34. Possible combinations of feedback signals (BiCore)

FBConfig Position 1 Position 2 Deactivated position
0 FB1 FB2 FBO

1 FB1 FB2 (none)

2 FB1 inverted | FB2 inverted | (none)

3 FB1 inverted | FB2 inverted | FBO inverted

4 (none) (none) (none)

* For implementation of a bi-directional motor, the BiCore function block has a
parameter named ChangeOverTime (Time data type). The ChangeOverTime
parameter is used for large motors in order to secure priority operation

3BSE041488-511

279

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

(switching forward/reverse). The parameter ChangeOverTime sets a delay
time, before the direction can be changed (see Figure 127).

The ChangeOverTime parameter has an initial value of 5 seconds.

xxx = AutoCmd, ManCmd, PanCmd

I u
xxxCmd2 [] ;
ot [e

(not pulsed) . -

' ChangeOverTime
Out2 :
(not pulsed) -

'ChangeOverTime

Figure 127. Change-over action state diagram

ChangeOverTime is only applicable to Outl, Out2, and Out0. It is not
applicable to OutlLevel or Out2Level, as they present the actual command.

ﬂ It is possible to configure all Bi Process Objects to work in two-speed mode
instead of bi-directional mode (switching forward/reverse). This is done by
setting the ChangeOverTime parameter to zero.

* The llockl, llock2 and IlockO interlocking parameters block commands in all
modes, so that the object cannot be forced to the activated or deactivated states,
respectively. The Inhibit signal will suppress interlock signals when True.
Figure 127 shows which changes between states that are blocked by
interlocking parameters.

280 3BSE041488-511

Section 5 Binary Process Control ~ Core Object Functions and Parameters (UniCore and BiCore)

State 2
(Start/Reverse)

State 1
(Start/Forward)

State 0
(Stop)

Figure 128. Manual maneuvers interlocking signals

(A) - Condition for jump to state 0: State O-maneuver and NOT IlockO.
(B) - Condition for jump to state 1: State 1-maneuver and NOT [Ilockl.
(C) - Condition for jump to state 2: State 2-maneuver and NOT [Ilock2.
(D) - Condition for jump to state 1: State 1-maneuver and NOT Ilockl.
(E) - Condition for jump to state 2: State 2-maneuver and NOT Zlock2.
(F) - Condition for jump to state 0: State O-maneuver and NOT [llockO0.

PriorityCmd0 has the highest priority of the three priority commands and
affects Out0. Similarly, PriorityCmdl and PriorityCmd2 affect Outl and Out2.

3BSE041488-511 281

Core Object Functions and Parameters (UniCore and BiCore) Section 5 Binary Process Control

Priority1 S I

Priority2 L
Priority0
Inhibit L

ouwt [LT 1L
Out2 L]
Out0

Figure 129. State diagram showing Priority command priorities and output signals
with the effect of Inhibit

The Inhibit signal overrules all priority commands. When the Inhibit signal is
active, the object ignores the status of PriorityCmd (the Priority commands do
not affect the output signals).

* The parameter Out2IOLevel, of the in/out type, is the result calculated from the
actual values of the binary 1/O (Out210, Out0IO) in relation to the selected
pulse functionality.

ouno '] n
oo L [m
owo L L[

Out110Level m

Out2I0Level —,—‘ I—I—

Figure 130. OutputlOLevel state diagram

282 3BSE041488-511

Section 5 Binary Process Control Control Module Icons

The output signals are connected to and displayed in the operator workplace.

Control Module Icons

In Control Builder, a control module is represented by an icon that shows the most
important module characteristics dynamically. The interaction window can be
opened by clicking this icon. Connections to a group start environment is made
using normal parameter connections for the process objects. For control modules, it
is also possible to make graphical connections.

Figure 131 shows a control module icon in Control Builder.

Motor101 FOMA1K2D

Indicate the Indication only
The object name s output status visible for
. . Bi objects
Indicates object test (secondl output
larm state indication status)

Indicates any forced I/O
Priority mode indication

Figure 131. Graphical representation and explanations of the control module icons

When modifying a process object, changes may also have to be made to the
graphics. When additions are made in Control Builder graphics, window positioning
might have to be changed. To change the position of an interaction window, double-
click the faceplate (for example FaceplateBi) in the control module types folder.
Select Variables for x and y position and change their value. After a positioning
change, change Initial Value to Value. The values are relative and can be set for both
the x and y position.

3BSE041488-511 283

Interaction Windows Section 5 Binary Process Control

Interaction Windows

Interaction windows are used for maintenance purposes. Through an interaction
window, the service engineer or programmer may manipulate the process object. All
types in the Process Object standard libraries have at least one pre-made interaction
window.

For example, the Bi process object has three Control Builder interaction windows,
one for manual control, one for indications and one for Group Start (see
Figure 132). The main interaction window is displayed first.

The extended interaction window is displayed by a click on the information icon in
the main interaction window and the Group Start window is displayed by a click on
the G-button.

] [T TR
= &l Al a4
Node 1 BiM s
Delay after start 0hOm3s Manual] Auto 1
Delay after stop - 0hOm2s Eﬁ @ gl & Auto 2
B Stop Start A
uto 0
I Stopped [Started ou _Qll o @ :
Node 2 = Panel
b i | S B Panel mode
Delay after start OhOm3s [<] Out =P o
Delay after stop OhOm2s B OutD ane
i Stop [start I Pulse out & Panel 2
I Stopped 4 Started g:;:“s & Panel 0
T]
FB2
&4 Priority 1
~Overrides———————————— X Priority 2
4 Priority 0
The window above and the ’—Luwﬂ
button only exist if Group [~ Error = B Local mode
Start is connected Error disabled Others
FB time: |llhllm55 @ Alarm dis
B Object test
FBConfig 1

Figure 132. Control Builder interaction windows for Bi(M)

284 3BSE041488-511

Section 5 Binary Process Control Interaction Parameters

Interaction Parameters

Interaction parameters are used to interact with the process object. Interaction
parameters can be accessed from the code (this is not recommended, since it might
shut out the operator interface) and from the graphical interface. Interaction
parameters are identified by the syntax InteractionPar.ComponentName.

For more information on interaction parameters, see Control Builder online help

@ for the Process Object libraries. Interaction parameters for process objects are
also described in connection with instructions on how to configure the objects,
see Advanced Functions on page 317.

3BSE041488-511 285

Design

Section 5 Binary Process Control

Design

The types in the Process Object libraries can be used in a number of ways. There are
also a number of choices that have to be made regarding which type of object to use
for which purpose.

This sub section contains information designed to help you:

Decide which type to use, see Choose the Correct Type on page 287.

Configure standard types to be used in your application as is, see Use Standard
Library Types on page 288.

Create your own types based on core objects, see Use Standard Library Types
to Create Self-defined Types on page 289.

Connect process objects to a group start configuration, see Group Start
Interface on page 289.

Configure alarm handling, see Alarm Handling on page 291.

Create uni-directional and bi-directional control solutions using the Uni(M)
and Bi(M) template objects, see Generic Uni- and Bi-Directional Control on
page 293.

Configure motor control and valve control solutions using objects from the
Process Object libraries, as templates or as is. See Motor and Valve Control on
page 296.

286

3BSE041488-511

Section 5 Binary Process Control Choose the Correct Type

Choose the Correct Type

In choosing a representation of a specific process object, you must decide on the
following:

. Should I use a function block or a control module? See Function Blocks vs
Control Modules on page 287.

* Which process object type should I use? See Type Selection Chart on page 287.

Function Blocks vs Control Modules

All process objects (except the core function blocks) are delivered in two versions,
function blocks and control modules. Control modules have an suffix M in the type
name.

In simple applications (or small ones) that will not need to be modified at a later
date, traditional function block solutions may be used. In more complex
applications, control modules are preferred.

One of the benefits of using control modules, is that they allow the user to insert
many similar objects, as the code sorting routine ensures that variables are dealt
within the correct order. The more objects to be inserted, the more you gain by using
control modules.

Function block parameters are copied at each call, while control module parameters
are defined at compilation and set up once, prior to execution. Control modules have
a performance advantage, especially when large structures (for example, structured
data types) are used as parameters, of the in and/or out type, in function blocks, or
when parameters are transferred through deep hierarchies.

Type Selection Chart

If the process object is intended to be applied to a bi-directional object (an object
with three states) and it is a motor, choose the MotorBi(M) type. If it is a bi-
directional object, but not a motor, choose the Bi(M) type or the BiSimple(M) type
if you do not need alarm handling. If it is a bi-directional object and a motor valve,
choose MotorValve(M). If it is a bi-directional object and a motor controlled valve
of open/close type then choose MotorValveCC.

3BSE041488-511 287

Use Standard Library Types Section 5 Binary Process Control

Bi/Uni

Uni

Yes

MotorUni

If the process object is to be used for a uni-directional object, (an object with two
states) several choices are possible. If it is not a motor or a valve, choose the Uni
object type or the UniSimple(M) type if you do not need alarm handling. If it is a
uni-directional motor object, choose MotorUni(M) and if it is a uni-directional valve
object, choose ValveUni(M).

Figure 133 contains a flow chart for selecting the correct type for your process
objects.

Bi

UniSimple
Uni N° N° BiSimple
|Yes ‘Yes
ValveUni MotorBi Bi

Figure 133. Flowchart of possible process object type choices

Use Standard Library Types

Some of the process objects are delivered as template objects. This means that the
code is open and readable for the user. However, process objects may be instantiated
as they are, if no addition or change is needed.

If you want to use one of the types in the Process Object libraries without any
modification, simply connect the library to your application and create one or
several instance(s) of it. The only thing you have to do is configure the instances by
connecting their parameters to your application.

288

3BSE041488-511

Section 5 Binary Process Control Use Standard Library Types to Create Self-defined Types

For examples of how to do this, see Examples on page 304. For detailed information
about parameters for the different types, see Level Detection, Commands and Alarm
Texts on page 317.

Use Standard Library Types to Create Self-defined Types

It is possible to create your own types, based on the types in the Process Object
libraries. However, to make it possible to modify and add to your self-defined types,
you need to create copies of the Process Object library types you want to modify,
and store them in a library that you have created for this purpose. For an example of
how to create a new library and copy types to it from the Process Object libraries,
see Create a Library and Insert a Copy of a Type on page 304.

If you use a type from a Process Object library as a formal instance in one of your
self-defined types, and this sub type is updated (for example, through an upgrade of
your system), the changes are reflected in your self-defined type(s) as well.

You can add functions to the copied object types that you store in self-defined
libraries. For an example of how to do this, see Add Functions to Self-defined Types
on page 309.

For detailed information about parameters for the different process object types, see
Level Detection, Commands and Alarm Texts on page 317.

Group Start Interface

All process objects in the Process Object library (except ProcessObjBasicLib) have
the group start interface where connections may be done to the group start
environment.

The Group Start interface consists of the following parameters:

* GroupStartin *,
* GroupStartMode,
* GroupStartILock.

* One for each connection (Uni types have one connection and Bi types have two
connections).

3BSE041488-511 289

Voting Interface

Section 5 Binary Process Control

V

The parameter GroupStartin is the structured parameter, that connects the process
object to the group start environment and is in the control module cases
implemented as a node to allow a graphical connection. The out parameter
GroupStartMode indicates Group Start mode with a true value in the corresponding
boolean parameter. When the parameter GroupStartlLock is true, transfer to group
start mode is inhibited.

These parameters are optional and only implemented in the more complex motor
objects. The purpose is to halt the start or stop sequence if any external signal
requests it and all Txt-parameters are strings, telling the Group Start environment
the reason of the halt.

* ContinueStartSeq *
* ContinueStartSeqTxt *
* ContinueStopSeq *
* ContinueStopSeqTxt *

* One for each connection (Uni types have one connection and Bi types have two
connections).

For a description of the Group Start library, see Section 6, Synchronized Control.

Voting Interface

Several process objects support Voting; for more information about these objects
and their corresponding Voting parameters, see Signal and Vote Loop Concept on
page 367.

290

3BSE041488-511

Section 5 Binary Process Control Alarm Handling

Alarm Handling

V

®

For more information on alarm and event handling, see the manual Compact 800
Engineering Compact Control Builder AC 800M Configuration (3BSE041488%) ,
and online help for the Alarm and Event library.

Some process objects contain an alarm and event handling function block. The
alarm handling interface consists of the following parameters:

. AlarmDisabled

. ExtErr

e ObjErr

e AlState

e AlarmAck
* AEConfig

* AESeverity
e AEClass

* EnableSupOut

When an error occurs, motor objects normally and automatically enter Priority
mode and reset the start signals. It is possible to leave the motor running, by setting
the interaction parameter KeepAtErr. For other template objects, this is the normal
functionality.

For the alarm to work properly, the Name parameter of each object has to be
unique throughout the whole plant.

The alarm function is based on the AlarmCond function block, with acknowledge
rule (AckRule=1). This acknowledge rule includes six possible alarm states. For
further information about alarm states, see online help on the AlarmCond function
block. The alarm is activated by a feedback error.

The AlarmCond function block incorporates an alarm Control Builder interaction
window, displayed by a clicking the alarm icon in the Control Builder interaction
window. See Figure 134.

3BSE041488-511 291

Alarm Handling Section 5 Binary Process Control

ObjectError ;J_l M T'}

Severity: 500 Class: 1

Figure 134. An alarm Control Builder interaction window

If the object is in Disabled or in Local mode, or if the feedback error is disabled, the
alarm function is disabled.

An alarm can be acknowledged from the program via the parameter AlarmAck, from
the alarm Control Builder interaction window.

Error Texts

Error text strings can be added by the OETextUni, OETextBi, and OETextValveUni
function block that are included in their corresponding process object types. These
function blocks generate a text message from the feedback and output signals of the
AlarmCond function block. The text message is displayed in the Alarm Control
Builder interaction window.

The text is put together by adding the name of the object that created the alarm to
information about status and feedback. If the error has been generated from an
ExtErr parameter, an external error text is also displayed.

For more information on the OEText function blocks, see Level Detection,
@ Commands and Alarm Texts on page 317. More information about parameters is
also found in online help for the Process Object libraries.

292 3BSE041488-511

Section 5 Binary Process Control Generic Uni- and Bi-Directional Control

Generic Uni- and Bi-Directional Control

The Process Object Extended library contains two objects that are intended as
generic template objects for uni- and bi-directional applications:

e Uni(M), see Uni(M) on page 294
* Bi(M), see Bi(M) on page 295

There are two versions of each object, one function block type and one control
module type (indicated by the letter M).

There are also two objects in the Process Object Basic library that are simplified
versions of the above two:

* UniSimple(M), see UniSimple(M) on page 296
e BiSimple(M), see BiSimple(M) on page 296

As for the Uni(M) and Bi(M) objects, there are two versions, one function block
type and one control module type.

All the above objects are based on UniCore and BiCore. Before reading this section,
you should always be familiar with the functions and parameters of the core objects,
see Core Object Functions and Parameters (UniCore and BiCore) on page 266.

All the above function block and control module types contain function blocks

@ from the Process Object Basic and/or Process Object Extended libraries. For a
description of those function blocks, see Level Detection, Commands and Alarm
Texts on page 317.

Some parameters in the function blocks are different from the ones in the control
modules. For example, the voting interface in the control modules do not exist in the
function blocks.

3BSE041488-511 293

Generic Uni- and Bi-Directional Control

Section 5 Binary Process Control

Uni(M)

Uni(M) object is based on a UniCore.
Uni(M) includes an alarm function,
Control Builder interaction windows .

Uni(M) is intended for uni-directional
control and can be used as a template
for developing your own uni-directional
types, see Create a Library and Insert a
Copy of a Type on page 304.

For Uni(M), it is possible to control
Panel mode of the object from both a
workplace, and from a switch on a
control panel. The interaction window
has a button that can toggle Panel mode.

There is also a parameter (PanMode)
intended to be connected to an
activation signal from the panel. If you
connect PanMode to the panel, it is still
possible to use the button in the
interaction window to activate Panel
mode.

It is not possible to deactivate Panel
mode from the interaction window if it
has been activated from the control
panel. For an example of a panel control
configuration, see Connect to a Control
Panel in Panel Mode on page 313.

Tni
— Enable AutoMode |—
— Name ManMode —
— Description PanMode —
— SetAuto
— AutoCmdl
— AutaCmdl
— ManMode Init
— PanExists
— Pancmdl
— Pancmdl
— LocMode

GroupitartIn————
— GroupStartILock GroupStartMode [—

— PriorityCmdl PriorityMode [—
— PriorityCmd0 outof ServiceMode |—
— PricrityCmdManl StabAct | —
— FPricrityCmdMand StatDeact [—
— Ilockl
— IlockOd
— Inhikit
— ChjectTest
— FEConfig

FB1

FEO

Cutl

Cutld
— ExtErr AlarmDisabled | —
— Alarmaick OhiEre —
— AEConfig Alstate —
— AEZeverity
— AEClass
— Enablelupout

InteractionPar —— —

294

3BSE041488-511

Section 5 Binary Process Control Generic Uni- and Bi-Directional Control

Bi(M)
. . . . Bi
Bi(M) is an example of a BiCore. Bi(M) _Eheale AutoMode —
includes an alarm function, Control — Heme ManMode —
Builder interaction windows. gy| DEOEEIREIE
— Zetiuto
Bi(M) is intended for bi-directional — Butocmdl
control and can be used as a template for 7 iu?zmjg
. . . . — SUT oL
developing your own bi-directional types, [————
see Create a Library and Insert a Copy of a — PanExists
Type on page 304. gy ZEeEE
— PanCmdl
For Bi(M), it is possible to control Panel — Pantmd2
mode of the object from both a workplace, i i::;;“::
and from a switch on a control panel. The GroupStartind =
interaction window has a button that can - GroupStartIni— |
toggle Panel mode. — GroupStartILock GroupStartMode —
— PriorityCmdl PriorityMode |—
There is also a parameter (PanMode) — PriorityCudl OutofServiceMads -
intended to be connected to an activation — PriarityCudd Stathctl—
. — PriorityCmdManl StatActd —
signal from the panel. If you connect B StatDeact |
PanMode to a panel it is still possible to — PriorityCudiand
use the button in the interaction window to - Iimg
. — Iloc
activate the Panel mode. 11
— IlockO
. . . — Inhihit
It is not possible to deactivate Panel mode i O]:jec;est
from the interaction window if it has been — FEConfig
activated from the control panel. For an FB1
example of a panel control configuration, FBE
. FE
see Connect to a Control Panel in Panel ourl
Mode on page 313. out?
outd
— ExtErr AlarmDisabled—
— Alarmick ChiErr |—
— AEConfig alstate | —
— AESeverity
— AEClass
— Enable3upiut
InteractionPar ———

3BSE041488-511 295

Motor and Valve Control Section 5 Binary Process Control

UniSimple(M)

P TniSinple
UniSimple(M) is a UniCore application. It — Enable BuroMade
. — HNane= MarMode —
includes Control Builder interaction windows. — [Pardods —

— Setlutao PriorityMods —

1S4 1 1 — AutolCmdl 0 fServiceMode [—
UniSimple(M) has the same functions as Uni(M), =~ Zueefaal il

except for the fact that there is no alarm and event =~ —HanMadeInit StatDeact [~
. — PamExists
handhng. — PanCmdl
— PanCndl
— LocHode
— PriorityCmdl
— PriorityCmdd
—Ilockl
— IlockO
— Inhibit
— 0bjactTest
— FEConfig

FE1

FEO

Ot 1

a0

— ExtErr ObjExy [—
Interactionfar ——

BiSimple(M)
ca . . — . EiSiuple
BiSimple(M) is a BiCore application. It includes = —Enabi= dnicelode -
. . . . — Namne= ManMode —
Control Builder interaction windows. — PricrityMods
— Betluto a0 fEerviceMode

194 1 1 — AutoCmdl Statictl
BiSimple(M) has the same functions as Bi(M), T S

except for the fact that there is no alarm and event ~ — 2utatndn SratDeact [~
. — MarnModeInit
handllng. — PanBxists
— PanMode
— PanCmdl

Motor and Valve Control — Pancmdn

The Process Object Extended library contains two ~ — ir%ﬂréiﬁmi
. . . — Priori ik
motor control objects (each in a function block — PricrityCmdd
. — Ilockl
type and a control module type version), one — —
— Ilockd
— Inhibit
— ObjectTest
— FEConfig

Ol
Oucz
Oued
— ExtErr ObjErr [—
— InteractionPar ——— [

296 3BSE041488-511

Section 5 Binary Process Control Motor and Valve Control

valve object (in a function block type and a control module version), and three
motor valve objects (in one function block type and two control module types):

* MotorUni(M) for uni-directional motors, see MotorUni(M) on page 298.
* MotorBi(M) for bi-directional motors, see MotorBi(M) on page 300.

e ValveUni(M) for valves, see ValveUni(M) on page 301.

* MotorValve(M) for motor valves, see MotorValve(M) on page 302.

* MotorValveCC for motor valves, see MotorValveCC on page 302.

For a description of how to configure ABB Drives and INSUM control, see
@ Advanced Functions on page 317.

All the above objects are based on UniCore and BiCore. Before reading this section,
you should always be familiar with the functions and parameters of the core objects,
see Core Object Functions and Parameters (UniCore and BiCore) on page 266.

All the above function block and control module types contain function blocks

@ from the Process Object Basic and/or Process Object Extended libraries. For a
description of those function blocks, see Level Detection, Commands and Alarm
Texts on page 317.

These types can be used as is, or as templates. If you want to use them as templates,
they have to be copied to your own library and then modified, see Create a Library
and Insert a Copy of a Type on page 304.

When using the motor and valve process objects as is, the only thing you have to
@ do is to connect the parameters that do not have default values.

3BSE041488-511 297

Motor and Valve Control Section 5 Binary Process Control

MotorUni(M)

Motorlni

MotorUni(M) is an example of a UniCore —Enable AutoMode —
. . . . — Hame ReadyToStart —
application. It includes an alarm function, — Description WanMode |
Control Builder interaction windows. It is [
intended to be used to control a uni-directional ~
. — odelnit
motor object (stop and run). — ParExists
— PanMode
This section only discusses functions that have S
been added, compared to the functions of — LocHode
. . —_—= SrartIn—— 1
UniCore and Uni(M). You should also read Core _ Gmps,;artm;ko i élmpsmtmde B
: H : — Continued tartieq PrioritcyMode —
Object Functions and Parameters (UniCore and T TRHREERRtent orservioatioge
Bicore) on page 266' — Continuesitopieq Statdct —
— ContinuedtopieqTxt StatDeact —
— PriorityCmdl
Auto mode can be set from the program, _ | pmp——————
interaction windows. Since Auto mode implies At
. . — PriorityCmd0Z2Txt
automatic operation, the program controls the — PriorityCudn3
. « — Priori d03Tx=
object via AutoCmd1 and AutoCmdo. R
A A . — PriorityCmdMani
Each of these parameters is supplied with a value = — PrioricytudianoTxe
. . . . — Ilockll
of FBTime, connected to the interaction window, —1ieckiz
via interaction parameter components. The value ~ ~ ;%5
of FBTime can be changed from the “
. o . . . — Ubjectles
corresponding graphical window. The interaction — recentiq
parameter components have the cold retain i
attribute to retain their values following a cold o
restart. FBTime for AutoCmdl has the same — ExtErr AlaruDisebled | —
. — 4l Ack ObjErr —
setting as AutoCmd] and AutoCmd0, because the _ jzeonsiq AlSeare
same local variable is used. T
— AEClass
. .. . — Enahleiupiut
For MotorUni(M), it is possible to control Panel Motorvalue
— MotorWalueTxt

mode of the object from both a workplace, and
from a switch on a control panel. The interaction
window has a button that can toggle the Panel
mode.

Interactionfar——— —

298 3BSE041488-511

Section 5 Binary Process Control Motor and Valve Control

There is a parameter (PanMode), which is intended to be connected to an activation
signal from the panel. If you connect PanMode to the panel it is still possible to use
the button in the interaction window to activate the Panel mode. It is, however, not
possible to deactivate Panel mode from the interaction window if it has been
activated from the control panel.

Modification of the interlocking function is performed to extend some parameters,
to apply user-defined text, and to implement the combination of PriorityCmd0 and
an alarm function via ExtErr. Further improvement is possible, based on this
example.

MotorUni(M) object has four interlocking parameters: llockO1, llock02, llockl 1,
and llock12, that set the condition of IlockO or Ilockl in the UniCore function block.
The IlockO condition is set by IlockO1 or llock02. Similarly, the Ilockl condition is
set by llockl 1 or Ilockl?2.

The PriorityCmd0 parameter is divided into three parameters: PriorityCmdO1,
PriorityCmd02, and PriorityCmdO03. PriorityCmd02 and PriorityCmd03 have
associated parameters: PriorityCmd02Txt, and PriorityCmd03Txt, to provide a
descriptive text in the alarm list and the interaction window. The text is displayed in
the Priority Interlock menu area.

The extended PriorityCmd0 (-Cmd01, -Cmd02 and -Cmd03) has a hold function
with an alarm. When the priority command is active, the feedback error is generated
by an alarm and can only be released by alarm acknowledge or inhibit.

The Inhibit signal for MotorUni(M) process objects works exactly the same as
described earlier in Core Object Functions and Parameters (UniCore and BiCore) on
page 266, with one exception: Inhibit releases a feedback error, activated by
PriorityCmdO.

3BSE041488-511 299

Motor and Valve Control Section 5 Binary Process Control

MotorBi(M) -

. — :::;;fl At olMode —
MotorBi(M) is an example of a BiCore application, e BeadyTosoareil
with an alarm function, interaction windows. JE—— R vl

— &atolmdl
. . . . — &t olmdE
This section only discusses functions that have — samotmas
. . — ManMode Init:
been added, compared to the functions of BiCore .
and Bi(M).You should also read Core Object .
Functions and Parameters (UniCore and BiCore) .
on page 266. s
— G:ou;.vscarc ILockT G:oul.)St.a:d‘Iod.e —
Auto mode can be set from the program, e et D0t
interaction windows. Since Auto mode is the T . el
automatic operation, the program controls the s Rl
. . — ContinueStopfeqs
object via AutoCmdl, AutoCmd2 and AutoCmdo0. T e—————
— PriorityCmdl
. . — Prioritylmds
AutoCmdl and AutoCmd?2 are supplied with an — Priczicycnaod
. . . . — Priorityimdiz
OnDelayTime interaction parameter, AutoCmd0 is e
i _ . . [Eziemeynaos
supplied with an Oﬁ‘DelayTz.me 1nteract10{1 .
parameter, connected to the interaction window, .
via interaction parameter components. The value of =~ Jimesisventizote
OnDelayTime and OffDelayTime can be changed in e
the graphical window. T s
— Inhibit
Interaction parameter components have the cold m
. . . . FEL
retain attribute to retain their values at cold restart. rx
OnDelay for AutoCmdl and AutoCmd?2 has the
same setting as AutoCmdl, AutoCmd?2 and . e i
AutoCmd0, since the same local variable is used. . el
— AEBever ity
Just like for MotorUni(M), it is possible to control -
& Bup Dk
Panel mode of the object from both a workplace, e—
and from a switch on a control panel. The i

interaction window has a button that can toggle the
Panel mode.

300 3BSE041488-511

Section 5 Binary Process Control Motor and Valve Control

MotorBi(M) implements the BiCore change-over function. A parameter is provided
for setting the change-over time, and it is connected to the corresponding parameter
in BiCore. The interaction parameter component for the change-over time is also
connected to the interaction window. This makes it possible to change the value in
the corresponding graphical window. The interaction parameter components have
the cold retain attribute to retain the values following a cold restart.

Interlocking and priority commands work as for MotorUni(M), but with additional
parameters for the second output and the extra state.

Error texts are generated in the same way as for MotorUni(M).

ValveUni(M)
The ValveUni(M) process object is a
simple example of the UniCore ValveUni
function block. ValveUni(M) includes gy Zrele Auelisel oy
. . — Name ManMode (—
an alarm function, Control Builder 5 .
— Descripticn
interaction windows. R
. A A — AutoCmdl
The ValveUni(M) object is e
incorporated with only one output I/O — ManModeInit
for open command. T Creupstartine—————
— GroupftartILock GroupftartMode | —
When using the ValveUni(M) as is, the — PriorityCmdl PriorityMode [~
only thing you have to do is to connect — PriorityCmdl — OutOffervicetlode —
— PricrityCudManl Stathct [—
the parameters that do not have default _ PriorityCudManD ———
values. — Tlockl
— TlockD
— OkbjectTest
— FBConfig
FEL
FEO
outl
— Alarmhck AlarmDizabled |—
— AEConfig ObJErr —
— AESeverity AlZtate —
— AEClass
— Enabkle SupOut
InteractionPar — M —

3BSE041488-511 301

Motor and Valve Control Section 5 Binary Process Control

MotorValve(M)
Votorval
The MotorValve(M) and MotorValveCC e ZutcMods
process objects are based on BiCore and I ee— Hankioge
i i i i — SetRuto
1slextended with alarm and interaction 5
windows. — AutoStap
— fut o3e
MotorValve is suitable for graphical IR
control and supervision of a bidirectional mfl
(two activated position) motor valve. It is — PanStop
. — PanClase
used for motorized valves that are to be — LocMede
o -G —
maneuvered to any position. L
i X . — GroupStartILock GroupStartMode [—
The object has two feedback signals in — EriorityOpen PricrityMode [~
.. — PriorityStop OJutOfServiceMode[—
the Opened and Closed position. When — PriorityClose StathctOpen|—
the valve is moving towards its Closed e =
position, the valve may be stopped at any ~ — FiesErtiessian
position and also manoeuvered towards — Ilockstop
. — IlockClose
the Open position. The stop may occur — Inhibit
: : . — dajectTest
both in the beginning of the movement — FBConfig
where the closed feedback is still true and e
between both the feedback switches. The =~ — CondliametbiectError Open [~
o . — ExtErr Stepl—
opposite is relevant for the opening — Alarmhck Closef~
command. When the Opened positionhas _ irseressey O rernatcal-
: — REClass ObjErr|—
been ree.lched, the Open Ou'[pl.lt remains e— e |
true until the stop command is given. — EnableParError RlState[~
e ParError[—
When the Closed position has been ——————InteractionPar —

reached, the Close output remains true
until the stop command is given. During
the Open and Close operations the transition time is supervised.

When the Opened position is reached, the Open output remains true until the Stop
command is given. When the Closed position is reached, the Close output remains
true until the Stop command is given. During the open and close operation, the
transition time is supervised.

MotorValveCC

The MotorValveCC control module type is suitable for graphical control and
supervision of a motor controlled valve of open/close type. It is based on BiCore

302 3BSE041488-511

Section 5 Binary Process Control Motor and Valve Control

and is extended with alarm and interaction windows. The input interface is of type
control connection that can be connected to an output object from a control loop.

The object is a composite object mainly consisting of ThreePosCC from
ControlStandardLib, and MotorValveM from the ProcessObjExtLib.

3BSE041488-511 303

Examples

Section 5 Binary Process Control

Examples

This sub section contains a number of examples that have been included to show
how to implement process objects, how to create your own, application-specific
types, and to illustrate some important concepts and relations:

Create a Library and Insert a Copy of a Type on page 304 gives an example of
how to create a library and copy Process Object library types into this library.

Add Functions to Self-defined Types on page 309 gives an example of how
functions can be added to a type.

Connect to a Control Panel in Panel Mode on page 313 shows how to connect
UniCore and BiCore to a control panel (Panel mode).

Create a Library and Insert a Copy of a Type

This example shows how to copy a type from the Process Object Extended library to
a user-defined library.

1.
2.

In Project Explorer, right-click the Libraries folder and select New Library...

Type the name of the library to be created in the Name field, for example,
MotorLib. Click OK.

In the Process Object Extended library, locate MotorBiM (in the Control
Module Types folder).

Right-click the type and select Copy (Ctrl+C).

Right-click the your newly created library (in this example MotorLib), and
select Paste (Ctrl+V). The copy of the object is created under the Control
Module Types folder.

The default name of the copied object is the name of the copied original object
type.

304

3BSE041488-511

Section 5 Binary Process Control Create a Library and Insert a Copy of a Type

To change the name of the object, proceed as follows:

6.
7.

Right-click the object and select Rename...

Type the desired name of the object, in the New name text field, in this
example, MotorBiMod. Click the OK button.

Process object types in the Process Object libraries contain a number of control
modules, for example, the FaceplateMotorBi control module, which can be
used as an interaction window for the MotorBi(M) process object type. The
control modules refer (or point) to their types in ProcessObjExtLib.

If these control module types are to be changed in your application, the updated
control module types must also to be copied to your library.

Expand the folder of the copied process object type, and identify the control
module types that refer to the control modules used in the process object type.
For example, the control module type MotorLib.FacePlateMotorBi refers to
control module FaceplateMotorBi used in the MotorBi(M) process object type.

3BSE041488-511

305

Create a Library and Insert a Copy of a Type Section 5 Binary Process Control

=S =Rrckorlib 1, 0-0
-] Connected Libraries
Bl BasicLib 1.0-0
B Iconlib 1.0-0
Bl ProcessObiBasicLib 2.0-0
El ProcessobiExtLib 2.0-0
Bl AlarmEventlib 1.0-0
@ Daka Tvpes
—-45F Function Block Types
—-4F MotorEiMod
gFE 5501 Basiclib, GroupStartobjectConn
FFE 35C2 Easiclib.GroupStartObjeckConn
+-JFE Faceplate(Mu:utu:urLiI:u.FaceplateMntDrBiMDd)

-I-[] ProcessObjExtLib 2.0-0
+-[F] Connected Libraries
+- & Data Tvpes
--45F Function Block Types
+-} Ei
£ LevelDetection
—-F MakorEi
JFE 5502 BasicLib, GroupStartObiectConn
JFE 35C1 BasicLib, GroupStarkObiectConn

+-JPE Faceplate (FaceplateMotorBi

Figure 135. The control module type is copied to your own created library

9. In the Control Module Types folder of the Process Object Extended library,
select the control module type that is to be copied (for example,
FaceplateMotorBi).

10. Right-click on the control module type and select Copy (Ctrl+C).

11. Right-click on the Control Module Types folder in your newly created library
(in this example MotorLib). Select Paste (Ctrl+V). (See steps 6 and 7 if you
wish to change the name of an object type.)

306 3BSE041488-511

Section 5 Binary Process Control Create a Library and Insert a Copy of a Type

12. Select the control module type that is to be replaced, under the process object
type, in your own created library (MotorLib), in this example,
FaceplateMotorBiMod under MotorBiMod. See Figure 136.

(S T MotorLib 1.0-0 Newly created library

E-- Wl Connected Libraries
. [P BasicLib1.6-8

o [0 IconLib 1.3-3

[l ProcessObjBasicLib 2.4-5
. EE ProcessObjExtLib 2.4-8
EI # Function Block Types
. @ 3=k MotorBiMed
..... 12 Control Module Types
- [ProcessObjBasiclib 24-5
E-- [ProcessObjExtLib 2.4-8
----- I Connected Libraries
----- & Data Types

£l = Function Block Types
- Zaf Bi A copy of the
. ZaF LevelDetection Mot ype.
_ pasted into the
. ﬂ: MotorBi MotorLib.

- 2= MotorUni

- J=f MotorValve

e o OETextBi

. 2o OETextUni

~ af OFTextValveBi
o B3k OETextValveUni
[z ﬂ: Uni

[z ﬂ: Walvelni

@ = Control Module Types

Figure 136. Copying of object types to a new library, MotorLib

13. Right-click and select Replace Type.

14. In the Libraries/Application list, select your self-defined library and in the
Control module type list, select the control module type that is to replace the

3BSE041488-511 307

Create a Library and Insert a Copy of a Type Section 5 Binary Process Control

original type. (It is possible to rename the control module in the Instance name
field). Click the OK button.

& Replace Control Module Type fz|
Control module type: Librariez/dpplication:
katorLib.F aceplatekd atorBibd o katorLib

- AlarmE ventLib
Faceplatet atarBitd od BasicLib
|zonLib
Procesz0biB azicLib
Procesz0ObE stLib

Instance name: |Faceplate ﬂ

[w Connect parameters

Cancel

Figure 137. Replace Control Module Type dialog

308 3BSE041488-511

Section 5 Binary Process Control Add Functions to Self-defined Types

Add Functions to Self-defined Types

In the example below, a level detection for motor speed is added to the object type
that was copied above, MotorBiMod.

ﬂ In this example, no functionality for alarm text handling has been added.

1.

In the Function Block Types folder in MotorLib, right-click on the
MotorBiMod type and select Editor (ENTER).

Place the cursor in the code pane and choose Edit>Find... (Ctrl+F) from the
menu. Search for the text level detection.

Make a copy of the code concerning ***Compute the level detection
on the associated analog input signal*** and paste it into the
code pane.

According to Figure 138, declare the new function block
(LevelDetectionSpeed), change the function block name in the code pane and
declare the required variables. Connect the parameters by right-clicking on the
function block in the code pane and selecting Edit>Parameter list (Ctrl+M).

3BSE041488-511

309

Add Functions to Self-defined Types

Section 5 Binary Process Control

5. Select Editor>Save and Close (Ctrl+U) to implement the changes made in the

MotorBiMod object type.

E Function Block Type - MotorLib:MotorBiMod

Editor Edit Y¥iew Insert Tools Window Help

=101 x|

xr»glaplvo s B agHlo

e @ | |

Mame Function Block Type|Task CunnecliunIDescripliun
9 |LevelDetection LevelDetection
10 |LevelDetectionSpeed LevelDetection Level detection motor speed

[» pmeters 3 Variables)\ Exiernal Variables) Function Blocks [<] |

S
F
H
E
E

Condition :=
01dOut1I01level := OutlIOLevel:
01dOut 2I101evel := Out2I0Level:

(#=% Compute the level detection on the motor speed =xxx)

LevelDetectionSpeed(Value := MotorValueSpeed. Value,

Level := LevelSpeed,

StartDelay := StartDelaySpeed,
FilterTime := FilterTimeSpeed,
Hysteresis := HysteresisSpeed

EnableDetection := OutiIOLevel and 0ldOutiIOLevel or Out?

Enable := EnablelevelDetectionSpesd,
Condition := MotorValueConditionSpeed).

g input signal *xxx) i

T T

HanHodelnit := HanModelnit.
HanCmdl := ManCmdl.
HanCmd2 HanCmd2 .,

T3\ Code i1 T,-:"‘Iu..-'l n W =i

LILI

[Row 115, Col 1

I

Figure 138. Level detection functionality added to the MotorBiMod function block

1ype

It is now possible to use the MotorBiMod function block type in a program, with the

new added functionality.

310

3BSE041488-511

Section 5 Binary Process Control Add Functions to Self-defined Types

In the Program folder under Applications, right-click on a program, for
example Program?2, and select Editor (ENTER).

Declare a function block of the type MotorBiMod (in this example called
MotorBi).

Insert the function block in the code pane, connect the desired parameters and
declare the required variables. (In this example the Function Block Diagram
language is used).

3BSE041488-511

311

Add Functions to Self-defined Types

Section 5 Binary Process Control

MotorBilMod
— Ensble
— Nane
—Description
— Setiuto

AutoMode [—
ReadyToStartl—
ReadyToStartZ—

ManMode [—

— AutoCudl

— AutoCudZ

— AutoCud0

— HanModeInit
— PanExists
— PanlMode

— PanCndl

— PanCndZ

— PanCnd0

— Loclode

P tinl

tIn2
— GrowpStartILock CrowpStartMode
— ContinueStartSeql Prioritylode
— ContinueStartSeqTxtl OuOfServiceMode
— ContinueStopSeql Statictl
— ContinueStopSeglTxtl Statict2
— ContinueStartSeq2 StatDeact
— ContinueStartSeqTxtZ
— ContinueStopSeqZ
— ContinueStopSeqlTxtZ
— PriorityCmdl
— PriorityCmd2
— PriorityCmd0l
— PriorityCmd02
— PriorityCnd0ZTxt
— PriorityCmd03
— PriorityCnd03Txt
— PriorityCndManl
— PriorityCndManZ
— PriorityCndManO
— PriorityCndfan0Txt
—Ilockll
—Ilockl2
—Ilockz
— IlockOl
— Ilock02
— Inhibit
— ObjectTest

1<<FB1FBOMotorBi — FEConfig

1<<FB2FBOMotorBi LD

1<<FBOMotorBi ey

*uU

1<<Out1MotorBi Ourl

1<<Out2MotorBi Ouc2

: Out0
1<<OutOMotorBi AlarmbDisabled
ObjExxr
AlState

— ExtErr
—Alarmick
— AEConfig
— AESeverity
— AEClass

1<<MotorValueMotorBi — EnsbleSupOuc

HMotorValue

MotorCurrentTxt>1 MotorValueTxt

MotorValueSpeed
— MotorValueTxtSpeed
——InteractionPar

1<<MotorValueSpeedMotorBi

FB1FBOMotorBi>>1
FB2FBOMotorBi>>1
FBOMotorBi>>1
Out1MotorBi>>1
Out2MotorBi>>1
OutOMotorBi>>1

MotorValueMotorBi>>1

MotorValueSpeedMotorBi>>1

Figure 139. MotorBi function block with connections to variables

9. Select Editor>Save and Close (Ctrl+U) to implement the changes.

3BSE041488-511

Section 5 Binary Process Control Connect to a Control Panel in Panel Mode

Connect to a Control Panel in Panel Mode

Whether or not Panel mode is used, depends on how comprehensive the application
is. The question is whether you prefer to initiate control (the parameter PanMode) of
the object from a workplace, or from a switch on a control panel.

When the Panel mode is active, the control panel takes control of the object and
errors are calculated according to the status signals from the control panel. The
output signal retains its status from the previous mode. The following examples
show how to connect UniCore and BiCore to a control panel.

UniCore Examples

Figure 140 shows how to connect UniCore to a control panel in a small application.

Controller
Control Panel F_- - - — — — — -

Motor
Process object

- - - PanMode
---PanCmd1
---PanCmd0

Switch

Figure 140. Control steps in Panel mode. This solution is recommended for small
applications, where all three panel parameters are connected from a control panel

In large applications, the best solution is to connect the PanMode parameter, via
variables, to interaction window. The PanCmd1l and PanCmd0 parameters are still
connected to the physical Start/Stop buttons (see Figure 141). Changes in the Panel
mode are therefore approved centrally, that is, a local operator must first obtain
permission from the central control operator.

3BSE041488-511 313

Connect to a Control Panel in Panel Mode Section 5 Binary Process Control

Controller

Operator workplace

‘ Switch on screen ‘ | Motor

Process object
- --PanMode
---PanCmd1
---PanCmd0

Control Panel

QS_t@r_t B}
QS_tQP B Lo 2

Figure 141. Control steps in Panel mode. This solution is recommended for large
applications, where the PanMode parameter is connected to an operator workplace

The status of the object is controlled by the signals PanCmdl and PanCmd0, which
are level signals and function in the same way as AutoCmd signals, as illustrated in
Figure 141. The PanCmdl and PanCmd0 parameters should be connected to push
buttons. It may be advisable to use an R_Trig function block (trigger, parameter and
push button) between PanCmdl and PanCmd0, in case the push button
malfunctions.

BiCore Examples

A control panel is a natural choice for smaller applications. The PanMode parameter
is connected to the switch on the control panel; PanCmdl, PanCmd2 and PanCmd0
are connected to the Start/Stop buttons (see Figure 142).

314 3BSE041488-511

Section 5 Binary Process Control Connect to a Control Panel in Panel Mode

Controller

Control Panel Process object

Motor

p- - PanMode

|

. |
Switch .
1

|

Forward ,—,—» - -PanCmd1

|

|

|

|

|

- .PanCmd2 |
Reverse | | |
|

|

|

|

— | - -PanCmdO

Figure 142. The Panel mode control diagram. A general solution for smaller
applications, where all four Panel parameters are connected from a control panel

The PanMode parameter is connected via variables to interaction window.
The PanCmdI, PanCmd?2 and PanCmd0 parameters are still connected to
the physical Start/Stop buttons. Changes in the Panel mode are therefore
approved centrally, that is, a local operator must first obtain permission
from the central control operator (see Figure 143).

3BSE041488-511 315

Connect to a Control Panel in Panel Mode Section 5 Binary Process Control

Controller

Operator Workplace [Process object

Switch on screen | / \
’—'—> - -PanMode
' |

|

|

|

|
——+—®t - -PanCmd1 |
—L - -PanCmd2 |
|

|

|

|

|

Motor

Control Panel I

—|—> - -PanCmd0

Forward

Figure 143. The Panel mode control diagram. A general solution for large
applications, where the PanMode parameter is connected to an operator workplace

The status of the object is controlled by the signals PanCmd1l, PanCmd2
and PanCmd0, which are level detected signals and function in the same
way as AutoCmd signals, as illustrated in Figure 143. The PanCmdl,
PanCmd?2 and PanCmd0 parameters should be connected to push buttons.
It may be advisable to use an R_Trig function block (trigger parameter and
push button) between PanCmd 1, PanCmd2 and PanCmd0, in case the push
button malfunctions.

316 3BSE041488-511

Section 5 Binary Process Control Advanced Functions

Advanced Functions

This sub section contains information about the more advanced functions of the
process objects. It also contains reference information for those who need to use all
functions offered by the Process Object libraries:

* Level Detection, Commands and Alarm Texts on page 317 contains
information on the use of parameters for all types in the Process Object
libraries.

* ABB Drives Control on page 320 explains how to configure process objects for

INSUM Control..... dggcnrtﬁg)fglggvé %Bccl)%rtll\gl:lsr'e process objects for INSUM control.
For detailed information on the use of individual parameters, beyond the contents
@ of this manual, see online help and the Control Builder editor. To open the editor,

right-click the type and select Editor.

Level Detection, Commands and Alarm Texts

In addition to the UniCore and BiCore core objects (see Process Object Template
Concept (Core Objects) on page 262), the Process Object Basic and Process Object
Extended libraries also use a number of function block types that can be used to
enhance the functions of the process objects:

* The LevelDetection function block is be used to supervise a signal of type real.
When the in signal Value has been above the value of Level during the set
FilterTime, GTLevel is set to True.

Levelletection
— Enahble GTLewvel —
— Enabhleletection
— Valus
— Lewel
— BtartDelasy
— FilberTime
— Hysteresis

3BSE041488-511 317

Level Detection, Commands and Alarm Texts Section 5 Binary Process Control

* The UniDelayOfCmd and BiDelayOfCmd function block types are used to
avoid false commands in Auto mode. The command signal is delayed, to avoid
repeated starts and stops.

Tnilrel syl fCmd EBiDlelay0fCnd
— Enable PeadyToltarc [— — Enable BeadyToltartl —
— Cmdl Cudllelayed [— — Cmdl PeadyToStarts [—
— Cmdd Cud0Delayed [— — Cmdz Cud1lelayed —
— OrlelayTime Crd1Te 1 agy — — Cmdd . CudzDelayed —
— OffDelayTine Cwd0De sy — — Onlel ayTime Crd0De layed —
— Ot lLetwel — 0ffDelayTime Cud 1D Las —
— AlS%care — DutlLevel CudzDe lasr —
— Out2ZLewel Cood 0Te 1 sy —
—AlState

If, for example, a level detector informs an object to start, a disturbance pulse
should not be able to start the object. The object shall not start until the detector
delivers a reliable, constant signal stating that the start level is reached. If the
object is a motor, this behavior is very important, in order not to wear it out.

* The DriveStatusReceive and DriveCommandSend function block types are
used for ABB Drives communication, see Examples on page 304.

e The PrioritySup function block type supervises the commands and sets the
mode to Priority mode if any of the inputs are active. It also supervises the
alarm status. Some are active and automatic priority to zero is performed, if
KeepOutAtErr is false.

Pricritysup
— Enshle PriorityMode [—
— PriorityCmdl PFrioritcyCodOL[—
— PriorityCmdZ
— PriorityCmdl
— Eesplat it Err
—Alarmick
— Inhibkit
— ObjErr

It can be used, together with the OEText function blocks, to generate error
messages.

318 3BSE041488-511

Section 5 Binary Process Control

Level Detection, Commands and Alarm Texts

¢ OETextUni, OETextBi, OETextValveBi, and OETextValveUni function block
types (which are available in the Process Object Extended library),
DetectOverrideBi, DetectOverrideUni, DetectOverride VoteBi,
DetectOverrideVoteUni and Jog function block types (which are available in
the Process Object Basic library), and ProcessObjectAE (which is available in

Alarm Event library) can be used to generate error-text strings for the

corresponding objects.

OETextUrni q OETextEl
— Ob3Brr OET extWalwellni — [
— ObjMede — ObjErr — ObjMode
—0Elescription — — |:|]-:.j Mode OEDescription —
— Hame StatusError |~ . . — Name StatusError [—
— Dut lLevel OEDescription — tulLevel
— FEConfig — MName StatusError|[— — OutElLevel
— FEL — Dut lLewel _ggimfig
— FEO _ .
—IEEEEEE FBCmf:Lg — FEZ
— PricrityCmdOl — FE1 7 Eﬁﬂm
— PriorityCmd0lTxe — FEO -
— Prioritﬁmﬂﬂz — ExtE | - = e,
— PriorityCwd0ZTx: EHBINEE — PriorityCndOlTxs
— PriorityCmd03 — Btatus — PrioricyCudZ
— PriorityCnd03Txs T[Frioritytudzlxe
— PriorityCudMan0 | e B
: : — PriorityCwd03Tx:
— Prlorlt.},rCl.nde[anDT}{t. — PriorityC a
S CETextValveBi — PrioricyCudtanoTx
.| — ObjEzr ValusCondition
HEEEES — CkjMode — ValusTxt
——OEDescriptim — T Sheeus
— Name StatusError|—
— Qutlleswel ParError [—
— Qut2lewel
— FBConfig
— FBL
— FB2
— FBO
—|EXtErT
— PriorityCmd0l
— PriorityCmd01Txt
— PriorityCmd02
— Priority0nd02Txt
— PriorityCmd03
— PriorityCmd03Txt
— PriorityCmdMan
— PriorityOndMan0Txt
— ValueCondition
— ValueTxt
— Status
— EnableParError

The following situations are taken care of and the corresponding texts are built:

- ame' Unit error
'N " Unit

— 'Name' Channel error

— 'Name' Too low value

3BSE041488-511 319

ABB Drives Control

Section 5 Binary Process Control

— 'Name' Too high value

— 'Name' Underflow

— 'Name' Overflow

— 'Name' Out of service

— 'Name' OE External error;

— 'Name' OE 'PriorityCmd02Txt'

— 'Name' OE 'PriorityCmd03Txt'

— 'Name' OE 'MotorValueTxt'

— 'Name' OE Outl/0OutO; FB1=1/0; FB0=1/0

The OEText functions block have open code and may be copied and changed in
a user-defined library.

ABB Drives Control

This section describes things you have to consider when you want to control ABB
drives using process objects:

ABB Dirives Process Objects on page 321 introduces the ABB Drives Process
objects that are found in the ABB Drives Process Object library.

More information on the behavior, configuration and operation of the ABB
Drives process objects can be found under Operation Modes on page 323,
Drive States on page 325, Drive Speed References on page 326, Drive Torque
Selector for ACStdDrive(M) on page 327, Drive Torque Selector for
DCStdDrive(M) on page 328, Drive Torque Selector for EngDrive(M) on page
328, Priority and Interlocking on page 329, and Alarm and Event Handling on
page 330.

The function blocks DriveStatusReceive and DriveCommandSend are included
in all ABB Drives process objects. For a description of those, see
DriveStatusReceive and DriveCommandSend on page 332.

ABB Drives Communication on page 335 shows how to configure
communication between an AC 800M controller and ABB Drives, using the
ABB Drives process objects.

ABB Dirives Interaction Windows on page 339 provides Drives-specific
information on interaction windows.

320

3BSE041488-511

Section 5 Binary Process Control

ABB Drives Control

ABB Drives Process Objects
There are three ABB Drives process objects:
¢ ACStdDrive(M)

Supports the control and supervision of
ABB AC Standard Drives.

It is based on UniCore for Process logic

handling, and on DriveCommandSend and
DriveStatusReceive for handling the ABB
Drive interface/communication. Blocks for

alarm handling are also included, for
display of drive trips, drive alarms and

object errors, such as communication and

feedback errors from the device.

ACScdhrive
— Enable Interlock —
T Name Aot alode
—Description ManMode —
— Setiuto Pantiode —
T AutoStart
— AutoStop
—AutoSPl
— MantModeTnit
— SetPan
— PanStart
— PanStop
— PanSPl
CrowpStartIn——————————————
— GrowpitartILock GrowpitartMode —
— ContimeStart Seg PriorityMode [—
— ContimesStart SeqTxt Out0fServiceMode —
— ContimeStopSed LocMode —
— ContimeStopSeqTxt ScaledSpdicot —
— PriorityStart ScaledTrobot [—
— PriorityStopl
— PriorityStopZ
— PriorityStopz Tt
— PriorityStop3
— PriorityStop3Taxt
— PriorityStartMan
— PriorityStoptan
— PriorityStopManTxt
— PrioritysSPl
— IlockStart
— IlockStop
— Inhibit
— ObjectTest
tatus
AotCurrent———————————[—
HomCury et
ActEpead
Act Toroue
C onm arad
pdRef
TroPef
TrogSelectorat —
WindowCerlh ———————— [
— EZtaop BeadyToSwitchin —
— EStopBRanp Pam[—
— U=a3PE AtSetpoint [—
— TorgquesSP AboveLimit —
—FollowerDrive SP2Used—
— WindowControl TrogfelectorErr [—
— TrogSelectorPfalues Alarmshisakled—
— Reset FanltEnabled —
— CondNameTripped Tripped—
— AEConfigFault Trippedstat —
— AESeverityFanlt ALStateFault [—
— EnableFault WMarningEnakhled —
— Cordamellarninog Alarm—
— AECon figifarninog AlarmBtat [—
— AESeverityilarning ALStatelarning [—
— Enahlelarning Obj ErrEnahled—
— CondNamelbhjectError ObjErr [—
— AEConfiglbhjectError ObjErrScat [—
— AESeveritylbjectError ALStatelbjectError [—
— EnablelbjectError
—Alarmsick
—AEClass
InteractionPar ————————[—

3BSE041488-511

321

ABB Drives Control Section 5 Binary Process Control

¢ DCStdDrive(M)

D34 ADr ive

Supports the control and supervision of ABB Egn;“:p o I%ﬂagkz
DC Standard Drives. I

— Atoltart
It is based on UniCore for process logic ~ ety
handling, and on DriveCommandSend and “roon
DriveStatusReceive for handling ABB Drive RS
interface/communication. Blocks for alarm B e Seassini -
handling are also included, for display of drive Egizxi.f:i:ii{ig;‘am it
trips, drive alarms and object errors, such as T game imetng e e
communication and feedback errors from the = = Emsimesanion ST

K — Cont irmeStartSeqlxt
device. O
—PriorityStart
. . —P:?o:?tyoffl
The function of DCStdDrive(M) and JEEE
. . . . —Priority0£f£f2
ACStdDrive(M) is very similar. ooz
riorityStartMan
—Priority0f£fMan
—PrioritylffMarTxt

—FrioritySpdsP
— Ilock3tart
— Ilock3tep
— Inhibit
— ObjectTest
tTor que
ot Currend
armmand
pdRaf
TrqRef
TrqBel
indowltzl e
—EDff BeadyT ofmitchin —
—E0ffRanp BieadyT oFon|—
—Use5P2 Bam|—
— Windowlontzal AtBetpoint [—
—TrqBelectorialue Abowvel imit [—
— TorquedF SP2Used|—
—Reset Tindowltrl St —
— CondNameTs ipped TrgBelectorErz—
— AEConfigFals Alamm=Disabled—
— AESever ityFault FaultEnabledf—
—EnableFault Trippedf—
— CondNamelarning TrippedStat —
— AEConfigilazni L5t at e Fault —
F : : JarningEnabl edf—
—Enabl elarning Alamm[—
— CondNameibjectError Alammtat —
— AEConfigibjectE L arming|—
—E i tyb 4 2t L5t st elbie cbE
—Enabl elbjectE b3 b1 ed —
— &larmsack ObSEzz|—
— 2EClass Ob3Erzitat —

IrteractionPar—

322 3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

* EngDrive(M) :
i A
p—. — Hame &zt oo de
Supports the control and supervision of ABB ~Descripeien Hirtioae
. . ::‘e’:.txo ParMode
Engineered Drives. Zimaots
— Autoltart
— Bark 0Bt op
— FartolpdiP

EngDrive(M) is based on UniCore for process ~ HartloeTnis

— IetPan
— Panin

logic handling, and on DriveCommandSend ~panois

— Panitart
— Panitop

and DriveStatusReceive for handling ABB rewde

Drives interface/communication. Blocks for ook e pinamea:
roupitartILochitart Ti ori tyflo de
— Comti iceMode

alarm handling are also included, for display of = -ttt seiliapate:
. . R . T Corirme mg caledTrghct
drive trips, drive alarms and object errors, such Ty
. . T Contirme Startie qTxt
as communication and feedback errors from the — ZfreimisEin.
. — Priorityltart
device. Jemenung
—Priority0ff iTxt
—Priority0f{2

EngDrive(M) operation modes work the same ~ Pyt
. T EPrierity an
way as for DCStandardDrive(M). LS
“hoadees
Jiates
Operation Modes T
Homlur rent”
The Enable parameter is by default set to true, T
meaning that the function block or control module is e
. . — CTerwertorTemp—— |
executed. When Enable is False, the function block e
or control module is disabled, including all internal Edy
instances. All output signals are inactivated or set to ~Teopei—
Trqiel - -
Zero. EEE%%;W Readg:i:ﬁ:g& -
. . . — Wind el ant rol 2£Setpoint —
ABB Drives process objects are based on UniCore, e et avoserine
. . . — Mot iFres ind el £rl Set -
with the following operation modes. R Trgielrcoorbre
S S T el
* Manual Mode = Tonitmeeening TR
B e ot
In Manual mode, the operator controls the drive - tosmmfiiem: aewdiming
from the operator station, or from interaction “ERERSAIITT | il
windows in Control Builder. S eracsiomP————

Manual mode can be set via the interaction

parameter. In Manual mode, the drive can only

be started and stopped by setting the parameters InteractionPar.Manstart and
InteractionPar.ManStop.

The output parameter ManMode is true when the drive is in Manual mode. The
speed reference is set with InteractionPar.ManSpdRefInput.

3BSE041488-511 323

ABB Drives Control

Section 5 Binary Process Control

The default startup mode after a cold start is set via ManModelnit. The initial
value is set to true, which means that manual mode will be the default mode.

By writing 'false’ in the actual parameter column, you can change to auto mode
instead. The parameter ManModelnit is copied to parameter ManMode at every
cold start. Manual mode is always active when the Enable signal state goes
from False to True.

Auto Mode
Auto mode is set by setting InteractionPar.SetAuto or SetAuto to True.

In Auto mode, the status of the drive (start or stop) is controlled via the
parameters AutoStart and AutoStop. The output parameter AutoMode is True
when an object is in Auto mode. The speed reference is set using the parameter
AutoSP1.

Panel Mode
Panel mode is set by setting InteractionPar.SetPan or SetPan to True.

In Panel mode, the drive is controlled via the parameters PanStart and PanStop.
The speed reference is set using the parameter PanSP1. The output parameter
PanMode is active when the object is in this mode.

Sometimes a panel connection is not available in the system. The displays and
control logic for PanMode must not be activated. This is prevented by setting
the parameter InteractionPar. PanelExists to False.

Priority Mode

The drive is in Priority mode whenever a priority Start or Stop interlock is
active. See Priority and Interlocking on page 329.

Group Start Mode
Group Start mode is set by setting the parameter InteractionPar.SetGroupStart.

In Group Start mode, the object is controlled via the parameter GroupStartin.
The interlocking parameter GroupStartllock prevents transfer to Group Start
mode. In this mode, the output parameter GroupStartMode is active. The speed
reference in this mode is AutoSP1.

324

3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

Local Mode

In Local mode, the drive is controlled directly from CDP312 on the drive,
bypassing the controller. Local mode can only be set and reset at the Drive. In
Local mode, all inputs from Auto mode and Manual mode, as well as all
priority interlocks, are ignored. The object will return to the previous active
mode when Local mode is disabled. The output parameter Remote is false
when a drive is in Local mode.

Out of Service Mode
Out of Service mode is set by setting the parameter InteractionPar.SetQos.

In Out Of Service Mode, the drive is stopped, and the operator controls the on
the machine to which the drive belongs.

To exit Out of Service mode, change the mode to Manual, Auto, Group Start or
Panel. The output parameter OutOfService is active when the object is in this
mode.

Drive States

The current state of a drive is available in the Status Word received from the drive
(see DriveStatusReceive and DriveCommandSend on page 332). The drive can be in
any one of the following states, the active state is set to true in the object output:

ReadyToSwitchOn: The drive is ready to be switched On.

ReadyToRun: The drive is energized and ready to run
(EngDrive(M) only).

Run: The drive is operating with a speed reference.
Fault: The drive has tripped on an internal error.

Alarm: The drive is reporting an internal warning, but it is not severe enough to
stop the operation of the drive.

AboveLimit: The actual frequency/speed is equal to or above supervision limit
set by a parameter (for example, parameter 32.02 in ACS800).

3BSE041488-511

325

ABB Drives Control Section 5 Binary Process Control

Drive Speed References

ABB Dirives objects transmit one speed reference, called SpdRef, to the drive.
There are the following input speed references:

* AutoSPI in Auto mode & Group Start mode.

* PanSPI in Panel mode.

* InteractionPar.ManSpdRefInput in Manual mode. This reference is set from the
operator interface.

* PrioritySPI in Priority mode. This value is set to half of
InteractionPar.MaxSpeed, in case it is set to zero in the application. This
ensures that the motor runs when PriorityStart is true.

e AutoSPICC, a control connection is available in the control modules. This
reference is used in AutoMode only, if this is not connected then AutoSP1 is
used as speed reference. (this reference is valid for EngDrive(M) only.)

The correct reference, depending on the active mode, is transmitted to the drive. The
speed and torque set points in the object are set in engineering units selected by the
system engineer.

The string for unit of speed is entered in InteractionPar.SpeedUnit. The string for
unit of torque is entered in InteractionPar. TorqueUnit.

The object scales the speed signal to the drive units using InteractionPar.MaxSpeed
and InteractionPar. EnableNegSpeed and torque signals using
InteractionPar.MaxTorque and InteractionPar.EnableNegTorque. See
DriveStatusReceive and DriveCommandSend on page 332.

The speed set point in Manual mode is input from the operator station in the selected
engineering units, for the convenience of the operator.
InteractionPar.ManSpdRefInput is used for this.

During a mode change, the drive maintains its previous state. It is the responsibility
of the new state to ensure 'bumpless' transfer of the speed reference, when the drive
is running.

In Manual mode, the reference is always initialized with ActualSpeed.

326

3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

Drive Torque Selector for ACStdDrive(M)

ACS800 drives have parameters for Master/Follower applications. The master and
follower drives are connected by a fiber optic channel. The Master drive controls the
start/stop of the follower drive. The object can be used to generate the desired torque
reference for the follower drive.

The object and interaction window of the follower drive only display status and
references. They do not control the drive in any manner, the master drive controls
the follower drive.

Six options are available for setting the source of torque reference. The drive
controller selects different torque references based on the input parameter
TorqueSelectorValue.

1 -> Speed Controlled

2 -> Torque Controlled

3 -> Min (minimum logic with speed error comparison)
4 -> Max (maximum logic with speed error comparison)
5 -> Window Control (Window control mode)

6 -> Zero Control

The selection of torque reference is made using parameters WindowControl and
TorqueSelectorValue. The parameters TrgSelectorOut, WindowCtriSet and
TrqSelectorErr are the outputs of the object.

The default mode is Speed Control. In AutoMode, the drive can be run in different
torque selector modes. In other modes like ManMode and PanMode, only speed
control mode is possible.

3BSE041488-511 327

ABB Drives Control Section 5 Binary Process Control

Drive Torque Selector for DCStdDrive(M)
The torque reference TrqRef is transmitted to the Drive.

DCS500B drive has a torque reference chain. This can be used to provide desired
torque reference for the torque regulation. Six options are available for setting the
source of torque reference. The drive controller selects different torque references
based on the input parameter TorqueSelectorValue.

0 -> Zero Control

1 -> Speed Controlled

2 -> Torque Controlled

3 -> Min (minimum logic with speed error comparison)
4 -> Max (maximum logic with speed error comparison)
5 -> Window Control (Window control mode)

The selection of torque reference is made using parameters WindowControl and
TorqueSelectorValue. The parameters TrqSelectorOut, WindowCtrlSet and
TrqSelectorErr are the outputs of the object. The default mode is Speed Control. In
Auto mode, the drive can be run in different torque selector modes. In other modes
like Manual mode and Panel mode, only speed control mode is possible.

Drive Torque Selector for EngDrive(M)

An Engineered Drive has a torque reference chain. This can be made use to provide
desired torque reference for the torque regulation. Six options are available for
setting the source of torque reference. The drive controller selects different torque
references based on the input parameter TorqueSelectorValue.

— 1 ->Zero Control

— 2 ->Speed Controlled

— 3 -> Torque Controlled

— 4 ->Min (minimum logic with speed error comparison)
— 5 ->Max (maximum logic with speed error comparison)

— 6 -> Window Control (Window control mode)

328

3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

The selection of torque reference is made using parameters WindowControl and
TorqueSelectorValue. The parameters TrgSelectorOut, WindowCtriSet and
TrqSelectorErr are the outputs of the object.

The default mode is Speed Control. In Auto mode, the drive can be run in different
torque selector modes. In other modes like Manual mode and Panel mode, only
speed control mode is possible.

Priority and Interlocking

Interlocking is used to stop process objects from entering a certain state. Priority
parameters are used to force an object to a certain state. The following interlocking
and priority functions are available for ABB Drives process objects:

Priority Start (On) Interlocks

The parameter PriorityStart forces the drive to start. The process interlock can
only be overridden by the priority Stop commands and the Inhibit parameter.

The speed reference when PriorityStart is active during PriorityMode is set to
PrioritySP1.

The parameter PriorityStartMan forces the drive to start and sets it to Manual
mode.

Priority Stop (Off) Interlocks

There are three different parameters, which can be used for priority Stop (Off)
interlocks, forcing the drive to stop (stop and switch off), PriorityStop1,
PriorityStop2 and PriorityStop3 (PriorityOffl1, PriorityOff2 and PriorityOff3).
The priority Stop (Off) can only be overridden by the Inhibit parameter.

The parameter PriorityStopMan (PriorityStopMan) forces the drive to stop and
sets it to Manual mode.

3BSE041488-511

329

ABB Drives Control

Section 5 Binary Process Control

Start/Stop Interlocks

The IlockStop and IlockStart are Start/Stop interlocks that prevent the drive
from being manually forced to certain states. /lockStop blocks the drive from
being stopped in ManMode and IlockStart blocks a manual start signal.
llockStart does not stop a drive that is already running. The Inhibit parameter
overrides these Interlocks also.

Inhibit

The Inhibit parameter overrides all active interlocks when set to True.

Alarm and Event Handling

The following alarms are generated for ABB Drives objects:

Warnings

Warnings are alarms from a drive that do not trip the motor. These need to be
acknowledged by operator and are time stamped in the controller.

Faults

Faults are alarms from the drive which trip the motor. These need to be
acknowledged by the operator and are time stamped in the controller.

Object Errors

Object errors can be any of the following, or a combination:

— Communication error from the drive.

— Feedback error from the drive.

— PriorityStop2 or PriorityStop3 interlock active.

— EmergencyStop and EmergencyStop with ramp, issued to the drive.

Details of the particular internal error that has occurred can be found in the
description field in the alarm list.

Alarms are acknowledged via the input parameter, AlarmsAck. The operator
acknowledges it in the alarm list. All alarms can be disabled by
InteractionPar.DisableAlarms.

330

3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

Both a feedback error from the drive and drive having tripped will force the object
to go to state Stop (Run is false). EngDrive(M) will switch off, that is,
ReadyToSwitchOn is False. That means that whenever the drive returns to normal
mode, a start command will never be active until the command has been reactivated.

The following parameters are associated with alarm handling:

* AEConfigX (where X is any of the alarms above), sets the behavior when there
is an active alarm.

* AESeverityX (where X is any of the alarms above), sets the severity of the
alarm.

* ALStateX (where X is any of the alarms above), displays the state of the alarm.
* AEClass, the class which all alarms belong to.

* Warnings, active output when there is a Warning alarm active.

* Trips, active output when there is a Trip alarm active.

* ObjErr, active output when there is an ObjectError alarm active.

For more information on alarm and event parameters and alarm and event

@ handling, see alarm and event information in the manual Compact 800
Engineering Compact Control Builder AC 800M Configuration (3BSE041488%) ,
and online help for the object in question.

3BSE041488-511 331

ABB Drives Control Section 5 Binary Process Control

DriveStatusReceive and DriveCommandSend

The function blocks DriveStatusReceive and DriveCommandSend are included in
the drive control types ACStdDrive(M), DCStdDrive(M), and EngDrive(M).

DriveStatusReceive DriveCommandSend
__ Status ReadyToSwitchon |- — DriveMazMinl Command |—
— RawPbvl Ready |— — DriveMaxMinZ RawSPl|—
__ DriveMaxMinl Run |- — Switchon Rawl P2 —
— RawPvZ AtSetpoint |- — SwitchOff
— DriveMaxMinZ Remote |- — #tart
— PvlMazMin Overrideped |- — Stop
— PvZMaxMin Alarm |— — Reset
Limit |- — Off2
SP2Used |- — OFf3
pvl | — RampOutiero
py2 | — RampHold
Statusii |- — Inchingl
— Inching2
— RemoteCnd
— U=eSP2
— 8Pl
— 8P1MaxMin
— BP2
— SE2MaxMin
— Bvl
— ZeroWinbvl
— Btatusi

DriveStatusReceive are used to retrieve the status from a drive, after which the
program or operator makes a decision based on this information. A command can
then be issued to the drive using DriveCommandSend.

ABB Dirives process object types can also be used to build custom ABB Drives
control solutions. In this case, you should consider the following:

332 3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

* Execution Order
The execution order is always DriveStatusReceive, UniCore,
DriveCommandSend. In this way, communication delays are avoided. The start
parameter (Start) is a level signal with a hold function.

* Status and Control Word
The Command, RawSP1, RawSP2, Status, RawPV1 and RawPV2 parameters
are to be connected to the drive, independent of the media through which data
is transferred. The drive communicates with the controller though drive data
sets and the parameters are to be connected to the drive according toTable 35 .

ﬂ The drive data set number may differ between different types of ABB Drives, see
ABB Drives documentation for the drive in question.

Table 35. Drive data sets and parameters

Drive Data Set 1 Drive Data Set 2

Data Words Data Words

1.1 1.2 1.3 2.1 2.2 2.3
Command | RawSP1 RawSP2 | Status RawPV1 RawPV2

* Emergency Stop
There are two command parameters that can cause an emergency stop, Off2 and
Off3. If the application demands an emergency stop through one of these
parameters, the drive stops according to local emergency settings on the drive.
The priority for emergency stops is controlled by the drive. The priority of
emergency stop is higher than that of the stop and start commands.

The Off2 and Off3 parameters do not have any effect on the drive, if it is not in
its remote state (locally controlled drive).

3BSE041488-511 333

ABB Drives Control

Section 5 Binary Process Control

Controlling the Drive
There are two sets of commands that start/stop a Drive:

- On/Off:
In a DC Drive, On/Off switches on/off the main contactor/circuit breaker
and also energizes/deenergizes the field, motor fan and drive module
cooling fan. In an AC engineered Drive, the incoming DC converter bridge
is switched on, and the DC bus energized.

— Start/Stop:
Start/Stop releases/blocks the pulses to the output power bridge. On the
start command, the drive controllers release torque and speed references
and start the motor.

For an AC Standard Drive, a start/stop command is sufficient. The same
command can be connected to Switch On and Start, Switch Off and Stop.

When both start (Switch On) and stop (Switch Off) orders are given though the
input parameters, the stop (Switch Off) order has the higher priority.

In order to prepare a drive for start/switch on, the following must be fulfilled:
— The drive must be configured to receive commands from the Fieldbus.

— Communication must be running (Drive<->Controller).

— No activated emergency stop (Off2, Off3).

— After drive fault, the Drive must be reset before continuing operation.

Scaling of Drive Values

It is possible to scale all reference and set point values according to local
settings in the drive unit. These variables are used in the Function Blocks
DriveStatusReceive and DriveCommandSend.

DriveMaxMinl is the maximum numerical value of the first process variable,
for example speed reference and actual values in a Drive. This value for speed
is +/- 20000 for ACS800.

DriveMaxMin2 is the maximum numerical value of the second process
variable, for example torque reference and actual values in a Drive. This value
is +/-10000 for ACS800.

PvIMaxMin is the maximum value of the first process variable (for example
speed) in engineering value. If a processing line has the speed of 1500 m/s, this
value is set to 1500. The value 1500 is then scaled using DriveMaxMinl.

334

3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

Pv2MaxMin is the maximum value of he second process variable (for example
torque) value in engineering value. Scaling is similar to PvIMaxMin.

If the application requires only unipolar values (for example no negative
references), then both PviMaxMin and Pv2MaxMin have to be limited
externally. SP/MaxMin and SP2MaxMin are the corresponding set point values
for speed and torque in the DrivesCommandSend.

ABB Drives Communication
ﬂ ACStdDrive(M), DCStdDrive(M), and EngDrive(M) all contain the
DriveStatusReceive and DriveCommandSend function blocks. For more
information on those function blocks, see DriveStatusReceive and
DriveCommandSend on page 332.

3BSE041488-511 335

ABB Drives Control Section 5 Binary Process Control

Figure 144 and Figure 145 shows communication between an AC 800M Controller
and an ABB Standard Drive.

o ABB Standard Drive AC 800M Controller

ieldbus Communication /[ACSStd Hw-Edior \ /~ ACSSWLibFB

~— FB DS Transmit=——

~— Inputwords = ~— Actual Status ——
— ’ DS2ch 1 ‘ ’ Main Status ‘
] ’ DS2ch 2 ‘ ‘ Max Reference ‘
] 1 ’ DS2ch3 ‘ ‘ Actual Current ‘
- [" 92. ‘ DS4ch 1 ‘ ‘ Nominal Current ‘
- 1 DS4 ch 2 ‘ ‘ Actual Speed ‘
I] |

DS4 ch 3 Actual Torque

——FB DS Receive = Output words = Command/Reference =

DS1ch1 Main Command

|
DS1ch2 Speed Ref ‘
DS1ch 3 Torque Ref ‘
DS3ch 1 Torque Selector ‘
DS3ch2 (none) ‘
DS3ch 3 (none) ‘

J

Figure 144. Overview of the connections between an ABB Standard Drive and an
AC 800M Controller, part A-B

336 3BSE041488-511

Section 5 Binary Process Control

ABB Drives Control

° ABB Standard Drive

/ Process Signals \ /F/ieldbus Communicatiﬁ

— Process Signal ——

‘ 03.02 (Status) ‘

— FB DS Transmit——

° AC 800M Controller

/ ACSStd Hw-Editor \

Input words

’ 92.01 (DS2 word1) ‘

‘ 11.05 (MaxRef) ‘

‘ 92.02 (DS2 word2) ‘

‘ 01.04 (ActCurrent) ‘

’ 92.03 (DS2 word3) ‘

‘ 99.06 (NmCurrent)

’ 92.04 (DS4 word1) ‘

‘ 01.02 (ActSpeed) ‘

‘ 01.05 (ActTorque) ‘

’ 92.05 (DS4 word2) ‘

. DS2ch 1
DS2ch 3 [

’ 92.06 (DS4 word3) ‘

= Process Reference —

——_FB DS Receive ——

‘ 03.01 (Control W) ‘

i

fixed (DS1 word1)

DS4 ch 2 { ,,,,,, J

—— Output words =——

‘ 01.11 (Ext Ref 1) ‘

’ fixed (DS1 word2) ‘

‘ 01.12 (Ext Ref 2) ‘

fixed (DS1 word3) ‘

‘ 60.02 (Torque Sel) ‘

‘ 90.01 (DS3 word1) ‘

‘ 0 (not assigned) “

’ 90.02 (DS3 word2) ‘

‘ 0 (not assigned) ‘

‘ 90.03 (DS3 word3) ‘

-

C

DS1ch 1

A

DStch2 |{~
|

Figure 145. Overview of the connections between ABB Drive and AC 800M
Controller, part C-A (black arrow = fixed connection)

3BSE041488-511

337

ABB Drives Control

Section 5 Binary Process Control

To configure communication:

a.

Establish the communication channels (part A in Figure 144 and
Figure 145).

The communication protocols between AC 800M and ABB Drives may
be:

- ModuleBus,

- PROFIBUS DP-VO0,
- PROFIBUS DP-V1,
- PROFINET IO,

- DriveBus.

The setting must be done either in AC 800M, or in the ABB Drive, so that
they use the same protocol and define the same communication channels.
For AC 800M, the setting is defined in the Hardware Editor of the applied
communication interface. Refer to online help and the manual
Communication, Protocols and Design for further information. The
Hardware Editor for different protocols might use different names for the
same communication channel. For ABB Drive configuration, refer to ABB
Drives documentation.

Define the data to be sent and received in AC 800M Controller (part B in
Figure 144).

In AC 800M, this is done by making variable connections between the
ACStdDrive function block and the Hardware Editor of the applied
communication interface, using variable connections. The most important
thing is that the required process data on the Drive side must be connected
on the same communication channel used by the corresponding data in
ACStdDrive function block. For example, in Figure 144, Actual Speed in
ACStdDrive function block must be connected to DS4 ch 2, so that the
parameter can get the correct information.

338

3BSE041488-511

Section 5 Binary Process Control ABB Drives Control

c. Define the data to be sent and received in the ABB Standard Drive (part C
in Figure 145).

For example, define the connection between parameter index 01.02
(ActSpeed) with parameter index 92.05 (DS4 word 2) in ABB Standard
Drive. How to connect those parameter indexes in the Drive is described in
ABB Drives documentation. A black arrow in Figure 145 indicates a fixed
connection that is not configurable.

The same method is also used to establish communication with EngDrive(M).
The differences are only the number of communication channels and the data
to be sent and received.

For newer drives (like the ACS880 series), when used with PROFIBUS DP or
PROFINET IO (via FENA-11), the start trigger must be set to "Level" instead of
"Trig". To do this, from the Main Menu in the drive, browse to Parameter ->
Complete list -> 20 Start/stop/direction. Then, set:

e 20.01 -> Extl commands -> Fieldbus A

e 20.02 -> Extl Start Trigger -> Level

ABB Drives Interaction Windows

The Drives control types in the Process Object Drives library have four interaction
Windows, the main for manual control and some supervision, one for configuring
the object, one to display Process interlock and Priority signal status and one for
Group Start mode. The main window is displayed first, the others can be displayed
by clicking the corresponding Icons on the main window.

DCStdDrive(M) has two additional parameters that can be set in Control Builder
using interaction parameters. The parameters are:

* DriveSpeedScale: Maximum speed of Motor in Drive Units (for example.
20000 for DCS500B).

* DriveTorqueScale: Nominal Torque in Drive Units (for example 4000 for
DCS500B).

All ABB Dirives internally scale speed to +/-20000 and torque to +/- 10000. This
unit is different for DCS500B. However, future DC Drives can be expected to follow
ABB Dirives scaling.

3BSE041488-511 339

INSUM Control Section 5 Binary Process Control

INSUM Control

This section describes control INSUM devices using the process objects
InsumBreaker(M), MCUBasic(M), and MCUExtended(M):

* INSUM Process Object Types on page 341 contains a short description of each
of the INSUM process objects in the INSUM Process Object library.

* Additional information on the behavior, configuration and operation of the
INSUM process objects can be found under Operation Modes on page 344,
Circuit Breaker and MCU States on page 346, MCU Types on page 347, Motor
Starter Types on page 347, Priority and Interlocking on page 348, Priority and
Interlocking on page 348, Alarm and Event Handling on page 349, Supervision
on page 355, and Control Builder Interaction Windows on page 357.

340 3BSE041488-511

Section 5 Binary Process Control INSUM Control

INSUM Process Object Types
There are three INSUM process object types:
¢ INSUMBreaker(M)

Used to control and supervise an

. . . . InsumEreaker
INSUM trip unit for circuit _ [—— N
breakers. — Hame AutoMode —

— Description ManMode |—

INSUMBreaker(M) is based on — Sethuto

. . — AutoClose
UniCore for process logic and _

INSUMRead and INSUMWrite =~ — mantiod=Init
. . . GroupitartIn——— —
blOCkS for communication Wlth — GroupStartILock GroupStartMode |—
the deVlCC, BlOCkS fOI‘ alarm — Continueclosedeq PriorityMode |—
handling are alSO inCluded, for — CDnt:?.nueCleeSeqTxt outofServiceMode [—
. . . — ContinuelCpenieq LocMode |—
the dlsplay of trlps, warnings — ContinuedpenSeqTxt Closed |—

and other errors, such as T B
— PriorityOpenl WW=Valid —

communication errors and — PriorityOpenZ
feedback errors from the device. =~ — Frierifyopeniix

— PriorityOpend

— PriorityOpendTxt

— PriorityCloseMan

— PriorityCpenMan

— PriorityOpenManTxt

— IlockClose

— IlockOpen

— Inhihit

|"‘Y|Id
— CIPos AlarmsDisabled —
— GWFos Trips —

— EreakerPos ALStateTrip —

— ExtErrTimes tamp Warnings —

— Reset ALStateWarning —

— Tripsick ChjErr —

— AEConfigTrip ALStateChjectError —

— AESeverityTrip

— Warningsick

— AEConfigWarning

— AEZever ityWar ning

— ChiErrack

— AEConfigobjectError

— AEZeverityObjectError

— AEClass
Interactionfar —M M —

3BSE041488-511 341

INSUM Control Section 5 Binary Process Control

¢ MCUBasic(M)

Used for control and supervise an
INSUM MCU. It supports the control of HaBasie

— Enable Irterlock —

two starter types, NR-DOL and REV- . Eraciiada

— Description MaaMods —

DOL and two MCU types, MCU1 and —gecaueo

— AutoStartPunl
MCU2. — hut oSt artBun?

— At oStop

MCUBasic(M) is based on BiCore for S B
process logic and INSUMRead, and on T

— GroupStart ILock GroupStartMode —

INSUMWrite blocks for the — ContinueScarcSeql Prioritylads [~
. . . . — ContimeScartSagTrtl el fiervicaelode —
communication with the device. Blocks — CantinuestopSenl Loctode
— ContinueStopSeqTxtl Pansl—

for alarm handling are also included, for —comeinuescarcseee Runsz [

— ContimesScartS3agTatE Stopped —

the display of trips, warnings and other | ————— evelaa
errors, that is, communication errors and I

— PriorityStartPunl
feedback errors from the device. — PricrityStarthuz

— PriorityStopl

— PriorityStops

— PriorityScopz Tat

— PriorityStop3

— PriorityScopaTxt

— PriorityStartPunlMan

— Prioritystart PunfMan

— PriorityStoptan

— PriorityScopManTxt

— IlockStartPunl

— IlockStartPuni

— IlockStop

— Ivhibit

G 4

— CIPos Alarmshisahled—

— GllFos Tripsf—

— MCUTPo=s AlStateTrip —

— ExtErrTimeStanp Warnings —

— Reset AlStatellarning —

— Tripshck Ok Exr [—

— AEConfigTrip AlStatelbjectError [—

— ARSeverityTrip

— Warning=ick

— AECon figilarnineg

— AESeverityilarning

— ObjErrick

— ARConfiglhjectError

— AFSeveritylbjectError

— AEClass
InteractionPar — MM ——

342 3BSE041488-511

Section 5 Binary Process Control INSUM Control

¢ MCUExtended(M)

Used to control and supervise an INSUM
MCU. It supports the control of four _ ——
starter types, NR-DOL, REV-DOL, NR- TS eetiads

— Description MaaMods —
SD and NR-2N. — Setauto
— At ofStartPunl
. — hutoftartBun?
McuExtended(M) is developed for the — murostap
— ManModeInit

control of an MCU2 and has options of S B
reading/writing to general purpose 1/Os. GrowpStartInz ———————=

— GroupStart ILock GroupStartMode

It is based on BiCore for process logic, [EoncinusScarsSeal Prioricyllads |-

— ContimeScartSagTrtl el fiervicaelode —

and includes INSUMRead and — CamtinuestopSeql LocHade —

. . . — ContinueStopSeqTxtl Pansl—
INSUMWrite blocks for communication = —cancinuestaresece mnsz [
. . — ContimeStart SagTatE Stopped —
with the device. — Continust opSeq? Siear |-
— ContimesStopSeqTatE Deltaf—

Blocks for alarm handling are also TR s I

— PriorityStart Puns GpIng —
included, for the display of trips, e Tl
. — PriorityStops

warnings and other errors, such as — PriorityStopZTxt
. . — PriorityStopd
communication errors and feedback — PriorityStapaTxt
. — PriorityStartPunlMan
errors from the device. | ———
— PriorityStoptan
— PriorityScopManTxt
— IlockStartPunl
— IlockStartPhuné
— IlockStap
— Inhibit
— Gplut 1
— Gplut &

G d

— CIPos AlarmsDisahled—

— GllFos Trips[—

— MCUTPos AlStateTrip f—

— ExtErrTimeStanp Warnings —

— Reset AlStatellarning —

— Tripshck Ok Exrr [—

— AEConfigTrip AlStatelbjectError [—

— AFSeverityTrip

— WMarning=sick

— AECon figilarnireg

— AESeverityilarning

— ObjErrick

— ARConfiglhjectError

— AFSeveritylbjectError

— AEClass
InteractionPar ————

3BSE041488-511 343

INSUM Control

Section 5 Binary Process Control

Operation Modes

The Enable parameter is by default set to True, meaning that the object is executed.
When Enable is False, the object is disabled, including all internal types. All output
parameters are inactivated or set to 0.

All three INSUM process objects have the same modes (with the exception of Soft
Local mode, which is not valid for circuit breakers). There are only minor
differences, which are pointed out below.

Manual Mode

The input parameter ManModelnit sets the default startup mode after a cold
start. If this parameter is True, control will be manual (Manual mode),
otherwise it will be automatic (Auto mode). When an object returns from being
disabled, it is always in Manual mode.

Manual mode is activated via InterationPar.SetMan. In Manual mode, the
parameter ManMode is True.

Open and Close commands to circuit breakers in manual mode are sent via the
InteractionPar variables InteractionPar.ManOpen and
InteractionPar.ManClose.

Manual control of MCUs is possible via the parameters
InteractionParManStartRunl, InteractionPar.ManStartRun2 and
InteractionPar.ManStop.

In Manual mode, the operator can switch to Auto, Soft Local (McuBasic(M)
and MCUExtended(M) only), Out of Service, and Group Start mode. The
operator is also able to reset trips from a circuit breaker or MCU
(InteractionPar.Reset) and activate TOL bypass for MCUs (set
InteractionPar. TOLBypassActive to True).

Auto Mode

Auto mode is activated via the parameter SetAuto or the interaction parameter
InteractionPar.SetAuto. In Auto mode, the status of a circuit breaker (open or
closed) is controlled by the parameters AutoOpen and AutoClose, while the
status of an MCU is controlled by the parameters AutoStartRunl,
AutoStartRun2, and AutoStartStop.

344

3BSE041488-511

Section 5 Binary Process Control INSUM Control

In Auto mode, active trips can be reset and it is possible to override the
parameters in InteractionPar. The output parameter AutoMode is True as long
as the object is in Auto mode.

Priority Mode

Priority mode is active when any of the process interlock or priority interlock
parameters described in Priority and Interlocking on page 329 are True.
Priority mode can be overridden by the Inhibit parameter, by manual
commands, or by setting the circuit breaker or MCU in Local mode.

Group Start Mode

Group Start mode is activated via the InteractionPar.SetGroupStart parameter.
In Group Start mode, the object is controlled by the parameter GroupStartin
(circuit breakers), or by the parameters GroupStartinl and GroupStartin2
(MCUs). The parameter GroupStartllock prevents changes to Group Start
mode. In Group Start mode, the output parameter GroupStartMode is True.

For more information about the Group Start library, see Section 6,
Synchronized Control.

Local Mode

Local mode means that the circuit breaker or MCU is not controlled from the
process object, but via direct input, bypassing the controller. Local mode can
only be set or reset directly at the circuit breaker or MCU. In this mode, all
input from Auto mode and Manual mode is ignored.

When local mode is disabled, the object will return to its previous mode. The
output parameter LocMode is True when in Local mode.

Priority mode and priority manual commands cannot be executed in this mode.
External Mode

If you activate External mode it will provide other objects like the MMI all
rights reserved of sending commands to a MCU. Thus, preventing a user (via
faceplates) to interfere with an action given from the MMI. Although, an Insum
object in External mode cannot send commands to a MCU, it can still read the
MCU status.

External mode is activated via the InteractionPar.SetExternal and is indicated
in the parameter External mode.

3BSE041488-511

345

INSUM Control

Section 5 Binary Process Control

* Soft Local Mode (MCU control only)

Soft Local mode works as Local mode, but with the difference that Soft Local
mode is activated from a remote point of control, for example, an interaction
window. Remote control is also reset directly from the interaction window.
When an MCU is in Soft Local mode, an indication is shown on the interaction
window (the same indication as for Local mode, but the difference is that the
push button for setting the MCU to remote control is active).

o Out of Service Mode

Out of service mode is entered using the command
InteractionPar.SetOutOfService. It is only possible to enter this mode when the
status of a circuit breaker is Open (when the status of an MCU is Stopped). In
this mode, it is not possible to maneuver the circuit breaker or MCU, but it is
possible to change modes and exit Out of service mode. The output parameter
OutOfServiceMode is active when in this mode.

Circuit Breaker and MCU States

The current state of a circuit breaker, Open or Closed, is shown by the output
parameters Open and Closed, respectively. More detailed information is displayed at
the interaction window.

The current state of the MCU is shown by the output parameters Runs/, Runs2 and
Stopped. Runsl and Runs2 basically mean that the MCU is in any of its running
states, and Stopped that the MCU is stopped. Changing states for an MCU is
handled via its associated commands. More detailed information is displayed in the
interaction window.

MCUExtended(M) has two additional states: Star and Delta. The Star and Delta
output parameters have different meaning depending on the motor starter type used,
see Motor Starter Types on page 347.

346

3BSE041488-511

Section 5 Binary Process Control INSUM Control

MCU Types

As McuBasic(M) supports the use of both MCU1 and MCU?2, the configuration in
the object must indicate which one is being used (via InteractionPar MCU) as some
functionality provided by McuBasic only is available for MCU?2 types. This is not
necessary for McuExtended(M), since this type is intended for use with MCU?2 only.

McuBasic(M) supports the object is made via InteractionPar.StarterType (0 = NR-
DOL, 1=REV-DOL). As NR-DOL is a starter type that only activates two states
(Runs1 and Stopped), all commands and input parameters associated with output
parameter Runs2 do not have any function for this starter type, that is, if the
InteractionPar.StarterType is set to 0, activating AutoStartRun2 will not affect the
object in any way.

Motor Starter Types
Table 36 shows supported motor starter types.

Table 36. Supported motor starter types. X=supported, -=not supported

NR-DOL REV-DOL NR-SD NR-2N
MCUBasic(M) X X - -
MCUExtended(M) X X X X

The motor starter type is selected via InteractionPar.StarterType (0 = NR-DOL,
1=REV-DOL, 2=NR-SD and 3=NR-2N):

* NR-DOL only activates two states (Runs1 and Stopped). Parameters associated
with Runs2 do not have any effect for this motor starter type.

* For NR-SD, all commands and input parameters associated with Runs2 have no
function (as for NR-DOL). For this starter type, output Star means that the
starter is star connected and, accordingly, output Delta means that the starter is
delta connected.

* For NR-2N, the commands and input parameters associated with Runs2, that is,
AutoStartRun2, PriorityStartRun2, GroupStartIn2 etc., puts the starter in its
high-speed state. However, Runs?2 itself has no function for this configuration.
Instead, an active output Runs/ indicates that the MCU is in its running state

3BSE041488-511 347

INSUM Control Section 5 Binary Process Control

and the speed is indicated via the outputs Star and Delta, where Star is the low-
speed and Delta the high-speed indication.

Priority and Interlocking

Interlocking is used to stop process objects from entering a certain state. Priority
parameters are used to force an object to a certain state. The following interlocking
and priority functions are available for INSUM process objects:

o Process Interlocks

Setting the parameter PriorityClose to True forces a circuit breaker to close.
For MCUgs, the parameters PriorityStartRunl and PriorityStartRun2 forces the
MCU to go to state Runs1 and Runs?2, respectively.

Process interlocks can only be overridden by Priority interlocks, the Inhibit
parameter and by manual commands.

e Priority Interlocks

For circuit breakers, the parameters PriorityOpenl, PriorityOpen2 and
PriorityOpen3 can be used to force the circuit breaker to open. For MCUs, the
parameters PriorityStopl, PriorityStop2 and PriorityStop3 can be used to force
the MCU to stop.

PriorityOpen2, PriorityOpen3, PriorityStop2 and PriorityStop3 all generate an
alarm (ObjectError) when activated.

Priority Interlocks can only be overridden by the Inhibit parameter and manual
commands.

e Priority Manual Commands

For circuit breakers, PriorityCloseMan and PriorityOpenMan force the circuit
breaker into the corresponding state (Closed or Open), and sets the process
object in Manual mode. For MCUS, PriorityStartRunlMan,
PriorityStartRun2Man and PriorityStopMan force the MCU into the
corresponding state and then sets the process object in Manual mode.
PriorityCloseMan and PriorityStopMan also generate an alarm.

Priority manual commands have no function when a circuit breaker or MCU is
in Local mode or Priority mode.

348 3BSE041488-511

Section 5 Binary Process Control INSUM Control

If priority manual commands are executed while in Priority mode, an MCU
will change to the corresponding state, but the change to Manual mode will not
take place until Priority mode is left (that is, all Priority commands are
inactivated or a possible feedback error is acknowledged).

Open/Close and Start/Stop Interlocks

For circuit breakers, llockClose and IlockOpen are prevent circuit breakers
from being transferred to certain states manually. /lockClose blocks the circuit
breaker from manual closure and IlockOpen blocks manual open signals.

llockClose does not open an already closed circuit breaker.

For MCUs, IlockStartRunl, llockStartRun2 and IlockStop prevent the MCU
from being transferred to certain states manually. llockStartRunl blocks the
MCU from manual start to Runl state, llockStartRun2 blocks manual start to
Run? state, and IlockStop blocks a manual stop command. llockStartRunl and
llockStartRun2 do not stop MCUs that are already in a running state.

Inhibit

Setting the Inhibit parameter to True overrides all active interlocks. Ilock
parameters prevent both manual control and control in Auto mode.

Alarm and Event Handling

The following alarms can be generated for INSUM objects:

Warnings

Alarms from a circuit breaker or MCU can be warnings, for example, alarms
that do not trip the breaker or MCU. Warnings are acknowledged by the
operator in the operator workplace alarm list, or by activating the parameter
WarningsAck at the object. This alarm is time-stamped in the controller.

Trips

Trips are alarms that indicate that a circuit breaker or motor has tripped. If the
parameter ExtErrTimeStamp is True, trips might also be a warning with an
external time stamp from the breaker or MCU. Which type of alarm a trip is
can be seen in the description field in the operator workplace alarm list, where
all warning and trip details are displayed. A trip is acknowledged by the
operator in the alarm list, or by activating the parameter TripsAck at the object.

3BSE041488-511

349

INSUM Control Section 5 Binary Process Control

* Object Errors

Object errors can be any of the following, or a combination:

— Communication read error in an INSUMRead function block.
— Communication write error in an INSUMWrite function block.
— Feedback error from the circuit breaker or MCU.

— Any of PriorityOpen2 or PriorityOpen3 is True.

— PriorityCloseMan or PriorityStopMan generates an alarm

More information about which ObjectError has occurred is displayed in the
description field in the alarm list. As with other alarms, ObjectError can be
acknowledged from the alarm list or from the object (via ObjErrAck).

Both a feedback error from the device and the circuit breaker having tripped will
force the breaker/MCU to go to state Open/Stopped and the object will go to
Priority mode. That means that whenever the circuit breaker or MCU returns to
normal mode, a start command will not become active until the command has been
re-activated.

Whether alarms should be time-stamped in the circuit breaker or MCU, or not, is
controlled by the parameter ExtErrTimeStamp. If ExtErrTimeStamp is True, the
inputs CIPos and GWPos must be set in order to get the alarms from the correct
circuit breaker or MCU. Setting this parameter disables the Warning alarm, since
both warnings and trips will be included in the alarm Trip, as described above.

It is possible to acknowledge alarms from Control Builder interaction windows. To
open an interaction window, click on the relevant alarm triangle icon in the
interaction window.

The following parameters are associated with alarm handling:

* AEConfigX (where X is any of the alarms above), sets the behavior when there
is an active alarm.

* AESeverityX (where X is any of the alarms above), sets the severity of the
alarm.

* ALStateX (where X is any of the alarms above), displays the state of the alarm.

* AEClass, sets the class to which an alarm belongs.

* Warnings, active output when there is a Warning alarm active.

* WarningsStat, same as Warnings but can be disabled,

* Trips, active output when there is a Trip alarm active.

350 3BSE041488-511

Section 5 Binary Process Control INSUM Control

* TripsStat, same as Trips but can be disabled.
* ObjErr, active output when there is an ObjectError alarm active.
* ObjErrStat, same as ObjErr but can be disabled.

For more information on alarm and event parameters and alarm and event

@ handling, see alarm and event information in the manual Compact 800
Engineering Compact Control Builder AC 800M Configuration (3BSE041488%) ,
and online help for the object in question.

All alarms can be disabled by activating the configuration parameter
InteractionPar.DisableAlarms.

e Alarm Handling

A time stamp exists in the maintenance tab in the interaction window which
displays the date and time when the trips and warnings latches were cleared/reset
the last time.

You need to define which trips and warnings that will produce an alarm, by
checking the check boxes for the trips and warnings of interest.

This example will explain how to handle trips and warnings, same logic applies to
the objects McuExtended(M) and InsumBreaker(M).

3BSE041488-511 351

INSUM Control Section 5 Binary Process Control

The trips "Phase loss trip L3", "U/L trip" and "Feedback trips Cfa" will generate an
alarm the other trips will not. See Figure 146

H

#_WARNINGS +_TRIFS
FEl™ Phase loss alarm L1 FEF Earthfault alarm El™ Phase loss trip L1 L Startup inhibit trip
FEFF Phase loss alarm L2 FEF unbalance alarm EIlr Phase loss trip L2 FEF McBrip
FF Phase loss alanm L3 FEF UL cosphd alarm L Phase loss trip L3 EE Motor still running
FEF L alarm FEFF Rotation atarm FHEF uLtnp I Eanh fault trip
ELF ML alarm FELF PIC temperature alarm [T ML trip ELF unbalance trip
EFF Stall alarm FF Undensoltage alarm FI Stall trip FEF UL cosphitrip
[Feedback alarm CFa [FL Start limitation alarm [FEF Feedback trip CFa FEF Rotation trip
EF Feedback alarm CFh [FELF PIC short circuit alarm [ET Feedback trip CFb FEE PTC temperature trip
EE Feedback alarm CFo EE- PTC open circuit alarm [Feedhack trip CFc FF Umienoltage trip
FEL mtoreclosure alarm [l Start limitation atarm (T Parametering faiure [Start limitation trip
HF Device temperature EI™ External trip EF PTC short circuit trip
FEFF Failsafe activated FI™ Testmode failure trip FEF PTC open circuit trip
FLF Start inhibit alarm FI™ EM-Stop activated FHEF Startinterlock trip
EF Device set to offiine E™ internal fault trip
L mMcu lost time synchr (™ External trip command
EIT MCuU synchi by sys clock ™ Main switch OFF
{_DATE_OF_RESET H007-05-15.15:37:10.135 |

Figure 146. MCUExtended Main Interaction Window- Alarms

In this example, for Phase loss trip L1, a trip will be present but the object will not
generate an alarm, the trip is indicated as a warning or event (yellow). See
Figure 147.

352 3BSE041488-511

Section 5 Binary Process Control INSUM Control

@ InfolLatched H=
I
&

$_WARNINGS $_TRIPS

T Phase loss alarm L1 EL7 Earth fault alarm El™ Phase loss trip L1 EILF Start-up inhibit trip

[Phase loss alarm L2 L Unbalance alarm (I Phase loss trip L2 FELF MCE trip

FEEF Phase loss alarm L3 [UL cosphi alarm [FFF Phase loss trip L3 EILF Motor still running

B ua alarm EE Rotation atarm EF UL trip L Earth fault trip

L WL alarm L PTC temperature atarm [0 MO trip L Unbalance trip

FL Stal alarm (I Undervoltage alarm El staltrip FEE UL cosphitrip

[Feedback alarm CFa L Start limitation alarm [Feedback trip CFa FIEF Rotation trip

EF Feedback alarm CFb HF PIC shortcircuit alarm [E[T Feedback trip CFb FEEF PTCtemperature trip

[Feedback alarm CFc FIF PTC opencircuitalarm ([T Feedback trip CFc FF Undervoltage trip

ElF futoreciosure alanm FIL- start limitation alarm FEIT Parametering failure FELF Start imitation trip

FHF Device temperature FIT External trip EE PTC short circuit trip

FHF Failsafe activated HEIT Testmode failure irip HEF PTC open circuit trip

FFF start inhibit alarm ElT EM-Stop activated I Start interlock trip

EL Device set to offiine BT mternal fault trip

[MCU lost time symchr ™ External trip command

FEI™ MU synchr by sys clock EIT Main switch OFF

$_DATE_OF_RESET 2007-05-15-15:41:22.88%5 =]

Figure 147. MCUExtended Main Interaction Window - Trips

When a trip is present which generates an alarm, the alarm producing trip is
indicated in red color. See Figure 148. Also notice the alarm icon in the upper right
corner of the interaction window, the alarm icon now indicates that there is an alarm

active.

3BSE041488-511

353

INSUM Control

Section 5 Binary Process Control

FEEF Fesdback alarm CFa
EF Feedback alarm CFb
L Feedback alarm CFc
HF Autoreclosure alarm
FEF Device temperature
EF Failsale activated

FEE start inhibit alarm

EF Device set to offline
ELF MO lost time synche

$ DATE_OF_RESET

FEFF Stant imitation alarm
EF PIC short circuit alarm
EILF PTC open circuit alarm
EF start imitation alarm

FET MU synchr by sys clock
2007-05-15-15:37:10.135

]

FEF Feedback trip CFa
ET Feedback trip CFh
ET Feedback trip CFc
El™ Parametering failure
T External trip

FElT Testmode falure trip
[FE EM.Stop activated
ET nternal fault trip

FElT External trip command

[FET Main switch OFF

FEF Rotation trig

EF PIC temperature trip
EHF undervoltage trip
[ELF Start imitation irip
ELF PTC shorl circuit trip
FEF PIC open circuit trip
FEFF start interlock trip

H
$_WARMINGS _TRIPS

Elr Phase loss alarm L1 G Earth fault atarm ElT Phase loss trip L1 [EE starn-up inhibit trip

EF Phase loss alarm L2 EF Unbalance alarm ElT Phase loss trip L2 [EF MCB tiip

FE Phaseloss alarm L3 FEIF UL cosphi alarm B[F Phase loss trip L3 FEF Mator still running

HEF UL alarm FHE Rotation alarm FHEF UL trip ELF Earth faul trip

ELF HL alarm FELF PICtemperature alarm B NAL trip L unbalance trip

L stal atarm FEF undenoltage alarm GII stantrip EFF uA cosphi trip

Figure 148. MCUExtended Main Interaction Window- Alarm Indication

354

3BSE041488-511

Section 5 Binary Process Control

INSUM Control

When there have been trips but the trips are no longer active then the interaction

window indicates a green color, See Figure 149. These are Latched Trips. The
latched trips can be reset by pressing the reset latches button.

H

1_WARNINGS £_TRIPFS
ElT Phaseloss atarm L1 L Earthfault alarm EIl™ Phase loss trip L1 EE Start.up inhibit trip
[Phase loss alarm L2 FEF uUnbalance alarm Elr Phase loss trip L2 FF McBrip
FELF Phase loss alarm L3 FELF UL cospl alanm EL Phase loss trip L3 L Motor still rrmning
FEF L alarm FEFF Rotation atarm HEF uLtip EF Eanh fault trip
EF Ny alarm EFF PTCtemperature alarm [T N trip EF uUnhalance trip
[El stanalarm EF undervoltage alarm T Stalltrip ELF UL cosphitrip
FHFF Feedback alarm CFa [FEL- Start limitation alanm [FF Feedback trip CFa FEF Rotation trip
ELF Feedback alarm CFh FELF PIC short circuit atarm [T Feadback trip CFb FEEF PTG temperature trip
EE Feedback alarm CFo R PTC open circuitalarm [T Feedhack trip CFc FEEF undervoltage trip
EL autoreclosure alanm L Start limitation alanm EI™ parametering falure EE Start limitation trip
EF Deice temperature FEIT External trip EF PTC short circuit trip
FEF Failsafe activated T Testmode failure trip FEF PTC open circuit trip
L Start inhibit alarm FHIT EM-Stop activated FEEF startinterlock trip
FHLF Device set to offline I internal fault trip
FEE MCU lost time synchr EIT External trip command
EFEIT MCu synchr by sys clock FEIT Main switch OFF
$_DATE_OF_RESET 2007-05-15.15:37:10.135 1|

\Reset Button

Figure 149. MCUExtended Main Interaction Window- Latched Trips

Supervision

The following N'Vs are read to the object from InsumBreaker(M):
e NV NodeStatus,

* NV CurrentReport,

* NV AlarmReport.

NodeStatus and AlarmReport are read every execution cycle, while CurrentReport is
read with a cyclic interval that is set by the parameter
InteractionPar. ProcessDataScanTime.

3BSE041488-511

355

INSUM Control

Section 5 Binary Process Control

The following MCU NVs are read to the object from McuBasic(M):
* NV CurrentReport
* NV CalcProcValue
* NV TimeToReset

* NV TimeToTrip

* NV CumRunT

* NV OpCountl

* NV OpCount2

* NV OpCount3

* NV AlarmReport

* NV MotorStateExt
* NVActualCAl

MotorStateExt, AlarmReport and ActualCAl are read every execution cycle, while
the others are updated with a cyclic time interval set by the parameter
InteractionPar.ProcessDataScanTime.

The following MCU NVs are read to the McuExtended(M) object:
— NV CurrentReport
— NV VoltageReport (optional)
— NV PowerReport
— NV CalcProcValue
— NV TimeToReset
— NV TimeToTrip
— NV CumRunT
— NV OpCountl
— NV OpCount2
— NV OpCount3
- NV Gplnl
- NV GpIn2
- NV GpOutlFb
— NV GpOut2Fb
— NV AlarmReport
— NV MotorStateExt
— NVActualCAl

MotorStateExt, AlarmReport, ActualCAl, GpInl, GpIn2, GpOutl Fb and
GpOut2Fb are read every execution cycle, while the others are updated with a
cyclic time interval set by the InteractionPar. ProcessDataScanTime parameter.

356

3BSE041488-511

Section 5 Binary Process Control INSUM Control

Control Builder Interaction Windows

All three types in the Process Object INSUM library has five interaction windows: a
main window for manual control and some supervision, one for extended
supervision, one for configuring the object, one for group start, and one for alarm
reset/latching. The main interaction window is displayed first, and the others are
displayed by clicking the corresponding icons at the top of the main INSUM
Control window.

3BSE041488-511 357

INSUM Control Section 5 Binary Process Control

358 3BSE041488-511

Section 6 Synchronized Control

Introduction

Group Start library can be used to build procedures for starting and stopping
processes. The library is intended to be used together with objects from the Process
Object Basic, Process Object Extended, Project Object INSUM, and Project Object
Drive libraries.

The Group Start library is based on a control module philosophy. The stop sequence
is always the reverse of the start sequence. This makes the Group Start library
suitable for creating start and stop procedures for machines. Group Start supports
several initial head control modules.

For more information about the Function block types and Control module types see
the online help.

Group Start Library

The Group Start library (GroupStartLib) contains objects to control and supervise
the sequential startup of process objects as well as other units that may be seen as
process objects.

The GroupStartLib organizes the control modules needed to build Group Start
applications. One exception is the GroupStartObjConn control module, which is
placed in BasicLib in order to avoid unnecessary dependencies between the process
object libraries and the GroupStartLib.

Group Start Concept

By using the Group Start library in the Control Builder, it is easy to build complex
configurations to handle the start and stop of objects. The user gets an overview of
the connected object, and the object status and control is centralized to the head of

3BSE041488-511 359

Group Start Configuration Section 6 Synchronized Control

the library. The information about the object being started as well as the next object
to be started is shown to the user.

The starts can be build hierarchically (one after the other). The hierarchy can be
made at several levels across many objects.

The connected objects may either be standard process objects (from the ProcessObj
libraries) or complete control loops that have an on/off situation associated with
them. In a control loop, the On/Off switch may consist of a set point change from
one value to another.

Object administration using standby objects is also implemented using
GroupStartLib, to make sure that a given number of objects are running. This means
if one of the objects stops by any reason, another one starts up to recover the lost
capacity.

A build in switch between the objects makes it possible to have all the objects
running in a predefined sequence, which is set up by a maximum time interval for
each object.

Group Start Configuration

The configuration of the Group Start library can be done using control modules with
graphical connections. This method simplifies and reduces the need to declare local
variables.

To get the Group Start configuration working, only the names of the objects have to
be connected. There are no default names, as the alarms may not work properly if
the connected names are unique.

A template configuration, placed in a separate library called
GroupStartExampleLib, shows the configuration possibilities. The other libraries
needed for the configuration are the ProcessObjectLib (if any connected object is a
motor or valve) and ControlLib (if any control loop is a group start member). The
connection to process objects is build on a connection control module placed in
BasicLib.

Example for Template Configuration
This template configuration example is part of GroupStartExampleLib.

The characteristics of this template configuration example are:

360 3BSE041488-511

Section 6 Synchronized Control Example for Template Configuration

This configuration consists of a configuration layout, which has no connection
to any kind of real application.

The process objects are replaced by the test control module.
There are no parameters present in this configuration.

There is no connection to the I/O system. If connections are to be made, some
variables must be defined in the template module that are connected to the I/O
system.

The template has primarily two group starts defined, and consists of two other
sub groups looked upon and connected as ordinary objects. The connected leaf
objects are of test type. In a real application, these can be exchanged with
ordinary process objects of any kind.

This example has a GroupStartOr control module implemented. The bottom
right group looked upon as an object can be started from the upper left OR right
group start.

3BSE041488-511

361

Example for Template Configuration Section 6 Synchronized Control

L, e — —, [, — =,
| [4]}
| T
o [RS8 | F

—] = L — = L

L == 5 =

B SN T =t
‘E[P' G = MotorUniFi3 41}' e
FoR=2 T T i i=

Figure 150. Template Configuration Example

The template has primarily two group starts defined, and consists of two other sub
groups connected as ordinary objects. The connected leaf objects are of test type,
and in a real application can be exchanged with ordinary process objects of any
kind. This example has a GroupStartOr control module implemented. The bottom

362 3BSE041488-511

Section 6 Synchronized Control Group Start Objects

right group looked upon as an object and it will be started from the upper left OR
right group start. See Figure 151.

1

—1

(T &1 57 A=

E

e T R —

lla—‘ M= = E:»—I s M=
u:::}- ----- -:{} i
"‘l} Q MotorlniF 2 “I}
Qm ?n I—?E Leldill] E- ?D

Figure 151. Template Configuration Example

Group Start Objects
The following objects are present in the GroupStartLib:

e GroupStartHead
GroupStartHead supervises the entire group, keeps track of the alarms
generated in the group and detects the connected objects not ready for start in
group start mode.

e GroupStartStep
GroupStartStep is used to define a step in a Group Start sequence.

e GroupStartAnd
GroupStartAnd can be used when two or more Group Start groups need to be
synchronized before a Group Start object/sub-group is started.

3BSE041488-511 363

Group Start Objects Section 6 Synchronized Control

* GroupStartOr
GroupStartOr can be used when a Group Start object/sub-group is started from
two or more Group Start groups.

* GroupStartObjectTemplate
GroupStartObjectTemplate is used to connect a generic process object to the
group start, using the structured data type ProcObjConnection.

* GroupStartTestObject
GroupStartTestObject can be used during design / commissioning to test the
Group Start before all process objects are in place.

* GroupStartStandby4, GroupStartStandby8, GroupStartStandby12
These objects can be used for standby purposes and to activate a desired
number of objects, all working together in the process. Refer
GroupStartStandby Object on page 365 for details.

* InfoParGroupStartObjectTemplate
This control module type contains the graphics of the interaction window of the
GroupStartObjectTemplate type.

GroupStartObjectTemplate

The GroupStartObjectTemplate control module is used to represent the connected
device in the group start environment. This control module can be used with
interaction windows to supervise the connection to the group and to enter start and
stop delay times, and also to enter user defined interaction data. This control module
encapsulates the generic connection control module.

The GroupStartObjectTemplate, which supports the structured data type
ProcObjConnection, functions as an embedded object to connect other types of
process objects to the group start to form the complete control loop.

The code in this control module has to be written to define start and stop of the
control loop. The code, for example, can be used to switch between different values
of the master controller setpoint. The feedback stopped and started must also be
defined. The connection information is defined by a sub control module to the
connection module.

364 3BSE041488-511

Section 6 Synchronized Control Group Start Objects

GroupStartStandby Object

This object supervises the connected process objects. If any of the running objects
fails, this object tries to keep the desired number of objects running.

The following are the characteristics of the connected system, if the
GroupStartStandby object is used:

If the desired number of required objects cannot be kept running, an alarm is
generated to indicate that few objects remain in good condition. This alarm
function may be switched off.

To maintain the required number of running objects, the next ready object
makes a start attempt to create an even wear on all objects.

When the required number of objects does not change, the user can change the
active objects just to keep an even wear on them.

Each object is supervised by a timer and when a configured maximum time is
reached, this objects stops and the next object is started. This object change
(when the maximum time is reached) may be switched off.

When a new object is to be started as a result of another running on maximum
time, the start and stop order can be selected. When such a change of running
objects takes place, an event is fired (if selected).

The first object in the queue stops when the required number of objects
decreases.

The standby object can be connected and controlled by a group start sequence.
If this is the case, it responds immediately on a start request from the group
start administrative objects (Head or Step), and later the standby object controls
the connected objects autonomously.

The standby object can be switched between manual mode and auto mode. In
auto mode, the object is controlled by the group start sequence. In manual
mode, the start and stop action can be performed locally.

If the input parameter is not connected, the standby object reacts as if it has got
a start order, and controls the connected object with respect to the required
number of started objects. If it is in manual mode, the entire group of connected
process objects may be switched on and off, based on the required number of
started objects.

3BSE041488-511

365

Group Start Objects Section 6 Synchronized Control

* All the connected process objects can be switched into GroupStart mode using
the Group Start button (G) in the faceplate.

366 3BSE041488-511

Section 7 Surveillance

Introduction

This section presents a short description about the signal and vote loop concept in
the SignalLib.

Signal and Vote Loop Concept

Overview

Vote control module types may be connected to objects with vote logic (control
module types with a voting parameter). The vote control module types are used to
define different rules that make it possible to control the process to predetermined
states. This means that the process can behave differently, depending on valid rule,
for example shutdown the process.

The SignalLib library consists of control modules for signal input, voting and output
signals and the ProcessObjLib libraries consist of control modules for process
control. The ControlLib libraries consist of control modules for control loops and
calculation.

A typical usage for vote control modules are applications that are divided into signal
loops, where voting with signal status diagnostics and communication to external
applications is an essential and integrated part of the application. Each loop contains
input signal control modules, vote control modules and output control modules. The
output signals in the vote control modules are latched and can be reset from the
process output signal control module or from any connected vote control module in
the loop. The latched command signals are sent via MMS to a separate application
in addition to a local alarm/event.

3BSE041488-511 367

Overview Section 7 Surveillance

Figure 152 shows the principal voting data flow for a SIF (Safety Instrumented
Functions) loop and Figure 154 shows some combination possibilities between SIF
loop logic and common programmer calculation code, using the input signals from
signal objects real as well as boolean types. The vote control modules have a
possibility to combine the action together with a command number inside the
structured component VotedConnection. Then, the receiving object as e.g. a process
object like a motor or a valve may decode this command into different actions inside
the process object like PriorityCmdO or/and perhaps ILock1. PriorityCmdO or/and
ILock1 are defined by an input parameter (xxxConfig) for each possible action
where xxx is representing the specific action, for example PriorityCmdOConfig. This
gives the possibility for different Vote control modules to take different (or equal)
actions in the process object.

The selections in xxxConfig are displayed in the interaction window of the process
object and the signal output control modules.

The voted commands are numbered from 1 to 32 to define a corresponding bit in the
xxxConfig word.

368 3BSE041488-511

Section 7 Surveillance Overview

The Command number is a parameter integer

value defining a bit in a word to be compared

with the xxxConfig pararmeters.

/' 1 3 Ex: Command number=4
Command
SIR Out number 1-4
Command may change if - :
number <>0 PriorityCmd0Config
| |11 The lowest command . .
number of the activated PriorityCmd1Config
— inputs are sent on the output
SIR Vole Branch And 1P p ILock1Config
/\ LR
Or
SIR Process Object
defines actions
The number of xxxConfig are
dependent on the process object
type and may vary.
SIR
L]
— The xxxConfig values are defined by an dword

SIR Vote Branch value that may be entered as a parameter 2#1000

SIE

i

Figure 152. Configuration example of vote logic. (SIR=Signal In Real, and
SIB=Signal In Bool)

The output from a vote control module may also be connected to other objects
defined in Table 41, for example, an output signal object that defines the action of
the output signal when the voted signal is activated.

The coding method of the xxxConfig parameters is based upon which state the
process is to enter when the command is received. To enter a specific process state,
the process object has to give one or several commands. The different commands
may be individual for different output control modules types, as listed in Table 41.

3BSE041488-511

369

Overview

Section 7 Surveillance

—I0| x|/ The square color changes when the bit pattern
| matches the received command number.
Overrides EE
PrioritygCmdMant | Red color is used when both Cmd and
|_ < &] LatchedCmd are true.
PrioritygCmdMan0
|_ | | Green color is used when Cmd component
|—Plioritgt:md‘. I has returned to false state.
<
PrioritsCmd0 White squares indicate the value of the
|_ = |z|| received command number.
ILock1
|_ o X | Black color indicate the configured
ILockO behavior of different actions.
[R |
Reset vote objects ()

Figure 153. Example of Voted commands indications in a Interaction Window of a
process object (MotorUniM).

The process object in the example has three different command types that are
affecting the process object in three different ways:

e PriorityManCmd O and 1
. PriorityCmd 0, and 1
e LockOand 1

The corresponding config parameters contains a bit pattern that is compared to the
command bit position and if they match the command is given to the process object.

These commands are or-ed with the corresponding parameters and finally the
process object priorities what actually shall be performed. If for example the
PriorityCmdMan0 command is given from the voting logic and the input parameter
PriorityCmdMan1 also is true, the PriorityCmdManO will be the result. The
xxxConfig parameters together with the command bit pattern is displayed in the
interaction window.

Table 37 describes the standard library types for supervision.

370

3BSE041488-511

Section 7 Surveillance Overview

Table 37. Standard library types for supervision

Type Name Library |Type Description
SignalBool SignalLib | Function | SignalBool has a digital input and an output, both of
block bool data type, with several alarm and event

functions when input value differs from normal
value, and interaction windows. The input and
output are intended to be connected to bool
variables in an application.

SignalBoolCalcOutM' | SignalLib | Control | SignalBoolCalcOutM is a version of SignalBool that
module |handles input connections from a vote control
module. Input/output is of Boolconnection.

SignalBoolCalcinM' SignalLib | Control |SignalBoolCalcInM s a version of SignalBool that
module |handles connections to a vote control module.
Input/output is of Boolconnection.

Table 38 describes the standard library types for input signal handling.
Table 38. Standard library types for input signal handling

Type Name Library Type Description

SignallnBool(M) SignalLib Function SignallnBool has a digital input, of BoollO
block and |data type, with several supervision
Control functions, such as alarm and event levels,

module() | and interaction windows. The signal input
is intended to be connected to a digital
input 1/0 variable. The signal output is of
bool data type (Function blocks) and
BoolConnection (Control modules).

SignalBasicInBool SignalBasicLib | Function SignalBasiclnBool is used for overview
block and forcing of boolean input signals of
data type BoollO.

The input signal value is transferred to the

output value. Error is set to true when
input IO status is error marked.

Table 39 describes the Standard library types for digital output.

3BSE041488-511 371

Overview Section 7 Surveillance
Table 39. Standard library types for digital output
Type Name Library Type Description
SignalOutBool(M) SignalLib Function SignalOutBool has a digital output of
block and |BoollO data type (Function Blocks) and
Control BoolConnection (Control modules), with
module’ several supervision functions, such as
alarm and event levels, and interaction
windows. The signal input is intended to
be connected to a digital input I/O
variable. The signal output is of bool data
type.
SignalBasicOutBool SignalBasicLib |Function SignalBasicOutBool is used for overview
block and forcing of boolean output signals of
data type BoollO.
The input value is transferred to the
output signal value. Error is set to true
when output 10 status is error marked.

372

3BSE041488-511

Section 7 Surveillance Example

Example

= > E [MotorBim1 M 1X:2 K]

[MotorBiM2 M 1Kz K]

[MotorBiM3 M 12 K]

Figure 154. Configuration example of vote logic

As a result of the upper vote control module in the control module diagram above,

the process is to shut down completely, and as a result of the second vote control
module the process is to be placed in a stand by mode.

3BSE041488-511 373

Example Section 7 Surveillance

Solution

Start to define the behavior of the different process objects or connected outputs at
shutdown and standby, according to following:

Behavior Action

Shutdown The upper process object shall run (use PriorityCmd)

The middle process object shall prevent the automation
program to transfer the object into the stopped position
(use ILock0)

The lower process object shall stop and when the vote
condition has been released be placed in manual mode
(use PriorityManCmd0)

Standby The upper process object shall run (Use PriorityCmd1)

The middle process object shall not be affected.

The lower process object shall prevent the automation
program to transfer the object into the started position
(Use ILock1)

This gives the following settings on the objects:

Object Setting
Upper vote OutCommandNumber: 1
Lower vote OutCommandNumber: 2

Upper process PriorityCmdO0Config: 2#1

object PriorityCmd0Config: 2#10
Middle process ILockOConfig: 2#1

object

Lower process PriorityManCmd0Config: 2#1
object ILock1Config: 2#10

374 3BSE041488-511

Section 7 Surveillance

Standard Object Types that Support Voting Logic

Standard Object Types that Support Voting Logic

There are two types of objects that support Voting logic:

* Objects determining specified situations like too high values, sending it to the
voting objects (sending objects).

* Objects receives voted commands and are responding to them (receiving
objects).

The column 'Reset of overrides' in Table 40 and Table 41 means that the
commanded overrides functions (Force, Inhibit and Disable) can be reset from
outside the object using the VoteConnection structured data type for sending objects
and the VotedConnection data type for receiving objects. SDLevelM initiates this
type of action that is distributed through the Branch, And and Or object for each
type of vote connection.

Sending Objects

Sending objects send the detected information into a node of VoteConnection. The
table below displays sending objects and also describes the possible detected
situations related to the InxLevelConfig parameter of the voting objects. Values of
InxLevelConfig outside the described range or on objects where the value is marked
with a “x” gives ParError in ParError detecting objects.

Table 40. Sending VoteConnection standard objects

InxLevelConfig =-3 |=-2 |=-1 =0 =1 =2 =3
in Voting
object g 0
£ EN
n ol s
Object £33 £
SignallnBoolM |Yes |x X X X DiffNorm |x X X
al
SignalBoolCalc |Yes |x X X X DiffNorm |x X X
InM al
SignallnRealM |Yes |Yes |LLL |LL L X H HH HHH

3BSE041488-511

375

Standard Object Types that Support Voting Logic Section 7 Surveillance

Table 40. Sending VoteConnection standard objects (Continued)

InxLevelConfig =-3 |=-2 |=-1 =0 =1 =2 =3

in Voting

object 2 ®

w0l ®=

Object 231848

SignalSimpleln |Yes |Yes |x X L X H X X

RealM

SignalRealCalc |Yes |Yes |LLL |LL L X H HH HHH

InM

PidCC X Yes |x X DevNeg | x DevPos |x X

PidAdvanced X Yes |x X DevNeg | x DevPos | Oscillation | Sluggish

CcC detected |control

detected

Level2CC X Yes |x X L X H X X

Level4CC X Yes |x LL L X H HH X

Level6CC X Yes |LLL |LL |L X H HH HHH

GSHead X X X X Time Stopped |Started |X X
error

BiM X X X X Object | Off OnPos |OnPos2 |x
error 1

UniM X X X X Object | Off On X X
error

ValveUniM X X X X Object |[Closed |Opened |x X
error

MotorBiM X X X X Object |Stopped |Runs Runs X
error Pos1 Pos2

MotorUniM X X X X Object |Stopped |Runs X X
error

376 3BSE041488-511

Section 7 Surveillance

Standard Object Types that Support Voting Logic

Table 40. Sending VoteConnection standard objects (Continued)

InxLevelConfig =-3 |=-2 |=-1 =0 =1 =2 =3
in Voting
object 9 0
"ol o=
Object 231848
MotorValveM X X X X Object |Stopped |Opened |Closed X
error
MotorValveCC | x X X X Object |Stopped |Opened |Closed X
error
InsumBreakerM | x X Trip |Warn|Object |[Opened |Closed |x X
ing error
McuBasicM X X Trip |[Warn|Object |Stopped |Runs Runs X
ing |error Pos1 Pos2
McuExtendedM | x X Trip |[Warn |Object |Stopped |Runs Runs X
ing |error Pos1 Pos2
ACStdDriveM X X Trip |[Warn|Object |Stopped |Runs Stopped |Runs
ing error
DCStdDriveM | x X Trip |Warn|Object |Stopped |Runs Current Current
ing |error Off On
EngDriveM X X Trip |Warn|Object |Stopped |Runs Current Current
ing |error Off On
VoteXoo1Q X X X X X Action Latched |x X
Action
VoteXo02D X X X X X Action Latched |x X
Action
VoteX003Q X X X X X Action Latched |x X
Action
VoteXo008 X X X X X Action Latched |x X
Action

3BSE041488-511

377

Standard Object Types that Support Voting Logic Section 7 Surveillance

Table 40. Sending VoteConnection standard objects (Continued)

InxLevelConfig =-3 |=-2 |=-1 =0 =1 =2 =3

in Voting

object 2 ®

"ol °=

Object 231848

VotedOr X X X X X Action Latched |x X
Action

VotedAnd X X X X X Action Latched |x X
Action

VotedBranch X X X X X Action Latched |x X
Action

(1) Sends a real value to be used in the statistic calculation of the vote object (highest, lowest, median and average
value).

Receiving Objects

The sending objects receive the voted information and reacts on it, dependent of the
nature and possibilities of the individual object. The table below displays the
sending objects and also describes the possible different behavior.

Table 41. Receiving VotedConnection standard objects

58
o3
. = . .
Object @ § Voting Action
le)
SignalBoolCalcOutM Yes |Freeze Predetermined
Value
SignalOutBoolM Yes |Freeze Predetermined
Value

378 3BSE041488-511

Section 7 Surveillance

Standard Object Types that Support Voting Logic

Table 41. Receiving VotedConnection standard objects (Continued)

58
23
Object 2 % Voting Action
2>
le)
SignalRealCalcOutM Yes |Freeze Predetermined
Value
SignalOutRealM Yes |Freeze Predetermined
Value
SignalSimpleOutRealM |Yes |Freeze Predetermined
Value
SDLevelM X Activate
PidCC X ->Auto mode -> External -> Tracking
setpoint/ mode
Internal setpoint
PidAdvancedCC X ->Auto mode -> External -> Tracking
setpoint/ mode
Internal setpoint
SelectorCC X Select predefined | -> Internal setpoint
input channel
Selector4CC X Select predefined | -> Internal setpoint
input channel also
in chained
configuration
ManualAutoCC X -> Auto mode
SignalSupervisionCC | x Freeze Predetermined
Value
GSHead X Start Stop
BiM X PriorityMan O, 1, 2 |Priority 0, 1, 2 Interlock O, 1, 2
UniM X PriorityMan 0, 1 Priority O, 1, Interlock 0.1
ValveUniM X PriorityMan 0, 1 PriorityMan 0, 1 Interlock 0, 1

3BSE041488-511

379

Standard Object Types that Support Voting Logic

Section 7 Surveillance

Table 41. Receiving VotedConnection standard objects (Continued)

58
23
. = . .
Object @5 Voting Action
x3

MotorBiM X PriorityMan 0, 1, 2 | PriorityMan 0, 1,2 |Interlock O, 1, 2
MotorUniM X PriorityMan 0, 1 PriorityMan 0, 1 Interlock 0O, 1
MotorValveM X PriorityManOpen, | PriorityOpen,Stop, |InterlockOpen,

Stop,Close Close Stop,Close
MotorValveCC X -> Auto mode PriorityOpen,Stop, |PriorityValue

Close

InsumBreakerM X PriorityMan O, 1 PriorityMan 0, 1 Interlock O, 1
McuBasicM X PriorityMan 0, 1, 2 | PriorityMan O, 1,2 |Interlock O, 1, 2
McuExtendedM X PriorityMan 0, 1, 2 | PriorityMan 0, 1,2 |Interlock O, 1, 2
ACStdDriveM X PriorityMan 0, 1 PriorityMan 0, 1 Interlock 0O, 1
DCStdDriveM X PriorityMan 0, 1 PriorityMan 0, 1 Interlock 0, 1
EngDriveM X PriorityMan 0, 1 PriorityMan 0, 1 Interlock 0, 1
Mimo22CC X Selects a specified

equation
Mimo41CC X Selects a specified

equation
Mimo44CC X Selects a specified

equation

380

3BSE041488-511

Section 7 Surveillance Vote Control Module Types

Vote Control Module Types

Type Name Library Description

Vote1001Q SignalLib | Performs voting of one input signal, where the
signal quality is considered together with the
activation signal from the input module, for
example from SignallnRealM. The vote output is
set if the input signal if either activated or have
bad quality.

VoteX003Q SignalLib | Performs voting of up to three input signals, where
the signal quality is considered together with the
activation signal from the input modules, for
example from SignallnRealM. The vote output is
set if X (X parameter) number of input signals are
either activated or have bad quality.

VoteXo02D SignalLib | Performs voting of up to two input signals, where
the signal quality is diagnosed together with the
activation signal from the input modules, for
example from SignallnRealM. If X parameter =1;
the vote output is set if any input signal is
activated and quality is good, or if all connected
signals have bad quality. If X parameter =2; the
vote output is set if both input signals are
activated and quality is good, or if one input signal
is activated and quality is good and the other input
signal have bad quality, or if all connected signals
have bad quality.

VoteXoo8 SignalLib | Performs voting of up to eight input signals from
input modules, for example from SignalinRealM.
The vote output is set if X (X parameter) number
of input signals are activated. The signal quality is
not considered.

3BSE041488-511 381

Vote Structure Control Module Types Section 7 Surveillance

Vote Structure Control Module Types

Type Name Library Description

VotedAnd4 SignalLib | Makes an AND function between four signal of

VotedConnection from a vote control module.

VotedOr4 SignalLib | Makes an OR function between four signals of

VotedConnection from vote control modules.

VoteBranch4 SignalLib | Branches a signal of VoteConnection, for example

an output from a signal object control module, into
four signals of the same data type.

VotedBranch4 SignalLib | Branches a signal of VotedConnection, from a

vote control module, into four signals of the same
data type

SDLevelM Control Module Types

This control module provides an easy way to structure the Emergency or Process
shutdown logic in the commonly used level hierarchy. There are activation input
parameters from surrounding objects as well as from superior levels, and output
parameters to effect process objects as well as subordinate levels. These four input
and output possibilities may be inhibited individually.

The level is activated by an input signal from superior level objects, the cause input
from a voting circuit, or the Activate interaction command from the object
interaction window.

An example of such a hierarchal structure is (see Figure 155):
* A plant that consists of several buildings.

* A building that has several production lines.

* A production line that has several batch processes.

* A batch process that has several units.

* A unit that has several process objects.

When the total plant shuts down, all equipment in the plant also shuts down. At the
base structure, when a unit shuts down, all process objects in the unit shuts down.

382

3BSE041488-511

Section 7 Surveillance

SDLevelM Control Module Types

These shut downs may occur according to the connected process objects in different
levels. The behavior of the output process object is decided in the object itself,
described in the example of voting mechanisms, see Signal and Vote Loop Concept

on page 367.

The cause input to this level is the
voted result and the action is
configured in the level object.

A process object may be connected
to and controlled by each level

1, Buiilding 1

tﬂm 3 BB

OB B w0

Figure 155. Level Usage Example

A group start circuit without any

The level output may be logically previously connect group headers

connected in a SIS loop may act as a process object and
take effect of the voted commands

|Ul|l|flillg 2

Name H[W. K- EE

_fe

l_;_lll.me 2, Building 1 |_'|L|ne 1, Building 2

[0]

IUmI? Line 1, Building 1 |U|m1 Line 1, Building 2

g g

The process objects at the bottom
level are controlled by the bottom

level objects, where the action of

the object is defined

3BSE041488-511

383

SDLevelM Control Module Types Section 7 Surveillance

Overrides

The overrides that exist in this object are the inhibitions of the input and output
signals. These inhibitions can be performed using parameters with the
corresponding name or components in the InteractionPar data structure. The
inhibitions from the interaction can be enabled or disabled by controlling the
parameter EnableOverride. An interaction command or parameter input signal is
used to reset the overrides in the object.

The input signals /n and Cause, and the output signals Outx and Effectx are
connected graphically as shown in the Figure 156.

Activation signals

The In parameter is connected to any of the Outx parameters of superior level
SDLevelM control module. Hence, the Outx parameters is connected to the In
parameter of the subordinate level SDLevelM control module.

The Cause parameter is connected to the voted output parameter of SIF loop
representing the level activation. The Effectx parameters is connected to the
VotedCmd input parameter of the process object to be controlled.

When a Level is activated, all connected subordinate levels and all connected effects
will be activated except those having the corresponding inhibition signal activated.

The communication signaling to the surrounding objects is distributed in the
connection structured data types, for example reset of overrides or reset of latches.

Override control signals

The ResetOverride parameter is connected to an appropriate signal, for example, an
input connected to a push button and/or the ResetAllApplForced parameter of a
ForcedSignals function block.

The EnableOverride parameter is connected to an appropriate signal, for example,
an input connected to a key switch and/or the AccessEnable parameter of a
ForcedSignals function block.

The interaction push buttons for reset of overrides and reset of latches are enabled
when any overrides or latches that can be reset exist.

384

3BSE041488-511

Section 7 Surveillance SDLevelM Control Module Types

Set the parameter EnableOverride to true, to enable the control of inhibitions in this
object. If this input parameter is false, the entry in the interaction window disabled.

Object node connections

The objects of control module type are equipped with nodes for graphical
connection in the CMD Editor.

Figure 156. The node connection for SDLevelM

3BSE041488-511 385

SDLevelM Control Module Types Section 7 Surveillance

Control Builder Interaction Window

This button invokes the Cause
input vote window

CETm— y This button invokes the
« information window
Activate @ .
[Activated Latch activated | This button creates a manual
—Output cause command
Out
g Eff. < The Effect output command
ect < .
numbers used for decoding of
Effect command No.) L
1 1 1 1 desired activation of the connected
= receiving process objects
Reset Latches i
Reset Overrides)
The buttons used to reset The buttjns used to reset

latched information in the
level and connected sub
levels

overrides in the connected
process objects

Figure 157. The Control Builder Interaction Window

386 3BSE041488-511

Section 7 Surveillance SDLevelM Control Module Types

m ilglﬁl Input node connection status

| — Delay of the Cause input

/ Indication if the operator is allowed

o <« to set or reset any overrides

Cause delay

Overrides
[Operator Override Enabled /Operator inhibitions
Inhibited Inhibit /-
In

Status, enable and acknowledge
of the level activation alarm

T Status, enable and

Level Activated / P acknqwlgdge of the level
[Enable coincidence alarm
Coincidence E

[Enable

Input and output node signal
inhibition status

Figure 158. The Control Builder InfoPar

This frame indicates the configuration

_ol x of the CauseConfig parameter and if
—L_'; the received command number
[a

satisfies the selected configuration
Reset vote objects

This button is used to reset latched
information in the connected SIF
loop on cause input node

Figure 159. The Cause Input Vote Window

3BSE041488-511 387

SDLevelOr4 Section 7 Surveillance

SDLevelOr4

This control module makes an OR function between four signal of
SDLevelMConnection.

Object node connections

The objects of control module type are equipped with nodes for graphical
connection in the CMD Editor.

In the Forward calculation:
* The smallest .LevelNo value is transferred to the output structure.

* The output .Level, .LatchedLevel and .Reset are or'ed from the inputs.

It In2 In3 Ind

Ou
Figure 160. The node connection for SDLevelOr4

SDLevelAnd4

This control module makes an AND function between four signal of
SDLevelMConnection.

Object node connections

The objects of control module type are equipped with nodes for graphical
connection in the CMD Editor.

In the Forward calculation:
* The smallest .LevelNo value is transferred to the output structure

* The output .Level and .LatchedLevel are and'ed from the inputs.

388 3BSE041488-511

Section 7 Surveillance SDL evelBranch4

* The output .Reset is or'ed from the inputs.

It In2 In3 Ind

Figure 161. The node connection for SDLevelAnd4

SDLevelBranch4

This control module splits a signal of SDLevelMConnection.

Object node connections

The objects of control module type are equipped with nodes for graphical
connection in the CMD Editor.

The input .ResetEnabled is or'ed from the outputs in the backward calculation.

O

Outl Out2 Out3 Outd

Figure 162. The node connection for SDLevelBranch4

3BSE041488-511 389

Latching input object quality information Section 7 Surveillance

Latching input object quality information

The latch mechanism is activated when the quality information distributed to the
VoteConnection has been better that the lowest value again (e.g. raised from bad to
uncertain or good, or raised from uncertain to good).The interaction window
indicates that the quality information is latched by textual information.

ﬂ This Information window has different layout depending of the signal object type.

Information about Latched
Quality

Information Window is called
by this button

Figure 163. Interaction Windiow-Input Quality Latched

The operators can acknowledge by calling up the information window.

390 3BSE041488-511

Section 7 Surveillance Latching input object quality information

x|
|

—Signal stat

—Alarm Event

In normal

Diff normal

[Enable Diff

[Inhibit diff

Error

I Enable error

Filter time | 000 s

D=

—Error handling

; :::z:gh This Reset button line is
. visible when the parameter
(" Predetermined ‘EnableLatchQuality’ is true.
SEREAlNE " On The Operator can reset the
© off latched information.
Reset Latched quality A

Figure 164. Resetting Latched Information

ﬂ The latched information is visible, only when the VoteOut parameter is
connected.

3BSE041488-511 391

Latching input object quality information Section 7 Surveillance

392 3BSE041488-511

Appendix A Customized Online Help

In this section you will find requirements on customized help for self-defined
libraries, applications and components of externally added applications, as well as
for non-standard hardware. Customized help can be produced using any online help
authoring tool.

How to add customized help for user-defined libraries with hardware and non-
standard hardware types, differ from how to add customized help for user-defined
libraries (with data types, function block types and control module types) and
applications.

Online Help Files for User-defined Libraries and
Applications

The following requirements must be fulfilled on customized online help for user-
defined libraries (with data types, function block types and control module types)
and applications.

1. Any online help authoring tool that produces Microsoft HTML Help 1.3 can be
used when producing the external help files.

2. Your help files should be placed in the UserHelp folder, which is located in the
standard help file folder of the Control Builder product, ABB Industrial
IT\...Help\UserHelp. (For example, c.\Program files\ABB Industrial
IT\Engineer IT\Compact Control Builder 5. 1\Help\UserHelp).

3. The help file should be of the Microsoft HTML help file type, and should have
the same name as the library or application (for example, MyLib.chm).

3BSE041488-511 393

Online Help Files for User-defined Libraries with Hardware and Non-standard hardware AppendixA

4. Context-sensitive help (F1 help) must always use A keywords that are based on
the Project Explorer object name.The name of the library or application in
Project Explorer is used by Control Builder, when calling the online help file.
See External Help Files via F1 on page 396.,

@ Only Microsoft HTML Help files (*.chm) of version 1.3 are supported.

Online Help Files for User-defined Libraries with Hardware
and Non-standard hardware

The following requirements must be fulfilled on customized online help for user-
defined libraries (with hardware types) and non-standard hardware.

1. Any online help authoring tool that produces Microsoft HTML Help or
WinHelp can be used when producing the external help files.

2. The help file can be of HTML (*.chm) or WinHelp (*.hlp) type.

3. The external help file should be added to the library with hardware or to the
hardware type in Project Explorer. How to add a help file to a library with non-
standard hardware (with, for example, I/O units) and a specific hardware type
in a library, see Compact 800 Engineering Compact Control Builder AC 800M
Configuration (3BSE041488%) .

ﬂ Context-sensitive help (F1) works with any help file name of the added help file,
as long as it is a HTML or WinHelp help file. F1 on a hardware type without any
added help file calls the help file added (if any) to the user-defined library (with

the hardware type).

Access Customized Online Help from Control Builder

There are three ways to access online help from Control Builder. You can use the
menu option Help..., you can select an item in Project Explorer and press F1, or you
could click the Help button on the tool bar, or in a dialog.

394 3BSE041488-511

Appendix A Customized Online Help Access Customized Online Help from Control Builder

Help Menu

The Show Help About dialog provides access to help files that have been added by
the user (if such files exist in the UserHelp folder). Use this dialog box to access
external, inserted help files. The dialog box is opened from the Project Explorer:
Help > Show Help About..., as illustrated in Figure 165.

? Help Tapics
Help About the Project Explorer

Maruals

Show Help About, ..

About Campact Conkral Builder AC S00M

Figure 165. Help menu in the Project Explorer window

All externally added *.chm files residing in the predefined help file folder,
...Help\UserHelp, are listed in the Show Help About dialog box. See Figure 166.

¥ Show Help About X

Select file:

MotorLib
Walve 2

File name: |.-’-‘«pp|icatinn_1

Open | Cancel | Help |

Figure 166. The Show Help About dialog box

3BSE041488-511 395

Access Customized Online Help from Control Builder Appendix A Customized Online Help

To open a file from the dialog box, select (or double-click) a file from the list, or
type the name in the File name field, and click Open.

Help files displayed in the Show Help About dialog box are not a part of Control
Builder online help. This means that if a project is transferred to a new computer,
you manually will have to copy these help files from the UserHelp folder on the old
computer to the UserHelp folder on the new computer. This also means that these
help files are not included when a system backup is performed.

Context-Sensitive Help (F1)

If you select an item in Project Explorer and then press the F1 key, help on the
selected item will be displayed. The F1 key can be used on all items in applications,
libraries, user-defined libraries, hardware, and externally added hardware. It is also
possible to get F1 help on error messages in the editor message pane, or in the
project explorer pane.

External Help Files via F1

Control Builder supports context-sensitive help on user-defined library (with data
types, function block types and control module types) and components of externally
added applications, provided that the corresponding help file is placed in the
UserHelp folder.

Context-sensitive help on user-defined libraries with hardware and non-standard
hardware is available if a help file (HTML or WinHelp file with any file name) is
added to the library or to the hardware type. See Compact 800 Engineering
Compact Control Builder AC 800M Configuration (3BSE041488%*) manual.

ﬂ External help files for user-defined library (with data types, function block types
and control module types), and components of externally added applications,
must have exactly the same name as the corresponding component file, as it
appears in the Control Builder tree, with the extension chm (refer to Table 42).
Otherwise, context-sensitive help will not work.

396 3BSE041488-511

Appendix A Customized Online Help Context-Sensitive Linking

Table 42. Control Builder files and corresponding help files (examples)

Object Type Control Builder File Help File
Library Foocos.lbr Foocos.chm
Application Application_1.app Application_1.chm

Context-Sensitive Linking

Context-sensitive linking between the help project topics and user-defined libraries
(with data types, function block types and control module types), and components
of externally added applications, in Project Explorer is done by A keyword linking.
Project Explorer objects should have their exact names specified as an A keyword in
the corresponding topic. An A keyword is a non-language-dependent text string,
sent from Control Builder (at an F1 call) to the online help system.

You must add the name of the object as an A keyword to the help topic describing
the object. Control Builder uses the name of the currently selected item and tries to
find a corresponding A keyword in the help system. If a call fails, the Control
Builder keyword is displayed under the Index Tab in the HTML Help Viewer.

3BSE041488-511 397

Context-Sensitive Linking Appendix A Customized Online Help

398 3BSE041488-511

Appendix B Library Objects Overview

This section gives an overview of all library objects, such as data types, functions,
function block types, and control module types that can be used in applications
created using the Control Builder engineering tool. Refer to the appropriate manuals
and Control Builder online help for detailed descriptions of the libraries.

Almost all library types are protected. This means that the types cannot be copied to

Q your own library and then modified. To determine if a library object is protected,
select the object in the Project Explorer and then try to copy it. If the object is
dimmed, it is protected.

System

The System contains IEC 61131-3 data types and functions, as well as data types
and functions with extended functionality designed by ABB.

3BSE041488-511 399

System Appendix B Library Objects Overview

IEC 61131-3 Standard Functions
Table 43. IEC 61131-3 standard functions

Function TC |Description

Type conversion functions

* TO_** Y | Type conversion from * to **

The following type conversions are implicit (that is,
a call to a type conversion function is not needed):

bool -> word, bool -> dword
word -> dword

int -> dint, int -> real

uint -> dint, uint -> real

dint -> real

explicit conversion functions:
<bool, int, dint, uint, words, dwords time>_to_real
<int, dint, uint, word, dword, real>_to_bool

<bool, uint, dint, word, dword, real>_to_int

<bool, int, uint, word, dword, real, time>_to_dint

400 3BSE041488-511

Appendix B Library Objects Overview System
Table 43. IEC 61131-3 standard functions (Continued)
Function TC |Description
<bool, int, dint, word, dword, real>_to_uint
<bool, int, dint, uint, real, dword>_to_word
<bool, int, dint, uint, real, word>_to_dword
Y string_to_date_and_time, string_to_dint,
string_to_dword, string_to_int, string_to_real,
string_to_time, string_to_uint, string_to_word
N dword_to_string, int_to_string, real_to_string,
time_to_string, uint_to_string, word_to_string,
date_and_time_to_string, bool_to_string,
dint_to_string
N string_to_bool
General functions
ABS Y Absolute value
SQRT Y Square root
Logarithmic functions
EXP Y Natural exponential
LN Natural logarithm
LOG Logarithm to base 10
Trigonometric functions
ACOS Y Principal arc cosine
ASIN Y Principal arc sine
ATAN Y Principal arc tangent
COS Y Cosine in radians
SIN Y Sine of input in radians
TAN Y Tangent in radians
3BSE041488-511 401

System Appendix B Library Objects Overview

Table 43. IEC 61131-3 standard functions (Continued)

Function TC |Description
Extensible arithmetic functions
ADD Y Addition (OUT:=IN1 + IN2 + ... + Inn)
MUL Y Multiplication (OUT:= IN1 * IN2 * ... * INn)
Non-extensible arithmetic functions

DIV Y Division (OUT :=IN1/IN2)

EXPT Y Exponentiation (OUT := IN1 raised to IN2)

MOD Y Modulus (OUT := IN1 modulo IN2)

MOVE Y Move (OUT :=IN)

SuB Y Subtraction (OUT := IN1 - IN12)

Standard bit shift functions

ROL Y Rotate bits left (OUT := IN left-rotated by N bits,
circular)

ROR Y Rotate bits right (OUT := IN right-rotated by N bits,
circular)

SHL Y Shift bits left (OUT := IN left-shifted by N bits, zero-
filled on right)

SHR Y Shift bits right (OUT := IN right-shifted by N bits,
zero-filled on left)

Standard bit-wise Boolean functions

AND Y Boolean AND (OUT :=IN1 AND IN2 AND ... AND
INn)

NOT Y Boolean negation (OUT := NOT IN1)

OR Y Boolean OR (OUT :=IN1 OR IN2 OR ... OR INn)

XOR Y Boolean Exclusive OR (OUT :=IN1 XOR IN2 XOR
... XOR INn)

402 3BSE041488-511

Appendix B Library Objects Overview

System

Table 43. IEC 61131-3 standard functions (Continued)

Function TC |Description
Standard selection functions

LIMIT Y Delimiter between a minimum, min, variable value
and a maximum, max, variable value (non-
extensible).

MAX Y Select the largest of the input variables (extensible)

MIN Y Select the smallest of the input variables
(extensible)

MUX Y Multiplexer which selects the variable pointed out by
the input variable (extensible)

SEL Y Binary selection (non-extensible)

Standard comparison functions

EQ (=) Y Equality

GE (>=) Monotonic decreasing sequence

GT (>) Y Decreasing sequence

LE (<=) Y Monotonic increasing sequence

LT (<) Y Increasing sequence

NE (<>) Y Inequality (non-extensible)

3BSE041488-511

403

System Appendix B Library Objects Overview

Table 43. IEC 61131-3 standard functions (Continued)

Function TC |Description

Standard character string functions

CONCAT N Extensible concatenation

DELETE N Delete L characters of IN, beginning at the Pth
character position

FIND Y Find the character position of the beginning of the
first occurrence of IN2 in IN1. If no occurrence of
IN2 is found, then OUT := 0.

INSERT N Insert IN2 into IN1 after the Pth character position

LEFT N Left-most L characters of IN

LEN Y String length function

MID N L characters of IN beginning at the Pth character
position

REPLACE N Replace L characters of IN1 by IN2, starting at the
Pth character position

RIGHT N Right-most L characters of IN

Functions of time data types
ADD Y Add time variables
SuB Y Subtract time variables

(1) Conversion functions can be used in time-critical tasks, except for the functions: bool_to_string,
int_to_string, dint_to_string, uint_to_string, word_to_string, dword_to_string, real_to_string,
time_to_string, date_and_time_to_string and string_to_bool.

404 3BSE041488-511

Appendix B Library Objects Overview

System

Non-IEC 61131-3 Conversion Functions

Table 44. Non-1EC 61131-3 conversion functions

Function TC |Description
Type conversion functions

addsuffix Y Add a suffix to a String.

ASCIIStructToString N The ASCIIStructToString function takes a
struct of dinfs, which contains the codes for
an ASCII string, and reconstructs the string
from the values in the components of the
struct. The component values of the
integer, DintStruct, are read and translated
into the value of the destination string,
String.

BCDToDint Y BCDToDint converts a BCD value into an
integer value (dint).

Bool16ToDint Y Bool16ToDint converts a Boolean struct
BoolStruct with 16 items into a dint.

Bool32ToDint Y Bool32ToDint converts a Boolean struct
BoolStruct with 32 items into a dint.

CalendarStructTo Y This function converts a CalendarStruct to

Date_and_time a date_and_time value.

Date_and_timeTo Y This function converts a date_and_time

CalendarStruct value to a CalendarStruct.

DiIntToBCD Y DintToBCD converts an integer value into a
BCD value.

DIntToBool16 and Y The DIntToBool16 and DIntToBool32

DIntToBool32 functions convert a dint into a Boolean
struct BoolStruct with 16 or 32 items,
respectively.

DintToGraycode Y This function converts a dint value to a
Graycoded value.

3BSE041488-511

405

System Appendix B Library Objects Overview

Table 44. Non-1EC 61131-3 conversion functions (Continued)

Function TC |Description

GraycodeToDInt Y This function converts a Graycoded value
to a dint value.

MaxStringLength N The MaxStringLength function returns the
maximum length of a string; that is, the
allocated size of the string variable, as an
integer value.

serial_string_append_ASCII N The function append a character to a string.

serial_string_append_Hex N The function appends the hexadecimal
representation of a DWord to a string.

serial_string_find_ASCII N This function returns the position of a
specified character within a string.

serial_string_get_ASCII N This function returns the ASCII code of a
character in a string.

serial_string_Hex_to_ DWORD |N The function converts a hexadecimal string

to a DWord.

serial_string_left N This function extracts the leftmost
characters from a string.

serial_string_mid N This function extracts a substring from a
string.

serial_string_put_ASCII N The function replaces a character in a
string.

serial_string_replace_Hex N The function replaces a substring in a string
with the hexadecimal representation of a
DWord.

serial_string_right N This function extracts the rightmost
characters from a string.

StringToASCIIStruct N This function converts a string to an
ASCIIStruct.

406 3BSE041488-511

Appendix B Library Objects Overview

System

Table 44. Non-1EC 61131-3 conversion functions (Continued)

Function

TC

Description

DWordTolPString

This function converts a DWord, containing
the binary information of an IP address, to a
string value. The first part of the IP address
string is the most significant byte in the
DWord and the other three parts are the
remaining three bytes in the DWord
placement order.

IPStringToDWord

This function converts a IP address string
to a DWord containing the binary
information of the IP address. The most
significant byte in the DWord contains the
first part of the IP address and the other
three bytes in the DWord placement order
contain the other three parts of the IP
address.

3BSE041488-511

407

System Appendix B Library Objects Overview

Non-lIEC 61131-3 bit string functions

Table 45. Non-1EC 61131-3 bit string functions

Function TC Description
SetBit (WORD, UINT) or Y Sets a bit to 1 in the WORD (or DWORD)
SetBit (DWORD, UINT) specified by the first bit string argument,

and returns the value. The bit to set is
specified by the second argument.

The bit in the second argument is a
number from 0 to N-1, where N is the
number of bits used to represent the first
argument (16 for WORD, and 32 for
DWORD).

0 denotes the least significant bit, and N-1
denotes the most significant bit.

If the second argument specifies a bit >=
N, the first argument (a WORD or
DWORD) is unaffected by the call.

SetBits(WORD, WORD) or Y Sets a number of bits in the WORD (or
SetBits(DWORD, DWORD) DWORD) specified by the first bit string
argument, to bits specified by the second
argument, and returns the value. The bits
are specified using a mask.

For example,
SetBits(2#1111000011110000, 2#0101)
results in 2#1111000011110101.

408 3BSE041488-511

Appendix B Library Objects Overview System

Table 45. Non-IEC 61131-3 bit string functions (Continued)

Function TC Description
ClearBit(WORD, UNIT) or Y Sets a bit to 0 in the WORD (or DWORD)
ClearBit(DWORD, UNIT) specified by the first bit string argument,

and returns the value. The bit to be setto 0
(cleared) is specified by the second
argument.

The bit in the second argument is a
number from 0 to N-1, where N is the
number of bits used to represent the first
argument (16 for WORD, and 32 for
DWORD).

0 denotes the least significant bit, and N-1
denotes the most significant bit.

If the second argument specifies a bit >=
N, the first argument (a WORD or
DWORD) is unaffected by the call.

ClearBits(WORD, WORD) or Y Sets a number of bits to 0 in the WORD (or
ClearBits(DWORD, DWORD) DWORD) specified by the first bit string
argument, and returns the value. The bits
to be set to 0 (cleared) are specified in the
second argument using a mask.

For example,
ClearBits(2#11111111, 2#101) results in
2#11111010.

3BSE041488-511 409

System Appendix B Library Objects Overview

Table 45. Non-1EC 61131-3 bit string functions (Continued)

Function TC Description
TestBit(WORD, UINT) or Y Tests whether a bit is set (the value is 1) in
TestBit(DWORD, UINT) the WORD (or DWORD) specified by the

first bit string argument, and returns a
BOOL value (true or false). The bit to test
is specified by the second argument.

The function returns true if the bit is set, or
false if the bit is not set.

The bit in the second argument is a
number from 0 to N-1, where N is the
number of bits used to represent the first
argument (16 for WORD, and 32 for
DWORD).

0 denotes the least significant bit, and N-1
denotes the most significant bit.

If the second argument is >= N, the
function returns false.

TestBits(WORD, WORD) or Y Tests if all of a number of bits are set (the

TestBits(DWORD, DWORD) value is 1) in the WORD (or DWORD)
specified by the first bit string argument,
and returns a BOOL value (true or false).
The bits to be tested are specified in the
second argument using a mask.

If all bits specified by the mask are set, the
function returns true, otherwise it returns
false.

For example:
TestBits(2#1011, 2#1001) returns true.
TestBits(2#1011, 2#1101) returns FALSE.

410 3BSE041488-511

Appendix B Library Objects Overview

System

Other Functions

Table 46. Other functions

Function

TC

Description

CheckSum

The CheckSum function calculates checksums
used for ASCII protocols written in the
programming language.

EgAnyType

The EgAnyType function compares two variables
of any type.

ExecuteControlModules

Y

This function is used in function blocks that
contain control modules. When the function is
called from the function block, all control
modules in that function block are executed.

GetCVStatus

The GetCVStatus function accepts the
communication variable as input, and provides
the complete status and extracted statuses of
the variable through different output parameters.
These output parameters for extracted statuses
can be connected to variables to control the
logic.

GetDTQuality

Returns the quality of the system time. It may be
GOOD, UNCERTAIN or BAD.

GetStructComponent

This function reads (copies) values from a struct
component.

GetSystemDT

Returns the system time when current task was
started.

InhibitDownload

This function is used to prevent download to a
controller.

InitAnyType

The InitAnyType function initiates all
components of a structured data type variable.

LocalDTToSystemDT

Returns the system time for the specified local
time.

3BSE041488-511

411

System Appendix B Library Objects Overview

Table 46. Other functions

Function TC |Description

Match Y The Match function returns the position of a
string within another string. Unlike the Find
function, a wildcard can be used with the Match
function.

Modp Y The Modp function returns the remainder after
integer division and is related to the Mod
function. The functions differ on negative values.

Mod follows the IEC 61131 standard and Modp
follows the behavior in SattLine version 2.2 or
earlier.

MoveAnyType N The MoveAnyType function copies the Source
parameter of any type into the Destination
parameter.

NationalLowerCase N The NationalLowerCase function sets upper-
case letters to lower-case letters.

NationalUpperCase N The NationalUpperCase function sets lower-
case letters to upper-case letters.

PutStructComponent N This function writes (copies) values into a struct
component.

RandomNorm Y The RandomNorm function returns a normally
distributed random number.

RandomRect Y The RandomRect function returns a random
number uniformly distributed between 0.0 and
1.0.

RandomSeed Y The RandomSeed function initializes the
RandomGenerator to a random value.

ReadStatusZeroDivint Y The ReadStatusZeroDivint function checks for
zero division exceptions for integer values.

ReadStatusZeroDivReal | Y The ReadStatusZeroDivReal function checks for
zero division exceptions for real values.

412 3BSE041488-511

Appendix B Library Objects Overview

System

Table 46. Other functions

Function TC |Description

Reallnfo N This function is used to get information about a
real value, that is, if it is within the allowed range.
It is used to check overflow/underflow for integer
arithmetic operations.

The function checks if a result is valid or invalid
(invalid results include infinity and NaN (not a
number)).

ReservedByTool Y This function is used to check whether download
to the controller is in progress. The method
returns True if download is in progress, else
False.

ResetForcedValue - This function is not used in Compact Control
Builder.

Round Y The Round function rounds a real value to the
nearest integer.

SetFalse Y The Boolean operator will be set to false.

SetSeed Y The SetSeed function initializes a random
generator using a specific start value.

SetTrue The Boolean operator will be set to true.

SystemDTToLocalDT N Returns the local time for the specified system
time.

Timer Y The Timer function controls a timer.

TimerElapsed Y The TimerElapsed function returns the elapsed
time of a timer as a time value.

TimerElapsedMS Y The TimerElapsedMS function returns the
elapsed time of a timer in milliseconds as a dint
value.

TimerHold Y The TimerHold function stops a timer.

3BSE041488-511

413

System Appendix B Library Objects Overview
Table 46. Other functions
Function TC |Description
TimerReset Y The TimerReset function stops and resets a
timer.
TimerStart Y The TimerStart function starts a timer.
Trunc Y The Trunc function truncates a real value to an
integer.
WriteVar N Enables a system to write to a variable in a

controller, or to transfer variables between
controllers, without owning the variable.

414

3BSE041488-511

Appendix B Library Objects Overview System
Array and Queue Functions
Table 47. Array and queue functions
Function TC |Description
Arrays

CreateArray N Creates an array of elements of the same
type as ArrayElement.

DeleteArray N Deletes the array Array and deletes the
whole tree structure of arrays.

GetArray N Gets the contents of the data type at
position Index in the array Array into
ArrayElement.

InsertArray N Inserts a new element in an array. All
successive elements are moved one step,
and the last element is overwritten.

PutArray N Puts the contents of ArrayElement into the
data type at position Index in the array.

SearchArray N Searches the array ArrayName for a certain
component in an array element.

SearchStructComponent |N A boolean function which searches for a
specific part in a structured component.

Queues

ClearQueue This procedure clears the queue Queue.

CreateQueue Creates a queue of elements of the same
type as QueueElement.

CurrentQueueSize N This integer function returns the current
number of elements in the queue.

DeleteQueue N This procedure deletes the queue.

3BSE041488-511 415

System Appendix B Library Objects Overview

Table 47. Array and queue functions (Continued)

Function TC |Description

GetFirstQueue N Puts the contents of the first element from
the queue into QueueElement.

GetLastQueue N Puts the contents of the last element from
the queue into QueueElement.

PutFirstQueue N Puts the contents of QueueElement into the
first element of the queue.

PutLastQueue N Puts the contents of QueueElement into the
last record element of the queue.

ReadQueue N Reads the contents of the specified element
number from the queue and puts them into
QueueElement.

Task Control Functions

Table 48. Task control functions

Function TC |Description
FirstScanAfter Y The FirstScanAfterApplicationStart function
ApplicationStart checks if the current scan/execution is the

first one performed by the current task.

FirstScanAfterPowerUp Y The FirstScanAfterPowerUp function
checks if the controller has been warm

started.

GetActuallntervalTime Y Use the GetActuallntervalTime function to
get the actual interval time of the current
task.

GetApplicationSIL - This function is not used in

Compact Control Builder.

GetlntervalTime Y Use the GetlintervalTime function to get the
requested interval time of the current task.

416 3BSE041488-511

Appendix B Library Objects Overview Basic Library

Table 48. Task control functions (Continued)

Function TC |Description

GetPriority Y Use the GetPriority function to obtain the
priority of the current task.

SetintervalTime Y Use the SetIntervalTime function to set the
requested interval time of the current task.

SetPriority N Use the SetPriority function to set the
priority of the current task.

Basic Library

The BasicLib is the basic library for the Control Builder M software. It contains data
types, function block types and control module types with extended functionality
designed by ABB.

IEC 61131-3 Function Block Types

Table 49. IEC 61131-3 function block types

Function Block Type |TC |Description

Standard bistable function block types

SR Y Bistable function block (set dominant)

RS Y Bistable function block (reset dominant)

Standard edge detection function block types
R_TRIG Y Rising edge detector
F_TRIG Y Falling edge detector

Standard counter function block types

CTU Y Up-counter

3BSE041488-511 417

Basic Library Appendix B Library Objects Overview

Table 49. IEC 61131-3 function block types

Function Block Type |TC |Description

CTD Y Down-counter
CTUD Y Up-down counter
Standard timer function blocks type
TP Y Pulse timer
TON Y On-delay timer
TOF Y Off-delay timer
RTC Y The RTC (Real-Time-Clock) function block
performs display and date and time setting.
SEMA Y SEMA, the semaphore function block, is

designed to allow competing tasks to share
a particular resource.

Process Object Function Block Types

Use the ACOF (Automatic Check Of Feedback) functions primarily for supervision
of process objects. ACOF function blocks can monitor up to three output signals and
up to three feedback signals.

Use ACOF when a feedback signal is expected within a certain time after an output
to the process object has been activated or deactivated. If the feedback signal is not
detected, an alarm signal is given.

Table 50. Process object function block types

Function Block Type |TC |Description

ACOFAct Y Object control with two limit switches and
automatic return. This object has one stable
position.

ACOFActDeact Y Object control with two limit switches. This

object has two stable positions.

418 3BSE041488-511

Appendix B Library Objects Overview Basic Library

Table 50. Process object function block types (Continued)

Function Block Type |TC |Description

ACOFAct 3P Y Object control with three limit switches and
automatic return. This object has one stable
position.

ACOFActDeact 3P Y Object control with three limit switches. This

object has three stable positions.

Other Function Block Types

Table 51. Other function block types

Function Block Type |TC |Description

Conversion function block types

BcToDint Y BcToDint converts data from an optional
number of binary coded bool inputs and a
sign input into a dint.

DintToBc Y DintToBc converts data from dint to an
optional number of bool outputs, using
binary coded conversion, and a sign output.

DintToFirstOfN Y DintToFirstOfN converts data from dint to
an optional number of bool outputs using 1-
of-N conversion, and a sign output.

DintToNBcd Y DintToBcd converts from dint to an optional
number of bool (in groups of four coded as
BCD) and a sign output.

FirstOfNToDint Y FirstOfNToDint converts data from 1-of-N
format with an optional number of bool
inputs and a sign input into a dint.

GrayToDint Y GrayToDint converts data from gray code
with an optional number of bool inputs and
a sign input into a dint.

3BSE041488-511 419

Basic Library Appendix B Library Objects Overview

Table 51. Other function block types (Continued)

Function Block Type |TC |Description

IntegerToReallO Y IntegerToReallO converts a raw integer
value to a scaled ReallO value with a
measuring range, units and decimals. It can
be treated as a physical ReallO value in the
application.

NBcdToDint Y NBcdToDint converts data from an optional
number of bool inputs (in groups of four
coded as BCD) and a sign input into a dint.

ReallOTolnteger Y The ReallOTolnteger function block
converts a scaled ReallO value to a raw
integer value.

420 3BSE041488-511

Appendix B Library Objects Overview

Basic Library

Table 51. Other function block types (Continued)

Function Block Type |TC |Description
Diagnostics function block types

PowerFailurelnfos N PowerFailurelnfos provides information on
power failure status, such as number and
duration. In addition, the total number of
power failures since the last reset and the
duration of these can also be presented.

SystemDiagnostics N SystemDiagnostics can be used to

measure and display the following:

1. Stop time and memory usage during a
controller download

2. Current memory in use

3. Maximum memory used since the last
cold start

4. Alarm and Event statistics
5. Ethernet statistics

SystemDiagnosticsSM

This function block is not used in
Compact Control Builder.

System time function block types

GetDT

N

GetDT retrieves the system time from the
controller at which the current task was
started. The function block converts the
system time to local time so that both are
available as parameters.

GetTimeZonelnfo

GetTimeZonelnfo retrieves the currently
used time-zone settings.

3BSE041488-511

421

Basic Library Appendix B Library Objects Overview

Table 51. Other function block types (Continued)

Function Block Type |TC |Description

SetDT N SetDT sets the system time on the
controller. It is possible to set the time
directly as system time or indirectly as local
time and the function block will perform the
conversion to system time. The time can be
set as relative or as absolute time. This
functionality is available through
parameters and an Interaction window. The
Interaction window also shows the current
system time and local time.

SetTimeZonelnfo N SetTimeZonelnfo sets the time-zone
information. StandardDT and DaylightDT
can be specified with the absolute or the
day-in-month format. This functionality is
available through parameters and an
Interaction window.

This function overwrites the time-zone
information downloaded by the ACB.

Timer function block types

TimerD Y TimerD measures the elapsed time in the
negative direction and indicates when a
specified level has been exceeded.

TimerOffHold Y TimerOffHold is an Off-delay timer function
block with a hold input function.

TimerOnHold Y TimerOnHold is an On-delay timer function,
with a hold input function.
TimerOnOffHold Y TimerOnOffHold is an On-delay and Off-

delay timer function block type with a hold
input function.

TimerPulseHold Y TimerPulseHold is a pulse timer with a hold
function.

422 3BSE041488-511

Appendix B Library Objects Overview Basic Library

Table 51. Other function block types (Continued)

Function Block Type |TC |Description

TimerPulseHoldDel Y TimerPulseHoldDel is a pulse timer with a
hold input function and a delayed start to
generate Q output pulses.

TimerU Y TimerU measures the elapsed time in
positive direction and gives indication when
a specified level is past.

Level detector function block types

LevelHigh Y LevelHigh is used to compare a real value
with an optional number of high limits with
the possibility of specifying hysteresis.

A high-level detector is a trip for supervising
an analog signal. A high-level trip indicates
when the input signal exceeds the selected
high-detect level. The detector has
hysteresis on the input signal, which
prevents the level detector output signal
from repeatedly changing state when the
supervised input signal varies near the
detection level.

LevelLow Y LevelLow is used to compare a real value
with an optional number of low limits with
the possibility of specifying hysteresis.

A low-level detector is a trip for supervising
an analog signal. A low-level trip indicates
when the input signal drops below the
preset low-detect level. The detector has a
hysteresis on the input signal, which
prevents the level detector output signal
from repeatedly changing state when the
supervised input signal varies near the
detection level.

3BSE041488-511 423

Basic Library Appendix B Library Objects Overview

Table 51. Other function block types (Continued)

Function Block Type |TC |Description

Threshold Y Threshold is used to determine when more
than, or equal to, a given number of
Boolean values are true.

Calculator function block types

Median Y Median is used to calculate the median
value of an optional number of input values.
The function block supports real and dint:
MedianReal and MedianDint.

MajorityReal Y Used to calculate the mean value of a
number of real numbers.

Selector function block types

DeMux Y DeMux can handle the data types real, dint
and bool: DeMuxReal, DeMuxDint and
DeMuxBool.

Max Y Max is used to select the largest value of an

optional number of inputs. The Max
function block exists for real and dint.
MaxReal and MaxDint.

Min Y Min is used to select the lowest value of an
optional number of inputs. The function
block exists for real and dint. MinReal and
MinDint.

Bistable function block types

RSD Y RSD is used as a memory for bool
variables. Besides the RS function, it can
also override this function with a write
function.

Generator function block types

PulseGenerator Y PulseGenerator is a pulse generator used
to create a continual pulse signal.

424 3BSE041488-511

Appendix B Library Objects Overview

Basic Library

Table 51. Other function block types (Continued)

Function Block Type

TC

Description

PulseGeneratorAcc

PulseGeneratorAcc is a pulse generator
used to create a continual pulse signal with
high long term accuracy.

SinGen

SinGen is used to generate a sinus signal.
The frequency and amplitude are controlled
by inputs.

SqGen

SqGen is used to generate a square wave
with an optional number of amplitudes.
Each amplitude is determined by an input
and for each amplitude the time during
which it is to be maintained is specified.

TimePulses

The pulse generator creates a pulse on the
outputs every hour on the Hour output and
every new day on the Day output,
synchronized to the real-time clock.

There is also a parameter in this

function block, which determines whether
the pulse need to be generated either
based on UTC or based on the local time.

Re

gister

function block types

Fifo

N

Fifo is a queue register of First-In-First-Out
type. Fifo can handle the data types real,
dint and bool: FifoReal, FifoDint and
FifoBool

FifoRW

FifoRW is a queue register of First-In-First-
Out type. In addition, data can be changed
and deleted at any position in the queue.
FifoRW can handle the data types real, dint
and bool: FifoRWReal, FifoRWDint and
FifoRWBool.

3BSE041488-511

425

Basic Library Appendix B Library Objects Overview

Table 51. Other function block types (Continued)

Function Block Type |TC |Description

Register Y Register is used as a memory function
block with an optional number of positions.
The function block exists for data types real,
dint and bool: RegisterReal, RegisterDint
and RegisterBool.

Shift N Shift is used as a shift register of optional
length. The function block exists for data
types real, dint and bool: ShiftReal,
ShiftDint and ShiftBool.

ShiftL Y ShiftL is used as a shift register of optional
length. All positions can be written and
read. The function block exists for data
types real, dint and bool. ShiftLReal,
ShiftLDint and ShiftLBool.

Controller interaction function block types

ErrorHandler - This function block is not used in
Compact Control Builder.

ForcedSignals - This function block is not used in
Compact Control Builder.

SaveColdRetain N This function block copies cold-retain
variables from RAM to backup media. This
is done in order to make the cold-retain
values survive a restart of the controller.
The function block processes all the
applications that are executing in the
controller.

Various function block types

Applicationinfo N Applicationinfo gives information about the
application where it executes in e.g. name
and state.

426 3BSE041488-511

Appendix B Library Objects Overview Basic Library

Table 51. Other function block types (Continued)

Function Block Type |TC |Description

EvalRestartInhibit N EvalRestartInhibit may inhibit restart of
application in evaluation mode.

PrintLines N PrintLines prints text lines on a printer.

Redundantin Y When the system switches from ordinary to

redundant I/O there may be a jump in the
signal which may not be good for the
algorithms used. This function block type
prevents this by ramping the signal using a
real value as the change of the signal per
second.

SampleTime Y SampleTime is a function block to measure
the sampling period and to acquire the
requested sampling period.

Trigger Y Trigger provides a combined time and event
trigger functionality.

Control Module Type

Table 52. Control Module Types

Control Module Type |TC |Description

ErrorHandlerM - This control module is not used in
Compact Control Builder.

ForcedSignalsM - This control module is not used in
Compact Control Builder.

GroupStartObjectConn |N This is the connection module between a
group start sequence and object to be
started or stopped in the sequence.

3BSE041488-511 427

Basic Library Appendix B Library Objects Overview

Table 52. Control Module Types (Continued)

Control Module Type |TC |Description

CClinputGate Y The CClnputGate makes sure that the
ControlConnection specification if fulfilled
on the input otherwise ParError will be true.
This module should be used inside of a
control module together with the
CCOutputGate control module.

CCOutputGate Y The CCOutputGate makes sure that the
ControlConnection specification if fulfilled
on the output otherwise ParError will be
true. This module should be used inside of
a control module together with the
CClnputGate control module.

CClnputGateExtended |N Same as the CClnputGate control module
but with additional functionality. This
module should be used inside of a control
module together with either the
CCOutputGateExtended or CCOutputGate.

428 3BSE041488-511

Appendix B Library Objects Overview

Basic Library

Table 52. Control Module Types (Continued)

Control Module Type

TC

Description

CCOutputGateExtended

N

Same as the CCOutputGate control module
but with additional functionality. This
module should be used inside of a control
module together with either the
CClnputGateExtended or CClnputGate.

CvACKISP

This control module is used to reset the
latched ISP values in communication
variables. One control module instance is
used to reset all such latched values in one
group of communication variables.

The communication variables with latched
functionality are defined in groups. The
CVACKISP control module is used to initiate
the operator reset action. If several such
groups are to be reset simultaneously, the
control module instances for each group
are interconnected in a cascade
configuration. The reset order is distributed
to all members in that kind of configuration.

3BSE041488-511

429

Communication Libraries Appendix B Library Objects Overview

Communication Libraries

The libraries MMSCommLib, ModemCommLib, COMLICommLib,
ModBusCommLib, MB300CommLib, S3964RCommlib, SattBusCommlLib,

Serial CommLib, InsumComLib, FFHSECommLib and FFH1CommlLib contain a
number function block types and control module types that provide external variable
communication with protocols such as MMS, FOUNDATION Fieldbus, SattBus,
COMLL, Siemens 3964R MasterBus 300 and INSUM devices.

There are also function block types for self-defined UDP communication (in
UDPCommlLib), self-defined TCP communication (in TCPCommlib), and modem
connection (in ModemCommlLib).

MMSCommLib

The library MMSCommLib uses the MMS function block types and control
modules to establish communication with a system supporting the MMS protocol.

When transferring variables it is important to use data types with the same range on
the client as on the server. It is, however, possible to connect variables with different
ranges, such as a dint variable on the server and an Int variable on the client. This

will only work as long as the variable values are within the range of the Inf variable.

Table 53. MMS function block types

Function Block Type |TC |Description

MMSConnect N Initiates a communication channel and
establishes a connection with a remote
system.

MMSRead N Reads one or several variables.

MMSReadCyc N Reads one or several variables cyclically.

MMSWrite N Writes to one or several variables.

MMSWriteDT N Transmits date and time.

430

3BSE041488-511

Appendix B Library Objects Overview MMSCommLib

Table 53. MMS function block types (Continued)

Function Block Type |TC |Description

MMSDefAccVar N This function block is used to create an
access variable, which is connected to a
defined variable in the executing system.
The defined variable is then accessible for
both reading and writing from a remote
system and also within its own system.

MMSDef4Bool N Used for safe communication of data
between SIL applications. MMSDef4Bool
operates in a pair with MMSRead4Bool,
and is used to transfer the values of four
different Boolean variables. MMSDef4Bool
is used in the server application, while
MMSRead4Bool is used in the client
application.

MMSDef4BoollO N Used for safe communication of data
between SIL applications. MMSDef4BoollO
operates in a pair with MMSRead4BoollO,
and is used to transfer the values of four
different Boolean IO variables.
MMSDef4BoollO is used in the server
application, while MMSRead4BoollO is
used in the client application.

MMSDef4Dint N Used for safe communication of data
between SIL applications. MMSDef4Dint
operates in a pair with MMSRead4Dint, and
is used to transfer the values of four
different Double Integer variables.
MMSDef4Dint is used in the server
application, while MMSRead4Dint is used
in the client application.

3BSE041488-511 431

MMSCommLib

Appendix B Library Objects Overview

Table 53. MMS function block types (Continued)

Function Block Type

TC

Description

MMSDef4DintlO

Used for safe communication of data
between SIL applications. MMSDef4DintlO
operates in a pair with MMSRead4DintlO,
and is used to transfer the values of four
different Double Integer 10 variables.
MMSDef4DintlO is used in the server
application, while MMSRead4DintlO is
used in the client application.

MMSDef4Real

Used for safe communication of data
between SIL applications. MMSDef4Real
operates in a pair with MMSRead4Real,
and is used to transfer the values of four
different Real variables. MMSDef4Real is
used in the server application, while
MMSRead4Real is used in the client
application.

MMSDef4ReallO

Used for safe communication of data
between SIL applications. MMSDef4ReallO
operates in a pair with MMSRead4ReallO,
and is used to transfer the values of four
different Real 10 variables.
MMSDef4ReallO is used in the server
application, while MMSRead4ReallO is
used in the client application.

MMSRead4Bool

Forms a pair for safe communication of
data between SIL applications, together
with MMSDef4Bool. See the above
description of MMSDef4Bool.

MMSRead4BoollO

Forms a pair for communication of data
between applications, together with
MMSDef4BoollO. See the above
description of MMSDef4BoollO.

432

3BSE041488-511

Appendix B Library Objects Overview

MMSCommLib

Table 53. MMS function block types (Continued)

Function Block Type

TC

Description

MMSRead4Dint

Forms a pair for safe communication of
data between SIL applications, together
with MMSDef4Dint. See the above
description of MMSDef4Dint.

MMSRead4DintlO

Forms a pair for communication of data
between applications, together with
MMSDef4DintlO. See the above description
of MMSDef4DintlO.

MMSRead4Real

Forms a pair for safe communication of
data between SIL applications, together
with MMSDef4Real. See the above
description of MMSDef4Real.

MMSRead4ReallO

Forms a pair for communication of data
between applications, together with
MMSDef4ReallO. See the above
description of MMSDef4ReallO.

Table 54. MMS control module types

Control Module Type |TC |Description

MMSToCC N The communication protocol is MMS. The
forward and the backward structure of
ControlConnection is handled separately in
MMS variable groups.

CCToMMS N CCToMMS is used together with

MMSToCC. The communication protocol is
MMS. The forward and the backward
structures of ControlConnection are
handled separately in MMS variable
groups.

3BSE041488-511

433

ModemCommLib Appendix B Library Objects Overview

Table 54. MMS control module types (Continued)

Control Module Type |TC |Description

MMSRead16BoolM N Reads 16 Bool variables from a remote
controller.

MMSRead64BoolM N Reads 64 Bool variables from a remote
controller.

MMSRead128BoolM N Reads 128 Bool variables from a remote
controller.

MMSReadHI N Reads variables from a remote system or
from an application within the same system.
The result of the read operation is put in the
Any Type parameters Out1 and Out2.

MMSDefHI N Defines the variables connected to the Any
Type parameters In1 and In2 as access
variables available for remote access.

ModemCommLib

The library ModemCommLib library contains function block types used to establish
communication with a modem.

Table 55. Modem function blocks

Function Block Type |TC |Description

ModemConnStat N ModemConnStat is used to obtain the
current status of a modem connected to a
selected channel. The current status is
given by the Status parameter.

434 3BSE041488-511

Appendix B Library Objects Overview ModemCommLib

Table 55. Modem function blocks

Function Block Type |TC |Description

ModemDialUp N ModemDialUp is used to connect a modem
via a defined communication channel.

ModemHangUp N ModemHangUp is used to disconnect a
modem via a defined communication
channel.

3BSE041488-511 435

COMLICommLib

Appendix B Library Objects Overview

COMLICommLib

The library COMLICommLib contains the function block types to establish
communication with a system supporting the COMLI protocol.

Function block types with the COMLI prefix support both the address-oriented
COMLI and SattBus protocols. When a SattBus channel is used, the COMLI are
packed within SattBus. The protocol to be used (COMLI or SattBus) is defined by
the Channel parameter of the COMLIConnect function block.

Communication via a TCP/IP network is also supported.

Table 56. COMLI function block types

Function Block Type |TC |Description

COMLIConnect N Connects to a defined communication
channel.

COMLIRead Reads one or several variables.

COMLIReadCyc N Reads variable data cyclically.

COMLIReadPhys N Requests physical values from a

SattConXX system.

COMLIWrite

Writes to one or several variables.

COMLIWFriteDT

Transmits date and time of master to the
slave.

436

3BSE041488-511

Appendix B Library Objects Overview

ModBusCommLib

ModBusCommLib

The library ModBusCommLib contains the function block types to establish

communication with a system supporting the MODBUS protocol.

Table 57. MODBUS functions

Function Block Type |TC |Description

MBConnect N Initiates a communication channel and
establishes a connection with a remote
system.

MBRead Reads one or several variables.

MBWrite Writes to one or several variables.

MBException Reads the ModBus exception coils.

MTMCommLib

The MOD5-to-MODS5 Communication Library, MTMCommLib, contains Function

Block types to establish communication with a system supporting the

MODS5-to-MODS protocol.

Table 58. MOD) function blocks

Function Block Type

TC

Description

MTMConnect

N

Initiates a communication channel and
prepares for a logical connection for
communication with MOD5 controller.

MTMReadCyc

Is used to request named variables
cyclically. This is done by activation of
the Enable parameter.

3BSE041488-511

437

MB300CommLib Appendix B Library Objects Overview

Table 58. MOD?S function blocks (Continued)

Function Block Type TC Description

MTMDefCyc N Is used to transfer the named variable
data cyclically to the CI872 to be
available for reading from a MOD5
controller.

MTMDefERCyc N Is used to transfer the named variable
data cyclically to the CI872 to be
available for reading from a MOD5
controller.

It creates Access Variables internally. It

is recommended to be used in
application for PA controller only

MB300CommLib

The library MB300CommL.ib contains objects that can be used for set up
communication with MasterBus 300 (MB300). MB300 can be used with AC 400
and AC 800M. A CI855 communication unit for AC 800M provides connectivity to
AC 400 via MB300. Refer to the relevant manuals regarding the process interface
that can be used with legacy controller AC 400.

Table 59. MB300 function block types

Function Block Type |TC |Description

MB300Connect N MB300Connect is used to establish
connection between the calling
communication partner and the remote
communication partner.

MB300DSSend N The MB300Send function block is used to
send a DataSet to a node on MB300.

MB300DSReceive N The MB300Receive function block is used
for reception of a DataSet sent by a node
on MB300.

438 3BSE041488-511

Appendix B Library Objects Overview ModBusTCPCommLib

ModBusTCPCommLib

The ModBusTCPCommlLib contains Function Blocks types to establish
communication with a system supporting the MODBUS TCP protocol.

Table 60. MODBUS TCP function block types

Function Block Type TC Comment

MBTCPConnect N Initiates a communication channel and
prepares for a connection

MBTCPRead N Is used to request variable data. This is done
by activation of the Req parameter

MBTCPReadCyc N This function block is used to cyclically request
variable data. This is done by activation of the
Enable parameter.

MBTCPReadFileRecord |N Is used to read the File Records (supports
FC20 Function Code). Used to Read time
stamp Events from Switchgear Device
supporting Modbus protocol.

MBTCPException N Reads the status of the exception coils
MBTCPWrite N Is used to send variable data. This is done by
activation of the Req parameter
MBTCPWriteFile N Is used to write the File Records(supports
Record FC21 Function Code). Used to Write time

stamp Events to Switchgear Device supporting
Modbus protocol.

MBTCPReadWrite N Used to write to registers and read from
registers (supports FC23 Function Code) in
remote devices using MODBUS TCP, in a
single MBTCP transaction.

3BSE041488-511 439

S3964RCommLib Appendix B Library Objects Overview

S3964RCommLib

The library S3964RCommlib contains the function block types to establish
communication with a system supporting the Siemens 3964R protocol.

Table 61. Siemens 3964R function block types

Function Block Type |TC |Description

S3964RConnect N Connects to a defined communication
channel.

S3964RRead N Reads one or several variables.

S3964RReadCyc N Reads variable data cyclically.

S3964RWrite N Writes to one or several variables.

SattBusCommLib

The library SattBusCommlib contains the function block types supporting SattBus.
They are used to communicate through a SattBus channel using the SattBus name-
oriented model. To communicate through a SattBus channel using the address-
oriented model, COMLI function block types are used. Communication via a
TCP/IP network is also supported.

Table 62. SattBus function block types

Function Block Type |TC |Description

SBConnect N Connects to a defined communication
channel.

SBRead N Reads one variable value.

SBReadCyc N Reads variable data cyclically.

SBWrite N Writes one variable value.

440 3BSE041488-511

Appendix B Library Objects Overview SattBusCommLib

Table 62. SattBus function block types (Continued)

Function Block Type |TC |Description

ComliSB These following (ComliSB) Function Blocks
ONLY support communication over a
TCP/IP network, thus cannot work when
running on a physical COMLI- port.

ComliSBConnect N Use the ComliSBConnect function block
type to initiate a communication channel
and establish a connection to a slave
system with a unique node/slave address
on a TCP/IP network.

ComliSBRead N The ComliSBRead function block supports
the address- oriented transfer model.

Use it to request variable data from a
remote system on a TCP/IP network.

ComliSBReadCyc N The ComliSBReadCyc function block
supports the address-oriented transfer
model.

Use it to cyclically read one or several
variables from a slave system on a TCP/IP
network.

ComliSBReadPhys N Use the ComliSBReadPhys function block
to request physical measuring ranges

(that is, scaling factors) of registers or
analog signals from a slave system on a
TCP/IP network.

3BSE041488-511 441

SerialCommLib Appendix B Library Objects Overview

Table 62. SattBus function block types (Continued)

Function Block Type |TC |Description

ComliSBWrite N The ComliSBWrite function block supports
the address-oriented transfer model.

Use it to write to one or several variables in
a slave system on a TCP/IP network.

ComliSBWriteDT N Use the COMLIWFriteDT function block to
transmit date and time from the local
system to a remote SattCon system on a
TCP/IP network. (Or a system supporting
COMLI) and to update the system time.
The function block uses the local time.

SerialCommLib

The library SerialCommLib library contains function block types for
communication with external devices via serial channels with user-defined
protocols; for example, printers, terminals, scanner pens, etc.

Table 63. Serial channel function block types

Function Block Type |TC |Description

SerialConnect N Opens and closes a defined serial
communication channel.

SerialSetup N Changes serial communication settings.
SerialWriteWait N Writes a string and waits for a reply.
SerialListenReply N Listens for a string and sends a reply.
SerialWrite N Writes a string.

SerialListen N Listens for a string.

442 3BSE041488-511

Appendix B Library Objects Overview

INSUMCommLib

INSUMCommLib

The InsumCommLib library contains function block types for communication with
INSUM devices. INSUM (Integrated System for User-optimized Motor control) is a
system for protection and control of motors and switch gear. The communication

interface CI857 provides communication for the AC 800M controller with the
INSUM system via TCP/IP.

Table 64 describes the function block types present in INSUMCommLib.

Table 64. INSUM function block types

Function Block Type

TC

Description

INSUMConnect

The INSUMConnect function block
establishes a connection to a concerned
INSUM Gateway. This connection can be
used as a base for other INSUM specific
IEC 61131-5 function blocks to access the
proper INSUM data.

The connection can be established
between the calling communication partner
and the remote communication partner.
The ‘Id’ output of INSUMConnect provides
the communication channel description,
which can be used as the ‘Id” input to other
communication function blocks.

INSUMConnect also gives a status
information about the connected gateway,
for supervision.

3BSE041488-511

443

UDPCommLib Appendix B Library Objects Overview

Table 64. INSUM function block types (Continued)

Function Block Type |TC |Description

INSUMReceive N The INSUMReceive function block is used
to read a point out variable of a specified
type in an INSUM device. There are two
parameters that point out the data to be
read.

The DevicePos parameter specifies the
position of the INSUM Device in the HW
tree below the INSUM Gateway. The value
of this parameter ranges from 101 to 432.

The NVIndex parameter is the index of the
Network Variable.

These parameter Ids must be connected to
the Id parameter of INSUMConnect.

INSUMWrite N The INSUMWrite function block writes data
from an IEC 61131 variable to a network
variable in an INSUM device.

For example, INSUMWrite writes an MCU
data that is triggered from an OperatelT,
which is used for sending command
(Start/Stop/Reset) and handling Pass
Control Access.

UDPCommlLib

The UDP Communication Library (UDPCommL.ib) contains function block types
that are used for self-defined UDP communication. These function blocks are used
when the controller needs to communicate with external equipment. The used
protocol is UDP, running on Ethernet.

444 3BSE041488-511

Appendix B Library Objects Overview

TCPCommLib

Table 65. UDP function block types

Function Block Type

TC

Description

UDPConnect

This function block is used to open and
close a self-defined UDP communication
channel. It allocates a local UDP port (in
parameter) when enabled. The port is also
opened in the controller's firewall.

The UDPConnect is the first function block
in the chain when implementing a self-
defined UDP communication.

UDPWrite

The UDPWrite function block writes a
structure of dints or dwords to a receiving
device. It is used to write/send a UDP
datagram on the network.

The UDPWrite must be combined with the
UDPConnect in order to send UDP
messages on the network.

UDPRead

The UDPRead function block reads a struct
of dints or dwords from a sending device. It
is used to read/receive a UDP datagram
from the network.

The UDPRead must be combined with the
UDPConnect in order to recieve UDP
messages from the network.

TCPCommLib

The TCP Communication Library (TCPCommLib) contains function block types
that are used for self-defined TCP communication. These function blocks are used

when the controller needs to communicate with external equipment. The used

protocol is TCP, running on Ethernet.

3BSE041488-511

445

TCPCommLib Appendix B Library Objects Overview

Table 66. TCP function block types

Function Block Type |TC |Description

TCPClientConnect N The TCPClientConnect function block is
used to open and close a TCP connection
to a remote TCP server. The server's port is
also opened in the controller's firewall. The
local port used will be automatically chosen
by the controller.

The TCPClientConnect is the first function
block in the chain when implementing self-
defined TCP client for communication with
a remote TCP server.

TCPServerConnect N The TCPServerConnect function block is
used to let the controller become a TCP
server waiting for connection requests
initiated by other TCP clients on the
network. It allocates a local TCP port (in
parameter) when enabled. The port is also
opened in the controller's firewall.

The TCPServerConnect is the first function
block in the chain when implementing self-
defined TCP server for communication with
one or upto ten remote TCP clients.

TCPWrite N The TCPWrite function block writes a
structure of dints or dwords to a receiving
device. It is used to write/send a TCP
message on the network. The writing is
acknowledged by the remote node.

The TCPWrite must be combined with the
TCPClientConnect or TCPServerConnect
in order to send TCP messages on the
network.

446 3BSE041488-511

Appendix B Library Objects Overview

TCPCommLib

Table 66. TCP function block types (Continued)

Function Block Type

TC

Description

TCPRead

The TCPRead function block reads a struct
of dints or dwords from a sending device. It
is used to read/receive TCP messages
from the network.

The TCPRead must be combined with the
TCPClientConnect or the
TCPServerConnect in order to recieve TCP
messages from the network.

3BSE041488-511

447

Alarm and Event Library Appendix B Library Objects Overview

Alarm and Event Library

The library AlarmEventLib contains function block types and control module types
for alarm and event handling, which include detection and notification. Alarm state
handling and alarm acknowledgement are also included.

An alarm data model based on OPC Alarms and Events is used.

448

3BSE041488-511

Appendix B Library Objects Overview

Alarm and Event Library

Table 67. Function block types in AlarmEventLib

Function Block Type

TC

Description

AlarmCondBasic

This function block should be used to
monitor a boolean signal for which changes
need to be acknowledged to ensure that
attention is paid to a problem. The function
block support only internal conditions and it
is not possible to invert the signal.

AlarmCond

Defines an alarm condition that follows a
condition state diagram.

It monitors the changes in an input
parameter (boolean type) to detect an
abnormal condition. Other inputs include
acknowledge, disable and enable. A
condition state output parameter presents
the state of the alarm. The parameter
AckRule (integer) defines the properties for
acknowledgement handling. The source
name SrcName identifies the name of the
object in which the alarm occurred. Class
and Severity are inputs that can be used to
categorize the event that occurs when the
alarm changes state.

It is possible to monitor a signal on an 1/0
device which reads the time stamp of the
I/0O changes on the device.

TransitionTime determines the time of the
event occurrence when the signal changes.
If the value is equal to the default value (the
time), then it is read inside this FB.

AttachSystemAlarm

Makes it possible to present the current
condition state of a specified system alarm.

3BSE041488-511

449

Alarm and Event Library Appendix B Library Objects Overview

Table 67. Function block types in AlarmEventLib (Continued)

Function Block Type |TC |Description

PrintAlarms N Prints alarm conditions.

On request, this function block prints a list
of the alarms currently defined in the con-
trol system where the block executes.

The printer should be connected directly to
a serial port, on the control system,
corresponding to the Channel parameter,
and should support the 8-bit character set.

PrintEvents N Prints events continuously.

This function block prints both simple
events and condition-related events to a
printer connected locally to the control
system. This means that as soon as an
AlarmCond changes state (for example,
from inactive to active) this information can
be sent to the printer. However, only events
generated in the system to which the printer
is connected can be printed.

The printer should be connected to the port
corresponding to the Channel parameter,
and should support the 8-bit character set.

450 3BSE041488-511

Appendix B Library Objects Overview Alarm and Event Library

Table 67. Function block types in AlarmEventLib (Continued)

Function Block Type |TC |Description

SimpleEventDetector Y Generates a simple event on a Boolean
type condition.

This function block supervises a Boolean
type signal. When the signal changes
value, a simple event is generated. You can
use this function block to detect, for
example, the start and stop of process
objects. There is no acknowledgement
handling; otherwise the function block
resembles AlarmCond.

Severity and Class are inputs that can be
used for sorting the events.

It is possible to monitor a signal on an 1/O
device which reads the time stamp of the
I/0 changes on the device.

DataToSimpleEvent N This function block type generates a simple
event with additional data that is user-
defined. It is possible to subscribe to simple
events using OPC Alarm and Event. You
can also print out the simple events on a
locally connected printer, but the user-
defined data is not printed out.

If the function block is used in a Batch
object, its recipe parameters can be logged
together with user-defined data.

SystemAlarmCond Y Internal monitored Signal.

3BSE041488-511 451

Alarm and Event Library Appendix B Library Objects Overview

Table 67. Function block types in AlarmEventLib (Continued)

Function Block Type |TC |Description

ProcessObjectAE Y This function block generates alarm or
events depending on the input parameter
AEConfig. It has two condition inputs that
generates alarms or event on the egdes of
the condition signals. This function block is
called from inside the template objects of
ProcessObjBasicLib and
ProcessObjExtLib.

SignalAE Y This function block is used along with
AlarmCond and SimpleEventDetector
objects to handle alarm and event.

Table 68. Control module types in AlarmEventLib

Control Module Type |TC |Description

AlarmCondBasicM Y Defines an alarm condition and detects
condition state changes.
AlarmCondBasicM has reduced
functionality compared to AlarmCondM. In
return, it consumes less memory.

This is the control module equivalent of the
function block type AlarmCondBasic,
described above.

AlarmCondM Y Defines an alarm condition that follows a
condition state diagram.

This is the control module equivalent of the
function block type AlarmCond, described
above.

TransitionTime determines the time of the
event occurrence when the signal changes.
If the value is equal to the default value (the
time), then it is read inside this CM.

452 3BSE041488-511

Appendix B Library Objects Overview Control Libraries

Control Libraries

The libraries ControlBasicLib, ControlSimpleLib, ControlStandardLib,
ControlObjectLib, ControlExtendedLib, ControlAdvancedLib and ControlFuzzyLib
contain predefined function block types and control module types. The library

ControlSupportLib contains invisible objects and is used by the objects in other
Control libraries.

ControlBasicLib

The library ControlBasicLib contains predefined function block types. These are
complete working modules that can be used as-is. Therefore, you should not use
these modules to create new ones. The PID functions have feedforward, Tracking,

3-position output and Autotuner control functions. Function blocks have been used
to construct this library.

3BSE041488-511 453

ControlBasicLib Appendix B Library Objects Overview

PID type Function Blocks

Table 69. PID type function blocks

Function Block Type |TC |Description

PidLoop N This function block type defines a simple
control loop with a PID controller and a
filter. The function block is to be connected
directly to I/O via structured variables of the
predefined data type ReallO.

The PID controller of the control loop has
feedforward and Tracking functions and an
Autotuner. The Autotuner calculates the
controller gain, integration time and
derivation time based on a simple relay
experiment.

The PID controller has integrator wind-up
prevention and bumpless transfer between
modes. It also has built-in deviation alarm
limits.

PidLoop3P Y This function block type defines a simple
control loop with a three-position controller.
It is identical to PidLoop except that the
analog output has been replaced by two
binary outputs, to increase or decrease the
actuator position, or to keep it constant.

454 3BSE041488-511

Appendix B Library Objects Overview ControlBasicLib

Table 69. PID type function blocks (Continued)

Function Block Type |TC |Description

PidCascadelLoop N This function block type defines a cascade
control loop with two PID controllers. The
function block is to be connected directly to
I/O via structured variables of the
predefined data type ReallO.

The PID controller is identical to that in
PidLoop. The integrator wind-up prevention
is extended to also prevent wind-up in the
master controller when the output of the
slave controller is limited.

PidCascadelLoop3P Y This function block type defines a cascade
control loop with a three-position controller
as a slave controller. It is identical to
PidCascadelLoop except that the analog
output from the slave controller has been
replaced by two binary outputs, to increase
or decrease the actuator position, or to
keep it constant.

3BSE041488-511 455

ControlSimpleLib Appendix B Library Objects Overview

ControlSimpleLib

The library ControlSimpleLib contains a number of function blocks that are
intended to be used for designing simple control loops. All function blocks in this
library can be used in time-critical tasks.

Table 70. Simple Control function blocks

Function Block Type |TC |Description

PidSimpleReal Y This function block is a simple PID
controller with less functionality than the
PidLoop function blocks and the PidCC
module. PidSimpleReal is, however, less
time and memory consuming. This
controller supports backtracking, tracking,
manual control and output limiting. All
transitions from limiting, tracking and
manual mode are bumpless. Interactive
graphics facilitate set-up and maintenance
of the controller.

LeadlLagReal Y This function block is used either as a Lead
or Lag function; that is, as a derivative or
integrating limiter. The actual function
(Lead/Lag) is determined by the relation
between the two input time constants,
LeadT and LagT. The function block can be
forced to track an external signal. Transition
from tracking is bumpless.

FilterReal Y This function block is a single-pole, low-
pass filter. The functionality obtained is
mainly the same as with the control module
FilterCC. The output can be forced to track
an external signal. Transition from tracking
is bumpless. This function block can be
used in a time-critical task.

456 3BSE041488-511

Appendix B Library Objects Overview ControlSimpleLib

Table 70. Simple Control function blocks (Continued)

Function Block Type |TC |Description

Filter2PReal Y This function block is a low-pass filter with
one zero and two complex poles. The
output can be forced to track an external
signal. Transition from tracking is bumpless.

PiecewiselLinearReal Y This function block is a look-up table with a
number of predefined input-output pairs.
Values between these pairs are calculated
by linear interpolation. The function block
can be used to define a non-linear function
y = f(x). The maximum number of data
points is 21 and an Interaction window
facilitates data input. The only restriction on
the data points is that the x-values must be
increasing. It is also possible to calculate
the pseudo-inverse of the defined function
for a given input, Ininverse. The
functionality of this function block is the
same as that of the Control module
PiecewiseLinearCC.

PiecewiseLinear2DReal | N This function block is an extension of the
PiecewiseLinearReal function block. It
accepts two inputs, which means that a
non-linear surface, z = f(x,y) can be
specified. The restriction on the x-, and the
y-values is that they must be increasing. A
maximum of 21 x-values and 11 y-values
can be specified; that is, as 231 data points.
An Interaction window can be used to edit
the data.

VelocityLimiterReal Y This function block is a ramp function used
to limit the velocity of the change of a
signal. The output can be forced to track an
external signal. Transition from tracking is
bumpless.

3BSE041488-511 457

ControlSimpleLib Appendix B Library Objects Overview

Table 70. Simple Control function blocks (Continued)

Function Block Type |TC |Description

AccelerationLimReal Y This function block is a ramp function used
to limit the velocity of the change of a
signal. The output can be forced to track an
external signal. Transition from tracking is
bumpless. It limits both the velocity and
acceleration.

IntegratorReal Y This function block is a regular integrator
with the same functionality as the control
module IntegratorCC. The output is limited
and may be forced to track an external
signal. All transitions from tracking and
limiting are bumpless.

DerivativeReal Y This function block is a combined first-order
low-pass filter and a differentiator. The filter
is used to smooth the derivative action. The
functionality is similar to the existing control
module DerivativeCC. The output may be
forced to track an external signal. Transition
from tracking is bumpless.

ThreePosReal Y This function block is a three-position
converter from a real input to two Boolean
outputs (increase/decrease). It can be used
with or without feedback from the actuator.
It is similar to the existing control module
ThreePosCC.

458 3BSE041488-511

Appendix B Library Objects Overview ControlStandardLib

ControlStandardLib

The library ControlStandardLib contains control module types that can be used
when designing your own standard control loops. They are used for continuous
control; for example, PID loops. They can be used for stand-alone or cascade
control in master/slave configurations. The PID functions have Feedforward,
Tracking, Backtracking, Three-position output, Hand/Auto and Autotuner control
functions. Control modules have been used to create this library, and they have
associated engineering and operator graphics.

The control modules can be connected to other control modules in
ControlExtendedLib, ControlAdvancedLib, or ControlFuzzyLib, in order to
construct more advanced control loops. The control modules are connected using
graphical connections. Information is sent forwards as well as backwards in the
control loop. The automatic code sorting is used to obtain good performance related
to bumpless transfer and integrator wind-up in the entire control loop.

3BSE041488-511 459

ControlStandardLib Appendix B Library Objects Overview

PID Control Modules

Table 71. PID control modules

Control Module Type |TC |Description

PidCC N This is a standard PID controller. It has all
the functions of the PID controllers of the
function blocks described above. But since
it is a control module, it can be connected
to other control modules in order to create
more advanced control loops than those
that can be obtained with the function
blocks described above.See

Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

PidSimpleCC Y This control module is a low-functionality
PID-controller compared to the already-
existing PID modules, PidCC and
PidAdvancedCC. The PidSimpleCC
module, however, consumes less time and
memory. Interactive graphics facilitate set-
up and maintenance of the controller. The
main inputs and the output are of
ControlConnection type, which means that
backtracking and limiting are handled
automatically.

460 3BSE041488-511

Appendix B Library Objects Overview ControlStandardLib

Process I/0 Control Modules

Most of the process I/O modules used for continuous control operate with the data
type Control Connection (“CC”).

Table 72. Process I/O control modules

Control Module Type |TC |Description

AnalogInCC Y Analog Input
AnalogOutCC N Analog Output
ThreePosCC Y This control module is used as the end of a

three-point control loop with digital outputs.
The control module input is an analog
signal that is compared with a feedback
signal from the valve position, or is
generated internally.

PulseWidthCC N This control module is used as the
graphical end of a control loop with pulse-
modulated digital output. The control
module input is an analog signal that
generates the duty cycle of the output
signal. The cycle time is defined via the
parameter interface.

3BSE041488-511 461

ControlStandardLib Appendix B Library Objects Overview

Manual Control Modules

Table 73. Manual control modules

Control Module Type |TC |Description

ManualAutoCC N With this control module it is possible to
enter values into a control loop manually,
and supervise the control values
graphically in histograms. See

Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

Conversion Control Modules

Table 74. Conversion control modules

Control Module Type |TC |Description

RealToCC Y This control module is designed to collect
each component to form a data type
ControlConnection.

462 3BSE041488-511

Appendix B Library Objects Overview ControlStandardLib

Table 74. Conversion control modules (Continued)

Control Module Type |TC |Description

CCToReal Y This control module functions as an adapter
from a signal of data type
ControlConnection. It divides the
ControlConnection into its components to
give a signal of data type real.

CCTolnteger Y This control module functions as an adapter
from a signal of data type
ControlConnection. It divides up
ControlConnection into its components, to
give a signal of data type integer.

The real value of the parameter In is
converted to the integer parameter Out. At
conversion the hysteresis specified by the
parameter Hysteresis is used.

3BSE041488-511 463

ControlStandardLib Appendix B Library Objects Overview

Branch Control Modules

Table 75. Branch control modules

Control Module Type |TC |Description

BranchCC Y This control module divides the control loop
connection structure into two equal
branches.

Branch4CC Y This control module divides the control loop
connection structure into four equal
branches.

SplitRangeCC Y This control module divides the control loop
connection structure into two branches in
relation to their ranges.

MidRangeCC Y This control module is a ControlConnection
with two branches, one fast and one slower
branch. The fast branch acts more equal to
changes in the signal, and then it is forced
to work around the mid-point of its
operating range, as the slower branch takes
over control. This control module can be
used in cases where, for example, two
valves are acting on the same flow. One of
the valves is a smaller, but faster valve,
used to control small disturbances in the
flow. The other valve is a larger valve that
cannot work quickly, but has a wider
operating range.

CommonRangeCC Y This control module divides the control loop
connection structure into two branches with
a specified ratio between the signal levels.

464 3BSE041488-511

Appendix B Library Objects Overview

ControlStandardLib

Table 75. Branch control modules (Continued)

Control Module Type |TC |Description

TapCC Y This control module divides the control loop
connection structure into two branches, one
in which backtracking is possible, and the
other in which it is not.

TapRealCC Y This control module extracts the value

component from the control loop
connection structure to produce a real
value.

3BSE041488-511

465

ControlStandardLib Appendix B Library Objects Overview

Supervisory Control Modules

Table 76. Supervisory control modules

Control Module Type |TC |Description

Level2CC N This control module type is for level
detection and alarm purposes and has two
detection levels, H (High), and L (Low).
Supervision may be absolute or relative to a
reference signal. See

Table 41 on page 378.

This object is a member of the voting logic

concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

Leveld4CC N This control module type is for level
detection and alarm purposes and has four
detection levels, H (High), HH, and L (Low),
LL,. Supervision may be absolute or
relative to a reference signal.See

Table 41 on page 378.

This object is a member of the voting logic
concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

466 3BSE041488-511

Appendix B Library Objects Overview

ControlStandardLib

Table 76. Supervisory control modules (Continued)

Control Module Type

TC

Description

Level6CC

This control module is used for level
detection purposes. It has six detection
levels (LLL, LL, L, H, HH, HHH). L = Low, H
= High

See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

SignalSupervisionCC

This control module is used to manage
erroneous signal status collected from the
transmitters or from the interface system.
Three different modes are available: allow
the signal to pass through without any
interference, freeze the output, or switch
over linearly to a predetermined value. The
latter two cause an alarm condition to be
sent, if configured. See

Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

3BSE041488-511

467

ControlStandardLib Appendix B Library Objects Overview

Selector Control Modules

Table 77. Selector control modules

Control Module Type |TC |Description

SelectorCC Y This control module selects one of two
inputs of data type ControlConnection.
Selection is made based on a Boolean
signal. See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

Selector4CC Y This control module selects one out of four
inputs of data type ControlConnection.
Selection is based on an integer signal.
See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

SelectGoodCC Y The first detected valid signal of type
ControlConnection is selected. If no valid
signal is detected, Outis a copy of In1
structure.

SelectGood4CC Y The first detected valid signal of type
ControlConnection is selected. If no valid
signal is detected, Out is a copy of In1
structure.

MaxCC Y The control module MaxCC computes the
larger (maximum) value of two input signals
of data type ControlConnection and writes
it to the output signal.

468 3BSE041488-511

Appendix B Library Objects Overview ControlStandardLib

Table 77. Selector control modules (Continued)

Control Module Type |TC |Description

Max4CC Y The control module Max4CC computes the
largest (maximum) value of four input
signals of data type ControlConnection and
writes it to the output signal.

MinCC Y The control module MinCC computes the
smaller (minimum) value of two input
signals of data type ControlConnection and
writes it to the output signal.

Min4CC Y The control module MindCC computes the
smallest (minimum) value of four input
signals of data type ControlConnection and
writes it to the output signal.

3BSE041488-511 469

ControlStandardLib Appendix B Library Objects Overview

Limiter Control Modules

Table 78. Limiter control modules

Control Module Type |TC |Description

LimiterCC Y LimiterCC limits the signal so that it does
not increase above the upper limit, or
decrease below the lower limit.

LimiterHighCC Y LimiterHighCC limits the signal so that it
does not increase above the upper limit.

LimiterLowCC Y LimiterLowCC limits the signal so that it
does not decrease below the lower limit.

VelocityLimiterCC N VelocityLimiterCC limits the velocity of the
signal. It can be used, for example, to
create a linear movement function between
a starting point and a target. This will slow
down changes in the output signal to avoid
rapid steps.

AccelerationLimCC Y AccelerationLimCC limits the velocity of the
signal. It can be used, for example, to
create a linear movement function between
a starting point and a target. This will slow
down changes in the output signal to avoid
rapid steps. It limits both the velocity and
acceleration.

470 3BSE041488-511

Appendix B Library Objects Overview ControlObjectLib

ControlObjectLib

The Control Object Library (ControlObjectLib) provides function blocks and
control modules.

All the control modules inside the ControlObjectLib work as templates. The control
modules (Mimo22CC, Mimo41CC, and Mimo44CC) handle multiple inputs and
multiple outputs in both forward and backward communication direction.

Control Object Function Blocks

Table 79. Control Object Function Blocks

Function Block Type TC |Description

AddRangeWithGain Y This function is used when the user wishes
to calculate the output-range if the inputs
added are affected by gains, i.e.

Out = a*In1 + b*In2, in this case the Out-
Range is:

OutMax = a*In1Max + b*In2Max and
OutMin = a*In1Min + b*In2Min

AssignBTInputs2 Y This function checks if the input is
backtracking or not recursively.

AssignBTlInputs4 Y This function block assigns which input is
backtracking.

CalcBackValue Y The Relative value of the backtracked value

is passed to this function block to calculate
the backward value of the input. If the input
is used for backtracking then InUsedForBT
is set to 'true'.

LevelHL Y Produces a warning if Output reaches a
certain High or Low value.

3BSE041488-511 471

ControlObjectLib Appendix B Library Objects Overview

Table 79. Control Object Function Blocks (Continued)

Function Block Type TC |Description

Out21BackwardFunction Y For every user defined function block in the
forward direction a corresponding function
block in the backward direction is needed.

In this case Out21BackwardFunction is the
corresponding function block for
Out21Function.

Out21Function Y This is an example of a user defined
function. In this example the function is
linear.

Out1 :=a1*In1 + b1*In2

Out41BackwardFunction Y For every user defined function block in the
forward direction a corresponding function
block in the backward direction is needed.

In this case Out41BackwardFunction is the
corresponding function block for
Out41Function.

Out41Function Y This is an example of a user defined
function. In this example the function is
linear.

Out1 :=a1*In1 + b1*In2 + ¢1*In3 + d*In4

OutVotedBackwardFunction | Y The corresponding backward function block
to OutVotedFunction.

OutVotedFunction Y This user defined function block is executed
if Voted.

472 3BSE041488-511

Appendix B Library Objects Overview

ControlObjectLib

Table 79. Control Object Function Blocks (Continued)

Function Block Type

TC

Description

PrepareBacktrack

The equation in backward direction is
adjusted. All the inputs which cannot be
used for backtracking will affect the
backtracked value for the remaining Inputs.

Out := a*In1 + b*In2, If In2 cannot be used
then the new Out := Out - b*In2; so that the
remaining system is Out := a*In1;

VotedCmdHandler

This function block shall take care of the
voted actions.

3BSE041488-511

473

ControlObjectLib Appendix B Library Objects Overview

Control Object Control Modules

Table 80. Object control modules

Control Module Type |TC |Description

Mimo22CC N The Mimo22CC control module is a module
that can handle 2 inputs and 2 outputs in
both forward direction and partially in
backward direction. The Mimo22CC control
module can be run under time critical
condition. See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

Mimo41CC N The Mimo41CC control module is a module
that can handle 4 inputs and 1 output in
both forward direction and in backward
direction. The Mimo41CC control module
can be run under time critical condition.
See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

Mimo44CC N The Mimo44CC control module is a module
that can handle 4 inputs and 4 outputs in
both forward direction and partially in
backward direction. The Mimo44CC control
module can be run under time critical
condition. See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

474 3BSE041488-511

Appendix B Library Objects Overview ControlSolutionLib

ControlSolutionLib

All the control module types in Control Solution library (ControlSolutionLib)
provide a complete control solution, intended to be used directly in an application.
The user requires only to connect the control module to I/Os and in some cases set
some configuration parameters.

The control module types are ready-to-use solutions for frequently occurring control
processes found at customers. They consists of a control solution with basic control
module types, alarm handling, process graphics, preconfigured trend displays with

logging, group displays, and an overview display.

The users may use the solutions directly as they are, or create own types by making
copies and change these to fit an intended usage, which may be level control, flow
control, etc. These new types can then be preconfigured with specific default values
for controller tuning, alarm limits, data collection settings etc.

Table 81. Control Solution control module types

Control Module Type TC |Description

CascadelLoop N This control module provides a complete
cascade loop control solution for
connection to I/0. The control module
provides master and slave PID control with
signal supervision, velocity limiter, alarm
handling, trending, and operator graphics.

FeedforwardLoop N This control module provides a complete
feedforward loop control solution for
connection to I/0. The control module
provides PID feedback control and dynamic
feedforward control. The loop comes with
signal supervision, velocity limiter, alarm
handling, trending, and operator graphics.

3BSE041488-511 475

ControlSolutionLib Appendix B Library Objects Overview

Table 81. Control Solution control module types (Continued)

Control Module Type TC |Description

MidrangelLoop N This control module provides a complete
midrange loop control solution for
connection to I/0. The control module
provides single PID control of two outputs in
parallel.

The loop comes with signal supervision,
velocity limiter, stiction compensation,
alarm handling, trending, and operator
graphics.

OverrideLoop N This control module provides a complete
override loop control solution for connection
to 1/0. The control module provides a
minimum selector with four controllers; one
master PID controller and three override
controllers. The loop comes with signal
supervision, velocity limiter, alarm handling,
trending, and operator graphics.

SingleLoop N This control module provides a complete
single loop control solution for connection
to I/0. The control module provides PID
control with signal supervision, velocity
limiter, stiction compensation, alarm
handling, trending, and operator graphics.

476 3BSE041488-511

Appendix B Library Objects Overview ControlExtendedLib

ControlExtendedLib

The library ControlExtendedLib contains control modules for arithmetic and signal
processing for continuous control; for example, PID loops. The control functions
are available as control modules, and they also have associated engineering and
operator graphics.

The control modules can be connected to other control modules in
ControlStandardLib, ControlAdvancedLib or ControlFuzzyLib in order to construct
more advanced control loops. The control modules are connected via graphical
connections. Information is sent forward as well as backward in the control loop.
The automatic code sorting is used to obtain good performance related to bumpless
transfer and integrator wind-up in the entire control loop.

Using the control modules in ControlExtendedLib together with those in
ControlStandardLib and ControlAdvancedLib, it is possible to construct control
loops with high functionality. Arithmetic operations can be performed on the
control signals. The control signals can also be processed in several ways; for
example, filtered or integrated.

3BSE041488-511 477

ControlExtendedLib Appendix B Library Objects Overview

Arithmetic Control Modules

Table 82. Arithmetic control modules

Control Module Type |TC |Description

AddCC Y Addition, two inputs

SubCC Y Subtraction, two inputs

MultCC N Multiplication, two inputs

DivCC N Division, two inputs

BiasCC N Addition, two inputs

RatioCC N Multiplication, two inputs

SqrtCC Y Square root, one input
XRaisedToYCC Y Calculates the value In1 raised to In2.

Signal Handling Control Modules

Table 83. Signal handling control modules

Control Module Type |TC |Description

DerivativeCC Y Derivation.
IntegratorCC Y Integration with reset and hold function.
FlowCC Y This control module calculates the mass

flow from a differential pressure (orifice
plate) compensated by actual temperature
and pressure.

Mean4ExcludeBadCC |Y This control module calculates the mean
value of the inputs where extreme values
are excluded.

478 3BSE041488-511

Appendix B Library Objects Overview ControlExtendedLib

Table 83. Signal handling control modules (Continued)

Control Module Type |TC |Description

Mean8ExcludeBadCC |Y This control module has the same
functionality as Mean4ExcludeBadCC
above. The only difference is the number of
inputs.

Mean12ExcludeBadCC |Y This control module has the same
functionality as Mean4ExcludeBadCC
above. The only difference is the number of

inputs.
FilterCC Y This is a first-order, low-pass filter.
Filter2PCC Y This control module is a low-pass filter with

one zero and two complex poles.

LeadLagCC Y This control module is used either as a
Lead or Lag function, derivative or
integrating limiter. The actual function
(Lead/Lag) is determined by the relation
between two input time constants.

DelayCC N This is a delay control module for the
ControlConnection structure.

StateCC Y This control module delays the forward and
backward components by one cycle to
avoid program loops.

TimeAverageCC Y This control module calculates the time
average value of the input over a specified
number of samples.

3BSE041488-511 479

ControlExtendedLib Appendix B Library Objects Overview

Signal Conditioning Control Module

Table 84. Signal conditioning control module

Control Module Type |TC |Description

PiecewiselLinearCC Y Piece-wise linear transformation of the
input signal.

PiecewiseLinear2DCC |N This control module is a look-up table with a
number of predefined input-output data
pairs. It takes two inputs, which means that
a nonlinear surface, z = f(x,y) can be
specified. A maximum of 21 x-values and
11 y-values can be specified, 231 data
points. An Interaction window can be used
to edit the data.

PiecewiseLinear- Y This control module is used as an add-in
Extension module to the PiecewiseLinearCC module.
The latter is only able to handle 21 data
points. This control module makes it
possible to add another 20 data points. It is
also possible to connect a control module to
an existing control module of the same
type. Thus, the number of points is
unlimited.

480 3BSE041488-511

Appendix B Library Objects Overview ControlAdvancedLib

ControlAdvancedLib

The library ControlAdvancedLib contains control module types for advanced,
continuous control, PID loops. The control functions are available as control
modules, and they also have associated engineering and operator graphics.

The control modules can be connected to other control modules in
ControlStandardLib, ControlExtendedLib or ControlFuzzyLib in order to construct
more advanced control loops. The control modules are connected via graphical
connections. Information is sent forward as well as backward in the control loop.
The automatic code sorting is used to obtain good performance related to bumpless
transfer and integrator wind-up in the entire control loop.

The advanced PID controller has all the functionality of the previously described
PID controllers. In addition, it can be configured for continuous adaptation of the
controller parameters. It can also be configured as a predictive PI; that is, as a PPI,
controller and it has a gain scheduler (also called a parameter scheduler).

3BSE041488-511 481

ControlFuzzyLib Appendix B Library Objects Overview

PID Control Modules

Table 85. PID control modules

Control Module Type |TC |Description

PidAdvancedCC N In addition to the standard functions, this
control module type contains a gain
scheduler and an adaptive controller. It has
a PPI (predictive PI) controller for
processes with long dead times. The loop
assessment tools can detect oscillatory or
sluggish behavior of the control loop. The
Autotuner is more advanced than that in the
other PID controllers.See

Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

Additional Control Modules

Table 86. Additional control modules

Control Module Type |TC |Description

StictionCompensator Y An optional extension to the AnalogOutCC
control module to add pulses to the output
of the AO to avoid the effects of sticky
pneumatic valves.

DecoupleFilterCC N A filter introduced to decouple the process
dynamics so that the total system behaves
as two independent systems.

ControlFuzzyLib

The library ControlFuzzyLib contains control module types, which are building
blocks for fuzzy controllers. A fuzzy controller is constructed by connecting control

482 3BSE041488-511

Appendix B Library Objects Overview ControlFuzzyLib

modules from ControlFuzzyLib. No programming is necessary. ControlFuzzyLib
also has three templates (not protected), which consist of three different fuzzy
controllers. The control module types can be copied to your own library and then
modified.

Table 87. Control module types in ControlFuzzyLib

Control Module Type |TC |Description

FuzzyController1CC N This control module contains a very small
configuration of a fuzzy controller.

FuzzyController2CC N This control module has the same structure
as that of FuzzyController1CC, but contains
a much larger configuration.

FuzzyController3CC N This control module is the same as
FuzzyController1CC, but with no setpoint.

FuzzySpPvin N This control module computes the control
deviation EOut (Setpoint Process value)
and its first and second derivatives. These
signals are inputs to the InputMembership
control modules.

This control module can switch between an
external and an internal setpoint. The
process value can be filtered in a low-pass
filter. Three Pv alarm levels and one
deviation alarm can be displayed in the
history and bar graphs. The control module
also has an optional facility for Process
value tracking.

The outputs from the control module, the
control deviation and its two first derivatives
can be simulated by the operator. This
facility can be used to test the fuzzy logic
part of the controller.

3BSE041488-511 483

ControlFuzzyLib Appendix B Library Objects Overview

Table 87. Control module types in ControlFuzzyLib (Continued)

Control Module Type |TC |Description

FuzzyPvin N This control module makes the process
value and its derivative available to the
InputMembership control modules.

The process value can be filtered in a low-
pass filter. Three absolute alarm levels can
be displayed in the history and bar graphs.

The outputs from the control module, the
process value, and its derivative, can be
simulated by the operator. This facility can
be used to test the fuzzy logic part of the
controller.

FuzzyOut N This control module takes a defuzzyfied
output from the fuzzy logic part of the
controller and computes the output to the
process.

The signal can be integrated or not. It can
also be set in Manual or Automatic mode or
it can track an external value. A feedforward
signal can be added, and an anti-reset
wind-up function is provided.

InputMembership N This control module defines an input
membership function for the fuzzy logic part
of the controller. For every value of the input
it computes the degree of membership to
the corresponding fuzzy set.

The control module is also used, together
with the FuzzyCondition control module, to
define the fuzzy conditions.

484 3BSE041488-511

Appendix B Library Objects Overview ControlFuzzyLib

Table 87. Control module types in ControlFuzzyLib (Continued)

Control Module Type |TC |Description

OutputMembership N This control module defines an output
membership function for a fuzzy rule. It
computes the current membership function,
which is equal to the defined membership
function, multiplied by the degree of
satisfaction of the rule.

The current membership functions for a
number of rules can then be combined into
a membership function for the output of the
controller. This is done by computing the
envelope, the maximum of all the current
membership functions at every point. This
is done in the Defuzzyfication control
module.

Defuzzyfication N This control module computes the envelope
of all the connected output membership
functions. It also computes the center of
gravity of the envelope curve. The center of
gravity is regarded as the defuzzyfied
output from the fuzzy logic part of the
controller.

3BSE041488-511 485

ControlFuzzyLib Appendix B Library Objects Overview

Table 87. Control module types in ControlFuzzyLib (Continued)

Control Module Type |TC |Description

FuzzyCondition6, -12 N The control modules FuzzyCondition6,
and -18 FuzzyCondition12 and FuzzyCondition18
define and evaluate a fuzzy condition. The
condition is defined as a fuzzy AND
condition between a number of selected
input membership functions. The input
membership functions may, or may not, be
inverted before the condition is formed.

Together with other fuzzy conditions, the
defined fuzzy condition is used in one or
more fuzzy rules.

The fuzzy AND condition is defined as the

minimum value of the fuzzy variables
included.

FuzzyRule5, -10, -15, - |N The control modules FuzzyRule5,

20, -25 and -30 FuzzyRule10, FuzzyRule15, FuzzyRule20,
FuzzyRule25, and FuzzyRule30 define and
evaluate a fuzzy rule. The condition of the
rule is defined as a fuzzy OR expression
between a number of fuzzy conditions
defined in FuzzyCondition control modules.
The conditions from the FuzzyCondition
control modules may, or may not, be
inverted before the condition of the
FuzzyRule control module is formed.

The result of the rule is the degree of
satisfaction of the rule. The degree of
satisfaction is used to compute the output
membership function for the rule. The fuzzy
OR condition is defined as the maximum
value of the fuzzy variables included.

486 3BSE041488-511

Appendix B Library Objects Overview Batch Library

Table 87. Control module types in ControlFuzzyLib (Continued)

Control Module Type |TC |Description

FuzzyProgramControl | N This control module is used to toggle the
Edit mode of the fuzzy logic part of the
controller on and off. The fuzzy controller is
fully operational in both modes.

FuzzyPres N This control module is an icon for the
controller. It is intended to be built into the
controller and displayed in the Control
Module diagram via a control module

selector.
FuzzyControllcon N This control module type is the symbol for a
controller that contains fuzzy logics.
Fuzzylcon N This control module type is the symbol for
fuzzy logics.

Batch Library

The library BatchLib contains control module types for batch control and for control
of other discontinuous processes. It can be used together with any batch system
which communicates via OPC Data Access and which supports the S88 state model
for procedural elements.

The control modules described here are used for the interaction between the control
application for an Equipment Procedure Element (for example, a phase or an
operation) and the Batch Manager.

3BSE041488-511 487

Process Object Libraries Appendix B Library Objects Overview

Table 88. Equipment procedure element control module types

Control Module Type |TC |Description

EquipProcedure N A template control module for designing
Template Equipment Procedure Elements, the control
logic for phases, operations, and so on. It
handles the interaction with the Batch
Manager.

EquipProcedureCore N Handles the standard ISA/S88-based
states and modes of an Equipment
Procedure Element.

EquipProcedurelcon N This control module type is an icon for
EquipProcedureTemplate and
EquipProcedureCore.

InfoEquipProcedure N This control module type defines the pop-
Template up interaction window for the procedural
element.

Process Object Libraries

The libraries ProcessObjBasicLib, ProcessObjExtLib, ProcessObjDriveLib and
ProcessObjInsumLib contain function block types and control module types for
controlling motors, valves, ABB Drives and Insum Devices in a process application.

ProcessObjBasicLib

The library ProcessObjBasicLib contains basic core function block types for valve
and motor control functions. They are to be used when designing your own function
block types. The core function block types should be encapsulated in your own

488 3BSE041488-511

Appendix B Library Objects Overview

ProcessObjBasicLib

function block type. These core function block types are protected and cannot be

changed.

Table 89. ProcessObjBasicLib function block types

Function Block Type

TC

Description

BiCore

Bi-directional object:

Basic function block with two or three
outputs and 0, 2 or 3 feedback signals. This
function block can be used to represent a
two-speed motor or a forward-backward
motor.

Parameters are available for the connection
of an external panel for manual operation of
the object, and interlock and force signals
for connection of different safety
interlocking. It is also possible to connect
an external fault signal.

BiDelayOfCmd

This function block type is used to avoid
spurious commands in auto mode. For
example, if a level detector the object to
start, a disturbance pulse will not be able to
start the object.

BiSimple

This function block type is suitable for
graphical control and supervision of a
bidirectional (two activated and one
deactivated position) process object. For
greater flexibility, the extensions to the
basic BiCore type.

DetectOverrideBi

Detects override commands like Priority
and llock.

DetectOverrideUni

Detects override commands like Priority
and llock.

DetectOverrideVoteBi

Detects override commands like Priority
and llock.

3BSE041488-511

489

ProcessObjBasicLib Appendix B Library Objects Overview

Table 89. ProcessObjBasicLib function block types (Continued)

Function Block Type |TC |Description

DetectOverrideVoteUni | Y Detects override commands like Priority
and llock.

DriveCommandSend N This function block type sends command
data to the connected drive. It can be used
as a base for control of ABB Drives
ACS800, ACS600 and ACS400 and their
corresponding DC drives. The function
block can easily be used together with other
function blocks to create more complex
objects that handle functionality such as
modes and HSI. See also the UniCore and
BiCore function block descriptions.

DriveStatusReceive N This function block type can be used as a
base for control of ABB Drives ACS600 and
ACS400, and their corresponding DC
drives. The function block can easily be
used together with other function blocks to
create more complex objects that handle
functionality such as modes and HSI.

This function block provides the user with
the ability to start and stop a drive with a
chosen setpoint according to the local state
matching in the drive.

Jog Y This function block handles the Jog
functionality implemented in motor objects.
Jog is a functionality that starts the motor
object in a specified direction during a
specified period of time. The Jog function
only is applicable in manual mode of the
motor object.

490 3BSE041488-511

Appendix B Library Objects Overview ProcessObjBasicLib

Table 89. ProcessObjBasicLib function block types (Continued)

Function Block Type |TC |Description

PrioritySup Y This function block type supervises the
priority commands and sets the mode to
PriorityMode if any of the inputs are active.
Alarm situations are also supervised and, if
active, an automatic priority to zero is
performed.

UniCore N Uni-directional object:

Basic function block with one or two outputs
and 0, 1, or 2 feedback signals. This
function block can be used to represent a
valve.

Parameters are available for the connection
of an external panel for manual operation of
the object, and interlock and force signals
for connection of different safety
interlocking. It is also possible to connect
an external fault signal.

UniDelayOfCmd Y This function block type is used to avoid
spurious commands in auto mode. For
example, if a level detector the object to
start, a disturbance pulse will not be able to
start the object.

UniSimple N This function block type is suitable for
graphical control and supervision of a
unidirectional (one activated and one
deactivated position) process object. An
extension to the basic UniCore type is the
graphics functionality.

3BSE041488-511 491

ProcessObjBasicLib Appendix B Library Objects Overview

Table 90. ProcessObjBasicLib control module types

Control Module Type |TC |Description

BiSimpleM N This control module type is suitable for
graphical control and supervision of a
bidirectional (two activated and one
deactivated position) process object. The
extensions to the basic BiCore type include
control module graphics and Interaction
windows.

UniSimpleM N This control module type is suitable for
graphical control and supervision of a
unidirectional (one activated position and
one deactivated position) process object.
The extensions to the basic UniCore type
include control module graphics and
Interaction windows.

492 3BSE041488-511

Appendix B Library Objects Overview

ProcessObjExtendedLib

ProcessObjExtendedLib

The library ProcessObjExtLib contains types that are based on the protected core
functions available in the ProcessObjBasicLib. Unprotected code is then added to

the core.

Table 91. ProcessObjExtLib function block types

Function Block Type

TC

Description

Bi

Bi-directional object with alarm and
graphics:

This function block type is based on the
BiCore object. Extensions include alarm
handling and a faceplate.

LevelDetection

Supervises the level of an input signal to an
object.

MotorBi

Motor bi-directional object with alarm and
graphics:

This function block type is based on the
BiCore object. Extensions include alarm
handling and a faceplate.

This function block has additional
interlocks, safety commands, and output
delay timers.

MotorUni

Motor uni-directional object with alarm and
graphics:

This function block type is based on the
UniCore object. Extensions include alarm
handling and a faceplate.

This function block has additional
interlocks, safety commands, and output
delay timers.

OETextBi

This function block concatenates text
strings for the alarm printouts for Bi type
objects.

3BSE041488-511

493

ProcessObjExtendedLib Appendix B Library Objects Overview

Table 91. ProcessObjExtLib function block types (Continued)

Function Block Type |TC |Description

OETextUni Y This function block generates error-text
strings. Calls of the respective types are
included in the open code of the
corresponding extended process objects.

OETextValveUni Y This function block concatenates text
strings for the alarm printouts for ValveUni
type objects.

OETextValveBi Y This function block concatenates text
strings for the alarm printouts for Bi type
objects.

Uni N Uni-directional object with alarm and
graphics:

This function block type is based on the
UniCore object. Extensions include alarm
handling and a faceplate.

ValveUni N Valve uni-directional object with alarm and
graphics:

This function block type is based on the
UniCore object. Extensions include alarm
handling and a faceplate.

Some parameters from the UniCore object
are not used, and this block serves as a
more basic example for a normal valve.

MotorValve Y This function block is suitable for graphical
control and supervision of a bidirectional
(two activated position) motor valve.

This function block type is based on the

BiCore object. The extensions include
alarm handling and faceplate.

This function block has additional interlock
parameters and priority commands.

494 3BSE041488-511

Appendix B Library Objects Overview

ProcessObjExtendedLib

Table 92. ProcessObjExtLib control module types

Control Module Type

TC

Description

BiM

Bi-directional object with alarm and
graphics:

This control module type is based on the
BiCore alarm handling and a faceplate. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

MotorBiM

Motor bi-directional object with alarm and
graphics:

This control module is based on the BiCore
alarm handling and a faceplate.

This control module has additional
interlocks, safety commands, and output
delay timers.See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

MotorUniM

Motor uni-directional object with alarm and
graphics:

This control module is based on the
UniCore alarm handling and a faceplate.

This control module has additional
interlocks, safety commands, and output
delay timers.See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

3BSE041488-511

495

ProcessObjExtendedLib Appendix B Library Objects Overview

Table 92. ProcessObjExtLib control module types (Continued)

Control Module Type |TC |Description

UniM N Uni-directional object with alarm and
graphics:

This control module type is based on the
UniCore alarm handling and a faceplate.
See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

ValveUniM N Valve uni-directional object with alarm and
graphics:

This control module type is based on the
UniCore alarm handling and a faceplate.
See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

496 3BSE041488-511

Appendix B Library Objects Overview ProcessObjExtendedLib

Table 92. ProcessObjExtLib control module types (Continued)

Control Module Type |TC |Description

MotorValveM Y Bidirectional (two activated position) motor
valve object with alarm and graphics.

This control module is based on the BiCore
object. Extensions include alarm handling
and a faceplate.

This control module has additional
interlocks and output delay timers. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

MotorValveCC Y Motor controlled valve object of open/close
type, with alarm and graphics.

This control module is based on the BiCore
object. Extensions include alarm handling
and a faceplate.

This control module has additional
interlocks and output delay timers. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

3BSE041488-511 497

ProcessObjDriveLib Appendix B Library Objects Overview

ProcessObijDriveLib

The library ProcessObjDriveLib contains function block types and control module
types which can be used to control and supervise ABB Standard and Engineered
Drives.

Table 93. ProcessObjDriveLib function block types

Function Block Type |TC |Description

ACStdDrive N This function block type can be used to
control and supervise ABB Standard AC
Drives. This function block type includes
Interaction windows implemented in Control
Builder M.

DCStdDrive N This function block type can be used to
control and supervise ABB Standard DC
Drives. This function block type includes
Interaction windows implemented in Control
Builder M.

EngDrive N This function block type can be used to
control and supervise ABB Engineered AC
and DC Drives. This function block type
includes Interaction windows implemented
in Control Builder M.

498 3BSE041488-511

Appendix B Library Objects Overview

ProcessObjDrivelLib

Table 94. ProcessObjDriveLib control module types

Control Module Type

TC

Description

ACStdDriveM

This control module type can be used to
control and supervise ABB Standard AC
Drives. This control module type includes
Interaction windows implemented in Control
Builder M. See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

DCStdDriveM

This control module type can be used to
control and supervise ABB Standard DC
Drives. This control module type includes
Interaction windows implemented in Control
Builder M. See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

EngDriveM

This control module type can be used to
control and supervise ABB Engineered AC
and DC Drives. This control module type
includes Interaction windows implemented
in Control Builder M.

See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

3BSE041488-511

499

ProcessObjinsumLib Appendix B Library Objects Overview

ProcessObjlnsumLib

The library ProcessObjlnsumLib library contains function block types and control
module types to control and supervise the standard INSUM (INtegrated System for
User optimized Motor management) devices MCU (Motor Control Unit) and trip
unit for Circuit Breakers. The INSUM devices are connected via an INSUM
Gateway and a CI857 Interface module to the AC 800M.

Table 95. ProcessObjlnsumLib function block types

Function Block Type |TC |Description

InsumBreaker N This function block type is used to control
and supervise an INSUM trip unit for circuit
breakers. It is based on the UniCore object
for process logic, and INSUMRead and
INSUMWrite blocks for the communication
with the device. Function blocks for alarm
handling are also included for the display of
trips, warnings and other errors
communication errors and feedback errors
from the device.

500

3BSE041488-511

Appendix B Library Objects Overview ProcessObjinsumLib

Table 95. ProcessObjInsumLib function block types (Continued)

Function Block Type |TC |Description

McuBasic N This function block type is used to control
and supervise an INSUM MCU. It is based
on the BiCore object for process logic, and
INSUMRead and INSUMWfrite blocks for
the communication with the device.
Function blocks for alarm handling are also
included for the display of trips, warnings
and other errors communication errors and
feedback errors from the device.

McuExtended N This function block type is used to control
and supervise an INSUM MCU. It is based
on the BiCore object for process logic, and
INSUMRead and INSUMWfrite blocks for
the communication with the device.
Function blocks for alarm handling are also
included for the display of trips, warnings
and other errors communication errors and
feedback errors from the device.

3BSE041488-511 501

ProcessObjinsumLib Appendix B Library Objects Overview

Table 96. ProcessObjInsumLib control module types

Control Module Type |TC |Description

InsumBreakerM N This control module type is used to control
and supervise an INSUM trip unit for circuit
breakers. It is based on the UniCore object
for process logic, and INSUMRead and
INSUMWrite blocks for the communication
with the device. Function blocks for alarm
handling are also included for the display of
trips, warnings and other
errorscommunication errors and feedback
errors from the device. See

Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

502 3BSE041488-511

Appendix B Library Objects Overview ProcessObjinsumLib

Table 96. ProcessObjlnsumLib control module types (Continued)

Control Module Type |TC |Description

McuBasicM N This control module type is used to control
and supervise an INSUM MCU. It is based
on the BiCore object for process logic, and
INSUMRead and INSUMWrite blocks for
the communication with the device.
Function blocks for alarm handling are also
included for the display of trips, warnings
and other errorscommunication errors and
feedback errors from the device. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

McuExtendedM N This control module type is used to control
and supervise an INSUM MCU. It is based
on the BiCore object for process logic, and
INSUMRead and INSUMWfrite blocks for
the communication with the device.
Function blocks for alarm handling are also
included for the display of trips, warnings
and other errorscommunication errors and
feedback errors from the device. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a sending and receiving object).
See also Signal and Vote Loop Concept on
page 367.

3BSE041488-511 503

Signal Libraries Appendix B Library Objects Overview

Signal Libraries

SignalLib

The library SignalLib contains function block types for analog and digital inputs
and outputs. They extend the functionality of I/O signals and application variables
with alarm and event handling. The function blocks also provide filtering and error
handling. In the faceplates it is possible to force the objects, view trim curves,
configure and enable/disable alarms and events, and view/modify parameters.

Table 97. SignalLib function block types

Function Block Type |TC |Description

SignallnReal Y SignallnReal extends the functionality of an
analog input signal of data type ReallO with
alarm/event handling for three high levels,
three low levels and error handling.

SignalOutReal Y SignalOutReal extends the functionality of
an analog output signal of data type ReallO
with alarm/event handling for three high
levels, three low levels and error handling.

SignalReal Y SignalReal is used to achieve alarm/event

handling for an application variable of data
type real with up to three high and three low
levels.

SignalinBool Y SignallnBool extends the functionality for a
Digital Input signal of data type BoollO with
alarm/event handling, when the input value
is different from Normal value.

In corresponding faceplates it is possible to
force the object, view trim curves, and
configure and enable/disable alarms and
events.

504 3BSE041488-511

Appendix B Library Objects Overview

SignallLib

Table 97. SignalLib function block types (Continued)

Function Block Type

TC

Description

SignalOutBool

SignalOutBool extends the functionality of a
digital output signal of data type BoollO
with alarm/event handling when the input
value is different from Normal value.

In corresponding faceplates it is possible to
force the object, view trim curves, and
configure and enable/disable alarms and
events.

SignalBool

SignalBool extends the functionality of an
application variable of data type bool/ with
alarm/event handling when the input value
is different from Normal value.

In corresponding faceplates it is possible to
force the object, view trim curves, and
configure and enable/disable alarms and
events.

SignalSimplelnReal

An analog input signal, of ReallO data type,
extended with alarm and event handling for
errors. Filtering and error handling is also
provided.

SignalSimpleOutReal

An analog output signal, of ReallO data
type, extended with alarm and event
handling for errors.

3BSE041488-511

505

SignalLib Appendix B Library Objects Overview

Table 98. SignalLib control module types

Control Module Type |TC |Description

SignalBoolCalcInM Y Monitors an application variable, of bool
data type. To be used when it requires
connections to a Vote control module type.
See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

SignalBoolCalcOutM Y Monitors an application variable, of bool
data type. To be used when it requires input
connections from a Vote control module
type. See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

SignallnBoolM Y Monitors a digital input signal, of BoollO
data type. See Table 41 on page 378.

This object is a member of the voting logic

concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

SignallnRealM Y Monitors up to three high levels and up to
three low levels and errors for an analog
input signal, of ReallO data type. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

506 3BSE041488-511

Appendix B Library Objects Overview

SignallLib

Table 98. SignalLib control module types (Continued)

Control Module Type

TC

Description

SignalOutBoolM

Monitors a digital output signal, of BoollO
data type. See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

SignalOutRealM

Monitors up to three high levels and up to
three low levels and errors for an analog
output signal, of ReallO data type. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

SignalRealCalcIlnM

Monitors up to three high levels and up to
three low levels and errors for an
application variable, of real data type. To be
used when it requires connections to a Vote
control module type. See

Table 41 on page 378.

This object is a member of the voting logic
concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

SignalRealCalcOutM

Monitors up to three high levels and up to
three low levels and errors for an
application variable, of real data type. To be
used when it requires input connections
from a Vote control module type. See
Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

3BSE041488-511

507

SignalBasicLib Appendix B Library Objects Overview

Table 98. SignalLib control module types (Continued)

Control Module Type |TC |Description

SignalSimpleInRealM |Y Monitors an analog input signal, of ReallO
data type. See Table 41 on page 378.

This object is a member of the voting logic
concept (a sending object). See also Signal
and Vote Loop Concept on page 367.

SignalSimpleOutRealM |Y Monitors an analog output signal, of ReallO
data type. See Table 41 on page 378.

This object is a member of the voting logic
concept (a receiving object). See also
Signal and Vote Loop Concept on page
367.

SignalBasicLib

The SignalBasicLib library contains the function blocks listed in Table 99. Control
Builder graphics are included in the objects. The objects in Table 99 have no alarm
and event recording, no detection of abnormal input status, and no Inhibit, Enable or
override control functions.

Table 99. SignalBasicLib Function Block Types

Function Block Type |TC |Description

SignalBasicInBool Y Overview and forcing of boolean input of
data type BoollO.

SignalBasicBool Y Overview and maneuvering of boolean
variable of data type bool.

SignalBasicOutBool |Y Overview and forcing of boolean output of
data type BoollO.

508 3BSE041488-511

Appendix B Library Objects Overview Supervision Library

Table 99. SignalBasicLib Function Block Types (Continued)

Function Block Type |[TC |Description

SignalBasicInReal Y Overview and forcing of analog input of
data type ReallO.

SignalBasicReal Y Overview and maneuvering of analog
variable of data type real.

SignalBasicOutReal |Y Overview and forcing of analog output of
data type ReallO.

Supervision Library

SupervisionBasicLib
The SupervisionBasicLib is divided into two libraries.
* SignalSupportLib for support functionality

* SupervisionBasicLib for simple functionality

Table 100. SupervisionBasicLib Function Block Types

Function Block Type |TC |Description

SDInBool Y DiffNormal detection for Digital Input
signal (BoollO).

SDBool Y DiffNormal detection for Bool variable.

SDOutBool Y Control of Digital Safety Output
(BoollO).

SDInReal Y Level detection for Analog Input signal
(ReallO).

SDReal Y Level detection for Real variable.

3BSE041488-511 509

Synchronized Control Library

Appendix B Library Objects Overview

Table 100. SupervisionBasicLib Function Block Types (Continued)

Function Block Type |TC |Description

SDValve Y Control of Safety Valve output
(BoollO).

StatusRead Y Reading status output from other FB's
in the library.

SDLevel Y Shutdown Level object.

Synchronized Control Library

GroupStartLib

The GroupStartLib (Group Start Library) contains control module types used to the

control and supervise of process objects in a controller.

Table 101. GroupStartLib control module types

Control Module Type TC |Description

GroupStartAnd N This control module type executes a logical
AND between the connected input signals
of type GroupStartStepConnection

GroupStartHead N This control module type supervises the

entire group, keeps track of the alarms
generated in the group and detects the
connected objects not ready for start in
group start mode. The behavior of the
group at alarms is also a task for this
control module. A process object may be
connected to the bottom output node.

510

3BSE041488-511

Appendix B Library Objects Overview GroupStartLib

Table 101. GroupStartLib control module types (Continued)

Control Module Type TC |Description

GroupStartObject N This control module type encapsulates a
Template standard control loop to be connected into
the group start environment and is
equipped with simulated feedback signals.

GroupStartOr N This control module type executes a logical
OR between the connected input signals of
type GroupStartStepConnection.

GroupStartStep N This control module type has four in- and
four output nodes to configure the group
start preferably by using graphical
connections. A process object may be
connected to the bottom output node.

GroupStartTestObject N This control module type is used to connect
in the group start to test the start up
configuration and to simulate alarm
situations.

GroupStartStandby4, 8, 12 | Y This control module shall be used for
standby purposes and to be able to activate
a desired number (maximum the number of
connected objects on the output terminals)
of objects all working together in the

process.

InfoParGroupStart N This control module type contains the

ObjectTemplate graphics of the interaction window of the
GroupStartObjectTemplate control module
type.

3BSE041488-511 511

GroupStartLib Appendix B Library Objects Overview

512 3BSE041488-511

A

ABB Drives

DriveCore 334
AccelerationLimCC 222
AccelerationLimReal 220
access

help from Control Builder 394
adaptation 169
adaptive control 169
adaptive controller

feedback 171

feedforward 172
AddCC 198
afw file

import 243
Alarm and Event library 45
AlarmEventLib 448
alarms

relative 100, 117
algorithms 89

P controller 89

PD controller 90

PI controller 90

PID controller 90

PPI controller 90
amplification factor 88
AnalogInCC 189
AnalogOutCC 191
anti-integrator wind-up 153
arithmetic control modules, see control modules
arithmetic functions (extensible), see functions
arithmetic functions (non-extensible), see functions
array and queue functions 415
array and queue functions, see functions
arrays 415

INDEX

Auto mode 106

Core 270

InsumBreaker 344
Autotuner

process oscillation time 169
autotuning 162

B

backtracking 79, 82

calculation 79

information 80

mode 79
Backtracking mode 106
Basic library 47,224
BasicLib 417
Batch library 47
BatchLib 487
BcToDint 223
beta factor 93
bias 88

offset 88
BiCore 267
bi-stable function blocks (standard), see function

blocks

bit shift functions (standard), see functions
bit-wise Boolean functions (standard), see functions
branch control modules 464
Branch4CC 210
BranchCC 210
build

complex solutions 27
bumpless transfer 82, 154

Cc

calculation

3BSE041488-511

513

Index

control module types 198
function block types 198
calculations
backtracking 79
cascade controller 120
tuning 249
cascade loop
example 234
CCTolnteger 222
CCToReal 222

character string functions (standard), see functions

code blocks
sorting 77
code sorting 77
COMLI 436
COMLICommLib 436
commands
libraries 36
CommonRangeCC 211
Communication Interface
CI871 53
Communication libraries 50
communication libraries
library 430, 434, 436 to 438, 440, 442
comparison functions (standard), see functions
complex solutions 27
complex types
execution 64
connections
graphical 79
context-sensitive help 396
context-sensitive linking 396
Control Connection 461
control deviation 88, 92, 99, 159, 165
Control libraries 48, 84
concept 72
libraries 48
control library 453, 456, 459, 477, 481 to 482
control loops
design 107

graphical connection 79

control module types

AccelerationLimCC 222
AddCC 198

AnalogInCC 189
AnalogOutCC 191
Branch4CC 210
BranchCC 210
calculation 198
CCTolnteger 222
CCToReal 222
CommonRangeCC 211
DelayCC 209

Filter2PCC 208

FilterCC 207

FlowCC 202
LeadLagRealCC 208
LimiterCC 221
LimiterHighCC 221
LimiterLowCC 221
ManualAutoCC 194
Max4CC 217

MaxCC 217
Mean12ExcludeBadCC 199
Mean4ExcludeBadCC 199
Mean8ExcludeBadCC 199
MidRangeCC 211
Min4CC 217

MinCC 217

MultCC 198

PidCC 116
PiecewiseLinear2DCC 205
PiecewiseLinearCC 205
PiecewiseLinearExtension 205
PulseWidthCC 193
RealToCC 223
SelectGood4CC 215
SelectGoodCC 215
Selector4CC 214
SelectorCC 214

514

3BSE041488-511

Index

SignalBoolCalcInM 371
SignalBoolCalcOutM 371
SignallnBoolM 371
SignallnRealM 188
SignalOutBoolM 372
SignalOutRealM 190
SignalRealCalcInM 195
SignalRealCalcOutM 195
SignalSimpleInRealM 188
SignalSimpleOutRealM 190
SignalSupervision 197
SplitRangeCC 210
SqrtCC 198
StateCC 225
SubCC 198
TapCC 212
TapRealCC 212
ThreePosCC 192
TimeAverageCC 203
VelocityLimiterCC 221
Votelool1Q 381
VoteBranch4 382
VotedAnd4 382
VotedBranch4 382
VotedOr4 382
VoteXo02D 381
VoteX003Q 381
VoteXoo08 381
XRaisedToYCC 198
control modules
additional 482
arithmetic 478
branch 464
conversion 462
DerivativeCC 200
limiter 470
manual 462
PID 460, 482
process I/O 461
selector 468

signal conditioning 480

signal flow 76

signal handling 478

supervisory 466
control strategies 110
control word

DriveCore 333
ControlAdvancedLib 481
ControlBasicLib 453
ControlConnection 75,78, 110

status component 80
ControlExtendedLib 477
ControlFuzzyLib 482
controller algorithms 89
controller modes 106
controllers

adaptive feedback 171

adaptive feedforward 172

fuzzy 85,119

industrial 120

master 120

PPI 85, 167

pulse 121

ratio 121

slave 120

split range 122

three-position 121
ControlSimpleLib 456
ControlStandardLib 459
conversion 222
conversion control modules 462
copy

templates 58
Core

Auto mode 270

effective feedback 275

feedback error 275

feedback signals 272

forced action 276

Group Start mode 271

3BSE041488-511

515

Index

Tlock 274
inhibit 274
interlock 276
interlocking 267, 274
Local mode 271
Manual mode 270
operation 268
operation parameters 267 to 268
Out of Service mode 272
output IOLevel 276
output settings 273
Panel mode 271
priority command 274
Priority mode 271
core algorithms 84
counter function blocks (standard), see function
blocks

D

data types

ControlConnection 75, 110
dead time 111
dead-time 85
decrement 178
delay time 159
DelayCC 209
delays 209
derivative objects 200
derivative part 89
derivative time 91
DerivativeCC 200
DerivativeReal 200
design

control loops 107
deviation 88, 92

limit 160
deviation alarms 159
diagram types 109
diagrams 109
DintToBc 223

DintToFirstOfN 223

DintToNBcd 224

DivCC 198

DriveCore
control word 333
controlling a Drive 334
emergency stop 333
scale Drive values 334
status 333

dynamic parameters 162

E

effective feedback

Core 275
emergency stop

DriveCore 333
examples

cascade loop 234

control loops 123

import 243
execution

complex types 64

formal instances 64

sub-objects 64
execution time 112
external setpoint 120

changes 157

F1

online help 396
feedback 171
feedback error

Core 275
feedback signals

Core 272
feedforward 161, 172
filter

high-pass 200
Filter2PCC 208

516

3BSE041488-511

Index

Filter2Real 207

FilterCC 207

FilterOf 91

FilterReal 207

filters 207
low-pass 89, 91, 188, 207

FirstOfNToDint 223

flow calculation 202

FlowCC 202

forced action
Core 276

formal instances
execution 64

FOUNDATION Fieldbus 436

friction
reduce 182
static 180

function block types
AccelerationLimReal 220
BcToDint 223
calculation 198
DerivativeReal 200
DintToBc 223
DintToFirstOfN 223
DintToNBcd 224
DivCC 198
Filter2Real 207
FilterReal 207
FirstOfNToDint 223
GrayToDint 224
IntegerToReallO 223
LeadLagReal 207
Level6CC 196
LevelHigh 195
LevelLow 195
MajorityReal 198
MaxDint 216
MaxReal 216
MedianDint 198
MedianReal 198

MinDint 216
MinReal 216
MultCC 198
NBcdToDint 224
PidCascadeLoop 116
PidLoop 116
PiecewiseLinear2DReal 204
PiecewiseLinearReal 204
ReallOTolnteger 223
SignalBool 371
SignallnBool 371
SignallnReal 188
SignalOutBool 372
SignalOutReal 190
SignalReal 195
SignalSimpleInReal 188
SignalSimpleOutReal 190
ThreePosReal 193
Threshold 225
VelocityLimiterReal 219
function blocks
bi-stable (standard) 417
counter (standard) 417
timer (standard) 418
function blocks vs control modules 287
functions
adaptation 169
anti-integrator wind-up 153
arithmetic (extensible) 402
arithmetic (non-extensible) 402
array and queue 415
autotuning 162
bit shift (standard) 402
bit-wise Boolean (standard) 402
bumpless transfer 154
character string (standard) 404
comparison (standard) 403
deviation alarms 159
feedforward 161
gain scheduling 173

3BSE041488-511

517

Index

general 401 Core 271

limit 219 InsumBreaker 345

logarithmic 401 GroupStartLib 510

max 215

min 215 H

mux 213 help

oscillation detector 180 access from Control Builder 394

Pv Tracking 157 help files

sel 213 requirements 393

selection (standard) 403 high-pass filter 200

sluggish control detection 183 hysteresis 159, 163, 174, 180

stiction compensator 179 relay 165

task control 416

trigonometric 401 |

type conversion 400, 405 ideal PID controller 92
Fuzzy controller 482 [EC 61131-3

fuzzy controller 119 function block types 417

fuzzy logic standard functions 400
controller 85 Tlock

defuzzyfication 100, 102 Core 274
degree of membership 101
linear part 99

logic part 99 to 100 increment 178
operator 101 index

output membership 100 online help 397
rules 100 to 101

import
examples 243

industrial controller types 120

inhibit
G Core 274

G 90 instances 20
gain 91 InsumBreaker

direct 168 Auto mode 344

reverse 168 Group Start mode 345
gain factor 88 Local mode 345
gain scheduling 173 Manual mode 344
graphical connection 79 Out of Service mode 346
GrayToDint 224 Priority mode 345
Group Start IntegerToReallO 223

library 359 integrator objects 201
Group Start library 47 integrator wind-up 82, 153
Group Start mode prevent 77

518 3BSE041488-511

Index

interaction windows

McuExtended 357
interlock

Core 276
interlocking

Core 267,274
internal state 79, 157
inverse function 206

K
keywords
libraries 35
parameters 35
L

LeadLagReal 207

LeadLagRealCC 208

Level6CC 196

LevelHigh 195

LevelLow 195

libraries 20
advantages of using 25
Alarm and Event library 45
AlarmEventLib 448
Basic 224
Basic library 47
BasicLib 417
Batch library 47
BatchLib 487
COMLICommLib 436
commands 36
Communication libraries 50
Control library 72
ControlAdvancedLib 481
ControlBasicLib 453
ControlExtendedLib 477
ControlFuzzyLib 482
ControlSimpleLib 456
ControlStandardLib 459
Group Start library 47, 359

GroupStartLib 510
management 31
MB300CommLib 438
MMSCommLib 430
ModBusCommLib 437
ModemCommLib 434
parameter keywords 35
ProcessObjBasicLib 488
ProcessObjDriveLib 498
ProcessObjExtLib 493
ProcessObjlnsumLib 500
reserved names 35
S3964RCommLib 440
SattBusCommLib 440
SerialCommLib 442
SignalLib 504
standard libraries 41
System 399
template objects 40
templates 58

limit 219
output 81

limiter control modules 470

limiter objects 219

LimiterCC 221

LimiterHighCC 221

LimiterLowCC 221

linear part 99

load disturbance 171, 183

Local mode
Core 271
InsumBreaker 345

logarithmic functions, see functions

logic part 99

loop assessment tool 184
low-pass filter 89, 91, 188
low-pass filters 207

M
MajorityReal 198

3BSE041488-511

519

Index

manage
libraries 31
manual control modules 462
Manual mode 106
Core 270
InsumBreaker 344
Manual-Auto 194
ManualAutoCC 194
master 120
max 215
Max4CC 217
MaxCC 217
MaxDint 216
maximum sampling time 169
MaxReal 216
MB300CommlLib 438
McuBasic
Soft Local mode 346
McuExtended
interaction window 357
Mean12ExcludeBadCC 199
Mean4ExcludeBadCC 199
Mean8ExcludeBadCC 199
MedianDint 198
MedianReal 198
MidRangeCC 211
min 215
Min4CC 217
MinCC 217
MinDint 216
MinReal 216
MMS 439
MMSCommLib 430
MODBUS 437
ModBusCommLib 437
ModemCommLib 434
modes
Auto 106
Backtracking 106
backtracking 79

Manual 106

Tracking 106

Tuning 106
MotorValve 302
MultCC 198

multivariable process 120

mux 213

NBcdToDint 224
noise
in signals 207

measurement 163 to 164

non-linearities 120

objects 20

offset 89
bias 88

online help

N

)

context-sensitive 396
context-sensitive linking 396

F1 396
index 397
open

online help files 394

operation

Core 268
operation parameters

Core 267
oscillation detector 180
Out of Service mode

Core 272

InsumBreaker 346
output

change rate 157

limit 81

range 81

three-position 177
output IOLevel

520

3BSE041488-511

Index

Core 276
output settings
Core 273

P controller 88
algorithm 89
Panel mode
Core 271
parameter keywords
libraries 35
parameters
ControlConnection 78
Pstart 156
Reset 168
tuning 174
PD controller
algorithm 90
PI controller
algorithm 90
PID control modules 460, 482
PID controller
algorithm 90
ideal 92
PidCascadeLoop 116
PidCC 116
PidLoop 116
piecewise linear 204
PiecewiseLinear2DCC 205
PiecewiseLinear2DReal 204
PiecewiseLinearCC 205
PiecewiseLinearExtension 205
PiecewiseLinearReal 204
position feedback 177
PPI controller 85, 167
algorithm 90
predictive PI controller 85
prevent
integrator wind-up 77
priority commands

Core 274
Priority mode
Core 271
InsumBreaker 345
process gain
direct 168
reverse 168

process 1/0O control modules 461

process object
function block types 418

Process object Function Block types 418, 427

process objects

library 488, 493, 498, 500, 504, 510

select 255
process value 99
tracking 157
process value (Pv) 87
processes
long dead time 111
no dead time 111
short dead time 111
special demands 112
ProcessObjBasicLib 448, 488
ProcessObjDriveLib 498
ProcessObjExtLib 493
ProcessObjlnsumLib 500
Protocols
PROFINET IO 53
Pstart 156
pulse controller 121
PulseWidthCC 193
Pv 90

queues 415

ramp speed 106
ramping speed 155
range 80

3BSE041488-511

521

Index

output 81
ratio controller 121
ReallOTolnteger 223
RealToCC 223
reduce

friction 182
relative alarms 100, 117
relay hysteresis 165
requirements

on customized help files 393
reserved names

libraries 35
reshape

signals 204

S

S3964RCommlib 440
sample 89
sampling time 89

maximum 169

task cycle time 165
SattBus 439
SattbusCommlib 440
scale

Drive values 334
sel 213
select

process objects 255
SelectGood4CC 215
SelectGoodCC 215
selection functions (standard), see functions
selector control modules 468
selector objects 213
Selector4CC 214
SelectorCC 214
Serial CommLib 442
SerialLib 440
setpoint 99

external 120
setpoint (Sp) 87

setpoint changes 93
setpoint weight 91, 93
Show Help About 395
Siemens 3964R 440
signal conditioning control module 480
signal handling 200

input and output 184
signal handling control modules 478
signal quality 197
signal reshaping 204
signal tapping 212
SignalBool 371
SignalBoolCalcInM 371
SignalBoolCalcOutM 371
SignallnBool 371
SignallnBoolM 371
SignallnReal 188
SignallnRealM 188
SignalLib 504
SignalOutBool 372
SignalOutBoolM 372
SignalOutReal 190
SignalOutRealM 190
SignalReal 195
SignalRealCalcInM 195
SignalRealCalcOutM 195
signals

select 213
SignalSimpleInReal 188
SignalSimpleInRealM 188
SignalSimpleOutReal 190
SignalSimpleOutRealM 190
SignalSupervision 197
slave 120
sluggish control detection 183
Soft Local mode

McuBasic 346
Sp 90
split range controller 122
SplitRangeCC 210

522

3BSE041488-511

Index

SqrtCC 198
standard libraries 41
StateCC 225
states
internal 79, 157
static friction 180
Status 80
status 80, 194
DriveCore 333
stiction compensator 179
SubCC 198
supervision
control module types 195
function block types 195
supervisory control modules 466
System 399

T
TapCC 212
tapping 212
TapRealCC 212
task control functions, see functions
task cycle time 89, 165
Td 91
templates 40, 58
copy 58
Tfil 91
ThreePosCC 192
three-position controller 121
three-position output 177
ThreePosReal 193
Threshold 225
Ti 91
time functions 404

timer function blocks (standard), see function

blocks
tracking
process value 157
ramp speed 106
Tracking mode 106

trigonometric functions, see functions
tuning 174

cascade controllers 249

parameter sets 174
Tuning mode 106
type conversion functions, see functions
type solutions 25
types

in libraries 20

templates 58

UniCore 267

\'
VelocityLimiterCC 221
VelocityLimiterReal 219
Voteloo1Q 381
VoteBranch4 382
VotedAnd4 382
VotedBranch4 382
VotedOr4 382
VoteXo002D 381
VoteX003Q 381
VoteXo008 381

X
XRaisedToYCC 198

3BSE041488-511

523

Index

524 3BSE041488-511

Contact us

ABB AB

Control Technologies

Vasteras, Sweden

Phone: +46 (0) 21 32 50 00

e-mail: processautomation @se.abb.com
www.abb.com/controlsystems

ABB Automation GmbH

Control Technologies

Mannheim, Germany

Phone: +49 1805 26 67 76

e-mail: marketing.control-products @ de.abb.com
www.abb.de/controlsystems

ABB S.P.A.

Control Technologies

Sesto San Giovanni (M), Italy
Phone: +39 02 24147 555

e-mail: controlsystems@it.abb.com
www.abb.it/controlsystems

ABB Inc.

Control Technologies

Wickliffe, Ohio, USA

Phone: +1 440 585 8500

e-mail: industrialitsolutions @ us.abb.com
www.abb.com/controlsystems

ABB Pte Ltd

Control Technologies

Singapore

Phone: +65 6776 5711

e-mail: processautomation @sg.abb.com
www.abb.com/controlsystems

ABB Automation LLC

Control Technologies

Abu Dhabi, United Arab Emirates

Phone: +971 (0) 2 4938 000

e-mail: processautomation@ae.abb.com
www.abb.com/controlsystems

ABB China Ltd

Control Technologies

Beijing, China

Phone: +86 (0) 10 84566688-2193
www.abb.com/controlsystems

Copyright © 2003-2013 by ABB.
All rights reserved.

Power and productivity
for a better world™

3BSE041488-511

MRpp

	Binary and Analog Handling
	Table of Contents
	About This User Manual
	General
	User Manual Conventions
	Warning, Caution, Information, and Tip Icons

	Terminology

	Section 1 Introduction
	Extended Control Software
	Libraries and Types

	Section 2 Libraries
	Introduction
	Libraries and Types

	Advantages of Using Libraries and Types
	Type Solutions
	Libraries

	Building Complex Solutions With Types
	Library Management
	Tips and Recommendations
	Reserved Names
	Parameter Keywords

	Library Command Summary

	Section 3 Standard Libraries
	Introduction
	Ready-Made Objects, Templates and Building Stones
	Standard Library Types
	Where to Find Information About Standard Library Types
	Common Properties

	Library Overview
	SupportLib
	Icon Library
	BasicGraphicLib
	Basic Library
	Alarm and Event Library
	Signal Libraries
	Process Object Libraries
	Synchronized Control Library
	Control Libraries
	Supervision Library
	Communication Libraries
	Batch Library

	Hardware Overview
	Basic Hardware
	PROFIBUS
	PROFIBUS Devices
	PROFINET IO
	PROFINET IO Devices
	Master Bus 300
	INSUM
	DriveBus
	MODBUS TCP
	IEC 61850
	AF 100
	MOD5
	EtherNet/IP and DeviceNet
	S200 I/O System
	Satt Rack I/O System
	S800 I/O System
	Serial Communication
	Self-defined UDP Communication
	Self-defined TCP Communication
	Printer and Modem
	FOUNDATION Fieldbus H1

	Templates
	Execution of Copied Complex Types

	Section 4 Analog Process Control
	Introduction
	Concept
	Control Libraries Overview
	Functions and Other Libraries Used for Analog Control
	ControlConnection
	Controller Types
	Basic Controller Principles
	Controller Algorithms
	Hysteresis vs Dead Zone
	Fuzzy Control
	Controller Modes

	Design
	General Design Issues
	Control Strategies
	Remarks on the Design of Control Loops
	Controller Types
	Industrial Controller Types
	Signal Handling

	Getting Started with ControlConnection
	What is ControlConnection?
	Dealing with Data Flow Directions
	Open the Gates to ControlConnection
	Creating a Control Module with ControlConnection (CC template)
	What next?

	Advanced Functions
	Anti-Integrator Wind-Up Function
	Bumpless Transfer
	Deviation Alarms
	Feedforward
	Autotuning
	Adaptive Control
	Gain Scheduling
	Gain Scheduling versus Adaptation
	Additional Control Functions
	Input and Output Signal Handling
	Supervision
	Calculation
	Signal Handling
	Time Average
	Branch Objects
	Selector Objects
	Limiter Objects
	Conversion
	Miscellaneous Objects

	Control Loop Solutions
	Introduction
	Concept
	Design
	Example

	Basic Control Loop Examples
	Signal Selection Example
	Common Range Example
	Split Range Examples
	Level Detection Example

	Application Examples
	Simple Loop Examples
	Cascade Loop Examples
	Fuzzy Control Loop Examples

	Section 5 Binary Process Control
	Introduction
	Concept
	Process Object Libraries Overview
	Process Object Template Concept (Core Objects)
	Core Object Functions and Parameters (UniCore and BiCore)
	Control Module Icons
	Interaction Windows
	Interaction Parameters

	Design
	Choose the Correct Type
	Use Standard Library Types
	Use Standard Library Types to Create Self-defined Types
	Group Start Interface
	Voting Interface
	Alarm Handling
	Generic Uni- and Bi-Directional Control
	Motor and Valve Control

	Examples
	Create a Library and Insert a Copy of a Type
	Add Functions to Self-defined Types
	Connect to a Control Panel in Panel Mode

	Advanced Functions
	Level Detection, Commands and Alarm Texts
	ABB Drives Control
	INSUM Control

	Section 6 Synchronized Control
	Introduction
	Group Start Library
	Group Start Concept
	Group Start Configuration
	Example for Template Configuration
	Group Start Objects

	Section 7 Surveillance
	Introduction
	Signal and Vote Loop Concept
	Overview
	Example
	Standard Object Types that Support Voting Logic
	Vote Control Module Types
	Vote Structure Control Module Types
	SDLevelM Control Module Types
	SDLevelOr4
	SDLevelAnd4
	SDLevelBranch4
	Latching input object quality information

	Appendix A Customized Online Help
	Online Help Files for User-defined Libraries and Applications
	Online Help Files for User-defined Libraries with Hardware and Non-standard hardware
	Access Customized Online Help from Control Builder
	Context-Sensitive Linking

	Appendix B Library Objects Overview
	System
	Basic Library
	Communication Libraries
	MMSCommLib
	ModemCommLib
	COMLICommLib
	ModBusCommLib
	MTMCommLib
	MB300CommLib
	ModBusTCPCommLib
	S3964RCommLib
	SattBusCommLib
	SerialCommLib
	INSUMCommLib
	UDPCommLib
	TCPCommLib

	Alarm and Event Library
	Control Libraries
	ControlBasicLib
	ControlSimpleLib
	ControlStandardLib
	ControlObjectLib
	ControlSolutionLib
	ControlExtendedLib
	ControlAdvancedLib
	ControlFuzzyLib

	Batch Library
	Process Object Libraries
	ProcessObjBasicLib
	ProcessObjExtendedLib
	ProcessObjDriveLib
	ProcessObjInsumLib

	Signal Libraries
	SignalLib
	SignalBasicLib

	Supervision Library
	SupervisionBasicLib

	Synchronized Control Library
	GroupStartLib

	INDEX

